[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016013108A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2016013108A1
WO2016013108A1 PCT/JP2014/069684 JP2014069684W WO2016013108A1 WO 2016013108 A1 WO2016013108 A1 WO 2016013108A1 JP 2014069684 W JP2014069684 W JP 2014069684W WO 2016013108 A1 WO2016013108 A1 WO 2016013108A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
winding
winding support
spacing piece
support portion
Prior art date
Application number
PCT/JP2014/069684
Other languages
English (en)
French (fr)
Inventor
哲也 永安
雅浩 近藤
清訓 古賀
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/303,923 priority Critical patent/US10418872B2/en
Priority to EP14897952.9A priority patent/EP3174180B1/en
Priority to JP2016535607A priority patent/JP6165340B2/ja
Priority to PCT/JP2014/069684 priority patent/WO2016013108A1/ja
Priority to CN201480080595.4A priority patent/CN106537733A/zh
Publication of WO2016013108A1 publication Critical patent/WO2016013108A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing

Definitions

  • the present invention relates to a rotating electrical machine used for a turbine generator or the like, and more particularly to a rotating electrical machine with improved rotor cooling performance.
  • the rotor winding end of the conventional rotating electrical machine is provided with a second flow path that penetrates the high-speed flow region and the vortex flow region in the mountain-shaped portion of the insulator constituting the cooling air passage,
  • the eddy current region is eliminated to make the temperature distribution uniform (for example, refer to Patent Document 1).
  • the rotor winding end is cooled by a cooling gas flowing between adjacent coils held by a spacing piece that is an insulator.
  • a cooling gas flowing between adjacent coils held by a spacing piece that is an insulator In the case of increasing the rotor current, there is a problem that the rotor temperature rises above the heat resistance temperature of the insulator as the rotor field current increases.
  • the present invention was made to solve the above-mentioned problems, improving the cooling performance of the rotor winding end of the rotor of the rotating electrical machine, and increasing the output of the rotating electrical machine, An object of the present invention is to obtain a rotating electrical machine having a rotor that does not cause poor insulation.
  • a rotating electrical machine includes a rotor winding wound around a rotor core at an interval, and a rotor winding in which the rotor winding is formed so as to protrude from an axial end surface of the rotor core.
  • An end piece, a spacing piece disposed between adjacent rotor winding ends, a chevron-shaped winding support portion provided on both side surfaces of the spacing piece and having an obtuse angle, and both side surfaces of the spacing piece A meandering air passage formed by a mountain-shaped winding support portion, and a wavy winding support portion formed along the meandering air passage in the meandering air passage. .
  • the rotating electrical machine includes a rotor winding wound around the rotor core at an interval, and a rotor formed by projecting the rotor winding on an end surface in the axial direction of the rotor core.
  • Winding ends, spacing pieces disposed between adjacent rotor winding ends, arcuate winding supports provided on both sides of the spacing pieces, and arcuate shapes on both sides of the spacing pieces A meandering air passage formed by the winding support portion, and a wavy winding support portion formed along the meandering air passage in the meandering air passage and having a shape connecting the arcuate winding support portions. It is characterized by that.
  • the flow separation at the apex of the mountain-shaped winding support is suppressed, the vortex region behind the mountain-shaped winding support is reduced, and the cooling gas is uniform throughout the meandering air passage. Therefore, the pressure loss can be remarkably reduced. Furthermore, it is possible to suppress a local temperature rise at the rotor winding end by making the flow in the meandering air passage formed in the spacing piece uniform.
  • FIG. 2 is an enlarged cross-sectional view of a main part around a rotor winding end in FIG. 1. It is a perspective view which shows the state which removed the coil holding ring and end ring of the rotor in FIG. It is a top view which shows the principal part of the rotor coil
  • FIG. 1 is a cross-sectional side view of a turbine generator using a rotating electrical machine according to Embodiment 1 of the present invention.
  • 2 is an enlarged cross-sectional view of a main part around the rotor winding end in FIG. 1, and is a side view of a region surrounded by a dotted line in FIG. 3 is a perspective view of the rotor showing a state in which the coil holding ring and the end ring in FIG. 1 are removed
  • FIG. 4 is a plan view showing the main part of the rotor winding end in FIG. It is.
  • the rotating electrical machine 100 includes a hollow cylindrical stator 1 and a cylindrical rotor 5 having a diameter slightly smaller than the diameter of the hollow portion through a gap (air gap) 25. Are arranged concentrically.
  • the stator 1 and the rotor 5 are each provided with a conductive coil such as copper in the axial direction of the iron core slot.
  • the stator 1 and the rotor 5 are fixed. Current is induced on the child 1 side.
  • the stator 1 and the rotor 5 generate a large amount of heat due to electrical loss or the like, and thus require special cooling.
  • the rotating electrical machine 100 performs forced cooling by installing a fan 26 in the rotor 5 and sending a cooling gas into the rotating electrical machine 100.
  • a gas such as air or hydrogen is used as the cooling gas for cooling the inside of the rotating electrical machine 100.
  • the turbine generator 200 includes a stator 1, a rotor 5, a fan 26, and a cooler 27.
  • the stator 1 includes a stator core 2, a stator winding 3, and a duct 4.
  • the rotor 5 includes a rotor core 6, a rotor winding 7, a coil holding ring 30, an end ring 31, and a rotating shaft 13.
  • the rotating shaft 13 is rotatably supported by a bearing (not shown), and the fan 26 is attached to the end of the rotating shaft 13 symmetrically.
  • the outer periphery of the rotor core 6 and the inner periphery of the stator core 2 are separated by a gap (air gap) 25.
  • the rotating shaft 13 rotates and the cooling gas pumped by the fan 26 is divided into two hands, and one cooling gas is introduced from the opening 31a (see FIG. 2) of the end ring 31 to be a rotor in the coil holding ring 30.
  • the winding end 8 is cooled and discharged from the notch exhaust passage 15 of the rotor magnetic pole 14 (see FIG. 3) into the gap 25 in the direction of the arrow A3.
