[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015111641A1 - Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手 - Google Patents

Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手 Download PDF

Info

Publication number
WO2015111641A1
WO2015111641A1 PCT/JP2015/051595 JP2015051595W WO2015111641A1 WO 2015111641 A1 WO2015111641 A1 WO 2015111641A1 JP 2015051595 W JP2015051595 W JP 2015051595W WO 2015111641 A1 WO2015111641 A1 WO 2015111641A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
welding
content
welding material
desirably
Prior art date
Application number
PCT/JP2015/051595
Other languages
English (en)
French (fr)
Inventor
平田 弘征
佳奈 浄徳
友彰 浜口
吉澤 満
敏秀 小野
伊勢田 敦朗
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP15741016.8A priority Critical patent/EP3100818B1/en
Priority to ES15741016T priority patent/ES2803574T3/es
Priority to JP2015559098A priority patent/JP6197885B2/ja
Priority to CN201580006118.8A priority patent/CN105939814B/zh
Priority to KR1020167023616A priority patent/KR101897381B1/ko
Publication of WO2015111641A1 publication Critical patent/WO2015111641A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium

Definitions

  • the present invention relates to a welding material for a Ni-base heat-resistant alloy, and a weld metal and a welded joint using the same, and more specifically, suitable for welding a Ni-base heat-resistant alloy used in equipment used at high temperatures such as a power generation boiler.
  • Patent Documents 1 to 5 disclose various Ni-based alloys. These all define various alloy element ranges in order to satisfy the required performance as a base material.
  • Ni-base heat-resistant alloys when used as structures, they are generally assembled by welding.
  • welding materials for Ni-base heat-resistant alloys used at that time “AWS A5.14-2009 ER NiCrCoMo— 1 "already exists.
  • Patent Document 6 proposes a welding material for Ni-based alloys, which has been strengthened by utilizing the solid solution strengthening effect by Mo and W and the precipitation strengthening effect by Al and Ti.
  • Patent Document 7 uses the precipitation strengthening effect of Al and Ti to ensure the creep strength and uniformly disperse M 6 C carbide and MC carbide in the welding material to provide high-speed weldability. Welding materials have been proposed.
  • Patent Document 8 secures stress relaxation cracking resistance by adjusting the contents of Al and Mo to an appropriate range and regulates the contents of C and Cr to prevent solidification cracking. Welding materials have been proposed.
  • the present invention provides a welding material for a Ni-base heat-resistant alloy having excellent welding workability, and a weld metal having excellent creep strength at high temperatures and resistance to stress relaxation cracking during use. Objective. Furthermore, it is also an object of the present invention to provide a welded joint made of a weld metal using this weld material and a base material having excellent creep strength at high temperatures.
  • the present inventors conducted a detailed investigation to solve the above-described problems. That is, as a result of detailed investigation on the fusion failure occurring in the welded joint, the following matters (a) and (b) were clarified.
  • the welding slag is also generated by the oxide remaining on the surface of the welding material moving to the molten pool surface as the welding material melts and agglomerating these. It is formed.
  • Al significantly increases the stress relaxation cracking sensitivity during long-time use at high temperatures, so reducing its content ensures stress relaxation cracking resistance. Also effective.
  • Al is an element essential for ensuring the creep strength by precipitating as an intermetallic compound in a weld metal for a long time in the Ni-base heat-resistant welding material.
  • the contents of Al, Si, O, Ni, Co, Cr, Mo and Mn are controlled within a predetermined range, and the surface of the welding material
  • the thickness of the oxide layer 30 ⁇ m or less it is possible to prevent poor fusion by ensuring excellent welding workability during welding, and good stress relaxation crack resistance during long-time use at high temperatures And excellent creep strength.
  • the chemical composition of the welding material is, in mass%, C: 0.08 to 0.12%, Si: 0.10% or less, Mn: 0.02 to 1.50%, P: 0.00.
  • the present invention has been completed based on the above findings, and the gist of the present invention is the following welding materials for Ni-base heat-resistant alloys, weld metals, and weld joints.
  • the chemical composition is mass%, C: 0.08 to 0.12%, Si: 0.10% or less, Mn: 0.02 to 1.50%, P: 0.008% or less, S: 0.002% or less, Ni: more than 56.0% and 60.0% or less, Co: 8.0 to 12.0%, Cr: 18.0-22.0%, Mo: 6.0 to 10.0%, Ti: 0.01 to 0.50%, Al: 0.50 to 1.00%, N: 0.010% or less, O: 0.010% or less, Nb: 0 to 0.50%, B: 0 to 0.0050%, Ca: 0 to 0.050%, Mg: 0 to 0.050%, REM: 0 to 0.20%, Balance: welding material which is Fe and impurities, A welding material for a Ni-base heat-resistant alloy, wherein the oxide layer formed on the surface of the welding material has a thickness of 30 ⁇ m or less.
  • the chemical composition is mass%, Co: 9.0 to 11.0%, Cr: 19.0-21.0%, and Mo: 7.0-9.0%,
  • the chemical composition is mass%, Nb: 0.01 to 0.50%, B: 0.0002 to 0.0050%, Ca: 0.0005 to 0.050%, Mg: 0.0005 to 0.050%, and REM: 0.01 to 0.20%,
  • a weld metal comprising the welding material for a Ni-base heat resistant alloy according to any one of (1) to (4) above.
  • a welded joint comprising the weld metal described in (5) above and a base material of a Ni-base heat-resistant alloy.
  • the chemical composition of the base material is mass%, Ni: 41.0-60.0%, Cr: 18.0 to 25.0%, and one or more of Mo and W: 6.0 to 10.0% in total
  • the chemical composition of the base material is mass%, C: 0.04 to 0.12%, Si: 1.00% or less, Mn: 1.50% or less, P: 0.03% or less, S: 0.01% or less, Ni: 41.0-60.0%, Co: 15.0% or less, Cr: 18.0-25.0%, One or more of Mo and W: 6.0 to 10.0% in total, Ti: 0.01 to 0.50%, Nb: 0.50% or less, N: 0.010% or less, B: 0.0050% or less, Al: 1.50% or less, The balance: the welded joint according to (7), which is Fe and impurities.
  • a welding material for a Ni-based heat-resistant alloy having excellent welding workability, and excellent creep strength at high temperature using the same and stress relaxation crack resistance during use.
  • a weld metal having the following can be provided.
  • a welded joint comprising a weld metal using this weld material and a base material having excellent creep strength at high temperatures.
  • the reason for limiting the structural requirements of the welding material for Ni-base heat-resistant alloy is as follows.
  • “%” of the content of each element means “mass%”.
  • Si 0.10% or less Si is contained as a deoxidizing agent, but reacts with oxygen in the molten pool during welding to generate an oxide.
  • This oxide exists as an oxide on the surface of the welding material, and remains on the bead surface as welding slag together with the oxide that has moved to the molten pool as the metal melts. This welding slag is not melted by the welding of the subsequent pass and causes poor fusion. Therefore, the Si content needs to be 0.10% or less.
  • the Si content is desirably 0.08% or less. Since the lower the Si content, the better. However, excessive reduction results in an insufficient deoxidation effect, resulting in an increase in the cleanliness of the alloy and a decrease in cleanliness, and an increase in the manufacturing cost of the welding material. Therefore, the Si content is desirably 0.005% or more, and more desirably 0.01% or more.
  • Mn 0.02 to 1.50% Mn is contained as a deoxidizer in the same manner as Si. Mn contributes to securing the creep strength, so 0.02% or more is contained. However, since an excessive content causes embrittlement, the Mn content needs to be 1.50% or less.
  • the Mn content is desirably 0.05% or more, and desirably 1.20% or less.
  • Mn has a higher vapor pressure than other alloy elements, evaporates and ionizes from the surface of the weld pool during welding, forms an arc current path, increases current density, and increases the temperature directly under the arc. .
  • the welding slag remaining in the previous pass is effectively melted.
  • the Mn content is contained so as to satisfy the following formula (i) according to the amount of Al contained in the welding material.
  • P 0.008% or less
  • P is an element which is contained as an impurity and significantly increases the susceptibility to solidification cracking during welding and also increases the stress relaxation cracking susceptibility of the weld metal during high temperature use. Therefore, the P content needs to be 0.008% or less.
  • the P content is desirably 0.007% or less. The lower the P content, the better. Therefore, the lower limit is not particularly provided, but excessive reduction leads to an increase in production cost. Therefore, the P content is desirably 0.0005% or more, and more desirably 0.001% or more.
  • S 0.002% or less
  • S is an element which is included as an impurity and significantly enhances solidification cracking sensitivity and stress relaxation cracking property. Therefore, the S content needs to be 0.002% or less.
  • the S content is desirably 0.0015% or less. Since the lower the S content, the better. Therefore, the lower limit is not particularly provided, but excessive reduction leads to an increase in production cost. Therefore, the S content is desirably 0.0002% or more, and more desirably 0.0005% or more.
  • Ni More than 56.0% and not more than 60.0% Ni is an element that ensures the structural stability of the weld metal when used for a long time and contributes to the ensuring of the creep strength. Ni is an element that also affects the precipitation driving force of an intermetallic compound containing Al, and indirectly affects the creep strength and stress relaxation cracking susceptibility of the weld metal. In other alloy element ranges in the present invention, in order to ensure the necessary creep strength and stress relaxation cracking resistance, the Ni content needs to exceed 56.0% and not more than 60.0%. The Ni content is desirably 57.0% or more, and desirably 59.0% or less.
  • Co 8.0 to 12.0%
  • Co is an element that ensures the structural stability during long-time use and contributes to ensuring the creep strength.
  • Co is an element that also affects the precipitation driving force of an intermetallic compound containing Al, and indirectly affects the creep strength and stress relaxation cracking susceptibility of the weld metal.
  • the Co content needs to be 8.0 to 12.0% in order to ensure essential creep strength and stress relaxation crack resistance.
  • the Co content is desirably 9.0% or more, and desirably 11.0% or less.
  • Cr 18.0-22.0%
  • Cr is an essential element for ensuring oxidation resistance and corrosion resistance of the weld metal at high temperatures.
  • Cr is an element that also affects the precipitation driving force of an intermetallic compound containing Al, and indirectly affects the creep strength and stress relaxation cracking susceptibility of the weld metal.
  • the excessive Cr content decreases the structural stability at high temperatures and causes a decrease in creep strength.
  • the Cr content needs to be 18.0 to 22.0%.
  • the Cr content is desirably 19.0% or more, and desirably 21.0% or less.
  • Mo 6.0 to 10.0%
  • Mo is an element that makes a solid solution in the matrix and greatly contributes to the improvement of the creep strength of the weld metal. In order to sufficiently secure the effect, it is necessary to contain 6.0% or more of Mo. However, Mo affects the precipitation driving force of the intermetallic compound containing Al. When the content is excessive, in other alloy element ranges in the present invention, the creep strength is decreased and the resistance to resistance is reduced. Reduces stress relaxation cracking. Therefore, the Mo content is 10.0% or less.
  • the Mo content is desirably 7.0% or more, and desirably 9.0% or less.
  • Ti 0.01 to 0.50% Ti combines with Ni and precipitates finely as an intermetallic compound, thereby contributing to improvement in the creep strength of the weld metal. In order to obtain the effect, the Ti content needs to be 0.01% or more. However, when Ti is contained excessively, excessive precipitation of an intermetallic compound phase is caused, and the stress relaxation cracking sensitivity of the weld metal is increased. Therefore, the Ti content is 0.50% or less. The Ti content is desirably 0.05% or more, and desirably 0.40% or less.
  • Al 0.50 to 1.00% Al is contained as a deoxidizer.
  • Al is an element that binds to Ni and precipitates finely as an intermetallic compound and is effective in ensuring the creep strength of the weld metal.
  • Al when Al is contained excessively, excessive precipitation of an intermetallic compound phase is caused and stress relaxation cracking sensitivity is increased.
  • Al reacts with oxygen in the weld pool during welding to produce oxides. This oxide exists as an oxide on the surface of the welding material, and as it melts, it remains on the bead surface as a weld slag together with the oxide that has moved to the molten pool, causing poor fusion.
  • the Al content is 0.50 to 1. It is necessary to make it 0.000%.
  • the Al content is desirably 0.60% or more, and desirably 0.90% or less.
  • N 0.010% or less
  • N is an element that contributes to the improvement of the structural stability of the weld metal.
  • the N content needs to be 0.010% or less.
  • the N content is desirably 0.008% or less.
  • the lower limit of the N content is not particularly required, but an extreme decrease causes an increase in the manufacturing cost of the welding material, so it is desirable that the lower limit is 0.0005% or more.
  • O 0.010% or less O is contained as an impurity, and reacts with an element having strong affinity such as Al and Si in a molten pool during welding to generate an oxide. These oxides exist as oxides on the surface of the welding material, and as they are melted, they remain as weld slag on the bead surface together with the oxides transferred to the molten pool, causing poor fusion. Therefore, the O content needs to be 0.010% or less.
  • the O content is desirably 0.008% or less. Since the lower the O content, the better. The lower limit is not particularly set, but excessive reduction leads to an increase in manufacturing cost. Therefore, the O content is desirably 0.0005% or more, and more desirably 0.001% or more.
  • Nb 0 to 0.50% Nb combines with Ni and precipitates as an intermetallic compound, or combines with carbon and nitrogen and precipitates as fine carbonitride, contributing to the improvement of the creep strength of the weld metal. For this reason, in order to acquire said effect, you may contain Nb. However, when Nb is contained excessively, excessive precipitation of intermetallic compounds and carbonitrides is caused, and the stress relaxation cracking susceptibility of the weld metal is increased. Therefore, the Nb content in the case of inclusion is 0.50% or less. The Nb content is desirably 0.40% or less.
  • the Nb content is desirably 0.01% or more, and more desirably 0.05% or more.
  • B 0 to 0.0050%
  • B is an element effective for improving the creep strength by segregating and strengthening at the grain boundaries in high temperature use in the weld metal and finely dispersing the grain boundary carbides. For this reason, in order to acquire said effect, you may contain B. However, when a large amount of B is contained, the solidification cracking sensitivity is remarkably increased. Therefore, the B content when contained is 0.0050% or less. The B content is desirably 0.0040% or less.
  • the B content is preferably 0.0002% or more, and more preferably 0.0005% or more.
  • Ca 0 to 0.050% Ca improves the hot workability of the alloy and increases the manufacturability of the welding material. For this reason, in order to acquire this effect, you may contain Ca. However, when Ca is contained excessively, it combines with oxygen during welding to generate weld slag, which causes poor fusion. Therefore, the Ca content when contained is 0.050% or less. The Ca content is desirably 0.020% or less.
  • the Ca content is desirably 0.0005% or more, and more desirably 0.001% or more.
  • Mg 0 to 0.050% Mg, like Ca, improves the hot workability of the alloy and increases the manufacturability of the welding material. For this reason, in order to acquire this effect, you may contain Mg. However, when Mg is contained excessively, it combines with oxygen during welding to generate weld slag, which causes poor fusion. Therefore, the Mg content in the case of inclusion is set to 0.050% or less. The Mg content is desirably 0.020% or less.
  • the Mg content is preferably 0.0005% or more, and more preferably 0.001% or more.
  • REM 0 to 0.20% REM, like Ca and Mg, improves the hot workability of the alloy and increases the manufacturability of the welding material. For this reason, in order to acquire this effect, you may contain REM. However, when REM is contained excessively, it combines with oxygen during welding, producing weld slag, which causes poor fusion. Therefore, the amount of REM in the case of making it contain shall be 0.20% or less.
  • the REM content is desirably 0.10% or less.
  • the REM content is preferably 0.01% or more, and more preferably 0.02% or more.
  • REM is a generic name for a total of 17 elements of Sc, Y and lanthanoid, and the content of REM refers to the total content of one or more elements of REM. Further, REM is generally contained in misch metal. For this reason, for example, it may be added in the form of misch metal and contained so that the amount of REM falls within the above range.
  • the chemical composition is the above-mentioned elements, and the balance is Fe and impurities.
  • impurities are components that are mixed due to various factors of raw materials such as ores and scraps and manufacturing processes when steel is industrially manufactured, and are allowed within a range that does not adversely affect the present invention. Means something.
  • the thickness of the oxide layer on the surface of the welding material for Ni-base heat-resistant alloys The oxide present on the surface of the welding material moves to the molten pool as it melts, and in particular, the oxide present on the surface of the welding material. If the thickness exceeds 30 ⁇ m, it will remain on the bead surface as weld slag together with the oxide produced by reaction during welding. Since these oxides have a high melting point, they are not melted by welding in subsequent passes and cause fusion failure. Therefore, the oxide thickness on the surface of the welding material needs to be 30 ⁇ m or less. In addition, the thinner the oxide layer existing on the surface of the welding material, the better.
  • the surface is prevented from being oxidized, so that the oxide layer thickness on the surface of the welding material can be adjusted to 30 ⁇ m or less.
  • a reducing gas such as hydrogen
  • the oxide layer thickness on the surface of the welding material can be adjusted to 30 ⁇ m or less.
  • the welding material for Ni base heat-resistant alloys which concerns on this invention was explained in full detail, if the said welding material for Ni base heat-resistant alloys is used, the outstanding weldability during welding will be obtained. And the weld metal which has the favorable stress relaxation cracking resistance and creep strength in high temperature use can be obtained using this welding material. Furthermore, by using this welding material, it is possible to obtain a welded joint made of a weld metal having the above characteristics and a Ni-base heat-resistant alloy base material having excellent high-temperature strength.
  • Ni: 41.0-60.0%, Cr: 18.0-25 0.0%, one or more of Mo and W When a Ni-base heat-resistant alloy having a high temperature strength and containing 6.0 to 10.0% in total is used as a base material, the base material is excellent in a high temperature range. It is preferable because it has excellent ductility and creep strength.
  • the base material preferably has the above-described chemical composition when the Ni-base heat-resistant alloy having excellent high-temperature strength is used as the base material will be described below.
  • Ni 41.0-60.0%
  • Ni is an element that stabilizes the structure at high temperatures and is effective in ensuring the creep strength. Since it is not necessary for the base material to consider the poor fusion that is a problem in the weld metal, in order to obtain the effect, the base material preferably contains 41.0% or more of Ni. However, since Ni is an expensive element, the use of a large amount causes an increase in cost. Therefore, the upper limit of the Ni content is desirably 60.0%. The Ni content is more preferably 42.0% or more, and more preferably 59.0% or less.
  • Cr 18.0-25.0% Cr is an effective element for securing the oxidation resistance and corrosion resistance of the base material at a high temperature as well as the weld metal.
  • the base material contains 18.0% or more of Cr.
  • the Cr content is desirably 25.0% or less.
  • the Cr content is more preferably 19.0% or more, and more preferably 24.0% or less.
  • Mo and W are elements that make a solid solution in the matrix and greatly contribute to the improvement of creep strength at high temperatures. Since it is not necessary for the base material to consider the fusion failure that is a problem in the weld metal, in order to obtain the above effect, any element of Mo and W can be used in the base material, and one or more of Mo and W can be used. May be contained in a total amount of 6.0% or more. However, since Mo and W are both expensive elements, the use of a large amount causes an increase in cost. Therefore, the total content of one or more of Mo and W is preferably 10.0% or less. The total content of at least one of Mo and W in the base material is more preferably 6.5% or more, and more preferably 9.5% or less.
  • Mo and W it is not necessary to contain Mo and W in combination.
  • Mo When Mo is contained alone, the Mo content may be 6.0 to 10.0%.
  • W When W is contained alone, the W content is 6.0 to 10.0. %.
  • the base material of the Ni-based heat-resistant alloy having excellent high-temperature strength contains the elements described below in addition to one or more of Ni and Cr in the above range and Mo and W, with the balance being Fe and impurities. It is more preferable that
  • C 0.04 to 0.12% C is an element that enhances the structural stability of the base material, precipitates as carbides, and contributes to the improvement of creep strength. Unlike a weld metal that is used as-solidified, the base material is homogenized by heat treatment, and its effects are more easily obtained. For this reason, it is preferable that the base material contains C, and the amount may be 0.04% or more. However, when C is contained excessively, coarse carbides are generated during use at a high temperature, leading to a decrease in creep strength. Therefore, when the base material contains C, the amount is desirably 0.12% or less.
  • the C content is more preferably 0.06% or more, and more preferably 0.10% or less.
  • Si 1.00% or less Si has a deoxidizing action, but when the Si content is excessive, toughness is reduced. However, since it is not necessary for the base material to consider the fusion failure that is a problem in the weld metal, when the base material contains Si, the amount is desirably 1.00% or less, and 0.80% or less. It is more desirable to do. Although there is no particular lower limit for the Si content, excessive reduction of the Si content is not sufficient to obtain a deoxidizing effect, resulting in an increase in the cleanliness of the alloy and a decrease in cleanliness, and an increase in manufacturing cost. Invite. Therefore, the Si content is desirably 0.01% or more, and more desirably 0.02% or more.
  • Mn 1.50% or less Mn, like Si, has a deoxidizing action, enhances the structural stability, and contributes to ensuring the creep strength. For this reason, it is preferable that the base material contains Mn. However, when Mn is contained excessively, embrittlement is caused. Therefore, when the base material contains Mn, the amount is desirably 1.50% or less, and more desirably 1.20% or less. Although there is no particular lower limit for the Mn content, it is preferably 0.01% or more, and more preferably 0.02% or more.
  • P 0.03% or less P is contained as an impurity.
  • the P content in the base material is preferably 0.03% or less, and more preferably 0.015% or less.
  • the lower limit of the P content is not particularly set, the extreme reduction leads to a significant increase in the alloy manufacturing cost. Therefore, the P content is preferably 0.001% or more, and more preferably 0.002% or more.
  • S 0.01% or less S is contained as an impurity as in the case of P, and when it is contained excessively, creep ductility is lowered, and liquefaction susceptibility and stress relaxation crack susceptibility of the weld heat affected zone are increased. Therefore, the S content in the base material is desirably 0.01% or less, and more desirably 0.005% or less. Although the lower limit of the S content is not particularly set, the extreme reduction leads to a significant increase in the alloy production cost, so 0.0002% or more is desirable, and 0.0005% or more is more desirable.
  • Co 15.0% or less Co also contributes to ensuring the creep strength by increasing the structural stability at high temperatures even in the base material. For this reason, it is preferable that the base material contains Co. However, since it is an extremely expensive element, when the base material contains Co, the amount is desirably 15.0% or less, and more desirably 13.0% or less. Note that the Co content is desirably 0.01% or more, and more desirably 0.03% or more.
  • Ti 0.01 to 0.50% Ti is an element that also precipitates in the grains as fine intermetallic compounds and carbonitrides in the base material and contributes to the creep strength at high temperatures. For this reason, it is preferable that a base material contains Ti, and the amount should just be 0.01% or more. However, when Ti is contained excessively, a large amount of intermetallic compounds and carbonitrides are produced, resulting in a decrease in toughness. Therefore, when the base material contains Ti, the content is desirably 0.50% or less. The Ti content is more preferably 0.05% or more, and more preferably 0.40% or less.
  • Nb 0.50% or less
  • Nb also binds to Ni and precipitates as an intermetallic compound, or binds to carbon and nitrogen and precipitates as fine carbonitride, contributing to improvement of creep strength at high temperatures. To do. For this reason, it is preferable that the base material contains Nb. However, when Nb is contained excessively, excessive precipitation of intermetallic compounds and carbonitrides is caused, resulting in a decrease in toughness. Therefore, when the base material contains Nb, the amount is desirably 0.50% or less, and more desirably 0.40% or less. Note that the Nb content is desirably 0.01% or more, and more desirably 0.05% or more.
  • N 0.010% or less
  • N is an element effective for stabilizing the structure. For this reason, it is preferable that the base material contains N. However, when the N content is excessive, a large amount of carbonitride precipitates during use, leading to a decrease in ductility and toughness. Therefore, when the base material contains N, the amount is desirably 0.010% or less, and more desirably 0.008% or less.
  • the lower limit of the N content is not particularly required, but is extremely preferably 0.0005% or more because extreme reduction leads to an increase in manufacturing cost.
  • B 0.0050% or less
  • B is an element effective for improving creep strength by segregating and strengthening at grain boundaries in use at high temperatures and finely dispersing grain boundary carbides even in the base material. It is. For this reason, it is preferable that the base material contains B. However, when a large amount of B is contained, the liquefaction cracking sensitivity of the weld heat affected zone is increased. For this reason, when the base material contains B, the amount is desirably 0.0050% or less, and more desirably 0.0040%.
  • the B content is preferably 0.0002% or more, and more preferably 0.0005% or more.
  • Al 1.50% or less
  • Al is an element that is contained as a deoxidizer, binds to Ni, precipitates finely as an intermetallic compound, and increases the creep strength.
  • the base metal does not need to be considered for the fusion failure that is a problem in the weld metal, and unlike the weld metal used as it is solidified, it is homogenized by heat treatment, and the creep strength is easily obtained. For this reason, it is preferable that the base material contains Al. However, if a large amount of Al is contained, workability is impaired and manufacturability is reduced. For this reason, when a base material contains Al, it is desirable to set it as 1.50% or less, and it is more desirable to set it as 1.30% or less. Note that the Al content is desirably 0.001% or more, and more desirably 0.005% or more.
  • An alloy having a thickness of 12 mm, a width of 50 mm, and a length of 100 mm is obtained by hot forging, hot rolling, heat treatment and machining from an ingot obtained by melting and casting alloys X and Y having the chemical composition shown in Table 1.
  • a plate was prepared for the weld base material.
  • a welding material (welding wire) having an outer diameter of 1.2 mm is obtained by hot forging, hot rolling and heat treatment from an ingot in which alloys AK having chemical compositions shown in Table 2 are melted and cast in a laboratory. Produced.
  • the thickness of the oxide layer (oxide scale) on the surface of the welding material was changed by adjusting the atmosphere of the heat treatment during the production. And the average thickness of the oxide layer was measured from the cross section (henceforth a "cross section") cut
  • the welded joints were welded for each welding material, and the remaining one was subjected to an aging heat treatment at 700 ° C. for 500 hours before being subjected to the next test.
  • a round bar creep rupture test specimen was collected from the welded joint that was determined to be “pass” as a result of microscopic examination so that the weld metal was in the center of the parallel part, and the target rupture time of the base alloy plate A creep rupture test was conducted under the conditions of 700 ° C. and 196 MPa at 1000 ° C., and the rupture time satisfying the target rupture time (1000 hours) of the base material alloy sheet was determined to be acceptable.
  • Table 3 summarizes the oxide layer thickness on the surface of the welding material and the above test results.
  • “XX” and “ ⁇ ” in the “Section observation result” column indicate “passed” welded joints determined as “good” and “possible”, respectively.
  • “x” indicates “fail”.
  • “ ⁇ ” indicates that the weld joint creep rupture test result was “pass” satisfying the target rupture time (1000 hours) of the base alloy plate, and “-” indicates welding. This shows that the creep rupture test was not performed because poor fusion was observed in the cross-sectional observation of the welded joint as it was.
  • the welding slag remaining on the weld bead can be reduced only in the welded joint using the welding material for the Ni-base heat-resistant alloy whose chemical composition and surface oxide layer thickness satisfy the range specified in the present invention. Therefore, the subsequent pass can melt the preceding bead sufficiently, and it is a sound welded joint with no poor fusion and no stress relaxation crack after aging, and the creep rupture test result is acceptable, and the high creep strength is also achieved. It turns out that it has.
  • welded joint no. 4, 8 and 11 although the chemical compositions of the alloys A and B for the welding material satisfy the range specified in the present invention, the thickness of the oxide layer on the surface of the welding material exceeded 30 ⁇ m. As the welding material melted, the object moved to the surface of the molten pool and remained on the weld bead as a large amount of weld slag, and the subsequent pass could not sufficiently melt the preceding bead, resulting in poor fusion.
  • a welding material for a Ni-based heat-resistant alloy having excellent welding workability, and excellent creep strength at high temperature using the same and stress relaxation crack resistance during use.
  • a weld metal having the following can be provided.
  • a welded joint comprising a weld metal using this weld material and a base material having excellent creep strength at high temperatures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)

Abstract

 (1)化学組成が、C:0.08~0.12%、Si≦0.10%、Mn≦1.50%、P≦0.008%、S≦0.002%、Ni:56.0%超~60.0%、Co:8.0~12.0%、Cr:18.0~22.0%、Mo:6.0~10.0%、Ti:0.01~0.50%、Al:0.50~1.00%、N≦0.010%、O≦0.010%、Nb:0~0.50%、B:0~0.0050%、Ca:0~0.050%、Mg:0~0.050%、REM:0~0.20%、残部:Feおよび不純物であり、前記溶接材料の表面に形成される酸化物層の厚さが30μm以下であるNi基耐熱合金用溶接材料。(2)上記のNi基耐熱合金用溶接材料を用いてなる溶接金属。(3)上記溶接金属と高温強度に優れたNi基耐熱合金の母材とからなる溶接継手。

Description

Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
 本発明は、Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手に関し、詳しくは、発電用ボイラ等、高温で使用される機器に用いるNi基耐熱合金を溶接するのに好適な溶接材料およびそれを使用して得られる溶接金属および溶接継手に関する。
 近年、環境負荷軽減の観点から発電用ボイラ等では運転条件の高温・高圧化が世界的規模で進められており、使用される材料にも、より優れた高温強度を有することが求められている。
 このような要求を満たす材料として、例えば、UNS06617に規定のNi基耐熱合金がある。また、特許文献1~5に種々のNi基合金が開示されている。これらは、いずれも母材としての必要性能を満足させるため、種々多様な合金元素範囲を規定したものである。
 一方、これらNi基耐熱合金を構造物として使用する場合、溶接により組み立てるのが一般的であり、その際に使用されるNi基耐熱合金用溶接材料として、「AWS A5.14-2009 ER NiCrCoMo-1」が既に存在する。
 さらには、特許文献6にはMoおよびWによる固溶強化ならびにAlおよびTiによる析出強化効果を活用して高強度化を図った、Ni基合金用溶接材料が提案されている。また、特許文献7には同様にAlおよびTiによる析出強化効果を活用してクリープ強度を確保するとともに、溶接材料中にMC炭化物およびMC炭化物を均一分散させて高速溶接性を具備させた溶接材料が提案されている。
 ところで、これらのNi基耐熱合金およびNi基耐熱合金用溶接材料を用いてなる溶接構造物は高温で使用されるが、長時間高温で使用した場合、溶接部において割れ(応力緩和割れ)が発生するという問題がある。
 そのため、特許文献8には、AlおよびMoの含有量を適切な範囲に調整することで耐応力緩和割れ性を確保するとともに、CおよびCrの含有量を規定して、凝固割れの防止を図った溶接材料が提案されている。
米国特許第4877461号明細書 米国特許第4765956号明細書 米国特許第5372662号明細書 特開平9-157779号公報 特開2001-073053号公報 国際公開第2010/013565号 国際公開第2007/119847号 特開2012-000616号公報
 上述のNi基耐熱合金用溶接材料である「AWS A5.14-2009 ER NiCrCoMo-1」および特許文献6~8で開示されたNi基合金用の溶接材料は、確かにそれぞれの目的とする所定の性能を満足する。しかしながら、多層溶接、特に、凝固割れなど溶接中の高温割れを防止するために小入熱で多層溶接した場合には、溶接施工性が悪く、溶接施工欠陥の一つである、いわゆる「融合不良」が起こりやすく、使用性能上の課題となることが判明した。
 本発明は、優れた溶接施工性を有するNi基耐熱合金用溶接材料および、それを用いてなる高温における優れたクリープ強度と使用中の耐応力緩和割れ性とを有する溶接金属を提供することを目的とする。さらに、この溶接材料を用いてなる溶接金属と高温における優れたクリープ強度を有する母材とからなる溶接継手を提供することも本発明の目的である。
 本発明者らは、前記した課題を解決するために詳細な調査を行った。すなわち、溶接継手に発生した融合不良について詳細な調査を行った結果、下記(a)および(b)に述べる事項が明らかになった。
 (a)融合不良は多層溶接の先行ビードと後続ビードとの境界に発生している。
 (b)融合不良部にはAlおよびSiが含まれる溶接スラグが残存している。
 また、溶接現象について詳細に観察した結果、下記(c)に述べる事項が明らかになった。
 (c)溶接スラグは、溶融池内で反応して生成するものに加え、溶接材料表面に残存していた酸化物が溶接材料溶融に伴い、溶融池表面に移行し、これらが凝集することによっても形成される。
 上記(a)~(c)から、本発明者らは、融合不良は次の(d)に示す理由により発生すると推定した。
 (d)溶融池内でAlおよびSiなどが酸素(O)と反応して生成した酸化物ならびに製造時の溶接材料表面に残存していたAlおよびSiの酸化物が溶接中に凝集して溶接スラグとして溶接ビード上に残存する。前記のビード上を後続パスで溶接する場合、溶接スラグが高融点であるため、特に、小入熱溶接時には溶接スラグを十分に溶融させることができず、融合不良となる。
 上記の推定の下、本発明者らは、融合不良を防止するための検討を実施した。その結果、次の(e)に述べる事項が明らかになった。
 (e)溶融池内の脱酸反応で生成する酸化物を低減することおよび溶接材料表面に存在する酸化物層を低減すること、具体的には溶接材料中のAl、Siおよび酸素(O)の含有量を低減することに加え、溶接材料表面に残存する酸化物層の厚さを管理することが融合不良を防止するのに有効である。
 なお、本発明の対象とするNi基耐熱溶接材料において、Alは高温で長時間使用中の応力緩和割れ感受性を著しく高めるため、その含有量を低減することは耐応力緩和割れ性を確保するのにも有効である。しかしながら一方、Alは上記Ni基耐熱溶接材料にあっては、溶接金属において長時間使用中に金属間化合物として析出し、クリープ強度を確保するのに必須の元素でもある。
 そこで、本発明者らがさらに詳細な検討を進めた結果、次の事項(f)および(g)が明らかになった。
 (f)Al、SiおよびOの含有量の調整ならびに、Ni、Co、Cr、MoおよびMnの含有量の適切な範囲への管理が、上記(e)で述べた融合不良の防止に有効であるとともに、金属間化合物の生成量を減らすことなく、その金属間化合物の析出開始時間を遅らせることにも有効である。
 (g)上記のAl、Si、O、Ni、Co、Cr、MoおよびMnの含有量に加えて、C、P、S、TiおよびNの含有量を所定の範囲に制御し、溶接材料表面の酸化物層の厚さを30μm以下にすることによって、溶接時の優れた溶接作業性の確保による融合不良の防止が可能となり、さらに、高温で長時間使用中の良好な耐応力緩和割れ性と優れたクリープ強度とを両立させることができる。具体的には、溶接材料の化学組成を、質量%で、C:0.08~0.12%、Si:0.10%以下、Mn:0.02~1.50%、P:0.008%以下、S:0.002%以下、Ni:56.0%を超えて60.0%以下、Co:8.0~12.0%、Cr:18.0~22.0%、Mo:6.0~10.0%、Ti:0.01~0.50%、Al:0.50~1.00%、O:0.010%以下、N:0.010%以下、残部:Feおよび不純物とする必要がある。上述した化学組成の調整と表面の酸化物層の厚さ調整とによって、溶接施工性に加えて、溶接金属のクリープ強度および耐応力緩和割れ特性をも確保できるNi基耐熱溶接材料を得ることができる。
 そして、上記(g)を満たすNi基耐熱合金用溶接材料を用いることによって、高温使用中の、耐応力緩和割れ性および優れたクリープ強度を有する溶接金属、ならびに高温強度に優れたNi基耐熱合金の母材からなる溶接継手を得ることができる。
 本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記に示すNi基耐熱合金用溶接材料、溶接金属および溶接継手にある。
 (1)化学組成が、質量%で、
 C:0.08~0.12%、
 Si:0.10%以下、
 Mn:0.02~1.50%、
 P:0.008%以下、
 S:0.002%以下、
 Ni:56.0%を超えて60.0%以下、
 Co:8.0~12.0%、
 Cr:18.0~22.0%、
 Mo:6.0~10.0%、
 Ti:0.01~0.50%、
 Al:0.50~1.00%、
 N:0.010%以下、
 O:0.010%以下、
 Nb:0~0.50%、
 B:0~0.0050%、
 Ca:0~0.050%、
 Mg:0~0.050%、
 REM:0~0.20%、
 残部:Feおよび不純物
である溶接材料であって、
 前記溶接材料の表面に形成される酸化物層の厚さが30μm以下である、Ni基耐熱合金用溶接材料。
 (2)前記化学組成が、質量%で、
 Co:9.0~11.0%、
 Cr:19.0~21.0%、および
 Mo:7.0~9.0%、
から選択される1種以上を含有する、上記(1)に記載のNi基耐熱合金用溶接材料。
 (3)前記化学組成が、質量%で、
 Nb:0.01~0.50%、
 B:0.0002~0.0050%、
 Ca:0.0005~0.050%、
 Mg:0.0005~0.050%、および
 REM:0.01~0.20%、
から選択される1種以上を含有する、上記(1)または(2)に記載のNi基耐熱合金用溶接材料。
 (4)前記化学組成が下記(i)式を満足する、上記(1)から(3)までのいずれかに記載のNi基耐熱合金用溶接材料。
 Mn≧0.2×Al-0.1   ・・・(i)
 但し、式中の各元素記号は、鋼材中に含まれる各元素の含有量(質量%)を表す。
 (5)上記(1)から(4)までのいずれかに記載のNi基耐熱合金用溶接材料を用いてなる、溶接金属。
 (6)上記(5)に記載の溶接金属と、Ni基耐熱合金の母材とからなる、溶接継手。
 (7)前記母材の化学組成が、質量%で、
 Ni:41.0~60.0%、
 Cr:18.0~25.0%、ならびに
 MoおよびWの1種以上:合計で6.0~10.0%
を含有する、上記(6)に記載の溶接継手。
 (8)前記母材の化学組成が、質量%で、
 C:0.04~0.12%、
 Si:1.00%以下、
 Mn:1.50%以下、
 P:0.03%以下、
 S:0.01%以下、
 Ni:41.0~60.0%、
 Co:15.0%以下、
 Cr:18.0~25.0%、
 MoおよびWの1種以上:合計で6.0~10.0%、
 Ti:0.01~0.50%、
 Nb:0.50%以下、
 N:0.010%以下、
 B:0.0050%以下、
 Al:1.50%以下、
 残部:Feおよび不純物
である、上記(7)に記載の溶接継手。
 本発明によれば、優れた溶接施工性を有するNi基耐熱合金用溶接材料を提供することができ、また、それを用いてなる高温において優れたクリープ強度と使用中の耐応力緩和割れ性とを有する溶接金属を提供することができる。さらに、この溶接材料を用いてなる溶接金属と高温における優れたクリープ強度を有する母材とからなる溶接継手を提供することもできる。
 本発明において、Ni基耐熱合金用溶接材料などの構成要件を限定する理由は次のとおりである。なお、以下の説明において、各元素の含有量の「%」は「質量%」を意味する。
 (A)Ni基耐熱合金用溶接材料の化学組成
 C:0.08~0.12%
 Cは、高温使用時の溶接金属の組織安定性を高めるとともに、長時間使用中に炭化物として析出し、クリープ強度を高めるのに有効な元素であるので、0.08%以上含有させる。しかしながら、Cを過剰に含有させると、炭化物が粗大に析出し、かえってクリープ強度を弱める。そのため、C含有量は0.08~0.12%とする。C含有量は0.09%以上であるのが望ましく、0.11%以下であるのが望ましい。
 Si:0.10%以下
 Siは、脱酸剤として含有されるが、溶接中に溶融池内で酸素と反応して酸化物を生成する。この酸化物は溶接材料表面に酸化物として存在し、その溶融に伴って溶融池に移行した酸化物と併せて溶接スラグとしてビード表面に残存する。この溶接スラグが、後続パスの溶接により溶融されず融合不良の原因となる。そのため、Si含有量は0.10%以下とする必要がある。Si含有量は0.08%以下であるのが望ましい。Si含有量は少なければ少ないほどよいため、下限は特に設けない。しかしながら、過度の低減は、脱酸効果が十分に得られず合金の清浄度が大きくなって清浄性が低下するとともに、溶接材料の製造コストの増大を招く。そのため、Si含有量は、0.005%以上であるのが望ましく、0.01%以上であるのがより望ましい。
 Mn:0.02~1.50%
 Mnは、Siと同様、脱酸剤として含有される。Mnは、クリープ強度の確保にも寄与するので、0.02%以上含有させる。しかしながら、過剰に含有されると脆化を招くため、Mn含有量は1.50%以下とする必要がある。Mn含有量は0.05%以上であるのが望ましく、1.20%以下であるのが望ましい。
 なお、融合不良を防止するためには、溶接材料中のMn含有量を後述するAl含有量に応じて適切に調整することが好ましい。この理由は、次の通りであると考えられる。Mnは、他の合金元素に比べて蒸気圧が高く、溶接中の溶融池表面から蒸発、イオン化し、アークの通電経路を形成し、電流密度を高め、アーク直下の温度が高くなる効果がある。そしてその結果、前パスに残存した溶接スラグをより効率的に溶融する効果を発揮する。特に、Al含有量が多いほど、前パスに残存する溶接スラグが多くなるため、このMnの効果を有効に活用することが好ましい。そのため、Mn含有量は、溶接材料中に含有されるAl量に応じて、下記(i)式を満足するように含有させることが望ましい。
 Mn≧0.2×Al-0.1   ・・・(i)
 但し、式中の各元素記号は、鋼材中に含まれる各元素の含有量(質量%)を表す。
 P:0.008%以下
 Pは、不純物として含まれ、溶接時に凝固割れ感受性を著しく増大させるとともに高温使用中には溶接金属の応力緩和割れ感受性をも高める元素である。そのため、P含有量は0.008%以下とする必要がある。P含有量は0.007%以下であるのが望ましい。P含有量は少なければ少ないほど好ましいため、下限は特に設けないが、過度の低減は、製造コストの増大を招く。そのため、P含有量は0.0005%以上であるのが望ましく、0.001%以上であるのがより望ましい。
 S:0.002%以下
 Sは、Pと同様、不純物として含まれ、凝固割れ感受性および応力緩和割れ性を著しく高める元素である。そのため、S含有量は0.002%以下とする必要がある。S含有量は0.0015%以下であるのが望ましい。S含有量は少なければ少ないほど好ましいため、下限は特に設けないが、過度の低減は、製造コストの増大を招く。そのため、S含有量は0.0002%以上であるのが望ましく、0.0005%以上であるのがより望ましい。
 Ni:56.0%を超えて60.0%以下
 Niは、長時間使用時の溶接金属の組織安定性を確保し、クリープ強度の確保に寄与する元素である。また、Niは、Alを含有する金属間化合物の析出駆動力にも影響を与え、間接的に溶接金属のクリープ強度および応力緩和割れ感受性にも影響を与える元素である。本発明における他の合金元素範囲において、必要なクリープ強度および耐応力緩和割れ性を確保するためには、Ni含有量は56.0%を超えて60.0%以下とする必要がある。Ni含有量は57.0%以上であるのが望ましく、59.0%以下であるのが望ましい。
 Co:8.0~12.0%
 Coは、Niと同様に、長時間使用時の組織安定性を確保し、クリープ強度の確保に寄与する元素である。また、Coは、Alを含有する金属間化合物の析出駆動力にも影響を与え、間接的に溶接金属のクリープ強度および応力緩和割れ感受性にも影響を与える元素である。本発明における他の合金元素範囲において、必須なクリープ強度および耐応力緩和割れ性を確保するためには、Co含有量は8.0~12.0%とする必要がある。Co含有量は9.0%以上であるのが望ましく、11.0%以下であるのが望ましい。
 Cr:18.0~22.0%
 Crは、溶接金属の高温での耐酸化性および耐食性の確保のために必須の元素である。また、Crは、Alを含有する金属間化合物の析出駆動力にも影響を与え、間接的に溶接金属のクリープ強度および応力緩和割れ感受性にも影響を与える元素である。しかし、過剰なCrの含有は、高温での組織安定性を低下させ、クリープ強度の低下を招く。本発明における他の合金元素範囲において、必要な性能を確保するためには、Cr含有量は18.0~22.0%とする必要がある。Cr含有量は19.0%以上であるのが望ましく、21.0%以下であるのが望ましい。
 Mo:6.0~10.0%
 Moは、マトリックスに固溶して溶接金属のクリープ強度の向上に大きく寄与する元素である。その効果を十分に確保するためには、6.0%以上のMoを含有させる必要がある。しかしながら、Moは、Alを含有する金属間化合物の析出駆動力に影響を与え、その含有量が過剰になると、本発明における他の合金元素範囲においては、却って、クリープ強度を低下させるとともに、耐応力緩和割れ性を低下させる。そのため、Mo含有量は10.0%以下とする。Mo含有量は7.0%以上であるのが望ましく、9.0%以下であるのが望ましい。
 Ti:0.01~0.50%
 Tiは、Niと結合し金属間化合物として微細に粒内析出し、溶接金属のクリープ強度の向上に寄与する。その効果を得るためにはTi含有量を0.01%以上とする必要がある。しかしながら、Tiを過剰に含有させると、金属間化合物相の過剰な析出を招き、溶接金属の応力緩和割れ感受性を増大させる。そのため、Ti含有量は0.50%以下とする。Ti含有量は0.05%以上であるのが望ましく、0.40%以下であるのが望ましい。
 Al:0.50~1.00%
 Alは、脱酸剤として含有される。Alは、Niと結合し金属間化合物として微細に粒内析出し、溶接金属のクリープ強度の確保にも有効な元素である。一方で、Alを過剰に含有させると金属間化合物相の過剰な析出を招き、応力緩和割れ感受性を増大させる。加えて、Alは、溶接中に溶融池内で酸素と反応して酸化物を生成する。この酸化物は、溶接材料表面で酸化物として存在し、その溶融に伴い、溶融池に移行した酸化物とともに溶接スラグとしてビード表面に残存し、融合不良の原因となる。本発明における他の合金元素範囲において、必要なクリープ強度および耐応力緩和割れ性を確保するとともに、優れた溶接施工性による融合不良防止を達成するためには、Al含有量は0.50~1.00%とする必要がある。Al含有量は0.60%以上であるのが望ましく、0.90%以下であるのが望ましい。
 N:0.010%以下
 Nは、溶接金属の組織安定性向上に寄与する元素であるが、過剰に含有されると高温での使用中に多量の窒化物を析出させ、溶接金属の延性および靱性の低下を招く。そのため、N含有量は0.010%以下とする必要がある。N含有量は0.008%以下であるのが望ましい。N含有量の下限は特に設ける必要はないが、極端な低下は、溶接材料の製造コストの上昇を招くので、0.0005%以上であるのが望ましい。
 O:0.010%以下
 Oは、不純物として含有され、溶接中に溶融池内でAlおよびSiなどの親和力の強い元素と反応して酸化物を生成する。これら酸化物は、溶接材料表面で酸化物として存在し、その溶融に伴い、溶融池に移行した酸化物とともに溶接スラグとしてビード表面に残存し、融合不良の原因となる。そのため、O含有量は0.010%以下とする必要がある。O含有量は0.008%以下であるのが望ましい。O含有量は少なければ少ないほど良いため下限は特に設けないが、過度の低減は、製造コストの増大を招く。そのため、O含有量は0.0005%以上であるのが望ましく、0.001%以上であるのがより望ましい。
 Nb:0~0.50%
 Nbは、Niと結合し金属間化合物として析出し、または炭素および窒素と結合し微細炭窒化物として析出し、溶接金属のクリープ強度の向上に寄与する。このため、上記の効果を得るためにNbを含有させてもよい。しかしながら、Nbを過剰に含有させると、金属間化合物および炭窒化物の過剰な析出を招き、溶接金属の応力緩和割れ感受性を増大させる。そのため、含有させる場合のNb量は0.50%以下とする。Nb含有量は0.40%以下であるのが望ましい。
 一方、前記したNbの効果を安定して得るためには、Nb含有量は0.01%以上とするのが望ましく、0.05%以上とするのがより望ましい。
 B:0~0.0050%
 Bは、溶接金属において高温使用中の粒界に偏析して強化するとともに粒界炭化物を微細分散させることにより、クリープ強度を向上させるのに有効な元素である。このため、上記の効果を得るためにBを含有させてもよい。しかしながら、多量のBを含有させると、凝固割れ感受性を著しく高める。そのため、含有させる場合のB量は0.0050%以下とする。B含有量は0.0040%以下であるのが望ましい。
 一方、前記したBの効果を安定して得るためには、B含有量は0.0002%以上とするのが望ましく、0.0005%以上とするのがより望ましい。
 Ca:0~0.050%
 Caは、合金の熱間加工性を改善し、溶接材料の製造性を高める。このため、この効果を得るためにCaを含有させてもよい。しかし、Caを過剰に含有させると、溶接中に酸素と結合し、溶接スラグを生成し、融合不良の原因となる。そのため、含有させる場合のCa量は0.050%以下とする。Ca含有量は0.020%以下であるのが望ましい。
 一方、前記したCaの効果を安定して得るためには、Ca含有量は0.0005%以上とするのが望ましく、0.001%以上とするのがより望ましい。
 Mg:0~0.050%
 Mgは、Caと同様、合金の熱間加工性を改善し、溶接材料の製造性を高める。このため、この効果を得るためにMgを含有させてもよい。しかし、Mgを過剰に含有させると、溶接中に酸素と結合し、溶接スラグを生成し、融合不良の原因となる。そのため、含有させる場合のMg量は0.050%以下とする。Mg含有量は0.020%以下であるのが望ましい。
 一方、前記したMgの効果を安定して得るためには、Mg含有量は0.0005%以上とするのが望ましく、0.001%以上とするのがより望ましい
 REM:0~0.20%
 REMは、CaおよびMgと同様、合金の熱間加工性を改善し、溶接材料の製造性を高める。このため、この効果を得るためにREMを含有させてもよい。しかし、REMを過剰に含有させると、溶接中に酸素と結合し、溶接スラグを生成し、融合不良の原因となる。そのため、含有させる場合のREM量は0.20%以下とする。REM含有量は0.10%以下であるのが望ましい。
 一方、前記したREMの効果を安定して得るためには、REM含有量は0.01%以上とするのが望ましく、0.02%以上とするのがより望ましい
 なお、「REM」とは、Sc、Yおよびランタノイドの合計17元素の総称であり、REMの含有量はREMのうちの1種または2種以上の元素の合計含有量を指す。また、REMについては一般的にミッシュメタルに含有される。このため、例えば、ミッシュメタルの形で添加して、REMの量が上記の範囲となるように含有させてもよい。
 本発明のNi基耐熱合金用溶接材料において、その化学組成は、上述の元素と、残部がFeおよび不純物である。ここで「不純物」とは、鋼を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 (B)Ni基耐熱合金用溶接材料の表面の酸化物層厚さ
 溶接材料表面に存在する酸化物は、その溶融に伴い、溶融池に移行し、特に、上記溶接材料表面に存在する酸化物の厚さが30μmを超えると、溶接中に反応して生成した酸化物とともに溶接スラグとしてビード表面に残存することとなる。これら酸化物は高融点であるため、後続パスの溶接により溶融されず融合不良の原因となる。そのため、溶接材料表面の酸化物厚さは30μm以下とする必要がある。なお、溶接材料表面に存在する酸化物層の厚さは薄ければ薄いほど好ましい。
 例えば、溶接材料の製造において、水素等の還元性ガス中で熱処理を行えば、表面の酸化が防止されるので、溶接材料表面の酸化物層厚さを30μm以下に調整することができる。また、溶接材料の製造において、大気中あるいは燃焼ガス中での熱処理を行ったことで、表面に酸化物層(酸化スケール)が形成された場合には、酸洗、研削、研磨等の処理を施して機械的に除去すれば、溶接材料表面の酸化物層厚さを30μm以下に調整することができる。
 以上、本発明に係るNi基耐熱合金用溶接材料について詳述したが、上記のNi基耐熱合金用溶接材料を用いれば、溶接中の優れた溶接施工性が得られる。そして、この溶接材料を用いて、高温使用中の良好な、耐応力緩和割れ性およびクリープ強度を有する溶接金属を得ることができる。さらに、この溶接材料を用いて、上記特性を有する溶接金属と高温強度に優れたNi基耐熱合金の母材とからなる溶接継手を得ることができる。
 (C)Ni基耐熱合金の母材の化学組成
 上記のNi基耐熱合金用溶接材料を用いて溶接継手を得る際に、Ni:41.0~60.0%、Cr:18.0~25.0%、MoおよびWの1種以上:合計で6.0~10.0%を含有する、高温強度に優れたNi基耐熱合金を母材として用いると、母材においても高温域において優れた延性およびクリープ強度を有することになるから好ましい。
 母材として高温強度に優れたNi基耐熱合金を用いる場合、その母材は、上記の化学組成を有するものであることが好ましい理由について以下に説明する。
 Ni:41.0~60.0%
 Niは、高温での組織を安定にし、クリープ強度確保に有効な元素である。母材は、溶接金属において課題となる融合不良について考慮する必要がないため、その効果を得るために、母材はNiを41.0%以上含有することが望ましい。しかしながら、Niは高価な元素であるため多量に使用するとコストの増大を招く。そのためNi含有量の上限は60.0%とすることが望ましい。Ni含有量は42.0%以上であるのがより望ましく、59.0%以下であるのがより望ましい。
 Cr:18.0~25.0%
 Crは、溶接金属と同様に母材の高温での耐酸化性および耐食性の確保のために有効な元素である。その効果を十分得るために、母材はCrを18.0%以上含有することが望ましい。母材は、溶接金属において課題となる融合不良について考慮する必要がないが、Crを過剰に含有させると高温での組織の安定性を劣化させ、クリープ強度の低下を招く。このため、Cr含有量は25.0%以下とすることが望ましい。Cr含有量は19.0%以上であるのがより望ましく、24.0%以下であるのがより望ましい。
 MoおよびWの1種以上:合計で6.0~10.0%
 MoおよびWは、いずれもマトリックスに固溶して高温でのクリープ強度の向上に大きく寄与する元素である。母材は溶接金属において課題となる融合不良について考慮する必要がないので、上記の効果を得るために母材においてMoおよびWのいずれの元素も活用することができ、MoおよびWの1種以上を合計で6.0%以上含有させればよい。しかしながら、MoとWはいずれも高価な元素であるため多量に使用するとコストの増大を招く。そのためMoおよびWの1種以上の合計含有量は10.0%以下とすることが望ましい。母材におけるMoおよびWの1種以上の合計含有量は6.5%以上であるのがより望ましく、9.5%以下であるのがより望ましい。
 なお、MoおよびWは複合して含有させる必要はない。Moを単独で含有させる場合には、Moの含有量が6.0~10.0%であればよく、Wを単独で含有させる場合には、Wの含有量が6.0~10.0%であればよい。
 高温強度に優れたNi基耐熱合金の母材は、上記範囲のNiおよびCr、ならびにMoおよびWの1種以上に加えて、以下に述べる量の元素を含み、残部がFeおよび不純物からなるものであることがより好ましい。
 C:0.04~0.12%
 Cは、母材の組織安定性を高めるとともに、炭化物として析出し、クリープ強度の向上に寄与する元素である。母材は凝固ままで使用される溶接金属と異なり、熱処理によって均質化が図られ、その効果がより得られやすい。このため、母材は、Cを含有することが好ましく、その量は0.04%以上であればよい。しかし、Cを過剰に含有する場合には、高温使用中に粗大な炭化物を生成し、かえってクリープ強度の低下を招く。そのため、母材がCを含有する場合、その量は0.12%以下とすることが望ましい。C含有量は0.06%以上であるのがより望ましく、0.10%以下であるのがより望ましい。
 Si:1.00%以下
 Siは、脱酸作用を有するが、Si含有量が過剰になると靱性を低下させる。しかしながら、母材は溶接金属において課題となる融合不良について考慮する必要がないため、母材がSiを含有する場合、その量は1.00%以下とするのが望ましく、0.80%以下とするのがより望ましい。なお、Si含有量の下限は特に設けないが、Si含有量の過度の低減は、脱酸効果が十分に得られず合金の清浄度が大きくなって清浄性が低下するとともに、製造コストの増大を招く。そのため、Si含有量は0.01%以上であるのが望ましく、0.02%以上であるのがより望ましい。
 Mn:1.50%以下
 Mnは、Siと同様、脱酸作用を有するとともに、組織安定性をも高め、クリープ強度の確保にも少なからず寄与する。このため、母材は、Mnを含有することが好ましい。しかしながら、Mnを過剰に含有させると脆化を招く。したがって、母材がMnを含有する場合、その量は1.50%以下とするのが望ましく、1.20%以下とするのがより望ましい。Mn含有量の下限は特に設けないが、0.01%以上であるのが望ましく、0.02%以上であるのがより望ましい。
 P:0.03%以下
 Pは、不純物として含まれ、Pが過剰に含まれるとクリープ延性の低下を招くとともに、溶接熱影響部の液化割れ感受性および応力緩和割れ感受性を高める。そのため、母材におけるP含有量は0.03%以下とすることが望ましく、0.015%以下とするのがより望ましい。P含有量の下限は特に設けないが、極度の低減は合金製造コストの著しい増大を招くため、0.001%以上であるのが望ましく、0.002%以上であるのがより望ましい。
 S:0.01%以下
 Sは、Pと同様、不純物として含まれ、過剰に含まれる場合にはクリープ延性の低下を招くとともに、溶接熱影響部の液化割れ感受性および応力緩和割れ感受性を高める。そのため、母材におけるS含有量は0.01%以下とするのが望ましく、0.005%以下とするのがより望ましい。S含有量の下限は特に設けないが、極度の低減は合金製造コストの著しい増大を招くため、0.0002%以上であるのが望ましく、0.0005%以上であるのがより望ましい。
 Co:15.0%以下
 Coは、母材においても、高温での組織安定性を高めクリープ強度の確保に寄与する。このため、母材は、Coを含有することが好ましい。しかしながら、極めて高価な元素であるため、母材がCoを含有する場合、その量は15.0%以下とするのが望ましく、13.0%以下とするのがより望ましい。なお、Co含有量は0.01%以上であるのが望ましく、0.03%以上であるのがより望ましい。
 Ti:0.01~0.50%
 Tiは、母材においても、微細な金属間化合物および炭窒化物として粒内に析出し、高温でのクリープ強度に寄与する元素である。このため、母材は、Tiを含有することが好ましく、その量は0.01%以上であればよい。しかしながら、Tiを過剰に含有すると多量に金属間化合物および炭窒化物を生成し、靱性の低下を招く。そのため、母材がTiを含有する場合、0.50%以下とするのが望ましい。Ti含有量は0.05%以上であるのがより望ましく、0.40%以下であるのがより望ましい。
 Nb:0.50%以下
 Nbは、母材においても、Niと結合し金属間化合物として析出し、または炭素および窒素と結合し微細炭窒化物として析出し、高温でのクリープ強度の向上に寄与する。このため、母材は、Nbを含有することが好ましい。しかしながら、Nbを過剰に含有すると、金属間化合物および炭窒化物の過剰な析出を招き、靱性の低下を招く。そのため、母材がNbを含有する場合、その量は0.50%以下とするのが望ましく、0.40%以下とするのがより望ましい。なお、Nb含有量は0.01%以上であるのが望ましく、0.05%以上であるのがより望ましい。
 N:0.010%以下
 Nは、組織を安定にするのに有効な元素である。このため、母材は、Nを含有することが好ましい。しかしながら、N含有量が過剰な場合、使用中に炭窒化物を多量に析出し、延性および靱性の低下を招く。そのため、母材がNを含有する場合、その量は0.010%以下とするのが望ましく、0.008%以下とするのがより望ましい。なお、N含有量の下限は特に設ける必要はないが、極端な低減は製造コストの上昇を招くため、0.0005%以上であるのが望ましい。
 B:0.0050%以下
 Bは、母材においても、高温での使用中の粒界に偏析して強化するとともに粒界炭化物を微細分散させることにより、クリープ強度を向上させるのに有効な元素である。このため、母材は、Bを含有することが好ましい。しかしながら、多量のBを含有させると、溶接熱影響部の液化割れ感受性を高める。このため、母材がBを含有する場合、その量は0.0050%以下であるのが望ましく、0.0040%であるのがより望ましい。なお、B含有量は0.0002%以上であるのが望ましく、0.0005%以上であるのがより望ましい。
 Al:1.50%以下
 Alは、脱酸剤として含有され、Niと結合し金属間化合物として微細に粒内析出し、クリープ強度を高めるのに有効な元素である。母材は、溶接金属において課題となる融合不良について考慮する必要がないうえに、凝固ままで使用される溶接金属とは異なり、熱処理により均質化が図られ、クリープ強度が得られやすい。このため、母材は、Alを含有することが好ましい。しかしながら、多量のAlを含有させると、加工性を損ない、製造性の低下を招く。このため、母材がAlを含有する場合、1.50%以下とするのが望ましく、1.30%以下とするのがより望ましい。なお、Al含有量は0.001%以上であるのが望ましく、0.005%以上であるのがより望ましい。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1に示す化学組成を有する合金XおよびYを実験室溶解して鋳込んだインゴットから、熱間鍛造、熱間圧延、熱処理および機械加工により、板厚12mm、幅50mm、長さ100mmの合金板を溶接母材用として作製した。
 さらに、表2に示す化学組成を有する合金A~Kを実験室溶解して鋳込んだインゴットから、熱間鍛造、熱間圧延および熱処理により、外径1.2mmの溶接材料(溶接ワイヤ)を作製した。なお、溶接材料の作製に当たっては、製造時の熱処理の雰囲気調整により溶接材料表面の酸化物層(酸化スケール)の厚さを変更した。そして、溶接材料を長さ方向に垂直に切断した断面(以下、「横断面」という。)から酸化物層の平均厚さを測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記の溶接母材用合金板の長手方向に、角度30°、ルート厚さ1mmのV開先を加工した後、厚さ25mm、幅200mmで長さ200mmの「SM400B」のJIS G 3106(2008)に規定の市販の鋼板上に、被覆アーク溶接棒としてJIS Z 3224(2010)に規定の「E Ni 6182」を用いて、四周を拘束溶接した。
 その後、上述したA~Kの溶接材料を用いて、入熱6~12kJ/cmでTIG溶接により開先内に多層溶接を行って、各溶接材料について2体ずつ溶接継手を作製した。
 溶接継手は、各溶接材料について、1体は溶接ままで、残りの1体は700℃×500時間の時効熱処理を行ってから、次の試験に供した。
 先ず、溶接ままおよび時効熱処理を施した溶接継手から横断面をそれぞれ5断面採取し、鏡面研磨、腐食した後、光学顕微鏡により検鏡し、溶接金属内の欠陥有無を調査し、採取した5断面全てにおいて融合不良および割れが全くないものを「良」、5断面のうち1断面のみで0.2mm以下の大きさの融合不良および割れの少なくとも一方が1個認められたものを「可」とし、これらを「合格」と判定した。一方、5断面のうち2断面以上に融合不良もしくは割れが認められた場合、1断面のみであっても融合不良もしくは割れの大きさが0.2mmを超える場合、または、融合不良もしくは割れがそれぞれ2個以上あった場合は「不合格」とした。
 次いで、検鏡の結果、「合格」と判定された溶接ままの溶接継手から、溶接金属が平行部中央となるように丸棒クリープ破断試験片を採取し、母材用合金板の目標破断時間が1000時間となる700℃、196MPaの条件でクリープ破断試験を行い、その破断時間が、上記母材合金板の目標破断時間(1000時間)を満足するものを合格とした。
 表3に、溶接材料の表面の酸化物層厚さと上記の試験結果をまとめて示す。なお、表3中の「断面観察結果」欄における「○○」および「○」は、それぞれ上述の「良」および「可」と判定された「合格」の溶接継手であることを示す。一方、「×」は「不合格」であったことを示す。また、「クリープ破断試験結果」欄における「○」は溶接継手クリープ破断試験結果が母材合金板の目標破断時間(1000時間)を満足する「合格」であったことを、「-」は溶接ままの溶接継手の断面観察において融合不良が観察されたため、クリープ破断試験を実施しなかったことを示す。
Figure JPOXMLDOC01-appb-T000003
 表3から、化学組成および表面の酸化物層厚さが本発明で規定する範囲を満足するNi基耐熱合金用溶接材料を用いた溶接継手のみ、溶接ビード上に残存する溶接スラグを低減しうるため、後続パスが先行ビードを十分に溶融させることができ、融合不良および時効後の応力緩和割れのない健全な溶接継手であるとともに、クリープ破断試験結果は合格であって、高いクリープ強度をも具備することが分かる。特に、溶接材料中のMn量がAl量との関係において上記(i)式を満足する場合、ならびにNi、Cr、MoおよびCoの含有量がより望ましい範囲を満足する場合、微小な融合不良および時効後の応力緩和割れが全く発生せず、優れた溶接性を具備することが分かる。
 これに対して、溶接継手No.4、8および11は、溶接材料用合金AおよびBの化学組成は本発明で規定する範囲を満足するものの、溶接材料表面の酸化物層の厚さが30μmを超えたため、溶接材料表面の酸化物が溶接材料溶融に伴い、溶融池表面に移行し、多量の溶接スラグとして溶接ビード上に残存して、後続パスが先行ビードを十分に溶融させることができず、融合不良が発生した。
 溶接継手No.14は、溶接材料用合金EのAl含有量が1.44%と本発明で規定する上限を超えたため、溶接中に溶融池内で酸素(O)と反応して酸化物を生成し、多量の溶接スラグとして溶接ビード上に残存し、後続パスが先行ビードを十分に溶融させることができず、融合不良が発生した。さらに、時効熱処理時に多量の金属間化合物を生成したため、応力緩和割れも発生した。
 溶接継手No.15は、溶接材料用合金FのSiおよびOの含有量が本発明で規定する範囲を超えたため、溶接中に溶融池内で酸化物を生成し、多量の溶接スラグとして溶接ビード上に残存し、後続パスが先行ビードを十分に溶融させることができず、融合不良が発生した。
 溶接継手No.16は、溶接材料用合金GのNi、CoおよびMoの含有量が本発明で規定する範囲から外れるため、多量のAlの金属間化合物の早期析出を招き、このため、クリープ破断試験結果は合格であったものの、時効熱処理時に応力緩和割れが発生した。
 本発明によれば、優れた溶接施工性を有するNi基耐熱合金用溶接材料を提供することができ、また、それを用いてなる高温において優れたクリープ強度と使用中の耐応力緩和割れ性とを有する溶接金属を提供することができる。さらに、この溶接材料を用いてなる溶接金属と高温における優れたクリープ強度を有する母材とからなる溶接継手を提供することもできる。
 

 

Claims (8)

  1.  化学組成が、質量%で、
     C:0.08~0.12%、
     Si:0.10%以下、
     Mn:0.02~1.50%、
     P:0.008%以下、
     S:0.002%以下、
     Ni:56.0%を超えて60.0%以下、
     Co:8.0~12.0%、
     Cr:18.0~22.0%、
     Mo:6.0~10.0%、
     Ti:0.01~0.50%、
     Al:0.50~1.00%、
     N:0.010%以下、
     O:0.010%以下、
     Nb:0~0.50%、
     B:0~0.0050%、
     Ca:0~0.050%、
     Mg:0~0.050%、
     REM:0~0.20%、
     残部:Feおよび不純物
    である溶接材料であって、
     前記溶接材料の表面に形成される酸化物層の厚さが30μm以下である、Ni基耐熱合金用溶接材料。
  2.  前記化学組成が、質量%で、
     Co:9.0~11.0%、
     Cr:19.0~21.0%、および
     Mo:7.0~9.0%、
    から選択される1種以上を含有する、請求項1に記載のNi基耐熱合金用溶接材料。
  3.  前記化学組成が、質量%で、
     Nb:0.01~0.50%、
     B:0.0002~0.0050%、
     Ca:0.0005~0.050%、
     Mg:0.0005~0.050%、および
     REM:0.01~0.20%、
    から選択される1種以上を含有する、請求項1または請求項2に記載のNi基耐熱合金用溶接材料。
  4.  前記化学組成が下記(i)式を満足する、請求項1から請求項3までのいずれかに記載のNi基耐熱合金用溶接材料。
     Mn≧0.2×Al-0.1   ・・・(i)
     但し、式中の各元素記号は、鋼材中に含まれる各元素の含有量(質量%)を表す。
  5.  請求項1から請求項4までのいずれかに記載のNi基耐熱合金用溶接材料を用いてなる、溶接金属。
  6.  請求項5に記載の溶接金属と、Ni基耐熱合金の母材とからなる、溶接継手。
  7.  前記母材の化学組成が、質量%で、
     Ni:41.0~60.0%、
     Cr:18.0~25.0%、ならびに
     MoおよびWの1種以上:合計で6.0~10.0%
    を含有する、請求項6に記載の溶接継手。
  8.  前記母材の化学組成が、質量%で、
     C:0.04~0.12%、
     Si:1.00%以下、
     Mn:1.50%以下、
     P:0.03%以下、
     S:0.01%以下、
     Ni:41.0~60.0%、
     Co:15.0%以下、
     Cr:18.0~25.0%、
     MoおよびWの1種以上:合計で6.0~10.0%、
     Ti:0.01~0.50%、
     Nb:0.50%以下、
     N:0.010%以下、
     B:0.0050%以下、
     Al:1.50%以下、
     残部:Feおよび不純物
    である、請求項7に記載の溶接継手。

     
PCT/JP2015/051595 2014-01-27 2015-01-22 Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手 WO2015111641A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15741016.8A EP3100818B1 (en) 2014-01-27 2015-01-22 Welding material for ni-based heat-resistant alloy, and welded metal and welded joint each using same
ES15741016T ES2803574T3 (es) 2014-01-27 2015-01-22 Material de soldadura para aleación a base de níquel resistente al calor y metal soldado y unión soldada formada usando los mismos
JP2015559098A JP6197885B2 (ja) 2014-01-27 2015-01-22 Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
CN201580006118.8A CN105939814B (zh) 2014-01-27 2015-01-22 Ni基耐热合金用焊接材料以及使用其而成的焊接金属及焊接接头
KR1020167023616A KR101897381B1 (ko) 2014-01-27 2015-01-22 Ni기 내열 합금용 용접 재료 및 그것을 이용하여 이루어지는 용접 금속 및 용접 조인트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-012266 2014-01-27
JP2014012266 2014-01-27

Publications (1)

Publication Number Publication Date
WO2015111641A1 true WO2015111641A1 (ja) 2015-07-30

Family

ID=53681442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051595 WO2015111641A1 (ja) 2014-01-27 2015-01-22 Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手

Country Status (6)

Country Link
EP (1) EP3100818B1 (ja)
JP (1) JP6197885B2 (ja)
KR (1) KR101897381B1 (ja)
CN (1) CN105939814B (ja)
ES (1) ES2803574T3 (ja)
WO (1) WO2015111641A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017221965A (ja) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Ni基耐熱合金溶接金属
JP2020185580A (ja) * 2019-05-13 2020-11-19 株式会社東芝 溶接用Ni基合金および溶加材
CN114505621A (zh) * 2022-04-19 2022-05-17 西安热工研究院有限公司 Fe-Ni-Cr焊丝及其制备方法和焊接工艺

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107322180A (zh) * 2017-07-12 2017-11-07 江苏新航合金科技有限公司 一种生物质锅炉防腐堆焊用镍基丝材及其制备方法
JP2021183719A (ja) * 2020-05-22 2021-12-02 日本製鉄株式会社 Ni基合金管および溶接継手
CN112025137A (zh) * 2020-07-21 2020-12-04 江苏金桥焊材科技股份有限公司 一种高温耐蚀镍基焊丝及其冶炼和制备方法
CN112809242B (zh) * 2020-12-31 2022-05-13 钢铁研究总院 固溶强化型耐热合金c-hra-2焊接用焊条
CN112935623B (zh) * 2021-02-05 2023-07-21 天津市金桥焊材集团股份有限公司 一种新型Ni-Cr-Co-Mo型高温镍基焊丝
US20230011011A1 (en) 2021-07-09 2023-01-12 Sidergas Spa Wire container
US20230322519A1 (en) 2022-04-12 2023-10-12 Sidergas Spa Wire container

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765956A (en) 1986-08-18 1988-08-23 Inco Alloys International, Inc. Nickel-chromium alloy of improved fatigue strength
US4877461A (en) 1988-09-09 1989-10-31 Inco Alloys International, Inc. Nickel-base alloy
US5372662A (en) 1992-01-16 1994-12-13 Inco Alloys International, Inc. Nickel-base alloy with superior stress rupture strength and grain size control
JPH09157779A (ja) 1995-10-05 1997-06-17 Hitachi Metals Ltd 低熱膨張Ni基超耐熱合金およびその製造方法
JP2001073053A (ja) 1999-06-30 2001-03-21 Sumitomo Metal Ind Ltd Ni基耐熱合金
WO2007119847A1 (ja) 2006-04-14 2007-10-25 Mitsubishi Materials Corporation Ni基耐熱合金溶接用ワイヤー
WO2010013565A1 (ja) 2008-07-30 2010-02-04 三菱重工業株式会社 Ni基合金用溶接材料
JP2012000616A (ja) 2010-06-14 2012-01-05 Sumitomo Metal Ind Ltd Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP2013095949A (ja) * 2011-10-31 2013-05-20 Nippon Steel & Sumitomo Metal Corp オーステナイト系耐熱合金

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322488A (ja) * 1993-05-13 1994-11-22 Nippon Steel Corp 溶接性に優れ、耐高温腐食特性が良好な高強度オーステナイト系耐熱鋼
CA2396578C (en) 2000-11-16 2005-07-12 Sumitomo Metal Industries, Ltd. Ni-base heat-resistant alloy and weld joint thereof
EP2182084A1 (de) * 2008-11-04 2010-05-05 Siemens Aktiengesellschaft Schweisszusatzwerkstoff, Verwendung des Schweisszusatzwserkstoffes und Bauteil
JP5389000B2 (ja) * 2010-12-02 2014-01-15 株式会社神戸製鋼所 Ni基合金溶接金属、Ni基合金被覆アーク溶接棒
JP5170297B1 (ja) 2011-11-02 2013-03-27 新日鐵住金株式会社 Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
CN102581513B (zh) * 2012-03-06 2015-01-14 中国科学院金属研究所 一种用于核电站核岛主设备的镍基焊丝
JP5977998B2 (ja) * 2012-05-15 2016-08-24 株式会社神戸製鋼所 Ni基合金溶接金属、帯状電極及び溶接方法
CN102922168B (zh) * 2012-10-30 2015-05-27 四川大西洋焊接材料股份有限公司 镍铬铁合金钢焊接用镍基焊条

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765956A (en) 1986-08-18 1988-08-23 Inco Alloys International, Inc. Nickel-chromium alloy of improved fatigue strength
US4877461A (en) 1988-09-09 1989-10-31 Inco Alloys International, Inc. Nickel-base alloy
US5372662A (en) 1992-01-16 1994-12-13 Inco Alloys International, Inc. Nickel-base alloy with superior stress rupture strength and grain size control
JPH09157779A (ja) 1995-10-05 1997-06-17 Hitachi Metals Ltd 低熱膨張Ni基超耐熱合金およびその製造方法
JP2001073053A (ja) 1999-06-30 2001-03-21 Sumitomo Metal Ind Ltd Ni基耐熱合金
WO2007119847A1 (ja) 2006-04-14 2007-10-25 Mitsubishi Materials Corporation Ni基耐熱合金溶接用ワイヤー
WO2010013565A1 (ja) 2008-07-30 2010-02-04 三菱重工業株式会社 Ni基合金用溶接材料
JP2012000616A (ja) 2010-06-14 2012-01-05 Sumitomo Metal Ind Ltd Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP2013095949A (ja) * 2011-10-31 2013-05-20 Nippon Steel & Sumitomo Metal Corp オーステナイト系耐熱合金

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017221965A (ja) * 2016-06-16 2017-12-21 新日鐵住金株式会社 Ni基耐熱合金溶接金属
JP2020185580A (ja) * 2019-05-13 2020-11-19 株式会社東芝 溶接用Ni基合金および溶加材
JP7391534B2 (ja) 2019-05-13 2023-12-05 株式会社東芝 溶接用Ni基合金および溶加材
CN114505621A (zh) * 2022-04-19 2022-05-17 西安热工研究院有限公司 Fe-Ni-Cr焊丝及其制备方法和焊接工艺
CN114505621B (zh) * 2022-04-19 2022-07-08 西安热工研究院有限公司 Fe-Ni-Cr焊丝及其制备方法和焊接工艺

Also Published As

Publication number Publication date
KR20160110515A (ko) 2016-09-21
JP6197885B2 (ja) 2017-09-20
CN105939814B (zh) 2018-07-31
JPWO2015111641A1 (ja) 2017-03-23
KR101897381B1 (ko) 2018-09-10
EP3100818A1 (en) 2016-12-07
EP3100818A4 (en) 2017-10-11
EP3100818B1 (en) 2020-05-27
ES2803574T3 (es) 2021-01-28
CN105939814A (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
JP6197885B2 (ja) Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
JP4310664B1 (ja) 溶接材料および溶接継手構造体
JP5170297B1 (ja) Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
CN111183239B (zh) 奥氏体系不锈钢焊接金属以及焊接结构物
CN111344427B (zh) 奥氏体系耐热钢焊接金属、焊接接头、奥氏体系耐热钢用焊接材料以及焊接接头的制造方法
WO2011158706A1 (ja) Ni基耐熱合金用溶接材料ならびにそれを用いてなる溶接金属および溶接継手
WO2017002524A1 (ja) オーステナイト系耐熱合金及び溶接構造物
WO2017002523A1 (ja) オーステナイト系耐熱合金及び溶接構造物
JP2017202494A (ja) オーステナイト系耐熱鋼溶接金属およびそれを有する溶接継手
JP6965938B2 (ja) オーステナイト系ステンレス鋼溶接金属および溶接構造物
WO2019070002A1 (ja) オーステナイト系耐熱鋼用溶接材料、溶接金属および溶接構造物ならびに溶接金属および溶接構造物の製造方法
JP6870748B2 (ja) オーステナイト系ステンレス鋼
JP6638552B2 (ja) オーステナイト系耐熱鋼用溶接材料
JP7368722B2 (ja) オーステナイト系耐熱鋼溶接金属、溶接継手、およびオーステナイト系耐熱鋼用溶接材料
WO2018066573A1 (ja) オーステナイト系耐熱合金およびそれを用いた溶接継手
JP6638551B2 (ja) オーステナイト系耐熱鋼溶接金属およびそれを有する溶接継手
JP2021021130A (ja) オーステナイト系耐熱合金溶接継手
JP2021011610A (ja) オーステナイト系耐熱合金溶接継手
JP7183808B2 (ja) オーステナイト系耐熱鋼用溶接材料、溶接金属、溶接構造物、および溶接構造物の製造方法
JP2021025095A (ja) オーステナイト系耐熱合金溶接継手
JP2021025096A (ja) オーステナイト系耐熱合金溶接継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15741016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559098

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167023616

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015741016

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015741016

Country of ref document: EP