[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015025750A1 - Electric power tool - Google Patents

Electric power tool Download PDF

Info

Publication number
WO2015025750A1
WO2015025750A1 PCT/JP2014/071132 JP2014071132W WO2015025750A1 WO 2015025750 A1 WO2015025750 A1 WO 2015025750A1 JP 2014071132 W JP2014071132 W JP 2014071132W WO 2015025750 A1 WO2015025750 A1 WO 2015025750A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
brushless motor
duty ratio
predetermined
rotation speed
Prior art date
Application number
PCT/JP2014/071132
Other languages
French (fr)
Inventor
Kenichirou Yoshida
Akira Onose
Shinji Kuragano
Original Assignee
Hitachi Koki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co., Ltd. filed Critical Hitachi Koki Co., Ltd.
Priority to EP14755173.3A priority Critical patent/EP3036071B1/en
Priority to US14/912,838 priority patent/US10099303B2/en
Priority to CN201480046017.9A priority patent/CN105473287B/en
Priority to EP22199644.0A priority patent/EP4137275A1/en
Publication of WO2015025750A1 publication Critical patent/WO2015025750A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D59/00Accessories specially designed for sawing machines or sawing devices
    • B23D59/001Measuring or control devices, e.g. for automatic control of work feed pressure on band saw blade
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D47/00Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts
    • B23D47/12Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts of drives for circular saw blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools

Definitions

  • the present invention relates to an electric power tool such as a circular saw.
  • the present invention has been made in view of the above-described circumstances, and an aspect of the present invention provides an electric power tool which can control a brushless motor at multiple rotation speeds and is excellent in work efficiency.
  • an electric power tool comprising: a brushless motor; a control unit configured to control power supply to the brushless motor; a rotary tool configured to be rotated by the brushless motor; a rotation speed detecting unit configured to detect a rotation speed of the brushless motor; a main switch configured to transmit, to the control unit, an ON/OFF signal for switching between driving and stopping of the brushless motor; and a mode switching unit configured to transmit, to the control unit, a mode switching signal for switching between multiple modes of rotation control of the brushless motor, wherein the control unit is configured to perform the rotation control of the brushless motor in any one of the multiple modes including at least a high-speed mode and a low- speed mode.
  • control unit in the low-speed mode, may be configured to control the brushless motor to rotate at a predetermined first rotation speed in a predetermined load range, by duty ratio control.
  • control unit in the high-speed mode, may be configured to control the brushless motor to rotate at a predetermined second rotation speed higher than the predetermined first rotation speed in a predetermined load range, by duty ratio control.
  • the above electric power tool may further comprise a battery pack which is removably attached and is configured to supply electric power to the brushless motor and the control unit.
  • control unit in the low-speed mode, when a load equal to or larger than a first predetermined value is detected, the control unit may be configured to perform switching to predetermined duty ratio control which is independent from the rotation speed of the brushless motor.
  • detection of the load equal to or larger than the first predetermined value may be performed based on predetermined one or combination of a current, a voltage, and a duty ratio.
  • the predetermined duty ratio control may include control for gradually increasing a duty ratio to a predetermined duty ratio and then driving the brushless motor with the predetermined duty ratio.
  • the control unit may be configured to gradually decrease the duty ratio and then control the brushless motor to rotate at a predetermined first rotation speed.
  • the rotary tool may be a saw blade connected to an output shaft of the brushless motor through a deceleration mechanism, and in a predetermined load range, the control unit may be configured to control the brushless motor in the low-speed mode such that a rotation speed of the saw blade becomes constant in a range from 2,500 rpm to 3,500 rpm, and is configured to control the brushless motor in the high-speed mode such that the rotation speed of the saw blade becomes constant in a range from 4,500 rpm to 5,500 rpm.
  • control unit may be configured to perform soft start control for gradually supplying a current at starting of the brushless motor.
  • an electric power tool comprising: a brushless motor; a control unit configured to control power supply to the brushless motor; a rotary tool configured to be rotated by the brushless motor; a rotation speed detecting unit configured to detect a rotation speed of the brushless motor; and a main switch configured to transmit, to the control unit, an ON/OFF signal for switching between driving and stopping of the brushless motor, wherein in a state where constant-speed control is performed on the brushless motor with a duty ratio smaller than 100%, when a load equal to or larger than a first predetermined value is detected, the control unit is configured to perform switching from the constant-speed control to predetermined duty ratio control which is dependent from the rotation speed of the brushless motor, and wherein the predetermined duty ratio control is control for gradually increasing the duty ratio to a predetermined duty ratio and then driving the brushless motor with the predetermined duty ratio.
  • the load at which the constant-speed control is switched to the predetermined duty ratio control may be set to such a threshold value that if the load exceeds the threshold value, an efficiency of the predetermined duty ratio control becomes higher than an efficiency of the constant-speed control, or may be set to a value in the vicinity of the threshold value.
  • the control unit may be configured to gradually decrease the duty ratio such that the rotation speed of the brushless motor becomes a predetermined rotation speed, and then perform the constant-speed control on the brushless motor at the predetermined rotation speed.
  • the second predetermined value at which the duty ratio may be decreased from the predetermined duty ratio control to the constant-speed control is smaller than the first predetermined value at which the constant-speed control is changed to the predetermined duty ratio control.
  • FIG. 1 is a plan view showing a cordless circular saw according to an embodiment of the present invention
  • FIG. 2 is a side view of the cordless circular saw
  • FIG. 3 is a rear view of the cordless circular saw
  • FIG. 4 is a front view of the cordless circular saw
  • FIG. 5 is a first plan view of the cordless circular saw where a portion thereof is shown as a cross-section;
  • FIG. 6 is a second plan view of the cordless circular saw where another portion is shown as a cross-section;
  • FIG. 7 is a cross-sectional view taken along a line A- A of FIG. 1;
  • FIG. 8 is a view showing the functional blocks of the cordless circular saw shown in FIG. 1 ;
  • FIG. 9 is a characteristic diagram showing the rotating speed and efficiency of a circular saw blade 8 with respect to load current when the cordless circular saw of the embodiment is in a normal mode and in a first economy mode;
  • FIG. 10 is a characteristic diagram showing the rotating speed and efficiency of the circular saw blade 8 with respect to load current when the cordless circular saw of the embodiment is in a second economy mode;
  • FIG. 11 is an explanatory view showing duty ratio control according to variation in load current when the cordless circular saw of the embodiment is in the second economy mode;
  • FIG. 12 is a flow chart showing a control flow when the cordless circular saw of the embodiment is in the second economy mode
  • FIG. 13 is an explanatory view showing time change in the rotation speed of the circular saw blade 8 and time change in supply current for a brushless motor 9 during soft start of the brushless motor 9 of the embodiment;
  • FIG. 14 is a characteristic diagram showing the relation between rotation speed and load current in each mode in an embodiment in which not only duty ratio control but also advance-angle control are performed;
  • FIG. 15 is a side view showing a cordless circular saw according to another embodiment of the present invention, wherein a mode change switch 16 is provided in the vicinity of a main trigger switch 18 of a handle portion 4;
  • FIG. 16 is a perspective view showing a grinder according to another embodiment of the present invention.
  • FIG. 17 is a perspective view showing an electric planer according to another embodiment of the present invention.
  • FIGS. 1 to 4 are a plan view, a side view, a rear view, and a front view showing a cordless circular saw according to an embodiment of the present invention, respectively.
  • FIG. 5 is a first plan view of the cordless circular saw where a portion thereof is shown as a cross- section.
  • FIG. 6 is a second plan view of the cordless circular saw where another portion thereof is shown as a cross-section.
  • FIG 7 is a cross-sectional view taken along a line A- A of FIG. 1.
  • the cordless circular saw of the present embodiment includes a base 1 and a main body 2.
  • the base 1 is a plate material made of a metal such as aluminum substantially in a rectangular shape.
  • the longitudinal direction of the base 1 coincides with a cutting direction.
  • the bottom of the base member 101 is a surface to slide on a workpiece.
  • the main body 2 is joined with the base 1 at two positions in a front-rear direction such that the main body can rotate and tilt leftward or rightward with respect to the base 1.
  • the main body 2 includes a motor housing 3, a handle portion 4, a gear cover 5, a saw cover 6, a protective cover 7, and a circular saw blade 8 (a rotary tool).
  • the motor housing 3 is made of, for example, a resin, and accommodates a brushless motor 9 (FIGS.
  • the brushless motor 9 rotates the circular saw blade 8.
  • the handle portion 4 is made of the same material as that of the motor housing 3, and extends in the front-rear direction on the motor housing 3.
  • the handle portion 4 includes a main trigger switch 18 (a main switch) as an operation unit for allowing a user to perform switching between driving and stopping of the brushless motor 9. As shown in FIGS.
  • the handle portion 4 is configured by a left component provided integrally with the motor housing 3, and a right component interposed between the motor housing 3 and the gear cover 5, and the left component and the right component are combined to configure a battery pack attaching portion 4a (to be described below), and a control circuit board accommodating portion 4b (to be described below) is provided at the right component of the handle portion 4 positioned on a side of the circular saw blade 8.
  • the boundary between the left component and the right component of the handle portion 4 is a line shown at the center of the handle portion 4 in FIG. 1 , FIG. 3, FIG. 4, and so on.
  • the battery pack attaching portion 4a (a battery attaching portion) and the control circuit board accommodating portion 4b are integrally provided.
  • a battery pack 20 (a rechargeable battery) is slid into the battery pack attaching portion 4a from the rear side, thereby being removably attached.
  • a mode change switch 16 for example, a tact switch
  • an LED 29 to serve as a display unit for displaying a mode. The user can select, for example, any one of a normal mode and an economy mode by the mode change switch 16.
  • the mode change switch 16 and the LED 29 are provided on the same board, and when the economy mode is set by operating the mode change switch 16, the LED 29 is turned on. Since the mode change switch 16 is provided on the lower side of the handle portion 4, mode switching is prevented from being unexpectedly performed due to a cause such as a collision of the mode change switch 16 with something.
  • the battery pack 20 supplies driving power to the brushless motor 9. As shown in FIG. 1 , the left surface of the battery pack 20 attached to the battery pack attaching portion 4a, and the left surface of the motor housing 3 exist substantially on the same plane. That is, the distance of the left surface of the motor housing 3 from the circular saw blade 8, and the distance of the left surface of the battery pack 20 from the circular saw blade 8 are substantially the same.
  • the control circuit board accommodating portion 4b is provided on the right side of the battery pack 20. In the control circuit board accommodating portion 4b, a control circuit board 21 is stored and held.
  • the control circuit board 21 has a control unit (a controller) mounted thereon for controlling the operation of the brushless motor 9.
  • the control circuit board 21 is substantially perpendicular to the rotation axis of the brushless motor 9 (the rotation axis of the circular saw blade 8).
  • the control circuit board 21, more specifically, the left side of the control circuit board 21 is partitioned off from the battery pack 20 by a controller cover 22 made of, for example, a resin.
  • the gear cover 5 is provided on the right side of the handle portion 4.
  • the gear cover 5 is made of, for example, a metal, and accommodates a mechanism for transmitting rotation between the brushless motor 9 and the circular saw blade 8.
  • the rotation transmitting mechanism is configured by a known deceleration mechanism.
  • the saw cover 6 is attached to the gear cover 5, and covers the upper half of the circular saw blade 8 in conjunction with the gear cover 5.
  • the saw cover 6 may be formed of the same material as that of the gear cover 5, integrally with the gear cover 5.
  • the front end portions of the gear cover 5 and the saw cover 6 are rotatably joined by a rotation supporting unit 14.
  • the protective cover 7 is made of, for example, a resin, and is rotatably provided along the outer edges of the gear cover 5 and the saw cover 6 on the rear side of the gear cover 5. Between the gear cover 5 and the protective cover 7, a spring (not shown) is interposed. This spring biases the protective cover 7 against the gear cover 5, in a direction (a counterclockwise direction in FIG. 2) for covering the lower half of the circular saw blade 8 in the circumferential direction of the gear cover 5 and the saw cover 6. Therefore, in a state where cutting work is not being performed, the protective cover 7 covers the lower half of the circular saw blade 8 (a portion protruding from the bottom of the base 1), except for a portion of the front side.
  • a bevel plate 12 is provided to stand.
  • the bevel plate 12 stands in a short-length direction substantially perpendicular to a cutting direction.
  • the bevel plate 12 has a long hole 13.
  • the long hole 13 has an arc shape having a first tilt shaft portion 15a extending in the cutting direction, as the center, and perpendicular to the first tilt shaft portion 15a.
  • the rotation supporting unit 14 is supported to be able to tilt on the first tilt shaft portion 15a to left or right with respect to the base 1.
  • the tilt position of the rotation supporting unit 14 is adjusted in a state where a tilt- angle adjusting lever 11 is loose, and is fixed by fastening the tilt-angle adjusting lever 11.
  • the rotation supporting unit 14 rotatably supports the front end portion of the saw cover 6 on an axis parallel to the rotation axis of the brushless motor 9 (the rotation axis of the circular saw blade 8). Adjusting and fixing of the rotational position of the saw cover 6 will be described below.
  • a link 10 is provided along the left surface of the gear cover 5 so as to be rotatable around a tilt shaft portion 15b concentric with the first tilt shaft portion 15a.
  • the link 10 is made of a metal such as aluminum.
  • the link 10 and the gear cover 5 are slidable with respect to each other, and thus it is possible to adjust the rotational position of the saw cover 6 with respect to the base 1 , that is, the cutting depth. Further, it is possible to fix the rotational position of the gear cover 5 by fastening the cutting-depth adjusting lever 19.
  • the brushless motor 9 has a rotor core 9b around an output shaft 9a.
  • the output shaft 9a is parallel to the rotation axis of the circular saw blade 8.
  • the rotor core 9b rotates integrally with the output shaft 9a.
  • a rotor magnet 9c is inserted into and supported in the rotor core 9b.