  • the other cooling gas cools the end of the stator winding 3 to flow in the gap 25 in the axial direction, and merges with the cooling gas indicated by the arrow A3.
  • the rotor winding 7 is centered on the rotor magnetic poles 14 in slots (not shown) provided in a plurality of left and right rotor iron cores 6 of the rotor magnetic poles 14.
  • a plurality of bowl-shaped rectangular rotor coils 11 formed by concentrated winding are arranged concentrically, and are composed of a plurality of field coils connected in series.
  • the rotor coil 11 has a coil side (not shown) in the slot and a rotor winding end 8 protruding from the end face of the rotor core 6.
  • the rotor winding end portion 8 has a pair of linear portions 9 projecting from the end face of the rotor core 6 in the direction of the rotational axis and a connecting portion 10 that connects both the linear portions 9.
  • a plurality of rotor winding end portions 8 are disposed so as to protrude from the end portions of the rotor magnetic poles 14 at intervals.
  • the coil holding ring 30 covers and holds the outer circumferences of the spacing pieces 18 disposed between the rotor winding end 8 and the adjacent rotor winding end 8. Is fitted into the end of the rotor core 6.
  • An end ring 31 is fitted to the other end portion of the coil holding ring 30, and the rotor winding end portion 8 is moved from the space between the opening portion 31 a provided penetrating in the direction of the rotation axis and the rotation shaft 13.
  • a cooling gas to be cooled is introduced as indicated by an arrow A1.
  • the cooling gas that has cooled the rotor winding end 8 is collected at a lower portion of the circumferential width center portion of the rotor winding end 8 through a meandering air passage (not shown) provided in the spacing piece 18.
  • a partition plate 20 leading to the cutout exhaust passage 15 is provided on the rotating shaft 13 as indicated by an arrow A2 (see FIG. 2).
  • the rotor winding end portions 8 a, 8 b, 8 c, and 8 d are respectively a pair of linear portions 9 a, 9 a, 9 b, 9 c, and 9 d, and connection portions 10. 10a, 10b, 10c, 10d. Between the straight portions 9a, 9b, 9c, and 9d, 16a, 16b, and 16c, which are spacing pieces 16, are disposed, respectively. Moreover, 18a, 18b, 18c which is the space
  • each spacing piece 16a, 16b, 16c On both side surfaces of each spacing piece 16a, 16b, 16c are 17a, 17b which are meandering air passages 17 that meander along the longitudinal direction of the side wall surfaces of the abutting linear portions 9a, 9b, 9c, 9d. , 17c. Further, on both side surface portions of each spacing piece 18a, 18b, 18c, 19a, which is a meandering air passage 19 extending meandering along the longitudinal direction of the side wall surface of each of the connecting portions 10a, 10b, 10c, 10d that abuts. 19b and 19c are configured.
  • the side wall surfaces of the straight portions 9a, 9b, 9c, and 9d constitute one wall surface of the meandering air passages 17a, 17b, and 17c, respectively.
  • the side wall surfaces of the connecting portions 10a, 10b, 10c, 10d constitute one wall surface of 19a, 19b, 19c.
  • the partition plate 20 has a pair of side plates 20a whose lower part is inserted into a groove (not shown) of the rotary shaft 13 (see FIG. 2) and whose one side end surface is in contact with the side wall of the rotor magnetic pole 14. It is comprised by the end plate 20b joined to the other side end surface of a pair of side plate 20a, and arrange
  • each spacing piece 16 On both side surfaces of each spacing piece 16a, 18a, meandering grooves 21 (not shown) that meander and extend in the longitudinal direction of each spacing piece 16a, 18a are formed.
  • the interval piece 16a is arranged between the straight portions 9a and 9b, and the interval piece 18a is arranged between the connecting portions 10a and 10b.
  • a meandering air passage 17a is formed by meandering grooves 21 (not shown) of the spacing pieces 16a and the side wall surfaces of the straight portions 9a, 9b.
  • the meandering air passage 19a is formed by the meandering groove 21 of the spacing piece 18a and the side wall surfaces of the connecting portions 10a and 10b.
  • the introduced cooling gas cools the straight portions 9a and 9b and the connecting portions 10a and 10b while continuously flowing through the meandering air passages 17a and 19a as indicated by an arrow A2, and the left and right side plates of the partition plate 20 are cooled. Derived into the space surrounded by 20a.
  • the cooling gas at the rotor winding end 8 is introduced from the opening 31a (see FIG. 2) of the end ring 31 as indicated by an arrow A1, and then the spacing pieces 16a, 16b, and 16c.
  • the meandering air on each side of the spacing pieces 18a, 18b, 18c is introduced into the meandering air passages 17a, 17b, 17c on both sides and from the meandering air passages 17a, 17b, 17c in the direction of the arrow A2 represented by a dashed line. It flows continuously into the paths 19a, 19b, 19c.
  • the electrical resistance loss in the rotor winding end 8a, 8b, 8c, and 8d is absorbed by the cooling gas flowing through the meandering air passages 17a, 17b, 17c, 19a, 19b, and 19c.
  • the temperature rise of the child winding end 8 is suppressed.
  • FIG. 5 is a perspective view showing a spacing piece of the rotating electric machine according to Embodiment 1 of the present invention.
  • FIG. 5 shows a state where the coil holding ring 30 is removed.
  • the spacing piece 16a includes a mountain-shaped winding support portion 41 and a wavy winding support portion 42 in the meandering air passage 17a.
  • FIG. 6 is a side view showing the spacing piece of the rotating electrical machine according to the first embodiment of the present invention.
  • the apex angle 47 of the mountain-shaped winding support part 41 is an obtuse angle. As shown in FIGS.
  • the cooling gas 48 that has flowed into the meandering air passage 17 a provided in the spacing piece 16 a is split into two at the end of the wave-like winding support portion 42.
  • the apex angle 47 of the mountain-shaped winding support portion 41 is an obtuse angle, the separation of the flow at the apex of the mountain-shaped winding support portion 41 is suppressed, and the mountain-shaped winding support
  • the cooling gas flows uniformly over the entire meandering flow path without generating a vortex region generated behind the support portion 41.
  • FIG. 7 is a side view showing the state of the spacing piece of the rotating electrical machine in the comparative example.
  • the rotor windings 7 having a thickness of several millimeters are usually stacked in the vertical direction in the figure, so that the spacing pieces 16a maintain the holding force of the rotor windings 7 over the entire area.
