WO2015095508A1 - High-concentration silver solutions for ethylene oxide catalyst preparation - Google Patents
High-concentration silver solutions for ethylene oxide catalyst preparation Download PDFInfo
- Publication number
- WO2015095508A1 WO2015095508A1 PCT/US2014/071131 US2014071131W WO2015095508A1 WO 2015095508 A1 WO2015095508 A1 WO 2015095508A1 US 2014071131 W US2014071131 W US 2014071131W WO 2015095508 A1 WO2015095508 A1 WO 2015095508A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ammonium
- silver
- impregnation solution
- solution
- concentration
- Prior art date
Links
- 229910052709 silver Inorganic materials 0.000 title claims abstract description 149
- 239000004332 silver Substances 0.000 title claims abstract description 147
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims abstract description 137
- 239000003054 catalyst Substances 0.000 title claims abstract description 85
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 title claims description 28
- 238000002360 preparation method Methods 0.000 title description 11
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims abstract description 167
- 150000001413 amino acids Chemical class 0.000 claims abstract description 62
- 238000005470 impregnation Methods 0.000 claims abstract description 59
- 235000006408 oxalic acid Nutrition 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 52
- 150000003863 ammonium salts Chemical class 0.000 claims abstract description 42
- -1 silver ions Chemical class 0.000 claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 34
- 238000001354 calcination Methods 0.000 claims abstract description 19
- 150000001412 amines Chemical class 0.000 claims abstract description 18
- 239000003623 enhancer Substances 0.000 claims abstract description 16
- 125000000129 anionic group Chemical group 0.000 claims abstract description 9
- 229940024606 amino acid Drugs 0.000 claims description 63
- 235000001014 amino acid Nutrition 0.000 claims description 62
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 40
- 150000001450 anions Chemical class 0.000 claims description 26
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 21
- 239000004471 Glycine Substances 0.000 claims description 21
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 18
- 239000005977 Ethylene Substances 0.000 claims description 18
- 230000001737 promoting effect Effects 0.000 claims description 18
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 claims description 17
- 239000001099 ammonium carbonate Substances 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 14
- VBIXEXWLHSRNKB-UHFFFAOYSA-N ammonium oxalate Chemical compound [NH4+].[NH4+].[O-]C(=O)C([O-])=O VBIXEXWLHSRNKB-UHFFFAOYSA-N 0.000 claims description 14
- 229910052723 transition metal Inorganic materials 0.000 claims description 14
- 150000003624 transition metals Chemical class 0.000 claims description 14
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 claims description 13
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 12
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 11
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 10
- 235000004279 alanine Nutrition 0.000 claims description 10
- 229910052783 alkali metal Inorganic materials 0.000 claims description 10
- 150000001340 alkali metals Chemical class 0.000 claims description 10
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical group [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 125000005263 alkylenediamine group Chemical group 0.000 claims description 9
- 239000004474 valine Substances 0.000 claims description 9
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 8
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 6
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 6
- NLVWBYNKMPGKRG-TYYBGVCCSA-N azanium;(e)-4-hydroxy-4-oxobut-2-enoate Chemical compound [NH4+].OC(=O)\C=C\C([O-])=O NLVWBYNKMPGKRG-TYYBGVCCSA-N 0.000 claims description 6
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000003513 alkali Substances 0.000 claims description 4
- 150000003973 alkyl amines Chemical group 0.000 claims description 4
- 235000012501 ammonium carbonate Nutrition 0.000 claims description 4
- RMIOHTPMSWCRSO-UHFFFAOYSA-N azane;2-hydroxybutanedioic acid Chemical compound N.OC(=O)C(O)CC(O)=O RMIOHTPMSWCRSO-UHFFFAOYSA-N 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 4
- JSLISSGEILAIOU-UHFFFAOYSA-N (4-chloro-2-iodophenyl)hydrazine Chemical compound NNC1=CC=C(Cl)C=C1I JSLISSGEILAIOU-UHFFFAOYSA-N 0.000 claims description 3
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 3
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 claims description 3
- 239000005695 Ammonium acetate Substances 0.000 claims description 3
- 239000001729 Ammonium fumarate Substances 0.000 claims description 3
- 239000004251 Ammonium lactate Substances 0.000 claims description 3
- 239000001715 Ammonium malate Substances 0.000 claims description 3
- 239000004254 Ammonium phosphate Substances 0.000 claims description 3
- 229940043376 ammonium acetate Drugs 0.000 claims description 3
- 235000019257 ammonium acetate Nutrition 0.000 claims description 3
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims description 3
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 claims description 3
- 235000019297 ammonium fumarate Nutrition 0.000 claims description 3
- 235000019286 ammonium lactate Nutrition 0.000 claims description 3
- 229940059265 ammonium lactate Drugs 0.000 claims description 3
- 235000019292 ammonium malate Nutrition 0.000 claims description 3
- 229910000148 ammonium phosphate Inorganic materials 0.000 claims description 3
- 235000019289 ammonium phosphates Nutrition 0.000 claims description 3
- 229940039409 ammonium valerate Drugs 0.000 claims description 3
- CKKXWJDFFQPBQL-SEPHDYHBSA-N azane;(e)-but-2-enedioic acid Chemical compound N.N.OC(=O)\C=C\C(O)=O CKKXWJDFFQPBQL-SEPHDYHBSA-N 0.000 claims description 3
- NHJPVZLSLOHJDM-UHFFFAOYSA-N azane;butanedioic acid Chemical compound [NH4+].[NH4+].[O-]C(=O)CCC([O-])=O NHJPVZLSLOHJDM-UHFFFAOYSA-N 0.000 claims description 3
- ZBALFGIGLVIXBV-UHFFFAOYSA-N azane;butanedioic acid Chemical compound [NH4+].OC(=O)CCC([O-])=O ZBALFGIGLVIXBV-UHFFFAOYSA-N 0.000 claims description 3
- HEYGYQDRKHISNT-UHFFFAOYSA-N azane;propanedioic acid Chemical compound N.OC(=O)CC(O)=O HEYGYQDRKHISNT-UHFFFAOYSA-N 0.000 claims description 3
- XJMWHXZUIGHOBA-UHFFFAOYSA-N azane;propanoic acid Chemical compound N.CCC(O)=O XJMWHXZUIGHOBA-UHFFFAOYSA-N 0.000 claims description 3
- RZOBLYBZQXQGFY-HSHFZTNMSA-N azanium;(2r)-2-hydroxypropanoate Chemical compound [NH4+].C[C@@H](O)C([O-])=O RZOBLYBZQXQGFY-HSHFZTNMSA-N 0.000 claims description 3
- PHKGGXPMPXXISP-DFWYDOINSA-N azanium;(4s)-4-amino-5-hydroxy-5-oxopentanoate Chemical compound [NH4+].[O-]C(=O)[C@@H]([NH3+])CCC([O-])=O PHKGGXPMPXXISP-DFWYDOINSA-N 0.000 claims description 3
- NGPGDYLVALNKEG-UHFFFAOYSA-N azanium;azane;2,3,4-trihydroxy-4-oxobutanoate Chemical compound [NH4+].[NH4+].[O-]C(=O)C(O)C(O)C([O-])=O NGPGDYLVALNKEG-UHFFFAOYSA-N 0.000 claims description 3
- YNTQKXBRXYIAHM-UHFFFAOYSA-N azanium;butanoate Chemical compound [NH4+].CCCC([O-])=O YNTQKXBRXYIAHM-UHFFFAOYSA-N 0.000 claims description 3
- AJGPQPPJQDDCDA-UHFFFAOYSA-N azanium;hydron;oxalate Chemical compound N.OC(=O)C(O)=O AJGPQPPJQDDCDA-UHFFFAOYSA-N 0.000 claims description 3
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims description 3
- 235000019838 diammonium phosphate Nutrition 0.000 claims description 3
- YEOCBTKAGVNPMO-JIZZDEOASA-N diazanium;(2s)-2-aminobutanedioate Chemical compound [NH4+].[NH4+].[O-]C(=O)[C@@H](N)CC([O-])=O YEOCBTKAGVNPMO-JIZZDEOASA-N 0.000 claims description 3
- CKKXWJDFFQPBQL-UAIGNFCESA-N diazanium;(z)-but-2-enedioate Chemical compound [NH4+].[NH4+].[O-]C(=O)\C=C/C([O-])=O CKKXWJDFFQPBQL-UAIGNFCESA-N 0.000 claims description 3
- FRRMMWJCHSFNSG-UHFFFAOYSA-N diazanium;propanedioate Chemical compound [NH4+].[NH4+].[O-]C(=O)CC([O-])=O FRRMMWJCHSFNSG-UHFFFAOYSA-N 0.000 claims description 3
- 235000013917 monoammonium glutamate Nutrition 0.000 claims description 3
- 235000019837 monoammonium phosphate Nutrition 0.000 claims description 3
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 claims description 3
- KGECWXXIGSTYSQ-UHFFFAOYSA-N ammonium malate Chemical compound [NH4+].[NH4+].[O-]C(=O)C(O)CC([O-])=O KGECWXXIGSTYSQ-UHFFFAOYSA-N 0.000 claims 2
- 238000011068 loading method Methods 0.000 abstract description 13
- 239000000243 solution Substances 0.000 description 94
- 239000011148 porous material Substances 0.000 description 58
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 32
- 239000000203 mixture Substances 0.000 description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 19
- 238000009826 distribution Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 16
- 229910001923 silver oxide Inorganic materials 0.000 description 16
- 229940012017 ethylenediamine Drugs 0.000 description 15
- 229910052702 rhenium Inorganic materials 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 241000894007 species Species 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 229910052792 caesium Inorganic materials 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000011859 microparticle Substances 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 5
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 5
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 5
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 5
- 229960000310 isoleucine Drugs 0.000 description 5
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 108010016626 Dipeptides Proteins 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 238000006735 epoxidation reaction Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 150000003378 silver Chemical class 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 3
- 239000012876 carrier material Substances 0.000 description 3
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 3
- 230000000536 complexating effect Effects 0.000 description 3
- 239000008139 complexing agent Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 229960003750 ethyl chloride Drugs 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 description 3
- OGNSCSPNOLGXSM-UHFFFAOYSA-N (+/-)-DABA Natural products NCCC(N)C(O)=O OGNSCSPNOLGXSM-UHFFFAOYSA-N 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- KDSNLYIMUZNERS-UHFFFAOYSA-N 2-methylpropanamine Chemical compound CC(C)CN KDSNLYIMUZNERS-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- QWCKQJZIFLGMSD-VKHMYHEASA-N L-alpha-aminobutyric acid Chemical compound CC[C@H](N)C(O)=O QWCKQJZIFLGMSD-VKHMYHEASA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 235000008206 alpha-amino acids Nutrition 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 229940000635 beta-alanine Drugs 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 235000010980 cellulose Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000004320 controlled atmosphere Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- MVLVMROFTAUDAG-UHFFFAOYSA-N ethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC MVLVMROFTAUDAG-UHFFFAOYSA-N 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- YMAWOPBAYDPSLA-UHFFFAOYSA-N glycylglycine Chemical compound [NH3+]CC(=O)NCC([O-])=O YMAWOPBAYDPSLA-UHFFFAOYSA-N 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- XNGYKPINNDWGGF-UHFFFAOYSA-L silver oxalate Chemical compound [Ag+].[Ag+].[O-]C(=O)C([O-])=O XNGYKPINNDWGGF-UHFFFAOYSA-L 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- HRLYFPKUYKFYJE-UHFFFAOYSA-N tetraoxorhenate(2-) Chemical compound [O-][Re]([O-])(=O)=O HRLYFPKUYKFYJE-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical group [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- ZXSQEZNORDWBGZ-UHFFFAOYSA-N 1,3-dihydropyrrolo[2,3-b]pyridin-2-one Chemical compound C1=CN=C2NC(=O)CC2=C1 ZXSQEZNORDWBGZ-UHFFFAOYSA-N 0.000 description 1
- QWCKQJZIFLGMSD-UHFFFAOYSA-N 2-Aminobutanoic acid Natural products CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 1
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- ZVVYPSXJAHYKPU-FHNDMYTFSA-N 2-aminoacetic acid;(2s)-2-amino-3-methylbutanoic acid Chemical compound NCC(O)=O.NCC(O)=O.CC(C)[C@H](N)C(O)=O ZVVYPSXJAHYKPU-FHNDMYTFSA-N 0.000 description 1
- BMUXBWLKTHLRQC-UHFFFAOYSA-N 2-azanylethanoic acid Chemical compound NCC(O)=O.NCC(O)=O.NCC(O)=O BMUXBWLKTHLRQC-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- AXVCDCGTJGNMKM-UHFFFAOYSA-L C(C=1C(C(=O)[O-])=CC=CC1)(=O)[O-].[Ag+2] Chemical compound C(C=1C(C(=O)[O-])=CC=CC1)(=O)[O-].[Ag+2] AXVCDCGTJGNMKM-UHFFFAOYSA-L 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- 241001379910 Ephemera danica Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- VPZXBVLAVMBEQI-VKHMYHEASA-N Glycyl-alanine Chemical compound OC(=O)[C@H](C)NC(=O)CN VPZXBVLAVMBEQI-VKHMYHEASA-N 0.000 description 1
- 108010008488 Glycylglycine Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical group [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 108010079364 N-glycylalanine Proteins 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001370 alpha-amino acid derivatives Chemical class 0.000 description 1
- 150000001371 alpha-amino acids Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical class [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 150000001576 beta-amino acids Chemical class 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229920003064 carboxyethyl cellulose Polymers 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Chemical group 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- CAMHHLOGFDZBBG-UHFFFAOYSA-N epoxidized methyl oleate Natural products CCCCCCCCC1OC1CCCCCCCC(=O)OC CAMHHLOGFDZBBG-UHFFFAOYSA-N 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 229960002449 glycine Drugs 0.000 description 1
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 1
- 229940043257 glycylglycine Drugs 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000005826 halohydrocarbons Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- GKQPCPXONLDCMU-CCEZHUSRSA-N lacidipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C1=CC=CC=C1\C=C\C(=O)OC(C)(C)C GKQPCPXONLDCMU-CCEZHUSRSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229960003753 nitric oxide Drugs 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical class CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- HPEUJPJOZXNMSJ-UHFFFAOYSA-N octadecanoic acid methyl ester Natural products CCCCCCCCCCCCCCCCCC(=O)OC HPEUJPJOZXNMSJ-UHFFFAOYSA-N 0.000 description 1
- DYIZHKNUQPHNJY-UHFFFAOYSA-N oxorhenium Chemical compound [Re]=O DYIZHKNUQPHNJY-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 1
- 229910003449 rhenium oxide Inorganic materials 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical group [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- BHRZNVHARXXAHW-UHFFFAOYSA-N sec-butylamine Chemical compound CCC(C)N BHRZNVHARXXAHW-UHFFFAOYSA-N 0.000 description 1
- 150000003335 secondary amines Chemical group 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910001958 silver carbonate Inorganic materials 0.000 description 1
- LKZMBDSASOBTPN-UHFFFAOYSA-L silver carbonate Substances [Ag].[O-]C([O-])=O LKZMBDSASOBTPN-UHFFFAOYSA-L 0.000 description 1
- 229940054334 silver cation Drugs 0.000 description 1
- 229940071575 silver citrate Drugs 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- LMEWRZSPCQHBOB-UHFFFAOYSA-M silver;2-hydroxypropanoate Chemical compound [Ag+].CC(O)C([O-])=O LMEWRZSPCQHBOB-UHFFFAOYSA-M 0.000 description 1
- JKOCEVIXVMBKJA-UHFFFAOYSA-M silver;butanoate Chemical compound [Ag+].CCCC([O-])=O JKOCEVIXVMBKJA-UHFFFAOYSA-M 0.000 description 1
- CYLMOXYXYHNGHZ-UHFFFAOYSA-M silver;propanoate Chemical compound [Ag+].CCC([O-])=O CYLMOXYXYHNGHZ-UHFFFAOYSA-M 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- QUTYHQJYVDNJJA-UHFFFAOYSA-K trisilver;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [Ag+].[Ag+].[Ag+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QUTYHQJYVDNJJA-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
- B01J23/68—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/688—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/50—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
- B01J23/04—Alkali metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/053—Sulfates
- B01J27/055—Sulfates with alkali metals, copper, gold or silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0203—Impregnation the impregnation liquid containing organic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0213—Preparation of the impregnating solution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/70—Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
- B01J2231/72—Epoxidation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0237—Amines
- B01J31/0238—Amines with a primary amino group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0239—Quaternary ammonium compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/04—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/612—Surface area less than 10 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0207—Pretreatment of the support
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/06—Washing
Definitions
- the present disclosure relates to silver-based ethylene oxide catalysts for the oxidative conversion of ethylene to ethylene oxide, and in particular, to their preparation. More particularly, the present disclosure relates to silver impregnating solutions having a high silver concentration, and their use in producing silver-based ethylene oxide catalysts having high activity and selectivity.
- a high silver loading in an ethylene oxide catalyst is generally known to result in an increased selectivity, activity, and stability. For these reasons, a high silver loading is generally desirable.
- One method known in the art to increase the silver loading in a catalyst is the use of a high water absorption carrier.
- use of a high water absorption carrier generally leads to the loss of mechanical strength in the catalyst.
- Another method known in the art to increase the silver loading in a catalyst is the use of a double impregnation process. However, double impregnation generally lowers catalyst productivity and adds complexity to the process when incorporating promoting species.
- Conventional silver impregnating solutions of the art typically contain silver oxalate, or a combination of silver oxide and oxalic acid, together in ethylenediamine (EDA).
- EDA ethylenediamine
- oxalate in oxalic acid provides oxalate anion (C 2 0 4 2" ) to counter the charge balance of silver cation (Ag + ) in the EDA/water solution to form a soluble [Ag 2 C 2 0 4 ]-EDA complex.
- the oxalic acid is often referred to as an "anion contributor".
- the maximum permissible silver concentration in these solutions is generally 31 wt% under ambient conditions. Attempts to increase the silver concentration beyond this generally result in precipitation of silver salts, and thus, the silver concentration in
- conventional silver solutions is generally adjusted to no more than 31 wt%.
- the present disclosure is directed to an impregnating solution (i.e., "liquid silver-containing solution") having a higher than conventional silver concentration.
- the impregnating solution of the instant disclosure includes: (i) silver ions, (ii) a silver concentration enhancer selected from at least one ammonium salt having an anionic component that is thermally decomposable, or at least one amino acid, or a combination thereof; (iii) at least one organic amine; and (iv) water; wherein components (i)-(iii) are dissolved in the impregnating solution.
- the silver in the impregnating solution is typically present in a concentration of at least 33 wt%.
- oxalic acid is included in the impregnating solution, whereas, in other embodiments, oxalic acid is excluded.
- the organic amine is an alkylenediamine, such as ethylenediamine.
- the present disclosure is directed to a process for producing a high silver-loaded catalyst useful in the conversion of ethylene to ethylene oxide.
- a refractory support is impregnated with silver using the high silver impregnating solution described above, and the impregnated canier is then calcined to convert silver ions to metallic silver, by methods known in the art of silver catalyst preparation.
- the resulting high silver- loaded catalyst generally possesses an improved activity, selectivity, and/or stability as compared to silver catalysts having lower silver concentrations.
- the instant disclosure is directed to a silver impregnating solution having a higher than conventional concentration of silver dissolved therein.
- the silver in the impregnating solution is necessarily present in the form of silver ions, which, by necessity, are associated with anions in the form of a silver salt or compound.
- the silver ions may or may not also be complexed with a neutral ligand, such as an amine, diamine, or triamine.
- Silver salts useful for impregnation include, for example, silver oxalate, silver nitrate, silver oxide, silver carbonate, silver carboxylates, silver citrate, silver phthalate, silver lactate, silver propionate, silver butyrate, as well as higher fatty acid salts and combinations thereof.
- a wide variety of complexing or solubilizing agents may be employed to solubilize silver to the desired concentration in the impregnating medium.
- Useful complexing or solubilizing agents include amines, ammonia, lactic acid, and combinations thereof.
- the impregnating solution described herein contains at least one organic amine compound.
- the organic amine can be any of the amine compounds known in the art that function as complexing and/or solubilizing agents for silver ion. Generally, the organic amine possesses at least one primary or secondary amine group.
- the organic amine should be completely soluble in an aqueous-based solvent, which may be water or water in admixture with a water-soluble solvent.
- the organic amine can be, for example, an alkylamine, alkylenediamine, dialkylenetriamine, or alkanolamine.
- alkylamines include ethylamine, diethylamine, n-propylamine, di(n-propylamine), isopropylamine, diisopropylamine, «-butylamine, isobutylamine, sec-butylamine, and t- butylamine.
- alkylenediamines include ethylenediamine (EDA), 1 ,2- propylenediamine, 1,3-propylenediamine, and 1 ,4-butylenediamine.
- dialkylenetriamines include diethylenetriamine and dipropylenetriamine.
- alkanolamines include ethanolamine, diethanolamine, propanolamine (i.e., l-amino-2- propanol or l-amino-3-propanol), and dipropanolamine.
- the organic amine is typically present in the impregnating solution in an amount from about 0.1 to about 5.0 moles per mole of silver, or about 0.2 to about 4.0 moles per mole of silver, or about 0.3 to about 3.0 moles per mole of silver.
- the term "about” generally indicates no more than ⁇ 10%, ⁇ 5%, ⁇ 2%, or ⁇ 1% from a number.
- the term “about 1 mole” generally indicates a value in the range of 0.9 to 1.1 moles in its broadest sense.
- the impregnating solution described herein further includes a silver concentration enhancer, particularly at least one ammonium salt having an anionic component that is thermally decomposable, or at least one amino acid, or a combination thereof.
- the silver concentration enhancer which may be a single compound or a combination of compounds (e.g., one or more ammonium salts, or one or more amino acids, or one or more ammonium salts in combination with one or more amino acids), is generally present in the silver impregnation solution in an amount of at least 1 wt% with respect to the total weight of the impregnating solution.
- the silver concentration enhancer may be included in the impregnating solution in an amount of precisely, about, at least, above, up to, or less than, for example, 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 60 wt%, or in an amount within a range bounded by any two of the foregoing exemplary values.
- the silver concentration enhancer is at least one ammonium salt having an anionic component that is thermally decomposable.
- thermally decomposable indicates that the anion decomposes, generally to gaseous species, which temporarily leaves the ammonium ion isolated. Without being bound by theory, it is believed that the isolated ammonium ion, in the presence of the alkaline organic amine, reacts with the organic amine to form ammonia, which further complexes with the silver ions to form a more soluble polyamine-silver (i.e., Ag(NH 3 ) n + ) complex, wherein n is generally 2 or 3.
- the anion contains at least one carbon atom (i.e., is carbon-containing), and in more particular embodiments, the anion is organic in nature by containing at least one carbon-hydrogen and/or carbon-carbon bond.
- suitable ammonium salts include the ammonium carboxylates, ammonium carbonate, ammonium bicarbonate, ammonium nitrate, ammonium phosphate, diammonium hydrogen phosphate, and ammonium dihydrogen phosphate.
- carboxylates include ammonium formate, ammonium acetate, ammonium propionate, ammonium butyrate, ammonium valerate, ammonium oxalate, ammonium hydrogen oxalate, ammonium malonate, ammonium hydrogen malonate, ammonium succinate, ammonium hydrogen succinate, ammonium maleate, ammonium hydrogen maleate, ammonium fumarate, ammonium hydrogen fumarate, ammonium malate, ammonium hydrogen malate, ammonium citrate, ammonium tartrate, ammonium lactate, ammonium aspartate, and ammonium glutamate.
- ammonium salts may be included in impregnating solutions of the art for the purpose of incorporating promoting species into the support and subsequent catalyst.
- ammonium salts used in the art generally do not possess decomposable anions.
- Some examples of ammonium salts containing a promoting anionic species include ammonium fluoride, ammonium chloride, ammonium sulfate, ammonium rhenate
- ammonium salt used herein includes an anion that is thermally decomposable in the manner described above.
- the impregnating solution can contain any suitable solvent in which all of the components of the impregnating solution are completely miscible.
- the solvent is typically water-based, i.e., aqueous.
- the solvent is solely water.
- the solvent includes water in admixture with a water-soluble co-solvent, such as an alcohol (e.g., methanol or ethanol), glycol (e.g., ethylene glycol or propylene glycol), or a ketone (e.g., acetone).
- a water-soluble co-solvent such as an alcohol (e.g., methanol or ethanol), glycol (e.g., ethylene glycol or propylene glycol), or a ketone (e.g., acetone).
- the concentration of silver in the impregnation solution is generally at least 33 wt%. In different embodiments, the concentration of silver in the impregnation solution is about, at least, or greater than 34, 35, 36, 37, 38, 39, or 40 wt % by weight of the impregnating solution, or the silver concentration is within a range bounded by any two of the foregoing values.
- oxalic acid is included in the impregnation solution when the ammonium salt of the instant disclosure is present. In another embodiment, oxalic acid is excluded from the impregnation solution when the ammonium salt of the instant disclosure is present.
- the ammonium salt of the instant disclosure can be in any suitable mole ratio with the oxalic acid.
- the mole ratio of ammonium salt (of the instant disclosure) to oxalic acid is about, at least, above, up to, or less than, for example, 100: 1, 90: 1, 80: 1, 50: 1, 40: 1, 30: 1, 20: 1, 10: 1, 5: 1, 2: 1, 1 : 1, 1 :2, 1 :5, 1 : 10, 1 :20, 1 :30, 1 :40, 1 :50, 1 :80, 1 :90, or 1 : 100, or a mole ratio within a range bounded by any two of the foregoing values.
- the foregoing mole ratios refer to the single ammonium salt, regardless of whether there may also be included ammonium salts not of the instant disclosure.
- a combination of ammonium salts of the instant disclosure e.g., two, three, four, or more
- the foregoing mole ratios may be taken as the total mole ratio of the ammonium salts of the instant disclosure, or the foregoing mole ratios may independently be taken as mole ratios of the individual ammonium salts of the instant disclosure, regardless of whether there may also be included ammonium salts not of the instant disclosure.
- the amount of ammonium salt (of the instant disclosure) relative to oxalic acid may be stated in terms of a molar percentage (mol%), such as 98, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 2, or 1 mol% of ammonium salt relative to the total of ammonium salt and oxalic acid.
- mol% molar percentage
- the silver concentration enhancer is at least one amino acid.
- the amino acid can be any of the known natural or unnatural amino acids, and in particular, any of the known essential amino acids, which generally refer to those amino acids found in abundance in living organisms.
- the amino acid should have an underivatized amino end (i.e., -NH 2 or -NH 3 + ) and an underivatized carboxylic acid end (i.e., -COOH or -COO " ). In the event of a charge on any or both of the amino and carboxyl ends, the amino acid is understood to possess a suitable counterion.
- the one or more amino acids can be selected from, for example, glycine, alanine, valine, leucine, isoleucine, cysteine, methionine, phenylalanine, tyrosine, tryptophan, proline, serine, threonine, asparagine, glutamine, aspartic acid, glutamic acid, histidine, lysine, and arginine.
- the amino acid considered herein is an alpha-amino acid, as typically found in living organisms.
- beta-amino acids e.g., beta-alanine
- gamma-amino acids e.g., gamma-aminobutyric acid, also known as GABA
- GABA gamma-aminobutyric acid
- the amino acid is typically characterized by the nature of its side chain, which, in the case of alpha-amino acids, is located at the alpha carbon.
- the amino acid does not possess a side chain (i.e., other than hydrogen atom), as found in glycine, beta- alanine, and gamma-aminobutyric acid.
- the amino acid possesses an aliphatic side chain, such as found in alanine, valine, leucine, and isoleucine.
- alpha-aminobutyric acid also known as homoalanine, which possesses an ethyl group as its side chain instead of the methyl group side chain of alanine.
- the amino acid possesses an aromatic side chain, such as found in phenylalanine, tyrosine, tryptophan, and histidine.
- the amino acid possesses one or more nitrogen atoms in its side chain, such as found in lysine, arginine, histidine, tryptophan, asparagine, and glutamine.
- the amino acid possesses a sulfur-containing group in its side chain, such as found in cysteine, homocysteine, and methionine.
- the amino acid does not contain a heteroatom (i.e., an atom other than carbon and hydrogen) in its side chain, while in other embodiments, the amino acid is permitted to possess a heteroatom in its side chain.
- the amino acid is selected from one or more of glycine, alanine, valine, leucine, and isoleucine, or more particularly, glycine, alanine, and valine, or more particularly, glycine and alanine, or more particularly, glycine.
- any of the groupings of amino acids provided in this disclosure indicates a minimum set from which one or more amino acids are selected, without excluding amino acids not belonging to the indicated set.
- any of the above-disclosed groups of amino acids indicates a closed set from which one or more amino acids are selected, with the complete or partial exclusion of amino acids not belonging to the indicated set.
- any two or more exemplary sets of amino acids provided above may be combined as a larger set from which one or more amino acids are selected from.
- any one or more groupings or specific types of amino acids provided above may be excluded.
- amino acid may herein also include dipeptides or tripeptides, as long as the dipeptide or tripeptide possesses underivatized amino and carboxylic acid ends.
- the dipeptide or tripeptide necessarily possesses one or two amide bonds, respectively, and can contain any two or three amino acids, such as those described above, linked by one or two amide bonds, respectively.
- the dipeptide can be, for example, glycylglycine, i.e.,
- the tripeptide can be, for example, glycine-glycine-glycine, glycine-alanine-glycine, glycine- glycine-alanine, glycine-glycine-valine, and glycine-alanine-valine.
- oxalic acid is included in the impregnation solution when the amino acid is present. In another embodiment, oxalic acid is excluded from the impregnation solution when the amino acid is present.
- the amino acid of the instant disclosure can be in any suitable mole ratio with the oxalic acid.
- the mole ratio of amino acid to oxalic acid is about, at least, above, up to, or less than, for example, 100:1, 90:1, 80: 1, 50:1, 40:1, 30: 1 , 20: 1, 10:1, 5:1, 2: 1, 1 : 1, 1 :2, 1 :5, 1 : 10, 1 :20, 1 :30, 1 :40, 1 :50, 1 :80, 1 :90, or 1 : 100, or a mole ratio within a range bounded by any two of the foregoing values.
- the foregoing mole ratios refer to the single amino acid.
- the foregoing mole ratios may be taken as the total mole ratio of the amino acids, or the foregoing mole ratios may independently be taken as mole ratios of the individual amino acids.
- the amount of amino acid relative to oxalic acid may be stated in terms of a molar percentage (mol%), such as 98, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 25, 20, 15, 10, 5, 2, or 1 mol% of amino acid relative to the total of amino acid and oxalic acid.
- the silver concentration enhancer is a combination of at least one ammonium salt according to the instant disclosure along with at least one amino acid.
- one or more of the above-disclosed amino acids may be combined with one or more ammonium carboxylates, or one or more of any of the ammonium salts disclosed above may be combined with one or more amino acids selected from glycine, alanine, valine, leucine, and isoleucine, or one or more of any of the above-disclosed ammonium carboxylates may be combined with one or more amino acids selected from glycine, alanine, valine, leucine, and isoleucine.
- the instant application considers any combination of ammonium salt with amino acid, although in some embodiments, one or more combinations may be prohibited if they are reactive with each other or have an adverse effect on silver solubility or other characteristic of the silver impregnating solution.
- the impregnating solution contains one or more promoting species.
- the one or more promoting species can be any of those species, known in the art, that function to improve the activity or selectivity of the silver catalyst.
- the promoting species can be, for example, an alkali, alkaline earth, transition, or main group element, typically included in the form of a salt, e.g., lithium nitrate, cesium hydroxide, ammonium sulfate, and/or ammonium rhenate.
- the impregnating solution does not include a promoting species.
- the instant disclosure is directed to a method for producing a catalyst effective in the oxidative conversion of ethylene to ethylene oxide.
- a refractory carrier is impregnated with the silver impregnation solution described above, and the silver-impregnated carrier subjected to a calcination process to convert ionic silver to metallic silver by methods well known in the art, and as further described below.
- the carrier may be impregnated, and the silver-impregnated carrier stored for a time, and possibly shipped to a different location, before being calcined.
- the silver-impregnated carrier stored for a time, and possibly shipped to a different location, before being calcined.
- the carrier is impregnated and directly subjected to a calcination process in the same facility.
- the carrier which is typically porous, may be selected from any of the solid refractory carriers known in the art for use in silver-based catalysts.
- Some examples of carrier materials include alumina (e.g., alpha-alumina), charcoal, pumice, magnesia, zirconia, titania, kieselguhr, fuller's earth, silicon carbide, silica, silicon carbide, clays, artificial zeolites, natural zeolites, silicon dioxide and/or titanium dioxide, ceramics, and combinations thereof.
- the carrier includes or is completely composed of alumina, which may be a single type of alumina (e.g., alpha-alumina) or mixture of alumina compositions (e.g., gamma- and alpha-alumina).
- the alpha-alumina may be of a high purity, i.e., at least or greater than 95 wt% or 98 wt% alpha-alumina.
- the alpha-alumina carrier may or may not also include inorganic oxides other than alpha-alumina, such as silica, alkali metal oxides (e.g., sodium oxide) and trace amounts of other metal-containing or non-metal- containing additives or impurities.
- the carrier precursor particles can be of any suitable size, and are typically microparticles.
- the carrier microparticles can have a particle size (i.e., diameter, if substantially spherical) of precisely, about, at least, greater than, up to, or less than, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, or 20 microns ( ⁇ ), or the carrier microparticles may have a size within a range bounded by any two of the foregoing exemplary values.
- the carrier precursor particles may also be composed of two or more portions of microparticles of different sizes or size ranges, typically selected from the above exemplary sizes. Moreover, each portion of the carrier precursor particles may be in a suitable weight percentage by total weight of carrier precursor or finished carrier (before silver impregnation). In different embodiments, one or more portions of carrier
- microparticles in different size ranges may be present in an amount of precisely, about, at least, greater than, up to, or less than, for example, 1 wt%, 2 wt%, 5 wt%, 20 wt%, 25 wt%, 30 wt%, 40 wt%, 50 wt%, 60 wt%, 70 wt%, 80 wt%, 90 wt%, 95 wt%, 98 wt%, or 99 wt%, or within a weight percentage (wt%) range bounded by any of the foregoing values.
- the carrier may be produced by conventional techniques well known to those skilled in the art, such as by combining alumina microparticles, a solvent (e.g., water), a temporary binder or burnout material, a permanent binder, and/or a porosity controlling agent, and then shaping, molding, or extruding the resulting paste, before firing (i.e., calcining) the preform by methods well known in the art.
- Temporary binders, or burnout materials include cellulose, substituted celluloses, e.g., methylcellulose, ethylcellulose, and
- binders are responsible for imparting porosity to the carrier material.
- Burnout material is used primarily to ensure the preservation of a porous structure during the green (i.e., unfired phase) in which the mixture may be shaped into particles by molding or extrusion processes. Burnout materials are essentially completely removed during the firing to produce the finished carrier.
- the carrier may be purchased from a catalyst carrier provider.
- Some specific carrier formulations and methods for their preparation are described in U.S. Application Pub. No. 2007/0037991, the contents of which are herein incorporated by reference in their entirety.
- the formed paste is extruded or molded into the desired shape and fired at a temperature typically from about 1200°C to about 1600°C to form the carrier.
- the particles may be desirable to include conventional extrusion aids.
- the performance of the carrier is enhanced if it is treated by soaking the carrier in a solution of an alkali hydroxide, such as sodium hydroxide, potassium hydroxide, or an acid such as HN0 3 as described in U.S. Patent Application Publication No. 2006/0252643 Al .
- the carrier is preferably washed, such as with water, to remove unreacted dissolved material and treating solution, and then optionally dried.
- the carrier is typically porous, generally with a B.E.T. surface area of up to 20 m 2 /g.
- the B.E.T. surface area is more typically in the range of about 0.1 to 10 m 2 /g, and more typically from 1 to 5 m 2 /g.
- the carrier is characterized by a B.E.T. surface area of about 0.3 m 2 /g to about 3 m 2 /g, or a surface area of about 0.6 m 2 /g to about 2.5 m 2 /g, or a surface area of about 0.7 m 2 /g to about 2.0 m 2 /g.
- the final carrier typically possesses a water absorption value (water pore volume) ranging from about 0.10 cc/g to about 0.80 cc/g, more typically from about 0.2 cc/g to about 0.8 cc/g, and more typically from about 0.25 cc/g to about 0.6 cc/g.
- the carrier if porous, can have any suitable distribution of pore diameters.
- pore diameter is meant to indicate a pore size.
- the pore volume (and pore size distribution) described herein can be measured by any suitable method, such as by the conventional mercury porosimeter method described in, for example, Drake and Ritter, Ind, Eng. Chem. Anal. Ed., 17, 787 (1945).
- the pore diameters are at least about 0.01 microns (0.01 ⁇ ), and more typically, at least about 0.1 ⁇ .
- the pore diameters are no more than or less than about 10, 15, 20, 25, 30, 35, 40, 45, or 50 ⁇ .
- the pore diameters are about, at least, above, up to, or less than, for example, 0.2 ⁇ ⁇ ⁇ , 0.5 ⁇ , 1.0 ⁇ , 1.2 ⁇ , 1.5 ⁇ , 1.8 ⁇ , 2.0 ⁇ , 2.5 ⁇ , 3 ⁇ , 3.5 ⁇ , 4 ⁇ , 4.5 ⁇ ⁇ , 5 ⁇ ⁇ , 5.5 ⁇ , 6 ⁇ , 6.5 ⁇ , 7 ⁇ , 7.5 ⁇ , 8 ⁇ , 8.5 ⁇ , 9 ⁇ , 9.5 ⁇ , 10 ⁇ , or 10.5 ⁇ ⁇ ⁇ , or the pore diameters are within a range bounded by any two of the foregoing exemplary values.
- any range of pore sizes may also contribute any suitable percentage of the total pore volume, such as at least, greater than, up to, or less than, for example, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 95, or 98% of the total pore volume.
- a range of pore sizes may provide the total (i.e., 100%) pore volume.
- the carrier may possess a pore size distribution (e.g., within a range as set forth above) characterized by the presence of one or more pore sizes of peak concentration, i.e., one or more maxima (where the slope is approximately zero) in a pore size vs. pore volume distribution plot.
- a pore size of maximum concentration is also referred to herein as a peak pore size, peak pore volume, or peak pore concentration.
- each pore size distribution can be characterized by a single mean pore size (mean pore diameter) value. Accordingly, a mean pore size value given for a pore size distribution necessarily corresponds to a range of pore sizes that results in the indicated mean pore size value.
- any of the exemplary pore sizes provided above can alternatively be understood to indicate a mean (i.e., average or weighted average) or median pore size in a pore size distribution. Any of the exemplary pore sizes provided above may also be interpreted to be the lower and upper bounds of a peak in a pore volume distribution plot.
- the carrier possesses a multimodal pore size distribution within any of the pore size ranges described above.
- the multimodal pore size distribution can be, for example, bimodal, trimodal, or of a higher modality.
- the multimodal pore size distribution is characterized by the presence of different pore sizes of peak concentration (i.e., different peak pore sizes) in a pore size vs. pore volume distribution plot.
- the different peak pore sizes are preferably within the range of pore sizes given above.
- Each peak pore size can be considered to be within its own pore size distribution (mode), i.e., where the pore size concentration on each side of the distribution falls to approximately zero (in actuality or theoretically).
- different pore size distributions are non- overlapping by being separated by a volume concentration of pores of approximately zero (i.e., at baseline).
- different pore size distributions, each having a peak pore size are overlapping by not being separated by a volume concentration of pores of approximately zero.
- Each mode of pores may contribute any suitable percentage of the total pore volume, such as any of the percentages or ranges thereof, provided above.
- the macroscale shape and morphology of the carrier i.e., after compounding and calcining of the carrier particles, can be any of the numerous shapes and morphologies known in the art.
- the carrier can be in the form of particles, chunks, pellets, rings, spheres, three-holes, wagon wheels, cross-partitioned hollow cylinders, and the like, of a size preferably suitable for employment in fixed-bed epoxidation reactors.
- the macroscopic carrier units may have equivalent diameters of about, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 mm, or an equivalent diameter within a range bounded by any two of the foregoing exemplary values.
- the term "equivalent diameter” is used to express the size of an irregularly-shaped object by expressing the size of the object in terms of the diameter of a sphere having the same volume as the irregularly-shaped object.
- the equivalent diameter is preferably compatible with the internal diameter of the tubular reactors in which the catalyst is placed.
- the equivalent diameter is the diameter of a sphere having the same external surface area (i.e., neglecting surface area within the pores of the particle) to volume ratio as the carrier units being employed.
- a carrier having any of the above characteristics is first provided with a catalytically effective amount of silver by impregnating the carrier using the silver impregnation solution described above.
- the carrier can be impregnated with silver and any desired promoters by any of the conventional methods known in the art, e.g., by excess solution impregnation (immersion), incipient wetness impregnation, spray coating, and the like.
- the carrier material is placed in contact with the silver-containing solution until a sufficient amount of the solution is absorbed by the carrier.
- the quantity of the silver-containing solution used to impregnate the carrier is no more than is necessary to fill the pore volume of the carrier. Infusion of the silver-containing solution into the carrier can be aided by application of a vacuum. A single impregnation or a series of impregnations, with or without
- Impregnation procedures are described in, for example, U.S. Patent Nos. 4,761,394, 4,766,105, 4,908,343, 5,057,481, 5,187,140, 5,102,848, 5,011 ,807, 5,099,041 and 5,407,888, all of which are incorporated herein by reference.
- Known procedures for pre-deposition, co-deposition, and post-deposition of the various promoters can also be employed.
- the impregnated carrier is removed from the solution and calcined for a time sufficient to reduce the silver component to metallic silver and to remove volatile decomposition products from the silver-containing support.
- any promoters e.g., one or more of Cs, Re, Li, W, F, P, Ga, and/or S
- the calcination is typically accomplished by heating the impregnated carrier, preferably at a gradual rate, to a temperature in a range of about 200 °C to about 600 °C, more typically from about 200 °C to about 500 °C, more typically from about 250 °C to about 500 °C, and more typically from about 200 °C or 300 °C to about 450 °C, at a reaction pressure in a range from about 0.5 to about 35 bar.
- the higher the temperature the shorter the required calcination period.
- a wide range of heating periods has been described in the art for the thermal treatment of impregnated supports. Reference is made to, for example, U.S. Patent No. 3,563,914, which indicates heating for less than 300 seconds, and U.S.
- Patent No. 3,702,259 which discloses heating from 2 to 8 hours at a temperature of from 100 °C to 375 °C to reduce the silver salt in the catalyst.
- a continuous or step-wise heating program may be used for this purpose.
- the impregnated support is typically exposed to a gas atmosphere comprising an inert gas, such as nitrogen.
- the inert gas may also include a reducing agent.
- the amount of silver in the catalyst is typically at least 16, 17, 18, 19, or 20 wt%.
- the calcined catalyst is typically loaded into reactor tubes of an epoxidation reactor, typically a fixed bed tubular reactor, utilizing conventional loading methods well known to those skilled in the art. After loading, the catalyst bed may be swept by passing an inert gas such as nitrogen over the catalyst bed.
- the produced catalyst preferably exhibits a selectivity of at least 85% for the conversion of ethylene to ethylene oxide. In different embodiments, the produced catalyst exhibits a selectivity of about or at least, for example, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, or 93%, or a selectivity within a range bounded by any two of the foregoing values.
- the produced catalyst may also contain one or more promoting species.
- a "promoting amount" of a certain component of a catalyst refers to an amount of that component that works effectively to provide an improvement in one or more of the catalytic properties of the catalyst when compared to a catalyst not containing said component.
- catalytic properties include, inter alia, operability (resistance to runaway), selectivity, activity, conversion, stability and yield. It is understood by one skilled in the art that one or more of the individual catalytic properties may be enhanced by the "promoting amount" while other catalytic properties may or may not be enhanced or may even be diminished. It is further understood that different catalytic properties may be enhanced at different operating conditions. For example, a catalyst having enhanced selectivity at one set of operating conditions may be operated at a different set of conditions wherein the improvement is exhibited in the activity rather than in the selectivity. All of the promoters, aside from the alkali metals, can be in any suitable form, including, for example, as zerovalent metals or higher valent metal ions.
- the produced catalyst may include a promoting amount of an alkali metal or a mixture of two or more alkali metals.
- Suitable alkali metal promoters include, for example, lithium, sodium, potassium, rubidium, cesium or combinations thereof. Cesium is often preferred, with combinations of cesium with other alkali metals also being preferred.
- the amount of alkali metal will typically range from about 10 ppm to about 3000 ppm, more typically from about 15 ppm to about 2000 ppm, more typically from about 20 ppm to about 1500 ppm, and even more typically from about 50 ppm to about 1000 ppm by weight of the total catalyst, expressed in terms of the alkali metal.
- the produced catalyst may also include a promoting amount of a Group IIA alkaline earth metal or a mixture of two or more Group IIA alkaline earth metals.
- Suitable alkaline earth metal promoters include, for example, beryllium, magnesium, calcium, strontium, and barium or combinations thereof.
- the amounts of alkaline earth metal promoters can be used in amounts similar to those used for the alkali or transition metal promoters.
- the produced catalyst may also include a promoting amount of a main group element or a mixture of two or more main group elements.
- Suitable main group elements include any of the elements in Groups IIIA (boron group) to VIIA (halogen group) of the Periodic Table of the Elements.
- the carrier or catalyst can include a promoting amount of sulfur, phosphorus, boron, halogen (e.g., fluorine), gallium, or a combination thereof.
- the main group element may be present in the form of a compound. Aside from the halogens, the main group element may be present in its elemental form.
- the produced catalyst may also include a promoting amount of a transition metal or a mixture of two or more transition metals.
- Suitable transition metals can include, for example, the elements from Groups IIIB (scandium group), IVB (titanium group), VB (vanadium group), VIB (chromium group), VIIB (manganese group), VIIIB (iron, cobalt, nickel groups), IB (copper group), and IIB (zinc group) of the Periodic Table of the Elements, as well as combinations thereof.
- the transition metal is an early transition metal, i.e., from Groups IIIB, IVB, VB or VIB, such as, for example, hafnium, yttrium, molybdenum, tungsten, rhenium, chromium, titanium, zirconium, vanadium, tantalum, niobium, or a combination thereof.
- the transition metal promoter is present in an amount from about 10 ppm to about 1000 ppm of total carrier or catalyst expressed as the metal. In another embodiment, the transition metal promoter is present in an amount from about 20 ppm to about 500 ppm of total carrier or catalyst expressed as the metal.
- the transition metal promoter is present in an amount from about 30 ppm to about 350 ppm of total carrier or catalyst expressed as the metal.
- the transition metal can be present in an amount of from about 0.1 micromoles per gram to about 10 micromoles per gram, more typically from about 0.2 micromoles per gram to about 5 micromoles per gram, and even more typically from about 0.5 micromoles per gram to about 4 micromoles per gram of the carrier or silver-containing catalyst, expressed in terms of the metal.
- rhenium (Re) is a particularly efficacious promoter for ethylene epoxidation high selectivity catalysts.
- the rhenium component in the carrier or catalyst can be in any suitable form, but is more typically one or more rhenium- containing compounds (e.g., a rhenium oxide) or complexes.
- the rhenium can be present in an amount of, for example, about 0.001 wt.% to about 1 wt.%. More typically, the rhenium is present in amounts of, for example, about 0.005 wt. % to about 0.5 wt. %, and even more typically, from about 0.01 wt. % to about 0.05 wt. % based on the weight of the total carrier, or by weight of the catalyst including the carrier, expressed as rhenium metal.
- the produced catalyst may also include a promoting amount of a rare earth metal or a mixture of two or more rare earth metals.
- the rare earth metals include any of the elements having an atomic number of 57-103. Some examples of these elements include lanthanum (La), cerium (Ce), and samarium (Sm).
- the amount of rare earth metal promoters can be used in amounts similar to those used for the transition metal promoters.
- the carrier before impregnation, contains one or more of any of the promoters described above.
- the carrier is provided with one or more promoters during silver impregnation by including the promoters in the silver-containing solution.
- the carrier before silver impregnation, may or may not contain any or all of the promoters described above.
- the carrier, after silver impregnation and calcination is provided with one or more promoters in a post-processing step.
- the carrier, before impregnation or calcination may or may not contain any or all of the promoters described above.
- the instant disclosure is directed to a method for the vapor phase production of ethylene oxide by conversion of ethylene to ethylene oxide in the presence of oxygen by use of the catalyst described above.
- the ethylene oxide production process is conducted by continuously contacting an oxygen-containing gas with ethylene in the presence of the catalyst at a temperature in the range from about 180°C to about 330°C, more typically from about 200°C to about 325°C, and more typically from about 225°C to about 270°C, at a pressure which may vary from about atmospheric pressure to about 30 atmospheres depending on the mass velocity and productivity desired. Pressures in the range of from about atmospheric to about 500 psi are generally employed. Higher pressures may, however, be employed within the scope of this disclosure.
- a typical process for the oxidation of ethylene to ethylene oxide comprises the vapor phase oxidation of ethylene with molecular oxygen in the presence of the inventive catalyst in a fixed bed, tubular reactor.
- Conventional commercial fixed bed ethylene oxide reactors are typically in the form of a plurality of parallel elongated tubes (in a suitable shell). In one embodiment, the tubes are approximately 0.7 to 2.7 inches O.D. and 0.5 to 2.5 inches I.D. and 15-45 feet long filled with catalyst.
- the inventive catalysts are particularly active and selective in the conversion of ethylene to ethylene oxide.
- the conditions for conducting such an oxidation reaction in the presence of the catalyst herein described broadly comprise those described in the prior art. This applies, for example, to suitable temperatures, pressures, residence times, diluent materials (e.g., nitrogen, carbon dioxide, steam, argon, methane or other saturated hydrocarbons), the presence or absence of moderating agents to control the catalytic action (e.g., 1 , 2-dichloroethane, vinyl chloride or ethyl chloride), the desirability of employing recycle operations or applying successive conversion in different reactors to increase the yields of ethylene oxide, and other particular conditions that may be beneficial for converting ethylene to ethylene oxide.
- diluent materials e.g., nitrogen, carbon dioxide, steam, argon, methane or other saturated hydrocarbons
- moderating agents to control the catalytic action e.g., 1 , 2-dichloroethan
- reactant feed mixtures typically contain from about 0.5 to about 45 % ethylene and from about 3 to about 15 % oxygen, with the balance comprising comparatively inert materials including such substances as nitrogen, carbon dioxide, methane, ethane, argon and the like. Only a portion of the ethylene is typically reacted per pass over the catalyst. After separation of the desired ethylene oxide product and removal of an appropriate purge stream and carbon dioxide to prevent uncontrolled build up of inert products and/or by-products, unreacted materials are typically returned to the oxidation reactor.
- the following are conditions that may be used in a conventional industrial ethylene oxide reactor unit: a gas hourly space velocity (GHSV) of 1500-10,000 h "1 , a reactor inlet pressure of 150-400 psig, a coolant temperature of 180-315 °C, an oxygen conversion level of 10-60 %, and an EO production (work rate) of 100-300 kg EO per cubic meters of catalyst per hour.
- the feed composition at the reactor inlet comprises 1-40 % ethylene, 3-12 % oxygen, 0.3-40 % C0 2 , 0-3 % ethane, 0.3-20 ppmv total concentration of organic chloride moderator, with the balance of the feed being argon, methane, nitrogen, or mixtures thereof.
- organic chloride moderators that can be employed in the present disclosure include, for example, organic halides, such as Ci to C 8 halohydrocarbons, which, may be, for example, methyl chloride, ethyl chloride, ethylene dichloride, vinyl chloride, or a mixture thereof.
- organic halides such as Ci to C 8 halohydrocarbons
- hydrogen-free chlorine sources such as perhalogenated hydrocarbons and diatomic chlorine, both of which are particularly effective as moderators in gas phase epoxidation.
- Perhalogenated hydrocarbons refer to organic molecules in which all of the hydrogen atoms in a hydrocarbon have been substituted with halogen atoms.
- perhalogenated hydrocarbons include trichlorofluoromethane and
- the concentration of the moderator should be controlled so as to balance a number of competing performance characteristics. For example, moderator concentration levels that result in improved activity may simultaneously lower selectivity. Controlling moderator concentration level is particularly important with rhenium-containing catalysts of the present disclosure, because as the rhenium-containing catalysts age, the moderator concentration must be carefully monitored so as to continually increase, within small increments, since optimal selectivity values are obtained only within a narrow moderator concentration range.
- the process of ethylene oxide production includes the addition of oxidizing gases to the feed to increase the efficiency of the process.
- U.S. Patent No. 5,1 12,795 discloses the addition of 5 ppm of nitric oxide to a gas feed having the following general composition: 8 volume % oxygen, 30 volume % ethylene, about 5 ppmw ethyl chloride, with the balance as nitrogen.
- the resulting ethylene oxide is separated and recovered from the reaction products using methods known in the art.
- the ethylene oxide process may include a gas recycle process wherein a portion or substantially all of the reactor effluent is readmitted to the reactor inlet after substantially removing the ethylene oxide product and byproducts.
- carbon dioxide concentrations in the gas inlet to the reactor may be, for example, about 0.3 to about 6 volume percent, and more typically, about 0.3 to about 2.0 volume percent.
- oxalic acid has been replaced, in whole or in part, with one or more ammonium-containing anion contributors having a thermally decomposable anion, such as ammonium carbonate, ammonium bicarbonate, ammonium formate, and/or ammonium oxalate. It has herein been found that the use of ammonium-based anion contributors increases silver solubility in impregnation solutions, even in the absence of oxalic acid. Silver solubility can also be improved by mixing the ammonium-based salts with oxalic acid at different mole fractions.
- n is the mole number of anion contributor i
- e t - is the charge number of anion /.
- Charge numbers for oxalate (C 2 0 4 2 ⁇ ), carbonate (C0 3 2" ), bicarbonate (HC0 3 " ), and formate (HCOO " ) are 2, 2, 1, and 1, respectively.
- the denominator in Equation 1 is the total mole of negative charge.
- the numerator is the negative charge from anion contributor i. For example, to make 1.0 kg of Ag solution with Ag solubility of 35%, the following starting materials were used:
- the total moles of negative charge, 3.2446 mol are from oxalic acid, ammonium oxalate, ammonium bicarbonate, and ammonium formate.
- the counter-positive charge from Ag + is the same number, 3.2446 mol, calculated from the amount of silver oxide. The summation of mole fraction is equal to 1.
- the individual mole fractions (%) for ammonium salts of the instant disclosure may be independently selected from, for example, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95, or a mole fraction within a range bounded by any two of the foregoing values (or a mole fraction of 1 if oxalic acid is not present).
- any of the foregoing exemplary mole fraction values may represent the total mole fraction of ammonium salts of the instant disclosure.
- silver loading on the carrier increases by 10-20% in comparison to the conventional oxalic acid method, and the high silver loading results in an enhanced activity with comparable selectivity.
- This method is also useful for making an EO catalyst on a low water absorption carrier.
- a carrier having a surface area of 0.67 m 2 /g and a water absorption of 43.8 cc/100 g was washed with 0.025 N NaOH solution followed by complete DI water rinsing. The carrier was dried at 150 °C for use.
- 1500 g of the silver solution was prepared using the following components with a target silver content of 35% in solution. Ammonium oxalate was the sole anion source (i.e., mole fraction of 1).
- Ammonium oxalate was subsequently added to the solution while the temperature was maintained at 20 to 30 °C. After ammonium oxalate was completely dissolved, silver oxide was added to the solution at a temperature between 20 to 30 °C. Once all silver oxide was added, the solution was agitated for another 30-40 minutes to ensure proper mixing. The solution was filtered using the vacuum pump as a silver stock solution for the catalyst preparation. The solution was covered to prevent the release of ammonia.
- a 120 g sample of carrier was placed in a pressure vessel and then subjected to vacuum until the pressure was reduced below 10 mm Hg. 360 g of the adjusted
- Calcination was conducted by heating the impregnated earner up to the decomposition temperature of silver salts. This was achieved via heating in a furnace that has several heating zones in a controlled atmosphere.
- the impregnated carrier was loaded on a moving belt that entered the furnace at ambient temperature. The temperature was gradually increased as the impregnated carrier passed from one zone to the next. Then the temperature was increased, up 400 °C, as the impregnated carrier passed through four heating zones. After the heating zones, the belt passed through a cooling zone that gradually cooled the catalyst to a temperature below 100 °C.
- the atmosphere of the furnace was controlled through the use of nitrogen flow in the different heating zones. The final analytical result indicated that the catalyst contained 18.90% Ag.
- the catalyst was tested in a stainless steel tube. A gas mixture containing 15% ethylene, 7% oxygen, and 78% inert, mainly nitrogen and carbon dioxide, was passed through the catalyst at 300 psig. The temperature of the reaction was adjusted in order to obtain ethylene oxide productivity of 432 kg per hour per ton of catalyst.
- Example 1 was repeated with the exception of using ammonium bicarbonate and the starting material weight.
- Ammonium bicarbonate was the sole anion source (i.e., mole fraction of 1).
- 1500 g of the silver solution was prepared using the following components with the target Ag content of 36% in solution:
- Example 1 was repeated with the exception of using the mixture of ammonium bicarbonate, ammonium formate, and oxalic acid.
- oxalic acid, ammonium bicarbonate, and ammonium formate were the anion sources.
- the mole fractions for oxalic acid, ammonium bicarbonate, and ammonium formate used were 0.8, 0.1, and 0.1 , respectively.
- 1500 g of the silver solution was prepared using the following components, with the target Ag content of 36% in solution:
- Example 1 was repeated with the exception of using the mixture of ammonium oxalate and oxalic acid.
- oxalic acid and ammonium oxalate were the anion sources.
- the mole fractions for oxalic acid and ammonium oxalate were 0.5 and 0.5, respectively.
- 1500 g of the silver solution was prepared using the following components with the target Ag content of 35% in solution:
- Example 1 was repeated with the exception of using oxalic acid.
- Oxalic acid was the sole anion source (i.e., mole fraction of 1).
- 1500 g of the silver solution was prepared using the following components, with the target Ag content of 30% in solution:
- oxalic acid has been replaced, in whole or in part, with the amino acid glycine. It has herein been found that the use of an amino acid increases silver solubility in impregnation solutions, even in the absence of oxalic acid. Silver solubility can also be improved by mixing the amino acid with oxalic acid at different mole fractions.
- silver solubility in ethylenediamine can be increased from 31% to, for example, 36% by completely or partially replacing oxalic acid with glycine.
- Creation of the high concentration solutions on a support can increase the silver loading on the catalyst carrier by, for example, 10%-20% in a single impregnation in comparison to an impregnation solution containing oxalic acid and no amino acid.
- a 120 g sample of carrier was placed in a pressure vessel and then exposed to vacuum until the pressure was reduced to below 10 mm Hg. Then 360 g of the adjusted
- Calcination was conducted by heating the impregnated carrier up to the decomposition temperature of silver salts to induce deposition of elemental silver. This was achieved via heating in a furnace having several heating zones in a controlled atmosphere.
- the catalyst was loaded on a moving belt that entered the furnace at ambient temperature. The temperature was gradually increased as the loaded carrier passed from one zone to the next. The temperature was increased, up to 400°C, as the loaded carrier passed through four heating zones. After the heating zones, the belt passed through a cooling zone that gradually cooled the catalyst to a temperature lower than 100°C.
- the atmosphere of the furnace was controlled by the use of nitrogen flow in the different heating zones. The final analytical result indicated that the catalyst contained about 18.50% Ag.
- Example 6 was repeated with the exception of using glycine and oxalic acid as the anion contributors.
- the mole ratio of glycine to oxalic acid was 1 :2.
- Example 6 was repeated with the exception of using oxalic acid.
- 100 g of the silver solution was prepared using the following components, with a target Ag content of 30% in solution.
- Oxalic acid was the sole anion source.
- the Ag content in the filtered solution was 30.20%), and the Ag loading in the catalyst was 16.5%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016129159A RU2674990C1 (en) | 2013-12-19 | 2014-12-18 | High-concentration silver solutions for ethylene oxide catalyst preparation |
EP14871297.9A EP3083040A4 (en) | 2013-12-19 | 2014-12-18 | High-concentration silver solutions for ethylene oxide catalyst preparation |
CN201480069982.8A CN105916577B (en) | 2013-12-19 | 2014-12-18 | The high concentration silver solution prepared for epoxyethane catalyst |
KR1020167019727A KR102316115B1 (en) | 2013-12-19 | 2014-12-18 | High―concentration silver solutions for ethylene oxide catalyst preparation |
BR112016014540-2A BR112016014540B1 (en) | 2013-12-19 | 2014-12-18 | high concentration silver solutions for the preparation of ethylene oxide catalyst and method for the production of said catalyst |
SA516371356A SA516371356B1 (en) | 2013-12-19 | 2016-06-19 | High concentration silver solutions for ethylene oxide catalyst preparation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361918342P | 2013-12-19 | 2013-12-19 | |
US61/918,342 | 2013-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015095508A1 true WO2015095508A1 (en) | 2015-06-25 |
Family
ID=53399004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/071131 WO2015095508A1 (en) | 2013-12-19 | 2014-12-18 | High-concentration silver solutions for ethylene oxide catalyst preparation |
Country Status (8)
Country | Link |
---|---|
US (1) | US10300462B2 (en) |
EP (1) | EP3083040A4 (en) |
KR (1) | KR102316115B1 (en) |
CN (1) | CN105916577B (en) |
BR (1) | BR112016014540B1 (en) |
RU (1) | RU2674990C1 (en) |
SA (1) | SA516371356B1 (en) |
WO (1) | WO2015095508A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106732569A (en) * | 2016-12-15 | 2017-05-31 | 哈尔滨师范大学 | A kind of composite and preparation method thereof |
WO2019154863A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | Method for preparing a silver impregnation solution |
CN110605116A (en) * | 2018-06-15 | 2019-12-24 | 中国石油化工股份有限公司 | Silver impregnation liquid and silver catalyst for producing ethylene oxide by ethylene epoxidation and preparation method thereof |
CN110605115A (en) * | 2018-06-15 | 2019-12-24 | 中国石油化工股份有限公司 | Silver catalyst for producing ethylene oxide by ethylene epoxidation and preparation method and application thereof |
EP3639923A1 (en) | 2018-10-15 | 2020-04-22 | Basf Se | Process for producing ethylene oxide by gas-phase oxidation of ethylene |
EP3639924A1 (en) | 2018-10-15 | 2020-04-22 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
EP3659703A1 (en) | 2018-11-28 | 2020-06-03 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
EP3885038A1 (en) | 2020-03-27 | 2021-09-29 | Basf Se | Process for producing an epoxidation catalyst |
WO2021260138A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Shaped catalyst body for the production of ethylene oxide |
WO2021259427A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Porous catalyst-support shaped body |
WO2021260140A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Production of porous alpha-alumina supports from boehmitic derived aluminas |
WO2022161924A1 (en) | 2021-01-26 | 2022-08-04 | Basf Se | Epoxidation catalyst |
WO2022268348A1 (en) | 2021-06-25 | 2022-12-29 | Basf Se | High purity tableted alpha-alumina catalyst support |
WO2024079247A1 (en) | 2022-10-12 | 2024-04-18 | Basf Se | Epoxidation catalyst |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108607614B (en) * | 2016-12-09 | 2020-07-21 | 中国石油化工股份有限公司 | Silver catalyst and preparation method and application thereof |
WO2019020793A1 (en) | 2017-07-28 | 2019-01-31 | Basf Se | Process for producing a shaped catalyst body comprising silver applied to an alumina support |
US11439986B2 (en) * | 2017-12-13 | 2022-09-13 | Scientific Design Company, Inc. | Silver impregnation solution containing high-boiling oxygenated additive and its use in ethylene oxide catalyst preparation |
CN108212154A (en) * | 2017-12-29 | 2018-06-29 | 中海油天津化工研究设计院有限公司 | Using polypeptide as the preparation method of the 1,3- butadiene oxidation 3,4- butadiene monoxide efficient silver catalysts of directed agents |
CN108043401A (en) * | 2017-12-29 | 2018-05-18 | 中海油天津化工研究设计院有限公司 | Using amino acid as high-efficiency silver catalyst for oxidizing ethylene into epoxy ethane of directed agents and preparation method thereof |
CN108144604A (en) * | 2017-12-29 | 2018-06-12 | 中海油天津化工研究设计院有限公司 | Using amino acid as 1,3- butadiene oxidation 3,4- butadiene monoxide efficient silver catalysts of directed agents and preparation method thereof |
CN108160075A (en) * | 2017-12-29 | 2018-06-15 | 中海油天津化工研究设计院有限公司 | Using polypeptide as the preparation method of the high-efficiency silver catalyst for oxidizing ethylene into epoxy ethane of three-dimensional directed agents |
US10722874B2 (en) | 2018-04-16 | 2020-07-28 | Chevron Phillips Chemical Company Lp | Methods of preparing a catalyst utilizing hydrated reagents |
CN111437816B (en) * | 2019-01-16 | 2023-05-02 | 中国石油化工股份有限公司 | Supported silver catalyst and preparation method and application thereof |
CN111889065B (en) * | 2019-05-06 | 2023-04-18 | 中国石油化工股份有限公司 | Modified macroporous material and preparation method thereof |
CN113813993B (en) * | 2021-10-12 | 2023-10-13 | 合肥工业大学 | High selectivity Ag 2 C 2 O 4 /Ag 2 Preparation of O composite catalyst and application thereof in ethylbenzene oxidation |
TWI790929B (en) * | 2022-02-22 | 2023-01-21 | 財團法人工業技術研究院 | Silver-containing solution and method of forming silver seed layer in chemical plating |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5011809A (en) * | 1989-02-23 | 1991-04-30 | Basf Aktiengesellschaft | Preparation of a silver catalyst |
US5102848A (en) * | 1990-09-28 | 1992-04-07 | Union Carbide Chemicals & Plastics Technology Corporation | Catalyst composition for oxidation of ethylene to ethylene oxide |
US5187140A (en) * | 1989-10-18 | 1993-02-16 | Union Carbide Chemicals & Plastics Technology Corporation | Alkylene oxide catalysts containing high silver content |
US5504052A (en) * | 1994-12-02 | 1996-04-02 | Scientific Design Company, Inc. | Silver catalyst preparation |
US20110015446A1 (en) * | 2008-03-19 | 2011-01-20 | Basf Se | Use of a supported catalyst containing precious metal for oxidative dehydrogenation |
WO2012144847A2 (en) * | 2011-04-20 | 2012-10-26 | 주식회사 잉크테크 | Silver ink composition |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1170663A (en) | 1967-03-22 | 1969-11-12 | Shell Int Research | Process for preparing Silver Catalysts |
US3702259A (en) | 1970-12-02 | 1972-11-07 | Shell Oil Co | Chemical production of metallic silver deposits |
US4097414A (en) * | 1976-08-30 | 1978-06-27 | Texaco Development Corp. | Modified ethylene oxide catalyst and a process for its preparation |
US4229321A (en) * | 1979-02-26 | 1980-10-21 | Texaco Development Corp. | Process for making a silver catalyst |
US4224194A (en) | 1979-02-26 | 1980-09-23 | Texaco Development Corp. | Process for preparing an ethylene oxide catalyst |
US4761394A (en) | 1986-10-31 | 1988-08-02 | Shell Oil Company | Ethylene oxide catalyst and process for preparing the catalyst |
US4766105A (en) | 1986-10-31 | 1988-08-23 | Shell Oil Company | Ethylene oxide catalyst and process for preparing the catalyst |
US4908343A (en) | 1987-02-20 | 1990-03-13 | Union Carbide Chemicals And Plastics Company Inc. | Catalyst composition for oxidation of ethylene to ethylene oxide |
US5057481A (en) | 1987-02-20 | 1991-10-15 | Union Carbide Chemicals And Plastics Technology Corporation | Catalyst composition for oxidation of ethylene to ethylene oxide |
EP0357293B1 (en) | 1988-08-30 | 1996-02-28 | Union Carbide Corporation | Catalysts for the production of ethylene oxide and their preparation processes |
US5407888A (en) | 1992-05-12 | 1995-04-18 | Basf Aktiengesellschaft | Silver catalyst |
US5380697A (en) | 1993-09-08 | 1995-01-10 | Shell Oil Company | Ethylene oxide catalyst and process |
US5739075A (en) * | 1995-10-06 | 1998-04-14 | Shell Oil Company | Process for preparing ethylene oxide catalysts |
CA2343784C (en) | 1998-09-14 | 2007-11-13 | Shell Internationale Research Maatschappij B.V. | Process for preparing epoxidation catalysts with improved properties |
US6368998B1 (en) | 1998-09-14 | 2002-04-09 | Shell Oil Company | Process for preparing catalyst with improved catalytic properties |
US7232918B2 (en) | 2001-11-06 | 2007-06-19 | Shell Oil Company | Catalyst composition |
US8383342B2 (en) * | 2002-04-24 | 2013-02-26 | The University Of North Carolina At Greensboro | Compositions, products, methods and systems to monitor water and other ecosystems |
EP1658136A1 (en) * | 2003-08-22 | 2006-05-24 | Union Carbide Chemicals & Plastics Technology Corporation | Improved alumina carriers and silver-based catalysts for the production of alkylene oxides |
TW200600190A (en) | 2004-04-01 | 2006-01-01 | Shell Int Research | Process for preparing a silver catalyst, the catalyst, and use thereof in olefin oxidation |
WO2006090754A1 (en) * | 2005-02-25 | 2006-08-31 | Sumitomo Chemical Company, Limited | Process for production of olefin oxide |
US7507844B2 (en) | 2005-05-09 | 2009-03-24 | Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg | Nanometer scale restructuring of alumina carrier surface and catalysts for the production of alkene oxides |
EP2617489A1 (en) | 2005-06-07 | 2013-07-24 | Saint-Gobain Ceramics & Plastics Inc. | A catalyst carrier and a process for preparing the catalyst carrier |
US8791280B2 (en) | 2005-08-10 | 2014-07-29 | Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg | Process for preparation of catalyst carrier and its use in catalyst preparation |
TWI466718B (en) | 2006-04-18 | 2015-01-01 | Dow Global Technologies Llc | Alkylene oxide catalyst and use thereof |
US7553980B2 (en) | 2007-09-26 | 2009-06-30 | Sd Lizenzverwertungsgesellschaft Mbh & Co. Kg | Process for initiating a highly selective ethylene oxide catalyst |
US20100140098A1 (en) * | 2008-05-15 | 2010-06-10 | Solopower, Inc. | Selenium containing electrodeposition solution and methods |
US8742147B2 (en) | 2010-12-08 | 2014-06-03 | Shell Oil Company | Process for improving the selectivity of an EO catalyst |
CN102527384B (en) * | 2010-12-29 | 2014-04-30 | 中国石油化工股份有限公司 | Preparation method of silver catalyst for producing ethylene oxide, silver catalyst prepared thereby and application thereof |
US20120214293A1 (en) * | 2011-02-22 | 2012-08-23 | Serdar Aksu | Electrodepositing doped cigs thin films for photovoltaic devices |
CA2867506C (en) * | 2012-03-27 | 2020-08-18 | Dow Technology Investments Llc | Method of making a manganese containing supported silver catalyst intermediate |
-
2014
- 2014-12-18 RU RU2016129159A patent/RU2674990C1/en active
- 2014-12-18 US US14/575,035 patent/US10300462B2/en active Active
- 2014-12-18 CN CN201480069982.8A patent/CN105916577B/en active Active
- 2014-12-18 KR KR1020167019727A patent/KR102316115B1/en active IP Right Grant
- 2014-12-18 BR BR112016014540-2A patent/BR112016014540B1/en active IP Right Grant
- 2014-12-18 WO PCT/US2014/071131 patent/WO2015095508A1/en active Application Filing
- 2014-12-18 EP EP14871297.9A patent/EP3083040A4/en active Pending
-
2016
- 2016-06-19 SA SA516371356A patent/SA516371356B1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5011809A (en) * | 1989-02-23 | 1991-04-30 | Basf Aktiengesellschaft | Preparation of a silver catalyst |
US5187140A (en) * | 1989-10-18 | 1993-02-16 | Union Carbide Chemicals & Plastics Technology Corporation | Alkylene oxide catalysts containing high silver content |
US5102848A (en) * | 1990-09-28 | 1992-04-07 | Union Carbide Chemicals & Plastics Technology Corporation | Catalyst composition for oxidation of ethylene to ethylene oxide |
US5504052A (en) * | 1994-12-02 | 1996-04-02 | Scientific Design Company, Inc. | Silver catalyst preparation |
US20110015446A1 (en) * | 2008-03-19 | 2011-01-20 | Basf Se | Use of a supported catalyst containing precious metal for oxidative dehydrogenation |
WO2012144847A2 (en) * | 2011-04-20 | 2012-10-26 | 주식회사 잉크테크 | Silver ink composition |
Non-Patent Citations (1)
Title |
---|
See also references of EP3083040A4 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106732569A (en) * | 2016-12-15 | 2017-05-31 | 哈尔滨师范大学 | A kind of composite and preparation method thereof |
WO2019154863A1 (en) | 2018-02-07 | 2019-08-15 | Basf Se | Method for preparing a silver impregnation solution |
CN110605116A (en) * | 2018-06-15 | 2019-12-24 | 中国石油化工股份有限公司 | Silver impregnation liquid and silver catalyst for producing ethylene oxide by ethylene epoxidation and preparation method thereof |
CN110605115A (en) * | 2018-06-15 | 2019-12-24 | 中国石油化工股份有限公司 | Silver catalyst for producing ethylene oxide by ethylene epoxidation and preparation method and application thereof |
US12121881B2 (en) | 2018-10-15 | 2024-10-22 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
EP3639923A1 (en) | 2018-10-15 | 2020-04-22 | Basf Se | Process for producing ethylene oxide by gas-phase oxidation of ethylene |
EP3639924A1 (en) | 2018-10-15 | 2020-04-22 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
WO2020078657A1 (en) | 2018-10-15 | 2020-04-23 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
WO2020078658A1 (en) | 2018-10-15 | 2020-04-23 | Basf Se | Process for producing ethylene oxide by gas-phase oxidation of ethylene |
EP3659703A1 (en) | 2018-11-28 | 2020-06-03 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
WO2020108872A1 (en) | 2018-11-28 | 2020-06-04 | Basf Se | Catalyst for producing ethylene oxide by gas-phase oxidation |
EP3885038A1 (en) | 2020-03-27 | 2021-09-29 | Basf Se | Process for producing an epoxidation catalyst |
WO2021259427A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Porous catalyst-support shaped body |
WO2021260185A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Tableted alpha-alumina catalyst support |
WO2021260140A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Production of porous alpha-alumina supports from boehmitic derived aluminas |
WO2021260182A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Process for producing a porous alpha-alumina catalyst support |
WO2021260138A1 (en) | 2020-06-26 | 2021-12-30 | Basf Se | Shaped catalyst body for the production of ethylene oxide |
WO2022161924A1 (en) | 2021-01-26 | 2022-08-04 | Basf Se | Epoxidation catalyst |
WO2022268348A1 (en) | 2021-06-25 | 2022-12-29 | Basf Se | High purity tableted alpha-alumina catalyst support |
WO2024079247A1 (en) | 2022-10-12 | 2024-04-18 | Basf Se | Epoxidation catalyst |
Also Published As
Publication number | Publication date |
---|---|
US20150174554A1 (en) | 2015-06-25 |
EP3083040A4 (en) | 2017-08-09 |
CN105916577B (en) | 2018-03-30 |
CN105916577A (en) | 2016-08-31 |
SA516371356B1 (en) | 2020-03-22 |
RU2674990C1 (en) | 2018-12-14 |
KR102316115B1 (en) | 2021-10-22 |
US10300462B2 (en) | 2019-05-28 |
BR112016014540A2 (en) | 2017-08-08 |
KR20160101155A (en) | 2016-08-24 |
EP3083040A1 (en) | 2016-10-26 |
RU2016129159A (en) | 2018-01-24 |
BR112016014540B1 (en) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10300462B2 (en) | High concentration silver solutions for ethylene oxide catalyst preparation | |
US9067198B2 (en) | Calcination process for producing an improved ethylene oxide catalyst | |
TWI385028B (en) | Catalysts for oxidation of ethylene and manufacturing process and use thereof | |
TWI436827B (en) | Carrier for olefin oxide catalyst | |
KR101861259B1 (en) | Carrier for ethylene oxide catalysts | |
US8975424B1 (en) | Zinc-promoted catalysts for epoxidation of ethylene | |
TWI568496B (en) | Method of making a manganese-containing supported silver catalyst | |
US9452419B2 (en) | Carrier for ethylene oxide catalysts | |
EP4126350B1 (en) | Process for producing a silver-based epoxidation catalyst | |
CA2981009C (en) | Silver catalysts with improved size and distribution density of silver particles | |
US11439986B2 (en) | Silver impregnation solution containing high-boiling oxygenated additive and its use in ethylene oxide catalyst preparation | |
US10604497B2 (en) | Silver impregnation method for producing ethylene oxide catalyst with enhanced catalytic ability | |
JP2009082889A (en) | Catalyst for producing alcohol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14871297 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014871297 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014871297 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016014540 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20167019727 Country of ref document: KR Kind code of ref document: A Ref document number: 2016129159 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016014540 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160620 |