WO2015017768A1 - Methods for fixing hair and skin - Google Patents
Methods for fixing hair and skin Download PDFInfo
- Publication number
- WO2015017768A1 WO2015017768A1 PCT/US2014/049388 US2014049388W WO2015017768A1 WO 2015017768 A1 WO2015017768 A1 WO 2015017768A1 US 2014049388 W US2014049388 W US 2014049388W WO 2015017768 A1 WO2015017768 A1 WO 2015017768A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- hair
- formulation
- binding agent
- charges
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/46—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/36—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/36—Carboxylic acids; Salts or anhydrides thereof
- A61K8/362—Polycarboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/41—Amines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/41—Amines
- A61K8/416—Quaternary ammonium compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/002—Preparations for repairing the hair, e.g. hair cure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/004—Preparations used to protect coloured hair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/02—Preparations for cleaning the hair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/04—Preparations for permanent waving or straightening the hair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/06—Preparations for styling the hair, e.g. by temporary shaping or colouring
- A61Q5/065—Preparations for temporary colouring the hair, e.g. direct dyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/08—Preparations for bleaching the hair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/12—Preparations containing hair conditioners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
- A61K2800/88—Two- or multipart kits
- A61K2800/884—Sequential application
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
- A61K2800/94—Involves covalent bonding to the substrate
Definitions
- the present invention generally relates to compositions and methods for treating hair or skin, particularly for repairing disulfide bonds in hair or on the skin.
- Hair consists of many long protein chains composed of amino acid building blocks. These chains, or polymers, are bound to each other via 1) hydrogen bonding, 2) salt bridges between acid and base groups, and 3) disulfide bonds. Water reversibly cleaves the hydrogen bonds. This makes wet hair easy to shape and set.
- Disulfide linkages are also ruptured due to heating or use of various reducing treatments.
- Current compositions and methods for waving and straightening mammalian hair use reducing agents such as thioglycolic acid, particularly as the ammonium salt, to cleave the hair's cystine disulfide bonds. Once the disulfide bonds are broken, and the hair is placed in stress to establish the final style (e.g., straight, wavy, or curly) the disulfide bonds are reestablished. Oxidation to restore the reduced bonds can be achieved by simply exposing the hair to atmospheric oxygen, but this oxidation step is very slow and is of very little practical use. Generally, hydrogen peroxide or sodium bromate is used as the oxidizing agent.
- the newly formed disulfide bonds are under stress to maintain the hair's new shape, thus, they break easily resulting in a reversion of the hair style over time.
- the use of peroxides in the hair styling process can result in damaged hair, removal of non- natural color from the hair, and/or leave the hair frizzy.
- some latent free thiols may remain in the hair even after oxidative treatment.
- Keratin is also a major component in skin. Damage to the disulfide bridges of keratin can cause skin to look unhealthy or flaky. Maintaining the disulfide bridges of keratin keeps the skin healthy and prevents cracking and splitting.
- hair conditioners such as leave-on and rinse- off products.
- conditioning rinses put back the oily coating, especially to the damaged portion of the hair where the cuticle has become ruffled since conditioners cling best to these portions.
- too much or too heavy a conditioner will make the hair stickier, thus attracting dirt and often may make more shampooing treatments necessary.
- conditioners do not bind the free thiols in hair.
- Commonly used cationic deposition polymers include natural polymers, such as guar gum polymers, that have been modified with cationic substituents.
- the selection of a cationic guar polymer with sufficient charge density and molecular weight results in sufficient deposition of conditioning agents when incorporated in a shampoo or body wash.
- a relatively high level of such cationic guar polymer generally must be deposited on the hair or skin.
- the cost of such cationic guar polymer is relatively high.
- incorporation of cationic guar polymer can increase the manufacturing costs of such shampoo compositions.
- these shampoo compositions typically are useful for wet hair conditioning, but are not capable of delivering satisfactory dry hair smooth feel.
- these conditioners do not bind the free thiols in hair.
- U.S. Patent No. 5,656,265 to Bailey et al discloses a hair styling conditioning process for use after treating the hair with a reducing agent.
- the process involves contacting the hair with a compound having an electrophilic group and at least one hydrophobic group.
- the electrophilic groups react with the thiol groups to provide a plurality of hydrophobic groups on the hair.
- these conditioners do not bind the free thiols in hair together.
- compositions, kits, and methods for repairing bonds, for example, disulfide bonds, in hair or on the skin that have been damaged are disclosed.
- the compositions provide improved conditioning benefit for dry hair or moisturize the skin.
- compositions provide long lasting moisturized feel and smooth feel without leaving the hair greasy, improved appearance (e.g., sheen), increased dry strength (tensile strength), ease of combing the hair when wet or dried, less hair breakage, and decreased frizz.
- the compositions also provide a long lasting moisturized feel and smooth feel to the skin.
- compositions contain one or more compounds that interact with keratin through more than one binding events (e.g., absorption, binding, etc.) which may involve reaction with one or more thiols in the hair or on the skin.
- Binding herein is defined as the formation of covalent, ionic or hydrogen bonding, etc. Under normal hair washing conditions,, including shampooing and conditioning, the covalent bonds formed are not succeptable to reduction or hydrolysis. Use of the binding
- compositions prevents reversion of the hair's repaired bonds to their free thiol state, for at least one week, two weeks, three weeks, four weeks, one month, or two months, or longer, after application of the composition.
- the binding compositions can be applied each time the hair is washed or daily, once-weekly, twice-weekly, biweekly, once-monthly, every other month, or at less frequent intervals. Preferably, the binding compositions are applied weekly or once per month to achieve the desired results.
- binding agents to repair the hair; these bmding agents are washed from the individual's hair on the same day that they are applied to the hair.
- the binding agents and the free thiol groups form a carbon-sulfur covalent bond.
- hair treated with the binding agents takes a longer time to revert to its prior state compared to the same hair that is untreated.
- the binding agent can contain one or more reactive groups where the reactive functional groups are bound to the surface.
- the bmding agent contains a linker or spacer and two or more reactive functional groups, wherein the reactive functional groups are covalently bound to the linker or spacer.
- the binding agent contains a spacer or linker which forms a salt with the two or more reactive functonal groups.
- the binding agent contains one or more reactive groups where the reactive functional groups interact with the surface of the hair or functional groups on the hair.
- hair refers to one or more than one strand of hair, as well as the natural components of hair, such as oil from a body. Hair also refers to virgin hair or processed hair, for example hair that has been exposed to hair waving or hair straightening formulations.
- An "effective amount”, e.g., of the binding agent or compositions described herein, refers to an amount of the binding agent in a composition or formulation which, when applied as part of a desired dosage regimen, binds free thiols in the hair.
- “Pharmaceutically acceptable” and “cosmetically acceptable” are used interchangeably and refer to those compounds, materials, compositions, and or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problems or complications commensurate with a reasonable benefit/risk ratio. More specifically, pharmaceutically acceptable refers to a material, compound, or composition which is suitable for use in contact with the skin, scalp, or hair. Pharmaceutically acceptable materials are known to those of ordinary skill in the art.
- “Shampoo”, as used herein, generally refers to a liquid or semi-solid formulation applied to the hair that contains detergent or soap for washing the hair.
- Constant generally refers to a formulation (e.g., liquid, cream, lotion, gel, semi-solid) applied to the hair to soften the hair, smooth the hair, and/or change the sheen of the hair.
- a formulation e.g., liquid, cream, lotion, gel, semi-solid
- Analog and “Derivative” are used herein interchangeably and refer to a compound that possesses the same core as the parent compound, but differs from the parent compound in bond order, the absence or presence of one or more atoms and/or groups of atoms, and combinations thereof.
- the derivative can differ from the parent compound, for example, in one or more substituents present on the core, which may include one or more atoms, functional groups, or substructures.
- a derivative can be imagined to be formed, at least theoretically, from the parent compound via chemical and/or physical processes.
- Electrophilic group or “electrophilic moiety” are used interchangeably and refer to one or more functional groups or moieties that have an affinity for or attract electrons.
- Michael acceptor is a species of electrophilic groups or moieties that participates in nucleophilic addition reactions.
- the Michael acceptor can be or can contain an ⁇ , ⁇ -unsaturated carbonyl-containing group or moiety, such as a ketone.
- Other Michael acceptors include pi-bonds, such as double or triple bonds conjugated to other pi-bond containing electron withdrawing groups, such as nitro groups, nitrile groups, and carboxylic acid groups.
- Alkyl refers to the radical of saturated or unsaturated aliphatic groups, including straight-chain alkyl, alkenyl, or alkynyl groups, branched- chain alkyl, alkenyl, or alkynyl groups, cycloalkyl, cycloalkenyl, or cycloalkynyl (alicyclic) groups, alkyl substituted cycloalkyl, cycloalkenyl, or cycloalkynyl groups, and cycloalkyl substituted alkyl, alkenyl, or alkynyl groups.
- a straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone (e.g., Ci-C 30 for straight chain, C3-C30 for branched chain), more preferably 20 or fewer carbon atoms, more preferably 12 or fewer carbon atoms, and most preferably 8 or fewer carbon atoms.
- the chain has 1-6 carbons.
- preferred cycloalkyls have from 3-10 carbon atoms in their ring structure, and more preferably have 5, 6 or 7 carbons in the ring structure. The ranges provided above are inclusive of all values between the minimum value and the maximum value.
- alkyl includes both "unsubstituted alkyls” and “substituted alkyls”, the latter of which refers to alkyl moieties having one or more substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone.
- substituents include, but are not limited to, halogen, hydroxyl, carbonyl (such as a carboxyl, alkoxycarbonyl, formyl.
- thiocarbonyl such as a thioester, a thioacetate, or a thioformate
- alkoxyl phosphoryl, phosphate, phosphonate, a phosphinate, amino, amido, amidine, imine, cyano, nitro, azido, sulfhydryl, alkylthio, sulfate, sulfonate, sulfamoyl, sulfonamido, sulfonyl, heterocyclyl, aralkyl, or an aromatic or
- lower alkyl as used herein means an alkyl group, as defined above, but having from one to ten carbons, more preferably from one to six carbon atoms in its backbone structure. Likewise, “lower alkenyl” and “lower alkynyl” have similar chain lengths. Preferred alkyl groups are lower alkyls.
- the alkyl groups may also contain one or more heteroatoms within the carbon backbone. Examples include oxygen, nitrogen, sulfur, and combinations thereof. In certain embodiments, the alkyl group contains between one and four heteroatoms.
- Alkenyl and Alkynyl refer to unsaturated aliphatic groups containing one or more double or triple bonds analogous in length (e.g., C2-C30) and possible substitution to the alkyl groups described above.
- Aryl refers to 5-, 6- and 7-membered aromatic rings.
- the ring may be a carbocyclic, heterocyclic, fused carbocyclic, fused heterocyclic, bicarbocyclic, or biheterocyclic ring system, optionally substituted as described above for alkyl.
- “Ar”, as used herein, includes 5-, 6- and 7-membered single-ring aromatic groups that may include from zero to four heteroatoms.
- Examples include, but are not limited to, benzene, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine.
- Those aryl groups having heteroatoms in the ring structure may also be referred to as “heteroaryl”, “aryl heterocycles”, or “heteroaromatics”.
- the aromatic ring can be substituted at one or more ring positions with such substituents as described above, for example, halogen, azide, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, alkoxyl, amino, nitro, sulfliydryl, imino, amido, phosphonate, phosphinate, carbonyl, carboxyl, silyl, ether, alkylthio, sulfonyl, sulfonamido, ketone, aldehyde, ester, heterocyclyl, aromatic or heteroaromatic moieties, perfluoroalkyl, and cyano.
- substituents as described above, for example, halogen, azide, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, alkoxyl, amino, nitro, sulfliydryl,
- Ar also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings (the rings are "fused rings") wherein at least one of the rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or
- heterocycles, or both rings are aromatic.
- Alkylaryl refers to an alkyl group substituted with an aryl group (e.g., an aromatic or hetero aromatic group).
- Heterocycle refers to a cyclic radical attached via a ring carbon or nitrogen of a monocyclic or bicyclic ring containing 3-10 ring atoms, and preferably from 5-6 ring atoms, containing carbon and one to four heteroatoms each selected from non-peroxide oxygen, sulfur, and N(Y) wherein Y is absent or is H, O, (C 1-4 ) alkyl, phenyl or benzyl, and optionally containing one or more double or triple bonds, and optionally substituted with one or more substituents.
- heterocycle also encompasses substituted and unsubstituted heteroaryl rings.
- heterocyclic ring examples include, but are not limited to, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzoxazolhryl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-l,5,2-dithiazinyl,
- tetrahydrofuranyl tetrahydroisoquinolinyl, tetrahydroquinolinyl, tetrazolyl, 6H-1,2,5- thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4- thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl and xanthenyl.
- Heteroaryl refers to a monocyclic aromatic ring containing five or six ring atoms containing carbon and 1, 2, 3, or 4 heteroatoms each selected from non-peroxide oxygen, sulfur, andN(Y) where Y is absent or is H, O, (Ci-C 8 ) alkyl, phenyl or benzyl.
- heteroaryl groups include furyl, imidazolyl, triazolyl, triazinyl, oxazoyl, isoxazoyl, thiazolyl, isothiazoyl, pyrazolyl, pyrrolyl, pyrazinyl, tetrazolyl, pyridyl, (or its N-oxide), thienyl, pyrimidinyl (or its N- oxide), indolyl, isoquinolyl (or its N-oxide), quinolyl (or its N-oxide) and the like.
- heteroaryl can include radicals of an ortho-fused bicyclic heterocycle of about eight to ten ring atoms derived therefrom, particularly a benz-derivative or one derived by fusing a propylene, trimethylene, or tetramethylene diradical thereto.
- heteroaryl examples include, but are not limited to, furyl, imidazolyl, triazolyl, triazinyl, oxazoyl, isoxazoyl, thiazolyl, isothiazoyl, pyraxolyl, pyrrolyl, pyrazinyl, tetrazolyl, pyridyl (or its N-oxide), thienyl, pyrimidinyl (or its N-oxide), indolyl, isoquinolyl (or its N-oxide), quinolyl (or its N-oxide), and the like.
- Halogen refers to fluorine, chlorine, bromine, or iodine.
- substituted refers to all permissible substituents of the compounds described herein.
- the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds.
- Illustrative substituents include, but are not limited to, halogens, hydroxyl groups, or any other organic groupings containing any number of carbon atoms, preferably 1-14 carbon atoms, and optionally include one or more hetero atoms such as oxygen, sulfur, or nitrogen grouping in linear, branched, or cyclic structural formats.
- substituents include alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, phenyl, substituted phenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, halo, hydroxyl, alkoxy, substituted alkoxy, phenoxy, substituted phenoxy, aroxy, substituted aroxy, alkylthio, substituted alkylthio, phenylthio, substituted phenylthio, arylthio, substituted arylthio, cyano, isocyano, substituted isocyano, carbonyl, substituted carbonyl, carboxyl, substituted carboxyl, amino, substituted amino, amido, substituted amido, suifonyl, substituted sulfonyl, sulfonic acid, phosphoryl, substituted phosphoryl, phosphonyl, substituted phosphonyl, polyaryl, substitute
- Heteroatoms such as nitrogen, may have hydrogen substituents and/or any permissible substituents of organic compounds described herein that satisfy the valences of the heteroatoms. It is understood that “substitution” or “substituted” includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, i.e. a compound that does not spontaneously undergo
- Polymer refers to a molecule containing more than 10 monomer units.
- Water-soluble generally means at least 10, 50, 100, 125, 150, 200, 225, or 250 g is soluble in 1L of water at 25°C.
- Binding agent means as used herein, refers to a molecule that forms covalent, ionic or hydrogen bonding, etc. with the hair and generally includes the formation of at least one covalent bond with a free thiol.
- the formulations disclosed herein are concerned with treating hair or skin.
- the formulations can rebuild latent disulfide bonds in hair or skin.
- formulations may also react with free amines in the hair to provide a conditioning effect.
- the formulations contain one or more binding agents (also referred to herein as “compounds” or “active agents”).
- the binding agents can be combined with one or more pharmaceutically acceptable carriers and/or excipients that are considered safe and effective to human hair, skin, and/or human scalp, and may be administered to an individual's hair without causing undesirable side effects, such as burning, itching, and/or redness, or similar adverse reactions.
- the formulations may further contain an excipient that renders the formulations neutral H, or a pH ranging from about pH 3 to about pH 12, preferably from pH 5 to pH 8.
- the binding agent is typically present in an amount ranging from about 0.01 wt% to about 50 wt% of the formulation, preferably from about from about 1 wt% to about 25 wt% of the formulation, more preferably from about 1 wt% to about 15 wt%, most preferably from about 1 wt% to about 10 wt%.
- the binding agent is about 2.5-3 wt% of the formulation.
- the binding agent is stable in aqueous solution for a period of at least 2, 3, 4, 5, 6, 8, 9, 10, 11, or 12 months or longer at pH of 6 to 8 and a temperature of about 25-30°C, preferably about 25°C.
- “Stable” as used herein with respect to shelf-life means that at least 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, or 95% of the reactive moieties are intact or to the extent that the reactive moieties react with water, the resulting product is also electrophilic.
- the binding agent contains at least two reactive moieties capable of reacting with a thiol.
- the binding agent optionally contains a linker between the two or more reactive moieties.
- the linker forms two or more ionic bonds with the reactive moieties.
- the reactive moieties upon reaction with thiol groups on the hair follicle, form bonds that are stable, for example, hydrolytically stable.
- “Stable”, as used in reference to the bonds formed between thiol groups on hair follicles means the bonds remain intact for at least one week, two weeks, three weeks, four weeks, one month, or two months or longer when exposed to water at pH 6-8 at a temperature from about 5°C to about 100°C, preferably from about 20°C to about 75°C, more preferably from about 20°C to about 50°C, more preferably from about 25°C to about 40°C, most preferably from about 25°C to about 30°C. In some embodiments, the temperature is about 25 °C. It is also preferred that the binding reaction occur around room temperature, for example, from about 15°C to about 35°C, preferably from about 20°C to about 30°C, more preferably from about 22°C to about 27°C.
- the binding agents typically have a low molecular weight and are compatible with aqueous or solvent delivery systems.
- the compound is water-soluble.
- the low molecular weight is preferred, as it allows the molecule to diffuse in and out of hair at a reasonable rate.
- Molecular weights of less than 10,000 Da, 8,000 Da, 6,000 Da, 5,000 Da, 4,000 Da, 3,000 Da, 2,000 Da, or 1,000 Da are preferred.
- the molecular weight is less than 1500 Da, preferably less than 800 Da, most preferably less than 500 Daltons to achieve sufficient diffusion rates in conventional aqueous hair care systems.
- the binding agents have a structure according to Formula I:
- A, B, C, and D are reactive moieties containing one or more charges
- R is a linker that contains two or more charges, wherein the charges are opposite to the charges on the reactive moieties
- each occurrence of p, q, r, and s is independently an integer from 0 to 25, preferably from 0 to 10, more preferably from 0 to 2.
- the sum of p + q + r + s is equal to or greater than 2.
- the reactive moieties may be present on any atom of the linker. In some embodiments, the reactive moieties are the same. In some embodiments, one or more of the reactive moieties is different.
- the reactive moieties are negatively charged and the linker or spacer has positively charged moieties. In other embodiments, the reactive moieties are positively charged and the linker or spacer has negatively charged moieties. Generally, the sum of the charges on the binding agent of Formula I is zero though stoichiometric imbalances may exist.
- linker refers to one or more poly functional, e.g.
- bifunctional molecules, trifunctional molecules, tetrafunctional molecules, etc. which can be used to ionically bound the two or more reactive moieties and which do not interfere with the reactive properties of the binding agents.
- the reactive moieties may be attached to any part of the linker.
- Suitable linkers include but are not limited to oxygen, sulfur, carbon, boron, nitrogen, alkoxy, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, heterocycloalkyl, heteroaryl, ether, amine, and a polymer.
- the linker is optionally independently substituted with one or more substituents including hydrogen, halogen, cyano, alkoxy, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, heterocycloalkyl, heteroaryl, amine, hydroxy, formyl, acyl, carboxylic acid (-COOH), carboxylate (-COO"), primary amide (e.g., -CONH 2 ), secondary amide (e.g., -CONHR 1 ), -C(0) R , R 2 ; -NR X R 2 , - NR'S ⁇ R 2 , -Ni ⁇ QC R 2 , -S(0) 2 R 2 , -SR 1 , and -S(0) 2 NR 1 R 2 5 sulfinyl group (e.g., - SOR ] ), and sulfonyl group (e.g., -SOOR 1 );
- substituents including hydrogen,
- the linker may be an alkoxy, ether, alkyl, alkenyl, cycloalkyl, cycloalkenyl, aryl, heterocycloalkyl, heteroaryl, amine, or a polymer. In some embodiments, the linker is not a polymer.
- the binding agent can be a polymer.
- the linker forms or is the polymer backbone having ionically associated therewith two or more reactive moieties.
- the polymeric binding agent can have a structure according to Formula I.
- zero, one, two, three, four, or more reactive moieties can be ionically associated with, the monomer.
- the reactive moieties on each monomer unit in the polymer can be the same or different.
- At least one reactive moiety is present on each monomer unit.
- the reactive moieties may be present on alternate monomer units.
- reactive moieties are present on a minimum percentage of the monomer units in the polymer.
- at least one reactive moiety can be present on 0.1%, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the monomer units in the polymer.
- the reactive moieties can be present on any atom on the monomer.
- the polymer may be functionalized at the termini (and/or within the polymer backbone) with one or more of reactive moieties, A-D.
- One or more monomers in the polymer may be functionalized so that one or more reactive moieties, A-D, may be introduced (e.g., ionically associated with) using techniques known in the art.
- the salt is typically generated in situ.
- Polymers can be degradable or non-degradable polymers.
- Polymers can be natural or unnatural (synthetic) polymers.
- Polymers can be homopolymers or copolymers comprising two or more monomers. In terms of sequence, copolymers can be random, block, or comprise a combination of random and block sequences.
- the polymers can in some embodiments be linear polymers, branched polymers, or hyperbranched/dendritic polymers.
- the polymers may also be present as a bound particle or surface functionalized inorganic particle. Suitable polymers include, but are not limited to poly (vinyl acetate), copolymers of styrene and alkyl acrylates, and copolymers of vinyl acetate and acrylic acid,
- polyvinylpyrrolidone dextran, carboxymethylcellulose, polyethylene glycol, polyalkylene, polyacrylates, and polymethacrylates; polyanhydrides; polyorthoesters; polysytyrene (PS), poly(ethylene-co-maleic anhydride), poly(ethylene maleic anhydride-co-L-dopamine), poly(ethylene maleic anhydride-co -phenylalanine), poly(ethylene maleic anhydride-co-tyrosine), poly(butadiene-co-maleic anhydride), poly(butadiene maleic anhydride-co-L-dopamine) (pBMAD), poly(butadiene maleic anhydride-co-phenylalanine), poly(butadiene maleic anhydride-co-tyrosine), poly(bis carboxy phenoxy propane-co-sebacic anhydride) (poly (CCP:SA)) 5 alginate; and poly(fumaric anhydride-co-s
- the number of monomers is typically greater than or equal to 1, such as 1-10 (e.g., oligomer) or greater than 10 (e.g., polymer), such as 10- 1000 or greater.
- Reactive moieties that react with thiols such as 1-10 (e.g., oligomer) or greater than 10 (e.g., polymer), such as 10- 1000 or greater.
- the binding agent contains at least two reactive moieties that react with thiols to form covalent bonds.
- the reactive moieties are capable of reacting with a thiol group in the hair or on the skin to form a stable covalent bond.
- the reactive moiety is typically an electrophilic moiety capable of forming a salt with the linker.
- the reactive moiety can be a free radical forming moiety.
- the binding agent contains at least two reactive moieties. However, the binding agent may contain three, four, five, six, or greater than six reactive moieties.
- the reaction between the reactive moiety and the thiol groups may be initiated at room temperature and pressure when the reactive moiety contacts a thiol group in the hair or on the skin.
- the reaction may require an initiator, such as heat, catalyst, basic conditions, or a free radical initiator.
- the rate of reaction between the reactive moiety and the thiol may be increased by changes in
- the two or more reactive moieties on the binding agent can be the same. In some embodiments, the two or more reactive moieties are different.
- the reactive moieties are capable of undergoing a conjugate additional reaction.
- the reactive moieties can independently be or contain a Michael acceptor, a succinimidyl-containing group, a maleimido-containing group, azlactone, a benzoxazinone derivative, vinyl sulfone, vinyl sulfoximine, vinyl sulfonate, vinyl phosphonate, benzoxazinone, isocyanate, epoxide, an electrophilic moiety containing a leaving group, an electrophilic thiol acceptor, acrylic or acrylate group, a methacrylic or methacrylate group, a styrene group, an acryl amide group, a methacryl amide group, a maleate group, a fumarate group, an itaconate group, a vinyl ether group, an allyl ether group, an allyl ester group, a vinyl ester group,a sulfonate group, a phospho
- a "Michael acceptor,” as used herein, is a compound or moiety with
- Michael acceptors include, but are not limited to molecules in which some or all of the structure above are residues of (meth) acrylic acid, fumaric acid, or maleic acid, substituted versions thereof, or combinations thereof, attached to the Michael acceptor molecule through an ester linkage.
- the linker is attached to the Michael acceptor via R 3 , R4, R 5 , or Re.
- R , R4, R 5s or Re may be the linker.
- the chemistry of vinyl sulfoximines is similar to vinyl sulfones.
- the N-tosyl sulfoximine group is more electron withdrawing than the phenyl sulfone and therefore the vinyl groups will be more susceptible towards nucleophilic attack.
- N-substituents can be used to alter the electrophilic potential of the vinyl group.
- the reactive moiety may be an electrophile with a leaving group.
- Electrophile refers to one or more functional groups or moieties that have an affinity for or attract electrons. Suitable electrophiles include, but are not limited to, ester moieties (-(CO)-O-R, wherein R is lower alkyl or the like), carbonyl moieties (-C(O)), carboxylic acid or carbonic acid (-COOH or -OCOOH), carbonate moieties (-O-(CO)-O-R, wherein R is lower alkyl or the like), urethane moieties (-0- (CO)-NH-R, wherein R is H, lower alkyl, or the like), substituted urethane moieties (- 0-(CO)-NR'-R, where R' is a nonhydrogen substituent such as alkyl, aryl, alkaryl, or the like), amido moieties (-(CO)-NH-R, wherein R is H, lower alkyl, or the like), substituted amido moieties (-(CO)-
- electrophiles will be known to those of ordinary skill h the art of organic chemistry and polymer science and/or can be readily found by reference to the pertinent texts and literature.
- the electrophiles preferably contain a leaving group.
- Suitable leaving groups are well known in the art, see, e.g., "Advanced Organic Chemistry,” Jerry March, 5th Ed., pp. 445-448, John Wiley and Sons, N.Y.
- Examples of leaving groups include, but are not limited to, halogen, sulfonyloxy, optionally substituted alkylsulfonyloxy, optionally substituted alkenylsulfonyloxy, optionally substituted arylsulfonyloxy.
- Specific examples of leaving groups include chloro, iodo, bromo, fluoro,
- methanesulfonyloxy (mesyloxy), tosyloxy, triflyloxy, nitrophenylsulfonyloxy
- R 4 is preferably an alkyl group or an aryl group.
- the leaving group is removed from the reactive moieties and does not result in the formation of side product that disadvantageously affects the reaction between the reactive moieties and the thiol groups or form a material or compound that is unsuitable for contact with skin or hair.
- the leaving group is a halogen
- Electrophilic thiol acceptors refer to a chemical moiety that reacts with a thiol group so that the sulfur atom of the thiol group becomes covalently bonded to the thiol acceptor.
- Thiol acceptors are well known in the art. Koval (Reactions of Thiols, Russian Journal of Organic Chemistry, 2007, 43:319-349) discloses several electrophilic thiol acceptors, the disclosure of which is incorporated herein by reference.
- Electrophilic thiol acceptors include but are not limited to an alpha-substituted acetyl group with the formula Y-CH 2 -CO- wherein Y is a leaving group.
- leaving groups include, but are not limited to, chloride, bromide, iodide, mesylate, tosylate, and the like. If the thiol acceptor is an alpha- substituted acetyl group, the thiol adduct after covalent linkage to the acceptor forms the bond -S-CH 2 -.
- the binding agent may contain at least two free radical-forming groups that can react with thiols.
- the free radical-forming groups on the binding agent can be the same. Alternately, the free radical-forming groups may be different.
- Suitable free radical forming groups include, but are not limited to acrylate groups, methacrylate groups, styrene groups, acryl amide groups, methacryl amide groups, maleate groups, fumarate groups, itaconate groups, vinyl ether groups, allyl ether groups, allyl ester groups, and vinyl ester groups.
- suitable binding agents include ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl
- methacrylate trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane, and di- and triacrylates, mixed acrylates which, as well as acrylate groups, comprise further ethylenically unsaturated groups.
- binding agents include ⁇ , ⁇ '-methylenebisacrylamide and ⁇ , ⁇ '-methylenebismethacrylamide, esters of unsaturated mono- or polycarboxylic acids of polyols, such as diacrylate or triacrylate, for example butanediol diacrylate, butanediol dimethacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate and also trimethylolpropane triacrylate and allyl compounds, such as allyl (meth)acrylate, triallyl cyanurate, diallyl maleate, polyallyl esters, tetraallyloxy ethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and also vinylphosphonic acid derivatives,
- pentaerythritol diallyl ether pentaerythritol triallyl ether, pentaerythritol tetraallyl ether, polyethylene glycol diallyl ether, ethylene glycol diallyl ether, glycerol diallyl ether, glycerol triallyl ether, polyallyl ethers based on sorbitol, and also ethoxylated variants thereof.
- binding agents include di- and triacrylates of 3- to 15-tuply ethoxylated glycerol, of 3- to 15-tuply ethoxylated trimethylolpropane, of 3- to 15-tuply ethoxylated trimethylolethane, especially di- and triacrylates of 2- to 6- tuply ethoxylated glycerol or of 2- to 6-tuply ethoxylated trimethylolpropane, of 3- tuply propoxylated glycerol, of 3-tuply propoxylated trimethylolpropane, and also of 3-tuply mixed ethoxylated or propoxylated glycerol, of 3-tuply mixed ethoxylated or propoxylated trimethylolpropane, of 15-tuply ethoxylated glycerol, of 15-tuply ethoxylated trimethylolpropane, of 40-tuply ethoxyl
- the term "tuply” refers to the number of monomeric units in the ethoxylated chain.
- the reactive free radical moieties may require the presence of one or more initiators. Suitable initiators include, but are not limited to peroxides, hydroperoxides, hydrogen peroxide, persulfates, azo compounds, and redox initiators.
- Suitable organic peroxides include acetyiacetone peroxide, methyl ethyl ketone peroxide, tert- butyl hydroperoxide, cumene hydroperoxide, tert-amyl perpivalate, tert-butyl perpivalate, tert-butyl perneohexanoate, tert-butyl perisobutyrate, tert-butyl per-2- ethylhexanoate, tert-butyl perisononanoate, tert-butyl permaleate, tert-butyl perbenzoate, di(2-ethylhexyl) peroxydicarbonate, dicyclohexyl peroxydicarbonate, di(4-tert-butylcyclohexyl) peroxydicarbonate, dimyristil peroxydicarbonate, diacetyl peroxydicarbonate, allyl peresters, cum
- Suitable azo compounds include 2,2'- azobisisobutyronitrile, 2,2'-azobis(2,4-dimethylvaleronitrile) and 2,2 r -azobis(4- methoxy-2,4-dimethylvaleronitrile) 5 preferably water-soluble azo initiators, such as, but not limited to, 2,2'-azobis ⁇ 2-[l-(2-hydroxyethyl)-2-imidazolin-2- yl]propane ⁇ dihydrochloride, 2,2'-azobis-(2-amidinopropane) dihydrochloride, 2,2'- azobis [2- (2-imidazohn-2-yl)propane] dihydrochloride and 2 ,2 '-azobis [2-(5 -methyl-2- imidazolin-2-yl)propane] dihydrochloride.
- 2,2'-azobisisobutyronitrile 2,2'-azobis(2,4-dimethylvaleronitrile
- the oxidizing component is at least one of the peroxo compounds indicated above and the reducmg component is, for example, ascorbic acid, glucose, sorbose, ammonium bisulfite, ammonium sulfite, ammonium thiosulfate, ammonium hyposulfite, ammonium pyrosulfite, ammonium sulfide, alkali metal bisulfite, alkali metal sulfite, alkali metal thiosulfate, alkali metal hyposulfite, alkali metal pyrosulfite, alkali metal sulfide, or sodium hydroxymethylsulfoxylate.
- the reducmg component is, for example, ascorbic acid, glucose, sorbose, ammonium bisulfite, ammonium sulfite, ammonium thiosulfate, ammonium hyposulfite, ammonium pyrosulfite, ammonium sulfide,
- the molecule is;
- the binding agent has the structure:
- the reaction with thiol groups on hair follicles is as follows: as acrylic acid and bromo-acetic acid and similar compounds,
- Cosmetically acceptable excipients include, but are not limited to, water, preservatives, antioxidants, chelating agents, sunscreen agents, vitamins, dyes, hair coloring agents, proteins, amino acids, natural extracts such as plant extracts, humectants, fragrances, perfumes, oils, emollients, lubricants, butters, penetrants, thickeners, viscosity modifiers, polymers, resins, hair fixatives, film formers, surfactants, detergents, emulsifiers, opacifying agents, volatiles, propellants, liquid vehicles, carriers, salts, pH adjusting agents (e.g., citric acid), neutralizing agents, buffers, hair conditioning agents, anti- static agents, anti-frizz agents, anti-dandruff agents, absorbents, and combinations thereof.
- cosmetically acceptable excipients include, but are not limited to, water, preservatives, antioxidants, chelating agents, sunscreen agents, vitamins, dyes, hair coloring agents, proteins, amino acids,
- the formulations can contain at least two or more cosmetically acceptable excipients.
- the formulations contain the binding agent, water, and optionally a preservative and/or fragrance.
- the formulation for treating hair may be in any suitable physical form.
- Suitable forms include, but are not limited to low to moderate viscosity liquids, lotions, milks, mousses, sprays, gels, creams, shampoos, conditioners, and the like.
- Suitable excipients such as those listed above, are included or excluded from the hair care formulation depending on the form of use of the formulation (e.g. , hair spray, cream, conditioner, or shampoo).
- the formulation for treating skin may be in any suitable physical form.
- Suitable forms include, but are not limited to low to moderate viscosity liquids, lotions, milks, mousses, sprays, gels, creams, ointments, and the like.
- Suitable excipients such as those listed above, are included or excluded from the skin formulation depending on the form of use of the formulation (e.g., lotion, gel, ointment, or cream).
- the pharmaceutical excipient is typically present in an amount ranging from about 10 wt% to about 99.99 wt% of the formulation, preferably about 40 wt% to about 99 wt%, more preferably from about 80 wt% to about to about 99 wt%.
- Surfactants are surface-active agents that are able to reduce the surface tension of water and cause the formulation to slip across or onto the skin or hair.
- Surfactants also include detergents and soap.
- the surfactants may be amphoteric, anionic, or cationic.
- Suitable surfactants that may be used in the formulation include, but are not limited to, 3-aminopropane sulfonic acid, almond amide, almond amidopropyl betaine, almond amidopropylamine oxide, aluminum hydrogenated tallow glutamate, aluminum lanolate, aminoethyl sulfate, aminopropyl lauryl glutamine, ammonium Ci2-i5 alkyl sulfate, ammonium C 12-15 pareth sulfate, ammonium C 12-16 alkyl sulfate, ammonium C9 0 perfluoroalkylsulfonate, ammonium capryleth sulfate, ammonium capryleth-3 sulfate, am
- dodecylbenzenesulfonate ammonium isostearate, ammonium laureth sulfate, ammonium laureth- 12 sulfate, ammonium laureth-5 sulfate, ammonium laureth-6 carboxylate, ammonium laureth-7 sulfate, ammonium laureth-8 carboxylate, ammonium laureth-9 sulfate, ammonium lauroyl sarcosinate, ammonium lauryl sulfate, ammonium lauryl sulfosuccinate, ammonium myreth sulfate, ammonium myristyl sulfate, ammonium nonoxynol- 30 sulfate, ammonium nonoxynol-4 sulfate, ammonium oleate, ammonium palm kernel sulfate, ammonium polyacrylate, ammonium stearate, ammonium tallate, ammonium xylene
- hydroxypropyltrimonium chloride amp-isostearoyl hydrolyzed collagen, apricot kernel oil PEG-6 esters, apricot amide, apricot amidopropyl betaine, ararissath-20, avocadamide, avocadamidopropyl betaine, babassuamide, babassuamidopropyl betaine, babassuamidopropylamine oxide, behenalkonium chloride, behenamide, behenamide, behenamidopropyl betaine, behenamine oxide, sodium laureth sulfate, sodium lauryl sulfate, a polyoxyether of lauryl alcohol or ceteareth-20, or combinations thereof.
- Suitable anionic surfactants include, but are not limited to, those containing carboxylate, sulfonate and sulfate ions.
- anionic surfactants include sodium, potassium, ammonium of long chain alkyl sulfonates and alkyl aryl sulfonates such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfo succinates, such as sodium dodecylbenzene sulfonate; dialkyl sodium sulfosuccinates, such as sodium bis-(2-ethylthioxyl)-sulfosuccinate; and alkyl sulfates such as sodium lauryl sulfate.
- Cationic surfactants include, but are not limited to, quaternary ammonium compounds such as benzalkonium chloride, benzethonium chloride, cetrimonium bromide, stearyl dimethylbenzyl ammonium chloride, polyoxyethylene and coconut amine.
- nonionic surfactants include ethylene glycol monostearate, propylene glycol myristate, glyceryl monostearate, glyceryl stearate, polyglyceryl-4- oleate, sorbitan acylate, sucrose acylate, PEG-150 laurate, PEG-400 monolaurate, polyoxyethylene monolaurate, polysorbates, polyoxyethylene octylphenylether, PEG- 1000 cetyl ether, polyoxyethylene tridecyl ether, polypropylene glycol butyl ether, Poloxamer 401, stearoyl monoisopropanolamide, and polyoxyethylene hydrogenated tallow amide.
- amphoteric surfactants include sodium N-dodecyl-.beta.- alanine, sodium N-lauryl-p-iminodipropionate, myristoamphoacetate, lauryl betaine and lauryl sulfobetaine.
- More than one surfactant may be included in the formulation.
- the surfactants are optionally included in an amount ranging from about 0.1% to about 15% by weight of the formulation, preferably about 1% to about 10% by weight of the formulation.
- Emollient refers to a material that protects against wetness or irritation, softens, soothes, coats, lubricates, moisturizes, protects, and/or cleanses the skin.
- Suitable emollients for use in the formulations include, but are not limited to a silicone compound (e.g., dimethicone, cyclomethicone, dimethicone copolyol or a mixture of cyclopentasiloxane and dimethicone/vinyldimethicone cross polymer, cyclopentasiloxane polysilicone), polyols such as sorbitol, glycerin, propylene glycol, ethylene glycol, polyethylene glycol, caprylyl glycol, polypropylene glycol, 1,3- butane diol, hexylene glycol, isoprene glycol, xylitol; ethylhexyl palmitate; a triglyceride
- the emollient is dimethicone, amidodimethicone, dimethiconol, cyclopentasiloxane, potassium dimethicone PEG-7 panthenyl phosphate, or a combination thereof. More than one emollient may be included in the formulation.
- the emollient is optionally included in an amount ranging from about 0.5% to about 15% by weight of the formulation, preferably from about 1% to about 10% by weight of the formulation.
- the formulations may also contain one or more emulsifiers.
- Suitable emulsifiers include, but are not limited to, copolymers of an unsaturated ester and styrene sulfonate monomer, cetearyl alcohol, glyceryl ester, polyoxyethylene glycol ether of cetearyl alcohol, stearic acid, polysorbate-20, ceteareth-20, lecithin, glycol stearate, polysorbate-60, or polysorbate-80, or combinations thereof. More than one emulsifier may be included in the formulation.
- the emulsifier is optionally included in an amount ranging from about 0.05% to about 15% by weight of the formulation, preferably from about 0.1% to about 10% by weight of the formulation.
- One or more preservatives may be included in the formulations to prevent microbial growth in the formulations.
- Suitable preservatives include, but are not limited to, glycerin containing compounds (e.g., glycerin or ethylhexylglycerin or phenoxyethanol), benzyl alcohol, parabens (methylparaben, ethylparaben, propylparaben, butylparaben, isobutylparaben, etc.), sodium benzoate,
- EDTA ethylenediamine-tetraacetic acid
- potassium sorbate potassium sorbate
- grapefruit seed extract More than one preservative may be included in the formulation.
- Other preservatives are known in the cosmetics industries and include salicylic acid, DMDM Hydantoin, Formaldahyde, Chlorphenism, Triclosan,
- the preservative is optionally included in an amount ranging from about 0.1% to about 5% by weight of the formulation, preferably from about 0.3% to about 3% by weight of the formulation.
- the formulations are paraben free.
- conditioning agents include, but are not limited to, silicone-based agents (e.g., silicone quaternium-8), panthenol, hydrolyzed wheat and/or soy protein, amino acids (e.g.
- wheat amino acids rice bran wax, meadowfoam seed oil, mango seed oil, grape seed oil, jojoba seed oil, sweet almond oil, hydroxyethyl behenamidopropyl dimonium chloride, aloe leaf extract, aloe barbadensis leaf juice, phytantriol, panthenol, retinyl palmitate, behentrimonium methosulfate, cyclopentasiloxane, quaternium-91, stearamidopropyl dimethylamine, and combinations thereof.
- the conditioning agent(s) is optionally included in an amount ranging from about 0.1% to about 5% by weight of the formulation, preferably from about 0.3% to about 3% by weight of the formulation.
- Diluent refers to a substance(s) that dilutes the binding agent. Water is the preferred diluent.
- the formulations typically contains greater than one percent (wt) water, preferably greater than five percent (wt) water, more preferably greater than 50% (wt) water, and most preferably greater than 80% (wfjwater.
- Alcohols such as ethyl alcohol and isopropyl alcohol, may be used at low
- concentrations (about 0.5% by weight of the formulation) to enhance hair or skin penetration and/or reduce odor.
- the formulations may contain one or more viscosity modifying agents, such as viscosity increasing agents.
- Classes of such agents include, but are not limited to, viscous liquids, such as polyethylene glycol, semisynthetic polymers, such as semisynthetic cellulose derivatives, synthetic polymers, such as carbomers, poloxamers, and polyethyleneimines (e.g., PEI-10), naturally occurring polymers, such as acacia, tragacanth, alginates (e.g., sodium alginate), carrageenan, vegetable gums, such as xanthan gum, petroleum jelly, waxes, particulate associate colloids, such as bentonite, colloidal silicon dioxide, and microcrystalline cellulose, surfactants, such as PPG-2 hydroxyethyl coco/isostearamide, emulsifiers, such as disteareth-75 IPDI, and salts, such as sodium chloride, and combinations thereof.
- viscous liquids such as polyethylene glycol
- the formulations may contain one or more antioxidants.
- antioxidants include, but are not limited to, tocopheryls, BHT, ascorbic acid, camellia sinensis leaf extract, ascorbyl palmitate, magnesium ascorbyl phosphate, carotenoids, resveratrol, triethyl citrate, arbutin, kojic acid, tetrahexydecyl ascorbate, superoxide dismutase, zinc, sodium metabisulfite, lycopene, ubiquinone, and combinations thereof.
- the formulations may contain one or more opacifying agents.
- Opacifying agents are added to the formulations to make them opaque.
- Suitable opacifying agents include, but are not limited to, glycol distearate and ethoxylated fatty alcohols,
- the formulation may be in the form of a spray.
- the spray typically includes the binding agent and a cosmetically acceptable carrier.
- the carrier is water or a water and alcohol mixture.
- the spray formulation optionally includes an antioxidant, sunscreen agent, vitamin, protein, peptide, plant extract, humectant, oil, emollient, lubricant, thickener, hair conditioning agent, polymer, and/or surfactant.
- the spray formulation includes a preservative.
- the formulation includes a fragrance.
- the formulation includes a surfactant.
- the formulation contains water, fragrance, a preservative, and a binding agent.
- the formulation contains water, fragrance, a preservative, and a binding agent.
- the formulation contains water, a preservative, fragrance, the binding agent, and an anti-static agent. In some embodiments, the formulation contains water, a preservative, fragrance, the binding agent, and a hair conditioning agent. In some embodiments, the formulation contams water, a preservative, f agrance, the binding agent, and a surfactant.
- the hair spray formulations may be dispensed from containers that include aerosol dispensers or pump spray dispensers. Such dispensers are known in the art and are commercially available from a variety of manufacturers. Propellant
- a propellant may be used to force the composition out of the container.
- Suitable propellants include, but are not limited to, a liquefiable gas or a halogenated propellant.
- suitable propellants include dimethyl ether and hydrocarbon propellants such as propane, n-butane ; iso-butane, CFCs, and CFC -replacement propellants.
- the propellants may be used singly or admixed.
- the amount of propellant may range from about 10% to about 60% by weight of the formulation.
- the propellant may be separated from the hair repair formulation as in a two compartment container.
- Other suitable aerosol dispensers are those characterized by the propellant being compressed air, which can be filled into the dispenser using a pump or equivalent device prior to use.
- Conventional non-aerosol pump spray dispensers, i.e., atomizers, may also be used to apply the hair
- the formulation may be in the form of a conditioner.
- the conditioner typically includes the binding agent in a suitable carrier.
- the conditioner may include cationic polymers derived from polysaccharides, for example cationic cellulose derivatives, cationic starch derivatives, cationic guar derivatives and cationic locust bean gum derivatives, synthetic cationic polymers, mixtures or combinations of these agents.
- the formulation may comprise other synthetic or natural polymers or polymers derived from biological preparation processes, which are functionalized, where appropriate, for example with cationic or neutral groups. These polymers may have a stabilizing or strengthening action on the compositions, and/or a conditioning action (deposition on the surface of the skin or the hair).
- the binding agent may be included in any suitable concentration. Typical concentrations of the binding agent in the conditioner range from small amounts such as approximately 0.01% (wt), preferably at least 0.1% (wt), to large amounts, such as up to 50% (wt). Preferably the conditioner contains the binding agent in a
- the hair repair formulation may be in the form of a shampoo.
- the shampoo typically includes the binding agent in a suitable carrier.
- the binding agent may be included in any suitable concentration. Typical concentrations of the binding agent in the shampoo range from small amounts such as approximately 0.01% (wt), preferably at least 0.1% (wt), to large amounts, such as up to 50% (wt).
- the shampoo contains the binding agent in a concentration ranging from 0.1% (wt) to 5% (wt), more preferably from 0.1% wt to 3% (wt). While greater concentrations of binding agent could be present in the shampoo, they are generally not needed to achieve the desired results.
- the shampoo may include from about 0.5% to about 20% of a surfactant material
- a surfactant material Surfactants utilized in shampoo compositions are well-known in the art and are disclosed, for example, in U.S. Patent No. 6,706,258 to Gallagher et a and U.S. Patent No. 7,598,213 to Geary et al.
- the formulation may be in the form of a cream.
- the cream typically includes the binding agent in a suitable carrier.
- the binding agent may be included in any suitable concentration. Typical concentrations of the binding agent in the cream range from small amounts such as approximately 0.01% (wt), preferably at least 0.1% (wt), to large amounts, such as up to 50%o (wt).
- the cream contains the binding agent in a concentration ranging from 0.1% (wt) to 5% (wt), more preferably from 0.1% wt to 3% (wt). While greater concentrations of binding agent could be present in the cream, they are generally not needed to achieve the desired results.
- the cream may include an oil, a hair conditioning agent, and/or a thickening agent.
- the cream may also include a fragrance, a plant extract, and/or a surfactant.
- the cream may be packaged in a tube, tub, bottle, or other suitable container.
- a liquid binding formulation is provided, which is mixed at the time of use with a second formulation, such as a coloring or highlighting formulation.
- the liquid binding formulation may contain any suitable concentration of binding agent in a suitable carrier, typically a diluent, such as described above.
- the concentration of the binding agent is suitable to provide a mixture with the appropriate final volume and final concentration of binding agent.
- a liquid binding formulation can contain a concentration of binding agent ranging from about 5% (wt) to about 50% (wt) or greater. In a preferred embodiment, the liquid binding formulation contains about 20% (wt) binding agent.
- highlighting and “bleaching” are used synonymously herein.
- a sufficient volume of a liquid binding formulation is mixed with a sufficient volume of a highlighting formulation to form a highlighting mixture having the desired concentration of binding agent.
- concentrations of the binding agent in the highlighting mixture range from small amounts, such as approximately at least 0.01% (wt), preferably at least 0.1% (wt), to large amounts, such as up to 50% (wt).
- the highlighting mixture contains the binding agent in a concentration ranging from 0.1% (wt) to 5% (wt), more preferably from 0.1% wt to 3% (wt). While greater concentrations of binding agent could be present in the highlighting mixture, they are generally not needed to achieve the desired results.
- two separate formulations are applied, such as a first formulation containing bleach (i.e. the highlighting formulation), and a second formulation containing a binding agent (i. e. the binding formulation) in an effective amount to covalently bind the free thiol groups.
- the highlighting formulation may be applied first, which produces free thiol groups in hair. Subsequently, the second binding formulation may be applied to bind the free thiol groups.
- Kits for treating hair typically contain a binding formulation containing an effective amount of a binding agent to covalently bind latent free thiol groups in hair.
- the kit may further contain a formulation, also referred to herein as the reducing formulation, capable of reducing the disulfide bonds in the hair and producing free thiol groups.
- a formulation also referred to herein as the reducing formulation, capable of reducing the disulfide bonds in the hair and producing free thiol groups.
- the first formulation may be a reducing formulation.
- a reducing formulation contains a reducing agent capable of reducing the disulfide bonds in hair and producing free thiol groups.
- the reducing formulation may differ depending on the hair styling treatment desired (such as hair waving or hair straightening), the texture of the hair, the sensitivity of the user's skin, and the like.
- Suitable reducing agents include, but are not limited to, thioglycolic acid and thioglycolic acid salts and esters, thiolactic acid and thiolactic acid salts and esters, cysteine thio glycerol, thioglycolic hydrazide, thioglycolamide, glycerol monothioglycolate, sodium metabisulfite, beta- mercaptopropionic acid, N-hydroxyethyl mercapto-acetamide, N-methyl mercapto- acetamide, beta-mercapto-ethylamine, beta-mercaptopropionamide, 2-mercapto- efhanesulfonic acid, dimercaptoadipic acid, dithiothreitol, homocysteinethiolactone, cysteine derivatives, polythiol derivatives formed by the addition of cysteamine onto a
- the kit contains a reducing formulation, which contains a reducing agent for permanent hair waving and hair curling such as acid perms, alkaline perms, perms having neutral pH, or perms using buffered alkaline waving lotions.
- reducing agents include, but are not limited to thioglycolic acid and its derivative salts and esters, thiolactic acid and its derivative salts and esters, cysteine and its derivatives, cysteamine and its derivatives, inorganic sulfites, and inorganic bisulfites such as sodium metabisulfite, dithiothreitol, dithioerythritol, organic phosphines, and Japanese relaxers.
- the kit contains a reducing formulation, which contains a reducing agent for straightening hair.
- reducing agents include, but are not limited, to inorganic bisulfites such as sodium metabisulfite, inorganic sulfites, and ammonium thioglycolate, dithiothreitol, dithioerythritol, organic phosphines, and Japanese relaxers.
- the amount of the reducing agent in the reducing formulation is sufficient to rupture a sufficient number of disulfide bonds for effective hair waving, hair curling, or hair straightening as would be appreciated by one of skill in the art.
- the first formulation may be a coloring treatment.
- the first formulation may be formulated as two or more components may be mixed together before application to the hair.
- the first formulation may be in the form of two components such as a dye precursor and an oxidant.
- the hair coloring formulation contains a reducing agent capable of reducing the disulfide bonds in hair and producing free thiol groups.
- Suitable reducing agents include, but are not limited to, thioglycolic acid, thiolactic acid, dihydrolipoate, thioglycerol, mercaptopropionic acid, sodium bisulfite, ammonium bisulfide, zinc formaldehyde sulfoxylate, sodium formaldehyde sulfoxylate, sodium metabisulfite, potassium borohydride, pegylated thiols and hydroquinone.
- the amount of the reducing agent in the first formulation is sufficient to rupture a sufficient number of disulfide bonds for effective diffusion of the hair coloring ingredients as would be appreciated by one of skill in the art.
- the components of the first formulation may differ depending on the hair coloring treatment desired (such as for semi-permanent, demi-permanent, or permanent hair color), the texture of the hair, the sensitivity of the user's skin, and such the like. Hair coloring formulations for different hair coloring treatment, hair texture, and hair sensitivity are known to those of skill in the art.
- the binding formulation contains an effective amount of a binding agent to bind free thiols in the hair.
- Suitable formulations containing the binding agents are discussed above.
- the binding fomiulation may be in any suitable form. Suitable forms include, but are not limited to, low to moderate viscosity liquids, lotions, milks, mousses, sprays, gels, creams, shampoos, conditioners, and the like.
- the binding formulation will be present in a suitable container, which depends on the form of the formulation.
- the binding formulation is provided as two or more separate ingredients.
- the binding agent may be provided as a dry powder in a sealed package and the excipient provided in a vial or other container.
- a suitable mixing container for the binding agent and the excipient may be provided.
- the binding agent is premixed with a shampoo or conditioner.
- the binding formulation or second formulation
- the first formulation reducing formulation or hair coloring treatment
- the kit optionally contains shampoos and conditioners.
- Suitable shampoos and conditioners include, but are not limited to LiQWd® Hydrating Shampoo and LiQWd® Hydrating Conditioner.
- the kit may further contain an odor eliminator.
- the odor eliminator can be incorporated into the reducing formulation. Alternately, the odor eliminator is present in a suitable container for use before or after washing the binding formulation from the hair.
- Some suitable odor eliminators are known to those of ordinary skill in the art.
- the methods disclosed herein are concerned with treating hair with free thiol groups.
- the hair prior to treatment with a binding agent, the hair has been damaged and the thiol groups in the hair are free thiols.
- the binding agent can be applied to the hair to bind the free thiol groups.
- the binding agent is applied at least within one week of the hair being damaged, preferably within three days, more preferably within two days, most preferably, the same day.
- the hair may be shampooed and/or conditioned prior to applying the binding formulation.
- the hair may only be rinsed with water prior to application of the binding formulation.
- the binding formulation is applied to the hair.
- the hair does not have to be washed or rinsed prior to application of the binding formulation.
- the binding formulation is applied to dry hair.
- the binding formulations may be used as a daily conditioning treatment for hair. Typically, the amount of binding formulation applied is sufficient to saturate the hair.
- the binding formulation may be applied to the hair as a single application, or application of the binding agent may be repeated one or more times. Typically, the amount of binding formulation applied in each application is sufficient to saturate the hair.
- the volume of binding formulation applied to the hair in each application may be about 1 to about 100 mL per person depending on their length and volume of hair. In some embodiments, application of the binding agent could be repeated immediately (e.g. within about 10 to 15 seconds) or between about one and five minutes, greater than five minutes, between about five and ten minutes, greater than ten minutes, between about ten and twenty (20) minutes after the first application.
- the hair is washed or rinsed subsequent to the application of the binding formulation.
- the hair may be rinsed and subsequently washed immediately (e.g. within 10, 15, 25, 30, 45, 60 seconds (one minute), two minutes, three minutes, four, or five minutes following application) after final application of the binding agent
- the hair may be rinsed and washed about within about 30 minutes following application, preferably between about 5 minutes and about 20 minutes, more preferably about 10 minutes after the final application of the binding agent to the hair, depending on the hair type.
- the hair does not have to be washed or rinsed subsequent to application of the binding formulation.
- the binding agent covalently binds latent free thiols in the hair.
- the thiols remain bound for at least one week, preferably for at least one month following application of the binding agent.
- the thiols may remain bound for longer periods of time, such as for about two months or more following application of the binding agent.
- the binding reaction is a stable reaction, such that the thiols may remain bound even if subjected to a hair coloring treatment (simultaneous or subsequent to the binding reaction).
- the hair prior to treatment with a binding agent, the hair has been subjected to a reducing agent used for waving (also referred to herein as hair perming or permanent waves), curling, and/or straightening of the hair,
- a reducing agent used for waving also referred to herein as hair perming or permanent waves
- curling and/or straightening of the hair
- the first step in waving, curling, or straightening hair is breaking the cysteine disulfide bonds to form free thiol moieties.
- the process for breaking the cysteine disulfide bonds is via application of a reducing agent.
- the process for applying the reducing agent involves following normal perming or hair straightening procedures, that are known to those skilled in the art. For example, to perm a hair, the hair is frrst washed and set on perm rods of various sizes.
- a reducing agent such as thioglycolate reducing solution or lotion, is applied to the hair. The hair is allowed to set for a specified period of time, and then the thioglycolate solution is rinsed from the hair.
- hydrogen peroxide in this process is optional. In some processes, such as when treating previously chemically treated hair, hydrogen peroxide is generally not used. In other processes, such as when perming virgin hair, hydrogen peroxide may be added. In these embodiments, hydrogen peroxide is typically added after the reducing agent is rinsed out. Then the hydrogen peroxide is rinsed from the hair prior to adding the binding agent,
- one or more of the binding agent, or a formulation thereof is applied to the hair.
- the binding agent is typically applied on the same day as treatment with the reducing agent, it may be applied later, such as within 1 to 2 weeks following treatment with the reducing agent.
- the amount of binding formulation applied is sufficient to saturate the hair.
- the binding agent is generally rinsed and shampooed from the hair after the desired level of hair waving, curling, or straightening is achieved.
- the binding agent is rinsed from the hair immediately (e.g. within 10, 15, 25, 30, 45, or 60 seconds following application) following the final application of the binding agent.
- the hair may be rinsed and washed about within about 30 minutes following application, preferably between about 5 minutes and about 20 minutes, more preferably about 10 minutes after the final application of the binding agent to the hair, depending on the hair type.
- the binding agent can be rinsed from the hair within 10, 15, 25, 30, 45, 60 seconds from the hair after application, and still achieve a desired level of hair waving, curling, or straightening.
- the binding agent may be applied to the hair as a single application, or application of the binding agent may be repeated one or more times. Typically, the amount of binding formulation applied in each application is sufficient to saturate the hair. In some embodiments, the volume of binding formulation applied to the hair in each application is about 1 to about 10 mL per perm rod. In some embodiments, application of the binding agent could be repeated immediately (e.g. within 10 to 15 seconds) or approximately 1, 5, 7.5, 10, 12.5, 15, 17.5, or 20 minutes after the first application. In some embodiments, the second application is about 7 minutes to about 10 minutes after the first application.
- the binding agent is rinsed from the hair after its application.
- the hair may be rinsed and washed immediately (e.g. within 10 to 15 seconds following application) after final application of the binding agent Alternatively the hair may be rinsed and washed about 10 minutes or later after the final application of the binding agent, such as about 15 minutes to about 30 minutes, preferably about 20 minutes after repeated application of the binding agent to the hair.
- the binding agent covalently binds the free thiols in the hair.
- the thiols remain bound for at least one week, two weeks, three weeks, four weeks, one month, two months or more.
- the binding agents are generally washed from the individual's hair on the same day as they are applied.
- traditional perms which use only hydrogen peroxide (and do not involve the addition of a cross-linking agent) are generally not washed for at least 48 hours following application (washing the hair prior to 48 hours following a traditional permanent treatment may result in significant loss in the amount of curl in the hair and/or cause damage to the hair).
- compositions described herein improve hair quality, such as appearance (e.g., sheen) and feel, increase dry strength (e.g., tensile strength), and decrease hair breakage when the hair is subjected to subsequent treatments, such as coloring.
- hair breakage decreases by 5, 10, 15, 20, 25, 30, 35, 40,
- the coloring formulation is generally applied to an individual's hair following normal hair coloring procedures that are known to those skilled in the art.
- hair color treatments include two complementary processes: bleaching the hair's natural pigment and/or other artificial pigments present in the hair, and diffusion of dye precursors into the hair, followed by coupling reactions that result in the formation of chromophores within the hair shaft, which are too large to diffuse out of the hair.
- the hair coloring formulation may be a highlighting formulation, such as formed by mixing bleach powder and developer. More complex colors may contain several precursors and many couplers, and may involve multiple reactions.
- the dye precursors may contain several ingredients, each with different functions.
- the first ingredient is usually an alkalizing agent (usually ammonia and/or an ammonia substitute, such as monoethanolamine [MEA]).
- the alkalizing agent serves a number of roles in the hair colorant process including swelling the hair fiber to aid in diffusion of the dye precursors.
- the dye precursors generally include p- diamines and -aminophenols. Precursors are oxidized to active intermediates once they have penetrated the hair shaft. Intermediates then react with color couplers to create wash resistant dyes. More specifically, the intermediates, in the presence of an oxidant, couple with another oxidation dye intermediate molecule to form a large fused ring color compound within the hair shaft.
- Couplers modifyify the color produced by the oxidation of precursor compounds.
- the primary difference between demi-permanent and permanent products is the alkalizing agent and the concentration of peroxide. The cuticle does not swell as greatly with demi-permanent dyes, making dye penetration less efficient compared to permanent coloring products.
- coloring formulations use a reducing agent, such as sodium bisulfate, to break disulfide bonds in the hair, allowing deeper penetration of the hair coloring dyes into the hair.
- a reducing agent such as sodium bisulfate
- the method includes reducing some of the disulfide linkages of the cysteine in the hair shafts to thiol groups while breaking hydrogen bonds. The reducing process changes the chemical and cosmetic characteristics of the hair, which are undesirable.
- the hair dyeing process may be followed by a shampoo and conditioning treatment, a neutralizing rinse or an acid balanced shampoo containing in addition to cationic or amphoteric surfactants, cation-active emollients and quartemary polymers.
- the hair dyeing process may be followed by application of the binding formulations described herein, before a shampoo and/or conditioning treatment,
- the binding formulation may be applied simultaneously with the hair coloring formulation or subsequently to the application of the hair coloring formulation.
- the binding formulation may be mixed with the hair coloring treatment and the mixture, containing both the binding formulation the hair coloring treatment, may be applied to the hair.
- the binding formulation is applied to the hair.
- the binding agent is typically applied on the same day as the coloring treatment, it may be applied later such as within 1 to 2 weeks following treatment with the reducing agent.
- the amount of binding formulation (or a mixture of the binding formulation and the hair coloring formulation) applied is enough to saturate the hair.
- the binding formulation may be applied to the hair as a single application, or application of the binding agent may be repeated one or more times.
- the amount of binding formulation applied in each application is sufficient to saturate the hair.
- the volume of binding formulation applied to the hair in each application may be about 1 to about 100 mL per person depending on their length and volume of hair.
- application of the binding agent could be repeated immediately (e.g. within 10 to 15 seconds) or approximately 1, 5, 7.5, 10, 12.5, 15, 17.5, or 20 minutes after the first application.
- the binding agent can be rinsed and shampooed from the hair immediately following application, for example within 10, 15, 25, 30, 45, or 60 seconds, or two, three, four, or five minutes after application.
- the binding agent may be rinsed from the hair within about 30 minutes following application, preferably between about 5 minutes and about 20 minutes, more preferably about 10 minutes after application of the binding agent to the hair, depending on hair type.
- the binding formulation is combined with the hair coloring treatment and applied as a mixture to the hair, then the mixture remains on the hair as long as needed for the hair coloring treatment. Typically the mixture is applied for approximately 10 minutes. The mixture is removed from the hair in accordance with standard methods for hair coloring treatments, e.g., rinse and shampoo, approximately 10 minutes after applying the mixture.
- the binding formulation is rinsed from the hair after its application.
- the hair may be rinsed and subsequently washed immediately ⁇ e.g. within 10 to 15 seconds following application) after final application of the binding agent.
- the hair is rinsed and/or washed about 10 minutes or later after the final application of the binding agent, such as about 15 minutes to about 30 minutes, optionally about 20 minutes after repeated application of the binding agent to the hair.
- the binding agent covalently binds the free thiols in the hair.
- the thiols remain bound for at least one week, two weeks, three weeks, four weeks, one month, or two months, or more.
- the binding agents are generally washed from the individual's hair on the same day as they are applied.
- traditional perms which use only hydrogen peroxide (and do not involve the addition of a cross-linking agent) are generally not washed for at least 48 hours following application (washing the hair prior to 48 hours following a traditional permanent treatment may result in significant loss in the amount of curl in the hair and/or cause damage to the hair).
- compositions described herein improve hair quality, such as appearance (e.g., sheen) and feel, increase dry strength (e.g., tensile strength), and decrease hair breakage when the hair is subjected to subsequent treatments, such as coloring.
- hair breakage decreases by 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85,or 90% or higher after treatment with the binding agent compared to untreated hair from the same individual. Hair breakage is a significant problem encountered during coloring and other treatments. Examples
- Example 1 Comparison of traditional perm versus perm using bismaleate binding agent
- Hair samples were obtained from a human subject and cut in 1 ⁇ 2 inch wide wefts.
- Ammonium thioglycolate was obtained from a permanent wave kit manufactured by Zotos. 300 mg of Dithiothreitol in a 1 Og solution was also used as the reducing agent.
- Binding formulation A bismaleate binding agent 2,2'-(ethane-l ,2- diylbis(oxy))bis(ethan-l -amine) di-maleate at a concentration of 300 mg in 10 g total solution (water) was used.
- the hair was washed with clarifying shampoo, towel dried, and then rolled around a perm rod. Ammonium thioglycolate or dithiothreitol was then applied to the hair and left on the hair for 10 minutes to 1 hour. The hair was then rinsed for 30 seconds to 1 minute and then blotted dry with a towel.
- the binding formulation was applied to the hair, via a needle nose applicator, drenching the hair.
- the binding agent was left on the hair for a period of about 7.5 minutes.
- the hair was drenched for a second time with the binding formulation and left for a second 7.5 minutes, for a total of 15 minutes.
- the hair was then rinsed with water for about 1-2 minutes then unrolled from the perm rods.
- the hair was shampooed and conditioned with various salon shampoo and conditioner brands, including LiQWd® Hydrating Shampoo and Hydrating Conditioner. The washing and drying steps were repeated 40 times.
- a second portion of hair was permed as described above, except, hydrogen peroxide was used instead of the binding formulation.
- Example 2 Comparison of hair breakage due to repeated application of traditional perm and the binding formulations.
- Example 1 dithiothreitol or ammonium thioglycolate as described in Example 1.
- One of the hair samples was subsequently treated with the binding formulation, while the other was neutralized with hydrogen peroxide.
- the process was completed the same day for the hair treated with the binding formulation.
- the process was completed in three days with hydrogen peroxide (traditional perm).
- the second hair sample treated with the binding formulation showed little or no signs of breakage.
- the first hair sample treated with hydrogen peroxide showed significant breakage.
- Example 3 Comparison of the extent of damage to hair previously relaxed with a Japanese relaxer
- the hair samples treated with the binding fonnulation showed no noticeable damage.
- the sample treated with a traditional perm showed significant breaking, even during application.
- Example 4 Hair sheen and texture after treatment with binding formulation.
- a sample of untreated virgin gray hair was obtained from a human subject.
- Binding formulation The bismaleate binding agent in Example 1 (300 mg) was dissolved in water (10 g). The resulting solution was mixed with LiQWD Volumizing Conditioner® in a 1 : 1 ratio.
- a section of the virgin gray hair was washed with LiQWD® Hydrating Shampoo and then blotted dry with a towel. The hair was then combed with a wide tooth comb followed by combing with a fine tooth comb for 2 minutes.
- the binding formulation (about 4 mL) was applied to the hair sample by hand and then the sample combed through for approximately 1 minute.
- the hair sample was left undisturbed for a period of about 10 minutes, after which it was rinsed with water, and then washed with LiQWD® Volumizing Shampoo and Conditioner before being examined.
- the hair sample was washed and conditioned for an additional five (5) times with LiQWD® Volumizing Shampoo and Conditioner.
- LiQWD Volumizing Conditioner® without a binding agent was applied to the hair sample by hand.
- the hair sample treated with the binding formulation had more shine and felt softer to the touch that the original untreated sample.
- the treated hair sample gave an overall healthier appearance compared to the control sample.
- Example 5 Hair sheen and texture after treatment with binding formulation.
- Binding formulation The bismaleate binding agent in Example 1 (300 mg) was dissolved in water (10 g). The resulting solution was mixed with LiQ WD Enhancing Conditioner® in a 1:1 ratio.
- the binding formulation (about 7 mL) was then applied to the hair sample by hand and the sample combed through for approximately 2 minutes.
- the hair sample was left undisturbed for a period of about 5 minutes after which the hair was treated again with the binding formulation (about 4 mL).
- the hair sample was combed through for approximately 10 seconds and left undisturbed for about 5 minutes.
- the hair sample was then rinsed with water then washed with LiQWD® Sulfate Free Enhancing Shampoo and Conditioner before examination.
- LiQWD Volumizing Conditioner® without a binding agent was applied to the hair sample by hand.
- the hair sample treated with the binding formulation had more shine and felt softer to the touch than the original untreated sample.
- the treated hair sample gave an overall healthier appearance compared to the control sample.
- Example 6 Color retention and texture of colored hair treated with the binding formulation.
- Coloring formulation The permanent hair coloring formulation was obtained, from a L'Oreal® permanent hair coloring service (L'Oreal® Majirel permanent color #10 with 20 volume peroxide).
- Binding formulation A bismaleate binding agent, 2,2'-(ethane-l,2- diylbis(oxy))bis(ethan-l -amine) di-maleate, at a concentration of 300 mg in 10 g total solution (water) was used.
- the hair samples were washed with a clarifying shampoo then towel dried.
- the samples were then colored with the L'Oreal® permanent hair color service, which was left on the hair samples for approximately 35-40 minutes.
- control The first color treated hair sample (“control”) was subsequently rinsed and washed with Liqwd® Hydrating Shampoo and Conditioner five times before being photographed.
- the binding formulation was applied to the second and third color treated hair samples via a spray bottle and massaging using the fingers.
- the binding formulation was left on the second hair sample for a period of about 1 minute and on the third sample for a period of about 10 minutes.
- the hair samples were subsequently rinsed, and then washed with Liqwd® Hydrating Shampoo and Conditioner five times before being examined.
- the hair samples treated with the binding formulation showed better color retention, more shine, and less frizz than the control.
- the hair samples treated with the binding formulation felt smoother to the touch and combined with the lower frizz and added sheen gave an overall healthier appearance over the control.
- Example 7 Comparison of color retention in traditionally permed hair and hair permed using the binding formulations.
- Ammonium thioglycolate or dithiothreitol was mechanically pulled through the hair with a wide and a fine toothcomb several times then left on the hair for 10 minutes to 1 hour.
- the hair was then rinsed for 30 seconds to 1 minute with water, and then towel dried.
- the binding formulation, described in Example 1 was then applied via a needle nose applicator drenching the hair and leaving it on for 7.5 minutes. This step was repeated, for a total of 15 minutes.
- the hair was then rinsed for 1-2 minutes, shampooed, and then conditioned with various salon shampoo and conditioner brands, including LiQWd® Hydrating Shampoo and Hydrating Conditioner.
- a second sample of hair was straightened, as described above, but using hydrogen peroxide instead of the binding formulation.
- the hair samples were washed and conditioned repeatedly.
- the hair sample treated with the binding formulation displayed a color closer in intensity to the hair sample prior to the first washing, compared to the hair treated with hydrogen peroxide.
- Example 8 Comparison of hair treated with highlighting formulation applied simultaneously with binding formulation and hair treated with highlighting formulation alone
- the binding formulation in Example 1 contained the bismaleate binding agent at concentrations of 2400 mg in 10 g total solution (water).
- Swatch 1 1/2 inch wide and 8 inches long, was lightened with traditional highlighting ingredients mixed with a binding formulation, loz of Joico Verocolor Veroxide developer-20 volume was mixed with loz Joico Verolight powder bleach to form the highlighting formulation. Then 9mL of the binding formulation was added to the highlighting formulation to form a mixture.
- the mixture was applied on the Swatch lhair with an applicator brush as the hair lay on aluminum foil. The foil was then wrapped around the swatch and allowed to process for 35 minutes. The swatch was rinsed and shampooed one time. Swatch 2, the control, 1/2 inch wide and 8 inches long, was lightened with traditional highlighting ingredients in the absence of a binding formulation, loz of Joico Verocolor Veroxide developer-20 volume was mixed with loz Joico Verolight powder bleach to form a highlighting formulation with a creamy consistency.
- the highlighting formulation was applied on the Swatch 2 hair with an applicator brush as the hair lay on aluminum foil. The foil was then wrapped around the swatch and allowed to process for 35 minutes. The swatch was rinsed and shampooed one time.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Emergency Medicine (AREA)
- Cosmetics (AREA)
Abstract
Description
Claims
Priority Applications (45)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
UAA201601137A UA116148C2 (en) | 2013-08-01 | 2014-01-08 | METHODS OF HAIR AND SKIN RESTORATION |
RS20170970A RS56378B1 (en) | 2013-08-01 | 2014-08-01 | Method for conditioning hair and skin |
CA2916985A CA2916985C (en) | 2013-08-01 | 2014-08-01 | Methods for fixing hair and skin |
EA201592291A EA035975B1 (en) | 2013-08-01 | 2014-08-01 | Method and formulation for treating hair when bleaching or coloring |
DK14758005.4T DK3001809T3 (en) | 2013-08-01 | 2014-08-01 | Procedure for the care of hair and skin |
CN201480042200.1A CN105431128B (en) | 2013-08-01 | 2014-08-01 | Method for repairing hair and skin |
SI201430367T SI3001809T1 (en) | 2013-08-01 | 2014-08-01 | Method for conditioning hair and skin |
EP14758005.4A EP3001809B1 (en) | 2013-08-01 | 2014-08-01 | Method for conditioning hair and skin |
LTEP14758005.4T LT3001809T (en) | 2013-08-01 | 2014-08-01 | Method for conditioning hair and skin |
MDA20160010A MD4587C1 (en) | 2013-08-01 | 2014-08-01 | Methods for fixing hair and skin |
TN2015000571A TN2015000571A1 (en) | 2013-08-01 | 2014-08-01 | Methods for fixing hair and skin |
AP2015008934A AP2015008934A0 (en) | 2013-08-01 | 2014-08-01 | Methods for fixing hair and skin |
KR1020167002682A KR101781991B1 (en) | 2013-08-01 | 2014-08-01 | Methods for fixing hair and skin |
MYPI2016700195A MY195718A (en) | 2013-08-01 | 2014-08-01 | Methods for Fixing Hair and Skin |
ES14758005.4T ES2639727T3 (en) | 2013-08-01 | 2014-08-01 | Capillary and cutaneous conditioning method |
AU2014296072A AU2014296072B2 (en) | 2013-08-01 | 2014-08-01 | Methods for fixing hair and skin |
PL14758005T PL3001809T3 (en) | 2013-08-01 | 2014-08-01 | Method for conditioning hair and skin |
MEP-2017-195A ME02869B (en) | 2013-08-01 | 2014-08-01 | Method for conditioning hair and skin |
PL17163334T PL3326606T3 (en) | 2013-08-01 | 2014-08-01 | Methods for fixing hair and skin |
SG11201600752RA SG11201600752RA (en) | 2013-08-01 | 2014-08-01 | Methods for fixing hair and skin |
JP2016515948A JP6286030B2 (en) | 2013-08-01 | 2014-08-01 | Method for restoring hair and skin |
EP17163334.0A EP3326606B1 (en) | 2013-08-01 | 2014-08-01 | Methods for fixing hair and skin |
CU2016000017A CU24449B1 (en) | 2013-08-01 | 2014-08-01 | ACTIVE AGENTS THAT HAVE A DOUBLE CARBON-CARBON BOND, USEFUL IN A COMPOSITION TO TREAT THE HAIR |
EP21205823.4A EP4008306A1 (en) | 2013-08-01 | 2014-08-01 | Methods for fixing hair and skin |
GB1523109.5A GB2530455B (en) | 2013-08-01 | 2014-08-01 | Methods of bleaching hair |
MX2016001176A MX352669B (en) | 2013-08-01 | 2014-08-01 | Methods for fixing hair and skin. |
NZ715539A NZ715539A (en) | 2013-08-01 | 2014-08-01 | Methods for fixing hair and skin |
BR112016002255-6A BR112016002255B1 (en) | 2013-08-01 | 2014-08-01 | cosmetic method to treat hair, formulation, kits and shampoo or conditioner |
US14/459,012 US9095518B2 (en) | 2013-08-01 | 2014-08-13 | Methods for fixing hair and skin |
US14/748,831 US9144537B1 (en) | 2013-08-01 | 2015-06-24 | Methods for fixing hair and skin |
US14/835,223 US9855447B2 (en) | 2013-08-01 | 2015-08-25 | Methods for fixing hair and skin |
ZA2015/09357A ZA201509357B (en) | 2013-08-01 | 2015-12-23 | Methods for fixing hair and skin |
MA38750A MA38750B1 (en) | 2013-08-01 | 2015-12-29 | Hair and skin repair procedures |
PH12016500132A PH12016500132A1 (en) | 2013-08-01 | 2016-01-20 | Methods for fixing hair and skin |
IL243748A IL243748A (en) | 2013-08-01 | 2016-01-24 | Methods for fixing hair and skin |
CR20160053A CR20160053A (en) | 2013-08-01 | 2016-01-28 | HAIR AND SKIN FIXING METHODS |
SA516370509A SA516370509B1 (en) | 2013-08-01 | 2016-01-31 | Methods for fixing hair and skin |
HK16110380.9A HK1222321A1 (en) | 2013-08-01 | 2016-09-01 | Methods for fixing hair and skin |
HK16110382.7A HK1222322A1 (en) | 2013-08-01 | 2016-09-01 | Methods for fixing hair and skin |
HRP20171408TT HRP20171408T1 (en) | 2013-08-01 | 2017-09-18 | Method for conditioning hair and skin |
CY20171101049T CY1119456T1 (en) | 2013-08-01 | 2017-10-09 | METHOD FOR HAIR AND SKIN CARE |
US15/854,504 US10639505B2 (en) | 2013-08-01 | 2017-12-26 | Methods for fixing hair and skin |
US16/830,789 US11446525B2 (en) | 2013-08-01 | 2020-03-26 | Methods for fixing hair and skin |
US17/941,675 US20230104929A1 (en) | 2013-08-01 | 2022-09-09 | Methods for fixing hair and skin |
US18/177,011 US20230201632A1 (en) | 2013-08-01 | 2023-03-01 | Methods for fixing hair and skin |
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361861281P | 2013-08-01 | 2013-08-01 | |
US61/861,281 | 2013-08-01 | ||
US201361867872P | 2013-08-20 | 2013-08-20 | |
US61/867,872 | 2013-08-20 | ||
US201361885898P | 2013-10-02 | 2013-10-02 | |
US61/885,898 | 2013-10-02 | ||
US201361903239P | 2013-11-12 | 2013-11-12 | |
US61/903,239 | 2013-11-12 | ||
US14/257,056 US20150037271A1 (en) | 2013-08-01 | 2014-04-21 | Methods for Fixing Hair and Skin |
US14/257,089 US20150034119A1 (en) | 2013-08-01 | 2014-04-21 | Hair Color Smoothing Compositions and Methods |
US14/257,076 US20150037270A1 (en) | 2013-08-01 | 2014-04-21 | Compositions and Kits for Hair and Skin |
US14/257,076 | 2014-04-21 | ||
US14/257,056 | 2014-04-21 | ||
US14/257,089 | 2014-04-21 | ||
US201462000340P | 2014-05-19 | 2014-05-19 | |
US62/000,340 | 2014-05-19 |
Related Parent Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/257,089 Continuation-In-Part US20150034119A1 (en) | 2013-08-01 | 2014-04-21 | Hair Color Smoothing Compositions and Methods |
US14/257,089 Continuation US20150034119A1 (en) | 2013-08-01 | 2014-04-21 | Hair Color Smoothing Compositions and Methods |
US14/257,076 Continuation-In-Part US20150037270A1 (en) | 2013-08-01 | 2014-04-21 | Compositions and Kits for Hair and Skin |
US14/257,056 Continuation-In-Part US20150037271A1 (en) | 2013-08-01 | 2014-04-21 | Methods for Fixing Hair and Skin |
US14/257,056 Continuation US20150037271A1 (en) | 2013-08-01 | 2014-04-21 | Methods for Fixing Hair and Skin |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/459,012 Continuation-In-Part US9095518B2 (en) | 2013-08-01 | 2014-08-13 | Methods for fixing hair and skin |
US14/459,012 Continuation US9095518B2 (en) | 2013-08-01 | 2014-08-13 | Methods for fixing hair and skin |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015017768A1 true WO2015017768A1 (en) | 2015-02-05 |
Family
ID=52432460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/049388 WO2015017768A1 (en) | 2013-08-01 | 2014-08-01 | Methods for fixing hair and skin |
Country Status (40)
Country | Link |
---|---|
EP (3) | EP3001809B1 (en) |
JP (1) | JP6286030B2 (en) |
KR (1) | KR101781991B1 (en) |
CN (1) | CN105431128B (en) |
AP (1) | AP2015008934A0 (en) |
AU (2) | AU2014296072B2 (en) |
BR (1) | BR112016002255B1 (en) |
CA (1) | CA2916985C (en) |
CL (1) | CL2016000158A1 (en) |
CU (1) | CU24449B1 (en) |
CY (1) | CY1119456T1 (en) |
DE (1) | DE202014010627U1 (en) |
DK (2) | DK3001809T3 (en) |
EA (1) | EA035975B1 (en) |
ES (2) | ES2639727T3 (en) |
GB (1) | GB2530455B (en) |
GE (1) | GEP20186869B (en) |
GT (1) | GT201600023A (en) |
HK (2) | HK1222322A1 (en) |
HR (1) | HRP20171408T1 (en) |
HU (1) | HUE034751T2 (en) |
IL (1) | IL243748A (en) |
LT (1) | LT3001809T (en) |
MA (1) | MA38750B1 (en) |
MD (1) | MD4587C1 (en) |
MX (1) | MX352669B (en) |
MY (1) | MY195718A (en) |
NI (1) | NI201600020A (en) |
NZ (1) | NZ715539A (en) |
PE (1) | PE20160214A1 (en) |
PH (1) | PH12016500132A1 (en) |
PL (2) | PL3001809T3 (en) |
PT (1) | PT3001809T (en) |
SA (1) | SA516370509B1 (en) |
SG (1) | SG11201600752RA (en) |
SI (1) | SI3001809T1 (en) |
TN (1) | TN2015000571A1 (en) |
UA (1) | UA116148C2 (en) |
WO (1) | WO2015017768A1 (en) |
ZA (1) | ZA201509357B (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015175986A2 (en) | 2014-05-16 | 2015-11-19 | Liqwd, Inc. | Keratin treatment formulations and methods |
WO2017041908A1 (en) | 2015-09-08 | 2017-03-16 | Kao Germany Gmbh | Process for bleaching hair |
US9597273B2 (en) | 2015-04-24 | 2017-03-21 | Liqwd, Inc. | Methods for treating relaxed hair |
DE202016008131U1 (en) | 2015-10-08 | 2017-04-20 | Ip Full Asset Limited | Hair consolidation composition and its application for hair firming |
EP3175837A1 (en) | 2015-12-01 | 2017-06-07 | Noxell Corporation | Method for treating hair |
WO2017099436A1 (en) * | 2015-12-09 | 2017-06-15 | 주식회사 엘지생활건강 | Functional composition for surface modification |
DE202017101867U1 (en) | 2016-04-14 | 2017-07-17 | Ip Full Asset Limited | Hair hardening composition and hair strengthening agent |
US9713583B1 (en) | 2016-07-12 | 2017-07-25 | Liqwd, Inc. | Methods and formulations for curling hair |
DE202017001430U1 (en) | 2016-05-19 | 2017-07-27 | Ip Full Asset Limited | Hair-strengthening composition and a hair strengthening kit |
DE202017101868U1 (en) | 2016-08-22 | 2017-07-27 | Ip Full Asset Limited | Hair consolidation composition and hair conditioning agent with excellent properties |
US9855447B2 (en) | 2013-08-01 | 2018-01-02 | Liqwd, Inc. | Methods for fixing hair and skin |
US9872821B1 (en) | 2016-07-12 | 2018-01-23 | Liqwd, Inc. | Methods and formulations for curling hair |
EP3287120A1 (en) | 2016-08-24 | 2018-02-28 | Noxell Corporation | Method for coloring hair |
EP3287119A1 (en) | 2016-08-24 | 2018-02-28 | Noxell Corporation | Method for treating hair |
US9974725B1 (en) | 2017-05-24 | 2018-05-22 | L'oreal | Methods for treating chemically relaxed hair |
WO2018105268A1 (en) | 2016-12-07 | 2018-06-14 | L'oreal | A composition containing glutaric acid and at least one aromatic alcohol for treating keratin fiber |
US10058494B2 (en) | 2015-11-24 | 2018-08-28 | L'oreal | Compositions for altering the color of hair |
KR20180131161A (en) * | 2017-05-31 | 2018-12-10 | 주식회사 엘지생활건강 | Composition for permanent wave |
US10231915B2 (en) | 2015-05-01 | 2019-03-19 | L'oreal | Compositions for altering the color of hair |
EP3380200A4 (en) * | 2015-11-24 | 2019-07-17 | L'oreal | Compositions for treating the hair |
US10398634B2 (en) | 2015-09-08 | 2019-09-03 | Kao Germany Gmbh | Process for oxidative dyeing hair |
US10398914B2 (en) | 2015-09-08 | 2019-09-03 | Kao Germany Gmbh | Process for treating hair |
US10441518B2 (en) | 2015-11-24 | 2019-10-15 | L'oreal | Compositions for treating the hair |
EP3319693B1 (en) | 2015-07-10 | 2019-11-06 | Hercules LLC | Method of strengthening hair fibers and protecting dyed hair color from fading or wash-out |
KR20190126033A (en) * | 2015-12-09 | 2019-11-08 | 주식회사 엘지생활건강 | Functional composition for surface modification |
WO2021084084A1 (en) | 2019-10-31 | 2021-05-06 | Kao Corporation | Aqueous oxidizing composition comprising amino acids |
US11090249B2 (en) | 2018-10-31 | 2021-08-17 | L'oreal | Hair treatment compositions, methods, and kits for treating hair |
EP3709964A4 (en) * | 2017-11-17 | 2021-08-25 | Living Proof, Inc. | Covalent treatment for keratin-containing materials |
US11103429B2 (en) | 2015-09-08 | 2021-08-31 | Kao Germany Gmbh | Process for treating hair |
US11110041B2 (en) | 2015-09-08 | 2021-09-07 | Kao Germany Gmbh | Process for permanent shaping hair |
US11135150B2 (en) | 2016-11-21 | 2021-10-05 | L'oreal | Compositions and methods for improving the quality of chemically treated hair |
US11419809B2 (en) | 2019-06-27 | 2022-08-23 | L'oreal | Hair treatment compositions and methods for treating hair |
US11596588B2 (en) | 2017-12-29 | 2023-03-07 | L'oreal | Compositions for altering the color of hair |
EP4248940A1 (en) | 2022-03-25 | 2023-09-27 | Wella Germany GmbH | Composition for enhancing keratin fibers |
WO2023180560A1 (en) | 2022-03-25 | 2023-09-28 | Wella Germany Gmbh | Composition for enhancing keratin fibers |
US12109286B2 (en) | 2015-09-08 | 2024-10-08 | Kao Germany Gmbh | Process for semipermanent straightening and permanent shaping hair |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015013142A1 (en) | 2015-10-13 | 2017-04-13 | Rüdiger Wöhrl GmbH | Device for cleaning vehicle tires |
JP6929502B2 (en) * | 2016-11-14 | 2021-09-01 | 株式会社トップ | Endoscope overtube |
US11179312B2 (en) * | 2017-06-05 | 2021-11-23 | Momentive Performance Materials Inc. | Aqueous compositions for the treatment of hair |
EP3755302A4 (en) | 2018-02-20 | 2022-03-23 | Living Proof, Inc. | Covalent treatment with thiols of keratin-containing materials |
IT201800004333A1 (en) | 2018-04-09 | 2019-10-09 | PROCEDURE FOR HAIR TREATMENT | |
KR102266968B1 (en) * | 2020-01-07 | 2021-06-18 | 주식회사 삼인케미칼 | Treatment composition for dyeing |
WO2021239622A1 (en) | 2020-05-27 | 2021-12-02 | Basf Se | Branched amino-acid-based polymers for hair strengthening |
JP7422243B2 (en) | 2020-09-29 | 2024-01-25 | 任天堂株式会社 | Button devices and electronic equipment |
BR102021006988A2 (en) | 2021-04-12 | 2022-10-25 | Chemyunion Ltda | HAIR COMPOSITIONS, THEIR PRODUCTION PROCESSES, USES AND HAIR TREATMENT METHODS |
WO2023148138A1 (en) | 2022-02-02 | 2023-08-10 | Clariant International Ltd | Compounds for use as hair repair agents or fabric repair agents |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB741307A (en) | 1952-01-03 | 1955-11-30 | Monsavon L Orfal | Hair-treating compositions |
GB773559A (en) * | 1954-01-29 | 1957-04-24 | Gillette Co | Improvements in or relating to meth ods and compositions for permanent waving of hair |
US3142623A (en) * | 1961-11-15 | 1964-07-28 | Oreal | Permanent waving of hair and analogous processes |
US3472243A (en) | 1965-09-27 | 1969-10-14 | Clairol Inc | Treating damaged living human hair with water soluble polymerizable vinyl monomers |
US4532950A (en) * | 1979-07-24 | 1985-08-06 | Wella Ag | Process for the permanent deformation of hair |
WO1993008787A2 (en) | 1991-10-29 | 1993-05-13 | The Procter & Gamble Company | Shampoo compositions with silicone, cationic polymer, and oily liquid conditioning agents |
WO1995001152A1 (en) | 1993-06-30 | 1995-01-12 | The Procter & Gamble Company | Conditioning shampoos containing polyvalent metal cations |
US5656265A (en) | 1994-08-05 | 1997-08-12 | Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. | Hair styling composition and method |
US5833966A (en) * | 1993-07-28 | 1998-11-10 | L'oreal | Hydrogen peroxide-based compositions used as fixers for permanent-waving/straightening |
EP1174112A2 (en) * | 2000-07-21 | 2002-01-23 | Kao Corporation | Hair cosmetic composition |
DE10051773A1 (en) * | 2000-10-19 | 2002-04-25 | Henkel Kgaa | Use of short-chain carboxylic acids as color stabilizers in dyeing keratin fibers, optionally in combination with polymers, surfactants, fats, protein hydrolysates and/or UV-filters |
DE10051774A1 (en) * | 2000-10-19 | 2002-04-25 | Henkel Kgaa | Use of short-chain carboxylic acids as restructuring agents for keratin fibers, optionally in combination with polymers, surfactants, fats, protein hydrolysates and/or UV-filters |
US6706258B1 (en) | 1998-04-20 | 2004-03-16 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Shampoo compositions comprising and emulsified silicone an a microemulsified silicone |
US20040086475A1 (en) | 2001-03-20 | 2004-05-06 | The Procter & Gamble Company | Compositions suitable for the treatment of hair comprising chelants and methods for reducing oxidative hair damage |
US20050087718A1 (en) | 2002-02-21 | 2005-04-28 | Toru Okada | Treating agent for protecting animal fiber |
US20060024257A1 (en) * | 2004-07-30 | 2006-02-02 | Chang Tae S | Self-molding permanent agent and method for proceeding free-rod and free-band type permanent |
DE102004052480A1 (en) * | 2004-10-28 | 2006-05-04 | Henkel Kgaa | Dyeing composition for keratin fibres which contains a reducing agent |
JP2006327994A (en) | 2005-05-26 | 2006-12-07 | Okada Giken:Kk | Hair-protecting agent |
JP2009007283A (en) | 2007-06-27 | 2009-01-15 | Lion Corp | Hair cosmetic |
US7598213B2 (en) | 2002-06-04 | 2009-10-06 | The Procter & Gamble Company | Conditioning shampoo compositions containing select cationic conditioning polymers |
WO2014125452A1 (en) | 2013-02-18 | 2014-08-21 | Giuliani S.P.A. | Composition for cosmetic use suitable to produce a pigmentation effect on hair |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA885143B (en) * | 1987-07-16 | 1990-03-28 | Unilever Plc | Hair treatment product |
FR2892629B1 (en) * | 2005-10-28 | 2012-04-27 | Oreal | COSMETIC COMPOSITION COMPRISING AT LEAST ONE PARTICULAR FIXING POLYMER AND AT LEAST ONE IONIC AND / OR NON-IONIC SURFACTANT |
JP5411655B2 (en) * | 2008-12-03 | 2014-02-12 | 株式会社ミルボン | Hair treatment method and hair treatment agent |
ITMI20121323A1 (en) * | 2012-07-27 | 2014-01-28 | Giuliani Spa | PHARMACEUTICAL COMPOSITION OR COSMETICAPER THE TREATMENT OF ALOPECIA |
ITMI20130555A1 (en) * | 2013-04-09 | 2014-10-10 | Giuliani Spa | PHARMACEUTICAL OR COSMETIC COMPOSITION TO COUNTER SKIN AGING THROUGH AN ANTI-INFLAMMATORY ACTION |
-
2014
- 2014-01-08 UA UAA201601137A patent/UA116148C2/en unknown
- 2014-08-01 PL PL14758005T patent/PL3001809T3/en unknown
- 2014-08-01 PL PL17163334T patent/PL3326606T3/en unknown
- 2014-08-01 LT LTEP14758005.4T patent/LT3001809T/en unknown
- 2014-08-01 DK DK14758005.4T patent/DK3001809T3/en active
- 2014-08-01 HU HUE14758005A patent/HUE034751T2/en unknown
- 2014-08-01 CA CA2916985A patent/CA2916985C/en active Active
- 2014-08-01 MX MX2016001176A patent/MX352669B/en active IP Right Grant
- 2014-08-01 MD MDA20160010A patent/MD4587C1/en not_active IP Right Cessation
- 2014-08-01 BR BR112016002255-6A patent/BR112016002255B1/en active IP Right Grant
- 2014-08-01 PE PE2016000102A patent/PE20160214A1/en unknown
- 2014-08-01 GB GB1523109.5A patent/GB2530455B/en active Active
- 2014-08-01 KR KR1020167002682A patent/KR101781991B1/en active IP Right Grant
- 2014-08-01 EA EA201592291A patent/EA035975B1/en unknown
- 2014-08-01 SG SG11201600752RA patent/SG11201600752RA/en unknown
- 2014-08-01 EP EP14758005.4A patent/EP3001809B1/en active Active
- 2014-08-01 AU AU2014296072A patent/AU2014296072B2/en active Active
- 2014-08-01 JP JP2016515948A patent/JP6286030B2/en active Active
- 2014-08-01 CU CU2016000017A patent/CU24449B1/en unknown
- 2014-08-01 ES ES14758005.4T patent/ES2639727T3/en active Active
- 2014-08-01 AP AP2015008934A patent/AP2015008934A0/en unknown
- 2014-08-01 WO PCT/US2014/049388 patent/WO2015017768A1/en active Application Filing
- 2014-08-01 MY MYPI2016700195A patent/MY195718A/en unknown
- 2014-08-01 PT PT147580054T patent/PT3001809T/en unknown
- 2014-08-01 SI SI201430367T patent/SI3001809T1/en unknown
- 2014-08-01 ES ES17163334T patent/ES2905255T3/en active Active
- 2014-08-01 EP EP17163334.0A patent/EP3326606B1/en active Active
- 2014-08-01 CN CN201480042200.1A patent/CN105431128B/en active Active
- 2014-08-01 EP EP21205823.4A patent/EP4008306A1/en active Pending
- 2014-08-01 DE DE202014010627.4U patent/DE202014010627U1/en not_active Expired - Lifetime
- 2014-08-01 DK DK17163334.0T patent/DK3326606T3/en active
- 2014-08-01 GE GEAP201414045A patent/GEP20186869B/en unknown
- 2014-08-01 NZ NZ715539A patent/NZ715539A/en unknown
- 2014-08-01 TN TN2015000571A patent/TN2015000571A1/en unknown
-
2015
- 2015-12-23 ZA ZA2015/09357A patent/ZA201509357B/en unknown
- 2015-12-29 MA MA38750A patent/MA38750B1/en unknown
-
2016
- 2016-01-20 PH PH12016500132A patent/PH12016500132A1/en unknown
- 2016-01-21 CL CL2016000158A patent/CL2016000158A1/en unknown
- 2016-01-24 IL IL243748A patent/IL243748A/en active IP Right Grant
- 2016-01-29 NI NI201600020A patent/NI201600020A/en unknown
- 2016-01-29 GT GT201600023A patent/GT201600023A/en unknown
- 2016-01-31 SA SA516370509A patent/SA516370509B1/en unknown
- 2016-04-21 AU AU2016202542A patent/AU2016202542A1/en not_active Abandoned
- 2016-09-01 HK HK16110382.7A patent/HK1222322A1/en unknown
- 2016-09-01 HK HK16110380.9A patent/HK1222321A1/en unknown
-
2017
- 2017-09-18 HR HRP20171408TT patent/HRP20171408T1/en unknown
- 2017-10-09 CY CY20171101049T patent/CY1119456T1/en unknown
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB741307A (en) | 1952-01-03 | 1955-11-30 | Monsavon L Orfal | Hair-treating compositions |
GB773559A (en) * | 1954-01-29 | 1957-04-24 | Gillette Co | Improvements in or relating to meth ods and compositions for permanent waving of hair |
US3142623A (en) * | 1961-11-15 | 1964-07-28 | Oreal | Permanent waving of hair and analogous processes |
US3472243A (en) | 1965-09-27 | 1969-10-14 | Clairol Inc | Treating damaged living human hair with water soluble polymerizable vinyl monomers |
US4532950A (en) * | 1979-07-24 | 1985-08-06 | Wella Ag | Process for the permanent deformation of hair |
WO1993008787A2 (en) | 1991-10-29 | 1993-05-13 | The Procter & Gamble Company | Shampoo compositions with silicone, cationic polymer, and oily liquid conditioning agents |
WO1995001152A1 (en) | 1993-06-30 | 1995-01-12 | The Procter & Gamble Company | Conditioning shampoos containing polyvalent metal cations |
US5833966A (en) * | 1993-07-28 | 1998-11-10 | L'oreal | Hydrogen peroxide-based compositions used as fixers for permanent-waving/straightening |
US5656265A (en) | 1994-08-05 | 1997-08-12 | Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. | Hair styling composition and method |
US6706258B1 (en) | 1998-04-20 | 2004-03-16 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Shampoo compositions comprising and emulsified silicone an a microemulsified silicone |
EP1174112A2 (en) * | 2000-07-21 | 2002-01-23 | Kao Corporation | Hair cosmetic composition |
DE10051773A1 (en) * | 2000-10-19 | 2002-04-25 | Henkel Kgaa | Use of short-chain carboxylic acids as color stabilizers in dyeing keratin fibers, optionally in combination with polymers, surfactants, fats, protein hydrolysates and/or UV-filters |
DE10051774A1 (en) * | 2000-10-19 | 2002-04-25 | Henkel Kgaa | Use of short-chain carboxylic acids as restructuring agents for keratin fibers, optionally in combination with polymers, surfactants, fats, protein hydrolysates and/or UV-filters |
US20040086475A1 (en) | 2001-03-20 | 2004-05-06 | The Procter & Gamble Company | Compositions suitable for the treatment of hair comprising chelants and methods for reducing oxidative hair damage |
US20050087718A1 (en) | 2002-02-21 | 2005-04-28 | Toru Okada | Treating agent for protecting animal fiber |
US7598213B2 (en) | 2002-06-04 | 2009-10-06 | The Procter & Gamble Company | Conditioning shampoo compositions containing select cationic conditioning polymers |
US20060024257A1 (en) * | 2004-07-30 | 2006-02-02 | Chang Tae S | Self-molding permanent agent and method for proceeding free-rod and free-band type permanent |
DE102004052480A1 (en) * | 2004-10-28 | 2006-05-04 | Henkel Kgaa | Dyeing composition for keratin fibres which contains a reducing agent |
JP2006327994A (en) | 2005-05-26 | 2006-12-07 | Okada Giken:Kk | Hair-protecting agent |
JP2009007283A (en) | 2007-06-27 | 2009-01-15 | Lion Corp | Hair cosmetic |
WO2014125452A1 (en) | 2013-02-18 | 2014-08-21 | Giuliani S.P.A. | Composition for cosmetic use suitable to produce a pigmentation effect on hair |
Non-Patent Citations (3)
Title |
---|
DOMBRINK ET AL., CHEM MATTERS, 1983, pages 8 |
JERRY MARCH: "Advanced Organic Chemistry", JOHN WILEY AND SONS, pages: 445 - 448 |
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY, vol. 43, 2007, pages 319 - 349 |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11446525B2 (en) | 2013-08-01 | 2022-09-20 | Olaplex, Inc. | Methods for fixing hair and skin |
US9855447B2 (en) | 2013-08-01 | 2018-01-02 | Liqwd, Inc. | Methods for fixing hair and skin |
US10639505B2 (en) | 2013-08-01 | 2020-05-05 | Olaplex, Inc. | Methods for fixing hair and skin |
US10076478B2 (en) | 2014-05-16 | 2018-09-18 | Liqwd, Inc. | Keratin treatment formulations and methods |
GB2541140A (en) * | 2014-05-16 | 2017-02-08 | Liqwd Inc | Keratin treatment formulations and methods |
CN106413673A (en) * | 2014-05-16 | 2017-02-15 | 利奎德股份有限公司 | Keratin treatment formulations and methods |
JP2017515882A (en) * | 2014-05-16 | 2017-06-15 | リクウィッド, インコーポレイテッド | Keratin processing formulations and methods |
US9498419B2 (en) | 2014-05-16 | 2016-11-22 | Liqwd, Inc. | Keratin treatment formulations and methods |
US9326926B2 (en) | 2014-05-16 | 2016-05-03 | Liqwd, Inc. | Keratin treatment formulations and methods |
US9668954B2 (en) | 2014-05-16 | 2017-06-06 | Liqwd, Inc. | Keratin treatment formulations and methods |
WO2015175986A3 (en) * | 2014-05-16 | 2016-03-10 | Liqwd, Inc. | Keratin treatment formulations and methods |
EP3142637B1 (en) | 2014-05-16 | 2020-07-29 | Olaplex, Inc. | Keratin treatment formulations and methods |
WO2015175986A2 (en) | 2014-05-16 | 2015-11-19 | Liqwd, Inc. | Keratin treatment formulations and methods |
US9597273B2 (en) | 2015-04-24 | 2017-03-21 | Liqwd, Inc. | Methods for treating relaxed hair |
KR20180008513A (en) * | 2015-04-24 | 2018-01-24 | 리퀴드 인코포레이티드 | How to treat relaxed hair |
US11191707B2 (en) | 2015-04-24 | 2021-12-07 | Olaplex, Inc. | Methods for treating relaxed hair |
KR102661331B1 (en) * | 2015-04-24 | 2024-04-30 | 올라플렉스, 인코포레이티드 | How to treat relaxed hair |
US9717668B2 (en) | 2015-04-24 | 2017-08-01 | Liqwd, Inc. | Methods for treating relaxed hair |
US10993896B2 (en) | 2015-05-01 | 2021-05-04 | L'oreal | Compositions for altering the color of hair |
US10231915B2 (en) | 2015-05-01 | 2019-03-19 | L'oreal | Compositions for altering the color of hair |
EP3319693B1 (en) | 2015-07-10 | 2019-11-06 | Hercules LLC | Method of strengthening hair fibers and protecting dyed hair color from fading or wash-out |
US10398914B2 (en) | 2015-09-08 | 2019-09-03 | Kao Germany Gmbh | Process for treating hair |
US12109286B2 (en) | 2015-09-08 | 2024-10-08 | Kao Germany Gmbh | Process for semipermanent straightening and permanent shaping hair |
US10632053B2 (en) | 2015-09-08 | 2020-04-28 | Kao Germany Gmbh | Process for bleaching hair |
US10398634B2 (en) | 2015-09-08 | 2019-09-03 | Kao Germany Gmbh | Process for oxidative dyeing hair |
US11110041B2 (en) | 2015-09-08 | 2021-09-07 | Kao Germany Gmbh | Process for permanent shaping hair |
WO2017041908A1 (en) | 2015-09-08 | 2017-03-16 | Kao Germany Gmbh | Process for bleaching hair |
US11103429B2 (en) | 2015-09-08 | 2021-08-31 | Kao Germany Gmbh | Process for treating hair |
JP2018530609A (en) * | 2015-10-08 | 2018-10-18 | アイピー・フル・アセット・リミテッド | Hair strengthening composition and method for strengthening hair |
DE202016008491U1 (en) | 2015-10-08 | 2018-02-27 | Ip Full Asset Limited | Hair consolidation composition and its application for hair firming |
DE202016008643U1 (en) | 2015-10-08 | 2018-10-22 | Ip Full Asset Limited | Hair consolidation composition and its application for hair firming |
DE202016008131U1 (en) | 2015-10-08 | 2017-04-20 | Ip Full Asset Limited | Hair consolidation composition and its application for hair firming |
US10828244B2 (en) | 2015-11-24 | 2020-11-10 | L'oreal | Compositions for treating the hair |
US11191706B2 (en) | 2015-11-24 | 2021-12-07 | L'oreal | Compositions for altering the color of hair |
US11213470B2 (en) | 2015-11-24 | 2022-01-04 | L'oreal | Compositions for treating the hair |
US11083675B2 (en) | 2015-11-24 | 2021-08-10 | L'oreal | Compositions for altering the color of hair |
US10058494B2 (en) | 2015-11-24 | 2018-08-28 | L'oreal | Compositions for altering the color of hair |
US12048759B2 (en) | 2015-11-24 | 2024-07-30 | L'oreal | Compositions for treating the hair |
US10441518B2 (en) | 2015-11-24 | 2019-10-15 | L'oreal | Compositions for treating the hair |
EP3380200A4 (en) * | 2015-11-24 | 2019-07-17 | L'oreal | Compositions for treating the hair |
WO2017096071A1 (en) * | 2015-12-01 | 2017-06-08 | Noxell Corporation | Method for treating hair |
EP3383500A4 (en) * | 2015-12-01 | 2019-08-07 | Noxell Corporation | Method for treating hair |
WO2017096063A1 (en) * | 2015-12-01 | 2017-06-08 | Noxell Corporation | Method for treating hair |
EP3175837A1 (en) | 2015-12-01 | 2017-06-07 | Noxell Corporation | Method for treating hair |
KR20170068162A (en) * | 2015-12-09 | 2017-06-19 | 주식회사 엘지생활건강 | Functional composition for surface modification |
WO2017099436A1 (en) * | 2015-12-09 | 2017-06-15 | 주식회사 엘지생활건강 | Functional composition for surface modification |
KR102327526B1 (en) * | 2015-12-09 | 2021-11-17 | 주식회사 엘지생활건강 | Functional composition for surface modification |
JP2018538297A (en) * | 2015-12-09 | 2018-12-27 | エルジー ハウスホールド アンド ヘルスケア リミテッド | Functional composition for surface modification |
KR20190126033A (en) * | 2015-12-09 | 2019-11-08 | 주식회사 엘지생활건강 | Functional composition for surface modification |
KR102043855B1 (en) * | 2015-12-09 | 2019-11-12 | 주식회사 엘지생활건강 | Functional composition for surface modification |
DE202017101867U1 (en) | 2016-04-14 | 2017-07-17 | Ip Full Asset Limited | Hair hardening composition and hair strengthening agent |
DE202017001430U1 (en) | 2016-05-19 | 2017-07-27 | Ip Full Asset Limited | Hair-strengthening composition and a hair strengthening kit |
DE112017002170T5 (en) | 2016-05-19 | 2019-05-23 | Ip Full Asset Limited | Hair-strengthening composition and a hair strengthening kit |
DE202017004939U1 (en) | 2016-05-19 | 2018-02-16 | Ip Full Asset Limited | Hair-strengthening composition and a hair strengthening kit |
US11559475B2 (en) | 2016-05-19 | 2023-01-24 | Liw Patent Company Limited By Guarantee | Hair strengthening ingredient and method for strengthening hair |
US10792233B2 (en) | 2016-07-12 | 2020-10-06 | Olaplex, Inc. | Methods and formulations for curling hair |
US9713583B1 (en) | 2016-07-12 | 2017-07-25 | Liqwd, Inc. | Methods and formulations for curling hair |
US9872821B1 (en) | 2016-07-12 | 2018-01-23 | Liqwd, Inc. | Methods and formulations for curling hair |
DE202017101868U1 (en) | 2016-08-22 | 2017-07-27 | Ip Full Asset Limited | Hair consolidation composition and hair conditioning agent with excellent properties |
WO2018036105A1 (en) | 2016-08-22 | 2018-03-01 | 知识产权全资产有限公司 | Method for strengthening and repairing hair, and kit therefor |
WO2018039328A1 (en) | 2016-08-24 | 2018-03-01 | Noxell Corporation | Method for treating hair |
WO2018039290A1 (en) | 2016-08-24 | 2018-03-01 | The Procter & Gamble Company | Method for treating hair |
EP3287119A1 (en) | 2016-08-24 | 2018-02-28 | Noxell Corporation | Method for treating hair |
EP3287120A1 (en) | 2016-08-24 | 2018-02-28 | Noxell Corporation | Method for coloring hair |
US11135150B2 (en) | 2016-11-21 | 2021-10-05 | L'oreal | Compositions and methods for improving the quality of chemically treated hair |
WO2018105268A1 (en) | 2016-12-07 | 2018-06-14 | L'oreal | A composition containing glutaric acid and at least one aromatic alcohol for treating keratin fiber |
US11433011B2 (en) | 2017-05-24 | 2022-09-06 | L'oreal | Methods for treating chemically relaxed hair |
US9974725B1 (en) | 2017-05-24 | 2018-05-22 | L'oreal | Methods for treating chemically relaxed hair |
KR102486938B1 (en) * | 2017-05-31 | 2023-01-10 | 주식회사 엘지생활건강 | Composition for permanent wave |
KR20180131161A (en) * | 2017-05-31 | 2018-12-10 | 주식회사 엘지생활건강 | Composition for permanent wave |
US11147759B2 (en) | 2017-11-17 | 2021-10-19 | Living Proof, Inc. | Covalent treatment for keratin-containing materials |
EP3709964A4 (en) * | 2017-11-17 | 2021-08-25 | Living Proof, Inc. | Covalent treatment for keratin-containing materials |
US11596588B2 (en) | 2017-12-29 | 2023-03-07 | L'oreal | Compositions for altering the color of hair |
US11090249B2 (en) | 2018-10-31 | 2021-08-17 | L'oreal | Hair treatment compositions, methods, and kits for treating hair |
US11975092B2 (en) | 2018-10-31 | 2024-05-07 | L'oreal | Hair treatment compositions, methods, and kits for treating hair |
US11419809B2 (en) | 2019-06-27 | 2022-08-23 | L'oreal | Hair treatment compositions and methods for treating hair |
WO2021084084A1 (en) | 2019-10-31 | 2021-05-06 | Kao Corporation | Aqueous oxidizing composition comprising amino acids |
EP4248940A1 (en) | 2022-03-25 | 2023-09-27 | Wella Germany GmbH | Composition for enhancing keratin fibers |
WO2023180560A1 (en) | 2022-03-25 | 2023-09-28 | Wella Germany Gmbh | Composition for enhancing keratin fibers |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11446525B2 (en) | Methods for fixing hair and skin | |
AU2014296072B2 (en) | Methods for fixing hair and skin | |
AU2019100919A4 (en) | Keratin treatment formulations and methods | |
AU2014296072A1 (en) | Methods for fixing hair and skin | |
US20160193129A1 (en) | Methods for Fixing Hair and Skin | |
US20160263003A1 (en) | Hair Color Smoothing Compositions and Methods | |
US20230201632A1 (en) | Methods for fixing hair and skin | |
US20230104929A1 (en) | Methods for fixing hair and skin | |
GB2541137A (en) | Methods for fixing hair and skin | |
GB2533883A (en) | Methods for fixing hair and skin | |
OA17660A (en) | Methods for fixing hair and skin. | |
NZ764434B2 (en) | Keratin Treatment Formulations and Methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480042200.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14758005 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2916985 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201592291 Country of ref document: EA Ref document number: 38750 Country of ref document: MA |
|
ENP | Entry into the national phase |
Ref document number: 1523109 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20140801 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014758005 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014758005 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12016500132 Country of ref document: PH |
|
ENP | Entry into the national phase |
Ref document number: 2014296072 Country of ref document: AU Date of ref document: 20140801 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 243748 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 000102-2016 Country of ref document: PE |
|
WWE | Wipo information: entry into national phase |
Ref document number: P97/2016 Country of ref document: AE Ref document number: MX/A/2016/001176 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14045 Country of ref document: GE Ref document number: CR2016-000053 Country of ref document: CR |
|
ENP | Entry into the national phase |
Ref document number: 2016515948 Country of ref document: JP Kind code of ref document: A Ref document number: 20167002682 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201600646 Country of ref document: ID |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 139450140003012588 Country of ref document: IR |
|
WWE | Wipo information: entry into national phase |
Ref document number: A 2016 0010 Country of ref document: MD |
|
WWE | Wipo information: entry into national phase |
Ref document number: 16030965 Country of ref document: CO |
|
WWE | Wipo information: entry into national phase |
Ref document number: A201601137 Country of ref document: UA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016002255 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112016002255 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160201 |