  • the apex angle of the mountain-shaped winding support portion 41 is an acute angle, and the flow of the cooling gas 48 flowing through the meandering air passage 17a is separated at the apex of the mountain-shaped winding support portion 41, and the mountain-shaped winding support portion 41 A swirling vortex region 49 is formed behind the line support portion 41. Due to the presence of the swirl region 49, the cross-sectional area of the flow path through which the cooling gas 48 actually flows is reduced, and a high-speed flow region with an increased flow velocity is generated. As a result, the pressure loss in the ventilation path increases. In addition, the vortex region 49 becomes a heat insulating layer in which heat exchange between the rotor winding end 8 and the cooling gas 48 is suppressed. For this reason, the rotor winding end portion 8 in contact with the vortex region 49 has a higher temperature than the rotor winding end portion 8 in contact with the high-speed flow region.
  • FIG. 8 is a perspective view showing the main part of the spacing piece of the rotating electrical machine in the comparative example.
  • the both sides of each spacing piece 16a, 18a have the same groove depth Di and width W, and the longitudinal direction of each spacing piece 16a, 18a.
  • a meandering groove 21 is formed which meanders and extends toward the end.
  • the interval piece 16a is arranged between the straight portions 9a and 9b, and the interval piece 18a is arranged between the connecting portions 10a and 10b.
  • a meandering air passage 17a is formed by the meandering groove 21 of the spacing piece 16a and the side wall surfaces of the straight portions 9a, 9b.
  • the meandering air passage 19a is formed by the meandering groove 21 of the spacing piece 18a and the side wall surfaces of the connecting portions 10a and 10b.
  • the introduced cooling gas cools the straight portions 9a and 9b and the connecting portions 10a and 10b while continuously flowing through the meandering air passages 17a and 19a as indicated by an arrow A2, and the left and right side plates of the partition plate 20 are cooled. Derived into the space surrounded by 20a.
  • the flow passage cross-sectional area through which the refrigerant flows substantially increases as compared with the structure of the comparative example, so that the flow velocity decreases, and consequently the pressure loss proportional to the square of the flow velocity is remarkably reduced. be able to. Furthermore, it is possible to suppress a local temperature rise at the rotor winding end 8 by making the flow in the meandering air passage 17a constituted by the spacing pieces 16a uniform.
  • the shape of the mountain-shaped winding support 41 is not limited to a triangle, and may be a trapezoid (not shown). Alternatively, as shown in FIG. 9, the shape of the mountain-shaped winding support portion 41 of the spacing piece 16 a may be an arc shape.
  • the wavy winding support portion 42 has a shape in which circular arcs are connected, and each meandering air passage 17a partitioned by the wavy winding support portion 42 has a cross-sectional area with respect to the flow direction as constant as possible. .
  • FIG. FIG. 10 is a side view showing a spacing piece of a rotating electrical machine according to Embodiment 2 of the present invention.
  • the spacing piece 16a includes a mountain-shaped winding support portion 41 and a wavy winding support portion 42 in the meandering air passage 17a.
  • the peak height 46 of the peak-shaped winding support part 41 is not less than 1/3 and 1/2 or less of the width 45 of the spacing piece, and the apex angle 47 is an obtuse angle. Therefore, the apex of the mountain-shaped winding support portion 41 and the valley portion of the wave-shaped winding support portion 42 have a region 43 that overlaps in the circumferential direction.
  • the shape of the mountain-shaped winding support part 41 is not limited to a triangle but may be a trapezoid. Alternatively, the mountain-shaped winding support part 41 may have an arc shape.
  • FIG. 11 is a side view showing a spacing piece of a rotating electrical machine according to Embodiment 3 of the present invention.
  • the spacing piece 16a includes a mountain-shaped winding support portion 41 and a wave-like winding support portion 42 provided in the meandering air passage 17a.
  • the wavy winding support 42 has an end 44 that extends to the vicinity of the center of the cooling gas inlet 50. Therefore, in the third embodiment, in addition to the effects of the first or second embodiment, the left and right sides of the wavy winding support 42 are determined depending on the length by which the end 44 of the wavy winding support 42 protrudes. Can be adjusted so that the flow rate flowing through Therefore, it is possible to further suppress the local temperature distribution at the rotor winding end 8.
  • FIG. 12 is a side view showing a modification of the spacing piece of the rotating electrical machine according to the third embodiment of the present invention.
  • interval piece 16a is provided with the mountain-shaped winding support part 41 and the wavy winding support part 42 provided in the meandering ventilation path 17a.
  • the end 44 of the wavy winding support 42 may have a structure extending toward the cooling gas inlet 50. Therefore, also in the modified example in the third embodiment, in addition to the effect of the first or second embodiment, the wavy winding support portion is determined by the length of the end 44 of the wavy winding support portion 42 protruding. The flow rate flowing through the left and right of 42 can be adjusted to be equal. Therefore, it is possible to further suppress the local temperature distribution at the rotor winding end 8.
  • the number of the wavy winding support portions 42 in the meandering air passage 17a has been described as one, but two or more wavy winding support portions 42 may be arranged in parallel. Good.
  • the spacing piece 16a provided in the linear portion 9 has been described.
  • the present invention is also applied to the arc-shaped spacing piece 18a provided in the connecting portion 10.
  • the first to third embodiments can be similarly applied.
  • the present invention has been described on behalf of a rotating electrical machine having a ventilation path, the present invention can also be applied to a spacing piece in a rotating electrical machine having another ventilation path. It should be noted that within the scope of the present invention, the embodiments can be freely combined, or the embodiments can be appropriately modified or omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

 回転子巻線端部の冷却性能を改善し、回転電機の出力を増加させても絶縁不良が発生しない回転電機を得る。回転子鉄心(6)の周りに間隔を空けて巻回された回転子巻線(7)と、回転子巻線(7)が回転子鉄心(6)の軸方向端面に突出して形成された回転子巻線端部(8)と、隣接する回転子巻線端部(8)間に配置された間隔片(16a)と、間隔片(16a)の両側表面に設けられ、頂角(47)が鈍角である山型の巻線支持部(41)と、間隔片(16a)の両側表面に山型の巻線支持部(41)により形成された蛇行通風路(17a)と、蛇行通風路(17a)中に蛇行通風路(17a)に沿って形成された波状の巻線支持部(42)とを備える。

Description

回転電機
 この発明は、タービン発電機等に用いられる回転電機に関し、特に回転子の通風冷却性能を改善した回転電機に関するものである。
 従来の回転電機の回転子巻線端部は温度低減のため、冷却風路を構成している絶縁物の山型部分に高速流領域と渦流領域を貫く第二の流路を設けることによって、渦流領域を解消し、温度分布の均一化を図っている(例えば、特許文献1参照)。
特開平9-322454号公報
 しかしながら、このような回転子を有する回転電機において、回転子巻線端部は、絶縁物である間隔片によって保持された隣接コイル間を流通する冷却ガスにより冷却されているが、回転電機の出力を増加する場合、回転子の界磁電流増加に伴い、回転子温度が絶縁物の耐熱温度以上に上昇するという課題があった。
 この発明は、上記のような問題点を解決するためになされたものであり、回転電機の回転子の回転子巻線端部の冷却性能を改善し、回転電機の出力を増加させても、絶縁不良が発生しない回転子を有する回転電機を得ることを目的としている。
 この発明に係わる回転電機は、回転子鉄心の周りに間隔を空けて巻回された回転子巻線と、回転子巻線が回転子鉄心の軸方向端面に突出して形成された回転子巻線端部と、隣接する回転子巻線端部間に配置された間隔片と、間隔片の両側表面に設けられ、頂角が鈍角である山型の巻線支持部と、間隔片の両側表面に山型の巻線支持部により形成された蛇行通風路と、蛇行通風路中に蛇行通風路に沿って形成された波状の巻線支持部と、を備えたことを特徴とするものである。
 また、この発明に係わる回転電機は、回転子鉄心の周りに間隔を空けて巻回された回転子巻線と、回転子巻線が回転子鉄心の軸方向端面に突出して形成された回転子巻線端部と、隣接する回転子巻線端部間に配置された間隔片と、間隔片の両側表面に設けられた円弧状の巻線支持部と、間隔片の両側表面に円弧状の巻線支持部により形成された蛇行通風路と、蛇行通風路中に蛇行通風路に沿って形成され、円弧状の巻線支持部を繋いだ形状を有する波状の巻線支持部と、を備えたことを特徴とするものである。
 この発明の回転電機によれば、山型の巻線支持部の頂点における流れの剥離が抑制され、山型の巻線支持部背後の渦流領域が小さくなり、蛇行通風路全体にわたって冷却ガスが均一に流れるため、圧力損失を著しく減少させることができる。さらに、間隔片に形成された蛇行通風路における流れを均一化することによって、回転子巻線端部の局所的な温度上昇を抑制することが可能となる。
 この発明の上記以外の目的、特徴、観点及び効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになるであろう。
この発明の実施の形態1における回転電機を用いたタービン発電機の断面側面図である。 図1における回転子巻線端部回りの要部拡大断面図である。 図1における回転子のコイル保持環及びエンドリングを外した状態を示す斜視図である。 図1における回転子巻線端部の要部を示す平面図である。 この発明の実施の形態1における回転電機の間隔片を示す斜視図である。 この発明の実施の形態1における回転電機の間隔片を示す側面図である。 比較例における回転電機の間隔片を示す側面図である。 比較例における回転電機の間隔片の要部を示す斜視図である。 この発明の実施の形態1における回転電機の間隔片の変形例を示す側面図である。 この発明の実施の形態2における回転電機の間隔片を示す側面図である。 この発明の実施の形態3における回転電機の間隔片を示す側面図である。 この発明の実施の形態3における回転電機の間隔片の変形例を示す側面図である。
 以下、図面に基づいてこの発明の実施の形態1について説明する。
 なお、各図面中において、同一符号は同一あるいは相当のものであることを示す。
実施の形態1.
 図1は、この発明の実施の形態1における回転電機を用いたタービン発電機の断面側面図である。また、図2は、図1における回転子巻線端部回りの要部拡大断面であり、図1の点線で囲んだ領域の側面図である。図3は、図1におけるコイル保持環及びエンドリングを外した状態を示す回転子の斜視図であり、図4は、図1における回転子巻線端部の要部を展開して示す平面図である。
 まず、回転電機100について説明する。図1に示すように、回転電機100は、中空円筒形状の固定子1と、この中空部の直径よりも幾分直径の小さい円筒形状の回転子5とが、空隙(エアーギャップ)25を介して同心上に配置された状態で構成されている。この固定子1及び回転子5は、各々銅などの導電性のコイルを鉄心スロットの軸方向に配しており、回転子5側のコイルを励磁した状態で回転子5を回転させると、固定子1側に電流が誘起される。このとき、固定子1や回転子5には、電気的な損失などに起因する大きな熱が発生するため、特別な冷却を必要とする。そこで、回転電機100は、回転子5にファン26を設置して、回転電機100内に冷却ガスを送ることで強制冷却を行っている。なお、回転電機100内を冷却する冷却ガスとしては、例えば空気や水素などのガスが用いられている。
 次に、回転電機100の冷却について説明する。図1に示すように、タービン発電機200は、固定子1と、回転子5と、ファン26と、冷却器27を備えている。また、固定子1は、固定子鉄心2と、固定子巻線3と、ダクト4を備えている。また、回転子5は、回転子鉄心6と、回転子巻線7と、コイル保持環30と、エンドリング31と、回転軸13を備えている。回転軸13は、軸受(図示せず)に回転自在に支持され、ファン26が回転軸13の端部に対称的に取り付けられている。回転子鉄心6の外周と固定子鉄心2の内周間は空隙(エアーギャップ)25で隔てられている。
 回転軸13が回転し、ファン26により圧送された冷却ガスは二手に分かれ、一方の冷却ガスは、エンドリング31の開口部31a(図2参照)から導入されてコイル保持環30内の回転子巻線端部8を冷却し、回転子磁極14(図3参照)の切欠排気路15から矢印A3の方向に空隙25内へ吐出される。他方の冷却ガスは、固定子巻線3の端部を冷却して空隙25内を軸方向に流れ、矢印A3の冷却ガスと合流する。そして、ダクト4内を矢印A4のように流れて固定子鉄心2及び固定子巻線3を冷却した後、矢印A5(図1参照)のように流れて冷却器27で熱交換されファン26の吸気側へ還流する。
 また、図3に示すように、回転子巻線7は、各回転子磁極14の左右の回転子鉄心6に複数設けられたスロット(図示せず)内に、それぞれ回転子磁極14を中心に集中巻回して成形された鞍形の矩形状の回転子コイル11を複数個同心状に配置し、これらを直列に接続した複数の界磁コイルからなる。回転子コイル11は、上記スロット内のコイル辺(図示せず)と回転子鉄心6の端面から突出された回転子巻線端部8とを有している。回転子巻線端部8は、回転子鉄心6の端面から回転軸方向に突出された一対の直線部分9及びこの両直線部分9を連結する連結部分10を有している。そして、複数の回転子巻線端部8が、相互に間隔を置いて回転子磁極14の端部に突出して配置されている。
 図2に示すように、コイル保持環30は、回転子巻線端部8及び隣り合う回転子巻線端部8相互間に配置された間隔片18の各外周を覆って保持し、その一方の端部は回転子鉄心6の端部に嵌合されている。コイル保持環30の他方の端部には、エンドリング31が嵌合され、回転軸方向に貫通して設けた開口部31aと回転軸13との間の空間から回転子巻線端部8を冷却する冷却ガスが矢印A1のように導入される。回転子巻線端部8の周方向幅中心部の下部には、間隔片18に設けられた蛇行通風路(図示せず)を流れて回転子巻線端部8を冷却した冷却ガスを集め矢印A2(図2参照)のように切欠排気路15に導出する仕切り板20が回転軸13上に設けられている。
 また、図4に示すように、回転子巻線端部8である8a、8b、8c、8dは、それぞれ各一対の直線部分9である9a、9b、9c、9dと各連結部分10である10a、10b、10c、10dとを有している。そして、直線部分9である9a、9b、9c、9dの相互間には、それぞれ間隔片16である16a、16b、16cが配置されている。また、連結部分10である10a、10b、10c、10dの相互間には、それぞれ間隔片18である18a、18b、18cが配置されている。
 各間隔片16a、16b、16cの両側面部には、当接した各直線部分9a、9b、9c、9dの側壁面の長手方向に沿って、蛇行して延びる蛇行通風路17である17a、17b、17cが設けられている。また、各間隔片18a、18b、18cの両側面部には、当接する各連結部分10a、10b、10c、10dの側壁面の長手方向に沿って、蛇行して延びる蛇行通風路19である19a、19b、19cが構成されている。
 これらの蛇行通風路17a、17b、17cでは、各直線部分9a、9b、9c、9dの側壁面が、それぞれ各蛇行通風路17a、17b、17cの一壁面を構成している。また、蛇行通風路19a、19b、19cでは、各連結部分10a、10b、10c、10dの側壁面が、19a、19b、19cの一壁面を構成している。
 仕切り板20は、下部が回転軸13(図2参照)の溝(図示せず)内に差し込まれ、一方の側端面が回転子磁極14の側壁に当接された一対の側板20aと、この一対の側板20aの他方の側端面に接合されてエンドリング31の開口部31a(図2参照)に配置された端板20bとで構成されている。
 ここで、図4を参照して、間隔片16について簡単に説明する。各間隔片16a、18aの両側面部には、各間隔片16a、18aの長手方向に向け蛇行し延びる蛇行溝21(図示せず)が形成されている。そして、間隔片16aが直線部分9a、9b間に、間隔片18aが連結部分10a、10b間にそれぞれ配置されて組み立てられる。間隔片16aの蛇行溝21(図示せず)と直線部分9a、9bの側壁面とにより蛇行通風路17aが形成される。また、間隔片18aの蛇行溝21と連結部分10a、10bの側壁面とにより蛇行通風路19aが形成される。そして、導入された冷却ガスは、矢印A2のように各蛇行通風路17a、19a内を連続して流れながら直線部分9a、9b及び連結部分10a、10bを冷却し、仕切り板20の左右の側板20aで囲まれた空間へ導出される。
 図4に示すように、回転子巻線端部8における冷却ガスは、エンドリング31の開口部31a(図2参照)から矢印A1のように導入された後、間隔片16a、16b、16cの各両側の蛇行通風路17a、17b、17cに導入され、一点鎖線で代表して示す矢印A2方向に向かって蛇行通風路17a、17b、17cから間隔片18a、18b、18cの各両側の蛇行通風路19a、19b、19c内へ連続して流れる。そして、中央部で左右の蛇行通風路19a、19b、19cからの流れが合流(図示せず)し、仕切り板20の左右の側板20aで囲まれた空間を回転軸方向へ進み、切欠排気路15へ導出される。
 以上のように、蛇行通風路17a、17b、17c、19a、19b、19cを流れる冷却ガスにより、回転子巻線端部8である8a、8b、8c、8dにおける電気抵抗損失は吸収され、回転子巻線端部8の温度上昇が抑制される。
 図5は、この発明の実施の形態1における回転電機の間隔片を示す斜視図である。なお、図5は、コイル保持環30を取り除いた状態を示す。間隔片16aは、山型の巻線支持部41と、蛇行通風路17a中に波状の巻線支持部42とを備えている。また、図6は、この発明の実施の形態1における回転電機の間隔片を示す側面図である。ここで、山型の巻線支持部41の頂角47は、鈍角となっている。
 図5及び図6に示すように、間隔片16aに設けられた蛇行通風路17aに流入した冷却ガス48は、波状の巻線支持部42の端部において二手に分かれる。実施の形態1においては、山型の巻線支持部41の頂角47が鈍角となっているため、山型の巻線支持部41の頂点における流れの剥離は抑制され、山型の巻線支持部41の背後に発生する渦流領域を生じることなく、蛇行流路全体にわたって冷却ガスが均一に流れる。
 図7は、比較例における回転電機の間隔片の状態を示す側面図である。図7に示すように、通常、厚さが数mmである回転子巻線7は図の縦方向に積層されるため、間隔片16aが全域にわたり回転子巻線7の保持力を維持するためには、山型の巻線支持部41の山の高さ46を、間隔片の幅45の半幅以上とし、少なくとも一点でコイルである回転子巻線7を支持する必要があった。そのため、通常、山型の巻線支持部41の頂角は鋭角となり、蛇行通風路17aを流れる冷却ガス48の流れは、山型の巻線支持部41の頂点において剥離し、山型の巻線支持部41の背後には流れの淀んだ渦流領域49を生じる。この渦流領域49が存在することにより、実際に冷却ガス48の流れる流路断面積は縮小され、流速が増大した高速流領域が発生する。その結果、通風路の圧力損失が増大する。加えて、渦流領域49は回転子巻線端部8と冷却ガス48の熱交換が抑制された断熱層となる。そのため、渦流領域49に接する回転子巻線端部8は、高速流領域に接する回転子巻線端部8に比べ高温となる。
 図8は、比較例における回転電機の間隔片の要部を示す斜視図である。比較例における間隔片16aにおいても、実施の形態1と同様に、各間隔片16a、18aの両側面部には、同じ溝深さDiと幅Wを有して各間隔片16a、18aの長手方向に向け蛇行し延びる蛇行溝21が形成されている。そして、間隔片16aが直線部分9a、9b間に、間隔片18aが連結部分10a、10b間にそれぞれ配置されて組み立てられる。間隔片16aの蛇行溝21と直線部分9a、9bの側壁面とにより蛇行通風路17aが形成される。また、間隔片18aの蛇行溝21と連結部分10a、10bの側壁面とにより蛇行通風路19aが形成される。そして、導入された冷却ガスは、矢印A2のように各蛇行通風路17a、19a内を連続して流れながら直線部分9a、9b及び連結部分10a、10bを冷却し、仕切り板20の左右の側板20aで囲まれた空間へ導出される。
 この発明の実施の形態1においては、実質的に冷媒の流れる流路断面積が比較例の構造に比べ増加することによって、流速は低下し、ひいては流速に二乗に比例する圧力損失を著しく減少することができる。さらに、間隔片16aによって構成される蛇行通風路17aにおける流れを均一化することによって、回転子巻線端部8の局所的な温度上昇を抑制することが可能となる。
 なお、山型の巻線支持部41の形状は、三角形に限らず、台形であってもよい(図示せず)。あるいは、図9に示すように、間隔片16aの山型の巻線支持部41の形状は、円弧状であってもよい。この場合は、波状の巻線支持部42は円弧を繋いだ形状とし、波状の巻線支持部42によって仕切られた各蛇行通風路17aは、流れ方向に対する断面積をなるべく一定にするのがよい。
実施の形態2.
 図10は、この発明の実施の形態2における回転電機の間隔片を示す側面図である。間隔片16aは、山型の巻線支持部41と、蛇行通風路17a中に波状の巻線支持部42を備えている。ここで、山型の巻線支持部41の山の高さ46は、間隔片の幅45の1/3以上で、かつ1/2以下とし、頂角47は鈍角となっている。このため、山型の巻線支持部41の頂点と波状の巻線支持部42の谷の部分は、周方向に関して重複する領域43を有している。
 これにより、実施の形態1で得られる効果に加え、重複領域43を有するため、積層された回転子巻線端部8の保持力が増加する。
 なお、山型の巻線支持部41の形状は、三角形に限らず台形であってもよい。あるいは、山型の巻線支持部41の形状は、円弧状であってもよい。
実施の形態3.
 図11は、この発明の実施の形態3における回転電機の間隔片を示す側面図である。実施の形態3において、間隔片16aは、山型の巻線支持部41と、蛇行通風路17a中に設けられた波状の巻線支持部42とを備えている。冷却ガス流入口50側において、波状の巻線支持部42は、冷却ガス流入口50の中央付近まで延びた端部44を有している。
 よって、実施の形態3においては、実施の形態1または実施の形態2による効果に加え、波状の巻線支持部42の端部44が突出する長さによって、波状の巻線支持部42の左右を流れる流量が均等になるように調節することができる。そのため、回転子巻線端部8の局所的な温度分布をさらに抑制することが可能となる。
 また、図12は、この発明の実施の形態3における回転電機の間隔片の変形例を示す側面図である。図12に示すように、間隔片16aが、山型の巻線支持部41と、蛇行通風路17a中に設けられた波状の巻線支持部42とを備えている。また、波状の巻線支持部42の端部44は、冷却ガス流入口50に向けて延長した構造であってもよい。
 よって、実施の形態3における変形例においても、実施の形態1または実施の形態2による効果に加え、波状の巻線支持部42の端部44が突出する長さによって、波状の巻線支持部42の左右を流れる流量が均等になるように調節することができる。そのため、回転子巻線端部8の局所的な温度分布をさらに抑制することが可能となる。
 なお、いずれの実施の形態においても、蛇行通風路17a中の波状の巻線支持部42の個数を1個として説明したが、波状の巻線支持部42は、2つ以上並列していてもよい。また、実施の形態1から実施の形態3においては、直線部分9に設けられた間隔片16aについて説明をおこなったが、連結部分10に設けられた円弧状の間隔片18aにおいてもこの発明の実施の形態1から実施の形態3を同様に適用することができる。さらに、この発明は、通風経路を有する回転電機を代表して説明したが、他の通風経路を有する回転電機における間隔片であっても適用可能である。
 なお、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
1 固定子、2 固定子鉄心、3 固定子巻線、4 ダクト、
5 回転子、6 回転子鉄心、7 回転子巻線、
8、8a、8b、8c、8d 回転子巻線端部、
9、9a、9b、9c、9d 直線部分、
10、10a、10b、10c、10d 連結部分、
11 回転子コイル、13 回転軸、14 回転子磁極、
15 切欠排気路、16、16a、16b、16c 間隔片、
17、17a、17b、17c 蛇行通風路、
18、18a、18b、18c 間隔片、
19、19a、19b、19c 蛇行通風路、20 仕切り板、
21 蛇行溝、25 空隙、26 ファン、27 冷却器、
30 コイル保持環、31 エンドリング、41 山型の巻線支持部、
42 波状の巻線支持部、47 頂角、48 冷却ガス、
50 冷却ガス流入口。

Claims (5)

  1.  回転子鉄心の周りに間隔を空けて巻回された回転子巻線と、
     前記回転子巻線が前記回転子鉄心の軸方向端面に突出して形成された回転子巻線端部と、
     隣接する前記回転子巻線端部間に配置された間隔片と、
     前記間隔片の両側表面に設けられ、頂角が鈍角である山型の巻線支持部と、
     前記間隔片の両側表面に前記山型の巻線支持部により形成された蛇行通風路と、
     前記蛇行通風路中に前記蛇行通風路に沿って形成された波状の巻線支持部と、を備えたことを特徴とする回転電機。
  2.  前記間隔片は、隣接する前記回転子巻線端部間の軸方向と周方向に設けられることを特徴とする請求項1に記載の回転電機。
  3.  前記山型の巻線支持部の山の高さは、前記間隔片の幅の1/3以上であり、かつ1/2以下であることを特徴とする請求項1または請求項2に記載の回転電機。
  4.  前記間隔片は、冷却ガスの流入口を有しており、
     前記波状の巻線支持部の端部が、前記冷却ガスの流入口の中央付近まで突出していることを特徴とする請求項1から請求項3のいずれか1項に記載の回転電機。
  5.  回転子鉄心の周りに間隔を空けて巻回された回転子巻線と、
     前記回転子巻線が前記回転子鉄心の軸方向端面に突出して形成された回転子巻線端部と、
     隣接する前記回転子巻線端部間に配置された間隔片と、
     前記間隔片の両側表面に設けられた円弧状の巻線支持部と、
     前記間隔片の両側表面に前記円弧状の巻線支持部により形成された蛇行通風路と、
     前記蛇行通風路中に前記蛇行通風路に沿って形成され、前記円弧状の巻線支持部を繋いだ形状を有する波状の巻線支持部と、を備えたことを特徴とする回転電機。
PCT/JP2014/069684 2014-07-25 2014-07-25 回転電機 WO2016013108A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/303,923 US10418872B2 (en) 2014-07-25 2014-07-25 Rotary electric machine
EP14897952.9A EP3174180B1 (en) 2014-07-25 2014-07-25 Rotating electric machine
JP2016535607A JP6165340B2 (ja) 2014-07-25 2014-07-25 回転電機
PCT/JP2014/069684 WO2016013108A1 (ja) 2014-07-25 2014-07-25 回転電機
CN201480080595.4A CN106537733A (zh) 2014-07-25 2014-07-25 旋转电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069684 WO2016013108A1 (ja) 2014-07-25 2014-07-25 回転電機

Publications (1)

Publication Number Publication Date
WO2016013108A1 true WO2016013108A1 (ja) 2016-01-28

Family

ID=55162660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069684 WO2016013108A1 (ja) 2014-07-25 2014-07-25 回転電機

Country Status (5)

Country Link
US (1) US10418872B2 (ja)
EP (1) EP3174180B1 (ja)
JP (1) JP6165340B2 (ja)
CN (1) CN106537733A (ja)
WO (1) WO2016013108A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418872B2 (en) * 2014-07-25 2019-09-17 Mitsubishi Electric Corporation Rotary electric machine
DE102017207659B4 (de) * 2017-05-08 2019-11-14 Audi Ag Elektrische Maschine sowie Verfahren zum Herstellen einer elektrischen Maschine
CN107896023B (zh) * 2018-01-10 2023-09-05 东方电气集团东方电机有限公司 汽轮发电机转子端部线圈两路外冷通风结构
CN107947463B (zh) * 2018-01-10 2024-01-19 东方电气集团东方电机有限公司 汽轮发电机转子端部线圈轴向外冷风路结构
EP3829035B1 (en) * 2018-07-26 2022-04-06 Mitsubishi Electric Corporation Rotor for rotary electric machine
DE102018216586A1 (de) 2018-09-27 2020-04-02 Siemens Aktiengesellschaft Verblockungselement für Rotorwickelköpfe bei Turbogeneratoren mit Läuferkappe mit radialen Ventilationsbohrungen
CN111600404A (zh) * 2020-06-15 2020-08-28 哈尔滨理工大学 具有逐步增压式定子槽钢的矿用防爆电机
GB202106809D0 (en) * 2021-05-13 2021-06-30 Cummins Generator Technologies Spacer for rotor windings

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151304U (ja) * 1976-05-13 1977-11-16
JP2004312886A (ja) * 2003-04-08 2004-11-04 Suzuki Motor Corp 電動機の冷却構造
JP2013198237A (ja) * 2012-03-19 2013-09-30 Mitsubishi Electric Corp 回転電機

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2653255A (en) * 1952-07-26 1953-09-22 Westinghouse Electric Corp Separate end-turn rotorventilation
US2833944A (en) * 1957-07-22 1958-05-06 Gen Electric Ventilation of end turn portions of generator rotor winding
JPS5625348A (en) * 1979-08-08 1981-03-11 Hitachi Ltd Rotor for rotary electric machine cooled by gas
JPS6134849Y2 (ja) * 1980-07-15 1986-10-09
JPH09322454A (ja) 1996-05-31 1997-12-12 Hitachi Ltd 回転電機の回転子
JP2000350412A (ja) * 1999-06-02 2000-12-15 Hitachi Ltd 回転電機
JP3589139B2 (ja) * 2000-02-14 2004-11-17 株式会社日立製作所 回転電機
US6452294B1 (en) * 2000-12-19 2002-09-17 General Electric Company Generator endwinding cooling enhancement
US6465917B2 (en) * 2000-12-19 2002-10-15 General Electric Company Spaceblock deflector for increased electric generator endwinding cooling
US6486575B2 (en) * 2001-01-16 2002-11-26 Mark Lee Miller Molded rotor blocking and other molded articles of manufacture
JP3735545B2 (ja) * 2001-07-27 2006-01-18 三菱電機株式会社 回転電機
US7081695B2 (en) * 2003-12-13 2006-07-25 Siemens Power Generation, Inc. Adjustable fit wedges
US6870299B1 (en) * 2003-12-19 2005-03-22 General Electric Company Thermal management of rotor endwinding coils
US7456542B2 (en) * 2004-11-24 2008-11-25 Siemens Energy, Inc. Inlet guidevanes for generator rotors
US7342345B2 (en) * 2005-10-28 2008-03-11 General Electric Company Paddled rotor spaceblocks
JP5016843B2 (ja) * 2006-04-28 2012-09-05 株式会社東芝 回転電機の回転子
EP2112746A1 (de) * 2008-04-22 2009-10-28 Siemens Aktiengesellschaft Dynamoelektrische Maschine
US8115352B2 (en) * 2009-03-17 2012-02-14 General Electric Company Dynamoelectric machine coil spacerblock having flow deflecting channel in coil facing surface thereof
US8525376B2 (en) * 2010-10-01 2013-09-03 General Electric Company Dynamoelectric machine coil spaceblock having flow deflecting structure in coil facing surface thereof
GB2499957A (en) * 2010-12-30 2013-09-04 Gen Electric Coil block, coil block assembly, and electrical machine containing same
CN104065186B (zh) * 2014-06-13 2017-10-17 新疆金风科技股份有限公司 一种用于电机的定子、电机及其通风冷却方法
US10418872B2 (en) * 2014-07-25 2019-09-17 Mitsubishi Electric Corporation Rotary electric machine
US10277086B2 (en) * 2014-11-26 2019-04-30 Siemens Energy, Inc. Thermo pump-cooled generator end windings with internal cooling passages
JP2017036026A (ja) * 2015-08-07 2017-02-16 株式会社デンソー 車両の駆動装置
KR101757051B1 (ko) * 2015-08-24 2017-07-11 두산중공업 주식회사 개선된 냉각 유로를 갖는 로터 어셈블리

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151304U (ja) * 1976-05-13 1977-11-16
JP2004312886A (ja) * 2003-04-08 2004-11-04 Suzuki Motor Corp 電動機の冷却構造
JP2013198237A (ja) * 2012-03-19 2013-09-30 Mitsubishi Electric Corp 回転電機

Also Published As

Publication number Publication date
JP6165340B2 (ja) 2017-07-19
US10418872B2 (en) 2019-09-17
JPWO2016013108A1 (ja) 2017-04-27
CN106537733A (zh) 2017-03-22
EP3174180A1 (en) 2017-05-31
EP3174180B1 (en) 2020-05-13
EP3174180A4 (en) 2018-01-17
US20170033633A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6165340B2 (ja) 回転電機
US7705503B2 (en) Rotating electrical machine
JP6302736B2 (ja) 回転電機
JP5893462B2 (ja) 回転電機
JP2007104888A (ja) 回転電機
JP2007259674A (ja) 回転電機の回転子
US20140361649A1 (en) Cooling arrangement for an electrical machine
JP5307849B2 (ja) 電動機
JP2007282488A (ja) 発電機回転子の冷却を改善するための流線形ボディウェッジブロックおよび方法
WO2019159522A1 (ja) 回転電機の冷却構造
WO2022265009A1 (ja) 回転電機用ケース、及び回転電機
JP2020010510A (ja) 回転電機および回転子
JP3735545B2 (ja) 回転電機
JP6935016B2 (ja) 回転電機の回転子
JP6609482B2 (ja) 回転電機
WO2017099027A1 (ja) 回転電機の回転子構造
CN118432319B (zh) 一种定子组件、电机以及家用电器
JP2019022257A (ja) 回転電機
JP7334448B2 (ja) 回転電気機械
WO2022049650A1 (ja) 回転電機
JP2013179732A (ja) 電動機
JP2001231193A (ja) 回転電機
KR20050019410A (ko) 냉각성능이 향상된 발전기
JP2001178034A (ja) 回転電機の電機子鉄心
CN114257009A (zh) 具有内部冷却结构的磁极线圈、转子和凸极电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535607

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15303923

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014897952

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014897952

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE