[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016052994A1 - 블록 공중합체 - Google Patents

블록 공중합체 Download PDF

Info

Publication number
WO2016052994A1
WO2016052994A1 PCT/KR2015/010313 KR2015010313W WO2016052994A1 WO 2016052994 A1 WO2016052994 A1 WO 2016052994A1 KR 2015010313 W KR2015010313 W KR 2015010313W WO 2016052994 A1 WO2016052994 A1 WO 2016052994A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
block copolymer
formula
block
atom
Prior art date
Application number
PCT/KR2015/010313
Other languages
English (en)
French (fr)
Inventor
이제권
박노진
김정근
구세진
이미숙
최은영
윤성수
유형주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150079483A external-priority patent/KR101880212B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2017517276A priority Critical patent/JP6451966B2/ja
Priority to EP15845928.9A priority patent/EP3202797B1/en
Priority to US15/515,293 priority patent/US10240035B2/en
Priority to CN201580059758.5A priority patent/CN107075053B/zh
Publication of WO2016052994A1 publication Critical patent/WO2016052994A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00388Etch mask forming
    • B81C1/00428Etch mask forming processes not provided for in groups B81C1/00396 - B81C1/0042
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • C08F299/024Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/02Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F32/06Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having two or more carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/005Modified block copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/165Monolayers, e.g. Langmuir-Blodgett
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • H01L21/31056Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching the removal being a selective chemical etching step, e.g. selective dry etching through a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31058After-treatment of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Definitions

  • the present application relates to a block copolymer and its use.
  • the block copolymer has a molecular structure in which polymer blocks having different chemical structures are connected through covalent bonds.
  • the block copolymer may form periodically arranged structures such as spheres, cylinders, or lamellas by phase separation.
  • the size of the domain of the structure formed by the self-assembly of the block copolymer can be controlled in a wide range, it is possible to manufacture a variety of forms of the structure of various next generation nano such as high-density magnetic storage medium, nanowires, quantum dots or metal dots It can be applied to pattern formation by elements, magnetic recording media, lithography and the like.
  • Physical properties required for the block copolymer to be applied to the pattern formation include etching selectivity together with self-assembly characteristics. That is, a process of selectively removing any one of the chemically different blocks of the self-assembled block copolymer may be required to manufacture a mask for forming a pattern. In this process, if the etching selectivity between the blocks is not secured, Application to pattern formation is difficult.
  • the present application provides a block copolymer and its use.
  • alkyl group may mean an alkyl group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkyl group may be a straight chain, branched or cyclic alkyl group, and may be optionally substituted with one or more substituents.
  • alkoxy group may mean an alkoxy group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkoxy group may be a straight chain, branched or cyclic alkoxy group, and may be optionally substituted with one or more substituents.
  • alkenyl group or alkynyl group means an alkenyl group or alkynyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms, unless otherwise specified. can do.
  • the alkenyl group or alkynyl group may be linear, branched or cyclic, and may be optionally substituted with one or more substituents.
  • alkylene group may mean an alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms.
  • the alkylene group may be a straight chain, branched or cyclic alkylene group, and may be optionally substituted with one or more substituents.
  • alkenylene group or alkynylene group is an alkenylene group or alkynylene having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms, or 2 to 4 carbon atoms unless otherwise specified. Can mean a group.
  • the alkenylene group or alkynylene group may be linear, branched or cyclic, and may be optionally substituted with one or more substituents.
  • aryl group or arylene group is one benzene ring structure, at least two benzene rings are connected while sharing one or two carbon atoms, or connected by any linker It may mean a monovalent or divalent residue derived from a compound or a derivative thereof containing the structure.
  • the aryl group or arylene group may be, for example, an aryl group having 6 to 30 carbon atoms, 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 13 carbon atoms.
  • aromatic structure may mean the aryl group or arylene group.
  • alicyclic ring structure means a cyclic hydrocarbon structure other than an aromatic ring structure, unless otherwise specified.
  • the alicyclic ring structure may be, for example, an alicyclic ring structure having 3 to 30 carbon atoms, 3 to 25 carbon atoms, 3 to 21 carbon atoms, 3 to 18 carbon atoms, or 3 to 13 carbon atoms, unless otherwise specified. .
  • the term single bond may refer to a case where no separate atom exists at a corresponding site.
  • B when B is a single bond, it may mean that a separate atom is not present at a site represented by B, and A and C are directly connected to form a structure represented by A-C.
  • an alkyl group an alkenyl group, an alkynyl group, an alkylene group, an alkenylene group, an alkynylene group, an alkoxy group, an aryl group, an arylene group, a chain or an aromatic structure, a hydroxy group, a halogen atom , Carboxyl group, glycidyl group, acryloyl group, methacryloyl group, acryloyl groupoxy, methacryloyl groupoxy group, thiol group, alkyl group, alkenyl group, alkynyl group, alkylene group, alkenylene group, alkynylene group , Alkoxy group or aryl group and the like can be exemplified, but is not limited thereto.
  • the block copolymer of the present application may include a block (hereinafter, referred to as a first block) having a unit represented by Formula 1 below.
  • the first block may be made of only a unit represented by the following Chemical Formula 1, or may include another unit in addition to the unit of Chemical Formula 1.
  • R is hydrogen or an alkyl group
  • Y is a monovalent substituent including the ring structure in which the chain which has 8 or more chain formation atoms is connected.
  • the monovalent substituent of Y includes a chain structure formed of at least eight chain forming atoms.
  • chain forming atom in the present application means an atom which forms a straight chain structure of a predetermined chain.
  • the chain may be straight or branched, but the number of chain forming atoms is calculated only from the number of atoms forming the longest straight chain, and other atoms (eg chain forming valences) bound to the chain forming atoms are In the case of a carbon atom, the hydrogen atom etc. couple
  • the chain forming atoms are all carbon as the number 5, and even when the chain is a 2-methylpentyl group, the chain forming atoms are all carbon as the number 5.
  • carbon, oxygen, sulfur or nitrogen may be exemplified, and a suitable chain forming atom may be carbon, oxygen or nitrogen, or carbon or oxygen.
  • the number of chain forming atoms may be at least 8, at least 9, at least 10, at least 11, or at least 12.
  • the number of chain forming atoms may also be 30 or less, 25 or less, 20 or less, or 16 or less.
  • the unit of formula 1 may allow the block copolymer to exhibit excellent self-assembly properties.
  • the chain may be a straight chain hydrocarbon chain such as a straight chain alkyl group.
  • the alkyl group may be an alkyl group having 8 or more carbon atoms, 8 to 30 carbon atoms, 8 to 25 carbon atoms, 8 to 20 carbon atoms, or 8 to 16 carbon atoms.
  • One or more of the carbon atoms of the alkyl group may be optionally substituted with an oxygen atom, and at least one hydrogen atom of the alkyl group may be optionally substituted with another substituent.
  • Y includes a ring structure, and the chain may be connected to the ring structure.
  • the ring structure may be an aromatic structure or an alicyclic structure.
  • the chain may be directly linked to the ring structure or may be linked through a linker.
  • Suitable linkers can be exemplified by oxygen atoms or nitrogen atoms.
  • the chain may, for example, be connected to an aromatic structure via an oxygen atom or a nitrogen atom.
  • the linker may be an oxygen atom or -NR 1- (wherein R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group).
  • Y in Formula 1 may be represented by the following Formula 2 in one example.
  • P is an arylene group
  • Q is a single bond, an oxygen atom or -NR 3-
  • R 3 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group
  • Z is 8
  • Y in Formula 1 is a substituent of Formula 2
  • P in Formula 2 may be directly connected to X in Formula 1.
  • Suitable examples of P in the general formula (2) may include, but are not limited to, an arylene group having 6 to 12 carbon atoms, for example, a phenylene group.
  • Q in the general formula (2) is an appropriate example, an oxygen atom or -NR 1- (wherein R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl group).
  • R is hydrogen or an alkyl group, for example, hydrogen or an alkyl group having 1 to 4 carbon atoms
  • Y is
  • P is an arylene group having 6 to 12 carbon atoms or phenylene
  • Q is an oxygen atom
  • Z is a unit having the aforementioned chain having 8 or more chain forming atoms.
  • R is hydrogen or an alkyl group having 1 to 4 carbon atoms
  • P is an arylene group having 6 to 12 carbon atoms
  • Q is an oxygen atom
  • Z is a chain forming valency At least 8 chains.
  • the unit of Formula 1 of the first block may be represented by the following Formula 4.
  • R 1 and R 2 in Formula 4 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms
  • T is a single bond or an arylene group
  • Q is a single bond or a carbonyl group
  • Y is a chain having 8 or more chain forming atoms.
  • At least one chain forming valence of the chain having 8 or more chain forming atoms in the unit of any one of Formulas 1, 3, and 4 of the first block may have an electronegativity of 3 or more.
  • the electronegativity of the atom may be 3.7 or less in other examples.
  • a nitrogen atom or an oxygen atom may be exemplified, but is not limited thereto.
  • the second block included together with the first block including the above unit may include at least a unit of Formula 5 below.
  • the second block may be made of only the unit of Chemical Formula 5 or may further include other units described below. If the second block includes another unit together with the unit of Formula 5, each unit may form a separate sub block in the second block or may be included at random.
  • the unit of Formula 5 includes at least one photocrosslinkable functional group as described above.
  • the block copolymer can be crosslinked before or after the formation of the self-assembled structure. If the crosslinking reaction is induced only in the second block, the etching selectivity of the first block and the second block can be improved.
  • a functional group that can be crosslinked while generating a radical by irradiation of light (hereinafter, may be referred to as an optical radical generator) or does not generate radicals.
  • Functional groups that can be crosslinked in the presence, and the like can be exemplified. In the latter case, the block copolymer can be applied to the process with a suitable radical initiator.
  • a benzoylphenoxy group, an alkenyloxycarbonyl group, a (meth) acryloyl group or an alkenyloxyalkyl group may be exemplified, but is not limited thereto.
  • one or more photocrosslinkable functional groups may be included, for example, at least R 3 may be the photocrosslinkable functional group.
  • the unit of formula 5 may include at least one, at least two, at least three, at least four or at least five halogen atoms, for example fluorine atoms, together with the photocrosslinkable functional groups.
  • Halogen atoms such as a fluorine atom contained in the said unit, may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
  • At least one, one to three or one to two of R 1 to R 5 in the unit of Formula 5 may be the above-described photocrosslinkable functional groups.
  • R 1 to R 5 may include one or more, two or more, three or more, four or more or five or more halogen atoms.
  • the halogen atoms contained in R 1 to R 5 may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
  • the ratio of units of the formula (5) may be adjusted to a range in which an appropriate crosslinking reaction may occur while maintaining self-assembly of the block copolymer.
  • the ratio in the second block of the unit of Formula 5 is 0.1 mol% to 5 mol%, 0.5 mol% to 5 mol%, 1 mol% based on the number of moles of units included in the second block. To 5 mol% or 1.5 mol% to 5 mol%, 1.5 mol% to 4 mol%, and 1.5 mol% to 3 mol%. This ratio may be adjusted according to the type of units or blocks included in the block copolymer.
  • the second block of the block copolymer may further include other units together with the unit of Formula 5.
  • the kind of unit that can be included is not particularly limited.
  • the second block may be a polyvinylpyrrolidone unit, a polylactic acid unit, a polyvinylpyridine unit, a polystyrene unit such as polystyrene or poly trimethylsilylstyrene, or a polyethylene oxide. It may further include a polyalkylene oxide unit such as (polyethylene oxide), a poly butadiene unit, a poly isoprene unit or a polyolefin unit such as polyethylene.
  • a polyalkylene oxide unit such as (polyethylene oxide), a poly butadiene unit, a poly isoprene unit or a polyolefin unit such as polyethylene.
  • the second block may further include a unit having an aromatic structure including one or more halogen atoms together with the unit of Formula 5.
  • the unit may be, for example, a unit that does not include a photocrosslinkable functional group such as Formula 5.
  • Such a second unit may be, for example, a unit represented by the following formula (6).
  • B is a monovalent substituent having an aromatic structure containing at least one halogen atom.
  • a block including such a unit may exhibit excellent interaction with other blocks such as the first block so that the block copolymer exhibits excellent self-assembly characteristics and the like.
  • the aromatic structure may be, for example, an aromatic structure having 6 to 18 carbon atoms or 6 to 12 carbon atoms.
  • halogen atom included in the formula (6) a fluorine atom or a chlorine atom and the like may be exemplified, and a fluorine atom may be suitably used, but is not limited thereto.
  • B of Formula 6 may be a monovalent substituent having an aromatic structure having 6 to 12 carbon atoms substituted with one or more, two or more, three or more, four or more, or five or more halogen atoms.
  • the upper limit of the number of halogen atoms in the above is not particularly limited, and for example, 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less halogen atoms may be present.
  • Unit of Formula 6 may be represented by the following formula (7).
  • the unit of Chemical Formula 6 may be represented by the following Chemical Formula 8.
  • X 3 may be, in another example, a single bond, an oxygen atom, an alkylene group, —C ( ⁇ O) —O— or —OC ( ⁇ O) —.
  • R a to R e are each independently hydrogen, an alkyl group, a haloalkyl group, or a halogen atom, and R a to R e are one or more, two or more, three or more, four or more, or five or more halogen atoms
  • R a to R e may contain a fluorine atom.
  • Halogen atoms contained in R a to R e may be 10 or less, 9 or less, 8 or less, 7 or less, or 6 or less.
  • Number of moles of the unit of Formula 5 when the second block includes a unit having an aromatic structure including the halogen atom together with the unit of Formula 5, for example, a unit represented by any one of Formulas 6 to 8. (D5) and the ratio (DH / D5) of the mole number (DH) of the unit which has the aromatic structure containing the said halogen atom may be about 35-65, about 40-60, or about 40-50.
  • the block copolymer of the present application is a block copolymer including at least one of the aforementioned first and second blocks, and is a diblock copolymer including only the two blocks, or at least one of the first block and the second block. It may be a block copolymer of two or more triblocks containing two or more, or together with other blocks.
  • the block copolymer as described above may basically exhibit excellent phase separation or self-assembly characteristics.
  • the block copolymer includes two or more polymer chains connected by covalent bonds, phase separation occurs.
  • the block copolymer of the present application exhibits excellent phase separation characteristics, and may form a nanoscale structure by microphase seperation as needed.
  • the shape and size of the nanostructure may be controlled by the size (molecular weight, etc.) of the block copolymer, the relative ratio between the blocks, and the like.
  • As the structure formed by phase separation spherical, cylinder, gyroid, lamellae and inverted structures can be exemplified, and the ability of the block copolymer to form such a structure can be referred to as self-assembly.
  • the inventors of the present invention have confirmed that the copolymers satisfying at least one of the various parameters described below among the block copolymers having the various structures described above significantly improve the self-assembly property of each block copolymer.
  • the block copolymer of the present application may satisfy any one of the parameters described below, or may simultaneously satisfy two or more parameters. In particular, it has been found that the fulfillment of appropriate parameters allows the block copolymer to exhibit vertical orientation.
  • the term vertical alignment refers to the orientation of the block copolymer, and may refer to an orientation in which the nanostructures formed by the block copolymer are perpendicular to the substrate direction.
  • the technique of controlling the self-assembled structure of the block copolymer horizontally or vertically on various substrates is very important in the practical application of the block copolymer.
  • the orientation of the nanostructures in the film of the block copolymer is determined by which of the blocks forming the block copolymer is exposed to the surface or air.
  • blocks of the block copolymer having the higher polarity are wetted to the substrate, and blocks having the smaller polarity are wetted at the interface with the air.
  • the block copolymer of one aspect of the present application can form a film that exhibits an in-plane diffraction pattern of Grazing Incidence Small Angle X ray Scattering (GISAXS) on a hydrophobic surface.
  • the block copolymer may form a film exhibiting an in-plane diffraction pattern in Grazing Incidence Small Angle X ray Scattering (GISAXS) on a hydrophilic surface.
  • representing a diffraction pattern on an in-plane in GISAXS may mean that a peak perpendicular to the X coordinate is shown in the GISAXS diffraction pattern in the GISAXS analysis. This peak is confirmed by the vertical orientation of the block copolymer.
  • block copolymers exhibiting an in-plane diffraction pattern have vertical alignment.
  • the peaks identified in the X coordinate of the GISAXS diffraction pattern may be at least two or more, and when there are a plurality of peaks, scattering vectors (q values) of the peaks may be identified with an integer ratio, In this case, the phase separation efficiency of the block copolymer can be further improved.
  • the term vertical is an expression in consideration of an error, and may include, for example, an error within ⁇ 10 degrees, ⁇ 8 degrees, ⁇ 6 degrees, ⁇ 4 degrees, or ⁇ 2 degrees.
  • Block copolymers capable of forming films that exhibit in-plane diffraction patterns on both hydrophilic and hydrophobic surfaces can exhibit vertical orientation characteristics on a variety of surfaces that have not undergone separate treatment to induce vertical orientation.
  • hydrophobic surface in the present application means a surface whose wetting angle with respect to purified water is in the range of 5 to 20 degrees. Examples of hydrophobic surfaces include, but are not limited to, the surface of silicon treated with oxygen plasma, sulfuric acid, or pyrana solution.
  • hydrophilic surface in the present application means a surface having a normal wetting angle with respect to purified water in the range of 50 to 70 degrees.
  • hydrophilic surface may include the surface of polydimethylsiolxane (PDMS) treated with oxygen plasma, the surface of silicon treated with hexamethyldisilazane (HMDS), or the surface of silicon treated with hydrofluoric acid (HF), but is not limited thereto. no.
  • PDMS polydimethylsiolxane
  • HMDS hexamethyldisilazane
  • HF hydrofluoric acid
  • room temperature is a naturally occurring temperature that is warmed or undecreased and may mean a temperature of about 10 ° C. to 30 ° C., about 25 ° C. or about 23 ° C.
  • a film formed on a hydrophilic or hydrophobic surface and exhibiting an in-plane diffraction pattern on grazing incidence incineration scattering may be a film that has undergone thermal annealing.
  • the film for measuring grazing incidence incineration scattering (GISAXS) is, for example, a coating liquid prepared by diluting the block copolymer in a solvent (for example, fluorobenzene) at a concentration of about 0.7% by weight. It can be formed by coating the corresponding hydrophilic or hydrophobic surface with a thickness of nm and a coating area of 2.25 cm 2 (width: 1.5 cm, length: 1.5 cm) and thermally aging such a coating film.
  • the film can be carried out by holding it for about 1 hour at a temperature of about 160 ° C.
  • Gradient Incident Incineration Scattering (GISAXS) can be measured by injecting X-rays at an angle of incidence within the range of about 0.12 to 0.23 degrees to the film thus formed.
  • a diffraction pattern scattered from a film can be obtained by a known measuring device (eg, 2D marCCD), and the method of confirming the presence of a diffraction pattern on an in-plane through the diffraction pattern Jiyida.
  • Block copolymers exhibiting the aforementioned peaks in grazing incidence incineration scattering can exhibit excellent self-assembly properties, and such properties can be effectively controlled according to the purpose.
  • the block copolymer of the present application may exhibit at least one peak in a scattering vector q in a predetermined range during XRD analysis (X-ray diffraction analysis).
  • the block copolymer may exhibit at least one peak in the scattering vector q range of 0.5 nm ⁇ 1 to 10 nm ⁇ 1 in X-ray diffraction analysis.
  • the scattering vector q having the peak may be 0.7 nm ⁇ 1 or more, 0.9 nm ⁇ 1 or more, 1.1 nm ⁇ 1 or more, 1.3 nm ⁇ 1 or more, or 1.5 nm ⁇ 1 or more.
  • the scattering vector q having the peak is 9 nm ⁇ 1 or less, 8 nm ⁇ 1 or less, 7 nm ⁇ 1 or less, 6 nm ⁇ 1 or less, 5 nm ⁇ 1 or less, 4 nm ⁇ 1 or less, 3.5 nm can be -1 or less, or 3 nm or less.
  • the full width at half maximum (FWHM) of the peak identified in the range of the scattering vector q may be in the range of 0.2 to 0.9 nm ⁇ 1 .
  • the half-height width may be 0.25 nm ⁇ 1 or more, 0.3 nm ⁇ 1 or more, or 0.4 nm ⁇ 1 or more in another example.
  • the half height width may be 0.85 nm ⁇ 1 or less, 0.8 nm ⁇ 1 or less, or 0.75 nm ⁇ 1 or less.
  • half-height width may refer to the width of the peak (difference of scattering vector q) at a position representing half the intensity of the intensity of the maximum peak.
  • the scattering vector (q) and the half-height width in the XRD analysis are numerical values obtained by numerical analysis using the least-square method for the results obtained by the XRD analysis described later.
  • the profile of the XRD pattern peak is Gaussian fitting with the baseline of the portion showing the least intensity in the XRD diffraction pattern set to zero. After fitting, the scattering vector and the half-height width can be obtained from the fitting result.
  • R square is at least 0.9, at least 0.92, at least 0.94 or at least 0.96.
  • the manner in which such information can be obtained from the XRD analysis is well known, and for example, a numerical analysis program such as origin can be applied.
  • the block copolymer showing the peak of the half-height width within the range of the scattering vector (q) may include a crystalline site suitable for self-assembly.
  • the block copolymers identified within the range of the scattering vectors q described above can exhibit excellent self-assembly properties.
  • XRD analysis may be performed by measuring the scattering intensity according to the scattering vector after X-rays are transmitted through the block copolymer sample. XRD analysis can be carried out without special pretreatment for the block copolymer, for example, by drying the block copolymer under appropriate conditions and permeating through X-rays. As X-rays, an X-ray having a vertical size of 0.023 mm and a horizontal size of 0.3 mm can be applied. Using a measuring instrument (eg, 2D marCCD), a 2D diffraction pattern scattered from a sample can be obtained as an image, and the obtained diffraction pattern can be fitted in the manner described above to obtain scattering vectors, half-height widths, and the like. .
  • a measuring instrument eg, 2D marCCD
  • the number n of chain forming atoms of the chain is determined by the scattering vector q obtained by the X-ray diffraction analysis. Equation 1 may be satisfied.
  • Equation 1 n is the number of the chain forming atoms, q is the smallest scattering vector (q) in which the peak is observed in the X-ray diffraction analysis for the block copolymer, or the peak of the largest peak area is observed Scattering vector q.
  • means circumference.
  • the scattering vector introduced into Equation 1 is a value obtained according to the method mentioned in the aforementioned X-ray diffraction analysis method.
  • the scattering vector q introduced in Equation 1 may be, for example, a scattering vector q within a range of 0.5 nm ⁇ 1 to 10 nm ⁇ 1 .
  • the scattering vector q introduced into Equation 1 may be 0.7 nm ⁇ 1 or more, 0.9 nm ⁇ 1 or more, 1.1 nm ⁇ 1 or more, 1.3 nm ⁇ 1 or more, or 1.5 nm ⁇ 1 or more.
  • Scattering vector (q) introduced in Equation 1 is 9 nm -1 or less, 8 nm -1 or less, 7 nm -1 or less, 6 nm -1 or less, 5 nm -1 or less, 4 nm -1 or less , 3.5 nm ⁇ 1 or less or 3 nm ⁇ 1 or less.
  • Equation 1 shows the relationship between the distance between the blocks containing the chain (D) and the number of chain forming atoms of the chain when the block copolymer self-assembles to form a phase-separated structure
  • the absolute value of the difference between the surface energy of the first block of the block copolymer and the surface energy of the second block is 10 mN / m or less, 9 mN / m or less, 8 mN / m or less, Up to 7.5 mN / m or up to 7 mN / m.
  • the absolute value of the difference in surface energy may be 1.5 mN / m, 2 mN / m or 2.5 mN / m or more.
  • the structure in which the first block and the second block having the absolute value of the difference in the surface energy in this range are connected by covalent bonds can induce effective microphase seperation by phase separation due to proper incompatibility.
  • the first block may be, for example, a block having the chain described above.
  • the surface energy can be measured using a drop shape analyzer (DSA100 manufactured by KRUSS). Specifically, the surface energy is a coating liquid obtained by diluting a sample (block copolymer or homopolymer) to be measured with a solid content of about 2% by weight in fluorobenzene and having a thickness of about 50 nm and a coating area of 4 cm 2 on the substrate. After drying at room temperature for about 1 hour (width: 2cm, length: 2cm) can be measured for a film thermally annealed (thermal annealing) at 160 ° C for about 1 hour.
  • DSA100 drop shape analyzer
  • the average value of the five contact angle values obtained is obtained by dropping the deionized water having a known surface tension on the thermally matured film and determining the contact angle five times.
  • the procedure of dropping the known diiodomethane and determining the contact angle is repeated five times, and the average value of the five contact angle values obtained is obtained.
  • the surface energy can be obtained by substituting the numerical value (Strom value) of the surface tension of the solvent by Owens-Wendt-Rabel-Kaelble method using the average value of the contact angles with respect to the deionized water and diiomethane obtained.
  • the numerical value of the surface energy for each block of the block copolymer can be obtained by the method described above with respect to a homopolymer made only of the monomers forming the block.
  • the block in which the chain is included may have higher surface energy than other blocks.
  • the first block of the block copolymer may have higher surface energy than the second block.
  • the surface energy of the first block may be in the range of about 20 mN / m to 40 mN / m.
  • the surface energy of the first block may be 22 mN / m or more, 24 mN / m or more, 26 mN / m or more, or 28 mN / m or more.
  • the surface energy of the first block may be 38 mN / m or less, 36 mN / m or less, 34 mN / m or less, or 32 mN / m or less.
  • Such a first block is included, and the block copolymer exhibiting the difference between the second block and the surface energy as described above can exhibit excellent self-assembly characteristics.
  • the absolute value of the difference between the densities of the first and second blocks in the block copolymer is 0.25 g / cm 3 or more, 0.3 g / cm 3 or more, 0.35 g / cm 3 or more, 0.4 g / cm 3 or more, or 0.45 g / cm 3 or more.
  • the absolute value of the difference in density may be 0.9 g / cm 3 or more, 0.8 g / cm 3 or less, 0.7 g / cm 3 or less, 0.65 g / cm 3 or less, or 0.6 g / cm 3 or less.
  • the density of each block of the block copolymer can be measured using a known buoyancy method, for example, by analyzing the mass of the block copolymer in a solvent having a known mass and density in air such as ethanol The density can be measured.
  • the block in which the chain is included may have a lower density than other blocks.
  • the first block of the block copolymer comprises the chain
  • the first block may have a lower density than the second block.
  • the density of the first block may be in the range of about 0.9 g / cm 3 to about 1.5 g / cm 3 .
  • the density of the first block may be 0.95 g / cm 3 or more.
  • the density of the first block is 1.4 g / cm 3 1.3 g / cm 3 or less 1.2 g / cm 3 or less 1.1 g / cm 3 or less Or less, or 1.05 g / cm 3 It may be: Such a first block is included, and the block copolymer exhibiting the above-described density difference with the second block can exhibit excellent self-assembly characteristics.
  • the surface energy and density mentioned above may be numerical values measured at room temperature.
  • the block copolymer may include blocks having a volume fraction in the range of 0.4 to 0.8 and blocks having a volume fraction in the range of 0.2 to 0.6.
  • the volume fraction of the block having the chain may be in the range of 0.4 to 0.8.
  • the volume fraction of the first block may be in the range of 0.4 to 0.8
  • the volume fraction of the second block may be in the range of 0.2 to 0.6.
  • the sum of the volume fractions of the first block and the second block may be one.
  • the block copolymer including each block in the volume fraction as described above may exhibit excellent self-assembly characteristics.
  • the volume fraction of each block of the block copolymer can be obtained based on the density of each block and the molecular weight measured by Gel Permeation Chromatogrph (GPC).
  • the number average molecular weight (Mn) of the block copolymer may be, for example, in the range of 3,000 to 300,000.
  • the term number average molecular weight is a conversion value with respect to standard polystyrene measured using a gel permeation chromatograph (GPC), and the term molecular weight herein refers to a number average molecular weight unless otherwise specified.
  • the molecular weight (Mn) may be, for example, 3000 or more, 5000 or more, 7000 or more, 9000 or more, 11000 or more, 13000 or more, or 15000 or more.
  • the molecular weight (Mn) is 250000 or less, 200000 or less, 180000 or less, 160000 or less, 140000 or less, 120000 or less, 100000 or less, 90000 or less, 80000 or less, 70000 or less, 60000 or less, 50000 or less, 40000 or less, or 30000 or less. Or about 25000 or less.
  • the block copolymer may have a dispersion degree (polydispersity, Mw / Mn) in the range of 1.01 to 1.60.
  • the dispersity may in another example be at least about 1.1, at least about 1.2, at least about 1.3 or at least about 1.4.
  • the block copolymer may exhibit suitable self-assembly properties.
  • the number average molecular weight of the block copolymer can be adjusted in view of the desired self-assembly structure and the like.
  • the proportion of the first block in the block copolymer is from 10 mol% to 90 mol%. May be in range.
  • a specific method of preparing the block copolymer as described above is not particularly limited as long as it includes forming at least one block of the block copolymer using monomers capable of forming each unit described above.
  • the block copolymer may be prepared by LRP (Living Radical Polymerization) method using the monomer.
  • LRP Living Radical Polymerization
  • an anionic polymerization or an organic alkali metal compound synthesized in the presence of an inorganic acid such as an alkali metal or a salt of an alkaline earth metal is polymerized using an organic rare earth metal complex as a polymerization initiator or an organic alkali metal compound as a polymerization initiator.
  • Anion polymerization method synthesized in the presence of an organoaluminum compound using as an initiator, atom transfer radical polymerization method (ATRP) using an atom transfer radical polymerization agent as a polymerization control agent, an atomic transfer radical polymerization agent as a polymerization control agent is used.
  • RAFT polymerization method of
  • organic tellurium compound, etc. as an initiator
  • the block copolymer may be prepared in a manner that includes polymerizing a reactant including monomers capable of forming the block by living radical polymerization in the presence of a radical initiator and a living radical polymerization reagent. .
  • the method of forming another block included in the copolymer together with the block formed by using the monomer in the preparation of the block copolymer is not particularly limited, and the appropriate monomer is selected in consideration of the type of the desired block. Blocks can be formed.
  • the manufacturing process of the block copolymer may further include, for example, precipitating the polymerization product produced through the above process in the non-solvent.
  • the kind of radical initiator is not particularly limited and may be appropriately selected in consideration of the polymerization efficiency, and for example, AIBN (azobisisobutyronitrile) or 2,2'-azobis-2,4-dimethylvaleronitrile (2,2 ').
  • Azo compounds such as -azobis- (2,4-dimethylvaleronitrile)) or peroxides such as benzoyl peroxide (BPO) or di-t-butyl peroxide (DTBP) can be used.
  • Living radical polymerization processes are, for example, methylene chloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzene, toluene, acetone, chloroform, tetrahydrofuran, dioxane, monoglyme, diglyme, dimethylform It may be carried out in a solvent such as amide, dimethyl sulfoxide or dimethylacetamide.
  • non-solvent for example, alcohols such as methanol, ethanol, normal propanol or isopropanol, glycols such as ethylene glycol, ether series such as n-hexane, cyclohexane, n-heptane or petroleum ether may be used. It is not limited to this.
  • the present application also relates to a polymer membrane comprising the block copolymer.
  • the film may be used in various applications, and for example, may be used in various electronic or electronic devices, a process of forming the pattern or a recording medium such as a magnetic storage recording medium, a flash memory or a biosensor.
  • the block copolymer in the polymer membrane may implement a periodic structure including a sphere, a cylinder, a gyroid or a lamellar through self-assembly. .
  • the other segments may form a regular structure such as lamellar form or cylinder form.
  • the polymer film of the present application may exhibit a peak perpendicular to the X coordinate in the in-plane diffraction pattern, that is, the GISAXS diffraction pattern during GISAXS analysis.
  • the peaks identified in the X coordinate of the GISAXS diffraction pattern may be at least two or more, and when there are a plurality of peaks, scattering vectors (q values) of the peaks may be identified with an integer ratio.
  • the aforementioned second block may include a crosslinked structure. That is, for example, the crosslinked structure can be formed by a method of crosslinking the photocrosslinkable functional group of the unit of the formula (5) of the second block in the state where the self-assembled structure is formed.
  • the conditions for forming the crosslinked structure are not particularly limited and can be adjusted in consideration of the type and amount of the photocrosslinkable functional group used.
  • the photocrosslinkable functional group is a benzoylphenoxy group
  • the crosslinking may be performed by irradiating the self-assembled block copolymer with light having a wavelength of about 254 nm at a light amount of about 2 J / cm 2 . have.
  • the present application also relates to a method of forming a polymer film using the block copolymer.
  • the method may include forming a polymer film including the block copolymer on a substrate in a self-assembled state.
  • the method may include a step of forming a block copolymer or a layer of a coating solution diluted in a suitable solvent on a substrate by applying, and if necessary, aged or heat-treated the layer.
  • the aging or heat treatment may be performed based on, for example, the phase transition temperature or the glass transition temperature of the block copolymer, and may be performed, for example, at a temperature above the glass transition temperature or the phase transition temperature.
  • the time for which such heat treatment is performed is not particularly limited, and may be, for example, within a range of about 1 minute to 72 hours, but this may be changed as necessary.
  • the heat treatment temperature of the polymer thin film may be, for example, about 100 ° C. to 250 ° C., but this may be changed in consideration of the block copolymer used.
  • the formed layer may, in another example, be solvent aged for about 1 minute to 72 hours in a nonpolar solvent and / or a polar solvent at room temperature.
  • the process of crosslinking the second block may be further performed, and the progress of the crosslinking process is as described above.
  • the present application also relates to a pattern forming method.
  • the method selectively removes the first or second block of the block copolymer, for example, from a laminate having a substrate and a polymer film formed on the surface of the substrate and comprising the self-assembled block copolymer. It may include the process of doing.
  • the method may be a method of forming a pattern on the substrate.
  • the method may include forming a polymer film comprising the block copolymer on the substrate, and etching the substrate after selectively removing any one or more blocks of the block copolymer present in the film. . In this way, for example, formation of nanoscale fine patterns is possible.
  • the block copolymer in the polymer film various types of patterns such as nanorods or nanoholes may be formed through the above method. If necessary, the block copolymer and other copolymers or homopolymers may be mixed to form a pattern.
  • the type of the substrate to be applied in this manner is not particularly limited and may be selected as necessary, for example, silicon oxide or the like may be applied.
  • the above-mentioned second block may include a crosslinked structure in the polymer membrane applied to the process of selectively removing the first and / or second block, and the manner of implementing such a crosslinked structure is as described above.
  • this approach can form nanoscale patterns of silicon oxide that exhibit high aspect ratios.
  • the silicon oxide is removed in various ways, for example, By etching by reactive ion etching, various forms including nanorods or nanohole patterns may be realized.
  • the pattern may be implemented on a scale of several tens of nanometers, and the pattern may be utilized for various applications including, for example, a magnetic recording medium for next generation information electronics.
  • the above method may form a nanostructure having a width of about 3 nm to 40 nm, for example, a pattern in which nanowires are disposed at intervals of about 6 nm to 80 nm.
  • a structure in which nano holes having a width for example, a diameter of about 3 nm to 40 nm are disposed when forming an interval of about 6 nm to 80 nm.
  • the nanowires or the nanoholes may have a large aspect ratio.
  • the method of selectively removing any block of the block copolymer in the above method is not particularly limited.
  • a method of removing a relatively soft block by irradiating an appropriate electromagnetic wave, for example, ultraviolet rays, to the polymer film may be employed.
  • an appropriate electromagnetic wave for example, ultraviolet rays
  • UV irradiation conditions are determined according to the type of the block of the block copolymer, for example, it can be carried out by irradiating ultraviolet light of about 254 nm wavelength for 1 minute to 60 minutes.
  • the polymer film may be treated with an acid or the like to further remove the segment decomposed by the ultraviolet ray.
  • the step of etching the substrate using the polymer film with the selectively removed block as a mask is not particularly limited, and may be performed through, for example, a reactive ion etching step using CF 4 / Ar ions, and the like.
  • the step of removing the polymer film from the substrate by oxygen plasma treatment or the like may also be performed.
  • a block copolymer and its use can be provided.
  • the block copolymer of the present application has excellent self-assembly properties or phase separation properties, and various required functions can be freely provided, and in particular, the etching selectivity can be secured and effectively applied to applications such as pattern formation.
  • FIG. 1 is a SEM photograph of a polymer film before photocrosslinking formed using the block copolymer of Example 1.
  • FIG. 2 is a SEM photograph of the polymer film after photocrosslinking formed using the block copolymer of Example 1.
  • FIG. 2 is a SEM photograph of the polymer film after photocrosslinking formed using the block copolymer of Example 1.
  • FIG. 3 is a view showing a result of solvent washing without a photocrosslinking process on a polymer film formed using the block copolymer of Example 1.
  • NMR analysis was performed at room temperature using an NMR spectrometer including a Varian Unity Inova (500 MHz) spectrometer with triple resonance 5 mm probe.
  • Solvent for NMR Measurement (CDCl 3 ) was diluted to a concentration of about 10 mg / ml, the chemical shift was expressed in ppm.
  • br wide signal
  • s singlet
  • d doublet
  • dd doublet
  • t triplet
  • dt doublet
  • q quartet
  • p quintet
  • m multiplet.
  • Mn number average molecular weight
  • Mn molecular weight distribution
  • GPC gel permeation chromatography
  • an analyte such as a block copolymer or macroinitiator of Examples or Comparative Examples
  • THF tetrahydro furan
  • the standard sample for calibration and the sample to be analyzed were filtered through a syringe filter (pore size: 0.45 ⁇ m) and measured.
  • the analysis program used ChemStation of Agilent Technologies, and the weight average molecular weight (Mw) and number average molecular weight (Mn) were obtained by comparing the elution time of the sample with the calibration curve, and the molecular weight distribution (PDI) was used as the ratio (Mw / Mn). ) was calculated.
  • the measurement conditions of GPC are as follows.
  • the compound of formula A (DPM-C12) was synthesized in the following manner. Hydroquinone (10.0 g, 94.2 mmol) and 1-bromodecane (23.5 g, 94.2 mmol) were added to a 250 mL flask, dissolved in 100 mL of acetonitrile, and excess potassium was added. Potassium carbonate was added and reacted under nitrogen conditions at 75 ° C. for about 48 hours. Potassium carbonate remaining after the reaction and acetonitrile used in the reaction were also removed. Work-up was performed by adding a mixed solvent of dichloromethane (DCM) and water, and the separated organic layer was dehydrated with MgSO 4 . Then purified by dichloromethane (DCM) in column chromatography (CC) to give a white solid intermediate in a yield of about 37%.
  • DCM dichloromethane
  • CC column chromatography
  • R in formula (A) is a straight alkyl group having 12 carbon atoms.
  • 3-hydroxy-1,2,4,5-tetrafluorostyrene was synthesized in the following manner. Pentafluorostyrene (25 g, 129 mmol) is added to a mixture of 400 mL tert -butanol and potassium hydroxide (37.5 g, 161 mmol) and reacted for 2 hours (reflux reaction). ) After the reaction was cooled to room temperature, 1200 mL of water was added, and the remaining butanol used in the reaction was removed by volatilization.
  • the resultant of the reaction was extracted three times with diethyl ether (300 mL), and the aqueous layer was acidified to a pH of about 3 with 10% by weight of hydrochloric acid solution to precipitate the target product, and again with diethyl ether (300 mL). Extraction was performed 3 times to extract an organic layer. The organic layer was dehydrated with MgSO 4 and the solvent was removed to give a crude product. The crude product was purified by column chromatography using hexane and DCM (dichloromethane) as a mobile phase to give 3-hydroxy-1,2,4,5-tetrafluorostyrene (11.4 g) as a colorless liquid.
  • the NMR analysis result for the above is as follows.
  • the compound of formula B was synthesized in the following manner. Intermediate (3-hydroxy-1,2,4,5-tetrafluorostyrene) (1.7 g, 7.8 mmol), 4-benzoylbenzoic acid (1.9 g, 8.6 mmol) synthesized above in a flask , DCC (dicyclohexylcarbodiimide) (1.8 g, 8.6 mmol) and DMAP (p-dimethylaminopyridine) (0.48 g, 3.1 mmol) were added thereto, and 30 mL of methylene chloride was added thereto, followed by reaction at room temperature under nitrogen for 24 hours. After the reaction, the salt (urea salt) and remaining methylene chloride formed during the reaction were also removed.
  • DCC dicyclohexylcarbodiimide
  • DMAP p-dimethylaminopyridine
  • RAFT Reversible Addition Fragmentation Chain Transfer
  • the reaction solution was precipitated in 250 mL of methanol, which is an extraction solvent, and then filtered and dried under reduced pressure to prepare a pale yellow macroinitiator.
  • the yield of the macroinitiator was about 80% by weight, and the number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) were 6,100 and 1.25, respectively.
  • 0.2 g of the synthesized macroinitiator, 3.589 g of pentafluorostyrene, 0.151 g of the photocrosslinking monomer of Formula B and 1.697 mL of anisole were placed in a 10 mL Schlenk flask at room temperature under a nitrogen atmosphere. After stirring for 30 minutes, RAFT (Reversible Addition® Fragmentation Chain Transfer) polymerization reaction was performed at 70 ° C. for 3 hours. After polymerization, the reaction solution was precipitated in 250 mL of methanol as an extraction solvent, and then filtered and dried under reduced pressure to prepare a light yellow block copolymer.
  • RAFT Reversible Addition® Fragmentation Chain Transfer
  • the yield of the block copolymer was about 14%, and the number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) were 14,400 and 1.21, respectively.
  • the block copolymer includes a first block derived from the compound of Preparation Example 1 (DPM-C12), a compound of Formula B of Preparation Example 2, and a second block derived from the pentafluorostyrene.
  • a self-assembled polymer film was formed using the block copolymer synthesized in Example 1, and the results were confirmed. Specifically, the coating solution prepared by dissolving the copolymer in a solvent at a concentration of about 1.0% by weight was spin-coated on a silicon wafer at a speed of 3000 rpm for 60 seconds, and then self-assembled block copolymer through thermal annealing. A film containing the was formed. 1 is an SEM image of the polymer film formed as described above. Subsequently, the polymer membrane was irradiated with ultraviolet rays. Subsequently, light having a wavelength of about 254 nm was irradiated to the polymer film at a light amount of about 2 J / cm 2 . 2 is an SEM photograph of the polymer film after photocrosslinking as described above. As a result of performing solvent washing on the polymer membrane, it was confirmed that selective etching was performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 출원은, 블록 공중합체 및 그 용도가 제공될 수 있다. 본 출원의 블록 공중합체는, 우수한 자기 조립 특성 내지는 상분리 특성을 가지며, 요구되는 다양한 기능도 자유롭게 부여될 수 있고, 특히 에칭 선택성이 확보되어 패턴 형성과 같은 용도에 효과적으로 적용될 수 있다.

Description

블록 공중합체
본 출원은 2014년 9월 30일자 제출된 대한민국 특허출원본 출원은 2014년 9월 30일자 제출된 제2014-0131964호 및 2015년 6월 4일자 제출된 대한민국 특허출원 제2015-0079483호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 출원은, 블록 공중합체 및 그 용도에 관한 것이다.
블록 공중합체는 서로 다른 화학적 구조를 가지는 고분자 블록들이 공유 결합을 통해 연결되어 있는 분자 구조를 가지고 있다. 블록 공중합체는 상분리에 의해서 스피어(sphere), 실린더(cylinder) 또는 라멜라(lamella) 등과 같은 주기적으로 배열된 구조를 형성할 수 있다. 블록 공중합체의 자기 조립 현상에 의해 형성된 구조의 도메인의 크기는 광범위하게 조절될 수 있으며, 다양한 형태의 구조의 제작이 가능하여 고밀도 자기저장매체, 나노선 제작, 양자점 또는 금속점 등과 같은 다양한 차세대 나노 소자나 자기 기록 매체 또는 리소그라피 등에 의한 패턴 형성 등에 응용될 수 있다.
블록 공중합체가 상기 패턴 형성에 응용되기 위해서 요구되는 물성은 자기 조립 특성과 함께 에칭 선택성이 포함된다. 즉, 패턴 형성을 위한 마스크의 제조를 위하여 자기 조립된 블록 공중합체의 화학적으로 상이한 블록 중에서 어느 한 블록을 선택적으로 제거하는 과정이 요구될 수 있는데, 이 과정에서 블록들간의 에칭 선택성이 확보되지 않으면, 패턴 형성으로의 응용이 곤란하다.
본 출원은, 블록 공중합체 및 그 용도를 제공한다.
본 명세서에서 용어 알킬기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 상기 알킬기는 직쇄형, 분지형 또는 고리형 알킬기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알콕시기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기를 의미할 수 있다. 상기 알콕시기는 직쇄형, 분지형 또는 고리형 알콕시기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알케닐기 또는 알키닐기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기 또는 알키닐기를 의미할 수 있다. 상기 알케닐기 또는 알키닐기는 직쇄형, 분지형 또는 고리형일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알킬렌기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기를 의미할 수 있다. 상기 알킬렌기는 직쇄형, 분지형 또는 고리형 알킬렌기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알케닐렌기 또는 알키닐렌기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐렌기 또는 알키닐렌기를 의미할 수 있다. 상기 알케닐렌기 또는 알키닐렌기는 직쇄형, 분지형 또는 고리형일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 아릴기 또는 아릴렌기는, 특별히 달리 규정하지 않는 한, 하나의 벤젠 고리 구조, 2개 이상의 벤젠 고리가 하나 또는 2개의 탄소 원자를 공유하면서 연결되어 있거나, 또는 임의의 링커에 의해 연결되어 있는 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 또는 2가 잔기를 의미할 수 있다. 상기 아릴기 또는 아릴렌기는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 6 내지 30, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 13의 아릴기일 수 있다.
본 출원에서 용어 방향족 구조는 상기 아릴기 또는 아릴렌기를 의미할 수 있다.
본 명세서에서 용어 지환족 고리 구조는, 특별히 달리 규정하지 않는 한, 방향족 고리 구조가 아닌 고리형 탄화수소 구조를 의미한다. 상기 지환족 고리 구조는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 3 내지 30, 탄소수 3 내지 25, 탄소수 3 내지 21, 탄소수 3 내지 18 또는 탄소수 3 내지 13의 지환족 고리 구조일 수 있다.
본 출원에서 용어 단일 결합은 해당 부위에 별도의 원자가 존재하지 않는 경우를 의미할 수 있다. 예를 들어, A-B-C로 표시된 구조에서 B가 단일 결합인 경우에 B로 표시되는 부위에 별도의 원자가 존재하지 않고, A와 C가 직접 연결되어 A-C로 표시되는 구조를 형성하는 것을 의미할 수 있다.
본 출원에서 알킬기, 알케닐기, 알키닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기, 아릴기, 아릴렌기, 사슬 또는 방향족 구조 등에 임의로 치환되어 있을 수 있는 치환기로는, 히드록시기, 할로겐 원자, 카복실기, 글리시딜기, 아크릴로일기, 메타크릴로일기, 아크릴로일기옥시, 메타크릴로일기옥시기, 티올기, 알킬기, 알케닐기, 알키닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기 또는 아릴기 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
본 출원의 블록 공중합체는, 하기 화학식 1로 표시되는 단위를 가지는 블록(이하, 제 1 블록으로 호칭할 수 있다.)을 포함할 수 있다. 상기 제 1 블록은 하기 화학식 1로 표시되는 단위로만 이루어지거나, 혹은 상기 화학식 1의 단위에 추가로 다른 단위를 포함할 수 있다.
[화학식 1]
Figure PCTKR2015010313-appb-I000001
화학식 1에서 R은 수소 또는 알킬기이고, X는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, Y는 8개 이상의 사슬 형성 원자를 가지는 사슬이 연결된 고리 구조를 포함하는 1가 치환기이다.
화학식 1에서 X는 다른 예시에서 단일 결합, 산소 원자, 카보닐기, -C(=O)-O- 또는 -O-C(=O)-이거나, -C(=O)-O-일 수 있지만, 이에 제한되는 것은 아니다.
화학식 1에서 Y의 1가 치환기는, 적어도 8개의 사슬 형성 원자로 형성되는 사슬 구조를 포함한다.
본 출원에서 용어 사슬 형성 원자는, 소정 사슬의 직쇄 구조를 형성하는 원자를 의미한다. 상기 사슬은 직쇄형이거나, 분지형일 수 있으나, 사슬 형성 원자의 수는 가장 긴 직쇄를 형성하고 있는 원자의 수만으로 계산되며, 상기 사슬 형성 원자에 결합되어 있는 다른 원자(예를 들면, 사슬 형성 원자가 탄소 원자인 경우에 그 탄소 원자에 결합하고 있는 수소 원자 등)는 계산되지 않는다. 또한, 분지형 사슬인 경우에 상기 사슬 형성 원자의 수는 가장 긴 사슬을 형성하고 있는 사슬 형성 원자의 수로 계산될 수 있다. 예를 들어, 상기 사슬이 n-펜틸기인 경우에 사슬 형성 원자는 모두 탄소로서 그 수는 5이고, 상기 사슬이 2-메틸펜틸기인 경우에도 사슬 형성 원자는 모두 탄소로서 그 수는 5이다. 상기 사슬 형성 원자로는, 탄소, 산소, 황 또는 질소 등이 예시될 수 있고, 적절한 사슬 형성 원자는 탄소, 산소 또는 질소이거나, 탄소 또는 산소일 수 있다. 상기 사슬 형성 원자의 수는 8 이상, 9 이상, 10 이상, 11 이상 또는 12 이상일 수 있다. 상기 사슬 형성 원자의 수는, 또한 30 이하, 25 이하, 20 이하 또는 16 이하일 수 있다.
화학식 1의 단위는 상기 블록 공중합체가 우수한 자기 조립 특성을 나타내도록 할 수 있다.
하나의 예시에서 상기 사슬은, 직쇄 알킬기와 같은 직쇄 탄화수소 사슬일 수 있다. 이러한 경우에 알킬기는, 탄소수 8 이상, 탄소수 8 내지 30, 탄소수 8 내지 25, 탄소수 8 내지 20 또는 탄소수 8 내지 16의 알킬기일 수 있다. 상기 알킬기의 탄소 원자 중 하나 이상은 임의로 산소 원자로 치환되어 있을 수 있고, 상기 알킬기의 적어도 하나의 수소 원자는 임의적으로 다른 치환기에 의해 치환되어 있을 수 있다.
화학식 1에서 Y는 고리 구조를 포함하고, 상기 사슬은 상기 고리 구조에 연결되어 있을 수 있다. 이러한 고리 구조에 의해 상기 단량체에 의해 형성되는 블록 공중합체의 자기 조립 특성 등이 보다 향상될 수 있다. 고리 구조는 방향족 구조이거나, 지환족 구조일 수 있다.
상기 사슬은 상기 고리 구조에 직접 연결되어 있거나, 혹은 링커를 매개로 연결되어 있을 수 있다. 상기 링커로는, 산소 원자, 황 원자, -NR1-, S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)- 등이 예시될 수 있고, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있으며, X1은 단일 결합, 산소 원자, 황 원자, -NR2-, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기일 수 있고, 상기에서 R2는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있다. 적절한 링커로는 산소 원자 또는 질소 원자가 예시될 수 있다. 상기 사슬은, 예를 들면, 산소 원자 또는 질소 원자를 매개로 방향족 구조에 연결되어 있을 수 있다. 이러한 경우에 상기 링커는 산소 원자이거나, -NR1-(상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기)일 수 있다.
화학식 1의 Y는, 일 예시에서 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2015010313-appb-I000002
화학식 2에서 P는 아릴렌기이고, Q는 단일 결합, 산소 원자 또는 -NR3-이고, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 8개 이상의 사슬 형성 원자를 가지는 상기 사슬이다. 화학식 1의 Y가 상기 화학식 2의 치환기인 경우에 상기 화학식 2의 P가 화학식 1의 X에 직접 연결되어 있을 수 있다.
화학식 2에서 P의 적절한 예시로는, 탄소수 6 내지 12의 아릴렌기, 예를 들면, 페닐렌기를 예시할 수 있지만, 이에 제한되는 것은 아니다.
화학식 2에서 Q는 적절한 예시로는, 산소 원자 또는 -NR1-(상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기) 등을 들 수 있다.
화학식 1의 단위의 적절한 예시로는, 상기 화학식 1에서 R은 수소 또는 알킬기, 예를 들면, 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 -C(=O)-O-이며, Y는 상기 화학식 2에서 P는 탄소수 6 내지 12의 아릴렌기 또는 페닐렌이고, Q는 산소 원자이며, Z는 사슬 형성 원자가 8개 이상인 전술한 사슬인 단위를 들 수 있다.
따라서, 화학식 1의 적절한 예시의 단위로는 하기 화학식 3의 단위를 들 있다.
[화학식 3]
Figure PCTKR2015010313-appb-I000003
화학식 3에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 -C(=O)-O-이고, P는 탄소수 6 내지 12의 아릴렌기이고, Q는 산소 원자이며, Z는 사슬 형성 원자가 8개 이상인 상기 사슬이다.
다른 예시에서 제 1 블록의 상기 화학식 1의 단위는 하기 화학식 4로 표시될 수 있다.
[화학식 4]
Figure PCTKR2015010313-appb-I000004
화학식 4에서 R1 및 R2는 각각 독립적으로 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, T는 단일 결합 또는 아릴렌기이고, Q는 단일 결합 또는 카보닐기이며, Y는 사슬 형성 원자가 8개 이상인 사슬이다.
상기 화학식 4에서 X는 단일 결합, 산소 원자, 카보닐기, -C(=O)-O- 또는 -O-C(=O)-일 수 있다.
화학식 4의 상기 Y의 사슬의 구체적인 예로는, 화학식 1에서 기술한 내용이 유사하게 적용될 수 있다.
다른 예시에서 상기 제 1 블록의 상기 화학식 1, 3 및 4 중 어느 하나의 단위에서 사슬 형성 원자가 8개 이상인 사슬의 적어도 하나의 사슬 형성 원자가 전기 음성도가 3 이상일 수 있다. 상기 원자의 전기 음성도는 다른 예시에서는 3.7 이하일 수 있다. 상기에서 전기 음성도가 3 이상인 원자로는, 질소 원자 또는 산소 원자가 예시될 수 있지만, 이에 제한되는 것은 아니다.
블록 공중합체에서 상기와 같은 단위를 포함하는 제 1 블록과 함께 포함되는 제 2 블록은, 하기 화학식 5의 단위를 적어도 포함할 수 있다.
[화학식 5]
Figure PCTKR2015010313-appb-I000005
화학식 5에서 X2는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X2는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기, 할로겐 원자 또는 광가교성 관능기이며, R1 내지 R5가 포함하는 광가교성 관능기의 수는 1개 이상이다.
제 2 블록은 상기 화학식 5의 단위로만 이루어질 수도 있고, 후술하는 다른 단위를 추가로 포함할 수도 있다. 제 2 블록이 상기 화학식 5의 단위와 함께 다른 단위를 포함한다면, 상기 각 단위는 제 2 블록 내에서 별도의 서브 블록을 이루고 있거나, 랜덤하게 포함되어 있을 수 있다.
상기 화학식 5의 단위는 상기한 바와 같이 적어도 하나의 광가교성 관능기를 포함한다. 이러한 광가교성 관능기에 의해 상기 블록 공중합체는 자기 조립 구조의 형성 전 또는 후에 가교될 수 있는데, 가교 반응이 제 2 블록에서만 유도되면, 제 1 블록과 제 2 블록의 에칭 선택성이 향상될 수 있다.
상기 화학식 5의 단위에 포함될 수 있는 광가교성 관능기로는, 광의 조사에 의해 라디칼을 발생시키면서 가교될 수 있는 관능기(이하, 광라디칼 발생기로 호칭할 수 있다.) 또는 라디칼을 발생시키지는 않으나, 라디칼의 존재하에 가교될 수 있는 관능기 등이 예시될 수 있다. 후자의 경우, 블록 공중합체는 적절한 라디칼 개시제와 함께 공정에 적용될 수 있다. 상기 광가교성 관능기로는, 벤조일페녹시기, 알케닐옥시카보닐기, (메타)아크릴로일기 또는 알케닐옥시알킬기 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
화학식 5의 단위에서 광가교성 관능기는 1개 이상 포함될 수 있고, 예를 들면, 적어도 R3는 상기 광가교성 관능기일 수 있다.
화학식 5의 단위는 상기 광가교성 관능기와 함께 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자, 예를 들면, 불소 원자를 포함할 수 있다. 상기 단위에 포함되는 불소 원자와 같은 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
화학식 5의 단위에서 R1 내지 R5 중 적어도 1개, 1개 내지 3개 또는 1개 내지 2개는 전술한 광가교성 관능기일 수 있다.
화학식 5의 단위에서 R1 내지 R5에는 할로겐 원자가 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상 포함될 수 있다. R1 내지 R5에 포함되는 할로겐 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
제 2 블록이 상기 화학식 5의 단위와 함께 다른 단위를 포함하는 경우, 상기 화학식 5의 단위의 비율은 블록 공중합체의 자기 조립성이 유지되면서, 적절한 가교 반응이 일어날 수 있는 범위로 조절될 수 있다. 예를 들면, 상기 화학식 5의 단위의 제 2 블록 내에서의 비율은, 제 2 블록에 포함되는 단위들의 몰수를 기준으로 0.1몰% 내지 5몰%, 0.5 몰% 내지 5 몰%, 1 몰% 내지 5 몰% 또는 1.5 몰% 내지 5 몰%, 1.5 몰% 내지 4 몰%, 1.5 몰% 내지 3 몰% 정도일 수 있다. 이러한 비율은, 블록 공중합체에 포함되는 단위 내지는 블록의 종류에 따라서 조절될 수 있다.
블록 공중합체의 제 2 블록은 상기 화학식 5의 단위와 함께 다른 단위를 추가로 포함할 수 있다. 이 경우 포함될 수 있는 단위의 종류는 특별히 제한되지 않는다.
예를 들면, 제 2 블록은, 폴리비닐피롤리돈 단위, 폴리락트산(polylactic acid) 단위, 폴리비닐피리딘 단위, 폴리스티렌 또는 폴리트리메틸실릴스티렌(poly trimethylsilylstyrene) 등과 같은 폴리스티렌(polystyrene) 단위, 폴리에틸렌옥시드(polyethylene oxide)와 같은 폴리알킬렌옥시드 단위, 폴리부타디엔(poly butadiene) 단위, 폴리이소프렌(poly isoprene) 단위 또는 폴리에틸렌(poly ethylene) 등의 폴리올레핀 단위 등을 추가로 포함할 수 있다.
하나의 예시에서 상기 제 2 블록은, 상기 화학식 5의 단위와 함께, 하나 이상의 할로겐 원자를 포함하는 방향족 구조를 가지는 단위를 추가로 포함할 수 있다.
상기 단위는 예를 들면, 상기 화학식 5와 같은 광가교성 관능기는 포함하지 않는 단위일 수 있다.
이러한 제 2 단위는, 예를 들면, 하기 화학식 6으로 표시되는 단위일 수 있다.
[화학식 6]
Figure PCTKR2015010313-appb-I000006
화학식 6에서 B는 하나 이상의 할로겐 원자를 포함하는 방향족 구조를 가지는 1가 치환기이다.
이러한 단위를 포함하는 블록은 제 1 블록 등의 다른 블록과 우수한 상호 작용을 나타내어 블록 공중합체가 우수한 자기 조립 특성 등을 나타내도록 할 수 있다.
화학식 6에서 방향족 구조는, 예를 들면, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 방향족 구조일 수 있다.
화학식 6에 포함되는 할로겐 원자로는, 불소 원자 또는 염소 원자 등이 예시될 수 있고, 적절하게는 불소 원자가 사용될 수 있지만, 이에 제한되는 것은 아니다.
하나의 예시에서 화학식 6의 B는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자로 치환된 탄소수 6 내지 12의 방향족 구조를 가지는 1가 치환기일 수 있다. 상기에서 할로겐 원자의 개수의 상한은 특별히 제한되지 않고, 예를 들면, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하의 할로겐 원자가 존재할 수 있다.
상기 화학식 6의 단위는 하기 화학식 7로 표시될 수 있다.
[화학식 7]
Figure PCTKR2015010313-appb-I000007
화학식 7에서 X2는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X2는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, W는 적어도 1개의 할로겐 원자를 포함하는 아릴기이다. 상기에서 W는 적어도 1개의 할로겐 원자로 치환된 아릴기, 예를 들면, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로렌 원자로 치환된 탄소수 6 내지 12의 아릴기일 수 있다.
다른 예시에서 상기 화학식 6의 단위는 하기 화학식 8로 표시될 수 있다.
[화학식 8]
Figure PCTKR2015010313-appb-I000008
화학식 8에서 X3는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X2는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, Ra 내지 Re는 각각 독립적으로 수소, 알킬기, 할로알킬기 또는 할로겐 원자이고, Ra 내지 Re가 포함하는 할로겐 원자의 수는 1개 이상이다.
화학식 8에서 X3는, 다른 예시에서 단일 결합, 산소 원자, 알킬렌기, -C(=O)-O- 또는 -O-C(=O)-일 수 있다.
화학식 8에서 Ra 내지 Re는 각각 독립적으로 수소, 알킬기, 할로알킬기 또는 할로겐 원자이되, Ra 내지 Re는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자, 예를 들면, 불소 원자를 포함할 수 있다. Ra 내지 Re에 포함되는 할로겐 원자, 예를 들면, 불소 원자는, 10개 이하, 9개 이하, 8개 이하, 7개 이하 또는 6개 이하일 수 있다.
제 2 블록이 상기 화학식 5의 단위와 함께 상기 할로겐 원자를 포함하는 방향족 구조를 가지는 단위, 예를 들면, 상기 화학식 6 내지 8 중 어느 하나로 표시되는 단위를 포함하는 경우에 상기 화학식 5의 단위의 몰수(D5) 및 상기 할로겐 원자를 포함하는 방향족 구조를 가지는 단위의 몰수(DH)의 비율(DH/D5)은, 약 35 내지 65, 약 40 내지 60 또는 약 40 내지 50 정도일 수 있다.
본 출원의 블록 공중합체는 전술한 제 1 및 제 2 블록을 적어도 하나 포함하는 블록 공중합체이고, 상기 2개의 블록만을 포함하는 디블록 공중합체이거나, 상기 제 1 블록 및 제 2 블록 중 하나 이상을 2개 이상 포함하거나, 혹은 다른 블록과 함께 포함하는 트리블록 이상의 블록 공중합체일 수 있다.
상기와 같은 블록 공중합체는, 기본적으로 우수한 상분리 내지는 자기 조립 특성을 나타낼 수 있다. 또한, 각 블록의 선택 및 조합과 하기 기술된 파라미터 중 하나 이상을 만족하도록 함으로써 상기 상분리 내지는 자기 조립 특성이 보다 개선되도록 할 수 있다.
블록 공중합체는 공유 결합으로 연결된 2개 또는 그 이상의 고분자 사슬을 포함하기 때문에 상분리가 일어나게 된다. 본 출원의 블록 공중합체는 우수한 상분리 특성을 나타내고, 필요에 따라서 미세상분리(microphase seperation)에 의한 나노 스케일의 구조를 형성할 수 있다. 나노 구조의 형태 및 크기는 블록 공중합체의 크기(분자량 등)나, 블록간의 상대적 비율 등에 의해 조절될 수 있다. 상분리에 의해 형성되는 구조로는, 구형, 실린더, 자이로이드(gyroid), 라멜라 및 반전 구조 등이 예시될 수 있고, 이러한 구조를 형성하는 블록 공중합체의 능력을 자기 조립성으로 호칭할 수 있다. 본 발명자들은, 전술한 다양한 구조의 블록 공중합체 중에서 하기에서 기술하는 각종 파라미터 중에서 적어도 하나를 만족하는 공중합체는, 각 블록 공중합체가 기본적으로 보유하고 있는 자기 조립성이 크게 향상되는 점을 확인하였다. 본 출원의 블록 공중합체는 후술하는 파라미터 중에서 어느 하나만을 충족할 수도 있고, 2개 이상의 파라미터를 동시에 충족할 수도 있다. 특히, 적절한 파라미터의 충족을 통해 블록 공중합체가 수직 배향성을 나타내도록 할 수 있음을 밝혀내었다. 본 출원에서 용어 수직 배향은, 블록 공중합체의 배향성을 나타내는 것이고, 블록 공중합체에 의해 형성되는 나노 구조체의 배향이 기판 방향과 수직한 배향을 의미할 수 있다. 블록 공중합체의 자기 조립된 구조를 다양한 기판 위에 수평 혹은 수직으로 조절하는 기술은 블록 공중합체의 실제적 응용에서 매우 큰 비중을 차지한다. 통상적으로 블록 공중합체의 막에서 나노 구조체의 배향은 블록 공중합체를 형성하고 있는 블록 중에서 어느 블록이 표면 혹은 공기 중에 노출되는 가에 의해 결정된다. 일반적으로 다수의 기판이 극성이고, 공기는 비극성이기 때문에 블록 공중합체의 블록 중에서 더 큰 극성을 가지는 블록이 기판에 웨팅(wetting)하고, 더 작은 극성을 가지는 블록이 공기와의 계면에서 웨팅(wetting)하게 된다. 따라서, 블록 공중합체의 서로 다른 특성을 가지는 블록이 동시에 기판측에 웨팅하도록 하기 위하여 다양한 기술이 제안되어 있으며, 가장 대표적인 기술은 중성 표면 제작을 적용한 배향의 조절이다. 그렇지만, 본 출원의 하나의 측면에서는, 하기의 파라미터를 적절하게 조절하게 되면, 블록 공중합체가 중성 표면 처리 등을 포함한 수직 배향을 달성하기 위한 것으로 알려진 공지의 처리가 수행되지 않은 기판에 대해서도 수직 배향이 가능하다. 또한, 본 출원의 추가적인 측면에서는 상기와 같은 수직 배향을 열적 숙성(thermal annealing)에 의해서 넓은 영역에 단 시간 내에 유도할 수도 있다.
본 출원의 하나의 측면의 블록 공중합체는, 소수성 표면상에서 스침각 입사 소각 산란(GISAXS, Grazing Incidence Small Angle X ray Scattering)의 인플레인상(in plane) 회절 패턴을 나타내는 막을 형성할 수 있다. 상기 블록 공중합체는, 친수성 표면상에서 스침각 입사 소각 산란(GISAXS, Grazing Incidence Small Angle X ray Scattering)에서 인플레인상 회절 패턴을 나타내는 막을 형성할 수 있다.
본 출원에서 GISAXS에서 인플레인상의 회절 패턴을 나타낸다는 것은 GISAXS 분석 시에 GISAXS 회절 패턴에서 X좌표에 수직한 피크를 나타낸다는 것을 의미할 수 있다. 이러한 피크는, 블록 공중합체의 수직 배향성에 의해 확인된다. 따라서, 인플레인상 회절 패턴을 나타내는 블록 공중합체는 수직 배향성을 가진다. 추가적인 예시에서 상기 GISAXS 회절 패턴의 X좌표에서 확인되는 피크은, 적어도 2개 이상일 수 있고, 복수의 피크가 존재하는 경우에 그 피크의 산란 벡터(q값)들은 정수비를 가지면서 확인될 수 있고, 이러한 경우에 블록 공중합체의 상분리 효율은 보다 향상될 수 있다.
본 출원에서 용어 수직은, 오차를 감안한 표현이고, 예를 들면, ±10도, ±8도, ±6도, ±4도 또는 ±2도 이내의 오차를 포함하는 의미일 수 있다.
친수성과 소수성의 표면 상에서 모두 인플레인상의 회절 패턴을 나타내는 막을 형성할 수 있는 블록 공중합체는 수직 배향을 유도하기 위하여 별도의 처리를 수행하지 않은 다양한 표면상에서 수직 배향 특성을 나타낼 수 있다. 본 출원에서 용어 소수성 표면은, 순수(purified water)에 대한 젖음각이 5도 내지 20도의 범위 내에 있는 표면을 의미한다. 소수성 표면의 예로는, 산소 플라즈마, 황산 또는 피라나 용액으로 처리된 실리콘의 표면이 예시될 수 있지만, 이에 제한되는 것은 아니다. 본 출원에서 용어 친수성 표면은, 순수(purified water)에 대한 상온 젖음각이 50도 내지 70도의 범위 내에 있는 표면을 의미한다. 친수성 표면으로는, 산소 플라즈마로 처리한 PDMS(polydimethylsiolxane)의 표면, HMDS(hexamethyldisilazane) 처리한 실리콘의 표면 또는 불산(Hydrogen fluoride, HF) 처리한 실리콘의 표면 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
특별히 달리 규정하지 않는 한, 본 출원에서 젖음각 등과 같이 온도에 의해 변할 수 있는 물성은 상온에서 측정한 수치이다. 용어 상온은, 가온되거나, 감온되지 않은 자연 그대로의 온도이고, 약 10℃ 내지 30℃, 약 25℃ 또는 약 23℃의 온도를 의미할 수 있다.
친수성 또는 소수성 표면상에 형성되어 스침각 입사 소각 산란(GISAXS)상에서 인플레인상 회절 패턴을 나타내는 막은 열적 숙성(thermal annealing)을 거친 막일 수 있다. 스침각 입사 소각 산란(GISAXS)를 측정하기 위한 막은, 예를 들면, 상기 블록 공중합체를 약 0.7 중량%의 농도로 용매(예를 들면, 플루오르벤젠(flourobenzene)에 희석하여 제조한 코팅액을 약 25 nm의 두께 및 2.25 cm2의 코팅 면적(가로: 1.5 cm, 세로: 1.5 cm)으로 해당 친수성 또는 소수성 표면에 코팅하고, 이러한 코팅막을 열적 숙성시켜서 형성할 수 있다. 열적 숙성은, 예를 들면, 상기 막을 약 160℃의 온도에서 약 1 시간 동안 유지하여 수행할 수 있다. 스침각 입사 소각 산란(GISAXS)은 상기와 같이 형성된 막에 약 0.12 내지 0.23도의 범위 내의 입사각에서 X선을 입사시켜서 측정할 수 있다. 공지의 측정 기기(예를 들면, 2D marCCD)로 막으로부터 산란되어 나오는 회절 패턴을 얻을 수 있다. 상기 회절 패턴을 통해 인플레인상의 회절 패턴의 존재 여부를 확인하는 방식은 공지이다.
스침각 입사 소각 산란(GISAXS)에서 전술한 피크를 나타내는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있고, 그러한 특성이 목적에 따라 효과적으로 조절될 수 있다.
본 출원의 블록 공중합체는, XRD 분석(X선 회절 분석, X-ray Diffraction analysis) 시에 소정 범위의 산란 벡터(q) 내에서 적어도 하나의 피크를 나타낼 수 있다.
예를 들면, 상기 블록 공중합체는, X선 회절 분석에서 0.5 nm-1 내지 10 nm-1의 산란 벡터(q) 범위 내에서 적어도 하나의 피크를 나타낼 수 있다. 상기 피크가 나타나는 산란 벡터(q)은 다른 예시에서 0.7 nm-1 이상, 0.9 nm-1 이상, 1.1 nm-1 이상, 1.3 nm-1 이상 또는 1.5 nm-1 이상일 수 있다. 상기 피크가 나타나는 산란 벡터(q)은 다른 예시에서 9 nm-1 이하, 8 nm-1 이하, 7 nm-1 이하, 6 nm-1 이하, 5 nm-1 이하, 4 nm-1 이하, 3.5 nm-1 이하 또는 3 nm-1 이하일 수 있다.
상기 산란 벡터(q)의 범위 내에서 확인되는 피크의 반높이 너비(Full width at half maximum, FWHM)는, 0.2 내지 0.9 nm-1의 범위 내일 수 있다. 상기 반높이 너비는 다른 예시에서 0.25 nm-1 이상, 0.3 nm-1 이상 또는 0.4 nm-1 이상일 수 있다. 상기 반높이 너비는 다른 예시에서 0.85 nm-1 이하, 0.8 nm-1 이하 또는 0.75 nm-1 이하일 수 있다.
본 출원에서 용어 반높이 너비는, 최대 피크의 강도의 1/2의 강도를 나타내는 위치에서의 피크의 너비(산란 벡터(q)의 차이)를 의미할 수 있다.
XRD 분석에서의 상기 산란 벡터(q) 및 반높이 너비는, 후술하는 XRD 분석에 의해 얻어진 결과를 최소 좌승법을 적용한 수치 분석학적인 방식으로 구한 수치이다. 상기 방식에서는 XRD 회절 패턴에서 가장 최소의 강도(intensity)를 보이는 부분을 베이스라인(baseline)으로 잡아 상기에서의 강도(intensity)를 0으로 되게 한 상태에서 상기 XRD 패턴 피크의 프로파일을 가우시안 피팅(Gaussian fitting)한 후, 피팅된 결과로부터 상기 산란 벡터와 반높이 너비를 구할 수 있다. 상기 가우시안 피팅 시에 R 제곱(R square)은 적어도 0.9 이상, 0.92 이상, 0.94 이상 또는 0.96 이상이다. XRD 분석으로부터 상기와 같은 정보를 얻을 수 있는 방식은 공지이며, 예를 들면, 오리진(origin) 등의 수치 해석 프로그램을 적용할 수 있다.
상기 산란 벡터(q)의 범위 내에서 상기 반높이 너비의 피크를 나타내는 블록 공중합체는, 자기 조립에 적합한 결정성 부위를 포함할 수 있다. 상기 기술한 산란 벡터(q)의 범위 내에서 확인되는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있다.
XRD 분석은 블록 공중합체 시료에 X선을 투과시킨 후에 산란 벡터에 따른 산란 강도를 측정하여 수행할 수 있다. XRD 분석은 블록 공중합체에 대하여 특별한 전 처리 없이 수행할 수 있으며, 예를 들면, 블록 공중합체를 적절한 조건에서 건조한 후에 X선에 투과시켜 수행할 수 있다. X선으로는 수직 크기가 0.023 mm이고, 수평 크기가 0.3 mm인 X선을 적용할 수 있다. 측정 기기(예를 들면, 2D marCCD)를 사용하여 시료에서 산란되어 나오는 2D 회절 패턴을 이미지로 얻고, 얻어진 회절 패턴을 전술한 방식으로 피팅(fitting)하여 산란 벡터 및 반높이 너비 등을 구할 수 있다.
후술하는 바와 같이 블록 공중합체의 적어도 하나의 블록이 상기 사슬을 포함하는 경우에, 상기 상기 사슬의 사슬 형성 원자의 수(n)는, 상기 X선 회절 분석에 의해 구해지는 산란 벡터(q)와 하기 수식 1을 만족할 수 있다.
[수식 1]
3 nm-1 내지 5 nm-1 = nq/(2×π)
수식 1에서 n은 상기 사슬 형성 원자의 수이고, q는, 상기 블록 공중합체에 대한 X선 회절 분석에서 피크가 관찰되는 가장 작은 산란 벡터(q)이거나, 혹은 가장 큰 피크 면적의 피크가 관찰되는 산란 벡터(q)이다. 또한, 수식 1에서 π는, 원주율을 의미한다.
상기에서 수식 1에 도입되는 산란 벡터 등은 전술한 X선 회절 분석 방식에서 언급한 바와 같은 방식에 따라 구한 수치이다.
수식 1에서 도입되는 산란 벡터(q)는, 예를 들면, 0.5 nm-1 내지 10 nm-1의 범위 내의 산란 벡터(q)일 수 있다. 상기 수식 1에 도입되는 산란 벡터(q)는 다른 예시에서 0.7 nm-1 이상, 0.9 nm-1 이상, 1.1 nm-1 이상, 1.3 nm-1 이상 또는 1.5 nm-1 이상일 수 있다. 상기 수식 1에 도입되는 산란 벡터(q)는 다른 예시에서 9 nm-1 이하, 8 nm-1 이하, 7 nm-1 이하, 6 nm-1 이하, 5 nm-1 이하, 4 nm-1 이하, 3.5 nm-1 이하 또는 3 nm-1 이하일 수 있다.
수식 1은, 블록 공중합체가 자기 조립되어 상분리 구조를 형성하였을 경우에 상기 상기 사슬이 포함되어 있는 블록간의 간격(D)과 상기 상기 사슬의 사슬 형성 원자의 수의 관계를 나타내며, 상기 사슬을 가지는 블록 공중합체에서 상기 상기 사슬의 사슬 형성 원자의 수가 상기 수식 1을 만족하는 경우에 상기 상기 사슬이 나타내는 결정성이 증대되고, 그에 따라 블록 공중합체의 상분리 특성 내지는 수직 배향성이 크게 향상될 수 있다. 상기 수식 1에 따른 nq/(2×π)는, 다른 예시에서 4.5 nm-1 이하일 수도 있다. 상기에서 상기 사슬이 포함되어 있는 블록간의 간격(D, 단위: nm)은, 수식 D=2×π/q로 계산될 수 있고, 상기에서 D는 상기 블록간의 간격(D, 단위: nm)이고, π 및 q는 수식 1에서 정의된 바와 같다.
본 출원의 하나의 측면에서는, 블록 공중합체의 제 1 블록의 표면 에너지와 상기 제 2 블록의 표면 에너지의 차이의 절대값이 10 mN/m 이하, 9 mN/m 이하, 8 mN/m 이하, 7.5 mN/m 이하 또는 7 mN/m 이하일 수 있다. 상기 표면 에너지의 차이의 절대값은 1.5 mN/m, 2 mN/m 또는 2.5 mN/m 이상일 수 있다. 이러한 범위의 표면 에너지의 차이의 절대값을 가지는 제 1 블록과 제 2 블록이 공유 결합에 의해 연결된 구조는, 적절한 비상용성으로 인한 상분리에 의해 효과적인 미세상분리(microphase seperation)를 유도할 수 있다. 상기에서 제 1 블록은, 예를 들면, 전술한 상기 사슬을 가지는 블록일 수 있다.
표면 에너지는 물방울형 분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 측정할 수 있다. 구체적으로 표면 에너지는 측정하고자 하는 대상 시료(블록 공중합체 또는 단독 중합체)를 플루오르벤젠(flourobenzene)에 약 2 중량%의 고형분 농도로 희석시킨 코팅액을 기판에 약 50nm의 두께와 4 cm2의 코팅 면적(가로: 2cm, 세로: 2cm)으로 상온에서 약 1 시간 정도 건조시킨 후에 160°C에서 약 1시간 동안 열적 숙성(thermal annealing)시킨 막에 대하여 측정할 수 있다. 열적 숙성을 거친 상기 막에 표면 장력(surface tension)이 공지되어 있는 탈이온화수를 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하고, 동일하게, 표면 장력이 공지되어 있는 디요오드메탄(diiodomethane)을 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구한다. 그 후, 구해진 탈이온화수와 디요오드메탄에 대한 접촉각의 평균치를 이용하여 Owens-Wendt-Rabel-Kaelble 방법에 의해 용매의 표면 장력에 관한 수치(Strom 값)를 대입하여 표면 에너지를 구할 수 있다. 블록 공중합체의 각 블록에 대한 표면 에너지의 수치는, 상기 블록을 형성하는 단량체만으로 제조된 단독 중합체(homopolymer)에 대하여 상기 기술한 방법으로 구할 수 있다.
블록 공중합체가 전술한 상기 사슬을 포함하는 경우에 상기 상기 사슬이 포함되어 있는 블록은 다른 블록에 비하여 높은 표면 에너지를 가질 수 있다. 예를 들어, 블록 공중합체의 제 1 블록이 상기 사슬을 포함한다면, 제 1 블록은 제 2 블록에 비하여 높은 표면 에너지를 가질 수 있다. 이러한 경우에 제 1 블록의 표면 에너지는, 약 20 mN/m 내지 40 mN/m의 범위 내에 있을 수 있다. 상기 제 1 블록의 표면 에너지는, 22 mN/m 이상, 24 mN/m 이상, 26 mN/m 이상 또는 28 mN/m 이상일 수 있다. 상기 제 1 블록의 표면 에너지는, 38 mN/m 이하, 36 mN/m 이하, 34 mN/m 이하 또는 32 mN/m 이하일 수 있다. 이러한 제 1 블록이 포함되고, 제 2 블록과 상기와 같은 표면 에너지의 차이를 나타내는 블록 공중합체은, 우수한 자기 조립 특성을 나타낼 수 있다.
블록 공중합체에서 제 1 블록과 제 2 블록의 밀도의 차이의 절대값은 0.25 g/cm3 이상, 0.3 g/cm3 이상, 0.35 g/cm3 이상, 0.4 g/cm3 이상 또는 0.45 g/cm3 이상일 수 있다. 상기 밀도의 차이의 절대값은 0.9 g/cm3 이상, 0.8 g/cm3 이하, 0.7 g/cm3 이하, 0.65 g/cm3 이하 또는 0.6 g/cm3 이하일 수 있다. 이러한 범위의 밀도차의 절대값을 가지는 제 1 블록과 제 2 블록이 공유 결합으로 연결된 구조는, 적절한 비상용성으로 인한 상분리에 의해 효과적인 미세상분리(microphase seperation)를 유도할 수 있다.
상기 블록 공중합체의 각 블록의 밀도는 공지의 부력법을 이용하여 측정할 수 있으며, 예를 들면, 에탄올과 같이 공기 중에서의 질량과 밀도를 알고 있는 용매 내에서의 블록 공중합체의 질량을 분석하여 밀도를 측정할 수 있다.
블록 공중합체가 전술한 상기 사슬을 포함하는 경우에 상기 상기 사슬이 포함되어 있는 블록은 다른 블록에 비하여 낮은 밀도를 가질 수 있다. 예를 들어, 블록 공중합체의 제 1 블록이 상기 사슬을 포함한다면, 제 1 블록은 제 2 블록에 비하여 낮은 밀도를 가질 수 있다. 이러한 경우에 제 1 블록의 밀도는, 약 0.9 g/cm3 내지 1.5 g/cm3 정도의 범위 내에 있을 수 있다. 상기 제 1 블록의 밀도는, 0.95 g/cm3 이상일 수 있다. 상기 제 1 블록의 밀도는, 1.4 g/cm3 이하, 1.3 g/cm3 이하, 1.2 g/cm3 이하, 1.1 g/cm3 이하 또는 1.05 g/cm3 이하일 수 있다. 이러한 제 1 블록이 포함되고, 제 2 블록과 상기와 같은 밀도차이를 나타내는 블록 공중합체은, 우수한 자기 조립 특성을 나타낼 수 있다. 상기 언급된 표면 에너지와 밀도는, 상온에서 측정한 수치일 수 있다.
블록 공중합체는, 부피 분율이 0.4 내지 0.8의 범위 내에 있는 블록과, 부피 분율이 0.2 내지 0.6의 범위 내에 있는 블록을 포함할 수 있다. 블록 공중합체가 상기 사슬을 포함하는 경우, 상기 상기 사슬을 가지는 블록의 부피 분율이 0.4 내지 0.8의 범위 내에 있을 수 있다. 예를 들어, 상기 사슬이 제 1 블록에 포함되는 경우에 제 1 블록의 부피 분율이 0.4 내지 0.8의 범위 내이고, 제 2 블록의 부피 분율이 0.2 내지 0.6의 범위 내에 있을 수 있다. 제 1 블록과 제 2 블록의 부피 분율의 합은 1일 수 있다. 상기와 같은 부피 분율로 각 블록을 포함하는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있다. 블록 공중합체의 각 블록의 부피 분율은 각 블록의 밀도와 GPC(Gel Permeation Chromatogrph)에 의해 측정되는 분자량을 토대로 구할 수 있다.
블록 공중합체의 수평균분자량(Mn (Number Average Molecular Weight))은, 예를 들면, 3,000 내지 300,000의 범위 내에 있을 수 있다. 본 명세서에서 용어 수평균분자량은, GPC(Gel Permeation Chromatograph)를 사용하여 측정한 표준 폴리스티렌에 대한 환산 수치이고, 본 명세서에서 용어 분자량은 특별히 달리 규정하지 않는 한 수평균분자량을 의미한다. 분자량(Mn)은 다른 예시에서는, 예를 들면, 3000 이상, 5000 이상, 7000 이상, 9000 이상, 11000 이상, 13000 이상 또는 15000 이상일 수 있다. 분자량(Mn)은 또 다른 예시에서 250000 이하, 200000 이하, 180000 이하, 160000이하, 140000이하, 120000이하, 100000이하, 90000이하, 80000이하, 70000이하, 60000이하, 50000이하, 40000이하, 30000 이하 또는 25000 이하 정도일 수 있다. 블록 공중합체는, 1.01 내지 1.60의 범위 내의 분산도(polydispersity, Mw/Mn)를 가질 수 있다. 분산도는 다른 예시에서 약 1.1 이상, 약 1.2 이상, 약 1.3 이상 또는 약 1.4 이상일 수 있다.
이러한 범위에서 블록 공중합체는 적절한 자기 조립 특성을 나타낼 수 있다. 블록 공중합체의 수평균 분자량 등은 목적하는 자기 조립 구조 등을 감안하여 조절될 수 있다.
블록 공중합체가 상기 제 1 및 제 2 블록을 적어도 포함할 경우에 상기 블록 공중합체 내에서 제 1 블록, 예를 들면, 전술한 상기 사슬을 포함하는 블록의 비율은 10몰% 내지 90몰%의 범위 내에 있을 수 있다.
본 출원에서 상기와 같은 블록 공중합체를 제조하는 구체적인 방법은, 전술한 각 단위를 형성할 수 있는 단량체를 사용하여 블록 공중합체의 적어도 하나의 블록을 형성하는 단계를 포함하는 한 특별히 제한되지 않는다.
예를 들면, 블록 공중합체는 상기 단량체를 사용한 LRP(Living Radical Polymerization) 방식으로 제조할 있다. 예를 들면, 유기 희토류 금속 복합체를 중합 개시제로 사용하거나, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 알칼리 금속 또는 알칼리토금속의 염 등의 무기산염의 존재 하에 합성하는 음이온 중합, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 유기 알루미늄 화합물의 존재 하에 합성하는 음이온 중합 방법, 중합 제어제로서 원자 이동 라디칼 중합제를 이용하는 원자이동 라디칼 중합법(ATRP), 중합 제어제로서 원자이동 라디칼 중합제를 이용하되 전자를 발생시키는 유기 또는 무기 환원제 하에서 중합을 수행하는 ARGET(Activators Regenerated by Electron Transfer) 원자이동 라디칼 중합법(ATRP), ICAR(Initiators for continuous activator regeneration) 원자이동 라디칼 중합법(ATRP), 무기 환원제 가역 부가-개열 연쇄 이동제를 이용하는 가역 부가-개열 연쇄 이동에 의한 중합법(RAFT) 또는 유기 텔루륨 화합물을 개시제로서 이용하는 방법 등이 있으며, 이러한 방법 중에서 적절한 방법이 선택되어 적용될 수 있다.
예를 들면, 상기 블록 공중합체는, 라디칼 개시제 및 리빙 라디칼 중합 시약의 존재 하에, 상기 블록을 형성할 수 있는 단량체들을 포함하는 반응물을 리빙 라디칼 중합법으로 중합하는 것을 포함하는 방식으로 제조할 수 있다.
블록 공중합체의 제조 시에 상기 단량체를 사용하여 형성하는 블록과 함께 상기 공중합체에 포함되는 다른 블록을 형성하는 방식은 특별히 제한되지 않고, 목적하는 블록의 종류를 고려하여 적절한 단량체를 선택하여 상기 다른 블록을 형성할 수 있다.
블록공중합체의 제조 과정은, 예를 들면 상기 과정을 거쳐서 생성된 중합 생성물을 비용매 내에서 침전시키는 과정을 추가로 포함할 수 있다.
라디칼 개시제의 종류는 특별히 제한되지 않고, 중합 효율을 고려하여 적절히 선택할 수 있으며, 예를 들면, AIBN(azobisisobutyronitrile) 또는 2,2'-아조비스-2,4-디메틸발레로니트릴(2,2'-azobis-(2,4-dimethylvaleronitrile)) 등의 아조 화합물이나, BPO(benzoyl peroxide) 또는 DTBP(di-t-butyl peroxide) 등과 같은 과산화물 계열을 사용할 수 있다.
리빙 라디칼 중합 과정은, 예를 들면, 메틸렌클로라이드, 1,2-디클로로에탄, 클로로벤젠, 디클로로벤젠, 벤젠,톨루엔, 아세톤, 클로로포름, 테트라하이드로퓨란, 디옥산, 모노글라임, 디글라임, 디메틸포름아미드, 디메틸술폭사이드 또는 디메틸아세트아미드 등과 같은 용매 내에서 수행될 수 있다.
비용매로는, 예를 들면, 메탄올, 에탄올, 노르말 프로판올 또는 이소프로판올 등과 같은 알코올, 에틸렌글리콜 등의 글리콜, n-헥산, 시클로헥산, n-헵탄 또는 페트롤리움 에테르 등과 같은 에테르 계열이 사용될 수 있으나, 이에 제한되는 것은 아니다.
본 출원은 또한 상기 블록 공중합체를 포함하는 고분자 막에 대한 것이다. 상기 막은 다양한 용도에 사용될 수 있으며, 예를 들면, 다양한 전자 또는 전자 소자, 상기 패턴의 형성 공정 또는 자기 저장 기록 매체, 플래쉬 메모리 등의 기록 매체 또는 바이오 센서 등에 사용될 수 있다.
하나의 예시에서 상기 고분자 막에서 상기 블록 공중합체는, 자기 조립을 통해 스피어(sphere), 실린더(cylinder), 자이로이드(gyroid) 또는 라멜라(lamellar) 등을 포함하는 주기적 구조를 구현하고 있을 수 있다.
예를 들면, 블록 공중합체에서 제 1 또는 제 2 블록 또는 그와 공유 결합된 다른 블록의 세그먼트 내에서 다른 세그먼트가 라멜라 형태 또는 실린더 형태 등과 같은 규칙적인 구조를 형성하고 있을 수 있다.
본 출원의 상기 고분자막은 전술한 인플레인상 회절 패턴, 즉 GISAXS 분석 시에 GISAXS 회절 패턴에서 X좌표에 수직한 피크를 나타낼 수 있다. 추가적인 예시에서 상기 GISAXS 회절 패턴의 X좌표에서 확인되는 피크은, 적어도 2개 이상일 수 있고, 복수의 피크가 존재하는 경우에 그 피크의 산란 벡터(q값)들은 정수비를 가지면서 확인될 수 있다.
상기와 같은 고분자 막 내에서 전술한 제 2 블록은 가교 구조를 포함하고 있을 수 있다. 즉, 예를 들면, 자기 조립 구조가 형성된 상태에서 상기 제 2 블록의 화학식 5의 단위의 광가교성 관능기를 가교시키는 방식 등에 의해 가교 구조를 형성할 수 있다. 이러한 경우에 가교 구조를 형성하는 조건은 특별히 제한되지 않고, 사용된 광가교성 관능기의 종류 및 그 양을 고려하여 조절할 수 있다. 예를 들어, 상기 광가교성 관능기가 벤조일페녹시기인 경우에 상기 가교는, 자기 조립된 블록 공중합체에 약 254 nm 정도의 파장의 광을 약 2 J/cm2 정도의 광량으로 조사하여 수행할 수 있다.
본 출원은 또한 상기 블록 공중합체를 사용하여 고분자 막을 형성하는 방법에 대한 것이다. 상기 방법은 상기 블록 공중합체를 포함하는 고분자막을 자기 조립된 상태로 기판상에 형성하는 것을 포함할 수 있다. 예를 들면, 상기 방법은 상기 블록 공중합체 또는 그를 적정한 용매에 희석한 코팅액의 층을 도포 등에 의해 기판 상에 형성하고, 필요하다면, 상기 층을 숙성하거나 열처리하는 과정을 포함할 수 있다.
상기 숙성 또는 열처리는, 예를 들면, 블록 공중합체의 상전이온도 또는 유리전이온도를 기준으로 수행될 수 있고, 예를 들면, 상기 유리 전이 온도 또는 상전이 온도 이상의 온도에서 수행될 수 있다. 이러한 열처리가 수행되는 시간은 특별히 제한되지 않으며, 예를 들면, 약 1분 내지 72시간의 범위 내에서 수행될 수 있지만, 이는 필요에 따라서 변경될 수 있다. 또한, 고분자 박막의 열처리 온도는, 예를 들면, 100℃ 내지 250℃ 정도일 수 있으나, 이는 사용되는 블록 공중합체를 고려하여 변경될 수 있다.
상기 형성된 층은, 다른 예시에서는 상온의 비극성 용매 및/또는 극성 용매 내에서, 약 1분 내지 72 시간 동안 용매 숙성될 수도 있다.
상기와 같이 고분자 막을 형성한 후에 상기 제 2 블록을 가교시키는 과정이 추가로 수행될 수 있으며, 이러한 가교 공정의 진행 방식은 전술한 바와 같다.
본 출원은 또한 패턴 형성 방법에 대한 것이다. 상기 방법은, 예를 들면, 기판 및 상기 기판의 표면에 형성되어 있고, 자기 조립된 상기 블록 공중합체를 포함하는 고분자막을 가지는 적층체에서 상기 블록 공중합체의 제 1 또는 제 2 블록을 선택적으로 제거하는 과정을 포함할 수 있다. 상기 방법은 상기 기판에 패턴을 형성하는 방법일 수 있다. 예를 들면 상기 방법은, 상기 블록 공중합체를 포함하는 고분자 막을 기판에 형성하고, 상기 막 내에 존재하는 블록 공중합체의 어느 하나 또는 그 이상의 블록을 선택적으로 제거한 후에 기판을 식각하는 것을 포함할 수 있다. 이러한 방식으로, 예를 들면, 나노 스케일의 미세 패턴의 형성이 가능하다. 또한, 고분자 막 내의 블록 공중합체의 형태에 따라서 상기 방식을 통하여 나노 로드 또는 나노 홀 등과 같은 다양한 형태의 패턴을 형성할 수 있다. 필요하다면, 패턴 형성을 위해서 상기 블록 공중합체와 다른 공중합체 혹은 단독 중합체 등이 혼합될 수 있다. 이러한 방식에 적용되는 상기 기판의 종류는 특별히 제한되지 않고, 필요에 따라서 선택될 수 있으며, 예를 들면, 산화 규소 등이 적용될 수 있다.
상기 제 1 및/또는 제 2 블록을 선택적으로 제거하는 과정에 적용되는 고분자 막 내에서 전술한 제 2 블록은 가교 구조를 포함하고 있을 수 있으며, 이러한 가교 구조를 구현하는 방식은 전술한 바와 같다.
예를 들면, 상기 방식은 높은 종횡비를 나타내는 산화 규소의 나노 스케일의 패턴을 형성할 수 있다. 예를 들면, 산화 규소 상에 상기 고분자막을 형성하고, 상기 고분자막 내의 블록 공중합체가 소정 구조를 형성하고 있는 상태에서 블록 공중합체의 어느 한 블록을 선택적으로 제거한 후에 산화 규소를 다양한 방식, 예를 들면, 반응성 이온 식각 등으로 에칭하여 나노로드 또는 나노 홀의 패턴 등을 포함한 다양한 형태를 구현할 수 있다. 또한, 이러한 방법을 통하여 종횡비가 큰 나노 패턴의 구현이 가능할 수 있다.
예를 들면, 상기 패턴은, 수십 나노미터의 스케일에서 구현될 수 있으며, 이러한 패턴은, 예를 들면, 차세대 정보전자용 자기 기록 매체 등을 포함한 다양한 용도에 활용될 수 있다.
예를 들면, 상기 방식에 의하면 약 3nm 내지 40 nm의 폭을 가지는 나노 구조물, 예를 들면, 나노 선들이 약 6 nm 내지 80 nm의 간격을 두고 배치되어 있는 패턴을 형성할 수 있다. 다른 예시에서는 약 3 nm 내지 40 nm의 너비, 예를 들면 직경을 가지는 나노 홀들이 약 6 nm 내지 80 nm의 간격을 형성하면 배치되어 있는 구조의 구현도 가능하다.
또한, 상기 구조에서 나노 선이나 나노 홀들이 큰 종횡비(aspect ratio)를 가지도록 할 수 있다.
상기 방법에서 블록 공중합체의 어느 한 블록을 선택적으로 제거하는 방식은 특별히 제한되지 않고, 예를 들면, 고분자막에 적정한 전자기파, 예를 들면, 자외선 등을 조사하여 상대적으로 소프트한 블록을 제거하는 방식을 사용할 수 있다. 이 경우 자외선 조사 조건은 블록 공중합체의 블록의 종류에 따라서 결정되며, 예를 들면, 약 254 nm 파장의 자외선을 1분 내지 60 분 동안 조사하여 수행할 수 있다.
또한, 자외선 조사에 이어서 고분자 막을 산 등으로 처리하여 자외선에 의해 분해된 세그먼트를 추가로 제거하는 단계를 수행할 수도 있다.
또한, 선택적으로 블록이 제거된 고분자막을 마스크로 하여 기판을 에칭하는 단계는 특별히 제한되지 않고, 예를 들면, CF4/Ar 이온 등을 사용한 반응성 이온 식각 단계를 통해 수행할 수 있고, 이 과정에 이어서 산소 플라즈마 처리 등에 의해 고분자막을 기판으로부터 제거하는 단계를 또한 수행할 수 있다.
본 출원은, 블록 공중합체 및 그 용도가 제공될 수 있다. 본 출원의 블록 공중합체는, 우수한 자기 조립 특성 내지는 상분리 특성을 가지며, 요구되는 다양한 기능도 자유롭게 부여될 수 있고, 특히 에칭 선택성이 확보되어 패턴 형성과 같은 용도에 효과적으로 적용될 수 있다.
도 1은 실시예 1의 블록 공중합체를 사용하여 형성한 광 가교 전의 고분자막에 대한 SEM 사진이다.
도 2는 실시예 1의 블록 공중합체를 사용하여 형성한 광 가교 후의 고분자막에 대한 SEM 사진이다.
도 3은, 실시예 1의 블록 공중합체를 사용하여 형성한 고분자막에 광 가교 공정 없이 용매 세척을 수행한 결과를 보여주는 도면이다.
이하 본 출원에 따르는 실시예 및 비교예를 통하여 본 출원을 보다 상세히 설명하나, 본 출원의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
1. NMR 측정
NMR 분석은 삼중 공명 5 mm 탐침(probe)을 가지는 Varian Unity Inova(500 MHz) 분광계를 포함하는 NMR 분광계를 사용하여 상온에서 수행하였다. NMR 측정용 용매(CDCl3)에 분석 대상 물질을 약 10 mg/ml 정도의 농도로 희석시켜 사용하였고, 화학적 이동은 ppm으로 표현하였다.
<적용 약어>
br = 넓은 신호, s = 단일선, d = 이중선, dd = 이중 이중선, t = 삼중선, dt = 이중 삼중선, q = 사중선, p = 오중선, m = 다중선.
2. GPC(Gel Permeation Chromatograph)
수평균분자량(Mn) 및 분자량 분포는 GPC(Gel permeation chromatography)를 사용하여 측정하였다. 5 mL 바이얼(vial)에 실시예 또는 비교예의 블록 공중합체 또는 거대 개시제 등의 분석 대상 물일을 넣고, 약 1 mg/mL 정도의 농도가 되도록 THF(tetrahydro furan)에 희석한다. 그 후, Calibration용 표준 시료와 분석하고자 하는 시료를 syringe filter(pore size: 0.45 ㎛)를 통해 여과시킨 후 측정하였다. 분석 프로그램은 Agilent technologies 사의 ChemStation을 사용하였으며, 시료의 elution time을 calibration curve와 비교하여 중량평균분자량(Mw) 및 수평균분자량(Mn)을 각각 구하고, 그 비율(Mw/Mn)로 분자량분포(PDI)를 계산하였다. GPC의 측정 조건은 하기와 같다.
<GPC 측정 조건>
기기: Agilent technologies 사의 1200 series
컬럼: Polymer laboratories 사의 PLgel mixed B 2개 사용
용매: THF
컬럼온도: 35℃
샘플 농도: 1mg/mL, 200L 주입
표준 시료: 폴리스티렌(Mp: 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)
제조예 1.
하기 화학식 A의 화합물(DPM-C12)은 다음의 방식으로 합성하였다. 250 mL 플라스크에 히드로퀴논(hydroquinone)(10.0g, 94.2 mmol) 및 1-브로모도데칸(1-Bromododecane)(23.5 g, 94.2 mmol)을 넣고, 100 mL의 아세토니트릴(acetonitrile)에 녹인 후 과량의 포타슘 카보네이트(potassium carbonate)를 첨가하고, 75oC에서 약 48시간 동안 질소 조건하에서 반응시켰다. 반응 후 잔존하는 포타슘 카보네이트 및 반응에 사용한 아세토니트릴도 제거하였다. DCM(dichloromethane)과 물의 혼합 용매를 첨가하여 워크업(work up)하고, 분리된 유기층을 MgSO4로 탈수하였다. 이어서, CC(Column Chromatography)에서 DCM(dichloromethane)으로 정제하여 흰색 고체상의 중간체를 약 37%의 수득률로 얻었다.
<중간체에 대한 NMR 분석 결과>
1H-NMR(CDCl3): d6.77(dd, 4H); d4.45(s, 1H); d3.89(t, 2H); d1.75(p, 2H); d1.43(p, 2H); d1.33-1.26(m, 16H); d0.88(t, 3H).
플라스크에 합성된 중간체(9.8 g, 35.2 mmol), 메타크릴산(6.0 g, 69.7 mmol), DCC(dicyclohexylcarbodiimide)(10.8 g, 52.3 mmol) 및 DMAP(p-dimethylaminopyridine)(1.7 g, 13.9 mmol)을 넣고, 120 mL의 메틸렌클로라이드를 첨가한 후, 상온의 질소 분위기에서 24시간 동안 반응시켰다. 반응 후에 반응 중에 생성된 염(urea salt)을 필터로 제거하고 잔존하는 메틸렌클로라이드도 제거하였다. CC(Column Chromatography)에서 헥산과 DCM(dichloromethane)을 이동상으로 하여 불순물을 제거하고, 얻어진 생성물을 메탄올과 물의 혼합 용매(1:1 중량 비율로 혼합)에서 재결정시켜 흰색 고체상의 목적물(DPM-C12)(7.7 g, 22.2 mmol)을 63%의 수득률로 얻었다.
<DPM-C12 NMR 분석 결과>
1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.32(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.76(p, 2H); d1.43(p, 2H); 1.34-1.27(m, 16H); d0.88(t, 3H).
[화학식 A]
Figure PCTKR2015010313-appb-I000009
화학식 A에서 R은 탄소수 12의 직쇄상 알킬기이다.
제조예 2.
3-히드록시-1,2,4,5-테트라플루오로스티렌은 다음의 방식으로 합성하였다. 펜타플루오로스티렌(Pentafluorostyrene)(25 g, 129 mmol)을 400 mL의 tert-부탄올과 포타슘히드록시드(potassium hydroxide)(37.5 g, 161 mmol)의 혼합액에 첨가하고, 2시간 동안 반응(reflux reaction)시켰다. 상온으로 반응물을 식힌 후에 물 1200 mL를 첨가하고, 반응에 사용된 잔존 부탄올을 휘발에 의해 제거하였다. 반응의 결과물을 디에틸 에테르(300 mL)로 3회 추출하고, 수용액층은 10 중량%의 염산 용액으로 pH가 약 3 정도가 되도록 산성화시켜서 목적물을 침전시키고, 다시 디에틸에테르(300 mL)로 3회 추출하여 유기층을 채취하였다. 유기층을 MgSO4로 탈수하고, 용매를 제거하여 조생성물(Crude product)을 수득하였다. 상기 조생성물을 컬럼 크로마토그래피에서 헥산과 DCM(dichloromethane)을 이동상으로 하여 정제하여 하여 무색 액체상의 3-히드록시-1,2,4,5-테트라플루오로스티렌(11.4 g)을 수득하였다. 상기에 대한 NMR 분석 결과는 하기와 같다.
<중간체 NMR 분석 결과>
1H-NMR(DMSO-d): δ11.7 (s, 1H); δ6.60(dd, 1H); δ5.89(d, 1H); δ5.62(d, 1H)
하기 화학식 B의 화합물을 다음의 방식으로 합성하였다. 플라스크에 상기 합성된 중간체(3-히드록시-1,2,4,5-테트라플루오로스티렌)(1.7g, 7.8mmol), 4-벤조일벤조산(4-benzoylbenzoic acid)(1.9g, 8.6mmol), DCC(dicyclohexylcarbodiimide)(1.8g, 8.6mmol) 및 DMAP(p-dimethylaminopyridine)(0.48g, 3.1mmol)을 넣고, 30mL의 메틸렌클로라이드를 첨가한 후, 질소 하 실온에서 24시간 동안 반응시켰다. 반응 종료 후에 반응 중에 생성된 염(urea salt) 및 잔존 메틸렌클로라이드도 제거하였다. 컬럼 크로마토그래피에서 헥산과 DCM(dichloromethane)을 이동상으로 사용하여 불순물을 제거하고, 다시 얻어진 생성물을 메탄올과 물의 혼합 용매(메탄올: 물 = 3:1 (중량 비율))에서 재결정시켜 하기 화학식 B로 표시되는 단량체인 백색 고체상의 목적물을 70 중량%의 수득률로 얻었다. 상기 화합물에 대한 NMR 분석 결과는 하기와 같다.
< NMR 분석 결과>
1H-NMR(CDCl3): δ8.3 (t, 2H);δ7.9 (q, 2H); δ7.8 (d, 2H); δ7.6 (t, 1H); δ7.5 (dd, 2H);δ6.60(dd, 1H); δ5.89(d, 1H); δ5.62(d, 1H)
[화학식 B]
Figure PCTKR2015010313-appb-I000010
실시예 1.
제조예 1의 화합물(DPM-C12) 2.0 g 및 RAFT(Reversible Addition?Fragmentation chain Transfer) 시약(2-cyano-2-propyl dodecyl trihiobenzoate) 64 mg, AIBN(Azobisisobutyronitrile) 23 mg 및 아니솔(anisole) 5.34 mL를 10 mL 플라스크(Schlenk flask)에 넣고 질소 분위기 하 상온에서 30분 동안 교반한 후, 70℃에서 4시간 동안 RAFT(Reversible Addition?Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL에 침전시킨 후, 감압 여과 후 건조시켜, 연노랑색의 거대 개시제를 제조하였다. 거대 개시제의 수득률은 약 80 중량%였고, 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 6,100 및 1.25이었다.
상기 합성된 거대개시제 0.2 g, 펜타플루오로스티렌 3.589 g, 제조예 2의 화학식 B의 광가교 단량체 0.151 g 및 아니솔(anisole) 1.697 mL를 10 mL 플라스크(Schlenk flask)에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후, 70℃에서 3시간 동안 RAFT(Reversible Addition?Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL 에 침전시킨 다음, 감압 여과하여 건조시켜 연한 노랑색의 블록 공중합체를 제조하였다. 블록 공중합체의 수득률은 약 14%였고, 수평균분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 14,400 및 1.21이었다. 상기 블록 공중합체는 제조예 1의 화합물(DPM-C12) 유래의 제 1 블록과 제조예 2의 화학식 B의 화합물과 상기 펜타플루오로스티렌 유래의 제 2 블록을 포함한다.
시험예 1.
실시예 1에서 합성된 블록 공중합체를 사용하여 자기 조립된 고분자막을 형성하고, 그 결과를 확인하였다. 구체적으로 공중합체를 용매에 약 1.0 중량%의 농도로 용해시켜 제조된 코팅액을 실리콘 웨이퍼상에 3000 rpm의 속도로 60초 동안 스핀코팅하고, 열적 숙성(thermal annealing)을 통해 자기 조립된 블록 공중합체를 포함하는 막을 형성하였다. 도 1은, 상기와 같이 형성된 고분자막의 SEM 이미지이다. 이어서 상기 고분자막에 자외선을 조사하였다. 이어서, 상기 고분자막에 약 254 nm 정도의 파장을 가지는 광을 약 2 J/cm2 정도의 광량으로 조사하였다. 첨부된 도 2는, 상기와 같은 광 가교 후의 고분자막의 SEM 사진이다. 이러한 고분자막에 대하여 용매 세척을 진행한 결과 선택적 에칭이 이루어지는 것을 확인하였다.
한편, 동일한 방식으로 용매 세척을 하되, 상기 광 가교 공정을 수행하지 않은 고분자막에 대하여 용매 세척을 수행한 결과가 도 3에 나타나 있고, 도 3으로부터 확인되는 바와 같이 블록간의 에칭 선택성은 확보되지 않았다.

Claims (21)

  1. 하기 화학식 1로 표시되는 단위를 가지는 제 1 블록 및 하기 화학식 3으로 표시되는 단위를 가지는 제 2 블록을 포함하는 블록 공중합체:
    [화학식 1]
    Figure PCTKR2015010313-appb-I000011
    [화학식 3]
    Figure PCTKR2015010313-appb-I000012
    화학식 1에서 R은 수소 또는 알킬기이고, X2는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)X1- 또는 -X1-C(=O)-이고, 상기에서 X1은 산소 원자, 황 원자, -S(=O)2- 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, Y는 8개 이상의 사슬 형성 원자를 가지는 직쇄 사슬이 연결된 고리 구조를 포함하는 1가 치환기이며, 화학식 3에서 X2는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X2- 또는 -X2-C(=O)-이며, 상기에서 X2는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기, 할로겐 원자 또는 광가교성 관능기이며, R1 내지 R5가 포함하는 광가교성 관능기의 수는 1개 이상이다.
  2. 제 1 항에 있어서, X는 단일 결합, 산소 원자, 카보닐기, -C(=O)-O- 또는 -C(=O)-O-인 블록 공중합체.
  3. 제 1 항에 있어서, 직쇄 사슬은 8개 내지 20개의 사슬 형성 원자를 포함하는 블록 공중합체.
  4. 제 1 항에 있어서, 사슬 형성 원자는 탄소, 산소, 질소 또는 황인 블록 공중합체.
  5. 제 1 항에 있어서, 사슬 형성 원자는 탄소 또는 산소인 블록 공중합체.
  6. 제 1 항에 있어서, Y의 고리 구조는 방향족 고리 구조 또는 지환족 고리 구조인 블록 공중합체.
  7. 제 1 항에 있어서, 화학식 1의 Y는 하기 화학식 2로 표시되는 블록 공중합체:
    [화학식 2]
    Figure PCTKR2015010313-appb-I000013
    화학식 2에서 P는 아릴렌기이고, Q는 단일 결합, 산소 원자 또는 -NR3-이고, 상기에서 R3는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기이고, Z는 8개 이상의 사슬 형성 원자를 가지는 직쇄 사슬이다.
  8. 제 1 항에 있어서, 광가교성 관능기는 벤조일페녹시기, 알케닐옥시카보닐기, (메타)아크릴로일기 또는 알케닐옥시알킬기인 블록 공중합체.
  9. 제 1 항에 있어서, 화학식 3의 R1 내지 R5가 포함하는 할로겐 원자의 수가 1개 이상인 블록 공중합체.
  10. 제 1 항에 있어서, 화학식 3의 단위의 제 2 블록 내에서의 비율은 0.1몰% 내지 5몰%의 범위 내인 블록 공중합체.
  11. 제 1 항에 있어서, 제 2 블록은 하기 화학식 4로 표시되는 단위를 추가로 포함하는 블록 공중합체:
    [화학식 4]
    Figure PCTKR2015010313-appb-I000014
    화학식 4에서 X2는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X2는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, W는 적어도 1개의 할로겐 원자를 포함하는 아릴기이다.
  12. 제 1 항에 있어서, 제 2 블록은 하기 화학식 5로 표시되는 단위를 추가로 포함하는 블록 공중합체:
    [화학식 5]
    Figure PCTKR2015010313-appb-I000015
    화학식 5에서 X3는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X2는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, Ra 내지 Re는 각각 독립적으로 수소, 알킬기, 할로알킬기 또는 할로겐 원자이고, Ra 내지 Re가 포함하는 할로겐 원자의 수는 1개 이상이다.
  13. 제 12 항에 있어서, Ra 내지 Re가 포함하는 할로겐 원자의 수는 3개 이상인 블록 공중합체.
  14. 제 12 항에 있어서, Ra 내지 Re가 포함하는 할로겐 원자의 수는 5개 이상인 블록 공중합체.
  15. 제 12 항에 있어서, 할로겐 원자는 불소 원자인 블록 공중합체.
  16. 자기 조립된 제 1 항의 블록 공중합체를 포함하는 고분자막.
  17. 제 16 항에 있어서, 블록 공중합체의 제 2 블록에 가교 구조가 포함되어 있는 고분자막.
  18. 자기 조립된 제 1 항의 블록 공중합체를 포함하는 고분자막을 기판상에 형성하는 것을 포함하는 고분자막의 형성 방법.
  19. 제 18 항에 있어서, 자기 조립된 블록 공중합체의 제 2 블록을 가교시키는 단계를 추가로 포함하는 고분자막.
  20. 기판 및 상기 기판상에 형성되어 있고, 자기 조립된 제 1 항의 블록 공중합체를 포함하는 고분자막을 가지는 적층체에서 상기 블록 공중합체의 어느 한 블록을 선택적으로 제거하는 과정을 포함하는 패턴 형성 방법.
  21. 제 20 항에 있어서, 블록 공중합체의 제 2 블록에 가교 구조가 포함되어 있는 고분자막.
PCT/KR2015/010313 2014-09-30 2015-09-30 블록 공중합체 WO2016052994A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017517276A JP6451966B2 (ja) 2014-09-30 2015-09-30 ブロック共重合体
EP15845928.9A EP3202797B1 (en) 2014-09-30 2015-09-30 Block copolymer
US15/515,293 US10240035B2 (en) 2014-09-30 2015-09-30 Block copolymer
CN201580059758.5A CN107075053B (zh) 2014-09-30 2015-09-30 嵌段共聚物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140131964 2014-09-30
KR10-2014-0131964 2014-09-30
KR10-2015-0079483 2015-06-04
KR1020150079483A KR101880212B1 (ko) 2014-09-30 2015-06-04 블록 공중합체

Publications (1)

Publication Number Publication Date
WO2016052994A1 true WO2016052994A1 (ko) 2016-04-07

Family

ID=55630946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010313 WO2016052994A1 (ko) 2014-09-30 2015-09-30 블록 공중합체

Country Status (5)

Country Link
US (1) US10240035B2 (ko)
EP (1) EP3202797B1 (ko)
JP (1) JP6451966B2 (ko)
CN (1) CN107075053B (ko)
WO (1) WO2016052994A1 (ko)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3202802A4 (en) * 2014-09-30 2018-06-13 LG Chem, Ltd. Block copolymer
US10081698B2 (en) 2013-12-06 2018-09-25 Lg Chem, Ltd. Block copolymer
US10087276B2 (en) 2013-12-06 2018-10-02 Lg Chem, Ltd. Block copolymer
US10150832B2 (en) 2013-12-06 2018-12-11 Lg Chem, Ltd. Block copolymer
US10160822B2 (en) 2013-12-06 2018-12-25 Lg Chem, Ltd. Monomer and block copolymer
US10184021B2 (en) 2013-12-06 2019-01-22 Lg Chem, Ltd. Block copolymer
US10196475B2 (en) 2013-12-06 2019-02-05 Lg Chem, Ltd. Block copolymer
US10196474B2 (en) 2013-12-06 2019-02-05 Lg Chem, Ltd. Block copolymer
US10202480B2 (en) 2013-12-06 2019-02-12 Lg Chem, Ltd. Block copolymer
US10202481B2 (en) 2013-12-06 2019-02-12 Lg Chem, Ltd. Block copolymer
US10227437B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10227438B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10227436B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10240035B2 (en) 2014-09-30 2019-03-26 Lg Chem, Ltd. Block copolymer
US10239980B2 (en) 2013-12-06 2019-03-26 Lg Chem, Ltd. Block copolymer
US10253130B2 (en) * 2013-12-06 2019-04-09 Lg Chem, Ltd. Block copolymer
US10281820B2 (en) 2014-09-30 2019-05-07 Lg Chem, Ltd. Block copolymer
US10287429B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Block copolymer
US10287430B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Method of manufacturing patterned substrate
US10295908B2 (en) 2014-09-30 2019-05-21 Lg Chem, Ltd. Block copolymer
US10370529B2 (en) 2014-09-30 2019-08-06 Lg Chem, Ltd. Method of manufacturing patterned substrate
US10377894B2 (en) 2014-09-30 2019-08-13 Lg Chem, Ltd. Block copolymer
US10633533B2 (en) 2014-09-30 2020-04-28 Lg Chem, Ltd. Block copolymer
US10703897B2 (en) 2014-09-30 2020-07-07 Lg Chem, Ltd. Block copolymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7027674B2 (ja) * 2017-09-13 2022-03-02 エルジー・ケム・リミテッド パターン化基板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391626A (en) * 1992-05-21 1995-02-21 Idemitsu Kosan Co., Ltd. Styrenic block copolymer and process for producing same
JP2005530030A (ja) * 2002-07-03 2005-10-06 ザ プロクター アンド ギャンブル カンパニー 放射線硬化性低応力緩和エラストマー材料
KR20100070380A (ko) * 2006-05-16 2010-06-25 닛뽕소다 가부시키가이샤 블록 코폴리머
JP4625901B2 (ja) * 2000-11-08 2011-02-02 独立行政法人産業技術総合研究所 シンジオタクチック芳香族ビニル系ブロック共重合体およびその製造方法
KR20140063790A (ko) * 2011-09-23 2014-05-27 에이제트 일렉트로닉 머트리얼즈 유에스에이 코프. 블록 공중합체의 유도 자기조립을 위한 중성층의 조성물 및 이의 방법

Family Cites Families (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL237021A (ko) 1958-03-13
US3976672A (en) 1974-12-26 1976-08-24 Uniroyal Inc. (Hydrocarbylphenylsulfonyl)alkyltrimethylstannanes
AU603489B2 (en) 1987-10-08 1990-11-15 Idemitsu Kosan Company Limited Styrenic polymer and process for its production
JPH01260360A (ja) 1988-04-12 1989-10-17 Nippon Oil & Fats Co Ltd 逆相クロマトグラフィー用充填剤
US5115056A (en) 1989-06-20 1992-05-19 Ciba-Geigy Corporation Fluorine and/or silicone containing poly(alkylene-oxide)-block copolymers and contact lenses thereof
KR920703661A (ko) 1990-11-21 1992-12-18 이데미쓰 쇼스께 스티렌계 혼성중합체 및 그 제조방법
US5234604A (en) 1991-02-26 1993-08-10 Betz Laboratories, Inc. Water soluble block copolymers and methods of use therof
JPH0665333A (ja) 1992-08-21 1994-03-08 Shin Etsu Chem Co Ltd 単分散性共重合体及びその製造方法
US5728431A (en) 1996-09-20 1998-03-17 Texas A&M University System Process for forming self-assembled polymer layers on a metal surface
US5783614A (en) 1997-02-21 1998-07-21 Copytele, Inc. Polymeric-coated dielectric particles and formulation and method for preparing same
JP3392687B2 (ja) 1997-02-21 2003-03-31 信越化学工業株式会社 ブロック−グラフト共重合体およびこれを用いて作製した高分子固体電解質
JP3396390B2 (ja) 1997-03-04 2003-04-14 信越化学工業株式会社 ブロック−グラフト共重合体およびこれを用いて作製した自己架橋型高分子固体電解質並びにその製造方法
JP3569612B2 (ja) 1997-07-25 2004-09-22 信越化学工業株式会社 ブロック−グラフト共重合体およびこれを用いて作製した自己架橋型高分子固体電解質ならびにその製造方法
CA2265345A1 (en) 1998-03-25 1999-09-25 The Lubrizol Corporation Vinyl aromatic-(vinyl aromatic-co-acrylic) block copolymers prepared by stabilized free radical polymerization
JP4132265B2 (ja) 1998-08-04 2008-08-13 株式会社クラレ ブロック共重合体およびその成形品
CA2356751A1 (en) 1998-12-30 2000-07-13 The B.F. Goodrich Company Branched/block copolymers for treatment of keratinous substrates
DE69941226D1 (de) 1998-12-31 2009-09-17 Ciba Holding Inc Pigmentzusammensetzung enthaltend atrp polymere
JP4288440B2 (ja) * 1999-01-29 2009-07-01 信越化学工業株式会社 架橋型高分子固体電解質の製造方法
JP4458213B2 (ja) 1999-01-29 2010-04-28 信越化学工業株式会社 架橋型高分子固体電解質の製造方法
JP2000300682A (ja) 1999-04-23 2000-10-31 Hisamitsu Pharmaceut Co Inc イオントフォレーシス用デバイス
US6314225B1 (en) 1999-11-23 2001-11-06 Corning Incorporated Halogen and perhalo-organo substituted N-phenyl (or biphenyl) maleimide
JP2001294617A (ja) 2000-04-12 2001-10-23 Shin Etsu Chem Co Ltd プロトン導電性高分子電解質
FR2809829B1 (fr) 2000-06-05 2002-07-26 Rhodia Chimie Sa Nouvelle composition photosensible pour la fabrication de photoresist
KR100425243B1 (ko) 2001-11-14 2004-03-30 주식회사 엘지화학 선형의 블록 공중합체의 제조방법
US20030143343A1 (en) 2001-12-19 2003-07-31 Fuji Photo Film Co., Ltd. Wall-structured body and process for manufacturing the same
US8362151B2 (en) 2002-05-31 2013-01-29 Elsicon, Inc. Hybrid polymer materials for liquid crystal alignment layers
JP2004026688A (ja) 2002-06-24 2004-01-29 Asahi Glass Co Ltd ポリフルオロアルキル基含有重合性化合物およびその重合体
AU2003242731A1 (en) 2002-07-01 2004-01-19 Merck Patent Gmbh Polymerizable, luminescent compounds and mixtures, luminescent polymer materials and their use
US7750059B2 (en) 2002-12-04 2010-07-06 Hewlett-Packard Development Company, L.P. Polymer solution for nanoimprint lithography to reduce imprint temperature and pressure
JP4147143B2 (ja) 2003-04-28 2008-09-10 電気化学工業株式会社 ブロック共重合体及び樹脂組成物
JP4300902B2 (ja) 2003-06-23 2009-07-22 コニカミノルタホールディングス株式会社 ブロック共重合体、有機エレクトロルミネッセンス素子、表示装置、照明装置及び光源
JP2005097442A (ja) 2003-09-25 2005-04-14 Ube Ind Ltd パターン表面とその製造方法
JP4453814B2 (ja) 2003-11-12 2010-04-21 Jsr株式会社 重合性化合物および混合物ならびに液晶表示素子の製造方法
US8061533B2 (en) 2004-03-19 2011-11-22 University Of Tennessee Research Foundation Materials comprising polydienes and hydrophilic polymers and related methods
US7341788B2 (en) 2005-03-11 2008-03-11 International Business Machines Corporation Materials having predefined morphologies and methods of formation thereof
JP2007070453A (ja) 2005-09-06 2007-03-22 Nippon Soda Co Ltd ブロック共重合体の製造方法
JP5014605B2 (ja) 2005-09-14 2012-08-29 ライオン株式会社 易洗浄性皮膜形成用組成物
JP5082101B2 (ja) 2005-11-14 2012-11-28 国立大学法人東京工業大学 ナノポーラス基板の製造方法
US7538159B2 (en) 2005-12-16 2009-05-26 Bridgestone Corporation Nanoparticles with controlled architecture and method thereof
US20070166648A1 (en) 2006-01-17 2007-07-19 International Business Machines Corporation Integrated lithography and etch for dual damascene structures
JP2007246600A (ja) 2006-03-14 2007-09-27 Shin Etsu Chem Co Ltd 自己組織化高分子膜材料、自己組織化パターン、及びパターン形成方法
JP5340530B2 (ja) 2006-09-01 2013-11-13 リンテック株式会社 ミクロ相分離構造物の製造方法
WO2008051214A1 (en) 2006-10-23 2008-05-02 John Samuel Batchelder Apparatus and method for measuring surface energies
KR100810682B1 (ko) * 2006-11-08 2008-03-07 제일모직주식회사 전도성 고분자 중합체, 전도성 고분자 공중합체 조성물,전도성 고분자 공중합체 조성물막, 및 이를 이용한 유기광전 소자
US7964107B2 (en) 2007-02-08 2011-06-21 Micron Technology, Inc. Methods using block copolymer self-assembly for sub-lithographic patterning
JP5546719B2 (ja) 2007-03-28 2014-07-09 日東電工株式会社 ミクロ相分離構造を有する高分子体の製造方法ならびにミクロ相分離構造を有する高分子体
US8097175B2 (en) 2008-10-28 2012-01-17 Micron Technology, Inc. Method for selectively permeating a self-assembled block copolymer, method for forming metal oxide structures, method for forming a metal oxide pattern, and method for patterning a semiconductor structure
US8168213B2 (en) 2007-05-15 2012-05-01 Boston Scientific Scimed, Inc. Medical devices having coating with improved adhesion
JP5332052B2 (ja) 2007-06-01 2013-11-06 シャープ株式会社 レジスト除去方法、半導体製造方法、及びレジスト除去装置
US8147914B2 (en) 2007-06-12 2012-04-03 Massachusetts Institute Of Technology Orientation-controlled self-assembled nanolithography using a block copolymer
US8714088B2 (en) 2007-06-21 2014-05-06 Fujifilm Corporation Lithographic printing plate precursor and lithographic printing method
US8492483B2 (en) 2007-07-06 2013-07-23 Maruzen Petrochemical Co., Ltd. ABA triblock copolymer and process for producing the same
KR101291223B1 (ko) 2007-08-09 2013-07-31 한국과학기술원 블록 공중합체를 이용한 미세 패턴 형성 방법
JP4403238B2 (ja) 2007-09-03 2010-01-27 国立大学法人東京工業大学 ミクロ相分離構造膜、及びその製造方法
JP5081560B2 (ja) 2007-09-28 2012-11-28 富士フイルム株式会社 ポジ型レジスト組成物およびこれを用いたパターン形成方法
CN101215362B (zh) 2008-01-08 2010-08-25 厦门大学 一种具有低表面能的硅丙三嵌段共聚物及其制备方法
JP2009203439A (ja) * 2008-02-29 2009-09-10 Mitsubishi Electric Corp ブロック共重合体、ブロック共重合体組成物及びそれを含有する絶縁シート
US8425982B2 (en) 2008-03-21 2013-04-23 Micron Technology, Inc. Methods of improving long range order in self-assembly of block copolymer films with ionic liquids
KR100935863B1 (ko) 2008-07-02 2010-01-07 연세대학교 산학협력단 용매 어닐링과 디웨팅을 이용한 블록공중합체의 나노구조의패턴화방법
US8211737B2 (en) 2008-09-19 2012-07-03 The University Of Massachusetts Method of producing nanopatterned articles, and articles produced thereby
US8518837B2 (en) 2008-09-25 2013-08-27 The University Of Massachusetts Method of producing nanopatterned articles using surface-reconstructed block copolymer films
US8658258B2 (en) 2008-10-21 2014-02-25 Aculon, Inc. Plasma treatment of substrates prior to the formation a self-assembled monolayer
JP2010115832A (ja) 2008-11-12 2010-05-27 Panasonic Corp ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法
JP2010116466A (ja) 2008-11-12 2010-05-27 Nippon Oil Corp ミクロ相分離構造膜、ナノ多孔質膜、およびそれらの製造方法
JP2010145158A (ja) 2008-12-17 2010-07-01 Dainippon Printing Co Ltd ミクロ相分離構造の確認方法
EP2199854B1 (en) 2008-12-19 2015-12-16 Obducat AB Hybrid polymer mold for nano-imprinting and method for making the same
KR101212672B1 (ko) * 2008-12-26 2012-12-14 제일모직주식회사 전도성 고분자, 전도성 고분자 조성물, 전도성 고분자 유기막 및 이를 포함하는 유기발광소자
JP5399098B2 (ja) 2009-03-02 2014-01-29 東ソー株式会社 ブロック共重合体及びその製造方法
CN101492520A (zh) 2009-03-04 2009-07-29 中国科学院上海有机化学研究所 含有全氟环丁基芳基醚嵌段的两嵌段聚合物、制备方法及用途
JP5170456B2 (ja) * 2009-04-16 2013-03-27 信越化学工業株式会社 レジスト材料及びパターン形成方法
KR101101767B1 (ko) 2009-05-07 2012-01-05 한국과학기술원 코일―빗형 블록 공중합체 및 이를 이용한 나노 구조체의 제조방법
JP5679253B2 (ja) 2009-05-26 2015-03-04 国立大学法人東京工業大学 自立性高分子薄膜
KR20110018678A (ko) 2009-08-18 2011-02-24 연세대학교 산학협력단 기능성 말단기를 가진 폴리스티렌을 이용한 실린더 나노구조체의 수직배향 조절법
EP2330136B1 (en) 2009-12-07 2013-08-28 Borealis AG Process for the preparation of an unsupported, solid metallocene catalyst system and its use in polymerization of olefins
KR101305052B1 (ko) 2010-02-25 2013-09-11 이화여자대학교 산학협력단 자기 조립 이중블록 공중합체와 졸-겔 공정을 이용한 산화아연 나노링 구조체의 제조방법
KR101238827B1 (ko) 2010-03-12 2013-03-04 한국과학기술원 열안전성이 우수한 코어쉘 구조의 나노 입자 블록공중합체 복합체의 제조 방법 및 이에 의하여 제조된 열안전성이 우수한 코어쉘 구조의 나노 입자 블록공중합체 복합체
KR20110112501A (ko) 2010-04-07 2011-10-13 한국과학기술원 높은 종횡비를 가지는 나노구조물 제조용 블록공중합체 및 그 제조방법
JP5505371B2 (ja) 2010-06-01 2014-05-28 信越化学工業株式会社 高分子化合物、化学増幅ポジ型レジスト材料、及びパターン形成方法
JP5598970B2 (ja) 2010-06-18 2014-10-01 凸版印刷株式会社 微細構造体の製造方法、複合体
KR101290057B1 (ko) 2010-07-19 2013-07-26 주식회사 엘지화학 코팅성과 재코팅성이 우수한 열경화성 보호막 조성물
US8541162B2 (en) 2010-09-01 2013-09-24 E I Du Pont De Nemours And Company High resolution, solvent resistant, thin elastomeric printing plates
JP2012093699A (ja) 2010-09-30 2012-05-17 Canon Inc エレクトロクロミック素子
JP5254381B2 (ja) 2011-02-23 2013-08-07 株式会社東芝 パターン形成方法
CN102172491B (zh) 2011-03-09 2014-09-03 无锡市恒创嘉业纳米材料科技有限公司 一种含氟表面活性剂及其制备方法
US9493588B2 (en) 2011-04-22 2016-11-15 Lg Chem, Ltd. Diblock copolymer, preparation method thereof, and method of forming nano pattern using the same
JP2014531615A (ja) 2011-09-06 2014-11-27 コーネル ユニバーシティー ブロックコポリマー及び該ブロックコポリマーを用いたリソグラフィーパターニング
WO2013040483A1 (en) 2011-09-15 2013-03-21 Wisconsin Alumni Research Foundation Directed assembly of block copolymer films between a chemically patterned surface and a second surface
JP5795221B2 (ja) 2011-09-26 2015-10-14 株式会社東芝 パターン形成方法
WO2013069544A1 (ja) 2011-11-09 2013-05-16 Jsr株式会社 パターン形成用自己組織化組成物及びパターン形成方法
JP6019524B2 (ja) 2011-12-09 2016-11-02 国立大学法人九州大学 生体適合性材料、医療用具及び生体適合性材料の製造方法
US8697810B2 (en) 2012-02-10 2014-04-15 Rohm And Haas Electronic Materials Llc Block copolymer and methods relating thereto
US20150004379A1 (en) 2012-02-10 2015-01-01 E I Du Pont Nemours And Company Preparation, purification and use of high-x diblock copolymers
US20130209755A1 (en) 2012-02-15 2013-08-15 Phillip Dene Hustad Self-assembled structures, method of manufacture thereof and articles comprising the same
JP6118573B2 (ja) 2012-03-14 2017-04-19 東京応化工業株式会社 下地剤、ブロックコポリマーを含む層のパターン形成方法
JP2013219334A (ja) 2012-03-16 2013-10-24 Jx Nippon Oil & Energy Corp フィルム状モールドを用いた基板の製造方法及び製造装置
KR101891761B1 (ko) 2012-04-06 2018-08-24 주식회사 동진쎄미켐 가이드 패턴 형성용 포토레지스트 조성물 및 이를 이용한 미세패턴 형성방법
WO2013158527A1 (en) 2012-04-16 2013-10-24 Brewer Science Inc. Silicon hardmask layer for directed self-assembly
JP5710546B2 (ja) 2012-04-27 2015-04-30 信越化学工業株式会社 パターン形成方法
WO2013160027A1 (en) 2012-04-27 2013-10-31 Asml Netherlands B.V. Methods and compositions for providing spaced lithography features on a substrate by self-assembly of block copolymers
US9127113B2 (en) 2012-05-16 2015-09-08 Rohm And Haas Electronic Materials Llc Polystyrene-polyacrylate block copolymers, methods of manufacture thereof and articles comprising the same
JP2014012807A (ja) 2012-06-05 2014-01-23 Asahi Kasei E-Materials Corp パターン形成用樹脂組成物及びパターン形成方法
KR101529646B1 (ko) 2012-09-10 2015-06-17 주식회사 엘지화학 실리콘 옥사이드의 나노 패턴 형성 방법, 금속 나노 패턴의 형성 방법 및 이를 이용한 정보저장용 자기 기록 매체
JP5887244B2 (ja) 2012-09-28 2016-03-16 富士フイルム株式会社 パターン形成用自己組織化組成物、それを用いたブロックコポリマーの自己組織化によるパターン形成方法、及び自己組織化パターン、並びに電子デバイスの製造方法
US9223214B2 (en) 2012-11-19 2015-12-29 The Texas A&M University System Self-assembled structures, method of manufacture thereof and articles comprising the same
CN102967918B (zh) 2012-12-05 2014-12-31 河海大学常州校区 新型太阳能聚光碟片
JP6311721B2 (ja) 2012-12-13 2018-04-18 東レ株式会社 マルチブロックコポリマーおよびポリマー電解質材料
WO2014124795A1 (en) 2013-02-14 2014-08-21 Asml Netherlands B.V. Methods for providing spaced lithography features on a substrate by self-assembly of block copolymers
JP6027912B2 (ja) 2013-02-22 2016-11-16 東京応化工業株式会社 相分離構造を含む構造体の製造方法、及びパターン形成方法、並びにトップコート材料
JP6107216B2 (ja) 2013-02-22 2017-04-05 キヤノンマーケティングジャパン株式会社 コンピュータ、薬剤分包装置、およびその制御方法とプログラム。
JP2015000896A (ja) 2013-06-14 2015-01-05 富士フイルム株式会社 組成物ならびにそれを用いたミクロ相分離構造膜およびその製造方法
JP2015532362A (ja) 2013-06-28 2015-11-09 エルジー・ケム・リミテッド ジエンを含む三元系弾性共重合体およびその製造方法
US9109067B2 (en) 2013-09-24 2015-08-18 Xerox Corporation Blanket materials for indirect printing method with varying surface energies via amphiphilic block copolymers
WO2015084124A1 (ko) 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
WO2015084120A1 (ko) 2013-12-06 2015-06-11 주식회사 엘지화학 단량체 및 블록 공중합체
EP3078689B1 (en) 2013-12-06 2020-12-02 LG Chem, Ltd. Block copolymer
JP6483693B2 (ja) 2013-12-06 2019-03-13 エルジー・ケム・リミテッド ブロック共重合体
CN105934456B (zh) 2013-12-06 2018-09-28 株式会社Lg化学 嵌段共聚物
TWI532780B (zh) 2013-12-06 2016-05-11 Lg化學股份有限公司 嵌段共聚物
EP3078690B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
JP6410327B2 (ja) 2013-12-06 2018-10-24 エルジー・ケム・リミテッド ブロック共重合体
WO2015084126A1 (ko) * 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체
JP6483695B2 (ja) 2013-12-06 2019-03-13 エルジー・ケム・リミテッド ブロック共重合体
US10227436B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
EP3078694B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
CN105934455B (zh) 2013-12-06 2019-01-18 株式会社Lg化学 嵌段共聚物
US10150832B2 (en) 2013-12-06 2018-12-11 Lg Chem, Ltd. Block copolymer
FR3014888B1 (fr) 2013-12-13 2017-05-26 Arkema France Procede permettant la creation de structures nanometriques par l'auto-assemblage de copolymeres a blocs
KR20150114633A (ko) 2014-04-01 2015-10-13 에스케이하이닉스 주식회사 반도체 장치
CN107075054B (zh) 2014-09-30 2020-05-05 株式会社Lg化学 嵌段共聚物
WO2016053000A1 (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
CN107075053B (zh) 2014-09-30 2019-05-21 株式会社Lg化学 嵌段共聚物
WO2016053009A1 (ko) 2014-09-30 2016-04-07 주식회사 엘지화학 블록 공중합체
EP3214102B1 (en) 2014-09-30 2022-01-05 LG Chem, Ltd. Block copolymer
CN107077066B9 (zh) 2014-09-30 2021-05-14 株式会社Lg化学 制造图案化基底的方法
CN107075055B (zh) 2014-09-30 2019-08-27 株式会社Lg化学 嵌段共聚物
US10287430B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Method of manufacturing patterned substrate
EP3202802B1 (en) 2014-09-30 2022-11-23 LG Chem, Ltd. Block copolymer
US10633533B2 (en) 2014-09-30 2020-04-28 Lg Chem, Ltd. Block copolymer
CN107075056B (zh) 2014-09-30 2019-10-08 株式会社Lg化学 嵌段共聚物
KR101851973B1 (ko) 2014-09-30 2018-04-25 주식회사 엘지화학 블록 공중합체
KR101946776B1 (ko) 2015-06-04 2019-02-13 주식회사 엘지화학 중성층 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391626A (en) * 1992-05-21 1995-02-21 Idemitsu Kosan Co., Ltd. Styrenic block copolymer and process for producing same
JP4625901B2 (ja) * 2000-11-08 2011-02-02 独立行政法人産業技術総合研究所 シンジオタクチック芳香族ビニル系ブロック共重合体およびその製造方法
JP2005530030A (ja) * 2002-07-03 2005-10-06 ザ プロクター アンド ギャンブル カンパニー 放射線硬化性低応力緩和エラストマー材料
KR20100070380A (ko) * 2006-05-16 2010-06-25 닛뽕소다 가부시키가이샤 블록 코폴리머
KR20140063790A (ko) * 2011-09-23 2014-05-27 에이제트 일렉트로닉 머트리얼즈 유에스에이 코프. 블록 공중합체의 유도 자기조립을 위한 중성층의 조성물 및 이의 방법

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10227436B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10160822B2 (en) 2013-12-06 2018-12-25 Lg Chem, Ltd. Monomer and block copolymer
US10253130B2 (en) * 2013-12-06 2019-04-09 Lg Chem, Ltd. Block copolymer
US10150832B2 (en) 2013-12-06 2018-12-11 Lg Chem, Ltd. Block copolymer
US10196474B2 (en) 2013-12-06 2019-02-05 Lg Chem, Ltd. Block copolymer
US10184021B2 (en) 2013-12-06 2019-01-22 Lg Chem, Ltd. Block copolymer
US10196475B2 (en) 2013-12-06 2019-02-05 Lg Chem, Ltd. Block copolymer
US10239980B2 (en) 2013-12-06 2019-03-26 Lg Chem, Ltd. Block copolymer
US10202480B2 (en) 2013-12-06 2019-02-12 Lg Chem, Ltd. Block copolymer
US10202481B2 (en) 2013-12-06 2019-02-12 Lg Chem, Ltd. Block copolymer
US10227437B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10227438B2 (en) 2013-12-06 2019-03-12 Lg Chem, Ltd. Block copolymer
US10087276B2 (en) 2013-12-06 2018-10-02 Lg Chem, Ltd. Block copolymer
US10081698B2 (en) 2013-12-06 2018-09-25 Lg Chem, Ltd. Block copolymer
US10240035B2 (en) 2014-09-30 2019-03-26 Lg Chem, Ltd. Block copolymer
EP3202802A4 (en) * 2014-09-30 2018-06-13 LG Chem, Ltd. Block copolymer
US10281820B2 (en) 2014-09-30 2019-05-07 Lg Chem, Ltd. Block copolymer
US10287429B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Block copolymer
US10287430B2 (en) 2014-09-30 2019-05-14 Lg Chem, Ltd. Method of manufacturing patterned substrate
US10295908B2 (en) 2014-09-30 2019-05-21 Lg Chem, Ltd. Block copolymer
US10310378B2 (en) 2014-09-30 2019-06-04 Lg Chem, Ltd. Block copolymer
US10370529B2 (en) 2014-09-30 2019-08-06 Lg Chem, Ltd. Method of manufacturing patterned substrate
US10377894B2 (en) 2014-09-30 2019-08-13 Lg Chem, Ltd. Block copolymer
US10633533B2 (en) 2014-09-30 2020-04-28 Lg Chem, Ltd. Block copolymer
US10703897B2 (en) 2014-09-30 2020-07-07 Lg Chem, Ltd. Block copolymer

Also Published As

Publication number Publication date
JP2017530237A (ja) 2017-10-12
EP3202797A4 (en) 2018-05-30
EP3202797A1 (en) 2017-08-09
US10240035B2 (en) 2019-03-26
CN107075053B (zh) 2019-05-21
CN107075053A (zh) 2017-08-18
JP6451966B2 (ja) 2019-01-16
EP3202797B1 (en) 2021-07-07
US20170226261A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
WO2016052994A1 (ko) 블록 공중합체
WO2016052999A1 (ko) 블록 공중합체
WO2016053001A1 (ko) 블록 공중합체
WO2016053000A1 (ko) 블록 공중합체
WO2015084127A1 (ko) 블록 공중합체
WO2015084123A1 (ko) 블록 공중합체
WO2015084130A1 (ko) 블록 공중합체
WO2015084126A1 (ko) 블록 공중합체
WO2015084132A1 (ko) 블록 공중합체
WO2015084129A1 (ko) 블록 공중합체
WO2015084133A1 (ko) 블록 공중합체
WO2015084131A1 (ko) 블록 공중합체
WO2016195449A1 (ko) 중성층 조성물
WO2016053010A9 (ko) 블록 공중합체
WO2016053005A1 (ko) 블록 공중합체
WO2016053009A9 (ko) 블록 공중합체
WO2018101743A2 (ko) 적층체
WO2018101741A1 (ko) 적층체
WO2016053011A9 (ko) 블록 공중합체
JP2017537458A (ja) パターン化基板の製造方法
WO2018164352A1 (ko) 패턴화 기판의 제조 방법
WO2018101731A1 (ko) 고분자 조성물
WO2018101713A1 (ko) 고분자막의 제조 방법
WO2015084128A1 (ko) 블록 공중합체
WO2018101742A1 (ko) 고분자 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017517276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015845928

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015845928

Country of ref document: EP