WO2015019861A1 - 試料積載プレート - Google Patents
試料積載プレート Download PDFInfo
- Publication number
- WO2015019861A1 WO2015019861A1 PCT/JP2014/069578 JP2014069578W WO2015019861A1 WO 2015019861 A1 WO2015019861 A1 WO 2015019861A1 JP 2014069578 W JP2014069578 W JP 2014069578W WO 2015019861 A1 WO2015019861 A1 WO 2015019861A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- sample
- substrate
- loading plate
- sample loading
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
- H01J49/0409—Sample holders or containers
- H01J49/0418—Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
Definitions
- the present invention relates to a sample loading plate for loading a sample.
- Matrix-assisted laser desorption / ionization is known as one of ionization methods in mass spectrometry.
- MALDI matrix-assisted laser desorption / ionization
- the analysis target is a substance (matrix) that easily absorbs laser light and is easily ionized.
- the sample (matrix and analysis object) is ionized by irradiating the sample with a laser beam in which an object is dispersed.
- a sample is generally arranged on a metal plate called a sample plate (or target plate), and laser light is irradiated to the sample arranged on the plate. At this time, a voltage is applied to the metal plate as necessary in order to accelerate ions generated with the irradiation of the laser beam.
- a hydrophobic coating such as synthetic wax, natural wax, lipid, organic acid, ester, silicon oil, or silica polymer is applied to the first surface of a rectangular plate made of conductive stainless steel. Is used for MALDI analysis (see Patent Document 1).
- a composite coating including a hydrophobic coating and a coating of a thin film mixture of a matrix and a boundary polymer is formed on at least a part of the first surface of a conductive stainless steel substrate. It is described that the applied sample plate is used for MALDI analysis (see Patent Document 2).
- An object of the present invention is to provide a sample loading plate capable of applying a voltage to a loaded sample and improving the visibility of the loaded sample.
- the sample loading plate of the present invention includes an insulating substrate, a conductive interference layer that is conductive and has a color different from that of the substrate due to light interference, and is stacked on the substrate.
- the substrate is made of ceramics, it is preferable in that plastic deformation of the sample loading plate can be suppressed.
- the water-repellent layer and the conductive interference layer are provided with a loading area for loading the sample as a groove is formed from the sample loading side to the substrate side. This is preferable in that the spread of the sample in the surface direction on the sample loading plate can be suppressed. Furthermore, if the substrate is exposed at the bottom of the groove formed in the water repellent layer and the conductive interference layer, the color difference between the loading area and the bottom of the groove, that is, the substrate, This is preferable in that the visibility of the loading area can be improved. Further, the conductive interference layer is formed by laminating a metal layer made of a metal material and a transparent layer made of a material transparent in the visible region. This is preferable in that the coherence can be easily realized. And if the said transparent layer is comprised with a metal compound, it is preferable at the point which can comprise a conductive interference layer stably.
- the sample loading plate according to the present invention has an insulating substrate and a conductivity and a color different from that of the substrate, and is laminated on the substrate and ionized in mass spectrometry. And a loading layer for loading a sample to be subjected to the above.
- the substrate is made of ceramics, it is preferable in that plastic deformation of the sample loading plate can be suppressed.
- the loading layer is formed by laminating a metal layer made of a metal material and a transparent layer made of a material transparent in the visible region, the loading layer has conductivity and optical coherence. Is preferable in that it can be easily realized.
- the stacking layer includes a first metal layer as the metal layer laminated on the substrate, a first transparent layer as the transparent layer laminated on the first metal layer, and the first transparent layer. And having a second metal layer as the metal layer laminated on the layer and a second transparent layer as the transparent layer laminated on the second metal layer.
- the transparent layer is made of an inorganic material, it is preferable in that the stacking layer can be stably formed.
- the loading layer has a higher water repellency than the substrate, and further includes a water repellent layer on which the sample is loaded, so that the sample is spread in the surface direction on the sample loading plate. Is preferable in that it can be suppressed.
- a sample loading plate capable of applying a voltage to a loaded sample and improving the visibility of the loaded sample.
- (A), (b) is the figure which showed the example of whole structure of the sample mounting plate to which embodiment of this invention is applied. It is sectional drawing for demonstrating the layer structure of a sample loading plate.
- (A), (b) is a figure for demonstrating the structural example of the conductive interference layer in a sample loading plate.
- (A)-(c) is a figure for demonstrating the structure of one island mark periphery in a sample loading plate. It is a figure which shows the structural example of a MALDI-TOFMS apparatus.
- FIG. 1 is a diagram showing an example of the overall configuration of a sample stacking plate 100 to which the present embodiment is applied.
- FIG. 1A is a top view of the sample loading plate 100 as viewed from the sample loading side
- FIG. 1B is a cross-sectional view taken along the line IB-IB in FIG.
- the sample loading plate 100 of the present embodiment is a MALDI-TOFMS (Matrix Assisted Laser Desorption / Ionization-Time of Flight Mass Spectrometry: matrix support in a state in which a sample 200 including an analysis object is loaded (see FIG. 4 described later).
- the laser desorption ionization-time-of-flight mass spectrometry apparatus 1 (see FIG. 5 described later) is mounted and used.
- the sample stacking plate 100 is laminated so as to cover the surface of the substrate 110 having a front surface and a back surface, and a plurality of grooves 130 are formed in a part thereof. And a coating layer 120.
- the substrate 110 constituting the sample loading plate 100 has a shape in which two corners positioned below in a horizontally long rectangle are punched into a rectangular shape. . From another point of view, it can be said that the substrate 110 has a shape in which two horizontally long rectangles are arranged vertically.
- the covering layer 120 covers the surface of the substrate 110 excluding the portion where the groove 130 is formed. In this example, the coating layer 120 or the like is not provided on the back surface of the substrate 110, and the entire back surface of the substrate 110 is exposed to the outside.
- the surface of the substrate 110 is exposed to the outside in the portion of the sample stacking plate 100 where the groove 130 is formed with respect to the coating layer 120.
- the width of the groove 130 is several tens ⁇ m to several hundreds ⁇ m.
- various markings shown in FIG. 1A are provided on the surface side of the substrate 110 by a plurality of grooves 130 formed in the coating layer 120. More specifically, first, island marks 131 each having a C-shape are formed by a plurality of grooves 130 on the surface side and in the central portion of the sample stacking plate 100, 6 rows ⁇ 8 columns ( 48 in total). In the sample stacking plate 100 of the present embodiment, the diameter of each island mark 131 is 2 mm, and the interval between two island marks 131 adjacent vertically or horizontally is also 2 mm.
- row address marks 132 indicating the row positions of the island marks 131 are formed by the plurality of grooves 130. Is formed.
- alphabets “A” to “F” are assigned as row addresses to the first to sixth rows, respectively.
- a column address mark 133 indicating the column position of each island mark 131 is formed by a plurality of grooves 130 above the plurality of island marks 131 arranged in 6 rows ⁇ 8 columns. Is formed.
- Arabic numerals “1” to “8” are assigned as column addresses to the first to eighth columns, respectively.
- a serial number 134 (provided to the sample stacking plate 100 by a plurality of grooves 130). In this example, “000535”) is formed. Further, on the surface side of the sample stacking plate 100, a bar including a code assigned to the sample stacking plate 100 by a plurality of grooves 130 is provided on the lower right side of the plurality of island marks 131 arranged in 6 rows ⁇ 8 columns. A cord 135 is formed.
- a plurality of grooves 130 are provided in the vicinity of the four corners and at the five central portions.
- Each has a cross shape, and an alignment mark 136 is formed as a mark for positioning the sample loading plate 100 in the MALDI-TOFMS apparatus 1 (see FIG. 5) described later.
- FIG. 2 is a sectional view for explaining the layer structure of the sample stacking plate 100 shown in FIG. 1 (an enlarged view of the main part of FIG. 1B).
- the sample stacking plate 100 according to the present embodiment is laminated so as to cover the surface of the substrate 110 and the substrate 110, and a plurality of grooves 130 (one groove in FIG. And 130).
- the substrate 110 is made of an insulating material.
- the substrate 110 is made of alumina ceramic having a purity of about 96%, the thickness is 800 ⁇ m, and the flatness of the front and back surfaces is 5 ⁇ m or less.
- the substrate 110 is made of a ceramic material, minute irregularities due to the presence of ceramic (alumina) grains and grain boundaries are present on the front and back surfaces of the substrate 110. .
- the substrate 110 exhibits a white color when irradiated with white light such as sunlight.
- the covering layer 120 as an example of the stacking layer has conductivity and is configured to exhibit a predetermined color by light interference when irradiated with white light, and the conductive interference layer 121 stacked on the substrate 110.
- a water-repellent layer 122 that has higher water repellency (hydrophobicity) than the substrate 110 and is laminated on at least a part of the conductive interference layer 121 and on which the sample 200 (see FIG. 4 described later) is loaded. And have.
- the conductive interference layer 121 of the present embodiment is made of a conductive metal material, and is made of a first metal layer 1211 stacked on the substrate 110 and a material transparent in the visible region. In the visible region, a first transparent layer 1212 laminated on the first metal layer 1211, a second metal layer 1213 made of a conductive metal material and laminated on the first transparent layer 1212, and It is made of a transparent material and is laminated on the second metal layer 1213, and further includes a second transparent layer 1214 to be laminated on the water repellent layer 122.
- each structure of the 1st metal layer 1211, the 1st transparent layer 1212, the 2nd metal layer 1213, and the 2nd transparent layer 1214 which comprises the conductive interference layer 121 depends on the electroconductivity requested
- the design can be changed as appropriate.
- the color to be exhibited by the conductive interference layer 121 is preferably a chromatic color (red, orange, yellow, green, blue, indigo, purple, etc.) excluding achromatic colors such as white, gray, and black.
- the first metal layer 1211 and the second metal layer 1213 function as metal layers
- the first transparent layer 1212 and the second transparent layer 1214 are transparent layers or metal compound layers. As a function.
- the water repellent layer 122 of the present embodiment is made of a water repellent material containing Si (silicon), C (carbon) and F (fluorine).
- the water contact angle of the water repellent material constituting the water repellent layer 122 is 110 °, and the thickness of the water repellent layer 122 is about 5 nm.
- the substrate 110 described above is made of a material having higher hydrophilicity than the water repellent layer 122 (in this example, alumina).
- FIG. 3 is a diagram for explaining a configuration example of the conductive interference layer 121.
- 3A is a first configuration example in which a conductive interference layer 121 exhibiting a dark blue color is obtained
- FIG. 3B is a second configuration example in which a conductive interference layer 121 exhibiting a blue color is obtained. Each is shown.
- the first metal layer 1211 is made of Ni (nickel) and its thickness is set to 80 nm.
- the first transparent layer 1212 is made of Al 2 O 3 (alumina) and the thickness thereof is set to 80 nm.
- the second metal layer 1213 is made of Ti (titanium) and the thickness thereof is set to 10 nm.
- the second transparent layer 1214 is made of SiO 2 (silica) and its thickness is set to 90 nm.
- the first metal layer 1211 is made of Al (aluminum) and its thickness is set to 100 nm.
- the first transparent layer 1212 is made of TiO 2 (titania) and the thickness thereof is set to 70 nm.
- the second metal layer 1213 is made of Ni (nickel) and the thickness thereof is set to 10 nm.
- the second transparent layer 1214 is made of SiO 2 (silica), and its thickness is set to 140 nm.
- the conductive interference layer 121 a metal layer (more specifically, the first metal layer 1211 and the second metal layer 1213) and a transparent layer (more specifically, the first transparent layer 1212 and the second transparent layer).
- a specific wavelength of light (white light) incident from the outside is reflected by optical interference.
- the degree of optical interference (which wavelength of light is reflected) is determined by the mutual relationship between the constituent material (refractive index) and thickness of each layer constituting the conductive interference layer 121.
- the conductive interference layer 121 adopting the first configuration example shown in FIG. 3A exhibits a dark blue color
- the sample stacking plate 100 is configured by stacking the coating layer 120 exhibiting a chromatic color (for example, the dark blue color or the blue color described above) on the substrate 110 composed of white alumina ceramics.
- a chromatic color for example, the dark blue color or the blue color described above
- the substrate 110 is exposed at a portion where the groove 130 is formed in the covering layer 120. Therefore, the island mark 131, the row address mark 132, the column address mark 133, the serial number 134, the bar code 135, and the alignment mark 136 (all refer to FIG. 1) formed on the sample stacking plate 100 by the respective grooves 130 are white. That is, the visibility of each of these markings is enhanced by the contrast with the coating layer 120 exhibiting a chromatic color.
- the second transparent layer 1214 that is the uppermost layer of the conductive interference layer 121 is made of SiO 2 (The reason why it is composed of (silica) is as follows.
- the water repellent layer 122 is formed on the second transparent layer 1214 constituting the conductive interference layer 121.
- it is necessary to improve the adhesion between the conductive interference layer 121 and the water repellent layer 122.
- the water repellent layer 122 a water repellent material containing Si (silicon) is used as described above. Therefore, in the present embodiment, in the conductive interference layer 121, SiO 2 (silica) containing Si (silicon), which is the same as the water repellent layer 122, is used as the second transparent layer 1214 to be laminated with the water repellent layer 122. Thus, the adhesion between the conductive interference layer 121 and the water repellent layer 122 is enhanced, and the peeling of the water repellent layer 122 from the sample loading plate 100 is suppressed.
- the first metal layer 1211 and the second metal layer 1213 constituting the conductive interference layer 121 are made of different metal materials. It is not limited and may be made of the same metal material. In the example shown in FIGS. 3A and 3B, the first metal layer 1211 and the second metal layer 1213 constituting the conductive interference layer 121 are each made of a single metal (pure metal). However, the present invention is not limited to this, and either one or both may be made of an alloy.
- the first transparent layer 1212 and the second transparent layer 1214 constituting the conductive interference layer 121 are made of different materials. They may be made of the same material. Furthermore, in the example shown in FIGS. 3A and 3B, the first transparent layer 1212 and the second transparent layer 1214 constituting the conductive interference layer 121 are both made of an inorganic material. However, the present invention is not limited to this, and either one or both may be made of an organic material (engineering plastic) such as PE (polyethylene), PP (polypropylene), or PMMA (polymethyl methacrylate). In the example shown in FIGS.
- PE polyethylene
- PP polypropylene
- PMMA polymethyl methacrylate
- the first transparent layer 1212 and the second transparent layer 1214 constituting the conductive interference layer 121 are each made of a metal oxide.
- the present invention is not limited to this, and either one or both may be made of an inorganic material such as a metal nitride or a metal fluoride.
- the first transparent layer 1212 and the second transparent layer 1214 constituting the conductive interference layer 121 are made of an insulating material.
- one or both of them may be made of a conductive inorganic material such as ITO (indium titanium oxide).
- FIG. 4 is a diagram for explaining the configuration around one island mark 131 in the sample stacking plate 100 shown in FIG.
- FIG. 4A is a top view of the sample loading plate 100 as viewed from the sample loading side
- FIG. 4B is a sectional view taken along the line IVB-IVB in FIG. ) Is a sectional view taken along the line IVC-IVC in FIG.
- FIG. 4 also shows the sample 200 loaded on the sample loading plate 100.
- the coating layer 120 is positioned outside the island mark 131 and the island-shaped portion 120a located inside the island mark 131 obtained by the groove 130 formed in a C-shape. By doing so, it has the surrounding part 120b which surrounds the island-like part 120a.
- the island mark 131 is formed in a C shape with respect to the covering layer 120, the island-shaped portion 120a and the surrounding portion 120b are not completely separated, but are partially integrated. Maintained (connected) state.
- 48 island marks 131 are formed on one sample loading plate 100 (see FIG. 1), there are also 48 island portions 120a.
- the sample 200 can be loaded on each of 48 island portions 120a as an example of a loading area.
- sample 200 loaded on the sample loading plate 100 of the present embodiment will be described.
- MALDI Microx Assisted Laser Desorption / Ionization
- a matrix that specifically absorbs a laser that oscillates at a specific wavelength for example, ultraviolet
- a sample 200 in which the analysis object is dispersed and solidified is used.
- the analysis target include specimens such as blood, saliva, sputum or urine extracted from a living body, various organic compounds, and the like.
- the matrix used in the case of using an ultraviolet laser includes SA (sinapinic acid), CHCA ( ⁇ -cyano-4-hydroxycinnamic acid), DHBA (2,5-dihydroxybenzoic acid), HABA (2- (4-hydroxy phenylazo) benzoic acid) and the like.
- sample 200 has been described as including an analysis target and a matrix, but an ionization aid can be further added to the sample 200 as necessary.
- the liquid sample 200 is prepared by mixing the solvent, the matrix, and the analysis object and dispersing the analysis object in the matrix.
- the matrix is excessively supplied to the analysis object.
- the obtained sample 200 also exhibits white.
- 48 sample-like portions 120a are provided on one sample-loading plate 100, and the sample 200 can be loaded on each island-like portion 120a. Therefore, 48 types of samples 200 having different analysis objects can be loaded on one sample loading plate 100 at the maximum.
- the sample stacking plate 100 is installed so that the coating layer 120 faces upward. Then, a liquid sample 200 is supplied to each island 120a in the sample stacking plate 100. At this time, the island-shaped portion 120a as the supply destination is easily discriminated by the island mark 131 (groove 130) having a white color provided corresponding to the island-shaped portion 120a having a chromatic color.
- the liquid sample 200 may be supplied to the island portion 120a by dropping, for example, or may be supplied to the island portion 120a by application, for example.
- the liquid sample 200 supplied to the island-shaped part 120a tends to spread radially along the surface of the island-shaped part 120a due to the influence of gravity. However, since the liquid sample 200 is supplied to the water-repellent layer 122 located at the uppermost part of the island-shaped portion 120a, the liquid sample 200 has this radial spread due to the water-repellent layer 122. The power to suppress it also works. When the force for spreading the liquid sample 200 radially overcomes the force for suppressing the radial spread, the liquid sample 200 spreads from the island portion 120a toward the surrounding portion 120b. It will follow.
- island marks 131 formed by the grooves 130 are formed on the outside of the island-shaped portion 120a, that is, on the portion facing the surrounding portion 120b. Therefore, the sample 200 heading from the island-shaped portion 120a to the surrounding portion 120b enters the inside of the groove 130 constituting the island mark 131 before reaching the surrounding portion 120b, and the bottom portion, that is, the substrate 110 is exposed. Reach the part to be. At this time, in this embodiment, since the substrate 110 is made of alumina having higher hydrophilicity than the water repellent layer 122, the sample 200 that has entered the groove 130 is in a stable state in the groove 130. Stays inside.
- each sample 200 loaded on each island 120a in the sample loading plate 100 is dried and solidified.
- Each sample 200 solidified on the sample stacking plate 100 is continuously white. Thus, the loading (fixing) of each sample 200 on the sample loading plate 100 is completed.
- the substrate 110 is formed. More specifically, the base material (alumina ceramic) of the substrate 110 previously molded and fired into the shape shown in FIG. 1 is polished on its front and back surfaces to a thickness of 800 ⁇ m and flatness of 5 ⁇ m or less. A substrate 110 set to be obtained.
- the base material alumina ceramic
- the covering layer 120 including the conductive interference layer 121 and the water repellent layer 122 is formed on the surface of the substrate 110 obtained by the substrate forming step.
- the conductive interference layer 121 including the first metal layer 1211, the first transparent layer 1212, the second metal layer 1213, and the second transparent layer 1214, and the water repellent layer 122 are equipped with a plurality of vapor deposition sources. By using a possible electron beam evaporation apparatus, the layers are sequentially stacked in a batch process.
- a metal material corresponding to each layer is used as a deposition source on the surface of the substrate 110 disposed in a chamber (not shown),
- the first metal layer 1211 and the second metal layer 1213 are subjected to electron beam vapor deposition in a high vacuum, and the first transparent layer 1212 and the second transparent layer 1214 in an oxygen atmosphere, respectively. Get each layer you want.
- the conductive interference layer 121 (from the interference layer 121 (which is already formed on the surface of the substrate 110 by the above process) is disposed in a chamber (not shown). More specifically, a steel wool containing a water repellent material containing Si (silicon), C (carbon) and F (fluorine) is exposed to the exposed surface of the second transparent layer 1214) in a high vacuum. Perform electron beam evaporation at Then, the water-repellent material evaporated from the steel wool adheres onto the second transparent layer 1214, thereby obtaining the target water-repellent layer 122. In the coating layer forming step, the substrate 110 can be heated as necessary. As described above, the covering layer 120 is formed over the entire surface of the substrate 110.
- the irradiation position of the coating layer 120 formed on the surface of the substrate 110 by using the second harmonic (532 nm) of the Nd-YAG laser (oscillation wavelength: 1054 nm) is determined by the coating layer forming step.
- the groove 130 is formed by sequentially moving the groove 130. At this time, the laser power, irradiation time, and the like are determined so that the coating layer 120 is removed by the irradiated laser, and the groove 130 in which the surface of the substrate 110 is exposed to the outside is formed.
- a plurality of grooves 130 are sequentially formed by the above process on the covering layer 120 formed on the surface of the substrate 110.
- the island layer 131, the row address mark 132, the column address mark 133, the serial number 134, the bar code 135, and the alignment mark 136 are provided on the covering layer 120 stacked on the substrate 110 by a plurality of grooves 130. .
- the sample loading plate 100 shown in FIG. 1 and the like is obtained.
- FIG. 5 is a diagram illustrating a configuration example of the MALDI-TOFMS apparatus 1.
- the MALDI-TOFMS apparatus 1 ionizes a sample 200 including an analysis object by MALDI (Matrix Assisted Laser Desorption / Ionization), and converts each ion obtained by ionizing the sample 200 to TOFMS (Time of Flight Mass).
- MALDI Microx Assisted Laser Desorption / Ionization
- TOFMS Time of Flight Mass
- the MALDI-TOFMS apparatus 1 irradiates a laser beam onto a plate holding unit 10 that holds a sample loading plate 100 on which a sample 200 is loaded, and a sample 200 that is loaded on the sample loading plate 100 held on the plate holding unit 10.
- a flight space as a flight path of each ion obtained by ionizing the sample 200, which is desorbed from the sample 200 along with the irradiation of the laser light, thereby performing mass separation of each ion.
- a mass separation unit 30 is provided, and a detection unit 40 that detects each ion that has reached through the flight space in the mass separation unit 30 in time series.
- the plate holding unit 10 mounts the sample loading plate 100 via the back surface side of the substrate 110 and is provided with a movable base provided to be movable in the x direction and the y direction perpendicular to the x direction shown in FIG. 11 and a clamp 12 each of which has a hook-like shape and is attached to the movable base 11 and sandwiches and holds the sample stacking plate 100 mounted on the movable base 11.
- the free end side of each clamp 12 is in contact with the loading surface side of the sample 200 on the sample loading plate 100, that is, the coating layer 120 (see FIG. 1), with the sample loading plate 100 mounted on the movable base 11. It is like that.
- the movable base 11 and the clamp 12 constituting the plate holding part 10 are both made of a conductive metal material.
- a first voltage V ⁇ b> 1 is applied to the plate holding unit 10 via a movable base 11 from a power source (not shown). Therefore, the first voltage V1 applied to the movable base 11 is transmitted to the coating layer 120 provided on the sample stacking plate 100 via the clamp 12. Further, in the present embodiment, the plate holding unit 10 moves in the x direction and the y direction via the movable base 11, whereby the sample 200 existing at the laser irradiation position (measurement target position) from the laser light source 20. Can be changed.
- the laser light source 20 is constituted by a nitrogen gas laser (oscillation wavelength: 337 nm) which is a kind of ultraviolet laser operating by pulse oscillation. Note that the oscillation wavelength of the laser light source 20 can be changed according to the absorption wavelength of the matrix constituting the sample 200. Therefore, depending on the type of matrix constituting the sample 200, another laser different from the nitrogen gas laser may be used.
- a nitrogen gas laser oscillation wavelength: 337 nm
- the oscillation wavelength of the laser light source 20 can be changed according to the absorption wavelength of the matrix constituting the sample 200. Therefore, depending on the type of matrix constituting the sample 200, another laser different from the nitrogen gas laser may be used.
- the mass separation unit 30 includes a first grid 31 disposed facing the plate holding unit 10, a second grid 32 disposed facing the first grid 31, a second grid 32, and a detection unit 40. And an end plate 33 disposed to face each other.
- each of the first grid 31, the second grid 32, and the end plate 33 is configured by attaching a metal grid to a metal frame, and is positioned at a position where a laser from the laser light source 20 is irradiated. When viewed from the existing sample 200, it is arranged on the downstream side in the z direction (direction orthogonal to the x direction and the y direction).
- the first voltage 31 is applied to the first grid 31 by a power source (not shown).
- the second grid 32 and the end plate 33 are grounded.
- the detection unit 40 faces the end plate 33 and is disposed further downstream in the z direction than the mass separation unit 30 when viewed from the sample 200 present at the laser irradiation position from the laser light source 20.
- the plate holding unit 10, the mass separation unit 30 and the detection unit 40 that hold the sample loading plate 100 are usually arranged inside a chamber set at a high vacuum. In the flight space, gas particles and the like do not hinder flight.
- the sample holding plate 100 on which each sample 200 is loaded is attached to the plate holding unit 10. Then, with the sample stacking plate 100 mounted, the movable base 11 of the plate holding unit 10 is moved in the x direction and the y direction, thereby placing the sample 200 to be analyzed at the measurement target position. Further, in the state before starting the mass analysis operation, the first voltage V1 applied to the plate holding unit 10 and the second voltage V2 applied to the first grid 31 in the mass separation unit 30 have the same magnitude. Set to ( ⁇ 0).
- laser light is irradiated from the laser light source 20 toward the sample 200 existing at the measurement target position. Then, in the sample 200 irradiated with the laser light, as the matrix in the sample 200 absorbs the laser light, both the matrix constituting the sample 200 and the analysis object are ionized and start to fly in the z direction. .
- first voltage V1 first voltage
- first voltage V2 second voltage
- V2 voltage V2
- the first voltage V ⁇ b> 1 applied to the movable base 11 of the plate holder 10 is also supplied to the coating layer 120 provided on the sample stacking plate 100 via the clamp 12.
- the coating layer 120 is provided with the first metal layer 1211 and the second metal layer 1213 (see FIG. 2) having conductivity, the potential of the coating layer 120 and the coating layer 120 are opposed to each other.
- the potential difference from the first grid 31 is almost zero. As a result, each ion flying in the z direction from the sample loading plate 100 side provided with the coating layer 120 to the first grid 31 side moves without being accelerated by a potential difference.
- the first voltage V ⁇ b> 1 supplied to the plate holding unit 10 and the second voltage V ⁇ b> 2 supplied to the first grid 31.
- the first voltage V1> the second voltage V2 When the flying ions are positively charged, the first voltage V1> the second voltage V2, and when the flying ions are negatively charged, the first voltage V1 ⁇ second.
- the voltage is V2.
- the ions flying along the z direction between the plate holding unit 10 (covering layer 120) and the first grid 31 are accelerated by the potential difference therebetween, and the second grid 32 and the end plate 33 are further accelerated. To reach the detection unit 40.
- ions having a small molecular weight and light weight reach the detection unit 40 in a relatively short flight time.
- ions having a large molecular weight and heavy ions reach the detection unit 40 in a relatively long flight time. Will reach. That is, the time to reach the detection unit 40 varies depending on the weight of the flying ions (molecular weight).
- the detection result by the detection part 40 is output to the analysis apparatus (for example, computer apparatus) which is not shown in figure, Mass analysis regarding the analysis target object which comprises the sample 200 is performed by this analysis apparatus.
- the coating layer 120 (more specifically, the conductive interference layer 121) that is formed on the substrate 110 and on which the sample 200 is to be stacked has conductivity, so that the sample 200 is electrically conductive. The voltage can be applied.
- the sample 200 is loaded on the island-shaped portion 120 a that is inside the island mark 131 in the coating layer 120 provided on the sample loading plate 100.
- the first voltage is also applied to the island portion 120a on which the sample 200 is loaded. V1 is applied.
- the first metal layer 1211 and the second metal layer 1213 constituting the conductive layer are not exposed on the surface, but the sample loading plate 100 is attached to the movable base 11 using the clamp 12. It is considered that the clamp 12 and the second metal layer 1213 and / or the first metal layer 1211 are in direct contact with each other due to scratches or the like formed at the time, and conduction is established between them.
- the conductive interference layer 121 of the coating layer 120 provided on the sample stacking plate 100 is provided with a chromatic color function and a conductive function. Compared with the case where it provides in, it becomes possible to simplify the structure of the sample loading plate 100. FIG.
- a plate made of ceramics is used as the substrate in the sample loading plate 100 instead of a metal plate.
- the sample loading plate 100 of the present embodiment is less likely to be deformed due to bending force or twisting force. Therefore, the sample loading plate 100 of the present embodiment can maintain the flatness of the coating layer 120 formed on the substrate 110 over a long period of time. Further, deformation of the sample loading plate 100 when the sample loading plate 100 of the present embodiment is mounted on the plate holding unit 10 is also suppressed.
- each layer constituting the coating layer 120 is formed by using the electron beam evaporation method.
- the present invention is not limited to this, and other film forming methods may be used. It doesn't matter.
- the groove 130 is formed in the sample stacking plate 100 using the laser processing method, but the present invention is not limited to this, and the formation using another method may be performed. Absent.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
この試料積載プレートにおいて、前記基板がセラミックスにて構成されることを特徴とすれば、試料積載プレートの塑性変形を抑制できるという点で好ましい。
また、前記撥水層および前記導電干渉層には、前記試料を積載する側から前記基板側へと向かう溝が形成されることに伴い、当該試料を積載するための積載領域が設けられていることを特徴とすれば、試料積載プレート上での試料の面方向への広がりを抑制できるという点で好ましい。
さらに、前記撥水層および前記導電干渉層に形成される前記溝の底部には、前記基板が露出していることを特徴とすれば、積載領域と溝の底部すなわち基板との色の違いにより、積載領域の視認性を向上させることができる点で好ましい。
さらにまた、前記導電干渉層は、金属材料で構成される金属層と、可視領域において透明な材料で構成される透明層とを積層して構成されることを特徴とすれば、導電性と光干渉性とを容易に実現できる点で好ましい。
そして、前記透明層が金属化合物で構成されることを特徴とすれば、導電干渉層を安定的に構成できる点で好ましい。
この試料積載プレートにおいて、前記基板がセラミックスにて構成されることを特徴とすれば、試料積載プレートの塑性変形を抑制できるという点で好ましい。
また、前記積載層は、金属材料で構成される金属層と、可視領域において透明な材料で構成される透明層とを積層して構成されることを特徴とすれば、導電性と光干渉性とを容易に実現できる点で好ましい。
さらに、前記積載層は、前記基板上に積層される前記金属層としての第1金属層と、当該第1金属層上に積層される前記透明層としての第1透明層と、当該第1透明層上に積層される当該金属層としての第2金属層と、当該第2金属層上に積層される当該透明層としての第2透明層とを有することを特徴とすれば、導電性と光干渉性とを容易に実現できる点で好ましい。
さらにまた、前記透明層が無機材料で構成されることを特徴とすれば、積載層を安定的に構成できる点で好ましい。
そして、前記積載層は、前記基板に比べて高い撥水性を有し、前記試料を積載する撥水層をさらに含むことを特徴とすれば、試料積載プレート上での試料の面方向への広がりを抑制できるという点で好ましい。
<試料積載プレートの構成>
図1は、本実施の形態が適用される試料積載プレート100の全体構成例を示す図である。ここで、図1(a)は試料を積載する側から試料積載プレート100をみた上面図であり、図1(b)は図1(a)におけるIB-IB断面図である。
より具体的に説明すると、まず、試料積載プレート100の表面側且つ中央部には、複数の溝130によって、それぞれがC字状の形状を有するアイランドマーク131が、縦6行×横8列(合計48個)に並べて形成されている。本実施の形態の試料積載プレート100において、各アイランドマーク131の直径は2mmであり、縦あるいは横に隣接する2つのアイランドマーク131同士の間隔も2mmである。
上述したように、本実施の形態の試料積載プレート100は、基板110と、基板110の表面を覆うように積層されるとともに、その一部には複数の溝130(図2には1つの溝130のみを示す)が形成されてなる被覆層120とを有している。
本実施の形態の試料積載プレート100では、図2等にも示したように、導電干渉層121を構成する第2透明層1214の上に、撥水層122が形成される。試料積載プレート100において、導電干渉層121からの撥水層122の剥がれを抑制するためには、導電干渉層121と撥水層122との密着性を高める必要がある。
なお、図4には、試料積載プレート100に積載される試料200も、併せて示している。
ではここで、本実施の形態の試料積載プレート100に積載される試料200について説明しておく。
後述するMALDI-TOFMS装置1(図5参照)が採用するMALDI(Matrix Assisted Laser Desorption/Ionization:マトリックス支援レーザ脱離イオン化)では、特定波長(例えば紫外)で発振するレーザを特異的に吸収するマトリックス中に、分析対象物を分散させ且つ固化させたものを、試料200として用いる。ここで、分析対象物としては、生体から取り出された血液、唾液、痰あるいは尿等の検体や、各種有機化合物等が挙げられる。
続いて、試料積載プレート100に対する試料200の積載方法について説明を行う。
ここでは、まず、溶媒とマトリックスと分析対象物とを混合してマトリックス中に分析対象物を分散させることにより、液体状の試料200を準備する。液体状の試料200の作製においては、分析対象物に対してマトリックスを過剰に供給する。ここで、マトリックスは白色を呈するものであるため、得られる試料200も白色を呈するようになっている。
以上により、試料積載プレート100に対する各試料200の積載(固定)が完了する。
次に、図1等に示す試料積載プレート100の製造方法について説明する。
最初に、基板110の形成を行う。具体的に説明すると、図1に示す形状に予め成型、焼成された基板110の母材(アルミナセラミックス)に対し、その表面および裏面に対する研磨を行い、厚さを800μmとし且つ平坦性を5μm以下に設定した基板110を得る。
次に、上記基板形成工程によって得られた基板110の表面に対し、導電干渉層121および撥水層122を含む被覆層120を形成する。なお、この例において、第1金属層1211、第1透明層1212、第2金属層1213および第2透明層1214を含む導電干渉層121と、撥水層122とは、複数の蒸着源を搭載可能な電子ビーム蒸着装置を用いることで、1バッチのプロセスにて順次積層されるようになっている。
以上により、基板110における表面の全面にわたって、被覆層120が形成される。
続いて、上記被覆層形成工程により、基板110の表面に形成された被覆層120に対し、Nd-YAGレーザ(発振波長:1054nm)の2次高調波(532nm)を用いて、その照射位置を順次移動させていくことで、溝130の形成を行う。このとき、照射されたレーザによって被覆層120が除去され、基板110の表面が外部に露出する溝130が形成されるように、レーザのパワーや照射時間等が決められる。
以上により、図1等に示す試料積載プレート100が得られる。
図5は、MALDI-TOFMS装置1の構成例を示す図である。
このMALDI-TOFMS装置1は、分析対象物を含む試料200を、MALDI(Matrix Assisted Laser Desorption/Ionization)によってイオン化するとともに、試料200をイオン化して得られた各イオンを、TOFMS(Time of Flight Mass Spectrometry)によって時間的に分離して検出する方式を採用した質量分析装置である。
なお、特に図示はしていないが、MALDI-TOFMS装置1において、試料積載プレート100を保持したプレート保持部10、質量分離部30および検出部40は、通常、高真空に設定されたチャンバの内部に配置されるようになっており、飛行空間においてガスの粒子等が飛行の障害とはならないようにされる。
では、図5に示すMALDI-TOFMS装置1による質量分析動作について、簡単に説明を行う。
また、質量分析動作を開始する前の状態において、プレート保持部10に印加される第1電圧V1、および、質量分離部30における第1グリッド31に印加される第2電圧V2を、同じ大きさ(≠0)に設定する。
また、本実施の形態では、電子ビーム蒸着法を用いて、被覆層120を構成する各層の形成を行うようにしていたが、これに限られるものではなく、他の成膜法を用いてもかまわない。
さらに、本実施の形態では、レーザ加工法を用いて試料積載プレート100に溝130を形成するようにしていたが、これに限られるものではなく、他の手法を用いた形成を行ってもかまわない。
Claims (12)
- 絶縁性を有する基板と、
導電性を有するとともに光の干渉に伴って前記基板とは異なる色を呈するように構成され、当該基板上に積層される導電干渉層と、
前記基板よりも高い撥水性を備え、前記導電干渉層上の少なくとも一部に積層される撥水層とを備え、
前記導電干渉層または前記撥水層の少なくとも一方に、質量分析においてイオン化の対象となる試料を積載する試料積載プレート。 - 前記基板がセラミックスにて構成されることを特徴とする請求項1記載の試料積載プレート。
- 前記撥水層および前記導電干渉層には、前記試料を積載する側から前記基板側へと向かう溝が形成されることに伴い、当該試料を積載するための積載領域が設けられていることを特徴とする請求項1または2記載の試料積載プレート。
- 前記撥水層および前記導電干渉層に形成される前記溝の底部には、前記基板が露出していることを特徴とする請求項3記載の試料積載プレート。
- 前記導電干渉層は、金属材料で構成される金属層と、可視領域において透明な材料で構成される透明層とを積層して構成されることを特徴とする請求項1乃至4のいずれか1項記載の試料積載プレート。
- 前記透明層が金属化合物で構成されることを特徴とする請求項5記載の試料積載プレート。
- 絶縁性を有する基板と、
導電性を有するとともに前記基板とは異なる色を呈し、当該基板上に積層されるとともに質量分析においてイオン化の対象となる試料を積載する積載層と
を有する試料積載プレート。 - 前記基板がセラミックスにて構成されることを特徴とする請求項7記載の試料積載プレート。
- 前記積載層は、金属材料で構成される金属層と、可視領域において透明な材料で構成される透明層とを積層して構成されることを特徴とする請求項7または8記載の試料積載プレート。
- 前記積載層は、前記基板上に積層される前記金属層としての第1金属層と、当該第1金属層上に積層される前記透明層としての第1透明層と、当該第1透明層上に積層される当該金属層としての第2金属層と、当該第2金属層上に積層される当該透明層としての第2透明層とを有することを特徴とする請求項9記載の試料積載プレート。
- 前記透明層が無機材料で構成されることを特徴とする請求項9または10記載の試料積載プレート。
- 前記積載層は、前記基板に比べて高い撥水性を有し、前記試料を積載する撥水層をさらに含むことを特徴とする請求項7乃至11のいずれか1項記載の試料積載プレート。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/900,963 US9799501B2 (en) | 2013-08-07 | 2014-07-24 | Sample mounting plate |
JP2015530816A JP6336984B2 (ja) | 2013-08-07 | 2014-07-24 | 試料積載プレート |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-164618 | 2013-08-07 | ||
JP2013164618 | 2013-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015019861A1 true WO2015019861A1 (ja) | 2015-02-12 |
Family
ID=52461200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/069578 WO2015019861A1 (ja) | 2013-08-07 | 2014-07-24 | 試料積載プレート |
Country Status (3)
Country | Link |
---|---|
US (1) | US9799501B2 (ja) |
JP (1) | JP6336984B2 (ja) |
WO (1) | WO2015019861A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3139400A1 (en) * | 2015-09-04 | 2017-03-08 | Kabushiki Kaisha Toshiba | Position correction sample, mass spectrometry device, and mass spectrometry method |
WO2017159878A1 (ja) * | 2016-03-18 | 2017-09-21 | シチズンファインデバイス株式会社 | 試料積載プレート及びその製造方法 |
JP2017181286A (ja) * | 2016-03-30 | 2017-10-05 | シチズンファインデバイス株式会社 | 試料積載プレート |
JP2017181333A (ja) * | 2016-03-31 | 2017-10-05 | シチズンファインデバイス株式会社 | 試料積載プレート及びその製造方法 |
EP3418732A4 (en) * | 2016-03-18 | 2019-11-13 | Citizen Finedevice Co., Ltd. | SAMPLE LOADING PLATE AND METHOD OF MANUFACTURING THE SAME |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3101406B1 (de) * | 2015-06-05 | 2022-12-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur präparation einer probe für die mikrostrukturdiagnostik sowie probe für die mikrostrukturdiagnostik |
JP7356991B2 (ja) * | 2018-03-14 | 2023-10-05 | ビオメリュー・インコーポレイテッド | 計器の光源を位置合わせするための方法および関連する機器 |
US11137343B2 (en) * | 2019-12-10 | 2021-10-05 | Trustees Of Boston University | Apparatus and method for biomolecular analysis |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003247983A (ja) * | 2002-02-25 | 2003-09-05 | Nippon Laser & Electronics Lab | 標的物質質量分析システム |
JP2003536073A (ja) * | 2000-06-05 | 2003-12-02 | カイロン コーポレイション | プロテオミクス分析を実施するためのマイクロアレイ |
JP2004045103A (ja) * | 2002-07-09 | 2004-02-12 | Futaba Corp | マイクロプレート |
JP2007502980A (ja) * | 2003-08-21 | 2007-02-15 | アプレラ コーポレイション | Maldi質量分析法のためのマトリックス干渉の軽減 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7122790B2 (en) * | 2000-05-30 | 2006-10-17 | The Penn State Research Foundation | Matrix-free desorption ionization mass spectrometry using tailored morphology layer devices |
US7153682B2 (en) | 2000-06-05 | 2006-12-26 | Chiron Corporation | Microarrays on mirrored substrates for performing proteomic analyses |
US7148058B2 (en) | 2000-06-05 | 2006-12-12 | Chiron Corporation | Protein microarrays on mirrored surfaces for performing proteomic analyses |
GB0120131D0 (en) * | 2001-08-17 | 2001-10-10 | Micromass Ltd | Maldi target plate |
US6900061B2 (en) | 2002-08-23 | 2005-05-31 | Perseptive Biosystems, Inc. | MALDI plate and process for making a MALDI plate |
US7727773B2 (en) * | 2006-10-31 | 2010-06-01 | Semiconductor Energy Laboratory Co., Ltd | Method of manufacturing an analytical sample and method of analyzing an analytical sample |
US8459295B2 (en) * | 2009-01-20 | 2013-06-11 | The Regents Of The University Of California | Localized droplet heating with surface electrodes in microfluidic chips |
-
2014
- 2014-07-24 JP JP2015530816A patent/JP6336984B2/ja active Active
- 2014-07-24 US US14/900,963 patent/US9799501B2/en active Active
- 2014-07-24 WO PCT/JP2014/069578 patent/WO2015019861A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003536073A (ja) * | 2000-06-05 | 2003-12-02 | カイロン コーポレイション | プロテオミクス分析を実施するためのマイクロアレイ |
JP2003247983A (ja) * | 2002-02-25 | 2003-09-05 | Nippon Laser & Electronics Lab | 標的物質質量分析システム |
JP2004045103A (ja) * | 2002-07-09 | 2004-02-12 | Futaba Corp | マイクロプレート |
JP2007502980A (ja) * | 2003-08-21 | 2007-02-15 | アプレラ コーポレイション | Maldi質量分析法のためのマトリックス干渉の軽減 |
Non-Patent Citations (1)
Title |
---|
SHIN'ICHIRO KAWAHATA: "MALDI-TOFMS", JOURNAL OF THE JAPAN SOCIETY OF COLOUR MATERIAL, vol. 79, no. 6, 20 June 2006 (2006-06-20), pages 257 - 262 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3139400A1 (en) * | 2015-09-04 | 2017-03-08 | Kabushiki Kaisha Toshiba | Position correction sample, mass spectrometry device, and mass spectrometry method |
WO2017159878A1 (ja) * | 2016-03-18 | 2017-09-21 | シチズンファインデバイス株式会社 | 試料積載プレート及びその製造方法 |
JPWO2017159878A1 (ja) * | 2016-03-18 | 2019-01-24 | シチズンファインデバイス株式会社 | 試料積載プレート及びその製造方法 |
EP3418732A4 (en) * | 2016-03-18 | 2019-11-13 | Citizen Finedevice Co., Ltd. | SAMPLE LOADING PLATE AND METHOD OF MANUFACTURING THE SAME |
US10665445B2 (en) | 2016-03-18 | 2020-05-26 | Citizen Finedevice Co., Ltd. | Sample mounting plate and method for manufacturing the same |
US10796892B2 (en) | 2016-03-18 | 2020-10-06 | Citizen Finedevice Co., Ltd. | Sample mounting plate and method for manufacturing the same |
JP2017181286A (ja) * | 2016-03-30 | 2017-10-05 | シチズンファインデバイス株式会社 | 試料積載プレート |
JP2017181333A (ja) * | 2016-03-31 | 2017-10-05 | シチズンファインデバイス株式会社 | 試料積載プレート及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20160141166A1 (en) | 2016-05-19 |
JP6336984B2 (ja) | 2018-06-06 |
US9799501B2 (en) | 2017-10-24 |
JPWO2015019861A1 (ja) | 2017-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6336984B2 (ja) | 試料積載プレート | |
JP6591160B2 (ja) | 試料積載プレート | |
US11646187B2 (en) | Surface-assisted laser desorption/ionization method, mass spectrometry method and mass spectrometry device | |
JP6205299B2 (ja) | 試料積載プレート | |
JP6363527B2 (ja) | 試料積載プレート | |
US20150155152A1 (en) | Mass spectrometry apparatus | |
Hazama et al. | Development of a stigmatic mass microscope using laser desorption/ionization and a multi-turn time-of-flight mass spectrometer | |
CN111465843B (zh) | 激光解吸电离法、质谱法、试样支承体和试样支承体的制造方法 | |
US10796892B2 (en) | Sample mounting plate and method for manufacturing the same | |
US10665445B2 (en) | Sample mounting plate and method for manufacturing the same | |
JP6787682B2 (ja) | 試料積載プレート及びその製造方法 | |
JP6757693B2 (ja) | 試料積載プレートの製造方法 | |
JP6727881B2 (ja) | 試料積載プレート | |
JP7236394B2 (ja) | レーザ脱離イオン化法及び質量分析方法 | |
US11120981B2 (en) | Laser desorption/ionization method and mass spectrometry method | |
WO2020202729A1 (ja) | 試料支持体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14834122 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015530816 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14900963 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14834122 Country of ref document: EP Kind code of ref document: A1 |