  • a stator core 9d is provided to surround the outer circumferential surface of the rotor core 9b.
  • a stator coil 9f is provided with an insulator 9e interposed therebetween.
  • a switching board 23 is fixed. The switching board 23 is substantially perpendicular to the output shaft 9a. As shown in FIG.
  • switching devices 23a (such as FETs) are mounted such that their main body portions are laid down.
  • the switching devices 23a switch a supply voltage from the battery pack 20.
  • a terminal portion 20a of the battery pack 20, and the switching board 23 are electrically connected to each other by a wiring line 24.
  • a wiring line 25 electrically connects the terminal portion 20a of the battery pack 20 and the control circuit board 21 to each other.
  • a wiring line 26 electrically connects the control circuit board 21 and the switching board 23 to each other.
  • a control signal from the controller of the control circuit board 21 is applied to control terminals (gates) of the switching devices 23a mounted on the switching board 23, by the wiring line 26, whereby ON/OFF of the switching devices 23a is controlled.
  • a cooling fan 33 is attached to the output shaft 9a of the brushless motor 9, and rotates with the output shaft 9a. The cooling fan 33 generates an air flow which cools the brushless motor 9 and the switching devices 23 a.
  • FIG. 8 is a view showing the functional blocks of the cordless circular saw according to the embodiment of the present invention.
  • a control unit 27 is mounted on the control circuit board 21 shown in FIG. 6.
  • An inverter unit 28 is a circuit obtained by connecting the switching devices 23a shown in FIGS. 6 and 7 in a bridge form.
  • a remaining power amount display unit 30 displays the remaining power amount of the battery pack 20.
  • a temperature sensor 31 includes a temperature detecting device such as a thermistor provided in the vicinity of the switching devices 23 a of the inverter unit 28, and detects the temperature of the switching devices 23a.
  • a detecting resistor 32 is provided on the path of a drive current for the brushless motor 9.
  • the control unit 27 can detect the drive current (load current), i.e.
  • a load by the terminal voltage of the detecting resistor 32.
  • the load is not limited to the current, and may be detected by a voltage, or a duty ratio, or the combination of them.
  • a rotation sensor 34 is, for example, a magnetic sensor such as three Hall devices.
  • the control unit 27 detects the rotation speed of the brushless motor 9 by an output signal of the rotation sensor 34.
  • the control unit 27 applies a PWM signal to each switching device 23a of the inverter unit 28 according to a mode (for example, any one of the normal mode and the economy mode) set by the mode change switch 16, thereby controlling driving of the brushless motor 9.
  • the control unit 27 controls the duty ratio of the PWM signal to be applied to each switching device 23a such that the duty ratio becomes 100%, and in the economy mode, the control unit 27 controls the duty ratio such that the circular saw blade 8 rotates at a predetermined rotation speed (for example, 3,000 rpm).
  • a predetermined rotation speed for example, 3,000 rpm.
  • the control unit 27 performs soft start control for gradually increasing the duty ratio such that in the normal mode, the duty ratio becomes 100% when about 0.6 seconds elapses, and in the economy mode, in an no-load state, the circular saw blade 8 rotates at the predetermined rotation speed when about 0.4 seconds elapses.
  • FIG. 9 is a characteristic diagram showing the rotating speed and efficiency of the circular saw blade 8 with respect to load current when the cordless circular saw of the embodiment is in the normal mode and in the first economy mode.
  • the duty ratio is always at the maximum (for example, 100%), and as the load current increases from a no-load state, the rotation speed of the circular saw blade 8 decreases.
  • a first economy mode (an example of a low-speed mode) is different from the normal mode in that when the load current is equal to or less than a predetermined value (about 35 A in the example of FIG. 9), control (constant-speed control) is performed on the rotation speed such that the rotation speed becomes constant (3,000 rpm in the example of FIG.
  • an economy mode an example of a low-speed mode in which the rotation speed during constant-speed control is in a range from 2,500 rpm to 3,500 rpm
  • an economy mode an example of a high-speed mode in which the rotation speed during constant- speed control is in a range from 4,500 rpm to 5,500 rpm.
  • the efficiency (the ratio of output with respect to input power) of the first economy mode is higher than that of the normal mode.
  • the load current exceeds the predetermined value, in a range up to a load current value (about 35 A in the example of FIG. 9) at which the duty ratio becomes the maximum (as same in the normal mode)
  • the efficiency of the normal mode is higher than that of the first economy mode. That is, at a certain load current value, the efficiency of the normal mode and the efficiency of the first economy mode are reversed. Therefore, for efficient use of input power, there is room for improvement on the first economy mode.
  • FIG. 10 is a characteristic diagram showing the rotating speed and efficiency of the circular saw blade 8 with respect to load current when the cordless circular saw of the embodiment is in a second economy mode.
  • FIG. 10 shows the characteristics of the normal mode and the first economy mode shown in FIG. 9, together with the characteristic of a second economy mode (shown by a thick line).
  • FIG. 11 is an explanatory view showing duty ratio control according to variation in load current when the cordless circular saw of the embodiment is in the second economy mode. In FIG. 11, change in duty ratio in the first economy mode is shown by a broken line.
  • the second economy mode an example of a low-speed mode
  • the constant-speed control same as that in the first economy mode is performed; however, if the load current exceeds the predetermined value, control for increasing the rotation speed is performed.
  • the second economy mode if the load current exceeds 17 A, the duty ratio gradually increases to 100% regardless of (independent from) the rotation speed, and thereafter, the duty ratio is maintained at 100%.
  • This control increases the rotation speed of the circular saw blade 8 from 3,000 rpm during constant-speed control to about 3,800 rpm (in FIG.
  • transition from an operation point "A” to an operation point “B” is performed).
  • the operation point “B” is on the characteristic curve of the normal mode.
  • the efficiency of the second economy mode becomes the same as that of the normal mode. Therefore, in the second economy mode, in a range from 17 A to 35 A, it is possible to more efficiently use input power as compared to the first economy mode.
  • the same control as that in the normal mode is performed until the load current becomes less than 14 A. If the load current becomes less than 14 A, the duty ratio gradually decreases such that the rotation speed of the circular saw blade 8 decreases to 3,000 rpm, and then the same constant-speed control as that in the first economy mode is performed.
  • FIG. 12 is a flow chart showing a control flow when the cordless circular saw of the embodiment is in the second economy mode. If the user turns on the main trigger switch 18, the control flow starts. If the main trigger switch 18 is turned on, in Step S I , the control unit 27 starts the brushless motor 9 in a soft start manner. Time change in the rotation speed of the circular saw blade 8 and time change in the supply current (load current) for the brushless motor 9 during soft start are as shown in FIG. 13, and this current supply causes the rotation speed of the circular saw blade 8 to smoothly increase. If the rotation speed of the circular saw blade 8 becomes 3,000 rpm, in Step S2, the control unit 27 performs constant-speed control at this rotation speed.
  • the control unit 27 controls the duty ratio of the PWM signal to be applied to the switching devices 23a such that the rotation speed of the circular saw blade 8 is constant at 3,000 rpm.
  • the same constant-speed control as that in the first economy mode continues until the load current exceeds 17 A ("NO" in Step S3). If the load current exceeds 17 A during the constant- speed control being performed ("YES" in Step S3), in Step S4, the control unit 27 smoothly increases the duty ratio to 100%, regardless of (independent from) the rotation speed of the brushless motor 9. If the duty ratio becomes 100%, in Step S5, the control unit 27 drives the brushless motor 9 with the duty ratio of 100%.
  • Step S6 the same control with the duty ratio of 100% as that in the normal mode continues until the load current becomes less than 14 A ("NO" in Step S6). If the load current becomes less than 14 A ("YES” in Step S6), in Step S7, while monitoring the rotation speed of the brushless motor 9 by the signal from the rotation sensor 34, the control unit 27 smoothly decreases the duty ratio until the rotation speed of the circular saw blade 8 becomes 3,000 rpm. Then, the control flow returns to the constant-speed control of Step S2.
  • the duty ratio is suppressed and the constant-speed control is performed. Therefore, it is possible to reduce the rotation speed during no-load as compared to the normal mode. As a result, it is possible to reduce vibration and noise, and to prevent power consumption from unnecessarily increasing. Since power consumption is reduced, the work amount per one charging increases, and thus it is convenient. Meanwhile, when the load is equal to or larger than the predetermined value, the duty ratio becomes the maximum like in the normal mode. Therefore, work efficiency is improved.
  • the load value (for example, 14 A) in the case of decreasing the duty ratio from 100 % for the purpose of the constant-speed control is set to be smaller than the load value in the case of increasing the duty ratio regardless of the rotation speed from the constant-speed control. Therefore, it is possible to prevent control switching from being frequently performed, such that the cordless circular saw becomes stable.
  • FIG. 14 is a characteristic diagram showing the relation between rotation speed and load current in each mode in an embodiment in which not only duty ratio control but also advance-angle control are performed.
  • a first mode in a load current range from 0 to a predetermined value, the brushless motor 9 is controlled, for example, with the duty ratio of 100% and an advance angle of 90 degrees, and if the load current exceeds the predetermined value, the bnishless motor 9 is controlled, for example, with the duty ratio of 100% and an advance angle of 15 degrees.
  • a load current value for changing the advance angle from 15 degrees to 90 degrees is set to be smaller than a load current value for changing the advance angle from 90 degrees to 15 degrees, whereby frequent switching is prevented.
  • FIG. 14 In the first mode shown in FIG.
  • the load current value for changing the advance angle from 15 degrees to 45 degrees is set to be smaller than the load current value for changing the advance angle from the 45 degrees to 15 degrees, whereby frequent switching is prevented.
  • the advance angle is fixed at 15 degrees, and in the low load range including no-load, constant-speed control based on duty ratio control is performed, and if the load current exceeds a value at which the duty ratio becomes 100% by the constant- speed control, the brushless motor 9 is controlled with the duty ratio of 100%. Since the advance- angle control is added as described above, it is possible to set various modes.
  • FIG. 15 is a side view showing a cordless circular saw according to an embodiment having a mode change switch 16 provided in the vicinity of the main trigger switch 18 of the handle portion 4.
  • the cordless circular saw is easy to use.
  • the mode change switch 16 in a case of holding the handle portion 4 with a right hand, it is possible to operate the mode change switch 16 with the thumb of the right hand, and in a case of holding the handle portion 4 with a left hand, it is possible to operate the mode change switch 16 with the index finger or middle finger of the left hand. Therefore, it is possible to easily perform mode switching in the middle of work, and operability is excellent.
  • FIG. 16 is a perspective view showing a grinder according to another embodiment.
  • a main trigger switch 18 When a main trigger switch 18 is turned on, whereby a grind stone 8a is rotated by a motor, the grinder performs polishing or grinding.
  • FIG. 17 is a perspective view showing an electric planer according to another embodiment.
  • a main trigger switch 18 When a main trigger switch 18 is turned on, whereby a cutter block is rotated by a motor, the electric planer planes the surface of a workpiece.
  • a functional block diagram is the same as FIG.
  • a control flow chart is the same as FIG. 10, and in a case where a predetermined condition is satisfied, even if the main trigger switch 18 is on, it is possible to perform switching between operation modes by pushing the mode change switch 16. Also, since the mode change switch 16 is provided in the vicinity of the main trigger switch 18 of the handle portion 4, it is possible to operate both of the main trigger switch 18 and the mode change switch 16 with a hand holding the handle portion 4. Also, the present invention may be preferable for an electric power tools such as a grinder or an electric planer which performs rotation control on a brushless motor 9 regardless of the operation amount (pulling amount) of the main trigger switch 18.
  • an electric power tools such as a grinder or an electric planer which performs rotation control on a brushless motor 9 regardless of the operation amount (pulling amount) of the main trigger switch 18.
  • the normal mode in which the duty ratio is always 100% and an economy mode (the first or second economy mode) in which constant-speed control is performed such that the duty ratio becomes 100% in a high load state.
  • an economy mode the first or second economy mode
  • the normal mode in which the duty ratio is always 100% and for example, an economy mode (third mode) in which the duty ratio is always 80%.
  • the duty ratio in the normal mode (and the maximum value of the duty ratio in each mode) may be, for example, 95% less than 100%.
  • the brushless motor 9 may be driven in a sensorless manner in which any rotation sensor (position sensor) is not used. In this case, the rotation speed may be detected without using a rotation sensor.
  • a driving source the brushless motor is used as a driving source.
  • a motor with a brush may be used as a driving source. Parameters such as the duty ratio, the rotation speed, and the load current values are not limited to the specific values exemplified in the embodiment, and can be arbitrarily set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Sawing (AREA)
  • Portable Power Tools In General (AREA)

Abstract

An electric power tool includes a brushless motor, a control unit configured to control power supply to the brushless motor, a rotary tool configured to be rotated by the brushless motor, a rotation speed detecting unit configured to detect a rotation speed of the brushless motor, a main switch configured to transmit, to the control unit, an ON/OFF signal for switching between driving and stopping of the brushless motor, and a mode switching unit configured to transmit, to the control unit, a mode switching signal for switching between multiple modes of rotation control of the brushless motor, the control unit is configured to perform the rotation control of the brushless motor in any one of the multiple modes including at least a high-speed mode and a low-speed mode.

Description

DESCRIPTION
Title of Invention
ELECTRIC POWER TOOL Technical Field
The present invention relates to an electric power tool such as a circular saw.
Background Art
In a circular saw, for example, in order to increase cutting efficiency, it is necessary to increase the rotation speed of a saw blade during cutting. To this end, it is necessary to increase the rotation speed during no-load. Even at the markets, in order to emphasize a smooth cutting performance, the manufactures tend to appeal the high-speed rotation during no-load.
If the rotation speed during no-load increases, there are problems that vibration and noise increase and power consumption unnecessarily increases. These problems are not limited to a circular saw, but are common to other electric power tools such as a grinder.
Summary of Invention
Technical problem
The present invention has been made in view of the above-described circumstances, and an aspect of the present invention provides an electric power tool which can control a brushless motor at multiple rotation speeds and is excellent in work efficiency.
According to an illustrative embodiment of the present invention, there is provided an electric power tool comprising: a brushless motor; a control unit configured to control power supply to the brushless motor; a rotary tool configured to be rotated by the brushless motor; a rotation speed detecting unit configured to detect a rotation speed of the brushless motor; a main switch configured to transmit, to the control unit, an ON/OFF signal for switching between driving and stopping of the brushless motor; and a mode switching unit configured to transmit, to the control unit, a mode switching signal for switching between multiple modes of rotation control of the brushless motor, wherein the control unit is configured to perform the rotation control of the brushless motor in any one of the multiple modes including at least a high-speed mode and a low- speed mode.
In the above electric power tool, in the low-speed mode, the control unit may be configured to control the brushless motor to rotate at a predetermined first rotation speed in a predetermined load range, by duty ratio control.
In the above electric power tool, in the high-speed mode, the control unit may be configured to control the brushless motor to rotate at a predetermined second rotation speed higher than the predetermined first rotation speed in a predetermined load range, by duty ratio control.
The above electric power tool may further comprise a battery pack which is removably attached and is configured to supply electric power to the brushless motor and the control unit.
In the above electric power tool, in the low-speed mode, when a load equal to or larger than a first predetermined value is detected, the control unit may be configured to perform switching to predetermined duty ratio control which is independent from the rotation speed of the brushless motor.
In the above electric power tool, detection of the load equal to or larger than the first predetermined value may be performed based on predetermined one or combination of a current, a voltage, and a duty ratio.
In the above electric power tool, the predetermined duty ratio control may include control for gradually increasing a duty ratio to a predetermined duty ratio and then driving the brushless motor with the predetermined duty ratio.
In the above electric power tool, when a load equal to or smaller than a second predetermined value which is smaller than the first predetermined value for switching to the predetermined duty ratio control is detected in a state where the predetermined duty ratio control is performed, the control unit may be configured to gradually decrease the duty ratio and then control the brushless motor to rotate at a predetermined first rotation speed.
In the above electric power tool, the rotary tool may be a saw blade connected to an output shaft of the brushless motor through a deceleration mechanism, and in a predetermined load range, the control unit may be configured to control the brushless motor in the low-speed mode such that a rotation speed of the saw blade becomes constant in a range from 2,500 rpm to 3,500 rpm, and is configured to control the brushless motor in the high-speed mode such that the rotation speed of the saw blade becomes constant in a range from 4,500 rpm to 5,500 rpm.
In the above electric power tool, the control unit may be configured to perform soft start control for gradually supplying a current at starting of the brushless motor.
According to another illustrative embodiment of the present invention, there is provided an electric power tool comprising: a brushless motor; a control unit configured to control power supply to the brushless motor; a rotary tool configured to be rotated by the brushless motor; a rotation speed detecting unit configured to detect a rotation speed of the brushless motor; and a main switch configured to transmit, to the control unit, an ON/OFF signal for switching between driving and stopping of the brushless motor, wherein in a state where constant-speed control is performed on the brushless motor with a duty ratio smaller than 100%, when a load equal to or larger than a first predetermined value is detected, the control unit is configured to perform switching from the constant-speed control to predetermined duty ratio control which is dependent from the rotation speed of the brushless motor, and wherein the predetermined duty ratio control is control for gradually increasing the duty ratio to a predetermined duty ratio and then driving the brushless motor with the predetermined duty ratio.
In the above electric power tool, the load at which the constant-speed control is switched to the predetermined duty ratio control may be set to such a threshold value that if the load exceeds the threshold value, an efficiency of the predetermined duty ratio control becomes higher than an efficiency of the constant-speed control, or may be set to a value in the vicinity of the threshold value.
In the above electric power tool, when a load equal to or smaller than a second predetermined value is detected in a state where the predetermined duty ratio control is performed, the control unit may be configured to gradually decrease the duty ratio such that the rotation speed of the brushless motor becomes a predetermined rotation speed, and then perform the constant-speed control on the brushless motor at the predetermined rotation speed.
In the above electric power tool, the second predetermined value at which the duty ratio may be decreased from the predetermined duty ratio control to the constant-speed control is smaller than the first predetermined value at which the constant-speed control is changed to the predetermined duty ratio control.
Also, arbitrary combinations of the above described components, and modifications obtained by conversion of the embodiments of the present invention between methods and systems are valid as embodiments of the present invention.
According to the above configuration, it is possible to provide an electric power tool capable of controlling a brushless motor at multiple rotation speeds and excellent in work efficiency.
Brief Description of Drawings
In the accompanying drawings:
FIG. 1 is a plan view showing a cordless circular saw according to an embodiment of the present invention;
FIG. 2 is a side view of the cordless circular saw;
FIG. 3 is a rear view of the cordless circular saw;
FIG. 4 is a front view of the cordless circular saw;
FIG. 5 is a first plan view of the cordless circular saw where a portion thereof is shown as a cross-section;
FIG. 6 is a second plan view of the cordless circular saw where another portion is shown as a cross-section;
FIG. 7 is a cross-sectional view taken along a line A- A of FIG. 1;
FIG. 8 is a view showing the functional blocks of the cordless circular saw shown in FIG. 1 ;
FIG. 9 is a characteristic diagram showing the rotating speed and efficiency of a circular saw blade 8 with respect to load current when the cordless circular saw of the embodiment is in a normal mode and in a first economy mode;
FIG. 10 is a characteristic diagram showing the rotating speed and efficiency of the circular saw blade 8 with respect to load current when the cordless circular saw of the embodiment is in a second economy mode;
FIG. 11 is an explanatory view showing duty ratio control according to variation in load current when the cordless circular saw of the embodiment is in the second economy mode;
FIG. 12 is a flow chart showing a control flow when the cordless circular saw of the embodiment is in the second economy mode;
FIG. 13 is an explanatory view showing time change in the rotation speed of the circular saw blade 8 and time change in supply current for a brushless motor 9 during soft start of the brushless motor 9 of the embodiment;
FIG. 14 is a characteristic diagram showing the relation between rotation speed and load current in each mode in an embodiment in which not only duty ratio control but also advance-angle control are performed;
FIG. 15 is a side view showing a cordless circular saw according to another embodiment of the present invention, wherein a mode change switch 16 is provided in the vicinity of a main trigger switch 18 of a handle portion 4;
FIG. 16 is a perspective view showing a grinder according to another embodiment of the present invention; and
FIG. 17 is a perspective view showing an electric planer according to another embodiment of the present invention.
Description of Embodiment
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Components, members, and the like shown in the drawings and identical or equivalent to each other are denoted by the same reference symbol and may not be repeatedly described. The embodiments do not limit the invention and are illustrative, and all features to be described in the embodiments, and combinations thereof may not be the essential features of the invention.
FIGS. 1 to 4 are a plan view, a side view, a rear view, and a front view showing a cordless circular saw according to an embodiment of the present invention, respectively. FIG. 5 is a first plan view of the cordless circular saw where a portion thereof is shown as a cross- section. FIG. 6 is a second plan view of the cordless circular saw where another portion thereof is shown as a cross-section. FIG 7 is a cross-sectional view taken along a line A- A of FIG. 1.
The cordless circular saw of the present embodiment includes a base 1 and a main body 2. The base 1 is a plate material made of a metal such as aluminum substantially in a rectangular shape. The longitudinal direction of the base 1 coincides with a cutting direction. The bottom of the base member 101 is a surface to slide on a workpiece. The main body 2 is joined with the base 1 at two positions in a front-rear direction such that the main body can rotate and tilt leftward or rightward with respect to the base 1. The main body 2 includes a motor housing 3, a handle portion 4, a gear cover 5, a saw cover 6, a protective cover 7, and a circular saw blade 8 (a rotary tool). The motor housing 3 is made of, for example, a resin, and accommodates a brushless motor 9 (FIGS. 5 and 6). The brushless motor 9 rotates the circular saw blade 8. The handle portion 4 is made of the same material as that of the motor housing 3, and extends in the front-rear direction on the motor housing 3. The handle portion 4 includes a main trigger switch 18 (a main switch) as an operation unit for allowing a user to perform switching between driving and stopping of the brushless motor 9. As shown in FIGS. 3 and 4, the handle portion 4 is configured by a left component provided integrally with the motor housing 3, and a right component interposed between the motor housing 3 and the gear cover 5, and the left component and the right component are combined to configure a battery pack attaching portion 4a (to be described below), and a control circuit board accommodating portion 4b (to be described below) is provided at the right component of the handle portion 4 positioned on a side of the circular saw blade 8. The boundary between the left component and the right component of the handle portion 4 is a line shown at the center of the handle portion 4 in FIG. 1 , FIG. 3, FIG. 4, and so on.
At the lower portion of the rear end of the handle portion 4, the battery pack attaching portion 4a (a battery attaching portion) and the control circuit board accommodating portion 4b are integrally provided. A battery pack 20 (a rechargeable battery) is slid into the battery pack attaching portion 4a from the rear side, thereby being removably attached. On the upper surface of the battery pack attaching portion 4a on the lower side of the handle portion 4, a mode change switch 16 (for example, a tact switch) and an LED 29 to serve as a display unit for displaying a mode are provided. The user can select, for example, any one of a normal mode and an economy mode by the mode change switch 16. The mode change switch 16 and the LED 29 are provided on the same board, and when the economy mode is set by operating the mode change switch 16, the LED 29 is turned on. Since the mode change switch 16 is provided on the lower side of the handle portion 4, mode switching is prevented from being unexpectedly performed due to a cause such as a collision of the mode change switch 16 with something. The battery pack 20 supplies driving power to the brushless motor 9. As shown in FIG. 1 , the left surface of the battery pack 20 attached to the battery pack attaching portion 4a, and the left surface of the motor housing 3 exist substantially on the same plane. That is, the distance of the left surface of the motor housing 3 from the circular saw blade 8, and the distance of the left surface of the battery pack 20 from the circular saw blade 8 are substantially the same. Therefore, it is possible to place the cordless circular saw with the left surface of the battery pack 20 and the left surface of the motor housing 3 downward, and to easily perform work for exchanging the circular saw blade 8. The control circuit board accommodating portion 4b is provided on the right side of the battery pack 20. In the control circuit board accommodating portion 4b, a control circuit board 21 is stored and held. The control circuit board 21 has a control unit (a controller) mounted thereon for controlling the operation of the brushless motor 9. The control circuit board 21 is substantially perpendicular to the rotation axis of the brushless motor 9 (the rotation axis of the circular saw blade 8). The control circuit board 21, more specifically, the left side of the control circuit board 21 is partitioned off from the battery pack 20 by a controller cover 22 made of, for example, a resin.
The gear cover 5 is provided on the right side of the handle portion 4. The gear cover 5 is made of, for example, a metal, and accommodates a mechanism for transmitting rotation between the brushless motor 9 and the circular saw blade 8. The rotation transmitting mechanism is configured by a known deceleration mechanism. The saw cover 6 is attached to the gear cover 5, and covers the upper half of the circular saw blade 8 in conjunction with the gear cover 5. The saw cover 6 may be formed of the same material as that of the gear cover 5, integrally with the gear cover 5. The front end portions of the gear cover 5 and the saw cover 6 are rotatably joined by a rotation supporting unit 14. The protective cover 7 is made of, for example, a resin, and is rotatably provided along the outer edges of the gear cover 5 and the saw cover 6 on the rear side of the gear cover 5. Between the gear cover 5 and the protective cover 7, a spring (not shown) is interposed. This spring biases the protective cover 7 against the gear cover 5, in a direction (a counterclockwise direction in FIG. 2) for covering the lower half of the circular saw blade 8 in the circumferential direction of the gear cover 5 and the saw cover 6. Therefore, in a state where cutting work is not being performed, the protective cover 7 covers the lower half of the circular saw blade 8 (a portion protruding from the bottom of the base 1), except for a portion of the front side.
On the front side of the base 1 , a bevel plate 12 is provided to stand. The bevel plate 12 stands in a short-length direction substantially perpendicular to a cutting direction. The bevel plate 12 has a long hole 13. The long hole 13 has an arc shape having a first tilt shaft portion 15a extending in the cutting direction, as the center, and perpendicular to the first tilt shaft portion 15a. The rotation supporting unit 14 is supported to be able to tilt on the first tilt shaft portion 15a to left or right with respect to the base 1. The tilt position of the rotation supporting unit 14 is adjusted in a state where a tilt- angle adjusting lever 11 is loose, and is fixed by fastening the tilt-angle adjusting lever 11. The rotation supporting unit 14 rotatably supports the front end portion of the saw cover 6 on an axis parallel to the rotation axis of the brushless motor 9 (the rotation axis of the circular saw blade 8). Adjusting and fixing of the rotational position of the saw cover 6 will be described below.
On the rear side of the base 1 , a link 10 is provided along the left surface of the gear cover 5 so as to be rotatable around a tilt shaft portion 15b concentric with the first tilt shaft portion 15a. The link 10 is made of a metal such as aluminum. In a state where a cutting-depth adjusting lever 19 is loose, the link 10 and the gear cover 5 are slidable with respect to each other, and thus it is possible to adjust the rotational position of the saw cover 6 with respect to the base 1 , that is, the cutting depth. Further, it is possible to fix the rotational position of the gear cover 5 by fastening the cutting-depth adjusting lever 19.
As shown in FIG. 6, the brushless motor 9 has a rotor core 9b around an output shaft 9a. The output shaft 9a is parallel to the rotation axis of the circular saw blade 8. The rotor core 9b rotates integrally with the output shaft 9a. A rotor magnet 9c is inserted into and supported in the rotor core 9b. A stator core 9d is provided to surround the outer circumferential surface of the rotor core 9b. On the stator core 9d, a stator coil 9f is provided with an insulator 9e interposed therebetween. On the left end side of the stator core 9d, a switching board 23 is fixed. The switching board 23 is substantially perpendicular to the output shaft 9a. As shown in FIG. 7, on the switching board 23, six switching devices 23a (such as FETs) are mounted such that their main body portions are laid down. The switching devices 23a switch a supply voltage from the battery pack 20. As shown in FIG. 5, a terminal portion 20a of the battery pack 20, and the switching board 23 are electrically connected to each other by a wiring line 24. A wiring line 25 electrically connects the terminal portion 20a of the battery pack 20 and the control circuit board 21 to each other. A wiring line 26 electrically connects the control circuit board 21 and the switching board 23 to each other. A control signal from the controller of the control circuit board 21 is applied to control terminals (gates) of the switching devices 23a mounted on the switching board 23, by the wiring line 26, whereby ON/OFF of the switching devices 23a is controlled. A cooling fan 33 is attached to the output shaft 9a of the brushless motor 9, and rotates with the output shaft 9a. The cooling fan 33 generates an air flow which cools the brushless motor 9 and the switching devices 23 a.
FIG. 8 is a view showing the functional blocks of the cordless circular saw according to the embodiment of the present invention. A control unit 27 is mounted on the control circuit board 21 shown in FIG. 6. An inverter unit 28 is a circuit obtained by connecting the switching devices 23a shown in FIGS. 6 and 7 in a bridge form. A remaining power amount display unit 30 displays the remaining power amount of the battery pack 20. A temperature sensor 31 includes a temperature detecting device such as a thermistor provided in the vicinity of the switching devices 23 a of the inverter unit 28, and detects the temperature of the switching devices 23a. A detecting resistor 32 is provided on the path of a drive current for the brushless motor 9. The control unit 27 can detect the drive current (load current), i.e. a load, by the terminal voltage of the detecting resistor 32. Incidentally, the load is not limited to the current, and may be detected by a voltage, or a duty ratio, or the combination of them. A rotation sensor 34 is, for example, a magnetic sensor such as three Hall devices. The control unit 27 detects the rotation speed of the brushless motor 9 by an output signal of the rotation sensor 34. When the main trigger switch 18 is turned on, the control unit 27 applies a PWM signal to each switching device 23a of the inverter unit 28 according to a mode (for example, any one of the normal mode and the economy mode) set by the mode change switch 16, thereby controlling driving of the brushless motor 9. In the normal mode, the control unit 27 controls the duty ratio of the PWM signal to be applied to each switching device 23a such that the duty ratio becomes 100%, and in the economy mode, the control unit 27 controls the duty ratio such that the circular saw blade 8 rotates at a predetermined rotation speed (for example, 3,000 rpm). In a case of driving the brushless motor 9, in every mode, the control unit 27 performs soft start control for gradually increasing the duty ratio such that in the normal mode, the duty ratio becomes 100% when about 0.6 seconds elapses, and in the economy mode, in an no-load state, the circular saw blade 8 rotates at the predetermined rotation speed when about 0.4 seconds elapses.
FIG. 9 is a characteristic diagram showing the rotating speed and efficiency of the circular saw blade 8 with respect to load current when the cordless circular saw of the embodiment is in the normal mode and in the first economy mode. In the normal mode (an example of a high-speed mode), the duty ratio is always at the maximum (for example, 100%), and as the load current increases from a no-load state, the rotation speed of the circular saw blade 8 decreases. A first economy mode (an example of a low-speed mode) is different from the normal mode in that when the load current is equal to or less than a predetermined value (about 35 A in the example of FIG. 9), control (constant-speed control) is performed on the rotation speed such that the rotation speed becomes constant (3,000 rpm in the example of FIG. 9), but is the same as the normal mode in control when the load current exceeds the predetermined value. That is, in the first economy mode, if the load increases, the duty ratio increases, and if the load exceeds the predetermined value, the duty ratio becomes the maximum (for example, 100%). Therefore, when a load exceeding the predetermined value is applied, even in the first economy mode, the same control as that in the normal mode is performed. Incidentally, there may be multiple economy modes different in the rotation speed during constant-speed control. For example, it may be possible to select an economy mode (an example of a low-speed mode) in which the rotation speed during constant-speed control is in a range from 2,500 rpm to 3,500 rpm, and an economy mode (an example of a high-speed mode) in which the rotation speed during constant- speed control is in a range from 4,500 rpm to 5,500 rpm.
As shown in FIG. 9, when the load current is equal to or less than a predetermined value (about 17A in the example of FIG. 9), the efficiency (the ratio of output with respect to input power) of the first economy mode is higher than that of the normal mode. Meanwhile, when the load current exceeds the predetermined value, in a range up to a load current value (about 35 A in the example of FIG. 9) at which the duty ratio becomes the maximum (as same in the normal mode), the efficiency of the normal mode is higher than that of the first economy mode. That is, at a certain load current value, the efficiency of the normal mode and the efficiency of the first economy mode are reversed. Therefore, for efficient use of input power, there is room for improvement on the first economy mode.
FIG. 10 is a characteristic diagram showing the rotating speed and efficiency of the circular saw blade 8 with respect to load current when the cordless circular saw of the embodiment is in a second economy mode. FIG. 10 shows the characteristics of the normal mode and the first economy mode shown in FIG. 9, together with the characteristic of a second economy mode (shown by a thick line). FIG. 11 is an explanatory view showing duty ratio control according to variation in load current when the cordless circular saw of the embodiment is in the second economy mode. In FIG. 11, change in duty ratio in the first economy mode is shown by a broken line.
As shown in FIG. 10, in the second economy mode (an example of a low-speed mode), when the load current is equal to or less than the predetermined value (for example, about 17 A) at which the efficiency of the normal mode and the efficiency of the first economy mode are reversed, the constant-speed control same as that in the first economy mode is performed; however, if the load current exceeds the predetermined value, control for increasing the rotation speed is performed. Specifically, in the second economy mode, if the load current exceeds 17 A, the duty ratio gradually increases to 100% regardless of (independent from) the rotation speed, and thereafter, the duty ratio is maintained at 100%. This control increases the rotation speed of the circular saw blade 8 from 3,000 rpm during constant-speed control to about 3,800 rpm (in FIG. 10, transition from an operation point "A" to an operation point "B" is performed). The operation point "B" is on the characteristic curve of the normal mode. After the load current exceeds 17 A and the duty ratio becomes 100%, the efficiency of the second economy mode becomes the same as that of the normal mode. Therefore, in the second economy mode, in a range from 17 A to 35 A, it is possible to more efficiently use input power as compared to the first economy mode. In the second economy mode, after the load current exceeds 17 A and the duty ratio becomes 100% (after transition to the operation point "B"), the same control as that in the normal mode is performed until the load current becomes less than 14 A. If the load current becomes less than 14 A, the duty ratio gradually decreases such that the rotation speed of the circular saw blade 8 decreases to 3,000 rpm, and then the same constant-speed control as that in the first economy mode is performed.
FIG. 12 is a flow chart showing a control flow when the cordless circular saw of the embodiment is in the second economy mode. If the user turns on the main trigger switch 18, the control flow starts. If the main trigger switch 18 is turned on, in Step S I , the control unit 27 starts the brushless motor 9 in a soft start manner. Time change in the rotation speed of the circular saw blade 8 and time change in the supply current (load current) for the brushless motor 9 during soft start are as shown in FIG. 13, and this current supply causes the rotation speed of the circular saw blade 8 to smoothly increase. If the rotation speed of the circular saw blade 8 becomes 3,000 rpm, in Step S2, the control unit 27 performs constant-speed control at this rotation speed. Specifically, while monitoring the rotation speed of the brushless motor 9 by a signal from the rotation sensor 34, the control unit 27 controls the duty ratio of the PWM signal to be applied to the switching devices 23a such that the rotation speed of the circular saw blade 8 is constant at 3,000 rpm. The same constant-speed control as that in the first economy mode continues until the load current exceeds 17 A ("NO" in Step S3). If the load current exceeds 17 A during the constant- speed control being performed ("YES" in Step S3), in Step S4, the control unit 27 smoothly increases the duty ratio to 100%, regardless of (independent from) the rotation speed of the brushless motor 9. If the duty ratio becomes 100%, in Step S5, the control unit 27 drives the brushless motor 9 with the duty ratio of 100%. The same control with the duty ratio of 100% as that in the normal mode continues until the load current becomes less than 14 A ("NO" in Step S6). If the load current becomes less than 14 A ("YES" in Step S6), in Step S7, while monitoring the rotation speed of the brushless motor 9 by the signal from the rotation sensor 34, the control unit 27 smoothly decreases the duty ratio until the rotation speed of the circular saw blade 8 becomes 3,000 rpm. Then, the control flow returns to the constant-speed control of Step S2.
According to the above-described embodiment, it is possible to achieve the following effects.
(1) In the first economy mode, in a load range from 0 to the predetermined value, the duty ratio is suppressed and the constant-speed control is performed. Therefore, it is possible to reduce the rotation speed during no-load as compared to the normal mode. As a result, it is possible to reduce vibration and noise, and to prevent power consumption from unnecessarily increasing. Since power consumption is reduced, the work amount per one charging increases, and thus it is convenient. Meanwhile, when the load is equal to or larger than the predetermined value, the duty ratio becomes the maximum like in the normal mode. Therefore, work efficiency is improved.
(2) In the second economy mode, in a load range in which the efficiency of the normal mode is higher than the first economy mode, the constant- speed control is not performed and the same control as that in the normal mode is performed. Therefore, it is possible to more effectively use input power as compared to the first economy mode.
(3) In the second economy mode, when the duty ratio is increased from the constant-speed control, regardless of the rotation speed, and when the duty ratio is decreased from 100% for the purpose of the constant current control, the duty ratio is gradually changed (the rotation speed of the circular saw blade 8 is smoothly changed). Therefore, the cordless circular saw has low back action and is easy to use. Also, in every mode, during starting of the brushless motor 9, soft start control is performed. Therefore, even during start, the cordless circular saw has low back action and is easy to use.
(4) In the second economy mode, the load value (for example, 14 A) in the case of decreasing the duty ratio from 100 % for the purpose of the constant-speed control is set to be smaller than the load value in the case of increasing the duty ratio regardless of the rotation speed from the constant-speed control. Therefore, it is possible to prevent control switching from being frequently performed, such that the cordless circular saw becomes stable.
Although the invention has been described by reference to the embodiment, it can be understood by those skilled in the art to which the invention pertains that a variety of modifications can be applied to the components and processes of the embodiment without departing from the scope of claims.
FIG. 14 is a characteristic diagram showing the relation between rotation speed and load current in each mode in an embodiment in which not only duty ratio control but also advance-angle control are performed. In a first mode, in a load current range from 0 to a predetermined value, the brushless motor 9 is controlled, for example, with the duty ratio of 100% and an advance angle of 90 degrees, and if the load current exceeds the predetermined value, the bnishless motor 9 is controlled, for example, with the duty ratio of 100% and an advance angle of 15 degrees. In the first mode, a load current value for changing the advance angle from 15 degrees to 90 degrees is set to be smaller than a load current value for changing the advance angle from 90 degrees to 15 degrees, whereby frequent switching is prevented. In the first mode shown in FIG. 14, during a low load, a large advance angle is taken. Therefore, it is possible to increase the rotation speed during no-load, and in a case of raising its profile with high-speed rotation during no-load, it is effective. In a second mode, in a low load range including no-load, constant-speed control based on duty ratio control with an advance angle of 45 degrees is performed, and if the load current exceeds a load current value at which the duty ratio becomes 100% by the constant-speed control, the brushless motor 9 is controlled, for example, with the duty ratio of 100% and the advance angle of 45 degrees until the load current becomes a predetermined value, and if the load current exceeds the predetermined value, the brushless motor 9 is controlled, for example, with the duty ratio of 100% and the advance angle of 15 degrees. In the second mode, the load current value for changing the advance angle from 15 degrees to 45 degrees is set to be smaller than the load current value for changing the advance angle from the 45 degrees to 15 degrees, whereby frequent switching is prevented. In a third mode, the advance angle is fixed at 15 degrees, and in the low load range including no-load, constant-speed control based on duty ratio control is performed, and if the load current exceeds a value at which the duty ratio becomes 100% by the constant- speed control, the brushless motor 9 is controlled with the duty ratio of 100%. Since the advance- angle control is added as described above, it is possible to set various modes.
FIG. 15 is a side view showing a cordless circular saw according to an embodiment having a mode change switch 16 provided in the vicinity of the main trigger switch 18 of the handle portion 4. According to the configuration of FIG. 15, since it is possible to operate both of the main trigger switch 18 and the mode change switch 16 with a hand grasping the handle portion 4, the cordless circular saw is easy to use. Specifically, in a case of holding the handle portion 4 with a right hand, it is possible to operate the mode change switch 16 with the thumb of the right hand, and in a case of holding the handle portion 4 with a left hand, it is possible to operate the mode change switch 16 with the index finger or middle finger of the left hand. Therefore, it is possible to easily perform mode switching in the middle of work, and operability is excellent.
The electric power tool is not limited to the cordless circular saw as explained above embodiment, and may be any other electric power tool such as a grinder or an electric planer. FIG. 16 is a perspective view showing a grinder according to another embodiment. When a main trigger switch 18 is turned on, whereby a grind stone 8a is rotated by a motor, the grinder performs polishing or grinding. FIG. 17 is a perspective view showing an electric planer according to another embodiment. When a main trigger switch 18 is turned on, whereby a cutter block is rotated by a motor, the electric planer planes the surface of a workpiece. Not only in the case of the grinder shown in FIG. 16 but also in the case of the electric planer shown in FIG. 17, a functional block diagram is the same as FIG. 8, and a control flow chart is the same as FIG. 10, and in a case where a predetermined condition is satisfied, even if the main trigger switch 18 is on, it is possible to perform switching between operation modes by pushing the mode change switch 16. Also, since the mode change switch 16 is provided in the vicinity of the main trigger switch 18 of the handle portion 4, it is possible to operate both of the main trigger switch 18 and the mode change switch 16 with a hand holding the handle portion 4. Also, the present invention may be preferable for an electric power tools such as a grinder or an electric planer which performs rotation control on a brushless motor 9 regardless of the operation amount (pulling amount) of the main trigger switch 18.
In the above-described embodiment, it is possible to select the normal mode in which the duty ratio is always 100%, and an economy mode (the first or second economy mode) in which constant-speed control is performed such that the duty ratio becomes 100% in a high load state. According to this configuration, as described above, it is not necessarily to perform switching from the economy mode to the normal mode according to the load state. Therefore, there are effects that it is unnecessary to frequently perform mode switching during work, and operability is excellent. However, it may be possible to select the normal mode in which the duty ratio is always 100%, and for example, an economy mode (third mode) in which the duty ratio is always 80%. Also, the duty ratio in the normal mode (and the maximum value of the duty ratio in each mode) may be, for example, 95% less than 100%. Also, only the second economy mode described in the embodiment may exist as an operation mode. The brushless motor 9 may be driven in a sensorless manner in which any rotation sensor (position sensor) is not used. In this case, the rotation speed may be detected without using a rotation sensor. In the embodiment, as a driving source, the brushless motor is used. However, a motor with a brush may be used as a driving source. Parameters such as the duty ratio, the rotation speed, and the load current values are not limited to the specific values exemplified in the embodiment, and can be arbitrarily set. This application claims priority from Japanese Patent Application No. 2013-169596 filed on August 19, 2013, the entire contents of which are incorporated herein by reference.

Claims

Claims
1. An electric power tool comprising:
a brushless motor;
a control unit configured to control power supply to the brushless motor;
a rotary tool configured to be rotated by the brushless motor;
a rotation speed detecting unit configured to detect a rotation speed of the brushless motor;
a main switch configured to transmit, to the control unit, an ON/OFF signal for switching between driving and stopping of the brushless motor; and
a mode switching unit configured to transmit, to the control unit, a mode switching signal for switching between multiple modes of rotation control of the brushless motor,
wherein the control unit is configured to perform the rotation control of the brushless motor in any one of the multiple modes including at least a high-speed mode and a low-speed mode.
2. The electric power tool according to claim 1,
wherein in the low-speed mode, the control unit is configured to control the brushless motor to rotate at a predetermined first rotation speed in a predetermined load range, by duty ratio control.
3. The electric power tool according to claim 2,
wherein in the high-speed mode, the control unit is configured to control the brushless motor to rotate at a predetermined second rotation speed higher than the predetermined first rotation speed in a predetermined load range, by duty ratio control.
4. The electric power tool according to claim 1, further comprising:
a battery pack which is removably attached and is configured to supply electric power to the brushless motor and the control unit.
5. The electric power tool according to claim 1 , wherein in the low-speed mode, when a load equal to or larger than a first predetermined value is detected, the control unit is configured to perform switching to predetermined duty ratio control which is independent from the rotation speed of the brushless motor.
6. The electric power tool according to claim 5,
wherein detection of the load equal to or larger than the first predetermined value is performed based on predetermined one or combination of a current, a voltage, and a duty ratio.
7. The electric power tool according to claim 5,
wherein the predetermined duty ratio control includes control for gradually increasing a duty ratio to a predetermined duty ratio and then driving the brushless motor with the predetermined duty ratio.
8. The electric power tool according to claim 5,
wherein when a load equal to or smaller than a second predetermined value which is smaller than the first predetermined value for switching to the predetermined duty ratio control is detected in a state where the predetermined duty ratio control is performed, the control unit is configured to gradually decrease the duty ratio and then control the brushless motor to rotate at a predetermined first rotation speed.
9. The electric power tool according to claim 1,
wherein the rotary tool is a saw blade connected to an output shaft of the brushless motor through a deceleration mechanism, and
wherein in a predetermined load range, the control unit is configured to control the brushless motor in the low-speed mode such that a rotation speed of the saw blade becomes constant in a range from 2,500 rpm to 3,500 rpm, and is configured to control the brushless motor in the high-speed mode such that the rotation speed of the saw blade becomes constant in a range from 4,500 rpm to 5,500 rpm.
10. The electric power tool according to claim 1 , wherein the control unit is configured to perform soft start control for gradually supplying a current at starting of the brushless motor.
11. An electric power tool comprising:
a brushless motor;
a control unit configured to control power supply to the brushless motor;
a rotary tool configured to be rotated by the brushless motor;
a rotation speed detecting unit configured to detect a rotation speed of the brushless motor; and
a main switch configured to transmit, to the control unit, an ON/OFF signal for switching between driving and stopping of the brushless motor,
wherein in a state where constant-speed control is performed on the brushless motor with a duty ratio smaller than 100%, when a load equal to or larger than a first predetermined value is detected, the control unit is configured to perform switching from the constant-speed control to predetermined duty ratio control which is independent from the rotation speed of the brushless motor, and
wherein the predetermined duty ratio control is control for gradually increasing the duty ratio to a predetermined duty ratio and then driving the brushless motor with the predetermined duty ratio.
12. The electric power tool according to claim 11 ,
wherein the load at which the constant-speed control is switched to the predetermined duty ratio control is set to such a threshold value that if the load exceeds the threshold value, an efficiency of the predetermined duty ratio control becomes higher than an efficiency of the constant-speed control, or is set to a value in the vicinity of the threshold value.
13. The electric power tool according to claim 11 ,
wherein when a load equal to or smaller than a second predetermined value is detected in a state where the predetermined duty ratio control is performed, the control unit is configured to gradually decrease the duty ratio such that the rotation speed of the brushless motor becomes a predetermined rotation speed, and then perform the constant- speed control on the brushless motor at the predetermined rotation speed.
14. The electric power tool according to claim 13,
wherein the second predetermined value at which the duty ratio is decreased from the predetermined duty ratio control to the constant-speed control is smaller than the first predetermined value at which the constant-speed control is changed to the predetermined duty ratio control.
PCT/JP2014/071132 2013-08-19 2014-08-04 Electric power tool WO2015025750A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14755173.3A EP3036071B1 (en) 2013-08-19 2014-08-04 Electric power tool
US14/912,838 US10099303B2 (en) 2013-08-19 2014-08-04 Electric power tool
CN201480046017.9A CN105473287B (en) 2013-08-19 2014-08-04 Electric tool
EP22199644.0A EP4137275A1 (en) 2013-08-19 2014-08-04 Electric power tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-169596 2013-08-19
JP2013169596A JP6090576B2 (en) 2013-08-19 2013-08-19 Electric tool

Publications (1)

Publication Number Publication Date
WO2015025750A1 true WO2015025750A1 (en) 2015-02-26

Family

ID=51392315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071132 WO2015025750A1 (en) 2013-08-19 2014-08-04 Electric power tool

Country Status (5)

Country Link
US (1) US10099303B2 (en)
EP (2) EP4137275A1 (en)
JP (1) JP6090576B2 (en)
CN (1) CN105473287B (en)
WO (1) WO2015025750A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017079295A1 (en) * 2015-11-02 2017-05-11 Black & Decker Inc. Reducing noise and lowering harmonics in power tools using conduction band control schemes
TWI688781B (en) * 2015-03-12 2020-03-21 德商羅伯特博斯奇股份有限公司 Diagnostic and maintenance operation for a saw
US10758989B2 (en) 2015-03-12 2020-09-01 Robert Bosch Tool Corporation System and method for sensing cable fault detection in a saw
US10786854B2 (en) 2015-03-12 2020-09-29 Robert Bosch Tool Corporation Table saw with electrically isolated arbor shaft
US10799964B2 (en) 2015-03-12 2020-10-13 Robert Bosch Tool Corporation Table saw with pulley alignment mechanism
US10821529B2 (en) 2015-03-12 2020-11-03 Robert Bosch Tool Corporation Power tool with improved belt tensioning
US10875211B2 (en) 2015-03-12 2020-12-29 Robert Bosch Gmbh Electrical configuration for object detection system in a saw
US11569765B2 (en) 2019-10-11 2023-01-31 Black & Decker Inc. Power tool receiving different capacity battery packs

Families Citing this family (433)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8991676B2 (en) 2007-03-15 2015-03-31 Ethicon Endo-Surgery, Inc. Surgical staple having a slidable crown
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US8720766B2 (en) 2006-09-29 2014-05-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments and staples
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US8632535B2 (en) 2007-01-10 2014-01-21 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US7434717B2 (en) 2007-01-11 2008-10-14 Ethicon Endo-Surgery, Inc. Apparatus for closing a curved anvil of a surgical stapling device
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
RU2493788C2 (en) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Surgical cutting and fixing instrument, which has radio-frequency electrodes
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US20130153641A1 (en) 2008-02-15 2013-06-20 Ethicon Endo-Surgery, Inc. Releasable layer of material and surgical end effector having the same
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
WO2010090940A1 (en) 2009-02-06 2010-08-12 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9168038B2 (en) 2010-09-30 2015-10-27 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a tissue thickness compensator
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
JP6026509B2 (en) 2011-04-29 2016-11-16 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Staple cartridge including staples disposed within a compressible portion of the staple cartridge itself
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
CN104321024B (en) 2012-03-28 2017-05-24 伊西康内外科公司 Tissue thickness compensator comprising a plurality of layers
MX350846B (en) 2012-03-28 2017-09-22 Ethicon Endo Surgery Inc Tissue thickness compensator comprising capsules defining a low pressure environment.
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
RU2636861C2 (en) 2012-06-28 2017-11-28 Этикон Эндо-Серджери, Инк. Blocking of empty cassette with clips
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
MX368026B (en) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Articulatable surgical instruments with conductive pathways for signal communication.
BR112015021082B1 (en) 2013-03-01 2022-05-10 Ethicon Endo-Surgery, Inc surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US10470762B2 (en) 2013-03-14 2019-11-12 Ethicon Llc Multi-function motor for a surgical instrument
US9814460B2 (en) 2013-04-16 2017-11-14 Ethicon Llc Modular motor driven surgical instruments with status indication arrangements
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
DE202014102422U1 (en) * 2013-05-31 2014-08-08 Hitachi Koki Co., Ltd. Electric power tools
JP6066079B2 (en) * 2013-07-30 2017-01-25 日立工機株式会社 Electric tool
EP2835198A1 (en) * 2013-08-09 2015-02-11 HILTI Aktiengesellschaft Intuitive, adaptive spot drilling function
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
DE102013222550A1 (en) * 2013-11-06 2015-05-07 Robert Bosch Gmbh Hand tool
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
EP3112088A4 (en) * 2014-02-28 2017-10-04 Hitachi Koki Co., Ltd. Work tool
EP2915632A1 (en) * 2014-03-07 2015-09-09 HILTI Aktiengesellschaft Adaptive transmission
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
JP6128037B2 (en) * 2014-03-28 2017-05-17 日立工機株式会社 Electric tool
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
US20150297225A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US10470768B2 (en) 2014-04-16 2019-11-12 Ethicon Llc Fastener cartridge including a layer attached thereto
JP6612256B2 (en) 2014-04-16 2019-11-27 エシコン エルエルシー Fastener cartridge with non-uniform fastener
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
CN107427300B (en) 2014-09-26 2020-12-04 伊西康有限责任公司 Surgical suture buttress and buttress material
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
JP6690115B2 (en) * 2014-10-28 2020-04-28 工機ホールディングス株式会社 Electric tool
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
MX2017008108A (en) 2014-12-18 2018-03-06 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
US10011035B2 (en) * 2015-02-23 2018-07-03 Makita Corporation Machining device and electric motor for the same
US10045779B2 (en) 2015-02-27 2018-08-14 Ethicon Llc Surgical instrument system comprising an inspection station
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
WO2016196918A1 (en) * 2015-06-05 2016-12-08 Ingersoll-Rand Company Power tool user interfaces
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10603039B2 (en) 2015-09-30 2020-03-31 Ethicon Llc Progressively releasable implantable adjunct for use with a surgical stapling instrument
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
WO2017120165A1 (en) 2016-01-05 2017-07-13 Milwaukee Electric Tool Corporation Vibration reduction system and method for power tools
EP3411204B1 (en) 2016-02-03 2021-07-28 Milwaukee Electric Tool Corporation System and methods for configuring a reciprocating saw
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
CN108882932B (en) 2016-02-09 2021-07-23 伊西康有限责任公司 Surgical instrument with asymmetric articulation configuration
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
JP6229819B1 (en) * 2016-03-05 2017-11-15 日立工機株式会社 Electric tool
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11179150B2 (en) * 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10523087B2 (en) * 2016-06-24 2019-12-31 Black & Decker Inc. Control scheme for operating cordless power tool based on battery temperature
US10779823B2 (en) 2016-12-21 2020-09-22 Ethicon Llc Firing member pin angle
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
JP7086963B2 (en) 2016-12-21 2022-06-20 エシコン エルエルシー Surgical instrument system with end effector lockout and launch assembly lockout
US10639035B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical stapling instruments and replaceable tool assemblies thereof
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US11571210B2 (en) 2016-12-21 2023-02-07 Cilag Gmbh International Firing assembly comprising a multiple failed-state fuse
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US11211894B2 (en) 2017-04-28 2021-12-28 Koki Holdings Co., Ltd. Electric tool
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
JP6901346B2 (en) 2017-08-09 2021-07-14 株式会社マキタ Electric work machine
JP6916060B2 (en) * 2017-08-09 2021-08-11 株式会社マキタ Electric work machine
CN107671360A (en) * 2017-09-09 2018-02-09 浙江亚特电器有限公司 For reducing the control method of reciprocating saw vibration
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
JP6953288B2 (en) * 2017-11-14 2021-10-27 株式会社マキタ Portable cutting machine
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US10835972B2 (en) 2018-03-16 2020-11-17 Milwaukee Electric Tool Corporation Blade clamp for power tool
USD887806S1 (en) 2018-04-03 2020-06-23 Milwaukee Electric Tool Corporation Jigsaw
EP3774148A4 (en) 2018-04-03 2021-12-15 Milwaukee Electric Tool Corporation Jigsaw
CN110524493B (en) * 2018-05-24 2021-04-06 苏州宝时得电动工具有限公司 Electric tool and electric tool control method
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
AU2020257177B2 (en) * 2019-04-15 2023-04-13 Milwaukee Electric Tool Corporation Sensorless motor control for a power tool
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
CN112140066B (en) * 2019-06-11 2024-04-09 苏州宝时得电动工具有限公司 Electric tool
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
WO2022010851A1 (en) * 2020-07-06 2022-01-13 Milwaukee Electric Tool Corporation Automatic ramp load sense for power tools
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
WO2022232434A1 (en) 2021-04-28 2022-11-03 Milwaukee Electric Tool Corporation Power tool including a machine learning block for controlling field weaken of a permanent magnet motor
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11650038B1 (en) * 2022-12-28 2023-05-16 Christopher R. Fisher Measurement device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120191250A1 (en) * 2009-07-10 2012-07-26 Hitachi Koki Co., Ltd., Power tool
EP2485390A2 (en) * 2011-02-08 2012-08-08 Aisin Seiki Kabushiki Kaisha Driving apparatus of sensorless brushless motor
WO2012108415A1 (en) * 2011-02-10 2012-08-16 株式会社マキタ Electric tool
EP2572834A1 (en) * 2011-09-26 2013-03-27 Makita Corporation Electric power tool

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314576A (en) 1989-06-12 1991-01-23 Yoshitomi Pharmaceut Ind Ltd 1-benzothiepin compound
JP3288432B2 (en) * 1992-06-26 2002-06-04 株式会社マキタ DC motor speed controller
JP4400519B2 (en) * 2005-06-30 2010-01-20 パナソニック電工株式会社 Impact rotary tool
JP4915569B2 (en) * 2006-11-27 2012-04-11 パナソニック株式会社 Electric tool drive control circuit, electric tool
JP5534327B2 (en) * 2010-05-19 2014-06-25 日立工機株式会社 Electric tool
JP5769385B2 (en) * 2010-05-31 2015-08-26 日立工機株式会社 Electric tool
JP5469000B2 (en) * 2010-06-17 2014-04-09 株式会社マキタ Electric tool, lock state occurrence determination device, and program
JP2013169596A (en) 2012-02-23 2013-09-02 Amada Co Ltd System, method and program for creating die layout

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120191250A1 (en) * 2009-07-10 2012-07-26 Hitachi Koki Co., Ltd., Power tool
EP2485390A2 (en) * 2011-02-08 2012-08-08 Aisin Seiki Kabushiki Kaisha Driving apparatus of sensorless brushless motor
WO2012108415A1 (en) * 2011-02-10 2012-08-16 株式会社マキタ Electric tool
EP2674261A1 (en) * 2011-02-10 2013-12-18 Makita Corporation Electric tool
EP2572834A1 (en) * 2011-09-26 2013-03-27 Makita Corporation Electric power tool

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI688781B (en) * 2015-03-12 2020-03-21 德商羅伯特博斯奇股份有限公司 Diagnostic and maintenance operation for a saw
US10758989B2 (en) 2015-03-12 2020-09-01 Robert Bosch Tool Corporation System and method for sensing cable fault detection in a saw
US10786854B2 (en) 2015-03-12 2020-09-29 Robert Bosch Tool Corporation Table saw with electrically isolated arbor shaft
US10799964B2 (en) 2015-03-12 2020-10-13 Robert Bosch Tool Corporation Table saw with pulley alignment mechanism
US10821529B2 (en) 2015-03-12 2020-11-03 Robert Bosch Tool Corporation Power tool with improved belt tensioning
US10875211B2 (en) 2015-03-12 2020-12-29 Robert Bosch Gmbh Electrical configuration for object detection system in a saw
WO2017079295A1 (en) * 2015-11-02 2017-05-11 Black & Decker Inc. Reducing noise and lowering harmonics in power tools using conduction band control schemes
US11329597B2 (en) 2015-11-02 2022-05-10 Black & Decker Inc. Reducing noise and lowering harmonics in power tools using conduction band control schemes
US11569765B2 (en) 2019-10-11 2023-01-31 Black & Decker Inc. Power tool receiving different capacity battery packs

Also Published As

Publication number Publication date
EP3036071B1 (en) 2022-10-05
JP6090576B2 (en) 2017-03-08
EP4137275A1 (en) 2023-02-22
US10099303B2 (en) 2018-10-16
EP3036071A1 (en) 2016-06-29
JP2015037822A (en) 2015-02-26
CN105473287B (en) 2018-10-23
CN105473287A (en) 2016-04-06
US20160193673A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
EP3036071B1 (en) Electric power tool
US10391599B2 (en) Electric power tool
CN110417331B (en) Electric tool
CN109514405B (en) Electric working machine
JP6283161B2 (en) Work machine with operation rod
US9393667B2 (en) Handheld power tool
JP6753472B2 (en) Electric tool
US8328599B2 (en) Internal rotation type direct motor-drive portable angle grinder
JP6690115B2 (en) Electric tool
JP6764255B2 (en) Electric work machine
JP7095688B2 (en) Electric tool
US11541526B2 (en) Hand-held power tool having an electronically commutated motor
JP2023019272A (en) work machine
JP2019033649A (en) Electric tool
JP6308356B2 (en) Cordless power tool
JP2010012547A (en) Power tool
JP2020093369A (en) Electric work machine
US12053855B2 (en) Power tool with electronic control of multiple speeds
CN107508504B (en) Control circuit, signal transmission control method and motor with control circuit
US20140242889A1 (en) Hand Power Tool
WO2023243361A1 (en) Work machine
JP2020093368A (en) Electric work machine
JP2023167815A (en) Work machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046017.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14755173

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14912838

Country of ref document: US

Ref document number: 2014755173

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE