WO2015007131A1 - 汽车自动变速器 - Google Patents
汽车自动变速器 Download PDFInfo
- Publication number
- WO2015007131A1 WO2015007131A1 PCT/CN2014/080178 CN2014080178W WO2015007131A1 WO 2015007131 A1 WO2015007131 A1 WO 2015007131A1 CN 2014080178 W CN2014080178 W CN 2014080178W WO 2015007131 A1 WO2015007131 A1 WO 2015007131A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- magnetic field
- end cover
- phase
- automatic transmission
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K16/00—Machines with more than one rotor or stator
- H02K16/005—Machines with only rotors, e.g. counter-rotating rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K49/00—Dynamo-electric clutches; Dynamo-electric brakes
- H02K49/02—Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
- H02K49/04—Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
- H02K49/043—Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type with a radial airgap
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K99/00—Subject matter not provided for in other groups of this subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/26—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
- B60K2006/262—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators the motor or generator are used as clutch, e.g. between engine and driveshaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/10—Electrical machine types
- B60L2220/12—Induction machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/50—Structural details of electrical machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/60—Electric Machines, e.g. motors or generators
- B60Y2400/608—Clutch motors, i.e. having rotating stators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K17/00—Asynchronous induction motors; Asynchronous induction generators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the invention relates to the field of automobile industry and relates to an automatic transmission for automobiles.
- the automatic transmission of the automobile adopts mechanical shifting, and mainly has two modes of gear shifting and pulley shifting.
- the problem of the automatic transmission of the mechanically variable speed automobile is that the structure is complicated, the manufacturing cost is high, and the gear ratio or the pulley type shifting is limited by the mechanical size of the shifting wheel.
- the technical solution of the present invention is an automobile automatic transmission that uses a double-rotor structure and transmits power by electromagnetic coupling, including an inner rotor, an outer rotor, a left end cover, a right end cover, a bearing and a collector ring; the inner rotor is connected to the engine output shaft, The outer rotor is connected to the final drive input shaft.
- the special feature is that the outer rotor is machined from solid steel and can withstand large torque; the inner rotor is evenly distributed with two-phase excitation windings between two phases; the collector ring is four wires, which are respectively connected to the controller.
- a full-bridge output which can form a constant magnetic field on the rotor by direct current, and can form a positive and negative rotating magnetic field by a two-phase alternating current with a phase difference of ⁇ 90°.
- the two-phase excitation winding is connected to an alternating current with a phase difference of -90°, and the transmission becomes a two-phase asynchronous motor because the outer rotor is stationary.
- the engine crankshaft can be gradually accelerated by the inner rotor by variable frequency and variable pressure mode, and the starting impact on the engine is less than the commonly used DC motor starting mode.
- the current of the field winding is zero, and the inner rotor rotates synchronously with the engine.
- the inner rotor has a certain moment of inertia, it may be considered to reduce or eliminate the engine flywheel.
- the field windings introduce a direct current to form a constant magnetic field on the inner rotor. Since the inner rotor rotates synchronously with the engine, a rotating magnetic field synchronized with the engine is generated in the transmission.
- the inner rotor speed is greater than the outer rotor.
- the outer rotor speed is 20r/min during the starting process, and the engine speed is increased to 2000r/min in order to improve the starting performance, and the ratio is 100. In fact, the ratio can be infinite, and the car can start directly from a standstill without the clutch being saved.
- the excitation winding is connected to an alternating current with a phase difference of +90°
- the rotating magnetic field speed in the transmission is the sum of the rotational speed of the rotating magnetic field generated by the engine speed and the alternating current.
- the rotating magnetic field generated by the alternating current is 1000 r/min.
- the rotational speed of the outer rotor can reach 2500 r/min without considering the slip, and the transformation ratio is 0.6.
- the deceleration braking condition of the car is divided into two cases.
- One is that the excitation winding forms a constant magnetic field on the inner rotor by the direct current, and the external rotor is decelerated by the engine.
- the drag torque can be changed by adjusting the magnitude of the excitation current to generate a The taxiing distance that the driver expects; the other is the case where the car is driven at a high speed with an emergency brake.
- the field winding is connected to an alternating current with a phase difference of -90° to form a reverse rotating magnetic field, thereby increasing the braking torque and reducing the high speed.
- Emergency braking distance is connected to an alternating current with a phase difference of -90° to form a reverse rotating magnetic field.
- the technical effect of the present invention is that an automatic transmission for an automobile having a simple structure, a low cost, and a large variation ratio can be realized by adopting the above technical solution.
- Figure 1 is a front elevational view of the structure of the present invention and is incorporated herein by reference.
- FIG. 2 is a structural view of a two-phase field winding of an inner rotor.
- Figure 3 is a circuit diagram showing the connection between the field winding and the controller.
- the inner rotor (1) and the outer rotor (2) are supported by the right end cover (3), the left end cover (4) and the bearing (5), and both are free to rotate axially.
- the inner rotor (1) is connected to the engine output shaft
- the outer rotor (2) is connected to the main reducer input shaft.
- the outer rotor (2) is machined from solid steel and can withstand large torques.
- 12 pairs of A-phase excitation windings (7) and B-phase excitation windings (8) are evenly distributed on the inner rotor (1), and the A-phase excitation windings (7) are wound (L1, L3, L5).
- the collector ring (6) is a 4-wire line connecting the field windings to the output terminals of the controller A phase full bridge (Q1, Q2, Q3, Q4) and the B phase full bridge (Q5, Q6, Q7, Q8).
- a constant magnetic field can be formed in the rotor by direct current, and a two-phase alternating current with a phase difference of ⁇ 90° can be formed to form a positive and negative rotating magnetic field.
- the switching tubes In the starting and accelerating conditions of the car, the switching tubes (Q1, Q4, Q5, Q8) are turned on, the switching tubes (Q2, Q3, Q6, Q7) are turned off, and the direct current in the exciting winding generates a magnetic field with a constant direction.
- the polarity of the magnetic field formed on the surface of the rotor is shown in Table 1, which is clearly a 3-pole pair magnetic field. Since the inner rotor rotates synchronously with the engine, a rotating magnetic field is generated to drive the outer rotor to rotate.
- the switch tube (Q4, Q8) uses pulse width modulation to control the current to change the magnetic field strength and adjust the acceleration torque. When the car engine is dragged and decelerated, the conduction and the off state of the switch tube are the same, and the magnetic field direction is also shown in Table 1.
- the A-phase full bridge (Q1, Q2, Q3, Q4) and the B-phase full bridge (Q5, Q6, Q7, Q8) produce a square wave alternating current with a phase difference of +90°, and the magnetic field polarity changes as shown in Table 2. It is not difficult to see that it is a 3-pole pair magnetic field that rotates clockwise.
- the rotational magnetic field speed in the transmission is the sum of the engine speed and the rotational magnetic field speed produced by the alternating current.
- the alternating current frequency is 50 Hz
- the rotating magnetic field speed generated by the 3-pole to the field winding is 1000.
- r/min assuming an engine speed of 1500 r/min, the rotating magnetic field speed in the transmission is 2500 r/min.
- the A-phase full bridge (Q1, Q2, Q3, Q4) and the B-phase full bridge (Q5, Q6, Q7, Q8) When the vehicle is driving at high speed, the A-phase full bridge (Q1, Q2, Q3, Q4) and the B-phase full bridge (Q5, Q6, Q7, Q8) generate a square wave alternating current with a phase difference of -90°.
- the change in the polarity of the magnetic field is shown in Table 3. It is a 3-pole pair magnetic field that rotates counterclockwise. It is opposite to the direction of rotation of the outer rotor, resulting in a reverse braking torque.
- the A-phase full bridge (Q1, Q2, Q3, Q4) and the B-phase full bridge (Q5, Q6, Q7, Q8) are also square wave alternating currents with a phase difference of -90°.
- the polarity change is also shown in Table 2, except that the frequency is gradually increased from 0 Hz to 50 Hz.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Hybrid Electric Vehicles (AREA)
- Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
Abstract
一种双转子结构的汽车自动变速器,包括内转子(1)、外转子(2)、右端盖(3)、左端盖(4)、轴承(5)和集电环(6);内转子(1)连接发动机输出轴,外转子(2)连接主减速器输入轴;外转子(2)以实体钢加工而成,可以承受较大扭矩;内转子(1)上均匀分布着两两相间的两相励磁绕组;集电环(6)是4线,分别连接到控制器的两个全桥输出,它既可以通入直流电在转子上形成恒定磁场,又可以通入相位差±90°的两相交变电流形成正、反旋转磁场。它解决了目前汽车自动变速器制造成本高、变速范围小的问题,适用于各种以汽油和柴油发动机为动力的汽车。
Description
本发明涉及汽车工业领域,是一种汽车自动变速器。
目前,汽车自动变速器都是采用机械方式变速,主要有齿轮变速和带轮变速两种方式。
用机械方式变速的汽车自动变速器存在的问题是结构较为复杂,制造成本高,而且无论是齿轮方式还是带轮方式变速,受变速轮机械尺寸的限制其变比范围相对较窄。
本发明的技术方案是,一种采用双转子结构、依靠电磁耦合传输动力的汽车自动变速器,包括内转子、外转子、左端盖、右端盖、轴承和集电环;内转子连接发动机输出轴,外转子连接主减速器输入轴。其特殊之处是,外转子以实体钢加工而成,可以承受较大扭矩;内转子上均匀分布着两两相间的两相励磁绕组;集电环是4线,分别连接到控制器的两个全桥输出,它既可以通入直流电在转子上形成恒定磁场,又可以通入相位差±90°的两相交变电流形成正、反旋转磁场。
在发动机起动工况时,控制器在确认刹车踏板踩下或手刹拉起后,两相励磁绕组通入相位差-90°的交变电流,由于外转子静止,变速器变为两相异步电动机。可以通过变频、变压方式由内转子带动发动机曲轴逐渐加速旋转,对发动机的起动冲击要小于普遍使用的直流电机起动方式。待发动机达到怠速工况时,励磁绕组的电流为零,内转子与发动机同步旋转。鉴于内转子具有一定的转动惯量,可以考虑减小或取消发动机飞轮。
在汽车起步和加速工况,励磁绕组通入直流电流在内转子上形成恒定磁场,由于内转子与发动机同步旋转,从而在变速器内产生与发动机同步的旋转磁场。加速时内转子转速要大于外转子,通过调节内、外转子的转速差和励磁电流大小,就可以产生一个驾驶者期望的转矩驱动汽车加速。
例如,起步过程中外转子转速是20r/min,为了提高起步性能将发动机转速拉高到2000r/min,变比为100。事实上变比可以是无限大,汽车可以在省掉离合器的情况下从静止状态直接起步。
在汽车高速低负荷工况,励磁绕组通入相位差+90°的交变电流,变速器内旋转磁场转速是发动机转速和交变电流产生的旋转磁场转速之和。例如,发动机转速1500
r/min,交变电流产生的旋转磁场转速是1000 r/min,不考虑滑差的情况下,外转子的转速可达2500 r/min,变比为0.6。
汽车的减速刹车工况分两种情况,一种是励磁绕组通入直流电流在内转子上形成恒定磁场,由发动机拖动外转子减速,可以通过调节励磁电流大小改变拖动转矩,产生一个驾驶者期望的滑行距离;另一种是汽车高速行驶紧急刹车的情况,励磁绕组通入相位差-90°的交变电流,形成反向旋转磁场,从而增大制动转矩,减小高速行驶紧急刹车距离。
本发明的技术效果是,采用上述技术方案可以实现一种结构简单、成本较低、变比范围更大的汽车自动变速器。
图1是本发明的结构主视图 ,并作摘要附图 。
图2是内转子两相励磁绕组结构图。
图3是励磁绕组与控制器的连接电路图。
在图中,1.内转子、2.外转子、3.右端盖、4.左端盖、5.轴承、6.集电环、7.A相励磁绕组、8.B相励磁绕组。
下面结合附图实施例对本发明进一步说明。
如图中所示,内转子(1)和外转子(2)依靠右端盖(3)、左端盖(4)和轴承(5)连接支撑,并且两者都可以轴向自由转动。内转子(1)连接发动机输出轴,外转子(2)连接主减速器输入轴。外转子(2)由实体钢加工而成,可以承受较大扭矩。本例中,内转子(1)上均匀分布着12个两两相间的A相励磁绕组(7)和B相励磁绕组(8),A相励磁绕组(7)由绕组(L1、L3、L5、L7、L9、L11)构成,B相励磁绕组(8)由绕组(L2、L4、L6、L8、L10、L12)构成。集电环(6)是4线,将励磁绕组分别连接到控制器A相全桥(Q1、Q2、Q3、Q4)和B相全桥(Q5、Q6、Q7、Q8)的输出端,它既可以通入直流电在转子上内形成恒定磁场,又可以通入相位差±90°的两相交变电流形成正、反旋转磁场。
在汽车起步和加速工况,开关管(Q1、Q4、Q5、Q8)导通,开关管(Q2、Q3、Q6、Q7)截止,励磁绕组中的直流电流产生方向不变的磁场,在内转子表面形成的磁场极性如表1所示,显然它是一个3极对磁场。由于内转子与发动机同步旋转,从而产生旋转磁场,带动外转子旋转。开关管(Q4、Q8)是用脉宽调制方式控制电流大小来改变磁场强度,调节加速力矩。汽车发动机拖动减速时,开关管的导通与截止状态类同,磁场方向也如表1所示。
在汽车高速低负荷工况,
A相全桥(Q1、Q2、Q3、Q4)和B相全桥(Q5、Q6、Q7、Q8)产生相位差为+90°的方波交变电流,其磁场极性变化如表2所示,不难看出它是一个顺时针旋转的3极对磁场。变速器内旋转磁场转速是发动机转速和交变电流产生的旋转磁场转速之和。例如,交变电流频率是50Hz,3极对励磁绕组产生的旋转磁场转速是1000
r/min,假定发动机转速是1500 r/min,则变速器内旋转磁场转速为2500 r/min。
在汽车高速行驶紧急刹车时,A相全桥(Q1、Q2、Q3、Q4)和B相全桥(Q5、Q6、Q7、Q8)产生相位差为-90°的方波交变电流,其磁场极性变化如表3所示,它是一个逆时针旋转的3极对磁场。它与外转子的旋转方向相反,从而产生反向制动转矩。
若用变速器起动发动机,A相全桥(Q1、Q2、Q3、Q4)和B相全桥(Q5、Q6、Q7、Q8)也是产生相位差为-90°的方波交变电流,其磁场极性变化也如表2所示,只不过频率是从0Hz到50Hz逐步提高。
Claims (1)
- 一种双转子结构的汽车自动变速器,包括内转子、外转子、左端盖、右端盖、轴承和集电环,内转子和外转子依靠左端盖、右端盖和轴承连接支撑并且可以轴向自由转动 ;其特征是:外转子以实体钢加工而成, 可以承受较大扭矩;内转子上均匀分布着两两相间的两相励磁绕组;集电环是4线,分别连接到控制器的两个全桥输出,它既可以通入直流电在转子上形成恒定磁场,又可以通入相位差±90°的两相交变电流形成正、反旋转磁场。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/994,145 US20160126817A1 (en) | 2013-07-16 | 2016-01-13 | Automobile automatic transmission |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310308791.XA CN103401397B (zh) | 2013-07-16 | 2013-07-16 | 汽车自动变速器 |
CN201310308791.X | 2013-07-16 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/994,145 Continuation US20160126817A1 (en) | 2013-07-16 | 2016-01-13 | Automobile automatic transmission |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015007131A1 true WO2015007131A1 (zh) | 2015-01-22 |
Family
ID=49564967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/080178 WO2015007131A1 (zh) | 2013-07-16 | 2014-06-18 | 汽车自动变速器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20160126817A1 (zh) |
CN (1) | CN103401397B (zh) |
WO (1) | WO2015007131A1 (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3081620A2 (en) | 2015-04-13 | 2016-10-19 | Merck Patent GmbH | Liquid-crystalline medium and liquid-crystal display comprising the same |
EP3095834A2 (en) | 2015-05-21 | 2016-11-23 | Merck Patent GmbH | Liquid-crystalline medium and liquid-crystal display comprising the same |
EP3228681A1 (en) | 2016-04-07 | 2017-10-11 | Merck Patent GmbH | Liquid-crystalline medium and liquid-crystal display comprising the same |
EP3299438A1 (en) | 2016-09-23 | 2018-03-28 | Merck Patent GmbH | Liquid-crystalline medium and liquid-crystal display comprising the same |
WO2018073151A1 (en) | 2016-10-17 | 2018-04-26 | Merck Patent Gmbh | Liquid-crystalline medium, liquid crystal compound and liquid-crystal display comprising the same |
WO2019076899A1 (en) | 2017-10-18 | 2019-04-25 | Merck Patent Gmbh | LIQUID CRYSTALLINE MEDIUM AND LIQUID CRYSTAL DISPLAY HAVING THE SAME |
WO2020127172A1 (en) | 2018-12-19 | 2020-06-25 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds |
WO2021004868A1 (en) | 2019-07-05 | 2021-01-14 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds |
US11060029B2 (en) | 2016-11-18 | 2021-07-13 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same |
WO2022023400A1 (en) | 2020-07-31 | 2022-02-03 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds |
EP4015598A1 (en) | 2020-12-16 | 2022-06-22 | Merck Patent GmbH | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds |
WO2022136223A1 (en) | 2020-12-22 | 2022-06-30 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds |
US11447701B2 (en) | 2019-12-19 | 2022-09-20 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103401397B (zh) * | 2013-07-16 | 2016-06-08 | 胡晋青 | 汽车自动变速器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2278242A (en) * | 1993-05-11 | 1994-11-23 | Roy Edward Flack | Electromagnetic transmission system including variable-speed electric motor |
CN101359862A (zh) * | 2008-09-27 | 2009-02-04 | 沈阳工业大学 | 具有单电口和同速逆向双机械口的永磁同步电机 |
CN101488690A (zh) * | 2008-01-17 | 2009-07-22 | 颜广博 | 多功能电磁无级变矩装置 |
WO2013016159A2 (en) * | 2011-07-22 | 2013-01-31 | Regal Beloit Epc Inc. | Magnetic transmission |
CN103036378A (zh) * | 2012-12-27 | 2013-04-10 | 上海交通大学 | 无定子的三电刷双转子内圈永磁体同步电机 |
CN103401397A (zh) * | 2013-07-16 | 2013-11-20 | 胡晋青 | 汽车自动变速器 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4159434A (en) * | 1977-10-21 | 1979-06-26 | General Electric Company | Axial gap inductor alternator |
CN2090590U (zh) * | 1990-12-23 | 1991-12-11 | 谢石隆 | 发动机电磁无级变速器 |
EP0743212B1 (en) * | 1995-05-19 | 2006-03-22 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle power output apparatus and method of controlling the same |
CN2243738Y (zh) * | 1995-07-18 | 1996-12-25 | 苏易林 | 无刷型感应子式汽车发电机 |
US6346784B1 (en) * | 1998-04-20 | 2002-02-12 | Pan-Chien Lin | Power transmission apparatus |
CN1937374A (zh) * | 2006-09-29 | 2007-03-28 | 江苏大学 | 耐高温实心转子永磁感应电涡流式磁力传动方法与装置 |
JP4970000B2 (ja) * | 2006-11-10 | 2012-07-04 | 株式会社Tbk | 電磁式リターダ |
US7880355B2 (en) * | 2006-12-06 | 2011-02-01 | General Electric Company | Electromagnetic variable transmission |
CN201153239Y (zh) * | 2007-10-31 | 2008-11-19 | 徐华焰 | 磁电机式无级变速器总成 |
CN101465592A (zh) * | 2009-01-08 | 2009-06-24 | 清华大学 | 一种变频调速电磁式转矩耦合器及其应用 |
CN101944826A (zh) * | 2010-10-11 | 2011-01-12 | 西安盾安电气有限公司 | 非接触式可调速电磁耦合器 |
-
2013
- 2013-07-16 CN CN201310308791.XA patent/CN103401397B/zh active Active
-
2014
- 2014-06-18 WO PCT/CN2014/080178 patent/WO2015007131A1/zh active Application Filing
-
2016
- 2016-01-13 US US14/994,145 patent/US20160126817A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2278242A (en) * | 1993-05-11 | 1994-11-23 | Roy Edward Flack | Electromagnetic transmission system including variable-speed electric motor |
CN101488690A (zh) * | 2008-01-17 | 2009-07-22 | 颜广博 | 多功能电磁无级变矩装置 |
CN101359862A (zh) * | 2008-09-27 | 2009-02-04 | 沈阳工业大学 | 具有单电口和同速逆向双机械口的永磁同步电机 |
WO2013016159A2 (en) * | 2011-07-22 | 2013-01-31 | Regal Beloit Epc Inc. | Magnetic transmission |
CN103036378A (zh) * | 2012-12-27 | 2013-04-10 | 上海交通大学 | 无定子的三电刷双转子内圈永磁体同步电机 |
CN103401397A (zh) * | 2013-07-16 | 2013-11-20 | 胡晋青 | 汽车自动变速器 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10072210B2 (en) | 2015-04-13 | 2018-09-11 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same |
EP3081620A2 (en) | 2015-04-13 | 2016-10-19 | Merck Patent GmbH | Liquid-crystalline medium and liquid-crystal display comprising the same |
EP3095834A2 (en) | 2015-05-21 | 2016-11-23 | Merck Patent GmbH | Liquid-crystalline medium and liquid-crystal display comprising the same |
US10364392B2 (en) | 2015-05-21 | 2019-07-30 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same |
EP3228681A1 (en) | 2016-04-07 | 2017-10-11 | Merck Patent GmbH | Liquid-crystalline medium and liquid-crystal display comprising the same |
EP3299438A1 (en) | 2016-09-23 | 2018-03-28 | Merck Patent GmbH | Liquid-crystalline medium and liquid-crystal display comprising the same |
US10883047B2 (en) | 2016-09-23 | 2021-01-05 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same |
WO2018073151A1 (en) | 2016-10-17 | 2018-04-26 | Merck Patent Gmbh | Liquid-crystalline medium, liquid crystal compound and liquid-crystal display comprising the same |
US11060029B2 (en) | 2016-11-18 | 2021-07-13 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same |
WO2019076899A1 (en) | 2017-10-18 | 2019-04-25 | Merck Patent Gmbh | LIQUID CRYSTALLINE MEDIUM AND LIQUID CRYSTAL DISPLAY HAVING THE SAME |
WO2020127172A1 (en) | 2018-12-19 | 2020-06-25 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds |
WO2021004868A1 (en) | 2019-07-05 | 2021-01-14 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds |
US11795398B2 (en) | 2019-07-05 | 2023-10-24 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds |
US11447701B2 (en) | 2019-12-19 | 2022-09-20 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds |
WO2022023400A1 (en) | 2020-07-31 | 2022-02-03 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds |
EP4015598A1 (en) | 2020-12-16 | 2022-06-22 | Merck Patent GmbH | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds |
WO2022136223A1 (en) | 2020-12-22 | 2022-06-30 | Merck Patent Gmbh | Liquid-crystalline medium and liquid-crystal display comprising the same and compounds |
Also Published As
Publication number | Publication date |
---|---|
US20160126817A1 (en) | 2016-05-05 |
CN103401397A (zh) | 2013-11-20 |
CN103401397B (zh) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015007131A1 (zh) | 汽车自动变速器 | |
CA2659769C (en) | Hybrid vehicle | |
US8350442B2 (en) | Power plant | |
US20130190961A1 (en) | Dual-rotor motor for electric automobile, associated stepless speed change system with planet gear and control method | |
EP3305615A1 (en) | Mode transition control device for hybrid vehicle | |
US10259308B2 (en) | Axle assembly for hybrid electric vehicle | |
JP2004255973A (ja) | ハイブリッド自動車 | |
KR20180027866A (ko) | 하이브리드 전기자동차의 동력전달장치 | |
WO2014083705A1 (ja) | ハイブリッド車両用駆動装置 | |
CN105270404A (zh) | 混合动力车辆的发动机起动控制装置 | |
JP2012224132A (ja) | ハイブリッド車両の変速制御システム | |
US20160318400A1 (en) | Slip determination system for vehicle | |
CN205178681U (zh) | 一种定子电励磁游标电机 | |
WO2008104109A1 (fr) | Dispositif de servomécanisme de la charge d'un moteur à combustion | |
JPWO2016194106A1 (ja) | ハイブリッド車両の発電制御装置 | |
JP3180671B2 (ja) | 動力出力装置 | |
CN209441177U (zh) | 车辆的动力系统、车辆、控制系统 | |
CN212022289U (zh) | 一种车用双电机双离合混动变速传动机构 | |
CN109591572A (zh) | 混合动力驱动系统及车辆 | |
CN202806345U (zh) | 混合动力车辆的换挡控制系统 | |
JP2011057194A (ja) | ハイブリッド自動車用モーター付変速機 | |
EP3954564A1 (en) | Control method and system for hybrid power system | |
CN103978887B (zh) | 输入分配型混合动力系统 | |
JP2017213986A (ja) | ハイブリッド車両の制御装置 | |
CN109149812A (zh) | 具有非矩形转子磁体的电机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14827074 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14827074 Country of ref document: EP Kind code of ref document: A1 |