[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015078391A1 - Processes for preparing dihydropyrimidine derivatives and intermediates thereof - Google Patents

Processes for preparing dihydropyrimidine derivatives and intermediates thereof Download PDF

Info

Publication number
WO2015078391A1
WO2015078391A1 PCT/CN2014/092400 CN2014092400W WO2015078391A1 WO 2015078391 A1 WO2015078391 A1 WO 2015078391A1 CN 2014092400 W CN2014092400 W CN 2014092400W WO 2015078391 A1 WO2015078391 A1 WO 2015078391A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
alkyl
independently
organic solvent
Prior art date
Application number
PCT/CN2014/092400
Other languages
French (fr)
Inventor
Xinchang LIU
Qingyun REN
Zhifu ZOU
Jinsheng Liang
Linjin TU
Siegfried Goldmann
Yingjun Zhang
Original Assignee
Sunshine Lake Pharma Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020167017092A priority Critical patent/KR102284938B1/en
Priority to ES14865774.5T priority patent/ES2688600T3/en
Priority to AU2014356984A priority patent/AU2014356984B2/en
Priority to EP14865774.5A priority patent/EP3074393B1/en
Priority to CA2927373A priority patent/CA2927373C/en
Priority to RU2016124161A priority patent/RU2688193C1/en
Application filed by Sunshine Lake Pharma Co., Ltd. filed Critical Sunshine Lake Pharma Co., Ltd.
Priority to JP2016531043A priority patent/JP6434511B2/en
Priority to US15/023,676 priority patent/US9617252B2/en
Priority to SG11201601813UA priority patent/SG11201601813UA/en
Publication of WO2015078391A1 publication Critical patent/WO2015078391A1/en
Priority to ZA2016/01737A priority patent/ZA201601737B/en
Priority to HK16112468.0A priority patent/HK1224287A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the invention refers to a chemical medicine field. Specifically, the invention relates to processes for preparation of optically pure dihydropyrimidine derivatives and optically pure dihydropyrimidine intermediates thereof.
  • the hepatitis B virus belongs to the family of hepadnaviridae. It can cause acute and/or persistent or progressive chronic diseases. Many other clinical manifestations in the pathological morphology can also be caused by HBV—in particular chronic hepatitis, cirrhosis and hepatocellular carcinoma. Additionally, coinfection with hepatitis D virus may have adverse effects on the progress of the disease.
  • the conventional medicaments approved to be used for treating chronic hepatitis are interferon and lamivudine.
  • the interferon has just moderate activity but has an adverse side reaction.
  • lamivudine has good activity, its resistance develops rapidly during the treatment and relapse effects often appear after the treatment has stopped.
  • the IC50 value of lamivudine (3-TC) is 300 nM (Science, 2003, 299, 893-896) .
  • PCT Publication No. WO2008154817 discloses a series of compounds used for preventing, managing, treating or lessening a viral disease in a patient, particularly HBV infection or a related disease.
  • the patent also provides the processes for preparation of specific compounds, such as 4- (R, S) -ethyl 4-(2-bromo-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate as shown in Formula (Ib) .
  • PCT Publication No. WO2008009210 discloses a series of optically pure compounds , which used for preventing, managing, treating or lessening an acute or chronic viral disease in a patient, particularly an acute or chronic HBV disease.
  • the patent also provides the processes for preparation of specific compounds, such as (R)-ethyl 4- (2-chloro-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate.
  • Dihydropyrimidine derivatives can be prepared by several methods described in prior arts, such as patents WO1999054329, WO2008154817, WO2001068641, WO2010069147, and so on. But the process of preparation of optically pure dihydropyrimidine compounds described herein has not been yet be published.
  • the invention refers to a process for preparing a dihydropyrimidine compound having Formula (I) , or a tautomer thereof having Formula (Ia) ,
  • each R 1 and R 2 is independently F, Cl, or Br;
  • R 3 is C 1-4 alkyl
  • each t and q is independently 0, 1, or 2;
  • each of R 4 and R 5 is independently H or C 1-4 alkyl
  • R 10 is H or deuterium
  • a dihydropyrimidine compound having Formula (I) , or a tautomer thereof having Formula (Ia) can be prepared by a general synthetic procedure illustrated through method one in Scheme 1, wherein R 1 , R 2 , Z, R 9 , j, f, R 6 , n, Y and R 10 are as defined herein; wherein R 3a is H or C 1-3 alkyl; R 3b is methoxy or ethoxy.
  • the method one comprises the following steps of: reacting a compound (VIIIa) with a compound (IX) to obtain a compound (IVa) ; step (A) : reacting a compound (II) or a salt thereof with a compound (III) and the compound (IVa) to obtain a compound (Va) (according to some embodiments of the present invention, the reaction of the step (A) may be an one-pot reaction) ; step (B) : halogenating the compound (Va) to form a halide; and then reacting the halide with a compound (VI) , or a salt thereof to obtain a compound (VIIa) ; step (C) : forming a compound (I) or compound (Ia) from the compound (VIIa) in the presence of a base (according to some embodiments of the present invention, the reaction of the step (C) may be a transesterification) .
  • a dihydropyrimidine compound having Formula (I) , or a tautomer thereof having Formula (Ia) can be prepared by a general synthetic procedure illustrated through method two in Scheme 2, wherein R 1 , R 2 , Z, R 9 , j, f, R 6 , n, Y, R 10 , R 3a and R 3b are as defined herein.
  • the method two comprises the following steps of: step (1): reacting the compound (Va) in the presence of a base to obtain a compound (X) (according to some embodiments of the present invention, the reaction of the step (1) may be a transesterification) ; step (2) : halogenating the compound (X) to form a halide; and then reacting the halide with a compound (VI) or a salt thereof to obtain a compound (I) or compound (Ia) .
  • the method one depicted in scheme 1 and the method two depicted in scheme 2 comprises introducing a new chiral center to the mother nucleus of the compound, and splitting the diastereomers based on the difference in the solubility of the diastereomers; at last, removing the new chiral center from the mother nucleus through transesterification, then a compound may be obtained and in some embodiments of the present invention, the obtained compound may be optically pure.
  • These methods have advantages of convenient work-up, high optical purity of product, and high yield.
  • the processes of the invention have cheap raw material, mild reaction conditions, simplified operational procedure, controlled safely and they are suited for industrial production.
  • the present invention also refers to an intermediate comprising a dihydropyrimidine compound having Formula (Va) , or a tautomer thereof having Formula (Va1) , or a salt thereof, or a combination thereof,
  • each R 1 , R 2 , f, Z, R 9 , j, R 10 , R 3a and R 3b is as defined herein.
  • a process for preparing a dihydropyrimidine compound having Formula (I) , or a tautomer thereof having Formula (Ia) (such as the method one depicted in scheme 1)
  • each R 1 and R 2 is independently F, Cl, or Br;
  • R 3 is C 1-4 alkyl
  • each t and q is independently 0, 1, or 2;
  • each of R 4 and R 5 is independently H, or C 1-4 alkyl
  • R 10 is H or deuterium
  • n 0, 1, 2, 3, 4, or 5;
  • each m is independently 0, 1, 2, 3, or 4;
  • f 1, 2, 3, or 4;
  • j 0, 1, or 2;
  • step (A) reacting an amidine compound of Formula (II) , or a salt thereof with an aldehyde compound of Formula (III) and a compound of Formula (IVa) to obtain a compound (Va) (according to some embodiments of the present invention, the reaction of step (A) may be an one-pot reaction) ,
  • R 3b is methoxy or ethoxy;
  • R 3a is H or C 1-3 alkyl;
  • step (B) halogenating the compound of Formula (Va) to form a halide; and then reacting halide with a compound of Formula (VI) , or a salt thereof to obtain a compound of Formula (VIIa) ,
  • step (C) forming the compound of Formula (I) or Formula (Ia) from the compound of Formula (VIIa) by means of a transesterification, and the transesterification may be carried out in the presence of a base.
  • the dihydropyrimidine compound having Formula (I-1) or a tautomer thereof having Formula (Ia-1) ,
  • the method one for preparing the dihydropyrimidine compound having Formula (I-1) , or a tautomer thereof having Formula (Ia-1) comprises the steps of:
  • step (A) reacting an amidine compound of Formula (II-1) , or a salt thereof with an aldehyde compound of Formula (III-1) and the compound of Formula (IVa) to obtain a compound (Va-1) (according to some embodiments of the present invention, the reaction of the step (A) may be an one-pot reaction) .
  • R 3a and R 3b are as defined in Formula (Va-1) disclosed herein;
  • step (B) halogenating the compound of Formula (Va-1) to form a halide; and then reacting the halide with a compound of Formula (VI) or a salt thereof to obtain a compound of Formula (VIIa-1) ,
  • step (C) forming the compound of Formula (I-1) or Formula (Ia-1) from the compound of Formula (VIIa-1) by means of a transesterification, wherein the transesterification may be carried out in the presence of a base.
  • the dihydropyrimidine compound having Formula (I-2) or a tautomer thereof having Formula (Ia-2) ,
  • R 1 is F or Cl; and R 2 is Cl or Br; R 3 , Z, n, R 6 and Y are as defined herein;
  • the method one for preparing the dihydropyrimidine compound having Formula (I-2) , or a tautomer thereof having Formula (Ia-2) comprises the steps of:
  • step (A) reacting an amidine compound of Formula (II-1) , or a salt thereof with an aldehyde compound of Formula (III-2) and the compound of Formula (IVa) to obtain a compound (Va-2) (according to some embodiments of the present invention, the reaction of the step (A) may be an one-pot reaction) ,
  • R 3a and R 3b are as defined in Formula (Va-1) disclosed herein;
  • step (B) halogenating the compound of Formula (Va-2) to form a halide; and then reacting the halide with a compound of Formula (VI) , or a salt thereof to obtain a compound of Formula (VIIa-2) ,
  • step (C) forming the compound of Formula (I-2) or Formula (Ia-2) from the compound of Formula (VIIa-2) by means of a transesterification, wherein the transesterification may be carried out in the presence of a base.
  • the R 3 is methyl, ethyl, propyl, isopropyl, tert-butyl, or butyl;
  • Z is -O-, -S-, or -N (CH 3 ) -;
  • the reaction in step (A) is performed at a temperature from 25 °C to 154 °C. In some other embodiments, the reaction in step (A) is performed at a temperature from 60 °C to 100 °C.
  • the one-pot reaction in step (A) is performed at a temperature, in some embodiments, the reaction temperature is from 25 °C to 154 °C. In other embodiments, the reaction temperature is from 30 °C to 154 °C. In still other embodiments, the reaction temperature is from 60 °C to 100 °C.
  • the reaction temperature is 25 °C, 30 °C, 40 °C, 56 °C, 60 °C, 64 °C, 65 °C, 77 °C, 78 °C, 80 °C, 82 °C, 100 °C, 110 °C, 120 °C, 130 °C, 140 °C or 154 °C.
  • the step (A) further comprises a step of cooling the resulting compound of Formula (Va) of step (A) to obtain a solid compound of Formula (Va) at a cooling temperature from -40 °C to 40 °C.
  • the cooling temperature is from 25 °C to 40 °C.
  • the cooling is performed for a period of from 0 hour to 24 hours. In some other embodiments, the cooling is performed for from 1 minute to 24 hours. In still other embodiments, the cooling is performed for from 1 hour to 8 hours.
  • the cooling in step (A) is carried out at a temperature, in some embodiments, the cooling temperature is from -50 °C to 60 °C. In other embodiments, the cooling temperature is from -40°C to 40 °C. In other embodiments, the cooling temperature is from -30 °C to 40 °C. In other embodiments, the cooling temperature is from -20 °C to 40 °C. In other embodiments, the cooling temperature is from -10 °C to 40 °C. In still other embodiments, the cooling temperature is from 0°C to 40 °C. In yet other embodiments, the cooling temperature is from 25 °C to 40 °C.
  • the cooling temperature is -50 °C, -40 °C, -30 °C, -20 °C, -15 °C, -10 °C, -5°C, 0 °C, 5°C, 10 °C, 15°C, 20 °C, 25 °C, 30 °C, 35 °C, 40 °C, 50 °C or 60 °C.
  • the cooling temperature in step (A) is kept for a period of time, in some embodiments, the period of time is from 0 hour to 30 hours. In other embodiments, the period of time is from 0 hour to 24 hours. In other embodiments, the period of time is from 1 minute to 24 hours. In other embodiments, the period of time is from 1 hour to 12 hours. In other embodiments, the period of time is from 1 hour to 10 hours. In other embodiments, the period of time is from 1 hour to 8 hours. In still other embodiments, the period of time is from 1 hour to 6 hours.
  • the period of time is 0 hour, 1 minute, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 10 hours, 12 hours, 14 hours, 16 hours, 18 hours, 20 hours, 22 hours, 24 hours or 30 hours.
  • the amidine compound of Formula (II) reacts with the aldehyde compound of Formula (III) and the compound of Formula (IVa) in a first organic solvent.
  • the first organic solvent is applied in an amount of 0 equivalent to 80 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) or a salt thereof.
  • the first organic solvent is applied in an amount of 1 equivalent to 20 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof.
  • the first organic solvent in step (A) is applied in an amount, in some embodiments, the amount is 0 equivalent to 80 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In other embodiments, the amount is 1 equivalent to 80 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In other embodiments, the amount is 1 equivalent to 20 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof.
  • the amount is 2 equivalents to 20 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In other embodiments, the amount is 1 equivalent to 10 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In still other embodiments, the amount is 3 equivalents to 10 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof.
  • the amount is 0, 1, 2, 2.5, 3, 4, 4.5, 5, 6, 7, 8, 9, 10, 12, 15, 16, 18, 20, 30, 40, 50, 60, 70 or 80 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof.
  • the step (A) further comprises a step of purifying the solid compound of Formula (Va) .
  • the solid compound of Formula (Va) is purified by at least one of the following methods: (1) trituration; (2) recrystallization; (3) washing.
  • the purification is carried out in a second organic solvent.
  • the second organic solvent is applied in an amount of 2 equivalent to 20 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof.
  • the trituration is carried out at a temperature from -20 °C to 50 °C. In some embodiments, the trituration is carried out at a temperature from 0 °C to 40 °C.
  • the recrystallization comprises a crystallization process at a temperature from -30 °C to 40 °C. In some embodiments, the crystallization process is carried out at a temperature from 0 °C to 40 °C. In some embodiments, the recrystallization comprises a crystallization process of from 1 hour to 20 hours. In some other embodiments, the recrystallization comprises a crystallization process of from 1 hour to 10 hours.
  • the washing is performed at a temperature from 0°C to 30 °C.
  • the compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) obtained in step (A) is further purified before step (B) .
  • the compound is further purified by triturating with a second organic solvent .
  • the trituration is carried out at a temperature from -20 °C to 50 °C.
  • the trituration temperature is from 0 °C to 40 °C.
  • the trituration temperature is from 5 °C to 40 °C.
  • the trituration temperature is from 25 °C to 40 °C.
  • the trituration temperature is -20 °C, -10 °C, 0 °C, 5 °C, 10 °C, 25 °C, 30 °C, 35 °C, 40 °C or 50 °C.
  • the compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) obtained in step (A) is further purified before step (B) .
  • the compound is further purified by recrystalizing from a second organic solvent.
  • the recrystallization has a crystallization process at a temperature from -30 °Cto 50 °C.
  • the crystallization temperature is from -30 °C to 40 °C.
  • the crystallization temperature is from -10 °C to 40 °C.
  • the crystallization temperature is from -10 °C to 30 °C.
  • the crystallization temperature is from 0 °C to 40 °C. In other embodiments, the crystallization temperature is from 0 °C to 30 °C. In other embodiments, the crystallization temperature is -30 °C, -20 °C, -10 °C, 0 °C, 5 °C, 10 °C, 15 °C, 20 °C, 25 °C, 30 °C, 35 °C, 40 °C or 50 °C. In some embodiments, the recrystallization has a crystallization process taking a period of time from 1 hour to 20 hours. In other embodiments, the period of time is from 2 hours to 18 hours. In still other embodiments, the period of time is from 1 hour to 10 hours. In yet other embodiments, the period of time is 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 12 hours, 14 hours, 16 hours, 18 hours or 20 hours.
  • the compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) obtained in step (A) is further purified before step (B) .
  • the compound is further purified by washing with a second organic solvent .
  • the washing is performed at a temperature from 5 °C to 40 °C.
  • the washing temperature is from 0 °C to 30 °C.
  • the washing temperature is -20 °C, -10 °C, 0 °C, 10 °C, 20 °C, 25 °C, 30 °C, 35 °C, 40 °C or 50 °C.
  • the second organic solvent used in the further purification before step (B) is applied in an amount, in some embodiments, the amount is about 0 equivalent to 20 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In other embodiments, the amount is about 1 equivalent to 20 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In other embodiments, the amount is about 2 equivalents to 20 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof.
  • the amount is about 2 equivalents to 15 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In still other embodiments, the amount is about 2 equivalents to 10 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In yet other embodiments, the amount is about 0, 1, 2, 3, 3.5, 4, 4.5, 5, 6, 7, 7.5, 8, 9, 10, 12, 13, 15, 16, 18, 20, 30, 40, 50, 60, 70 or 80 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof.
  • each of the first organic solvent and the second organic solvent is independently a C 1-4 alcohol, a C 1-4 alcohol-water, acetone, diethyl ether, isopropyl ether, petroleum ether, tetrahydrofuran, acetonitrile, cyclopentane, cyclohexane, n-hexane, a C 1-4 haloalkane, ethyl acetate, trifluoroethanol, 2-methoxyethanol, 1, 2-dimethoxyethane, 2-methoxyethyl ether, N, N-dimethyl formamide, N-methylpyrolidone, or a combination thereof.
  • each of the first organic solvent and the second organic solvent is independently methanol, ethanol, n-propanol, i-propanol, n-butanol, tert-butanol, an ethanol-water mixture at a volume ratio of from 10: 90 to 90: 10, an ethanol-water mixture at a volume ratio of 50: 50, acetone, tetrahydrofuran, N-methylpyrolidone, trifluoroethanol, 2-methoxyethanol, 1, 2-dimethoxyethane, 2-methoxyethyl ether, ethyl acetate, glycol, N, N-dimethyl formamide, or a combination thereof.
  • the halogenating in step (B) is carried out in a third organic solvent
  • the third organic solvent is one or more C 1-4 alcohols, one or more C 1-4 haloalkanes, acetonitrile, isopropyl ether, petroleum ether, toluene, xylene, tetrahydrofuran, ethyl acetate, acetone, or a combination thereof.
  • the third organic solvent is dichloromethane, chloroform, tetrachloromethane, acetonitrile, isopropyl ether, petroleum ether, tetrahydrofuran, methanol, ethanol, propanol, i-propanol, n-butanol, tert-butanol, ethyl acetate, acetone, or a combination thereof.
  • the method one disclosed herein in some embodiments, the halogenating reaction in step (B) is carried out in the presence of a halogenating agent, and wherein the halogenating agent is N-bromosuccinimide, N-chlorosuccinimide, N-iodosuccinimide, 1,3-dibromo-5, 5-dimethylhydantoin, or 1, 3-dichloro-5, 5-dimethylhydantoin, or a combination thereof.
  • the halogenating agent is N-bromosuccinimide, N-chlorosuccinimide, N-iodosuccinimide, 1,3-dibromo-5, 5-dimethylhydantoin, or 1, 3-dichloro-5, 5-dimethylhydantoin, or a combination thereof.
  • the base used in step (C) is formed by reacting lithium, sodium, or potassium or a combination thereof with a C 1-4 alcohol.
  • the method one disclosed herein, in some embodiments, the C 1-4 alcohol for forming the base used in step (C) by reacting with lithium, sodium, or potassium, or a combination thereof is methanol, ethanol, propanol, i-propanol, n-butanol, i-butanol, or tert-butanol.
  • each of the lithium, sodium and potassium or a combination thereof for forming a base used in step (C) by reacting with a C 1-4 alcohol is independently applied in an amount, in some embodiments, the amount is 0.1 equivalent to 10 equivalents per 1 equivalent by mole of a compound of Formula (VIIa) , Formula (VIIa-1) , or Formula (VIIa-2) . In other embodiments, the amount is 2 equivalents to 6 equivalents per 1 equivalent by mole of a compound of Formula (VIIa) , Formula (VIIa-1) , or Formula (VIIa-2) .
  • the amount is 2.5 equivalents to 6 equivalents per 1 equivalent by mole of a compound of Formula (VIIa) , Formula (VIIa-1) , or Formula (VIIa-2) . In yet other embodiments, the amount is 0.1, 0.5, 1, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9 or 10 equivalents per 1 equivalent by mole of a compound of Formula (VIIa) , Formula (VIIa-1) , or Formula (VIIa-2) .
  • the method one disclosed herein in some embodiments, is prepared by a process comprising reacting a compound of Formula (VIIIa) with a compound of Formula (IX) ,
  • R 3a and R 3b are as defined herein.
  • an intermediate comprising a dihydropyrimidine compound having Formula (Va) , or a tautomer thereof having Formula (Va1) , or a salt thereof, or a combination thereof,
  • each R 1 and R 2 is independently F, Cl, or Br;
  • R 3b is methoxy or ethoxy
  • R 3a is H or C 1-3 alkyl
  • each m is independently 0, 1, 2, 3, or 4;
  • R 10 is H or deuterium
  • f 1, 2, 3, or 4;
  • j 0, 1, or 2;
  • t 0, 1, or 2;
  • R 4 is H or C 1-4 alkyl
  • provided herein is the intermediate having Formula (Va-1) , or a tautomer thereof having Formula (Va1-1) , or a salt thereof, or a combination thereof,
  • R 3a , R 3b , R 1 , R 2 and Z are as defined herein.
  • provided herein is the intermediate having Formula (Va-2) , or a tautomer thereof having Formula (Va1-2) , or a salt thereof, or a combination thereof,
  • R 1 is F or Cl; and R 2 is Cl or Br;
  • Z is -O-, -S-, or -N (CH 3 ) -;
  • R 3b is methoxy or ethoxy
  • R 3a is H, methyl, ethyl, isopropyl, or propyl.
  • a process for preparing a dihydropyrimidine compound having Formula (I) , or a tautomer thereof having Formula (Ia) , or a combination thereof, (such as the method two depicted in scheme 2) ,
  • each R 1 and R 2 is independently F, Cl, or Br;
  • R 3 is C 1-4 alkyl
  • each t and q is independently 0, 1, or 2;
  • each of R 4 and R 5 is independently H, or C 1-4 alkyl
  • R 10 is H or deuterium
  • n 0, 1, 2, 3, 4, or 5;
  • each m is independently 0, 1, 2, 3, or 4;
  • f is 1, 2, 3, or 4;
  • j 0, 1, or 2;
  • step (1) reacting an amidine compound of Formula (II) , or a salt thereof with an aldehyde compound of Formula (III) and a compound of Formula (IVa) to obtain a compound (Va) (according to some embodiments of present invention, the reaction of the step (A) may be, but not limited to an one-pot reaction) ,
  • step (2) forming a compound of Formula (X) from a compound of Formula (Va) by means of a transesterification, and the transcsterification may be carried out in the presence of a base,
  • R 3b is methoxy or ethoxy
  • R 3a is H or C 1-3 alkyl
  • step (3) halogenating the compound of Formula (X) to form a halide; and then reacting the halide with a compound of Formula (VI) , or a salt thereof to obtain a compound of Formula (I) or Formula (Ia) .
  • the dihydropyrimidine compound having Formula (I-1) or a tautomer thereof having Formula (Ia-1) ,
  • the method two for preparing the optically pure dihydropyrimidine compound having Formula (I-1) , or a tautomer thereof having Formula (Ia-1) comprises the steps of:
  • step (1) reacting an amidine compound of Formula (II-1) , or a salt thereof with an aldehyde compound of Formula (III-1) and the compound of Formula (IVa) to obtain a compound (Va-1) (according to some embodiments of present invention, the reaction of the step (A) may be an one-pot reaction) .
  • step (2) forming a compound of Formula (X-1) from a compound of Formula (Va-1) by means of a transesterification, wherein the transesterification may be carried out in the presence of a base,
  • R 3a and R 3b are as defined herein;
  • step (3) halogenating the compound of Formula (X-1) to form a halide; and then reacting the intermediate with a compound of Formula (VI) , or a salt thereof to obtain a compound of Formula (I-1) or Formula (Ia-1) .
  • the dihydropyrimidine compound having Formula (I-2) or a tautomer thereof having Formula (Ia-2) ,
  • R 1 is F or Cl; and R 2 is Cl or Br; R 3 , Z, n, Y and R 6 are as defined herein;
  • the method two for preparing the dihydropyrimidine compound having Formula (I-2) , or a tautomer thereof having Formula (Ia-2) comprises the steps of:
  • step (1) reacting an amidine compound of Formula (II-1) , or a salt thereof with an aldehyde compound of Formula (III-2) and the compound of Formula (IVa) to obtain a compound (Va-2) (according to some embodiments of the present invention, the reaction of the step (A) may be an one-pot reaction) ,
  • step (2) forming a compound of Formula (X-2) from a compound of Formula (Va-2) by means of a transesterification, wherein the transesterification may be carried out in the presence of a base,
  • R 3a and R 3b are as defined herein;
  • step (3) halogenating the compound of Formula (X-2) to form a halide; and then reacting the halide with a compound of Formula (VI) , or a salt thereof to obtain a compound of Formula (I-2) or Formula (Ia-2) .
  • the R 3 is methyl, ethyl, propyl, isopropyl, tert-butyl, or butyl;
  • Z is -O-, -S-, or -N (CH 3 ) -;
  • the reaction in step (1) is performed at a temperature from 25 °C to 154 °C. In some other embodiments, the reaction in step (1) is performed at a temperature from 60 °C to 100 °C.
  • the step (1) further comprises the step of cooling the resulting compound (Va) of step (1) to obtain a solid compound (Va) at a cooling temperature from -40 °C to 40 °C.
  • the cooling temperature is from 25 °C to 40 °C.
  • the cooling is performed for a period of from 0 hour to 24 hours. In some other embodiments, the cooling is performed for from 1 minute to 24 hours. In still other embodiments, the cooling is performed for from 1 hour to 8 hours.
  • the amidine compound of Formula (II) reacts with the aldehyde compound of Formula (III) and the compound of Formula (IVa) in a first organic solvent.
  • the first organic solvent is applied in an amount of 0 equivalent to 80 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof.
  • the first organic solvent is applied in an amount of 1 equivalent to 20 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof.
  • step (1) further comprises the step of purifying the solid compound (Va) .
  • the solid compound of Formula (Va) is purified by at least one of the following methods: (1) trituration; (2) recrystallization; (3) washing.
  • the purification is carried out in a second organic solvent.
  • the second organic solvent is applied in an amount of 2 equivalent to 20 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof.
  • the trituration is carried out at a temperature from -20 °C to 50 °C. In some embodiments, the trituration is carried out at a temperature from 0 °C to 40 °C.
  • the recrystallization comprises a crystallization process at a temperature from -30 °C to 40 °C. In some embodiments, the crystallization process is carried out at a temperature from 0 °C to 40 °C. In some embodiments, the recrystallization comprises a crystallization process of from 1 hour to 20 hours. In some other embodiments, the recrystallization comprises a crystallization process of from 1 hour to 10 hours.
  • the washing is performed at a temperature from 0°C to 30 °C.
  • each of the first organic solvent and the second organic solvent is independently a C 1-4 alcohol, a C 1-4 alcohol-water, acetone, diethyl ether, isopropyl ether, petroleum ether, tetrahydrofuran, acetonitrile, cyclopentane, cyclohexane, n-hexane, C 1-4 haloalkanes solvent, ethyl acetate, trifluoroethanol, 2-methoxyethanol, 1, 2-dimethoxyethane, 2-methoxyethyl ether, N, N-dimethyl formamide, N-methylpyrolidone, or a combination thereof.
  • each of the first organic solvent and the second organic solvent is independently methanol, ethanol, n-propanol, i-propanol, n-butanol, tert-butanol, an ethanol-water mixture at a volume ratio from 10: 90 to 90: 10, an ethanol-water mixture at a volume ratio from 50: 50, acetone, tetrahydrofuran, N-methylpyrolidone, trifluoroethanol, 2-methoxyethanol, 1, 2-dimethoxyethane, 2-methoxyethyl ether, ethyl acetate, glycol, N, N-dimethyl formamide, or a combination thereof.
  • the base used in step (2) is formed by reacting lithium, sodium, or potassium or a combination thereof with a C 1-4 alcohol.
  • the C 1-4 alcohol for forming the base used in step (2) by reacting with lithium, sodium, or potassium, or a combination thereof is methanol, ethanol, propanol, i-propanol, n-butanol, i-butanol, or tert-butanol.
  • each of the lithium, sodium and potassium, or a combination threreof for forming the base used in step (2) by reacting with a C 1-4 alcohol is independently applied in an amount, in some embodiments, the amount is 0.5 equivalent to 10 equivalents per 1 equivalent by mole of a compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) . In other embodiments, the amount is 2 equivalents to 8 equivalents per 1 equivalent by mole of a compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) .
  • the amount is 2.5 equivalents to 8 equivalents per 1 equivalent by mole of a compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) . In yet other embodiments, the amount is 0.5, 1, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9 or 10 equivalents per 1 equivalent by mole of a compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) .
  • the halogenating reaction in step (3) is carried out in a forth organic solvent
  • the forth organic solvent is one or more C 1-4 alcohols, one or more C 1-4 haloalkanes, ethyl acetate, acetonitrile, isopropyl ether, petroleum ether, toluene, xylene, tetrahydrofuran, acetone, or a combination thereof.
  • the forth organic solvent is dichloromethane, chloroform, tetrachloromethane, acetonitrile, isopropyl ether, petroleum ether, tetrahydrofuran, methanol, ethanol, propanol, i-propanol, n-butanol, tert-butanol, ethyl acetate, acetone, or a combination thereof.
  • the halogenating reaction in step (2) is carried out in the presence of a halogenating agent, and wherein the halogenating agent is N-bromosuccinimide, N-chlorosuccinimide, N-iodosuccinimide, 1,3-dibromo-5, 5-dimethylhydantoin, or 1, 3-dichloro-5, 5-dimethylhydantoin, or a combination thereof.
  • the halogenating agent is N-bromosuccinimide, N-chlorosuccinimide, N-iodosuccinimide, 1,3-dibromo-5, 5-dimethylhydantoin, or 1, 3-dichloro-5, 5-dimethylhydantoin, or a combination thereof.
  • alkyl or “alk-” or “alkyl group” as used interchangeably in the context of the present invention, such as in alkyl, aminoalkyl, alkyamino, alkylthio or alkoxy, relfers to a saturated linear or branched-chain monovalent hydrocarbon radical of 1 to 10 carbon atoms.
  • the alkyl group may be optionally substituted with one or more substituents disclosed herein.
  • the alkyl group contains 1-10 carbon atoms.
  • the alkyl group contains 1-6 carbon atoms.
  • the alkyl group contains 1-4 carbon atoms.
  • the alkyl group contains 1-3 carbon atoms.
  • alkyl group examples include, methyl (Me, -CH 3 ) , ethyl (Et, -CH 2 CH 3 ) , n-propyl (n-Pr, -CH 2 CH 2 CH 3 ) , isopropyl (i-Pr, -CH (CH 3 ) 2 ) , n-butyl (n-Bu, -CH 2 CH 2 CH 2 CH 3 ) , isobutyl (i-Bu, -CH 2 CH (CH 3 ) 2 ) , sec-butyl (s-Bu, -CH (CH 3 ) CH 2 CH 3 ) , tert-butyl (t-Bu, -C (CH 3 ) 3 ) , n-pentyl (-CH 2 CH 2 CH 2 CH 3 ) , 2-pentyl (-CH (CH 3 ) CH 2 CH 2 CH 3 ) , 3-pentyl (-CH (CH 2 CH 3 )
  • aminoalkyl refers to a C 1-10 linear or branched-chain alkyl group substituted with one or more amino groups.
  • the aminoalkyl group refers to a C 1-6 aminoalkyl group, wherein the alkyl group is as defined herein.
  • Some non-limiting examples of the aminoalkyl group include aminomethyl, 2-aminoethyl, 2-aminoisopropyl, aminopropyl, aminobutyl and aminohexyl, etc.
  • alkoxy refers to an alkyl group attached to the rest part of the molecule through an oxygen atom, wherein the alkyl group is as defined herein. Unless otherwise specified, the alkoxy group contains 1-10 carbon atoms. In some embodiments, the alkoxy group contains 1-6 carbon atoms. In other embodiments, the alkoxy group contains 1-4 carbon atoms. In still other embodiments, the alkoxy group contains 1-3 carbon atoms.
  • alkoxy group examples include methoxy (MeO, -OCH 3 ) , ethoxy (EtO, -OCH 2 CH 3 ) , propoxy (n-PrO, n-propoxy, -OCH 2 CH 2 CH 3 ) , isopropoxy (i-PrO, i-propoxy, -OCH (CH 3 ) 2 ) , n-butoxy (n-BuO, -OCH 2 CH 2 CH 2 CH 3 ) , 1-methyl-propoxy (s-BuO, s-butoxy, -OCH (CH 3 ) CH 2 CH 3 ) , 2-methyl-l-propoxy (i-BuO, i-butoxy, -OCH 2 CH (CH 3 ) 2 ) , tert-butoxy (t-BuO, t-butoxy, -OC(CH 3 ) 3 ) , n-pentoxy (-OCH 2 CH 2 CH 2 CH 3 )
  • haloalkyl , haloalkenyl and haloalkoxy respectively refer to alkyl, alkenyl or alkoxy, as the case may be, substituted with one or more halogen atoms.
  • alkyl, alkenyl and alkoxy are as defined herein.
  • Some non-limiting examples of these groups include -CF 3 , -CH 2 Cl, -CH 2 CF 3 , -CH 2 CH 2 CF 3 , -OCF 3 , -OCHF 2 , -OCHCl 2 , -OCH 2 CHF 2 , -OCH 2 CHCl 2 and -OCH (CH 3 ) CHF 2 , etc.
  • alkylamino refers to “N-alkylamino” and “N, N-dialkylamino” wherein amino groups are independently substituted with one alkyl radical or two alkyl radicals, respectively. Wherein the amino group and the alkyl group are as defined herein.
  • the alkylamino radical is “lower alkylamino” radical having one or two C 1-6 alkyl groups attached to a nitrogen atom.
  • the alkylamino radical refers to C 1-4 lower alkylamino group.
  • the alkylamino radical refers to C 1-3 lower alkylamino group.
  • suitable alkylamino radical include mono or dialkylamino. Some examples include, but are not limited to, methylamino, ethylamino, isopropylamino, propylamino, tert-butylamino, n-butylamino, 1-methylpropylamino, n-pentylamino, n-hexylamino, N,N-dimethylamino and N, N-diethylamino, etc.
  • alkylthio refers to a radical containing a linear or branched-alkyl radical of one to ten carbon atoms, attached to a divalent sulfur atom. Wherein the alkyl group is as defined herein. Some non-limiting examples of the alkylthio group include methylthio (CH 3 S-) and ethylthio, etc.
  • cycloalkyl refers to a monovalent or multivalent saturated ring having 3 to 12 carbon atoms as a monocyclic, bicyclic, or tricyclic ring system. Wherein, the cycloalkyl group may be optionally substituted with one or more substituents disclosed herein. In some embodiments, the cycloalkyl contains 3 to 12 carbon atoms. In still other embodiments, the cycloalkyl contains 3 to 8 carbon atoms. In yet other embodiments, the cycloalkyl contains 3 to 6 carbon atoms.
  • Some examples include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cyclohendecyl and cyclododecyl, etc.
  • cycloalkylalkyl refers to an alkyl radical substituted with one or more cycloalkyl radicals, wherein the cycloalkyl and alkyl are as defined herein.
  • Some non-limiting examples of the cycloalkylalkyl group include cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclobutylmethyl, cyclobutylethyl, cyclobutylpropyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclohexylmethyl, cyclohexylethyl and cyclohexylpropyl, etc.
  • cycloalkyloxy refers to a cycloalkyl group, attached to the rest part of the molecule through an oxygen atom. Wherein the cycloalkyl group is as defined herein. Some non-limiting examples of the cycloalkyloxy group include cyclopropoxy, cyclopentyloxy and cyclohexyloxy, etc.
  • cycloalkylamino refers to an amino group is substituted with one or two cycloalkyl radicals. Some non-limiting examples of such radical include cyclopropylamino, cyclobutylamino, cyclopentylamino and cyclohexylamino, etc. In some embodiments, the cycloalkyl of cycloalkylamino group may be optionally substituted with one or more substituents disclosed herein.
  • heterocyclyl refers to a saturated or unsaturation, nonaromatic, monocyclic, bicyclic or tricyclic ring system in which at least one ring member is selected from nitrogen, sulfur and oxygen.
  • the heterocyclyl group may be optionally substituted with one or more substituents disclosed herein.
  • the sulfur can be optionally oxygenized to S-oxide and the nitrogen can be optionally oxygenized to N-oxide.
  • the heterocyclyl group may be a C 2-10 heterocyclyl group, which refers to a heterocyclyl group containing 2 to 10 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen.
  • the heterocyclyl group may be a C 2-9 heterocyclyl group, which refers to a heterocyclyl group containing 2 to 9 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen.
  • the heterocyclyl group may be a C 2-7 heterocyclyl group, which refers to an heterocyclyl group containing 2 to 7 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen.
  • the heterocyclyl group may be a C 2-5 heterocyclyl group, which refers to a heterocyclyl group containing 2 to 5 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen.
  • the heterocyclyl group include oxiranyl, thietanyl, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, oxazolidinyl, tetrahydrofuranyl, dihydrothienyl, dihydropyranyl, piperidinyl, morpholinyl, tetrahydropyrimidinyl, oxazinanyl, thiomorpholinyl and piperazinyl, etc.
  • heterocyclylalkyl refers to a heterocyclyl group attached to the rest of the molecule through an alkyl group, wherein the heterocyclyl and alkyl are as defined herein.
  • Some non-limiting examples of such group included pyrrolidinylmethyl, piperidinylmethyl, piperidinylethyl, morpholinylmethyl and morpholinylethyl, etc.
  • halogen refers to fluorine (F) , chlorine (Cl) , bromine (Br) or iodine (I) .
  • aryl refers to monocyclic, bicyclic and tricyclic carbocyclic ring systems having a total of six to fourteen ring members, or six to twelve ring members, or six to ten ring members, wherein at least one ring in the system is aromatic, wherein each ring in the system contains 3 to 7 ring members and that has a single point or multipoint of attachment to the rest of the molecule. Wherein the aryl may be optionally substituted with the substituent disclosed herein.
  • aryl and “aromatic ring” can be used interchangeably herein. Some non-limiting examples of the aryl group include phenyl, 2, 3-dihydro-1H-indenyl, naphthalenyl and anthracenyl, etc.
  • arylalkyl refers to an aryl group attached to the rest of the molecule through an alkyl group, wherein the aryl and alkyl are as defined herein. Some non-limiting examples of such group include benzyl, phenylethyl and naphthalenylmethyl, etc.
  • arylamino refers to an amino group substituted with one or two aryl groups. Some non-limiting examples of such group included N-phenylamino. In some embodiments, the aryl group of the arylamino may be further substituted.
  • heteroaryl refers to monocyclic, bicyclic and tricyclic carbocyclic ring systems having a total of five to twelve ring members, or five to ten ring members, or five to six ring members, wherein at least one ring in the system is aromatic, and in which at least one ring member is selected from nitrogen, sulfur and oxygen, and wherein each ring in the system contains 3 to 7 ring members and that has a single point or multipoint of attachment to the rest of the molecule.
  • heterotreroaryl and “heteroaromatic ring” or “heteroaromatic compound” can be used interchangeably herein.
  • the heteroaryl group may be a C 1-9 heteroaryl group, which refers to a heteroaryl group containing 1 to 9 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen.
  • the heteroaryl group may be a C 1-7 heteroaryl group, which refers to a heteroaryl group containing 1 to 7 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen.
  • the heteroaryl group may be a C 1-6 heteroaryl group, which refers to a heteroaryl group containing 1 to 6 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen.
  • the heteroaryl group may be a C 1-5 heteroaryl group, which refers to a heteroaryl group containing 1 to 5 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen.
  • the heteroaryl group may be a C 1-4 heteroaryl group, which refers to a heteroaryl group containing 1 to 4 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen.
  • the heteroaryl group may be a C 1-3 heteroaryl group, which refers to a heteroaryl group containing 1 to 3 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen.
  • Some non-limiting examples of such group include furanyl, imidazolyl, isoxazolyl, oxazolyl, pyrrolyl, pyrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, thienyl, diazolyl, triazolyl, tetrazolyl, thiazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, pyranyl and triazinyl, etc, and also include the following bicycle ring, but atre not limited to: benzimidazolyl, benzofuranyl, benzothiophenyl, indolyl, oxoindolyl, indolinyl, imidazopyridyl, pyrazopryridyl, pyrazopyrimidinyl, quinolyl, isoquinolyl and quinazolinyl, etc.
  • heteroarylalkyl refers to an heteroaryl group attached to the rest of the molecule through a alkyl group, wherein the heteroaryl and alkyl are as defined herein.
  • the "heteroarylalkyl” group may be optionally substituted with one or more substituents disclosed herein. Some non-limiting examples of such group included pyridylmethyl, pyrrolylethyl and quinolylmethyl, etc.
  • a system containing a group formed by connecting a double bond with a wave bond indicates that it is (Z) or (E) configuration, or a combination thereof.
  • the solvent used for the reaction of the invention is not particularly restricted, any solvent is contained in the invention so long as it can dissolve the raw materials to a certain extent and doesn’ t inhibit the reaction. Additionally, many similar modifications in the art, substitutions to same object, or solvent, solvent composition and the solvent composition with different proportions which are equivalent to those described in the invention, all are deemed to be included in the present invention.
  • the solvent could be alcohols, alcohol-water mixtures, ethers, halohydrocarbons, esters, ketones, aromatic hydrocarbons, alkanes, acetonitrile, trifluoroethanol, N, N-dimethyl formamide (DMF) , N-methylpyrolidone (NMP) , or a combination thereof.
  • the amount of water in the solvent is not particularly restricted. So long as the solvent containing a certain amount of water can be used in the reaction disclosed herein, which is deemed to be included in the present invention.
  • the amount of water in the solvent is approximately less than 0.05%, less than 0.1%, less than 0.2%, less than 0.5%, less than 5%, less than 10%, less than 25%, less than 30%, or 0%.
  • the solvent used for the recrystallization of the invention is not particularly restricted, any solvent is contained in the invention so long as it can dissolve the crude product and the crystal product can precipitate out under certain conditions. Additionally, many similar modifications in the art, substitutions to same object, or solvent, solvent composition and the solvent composition with different proportions which are equivalent to those described in the invention, all are deemed to be included in the present invention.
  • the solvent could be alcohols, alcohol-water mixtures, ethers, alkanes, halohydrocarbons, esters, ketones, aromatic hydrocarbons, acetonitrile, N, N-dimethyl formamide (DMF) , N-methylpyrolidone (NMP) , or a combination thereof.
  • the one-pot reaction temperature is from approximately room temperature (usually 25 °C) to 154 °C.
  • the reaction is carried out at a low temperature at the beginning or at the earlier stage, after rising of the temperature, the reaction is carried out at a higher temperature, which may be from approximately 25 °C to solvent boiling point, from approximately 30 °C to solvent boiling point, from approximately 25 °C to 154 °C, or from approximately 30 °C to 154 °C.
  • the cooling temperature is approximately from -80 °C to 60 °C.
  • the reaction mixture cooling is carried out at a higher temperature, may be from solvent boiling point to 60 °C, from solvent boiling point to 40 °C, from solvent boiling point to 30 °C, from solvent boiling point to 25 °C, from solvent boiling point to 0 °C, from solvent boiling point to -10 °C, from solvent boiling point to -15 °C, from solvent boiling point to -20 °C, from solvent boiling point to -40 °C, from solvent boiling point to -50 °C, or solvent boiling point to -80 °C, and may be from approximately 60 °C to -20 °C, from approximately 50 °C to -20 °C, from approximately 40 °Cto 10 °C, from approximately 30 °C to 10 °C, or from approximately room temperature (usually 25 °C) to 10 °C.
  • the reaction mixture cooling at the later stage is carried out at a lower temperature, may be from approximately -80 °C to approximately 10 °C, from approximately -60 °C to approximately 10 °C, from approximately -40 °C to approximately 10 °C, from approximately -20 °C to approximately 10 °C, or from approximately -10 °C to approximately 10 °C, from approximately 0 °C to approximately 10 °C.
  • the crystallization temperature is approximately from -80 °C to 60 °C.
  • the crystallization is at a higher temperature, may be from solvent boiling point to 60 °C, from solvent boiling point to 50 °C, from solvent boiling point to 40 °C, from solvent boiling point to 30 °C, from solvent boiling point to 25 °C, from solvent boiling point to 0 °C, from solvent boiling point to -10 °C, from solvent boiling point to -15 °C, from solvent boiling point to -20 °C, from solvent boiling point to -30 °C, from solvent boiling point to -40 °C, from solvent boiling point to -50 °C, or solvent boiling point to -80 °C, and may be from approximately 60 °Cto -20 °C, from approximately 50 °C to -20 °C, from approximately 40 °C to 10 °C, from approximately 30 °Cto 10 °C, or from approximately room temperature (usually 25 °C) to 10 °C.
  • the crystallization at the later stage is at a lower temperature, may be from approximately -80 °C to approximately 10 °C, from approximately -60 °C to approximately 10 °C, from approximately -40 °C to approximately 10 °C, from approximately -20 °C to approximately 10 °C, from approximately -10 °C to approximately 10 °C, or from approximately 0 °C to approximately 10 °C.
  • Any halogenating agent is included in the present invention so long as it is applicable for the halogenating reaction.
  • N-bromosuccinimide (NBS) N-chlorosuccinimide (NCS)
  • N-iodosuccinimide N-iodosuccinimide
  • the base used in the present invention may be an organic base or inorganic base.
  • the organic base may be triethylamine, trimethylamine, N, N-diisopropylethylamine, N-methylmorpholine, N-methylpiperidine or a combination thereof; and can also be a base formed by reacting an organic solvent with an alkali metal.
  • the alkali metal comprises lithium, sodium and potassium, or a combination thereof.
  • the organic solvent can be one or more alcohols, or a combination thereof.
  • the alcohols include, but are not limited to, methanol, ethanol, propanol, i-propanol, n-butanol, i-butanol, tert-butanol and a combination thereof.
  • the inorganic bases include, but are not limited to, alkali metal hydroxide, alkaline earth metal hydroxide, alkali metal alkoxide, alkaline earth metal alkoxide, alkali metal carbonate, alkaline earth metal carbonate and ammonia.
  • the inorganic base is ammonia, sodium hydroxide, calcium hydroxide, magnesium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, sodium tert-butoxide, sodium isopropoxide or potassium tert-butoxide.
  • the reaction mixture is worked up, such as cooled, collected, drawn, filtered, separated, purified or a combination thereof.
  • the reaction can be monitored by conventional method such as thin-layer chromatography (TLC) , high performance liquid chromatography (HPLC) , gas chromatography (GC) , and the like.
  • the reaction mixture can be worked up by conventional method, for example, the crude product can be collected by concentrating the reaction mixture through vacuum evaporation or conventional distillation and which is used directly in the next operation; or the crude product can be obtained by filtration of the reaction mixture and which is used directly in the next operation; or the crude product can be get by pouring the supernatant liquid of the reaction mixture after standing for a while and which is used directly in the next operation.
  • the reaction mixture can be purified by suitable methods such as extraction, distillation, crystallization, column chromatography, washing, trituration with suitable organic solvents or a combination thereof.
  • structures depicted herein are also meant to include all isomeric (e. g., enantiomeric, diastereomeric, and geometric (or conformeric) ) forms of the structure; for example, the R and S configurations for each asymmetric center, (Z) and (E) double bond isomers, and (Z) and (E) conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, or geometric (or conformeric) mixtures of the present compounds are within the scope disclosed herein.
  • a specific stereoisomer is referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture.
  • a 50: 50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process.
  • the term "racemic mixture” or “racemate” refers to an equimolar mixture of two enantiomeric species, devoid of optical activity.
  • tautomer or "tautomeric form” refers to structural isomers of different energies which are interconvertible via a low energy barrier. If tautomerism could happen (such as in a solvent) , the chemical balance between tautomers can be reached.
  • proton tautomers also known as prototropic tautomers
  • Valence tautomers include interconversions by reorganization of some of the bonding electrons.
  • keto-enol tautomerisms is hexane-2, 4-dione and 4-hydroxyhex-3-en-2-one tautomerism.
  • tautomerisms is phenol-keto tautomerism.
  • the specific example of phenol-keto tautomerisms is pyridin-4-ol and pyridin-4 (3H) -one tautomerism. Unless otherwise stated, all tautomers of the present compounds are within the scope disclosed herein.
  • the compound is characterized by the corresponding structure.
  • the compounds of Formula (I) , Formula (Ia) , Formula (I-1) , Formula (Ia-1) , Formula (I-2) or Formula (Ia-2) disclosed herein may be prepared by methods described herein, wherein the substituents are as defined in Formula (I) , Formula (Ia) , Formula (I-1) , Formula (Ia-1) , Formula (I-2) or Formula (Ia-2) , except where further noted.
  • the following examples are presented to further exemplify the invention.
  • temperatures are set forth in degrees Celsius (°C) .
  • Reagents were purchased from commercial suppliers such as Aldrich Chemical Company, Arco Chemical Company and Alfa Chemical Company, and were used without further purification unless otherwise indicated.
  • Common solvents were purchased from commercial suppliers such as Shantou XiLong Chemical Factory, Guangdong Guanghua Reagent Chemical Factory Co. Ltd., Guangzhou Reagent Chemical Factory, Tianjin YuYu Fine Chemical Ltd., Qingdao Tenglong Reagent Chemical Ltd., and Qingdao Ocean Chemical Factory.
  • MS data were also determined on an Agilent 6320 series LC-MS spectrometer equipped with G1312A binary pumps, a G1316A TCC (Temperature Control of Column, maintained at 30 °C) , a G1329A autosampler and a G1315B DAD detector were used in the analysis.
  • An ESI source was used on the LC-MS spectrometer.
  • MS data were also determined on an Agilent 6120 series LC-MS spectrometer equipped with G1312A binary pumps, a G1316A TCC (Temperature Control of Column, maintained at 30 °C) , a G1329A autosampler and a G1315B DAD detector were used in the analysis.
  • An ESI source was used on the LC-MS spectrometer.
  • Table 1 The gradient condition of the mobile phase in Low-resolution mass spectrum analysis
  • Example 1 the preparation of (R) -ethyl 4- (2-bromo-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate
  • Step 2) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-bromo-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
  • the filter cake was washed with water (330 mL) and dried in vacuo at 60 °C for 8 hours to obtain the crude product.
  • To the crude product was added n-propanol (74 g) .
  • the mixture was heated until dissolved completely, cooled to 25 °C, and then kept at 25 °C, stirred and crystallized for 5 hours.
  • the resulting mixture was filtered.
  • the filter cake was dried in vacuo at 60 °C for 8 hours to obtain the product as a yellow solid (13.4 g, 27%) .
  • the compound 5 can be prepared under the reaction conditions shown in table 2 by using method one described in step 2 of Example 1.
  • the compound 5 can be prepared under the reaction conditions shown in table 3 by using method two described in step 2 of Example 1.
  • the filter cake was washed with water (330 mL) and dried in vacuo at 60 °C for 8 hours to obtain the crude product.
  • the crude product was triturated with n-propanol (50 g) at 30 °C for 5 hours and filtered.
  • the filter cake was washed with n-propanol (12.8 g) and dried in vacuo at 60 °C for 8 hours to obtain the product as a yellow solid (13.9 g, 28%) .
  • the compound 5 can be prepared under the reaction conditions shown in table 4 by using method three described in step 2 of Example 1.
  • the resulting mixture was cooled to 0 °C, kept at 0 °C and stirred. After the solid precipitated out completely, the mixture was filtered. The filter cake was washed with ethanol (50 g) and dried in vacuo at 60 °C for 6 hours to obtain the product as a yellow solid (37.4 g, 65%) .
  • the compound A1 can be prepared under the reaction conditions shown in table 5 according to the procedure described in step 3 of Example 1
  • the filter cake was washed with i-propanol (58 g) followed by water (575 g) , and then dried in vacuo at 60 °C for 8 hours to obtain the product as a yellowish solid (40.1 g, 69%) .
  • Step 2) (R) -tert-butyl 3- (3-ethoxy-3-oxoprop-1-en-1-yl) morpholine-4-carboxylate
  • the compound VI hydrochloride can be prepared under the reaction conditions shown in table 6 according to the procedure described in Example 3.
  • Example 5 the preparation of (S) -4- ( ( (R) -6- (2-bromo-4-fluorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
  • Step 1) (S) -4- ( ( (R) -6- (2-bromo-4-fluorophenyl) -5- ( ( ( (R) -1-ethoxy-1-oxopropan-2-yl) oxy) carbonyl) -2-(thiazol-2-yl) -3, 6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
  • the compound E can be prepared under the reaction conditions shown in table 7 according to the procedure described in step 1 of Example 5.
  • Step 2) (S) -4- ( ( (R) -6- (2-bromo-4-fluorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3, 6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
  • the compound F can be prepared under the reaction conditions shown in table 8 according to the procedure described in step 2 of Example 5.
  • Step 1) (R) -ethyl 4- (2-bromo-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
  • the compound G can be prepared under the reaction conditions shown in table 9 according to the procedure described in step 1 of Example 6.
  • Step 2) (R) -ethyl 4- (2-bromo-4-fluorophenyl) -6-bromomethyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
  • the compound J can be prepared under the reaction conditions shown in table 10 according to the procedure described in step 2 of Example 6.
  • the compound L can be prepared under the reaction conditions shown in table 11 according to the procedure described in step 3 of Example 6.
  • Example 7 the preparation of (S) -4- ( ( (R) -6- (2-bromo-4-fluorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
  • the compound F can be prepared under the reaction conditions shown in table 12 according to the procedure described in Example 7.
  • Example 8 the preparation of (R) -ethyl 4- (2-chloro-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate
  • Step 1) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-chloro-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
  • the filter cake was washed with water (330 mL) and dried in vacuo at 60 °C for 8 hours to obtain the crude product.
  • To the crude product was added n-propanol (50 g) .
  • the mixture was heated until dissolved completely, cooled to 30 °C, and then kept at 30 °C, stirred and crystallized for 8 hours.
  • the resulting mixture was filtered.
  • the filter cake was dried in vacuo at 60 °C for 8 hours to obtain the product as a yellow solid (10.4 g, 23%) .
  • the compound 8 can be prepared under the reaction conditions shown in table 13 by using method one described in step 1 of Example 8.
  • the compound 8 can be prepared under the reaction conditions shown in table 14 by using method two described in step 1 of Example 8.
  • the filter cake was washed with water (330 mL) and dried in vacuo at 60 °C for 8 hours to obtain the crude product.
  • the crude product was triturated with n-propanol (50 g) at 30 °C for 5 hours and filtered.
  • the filter cake was dried in vacuo at 60 °C for 8 hours to obtain the product as a yellow solid (11.3 g, 25%) .
  • the compound 8 can be prepared under the reaction conditions shown in table 15 by using method three described in step 1 of Example 8.
  • Step 2) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-chloro-4-fluorophenyl) -6-bromomethyl-2- (thiazol-2 -yl) -1, 4-dihydropyrimidine-5-carboxylate
  • the resulting mixture was cooled to 0 °C, kept at 0 °C and stirred. After the solid precipitated out completely, the mixture was filtered. The filter cake was washed with ethanol (45 g) and dried in vacuo at 60 °C for 6 hours to obtain the product as a yellow solid (31.3 g, 59%) .
  • the compound A2 can be prepared under the reaction conditions shown in table 16 according to the procedure described in step 2 of Example 8.
  • the filter cake was washed with i-propanol (53 g) followed by water (530 g) , and then dried in vacuo at 60 °C for 8 hours to obtain the product as a yellowish solid (34.4 g, 64%) .
  • Example 10 the preparation of (S)-4- ( ( (R) -6- (2-chloro-4-fluorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl)-3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
  • Step 1) (S) -4- ( ( (R) -6- (2-chloro-4-fluorophenyl)-5- ( ( ( (R) -1-ethoxy-1-oxopropan-2-yl) oxy) carbonyl) -2-(thiazol-2-yl)- 3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
  • the compound Q can be prepared under the reaction conditions shown in table 17 according to the procedure described in step 1 of Example 10.
  • Step 2) (S) -4- ( ( (R) -6- (2-chloro-4-fluorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3, 6-dihydropyrimidin-4-yl)methyl) morpholine-3-carboxylic acid
  • the compound X can be prepared under the reaction conditions shown in table 18 according to the procedure described in step 2 of Example 10.
  • Example 11 the preparation of (R) -ethyl 4-(2-chloro-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate
  • Step 1) (R) -ethyl 4- (2-chloro-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
  • the compound T can be prepared under the reaction conditions shown in table 19 according to the procedure described in step 1 of Example 11.
  • Step 2) (R) -ethyl 4- (2-chloro-4-fluorophenyl) -6-bromomethyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine -5-carboxylate
  • the compound W can be prepared under the reaction conditions shown in table 20 according to the procedure described in step 2 of Example 11.
  • the compound U can be prepared under the reaction conditions shown in table 21 according to the procedure described in step 3 of Example 11.
  • Example 12 the preparation of (S) -4- ( ( (R) -6- (2-chloro-4-fluorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
  • the compound X can be prepared under the reaction conditions shown in table 22 according to the procedure described Example 12.
  • Example 13 the preparation of (R) -ethyl 4- (2, 4-dichlorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate
  • Step 1) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2, 4-dichlorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
  • the filter cake was washed with water (330 mL) and dried in vacuo at 60 °C for 8 hours to obtain the crude product.
  • To the crude product was added n-propanol (82 g) .
  • the mixture was heated until dissolved completely, cooled to 30 °C, and then kept at 30 °C, stirred and crystallized for 5 hours.
  • the resulting mixture was filtered.
  • the filter cake was dried in vacuo at 60 °C for 8 hours to obtain the product as a yellow solid (12.1 g, 25.9%) .
  • the compound 10 can be prepared under the reaction conditions shown in table 23 by using method one described in step 1 of Example 13.
  • the compound 10 can be prepared under the reaction conditions shown in table 24 by using method two described in step 1 of Example 13.
  • the filter cake was washed with water (330 mL) and dried in vacuo at 60 °C for 8 hours to obtain the crude product.
  • the crude product was triturated with i-propanol (82 g) at 30 °C for 5 hours and filtered.
  • the filter cake was dried in vacuo at 60 °C for 8 hours to obtain the product as a yellow solid (12.9 g, 27.5%) .
  • the compound 10 can be prepared under the reaction conditions shown in table 25 by using method three described in step 1 of Example 13.
  • Step 2) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2, 4-dichlorophenyl) -6-bromomethyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
  • the resulting mixture was cooled to 0 °C, kept at 0 °C and stirred. After solid was precipitated out completely, the mixture was filtered. The filter cake was washed with ethanol (47 g) and dried in vacuo at 60 °C for 6 hours to obtain the product as a yellow solid (30.1 g, 55%) .
  • the compound A3 can be prepared under the reaction conditions shown in table 26 according to the procedure described in step 2 of Example 13
  • the filter cake was washed with i-propanol (55 g) followed by water (550 g) , and then dried in vacuo at 60 °C for 8 hours to obtain the product as a yellowish solid (33.7 g, 61%) .
  • Example 14 the preparation of (R) -methyl 4- (2, 4-dichlorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate
  • Example 15 the preparation of (S) -4- ( ( (R) -6- (2, 4-dichlorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
  • Step 1) (S) -4- ( ( (R) -6- (2, 4-dichlorophenyl) -5- ( ( ( (R) -1-ethoxy-1-oxopropan-2-yl) oxy) carbonyl) -2-(thiazol-2-yl) -3, 6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
  • the compound H can be prepared under the reaction conditions shown in table 27 according to the procedure described in step 1 of Example 15.
  • Step 2) (S) -4- ( ( (R) -6- (2, 4-dichlorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3, 6-dihydropyrimidin-4-yl)methyl) morpholine-3-carboxylic acid
  • the reaction mixture was allowed to warm up to 78 °C and stirred for 12 hours. After the reaction, the mixture was cooled and concentrated. To the residue was added water (1200 g) , the resulting mixture was extracted with ethyl acetate (1200 mL) The organic layer was discarded. To the aqueous layer was added ethyl acetate (1280 mL) , and the mixture was adjusted to pH 3-6 with concentrated hydrochloric acid. The organic layer was dried over anhydrous sodium sulfate and concentrated to give the product as a yellow solid (35.7 g, 68%) .
  • the compound XX can be prepared under the reaction conditions shown in table 28 according to the procedure described in step 2 of Example 15.
  • Example 16 the preparation of (R) -ethyl 4- (2, 4-dichlorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate
  • Step 1) (R) -ethyl 4- (2, 4-dichlorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine -5-carboxylate
  • the compound TT can be prepared under the reaction conditions shown in table 29 according to the procedure described in step 1 of Example 16.
  • Step 2) (R) -ethyl 4- (2, 4-dichlorophenyl) -6- (bromomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine -5-carboxylate
  • the compound WW can be prepared under the reaction conditions shown in table 30 according to the procedure described in step 2 of Example 16.
  • the compound UU can be prepared under the reaction conditions shown in table 31 according to the procedure described in step 3 of Example 16.
  • Example 17 the preparation of (S) -4- ( ( (R) -6- (2, 4-dichlorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
  • the compound XX can be prepared under the reaction conditions shown in table 32 according to the procedure described in Example 17.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

The present invention refers to processes for preparing a dihydropyrimidine compound having Formula (I), or a tautomer thereof having Formula (la), as well as a intermediate thereof. The process of the invention has simple operation, high optical purity of product, high yield and convenient work-up, which is suitable for industrial production.

Description

PROCESSES FOR PREPARING DIHYDROPYRIMIDINE DERIVATIVES AND INTERMEDIATES THEREOF
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to Chinese Patent Application Serial No. 201310636920.8, filed with the State Intellectual Property Office of China on November 27, 2013; and Chinese Patent Application Serial No. 201410121009.8, filed with the State Intellectual Property Office of China on March 27, 2014, both of which are hereby incorporated by reference in their entireties and for all purposes as if specifically and fully set forth herein.
FIELD
The invention refers to a chemical medicine field. Specifically, the invention relates to processes for preparation of optically pure dihydropyrimidine derivatives and optically pure dihydropyrimidine intermediates thereof.
BACKGROUND
The hepatitis B virus belongs to the family of hepadnaviridae. It can cause acute and/or persistent or progressive chronic diseases. Many other clinical manifestations in the pathological morphology can also be caused by HBV—in particular chronic hepatitis, cirrhosis and hepatocellular carcinoma. Additionally, coinfection with hepatitis D virus may have adverse effects on the progress of the disease.
The conventional medicaments approved to be used for treating chronic hepatitis are interferon and lamivudine. However, the interferon has just moderate activity but has an adverse side reaction. Although lamivudine has good activity, its resistance develops rapidly during the treatment and relapse effects often appear after the treatment has stopped. The IC50 value of lamivudine (3-TC) is 300 nM (Science, 2003, 299, 893-896) .
PCT Publication No. WO2008154817 discloses a series of compounds used for preventing, managing, treating or lessening a viral disease in a patient, particularly HBV infection or a related disease. The patent also provides the processes for preparation of specific compounds, such as 4- (R, S) -ethyl 4-(2-bromo-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate as shown in Formula (Ib) .
Figure PCTCN2014092400-appb-000001
PCT Publication No. WO2008009210 discloses a series of optically pure compounds , which used for  preventing, managing, treating or lessening an acute or chronic viral disease in a patient, particularly an acute or chronic HBV disease. The patent also provides the processes for preparation of specific compounds, such as (R)-ethyl 4- (2-chloro-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate.
Dihydropyrimidine derivatives can be prepared by several methods described in prior arts, such as patents WO1999054329, WO2008154817, WO2001068641, WO2010069147, and so on. But the process of preparation of optically pure dihydropyrimidine compounds described herein has not been yet be published.
SUMMARY
The invention refers to a process for preparing a dihydropyrimidine compound having Formula (I) , or a tautomer thereof having Formula (Ia) ,
Figure PCTCN2014092400-appb-000002
wherein each R1 and R2 is independently F, Cl, or Br;
R3 is C1-4 alkyl;
Z is -O-, -S-, -S (=O) t, or -N (R4) -;
Y is -O-, -S-, -S (=O) t-, - (CH2q-, or -N (R5) -;
each t and q is independently 0, 1, or 2;
each of R4 and R5 is independently H or C1-4 alkyl;
each R6 is independently H, deuterium, halo, C1-4 alkyl, C1-4 haloalkyl, amino, C1-4 alkylamino, C1-4 alkoxy, nitro, triazolyl, tetrazyl, - (CR7R7am-OH, -S (=O) qOR8a, - (CR7R7am-S (=O) qN (R8a2, - (CR7R7a) t-N (R8a2, -(CR7R7am-C (=O) O-R8, - (CR7R7am-C (=O) O- (CR7R7am-OC (=O) O-R8, -(CR7R7am-C (=O) O- (CR7R7am-OC (=O) -R8, - (CR7R7am-C (=O) O- (CR7R7am-C (=O) O-R8, -(CR7R7am-OC (=O) -R8 or - (CR7R7am-C (=O) -N (R8R8a) ;
each R7a and R7 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8; or R7a and R7, together with the carbon atom to which they are attached, form a C3-6 cycloalkyl group, C2-9 heterocyclyl goup, or - (C=O) -;
each R8 and R8a is independently H, C1-4 alkyl, amino-C1-4-alkyl, C1-4 alkoxy, C1-6 alkyl-S (=O) q-, C6-10 aryl, C1-9 heteroaryl, C3-6 cycloalkyl, C2-9 heterocyclyl, C6-10 aryl-C1-6-alkyl, C1-9 heteroaryl-C1-6-alkyl, C3-6 cycloalkyl-C1-4-alkyl, C2-9 heterocyclyl-C1-6-alkyl, C2-9 heterocyclyl-S (=O) q-, C1-9 heteroaryl-S (=O) q-, C3-6 cycloalkyl-S (=O) q-, C6-10 aryl-S (=O) q-, - (CH2m-OH, - (CH2m-C (=O) O- (CH2m-H, or -(CH2m-OC (=O) - (CH2m-H;
each R9 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkylthio, C3-6 cycloalkyl,  -(CR7R7am-C (=O) -N (R8R8a) , or - (CR7R7am-C (=O) O-R8
R10 is H or deuterium;
n is 0, 1, 2, 3, 4, or 5; each m is independently 0, 1, 2, 3, or 4; f is 1, 2, 3, or 4; and j is 0, 1, or 2.
Two preparation methods of a dihydropyrimidine compound having Formula (I) or a tautomer thereof having Formula (Ia) are depicted in the following schemes,
Scheme 1
Figure PCTCN2014092400-appb-000003
A dihydropyrimidine compound having Formula (I) , or a tautomer thereof having Formula (Ia) can be prepared by a general synthetic procedure illustrated through method one in Scheme 1, wherein R1, R2, Z, R9, j, f, R6, n, Y and R10 are as defined herein; wherein R3a is H or C1-3 alkyl; R3b is methoxy or ethoxy. The method one comprises the following steps of: reacting a compound (VIIIa) with a compound (IX) to obtain a compound (IVa) ; step (A) : reacting a compound (II) or a salt thereof with a compound (III) and the compound (IVa) to obtain a compound (Va) (according to some embodiments of the present invention, the reaction of the step (A) may be an one-pot reaction) ; step (B) : halogenating the compound (Va) to form a halide; and then reacting the halide with a compound (VI) , or a salt thereof to obtain a compound (VIIa) ; step (C) : forming a compound (I) or compound (Ia) from the compound (VIIa) in the presence of a base (according to some embodiments of the present invention, the reaction of the step (C) may be a transesterification) .
Scheme 2
Figure PCTCN2014092400-appb-000004
A dihydropyrimidine compound having Formula (I) , or a tautomer thereof having Formula (Ia) can  be prepared by a general synthetic procedure illustrated through method two in Scheme 2, wherein R1, R2, Z, R9, j, f, R6, n, Y, R10, R3a and R3b are as defined herein. The method two comprises the following steps of: step (1): reacting the compound (Va) in the presence of a base to obtain a compound (X) (according to some embodiments of the present invention, the reaction of the step (1) may be a transesterification) ; step (2) : halogenating the compound (X) to form a halide; and then reacting the halide with a compound (VI) or a salt thereof to obtain a compound (I) or compound (Ia) .
The method one depicted in scheme 1 and the method two depicted in scheme 2 comprises introducing a new chiral center to the mother nucleus of the compound, and splitting the diastereomers based on the difference in the solubility of the diastereomers; at last, removing the new chiral center from the mother nucleus through transesterification, then a compound may be obtained and in some embodiments of the present invention, the obtained compound may be optically pure. These methods have advantages of convenient work-up, high optical purity of product, and high yield. In addition, the processes of the invention have cheap raw material, mild reaction conditions, simplified operational procedure, controlled safely and they are suited for industrial production.
The present invention also refers to an intermediate comprising a dihydropyrimidine compound having Formula (Va) , or a tautomer thereof having Formula (Va1) , or a salt thereof, or a combination thereof,
Figure PCTCN2014092400-appb-000005
wherein each R1, R2, f, Z, R9, j, R10, R3a and R3b is as defined herein.
In one aspect, provided herein is a process for preparing a dihydropyrimidine compound having Formula (I) , or a tautomer thereof having Formula (Ia) (such as the method one depicted in scheme 1)
Figure PCTCN2014092400-appb-000006
wherein each R1 and R2 is independently F, Cl, or Br;
R3 is C1-4 alkyl;
Z is -O-, -S-, -S (=O) t-, or -N (R4) -;
Y is -O-, -S-, -S (=O) t-, - (CH2q-, or -N (R5) -;
each t and q is independently 0, 1, or 2;
each of R4 and R5 is independently H, or C1-4 alkyl;
each R6 is independently H, deuterium, halo, C1-4 alkyl, C1-4 haloalkyl, amino, C1-4 alkylamino, C1-4 alkoxy, nitro, triazolyl, tetrazyl, - (CR7R7am-OH, -S (=O) qOR8a, - (CR7R7am-S (=O) qN (R8a2, - (CR7R7at-N (R8a2, -(CR7R7am-C (=O) O-R8, - (CR7R7am-C (=O) O- (CR7R7am-OC (=O) O-R8, -(CR7R7am-C (=O) O- (CR7R7am-OC (=O) -R8, - (CR7R7am-C (=O) O- (CR7R7am-C (=O) O-R8, -(CR7R7am-OC (=O) -R8, or - (CR7R7am-C (=O) -N (R8R8a) ;
each R7a and R7 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8; or R7a and R7, together with the carbon atom to which they are attached, form a C3-6 cycloalkyl group, C2-9 heterocyclyl goup, or - (C=O) -;
each R8 and R8a is independently H, C1-4 alkyl, amino-C1-4-alkyl, C1-4 alkoxy, C1-6 alkyl-S (=O) q-, C6-10 aryl, C1-9 heteroaryl, C3-6 cycloalkyl, C2-9 heterocyclyl, C6-10 aryl-C1-6-alkyl, C1-9 heteroaryl-C1-6-alkyl, C3-6 cycloalkyl-C1-4-alkyl, C2-9 heterocyclyl-C1-6-alkyl, C2-9 heterocyclyl-S (=O) q-, C1-9 heteroaryl-S (=O) q-, C3-6 cycloalkyl-S (=O) q-, C6-10 aryl-S (=O) q-, - (CH2m-OH, - (CH2m-C (=O) O- (CH2m-H, or -(CH2m-OC (=O) - (CH2m-H;
each R9 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkylthio, C3-6 cycloalkyl, -(CR7R7am-C (=O) -N (R8R8a) , or - (CR7R7am-C (=O) O-R8
R10 is H or deuterium;
n is 0, 1, 2, 3, 4, or 5;
each m is independently 0, 1, 2, 3, or 4;
f is 1, 2, 3, or 4;
j is 0, 1, or 2;
wherein the process comprises the steps of:
step (A) : reacting an amidine compound of Formula (II) , or a salt thereof with an aldehyde compound of Formula (III) and a compound of Formula (IVa) to obtain a compound (Va) (according to some embodiments of the present invention, the reaction of step (A) may be an one-pot reaction) ,
Figure PCTCN2014092400-appb-000007
wherein R3b is methoxy or ethoxy; R3a is H or C1-3 alkyl; 
step (B) : halogenating the compound of Formula (Va) to form a halide; and then reacting halide with a compound of Formula (VI) , or a salt thereof to obtain a compound of Formula (VIIa) , 
Figure PCTCN2014092400-appb-000008
step (C) : forming the compound of Formula (I) or Formula (Ia) from the compound of Formula (VIIa) by means of a transesterification, and the transesterification may be carried out in the presence of a base.
In some embodiments, the dihydropyrimidine compound having Formula (I-1) , or a tautomer thereof having Formula (Ia-1) ,
Figure PCTCN2014092400-appb-000009
wherein, each R6 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, amino, C1-4 alkylamino, C1-4 alkoxy, nitro, triazolyl, tetrazyl, - (CR7R7am-OH, -S (=O) qOR8a, - (CR7R7am-S (=O) qN (R8a2, - (CR7R7at-N (R8a2, -(CR7R7am-C (=O) O-R8, - (CR7R7am-C (=O) O- (CR7R7am-OC (=O) O-R8, -(CR7R7am-C (=O) O- (CR7R7am-OC (=O) -R8, - (CR7R7am-C (=O) O- (CR7R7am-C (=O) O-R8, -(CR7R7am-OC (=O) -R8, or - (CR7R7am-C (=O) -N (R8R8a) ;
each R7a and R7 is independently H, C1-4 alkyl, C1-4 haloalkyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8; and each R1, R2, R3, Z, n, Y, m, q, R8a, t and R8 is as defined herein;
According to embodiments of present invention, the method one for preparing the dihydropyrimidine compound having Formula (I-1) , or a tautomer thereof having Formula (Ia-1) comprises the steps of:
step (A) reacting an amidine compound of Formula (II-1) , or a salt thereof with an aldehyde compound of Formula (III-1) and the compound of Formula (IVa) to obtain a compound (Va-1) (according to some embodiments of the present invention, the reaction of the step (A) may be an one-pot reaction) .
Figure PCTCN2014092400-appb-000010
wherein R3a and R3b are as defined in Formula (Va-1) disclosed herein;
step (B) : halogenating the compound of Formula (Va-1) to form a halide; and then reacting the halide with  a compound of Formula (VI) or a salt thereof to obtain a compound of Formula (VIIa-1) ,
Figure PCTCN2014092400-appb-000011
step (C) : forming the compound of Formula (I-1) or Formula (Ia-1) from the compound of Formula (VIIa-1) by means of a transesterification, wherein the transesterification may be carried out in the presence of a base.
In some embodiments, the dihydropyrimidine compound having Formula (I-2) , or a tautomer thereof having Formula (Ia-2) ,
Figure PCTCN2014092400-appb-000012
wherein R1 is F or Cl; and R2 is Cl or Br; R3, Z, n, R6 and Y are as defined herein;
According to embodiments of present invention, the method one for preparing the dihydropyrimidine compound having Formula (I-2) , or a tautomer thereof having Formula (Ia-2) comprises the steps of:
step (A) : reacting an amidine compound of Formula (II-1) , or a salt thereof with an aldehyde compound of Formula (III-2) and the compound of Formula (IVa) to obtain a compound (Va-2) (according to some embodiments of the present invention, the reaction of the step (A) may be an one-pot reaction) ,
Figure PCTCN2014092400-appb-000013
wherein R3a and R3b are as defined in Formula (Va-1) disclosed herein; 
step (B) : halogenating the compound of Formula (Va-2) to form a halide; and then reacting the halide with a compound of Formula (VI) , or a salt thereof to obtain a compound of Formula (VIIa-2) ,
Figure PCTCN2014092400-appb-000014
step (C) : forming the compound of Formula (I-2) or Formula (Ia-2) from the compound of Formula (VIIa-2) by means of a transesterification, wherein the transesterification may be carried out in the presence of a base.
According to embodiments of present invention, in the method one disclosed herein, in some embodiments, the R3 is methyl, ethyl, propyl, isopropyl, tert-butyl, or butyl; Z is -O-, -S-, or -N (CH3) -; Y is -O-, -S-, -S (=O) 2, or - (CH2q-; each R6 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, amino, C1-4 alkylamino, C1-4 alkoxy, nitro, triazolyl, tetrazyl, - (CR7R7am-OH, - (CR7R7am-C (=O) O-R8, - (CR7R7at-N (R8a2, -S (=O) qOR8a, -(CR7R7am-S (=O) qN (R8a2, - (CR7R7am-C (=O) O- (CR7R7am-OC (=O) O-R8, -(CR7R7am-C (=O) O- (CR7R7am-OC (=O) -R8, - (CR7R7am-C (=O) O- (CR7R7am-C (=O) O-R8, -(CR7R7am-OC (=O) -R8 or - (CR7R7am-C (=O) N (R8R8a) ; each R7a and R7 is independently H, methyl, ethyl, trifluoromethyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8; each R8 and R8a is independently H, methyl, ethyl, propyl, isopropyl, aminomethyl, methoxy, C1-4 alkyl-S (=O) 2-, phenyl, pyridyl, thiazolyl, furanyl, imidazolyl, isoxazolyl, oxazolyl, pyrrolyl, pyrimidinyl, pyridazinyl, diazolyl, triazolyl, tetrazolyl, thienyl, pyrazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, pyrazinyl, pyranyl, triazinyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropyl-S (=O) 2-, cyclobutyl-S (=O) 2-, cyclopentyl-S (=O) 2-, cyclohexyl-S (=O) 2-, naphthyl-S (=O) 2-, phenyl-S (=O) 2-, - (CH2m-OH, - (CH2m-C (=O) O- (CH2m-H, or - (CH2m-OC (=O) - (CH2m-H; R3b is methoxy or ethoxy; and R3a is H, methyl, ethyl, isopropyl, or propyl.
According to some embodiments of the present invention, in the method one disclosed herein, the reaction in step (A) is performed at a temperature from 25 ℃ to 154 ℃. In some other embodiments, the reaction in step (A) is performed at a temperature from 60 ℃ to 100 ℃.
According to some embodiments of the present invention, in the method one disclosed herein, the one-pot reaction in step (A) is performed at a temperature, in some embodiments, the reaction temperature is from 25 ℃ to 154 ℃. In other embodiments, the reaction temperature is from 30 ℃ to 154 ℃. In still other embodiments, the reaction temperature is from 60 ℃ to 100 ℃. In yet other embodiments, the reaction temperature is 25 ℃, 30 ℃, 40 ℃, 56 ℃, 60 ℃, 64 ℃, 65 ℃, 77 ℃, 78 ℃, 80 ℃, 82 ℃, 100 ℃, 110 ℃, 120 ℃, 130 ℃, 140 ℃ or 154 ℃.
According to some embodiments of the present invention, in the method one disclosed herein, the step (A) further comprises a step of cooling the resulting compound of Formula (Va) of step (A) to obtain a solid compound of Formula (Va) at a cooling temperature from -40 ℃ to 40 ℃. In some other embodiments,  the cooling temperature is from 25 ℃ to 40 ℃. In some embodiments, the cooling is performed for a period of from 0 hour to 24 hours. In some other embodiments, the cooling is performed for from 1 minute to 24 hours. In still other embodiments, the cooling is performed for from 1 hour to 8 hours.
According to some embodiments of the present invention, in the method one disclosed herein, the cooling in step (A) is carried out at a temperature, in some embodiments, the cooling temperature is from -50 ℃ to 60 ℃. In other embodiments, the cooling temperature is from -40℃ to 40 ℃. In other embodiments, the cooling temperature is from -30 ℃ to 40 ℃. In other embodiments, the cooling temperature is from -20 ℃ to 40 ℃. In other embodiments, the cooling temperature is from -10 ℃ to 40 ℃. In still other embodiments, the cooling temperature is from 0℃ to 40 ℃. In yet other embodiments, the cooling temperature is from 25 ℃ to 40 ℃. In yet other embodiments, the cooling temperature is -50 ℃, -40 ℃, -30 ℃, -20 ℃, -15 ℃, -10 ℃, -5℃, 0 ℃, 5℃, 10 ℃, 15℃, 20 ℃, 25 ℃, 30 ℃, 35 ℃, 40 ℃, 50 ℃ or 60 ℃.
According to some embodiments of the present invention, in the method one disclosed herein, the cooling temperature in step (A) is kept for a period of time, in some embodiments, the period of time is from 0 hour to 30 hours. In other embodiments, the period of time is from 0 hour to 24 hours. In other embodiments, the period of time is from 1 minute to 24 hours. In other embodiments, the period of time is from 1 hour to 12 hours. In other embodiments, the period of time is from 1 hour to 10 hours. In other embodiments, the period of time is from 1 hour to 8 hours. In still other embodiments, the period of time is from 1 hour to 6 hours. In yet other embodiments, the period of time is 0 hour, 1 minute, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 10 hours, 12 hours, 14 hours, 16 hours, 18 hours, 20 hours, 22 hours, 24 hours or 30 hours.
According to some embodiments of the present invention, in the method one disclosed herein, the amidine compound of Formula (II) reacts with the aldehyde compound of Formula (III) and the compound of Formula (IVa) in a first organic solvent. In some embodiments, the first organic solvent is applied in an amount of 0 equivalent to 80 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) or a salt thereof. In some other embodiments, the first organic solvent is applied in an amount of 1 equivalent to 20 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof.
According to some embodiments of the present invention, in the method one disclosed herein, the first organic solvent in step (A) is applied in an amount, in some embodiments, the amount is 0 equivalent to 80 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In other embodiments, the amount is 1 equivalent to 80 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In other embodiments, the amount is 1 equivalent to 20 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In other embodiments, the amount is 2 equivalents to 20 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In other embodiments, the amount is 1 equivalent to 10 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In still other embodiments, the amount is 3 equivalents to 10 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In yet other embodiments, the amount is 0, 1, 2, 2.5, 3, 4, 4.5, 5, 6, 7, 8, 9, 10, 12, 15, 16, 18, 20, 30, 40, 50, 60, 70 or  80 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof.
According to some embodiments of the present invention, in the method one disclosed herein, the step (A) further comprises a step of purifying the solid compound of Formula (Va) . In some embodiments, the solid compound of Formula (Va) is purified by at least one of the following methods: (1) trituration; (2) recrystallization; (3) washing.
According to some embodiments of the present invention, the purification is carried out in a second organic solvent. In some embodiments, the second organic solvent is applied in an amount of 2 equivalent to 20 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof.
According to some embodiments of the present invention, in the method one disclosed herein, the trituration is carried out at a temperature from -20 ℃ to 50 ℃. In some embodiments, the trituration is carried out at a temperature from 0 ℃ to 40 ℃.
According to some embodiments of the present invention, in the method one disclosed herein, the recrystallization comprises a crystallization process at a temperature from -30 ℃ to 40 ℃. In some embodiments, the crystallization process is carried out at a temperature from 0 ℃ to 40 ℃. In some embodiments, the recrystallization comprises a crystallization process of from 1 hour to 20 hours. In some other embodiments, the recrystallization comprises a crystallization process of from 1 hour to 10 hours.
According to some embodiments of the present invention, in the method one disclosed herein, the washing is performed at a temperature from 0℃ to 30 ℃.
According to some embodiments of the present invention, in the method one disclosed herein, the compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) obtained in step (A) is further purified before step (B) . In some embodiments, the compound is further purified by triturating with a second organic solvent . In some embodiments, the trituration is carried out at a temperature from -20 ℃ to 50 ℃. In other embodiments, the trituration temperature is from 0 ℃ to 40 ℃. In other embodiments, the trituration temperature is from 5 ℃ to 40 ℃. In still other embodiments, the trituration temperature is from 25 ℃ to 40 ℃. In yet other embodiments, the trituration temperature is -20 ℃, -10 ℃, 0 ℃, 5 ℃, 10 ℃, 25 ℃, 30 ℃, 35 ℃, 40 ℃ or 50 ℃.
According to some embodiments of the present invention, in the method one disclosed herein, the compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) obtained in step (A) is further purified before step (B) . In some embodiments, the compound is further purified by recrystalizing from a second organic solvent. In some embodiments, the recrystallization has a crystallization process at a temperature from -30 ℃to 50 ℃. In other embodiments, the crystallization temperature is from -30 ℃ to 40 ℃. In other embodiments, the crystallization temperature is from -10 ℃ to 40 ℃. In other embodiments, the crystallization temperature is from -10 ℃ to 30 ℃. In other embodiments, the crystallization temperature is from 0 ℃ to 40 ℃. In other embodiments, the crystallization temperature is from 0 ℃ to 30 ℃. In other embodiments, the crystallization temperature is -30 ℃, -20 ℃, -10 ℃, 0 ℃, 5 ℃, 10 ℃, 15 ℃, 20 ℃, 25 ℃, 30 ℃, 35 ℃, 40 ℃ or 50 ℃. In some embodiments, the recrystallization has a crystallization process taking a period of time from 1 hour to  20 hours. In other embodiments, the period of time is from 2 hours to 18 hours. In still other embodiments, the period of time is from 1 hour to 10 hours. In yet other embodiments, the period of time is 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 12 hours, 14 hours, 16 hours, 18 hours or 20 hours.
According to some embodiments of the present invention, in the method one disclosed herein, the compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) obtained in step (A) is further purified before step (B) . In some embodiments, the compound is further purified by washing with a second organic solvent . In some embodiments, the washing is performed at a temperature from 5 ℃ to 40 ℃. In other embodiments, the washing temperature is from 0 ℃ to 30 ℃. In still other embodiments, the washing temperature is -20 ℃, -10 ℃, 0 ℃, 10 ℃, 20 ℃, 25 ℃, 30 ℃, 35 ℃, 40 ℃ or 50 ℃.
According to some embodiments of the present invention, in the method one disclosed herein, the second organic solvent  used in the further purification before step (B) is applied in an amount, in some embodiments, the amount is about 0 equivalent to 20 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In other embodiments, the amount is about 1 equivalent to 20 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In other embodiments, the amount is about 2 equivalents to 20 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In other embodiments, the amount is about 2 equivalents to 15 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In still other embodiments, the amount is about 2 equivalents to 10 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof. In yet other embodiments, the amount is about 0, 1, 2, 3, 3.5, 4, 4.5, 5, 6, 7, 7.5, 8, 9, 10, 12, 13, 15, 16, 18, 20, 30, 40, 50, 60, 70 or 80 equivalents per 1 equivalent by weight of an amidine compound of Formula (II) , or Formula (II-1) , or a salt thereof.
According to some embodiments of the present invention, in the method one disclosed herein, in some embodiments, each of the first organic solvent and the second organic solvent is independently a C1-4 alcohol, a C1-4 alcohol-water, acetone, diethyl ether, isopropyl ether, petroleum ether, tetrahydrofuran, acetonitrile, cyclopentane, cyclohexane, n-hexane, a C1-4 haloalkane, ethyl acetate, trifluoroethanol, 2-methoxyethanol, 1, 2-dimethoxyethane, 2-methoxyethyl ether, N, N-dimethyl formamide, N-methylpyrolidone, or a combination thereof. In other embodiments, each of the first organic solvent and the second organic solvent is independently methanol, ethanol, n-propanol, i-propanol, n-butanol, tert-butanol, an ethanol-water mixture at a volume ratio of from 10: 90 to 90: 10, an ethanol-water mixture at a volume ratio of 50: 50, acetone, tetrahydrofuran, N-methylpyrolidone, trifluoroethanol, 2-methoxyethanol, 1, 2-dimethoxyethane, 2-methoxyethyl ether, ethyl acetate, glycol, N, N-dimethyl formamide, or a combination thereof.
According to some embodiments of the present invention, in the method one disclosed herein, the halogenating in step (B) is carried out in a third organic solvent, in some embodiments, the third organic solvent is one or more C1-4 alcohols, one or more C1-4 haloalkanes, acetonitrile, isopropyl ether, petroleum ether,  toluene, xylene, tetrahydrofuran, ethyl acetate, acetone, or a combination thereof. In other embodiments, the third organic solvent is dichloromethane, chloroform, tetrachloromethane, acetonitrile, isopropyl ether, petroleum ether, tetrahydrofuran, methanol, ethanol, propanol, i-propanol, n-butanol, tert-butanol, ethyl acetate, acetone, or a combination thereof.
According to some embodiments of the present invention, the method one disclosed herein, in some embodiments, the halogenating reaction in step (B) is carried out in the presence of a halogenating agent, and wherein the halogenating agent is N-bromosuccinimide, N-chlorosuccinimide, N-iodosuccinimide, 1,3-dibromo-5, 5-dimethylhydantoin, or 1, 3-dichloro-5, 5-dimethylhydantoin, or a combination thereof.
According to some embodiments of the present invention, the method one disclosed herein, in some embodiments, the base used in step (C) is formed by reacting lithium, sodium, or potassium or a combination thereof with a C1-4 alcohol.
According to some embodiments of the present invention, the method one disclosed herein, in some embodiments, the C1-4 alcohol for forming the base used in step (C) by reacting with lithium, sodium, or potassium, or a combination thereof is methanol, ethanol, propanol, i-propanol, n-butanol, i-butanol, or tert-butanol.
According to some embodiments of the present invention, the method one disclosed herein, each of the lithium, sodium and potassium or a combination thereof for forming a base used in step (C) by reacting with a C1-4 alcohol is independently applied in an amount, in some embodiments, the amount is 0.1 equivalent to 10 equivalents per 1 equivalent by mole of a compound of Formula (VIIa) , Formula (VIIa-1) , or Formula (VIIa-2) . In other embodiments, the amount is 2 equivalents to 6 equivalents per 1 equivalent by mole of a compound of Formula (VIIa) , Formula (VIIa-1) , or Formula (VIIa-2) . In still other embodiments, the amount is 2.5 equivalents to 6 equivalents per 1 equivalent by mole of a compound of Formula (VIIa) , Formula (VIIa-1) , or Formula (VIIa-2) . In yet other embodiments, the amount is 0.1, 0.5, 1, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9 or 10 equivalents per 1 equivalent by mole of a compound of Formula (VIIa) , Formula (VIIa-1) , or Formula (VIIa-2) .
According to some embodiments of the present invention, the method one disclosed herein, in some embodiments, the compound of Formula (IVa) in step (A) is prepared by a process comprising reacting a compound of Formula (VIIIa) with a compound of Formula (IX) ,
Figure PCTCN2014092400-appb-000015
wherein R3a and R3b are as defined herein.
In one aspect, provided herein is an intermediate comprising a dihydropyrimidine compound having Formula (Va) , or a tautomer thereof having Formula (Va1) , or a salt thereof, or a combination thereof, 
Figure PCTCN2014092400-appb-000016
wherein each R1 and R2 is independently F, Cl, or Br;
R3b is methoxy or ethoxy;
R3a is H or C1-3 alkyl;
each R9 is independently H, halo, C1-4 alkyl, C1-4 alkylthio, C1-4 haloalkyl, C3-6 cycloalkyl, -(CR7R7am-C (=O) -N (R8R8a) , or - (CR7R7am-C (=O) O-R8
each R7a and R7 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8; or R7a and R7, together with the carbon atom to which they are attached, form a C3-6 cycloalkyl group, C2-9 heterocyclyl goup, or - (C=O) -;
each R8 and R8a is independently H, C1-4 alkyl, amino-C1-4-alkyl, C1-4 alkoxy, C1-6 alkyl-S (=O) q-, C6-10 aryl, C1-9 heteroaryl, C3-6 cycloalkyl, C2-9 heterocyclyl, C6-10 aryl-C1-6-alkyl, C1-9 heteroaryl-C1-6-alkyl, C3-6 cycloalkyl-C1-4-alkyl, C2-9 heterocyclyl-C1-6-alkyl, C2-9 heterocyclyl-S (=O) q-, C1-9 heteroaryl-S (=O) q-, C3-6 cycloalkyl-S (=O) q-, C6-10 aryl-S (=O) q-, - (CH2m-OH, - (CH2m-C (=O) O- (CH2m-H, or -(CH2m-OC (=O) - (CH2m-H;
each m is independently 0, 1, 2, 3, or 4;
R10 is H or deuterium;
f is 1, 2, 3, or 4;
j is 0, 1, or 2;
Z is -O-, -S-, -S (=O) t, or -N (R4) -;
t is 0, 1, or 2; and
R4 is H or C1-4 alkyl;
In some embodiments, provided herein is the intermediate having Formula (Va-1) , or a tautomer thereof having Formula (Va1-1) , or a salt thereof, or a combination thereof,
Figure PCTCN2014092400-appb-000017
wherein R3a, R3b, R1, R2 and Z are as defined herein.
In some embodiments, provided herein is the intermediate having Formula (Va-2) , or a tautomer thereof having Formula (Va1-2) , or a salt thereof, or a combination thereof,
Figure PCTCN2014092400-appb-000018
wherein R1 is F or Cl; and R2 is Cl or Br;
Z is -O-, -S-, or -N (CH3) -;
R3b is methoxy or ethoxy; and
R3a is H, methyl, ethyl, isopropyl, or propyl.
In other aspect, provided herein is a process for preparing a dihydropyrimidine compound having Formula (I) , or a tautomer thereof having Formula (Ia) , or a combination thereof, (such as the method two depicted in scheme 2) ,
Figure PCTCN2014092400-appb-000019
wherein each R1 and R2 is independently F, Cl, or Br;
R3 is C1-4 alkyl;
Z is -O-, -S-, -S (=O) t-, or -N (R4) -;
Y is -O-, -S-, -S (=O) t-, - (CH2) q-, or -N (R5) -;
each t and q is independently 0, 1, or 2;
each of R4 and R5 is independently H, or C1-4 alkyl;
each R6 is independently H, deuterium, halo, C1-4 alkyl, C1-4 haloalkyl, amino, C1-4 alkylamino, C1-4 alkoxy, nitro, triazolyl, tetrazyl, - (CR7R7am-OH, - (CR7R7am-C (=O) O-R8, - (CR7R7at-N (R8a2, -S (=O) qOR8a, -(CR7R7am-S (=O) qN (R8a2, - (CR7R7am-C (=O) O- (CR7R7am-OC (=O) O-R8, -(CR7R7am-C (=O) O- (CR7R7am-OC (=O) -R8, - (CR7R7am-C (=O) O- (CR7R7am-C (=O) O-R8, -(CR7R7am-OC (=O) -R8, or - (CR7R7am-C (=O) N (R8R8a) ;
each R7a and R7 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8; or R7a and R7, together with the carbon atom to which they are attached, form a C3-6 cycloalkyl group, C2-9 heterocyclyl goup, or - (C=O) -;
each R8 and R8a is independently H, C1-4 alkyl, amino-C1-4-alkyl, C1-4 alkoxy, C1-6 alkyl-S (=O) q-, C6-10 aryl, C1-9 heteroaryl, C3-6 cycloalkyl, C2-9 heterocyclyl, C6-10 aryl-C1-6-alkyl, C1-9 heteroaryl-C1-6-alkyl, C3-6 cycloalkyl-C1-4-alkyl, C2-9 heterocyclyl-C1-6-alkyl, C2-9 heterocyclyl-S (=O) q-, C1-9 heteroaryl-S (=O) q-, C3-6  cycloalkyl-S (=O) q-, C6-10 aryl-S (=O) q-, - (CH2m-OH, - (CH2m-C (=O) O- (CH2m-H, or -(CH2m-OC (=O) - (CH2m-H;
each R9 is independently H, halo, C1-4 alkyl, C1-4 alkylthio, C1-4 haloalkyl,  C3-6 cycloalkyl, -(CR7R7am-C (=O) -N (R8R8a) , or - (CR7R7am-C (=O) O-R8
R10 is H or deuterium;
n is 0, 1, 2, 3, 4, or 5;
each m is independently 0, 1, 2, 3, or 4;
f is 1, 2, 3, or 4; and
j is 0, 1, or 2;
wherein the process comprises the steps of:
step (1) : reacting an amidine compound of Formula (II) , or a salt thereof with an aldehyde compound of Formula (III) and a compound of Formula (IVa) to obtain a compound (Va) (according to some embodiments of present invention, the reaction of the step (A) may be, but not limited to an one-pot reaction) ,
Figure PCTCN2014092400-appb-000020
step (2): forming a compound of Formula (X) from a compound of Formula (Va) by means of a transesterification, and the transcsterification may be carried out in the presence of a base,
Figure PCTCN2014092400-appb-000021
wherein R3b is methoxy or ethoxy; and
R3a is H or C1-3 alkyl;
step (3) : halogenating the compound of Formula (X) to form a halide; and then reacting the halide with a compound of Formula (VI) , or a salt thereof to obtain a compound of Formula (I) or Formula (Ia) .
Figure PCTCN2014092400-appb-000022
In other embodiments, the dihydropyrimidine compound having Formula (I-1) , or a tautomer thereof having Formula (Ia-1) , 
Figure PCTCN2014092400-appb-000023
wherein each R6 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, amino, C1-4 alkylamino, C1-4 alkoxy, nitro, triazolyl, tetrazyl, - (CR7R7am-OH, - (CR7R7am-C (=O) O-R8, - (CR7R7a) t-N (R8a2, -S (=O) qOR8a, -(CR7R7am-S (=O) qN (R8a2, - (CR7R7am-C (=O) O- (CR7R7am-OC (=O) O-R8, -(CR7R7am-C (=O) O- (CR7R7am-OC (=O) -R8, - (CR7R7am-C (=O) O- (CR7R7am-C (=O) O-R8, -(CR7R7am-OC (=O) -R8, or - (CR7R7am-C (=O) N (R8R8a) ;
each R7a and R7 is independently H, C1-4 alkyl, C1-4 haloalkyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8; and each R1, R2, R3, Z, n, Y, m, q, R8a, t and R8 is as defined herein;
According to some embodiments of the present invention, the method two for preparing the optically pure dihydropyrimidine compound having Formula (I-1) , or a tautomer thereof having Formula (Ia-1) comprises the steps of:
step (1) : reacting an amidine compound of Formula (II-1) , or a salt thereof with an aldehyde compound of Formula (III-1) and the compound of Formula (IVa) to obtain a compound (Va-1) (according to some embodiments of present invention, the reaction of the step (A) may be an one-pot reaction) .
Figure PCTCN2014092400-appb-000024
step (2) : forming a compound of Formula (X-1) from a compound of Formula (Va-1) by means of a transesterification, wherein the transesterification may be carried out in the presence of a base,
Figure PCTCN2014092400-appb-000025
wherein R3a and R3b are as defined herein;
step (3) : halogenating the compound of Formula (X-1) to form a halide; and then reacting the intermediate with a compound of Formula (VI) , or a salt thereof to obtain a compound of Formula (I-1) or Formula (Ia-1) .
Figure PCTCN2014092400-appb-000026
In other embodiments, the dihydropyrimidine compound having Formula (I-2) , or a tautomer thereof having Formula (Ia-2) ,
Figure PCTCN2014092400-appb-000027
wherein R1 is F or Cl; and R2 is Cl or Br; R3, Z, n, Y and R6 are as defined herein;
According to some embodiments of the present invention, the method two for preparing the dihydropyrimidine compound having Formula (I-2) , or a tautomer thereof having Formula (Ia-2) comprises the steps of:
step (1) : reacting an amidine compound of Formula (II-1) , or a salt thereof with an aldehyde compound of Formula (III-2) and the compound of Formula (IVa) to obtain a compound (Va-2) (according to some embodiments of the present invention, the reaction of the step (A) may be an one-pot reaction) ,
Figure PCTCN2014092400-appb-000028
step (2) : forming a compound of Formula (X-2) from a compound of Formula (Va-2) by means of a transesterification, wherein the transesterification may be carried out in the presence of a base,
Figure PCTCN2014092400-appb-000029
wherein R3a and R3b are as defined herein;
step (3) : halogenating the compound of Formula (X-2) to form a halide; and then reacting the halide with a compound of Formula (VI) , or a salt thereof to obtain a compound of Formula (I-2) or Formula (Ia-2) .
Figure PCTCN2014092400-appb-000030
According to some embodiments of the present invention, in the method two disclosed herein, in  some embodiments, the R3 is methyl, ethyl, propyl, isopropyl, tert-butyl, or butyl; Z is -O-, -S-, or -N (CH3) -; Y is -O-, -S-, -S (=O) 2, or - (CH2q-; each R6 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, amino, C1-4 alkylamino, C1-4 alkoxy, nitro, triazolyl, tetrazyl, - (CR7R7am-OH, -S (=O) qOR8a, - (CR7R7am-S (=O) qN (R8a2, -(CR7R7a) t-N (R8a2, - (CR7R7am-C (=O) O-R8, - (CR7R7am-C (=O) O- (CR7R7am-OC (=O) O-R8, -(CR7R7am-C (=O) O- (CR7R7am-OC (=O) -R8, - (CR7R7am-C (=O) O- (CR7R7am-C (=O) O-R8, -(CR7R7am-OC (=O) -R8 or - (CR7R7am-C (=O) N (R8R8a) ; each R7a and R7 is independently H, methyl, ethyl, trifluoromethyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8; each R8 and R8a is independently H, methyl, ethyl, propyl, isopropyl, aminomethyl, methoxy, C1-4 alkyl-S (=O) 2-, phenyl, pyridyl, thiazolyl, furanyl, imidazolyl, isoxazolyl, oxazolyl, pyrrolyl, pyrimidinyl, pyridazinyl, diazolyl, triazolyl, tetrazolyl, thienyl, pyrazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, pyrazinyl, pyranyl, triazinyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropyl-S (=O) 2-, cyclobutyl-S (=O) 2-, cyclopentyl-S (=O) 2-, cyclohexyl-S (=O) 2-, naphthyl-S (=O) 2-, phenyl-S (=O) 2-, - (CH2m-OH, - (CH2m-C (=O) O- (CH2m-H, or - (CH2m-OC (=O) - (CH2m-H; R3b is methoxy or ethoxy; and R3a is H, methyl, ethyl, isopropyl, or propyl.
According to some embodiments of the present invention, in the method two disclosed herein, the reaction in step (1) is performed at a temperature from 25 ℃ to 154 ℃. In some other embodiments, the reaction in step (1) is performed at a temperature from 60 ℃ to 100 ℃.
According to some embodiments of the present invention, in the method two disclosed herein, the step (1) further comprises the step of cooling the resulting compound (Va) of step (1) to obtain a solid compound (Va) at a cooling temperature from -40 ℃ to 40 ℃. In other embodiments, the cooling temperature is from 25 ℃ to 40 ℃. In some embodiments, the cooling is performed for a period of from 0 hour to 24 hours. In some other embodiments, the cooling is performed for from 1 minute to 24 hours. In still other embodiments, the cooling is performed for from 1 hour to 8 hours.
According to some embodiments of the present invention, in the method two disclosed herein, the amidine compound of Formula (II) reacts with the aldehyde compound of Formula (III) and the compound of Formula (IVa) in a first organic solvent. In some embodiments, the first organic solvent is applied in an amount of 0 equivalent to 80 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof. In some other embodiments, the first organic solvent is applied in an amount of 1 equivalent to 20 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof.
According to some embodiments of the present invention, in the method two disclosed herein, step (1) further comprises the step of purifying the solid compound (Va) . In some embodiments, the solid compound of Formula (Va) is purified by at least one of the following methods: (1) trituration; (2) recrystallization; (3) washing.
According to some embodiments of the present invention, the purification is carried out in a second organic solvent. In some embodiments, the second organic solvent is applied in an amount of 2 equivalent to 20 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof.
According to some embodiments of the present invention, in the method two disclosed herein, the trituration is carried out at a temperature from -20 ℃ to 50 ℃. In some embodiments, the trituration is carried out at a temperature from 0 ℃ to 40 ℃.
According to some embodiments of the present invention, in the method two disclosed herein, the recrystallization comprises a crystallization process at a temperature from -30 ℃ to 40 ℃. In some embodiments, the crystallization process is carried out at a temperature from 0 ℃ to 40 ℃. In some embodiments, the recrystallization comprises a crystallization process of from 1 hour to 20 hours. In some other embodiments, the recrystallization comprises a crystallization process of from 1 hour to 10 hours.
According to some embodiments of the present invention, in the method two disclosed herein, the washing is performed at a temperature from 0℃ to 30 ℃.
According to some embodiments of the present invention, in the method two disclosed herein, in some embodiments, each of the first organic solvent and the second organic solvent is independently a C1-4 alcohol, a C1-4 alcohol-water, acetone, diethyl ether, isopropyl ether, petroleum ether, tetrahydrofuran, acetonitrile, cyclopentane, cyclohexane, n-hexane, C1-4 haloalkanes solvent, ethyl acetate, trifluoroethanol, 2-methoxyethanol, 1, 2-dimethoxyethane, 2-methoxyethyl ether, N, N-dimethyl formamide, N-methylpyrolidone, or a combination thereof. In some other embodiments, each of the first organic solvent  and the second organic solvent is independently methanol, ethanol, n-propanol, i-propanol, n-butanol, tert-butanol, an ethanol-water mixture at a volume ratio from 10: 90 to 90: 10, an ethanol-water mixture at a volume ratio from 50: 50, acetone, tetrahydrofuran, N-methylpyrolidone, trifluoroethanol, 2-methoxyethanol, 1, 2-dimethoxyethane, 2-methoxyethyl ether, ethyl acetate, glycol, N, N-dimethyl formamide, or a combination thereof.
According to some embodiments of the present invention, in the method two disclosed herein, in some embodiments, the base used in step (2) is formed by reacting lithium, sodium, or potassium or a combination thereof with a C1-4 alcohol.
According to some embodiments of the present invention, in the method two disclosed herein, in some embodiments, the C1-4 alcohol for forming the base used in step (2) by reacting with lithium, sodium, or potassium, or a combination thereof is methanol, ethanol, propanol, i-propanol, n-butanol, i-butanol, or tert-butanol.
According to some embodiments of the present invention, in the method two disclosed herein, each of the lithium, sodium and potassium, or a combination threreof for forming the base used in step (2) by reacting with a C1-4 alcohol is independently applied in an amount, in some embodiments, the amount is 0.5 equivalent to 10 equivalents per 1 equivalent by mole of a compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) . In other embodiments, the amount is 2 equivalents to 8 equivalents per 1 equivalent by mole of a compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) . In still other embodiments, the amount is 2.5 equivalents to 8 equivalents per 1 equivalent by mole of a compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) . In yet other embodiments, the amount is 0.5, 1, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9 or 10 equivalents per 1 equivalent by mole of a compound of Formula (Va) , Formula (Va-1) , or Formula (Va-2) .
According to some embodiments of the present invention, in the method two disclosed herein, the halogenating reaction in step (3) is carried out in a forth organic solvent, in some embodiments, the forth organic solvent is one or more C1-4 alcohols, one or more C1-4 haloalkanes, ethyl acetate, acetonitrile, isopropyl  ether, petroleum ether, toluene, xylene, tetrahydrofuran, acetone, or a combination thereof. In other embodiments, the forth organic solvent is dichloromethane, chloroform, tetrachloromethane, acetonitrile, isopropyl ether, petroleum ether, tetrahydrofuran, methanol, ethanol, propanol, i-propanol, n-butanol, tert-butanol, ethyl acetate, acetone, or a combination thereof.
According to some embodiments of the present invention, in the method two disclosed herein, in some embodiments, the halogenating reaction in step (2) is carried out in the presence of a halogenating agent, and wherein the halogenating agent is N-bromosuccinimide, N-chlorosuccinimide, N-iodosuccinimide, 1,3-dibromo-5, 5-dimethylhydantoin, or 1, 3-dichloro-5, 5-dimethylhydantoin, or a combination thereof.
DEFINITIONS AND GENERAL TERMINOLOGY
The term “alkyl” or “alk-” or “alkyl group” as used interchangeably in the context of the present invention, such as in alkyl, aminoalkyl, alkyamino, alkylthio or alkoxy, relfers to a saturated linear or branched-chain monovalent hydrocarbon radical of 1 to 10 carbon atoms. Wherein, the alkyl group may be optionally substituted with one or more substituents disclosed herein. In some embodiments, the alkyl group contains 1-10 carbon atoms. In other embodiments, the alkyl group contains 1-6 carbon atoms. In other embodiments, the alkyl group contains 1-4 carbon atoms. In still other embodiments, the alkyl group contains 1-3 carbon atoms.
Some non-limiting examples of the alkyl group include, methyl (Me, -CH3) , ethyl (Et, -CH2CH3) , n-propyl (n-Pr, -CH2CH2CH3) , isopropyl (i-Pr, -CH (CH32) , n-butyl (n-Bu, -CH2CH2CH2CH3) , isobutyl (i-Bu, -CH2CH (CH32) , sec-butyl (s-Bu, -CH (CH3) CH2CH3) , tert-butyl (t-Bu, -C (CH33) , n-pentyl (-CH2CH2CH2CH2CH3) , 2-pentyl (-CH (CH3) CH2CH2CH3) , 3-pentyl (-CH (CH2CH32) , 2-methyl-2-butyl (-C(CH32CH2CH3) , 3-methyl-2-butyl (-CH (CH3) CH (CH32) , 3-methyl-l-butyl (-CH2CH2CH (CH32) , 2-methyl-l-butyl (-CH2CH (CH3) CH2CH3) , n-hexyl (-CH2CH2CH2CH2CH2CH3) , 2-hexyl (-CH (CH3) CH2CH2CH2CH3) , 3-hexyl (-CH (CH2CH3) (CH2CH2CH3) ) , 2-methyl-2-pentyl (-C(CH32CH2CH2CH3) , 3-methyl-2-pentyl (-CH (CH3) CH (CH3) CH2CH3) , 4-methyl-2-pentyl (-CH (CH3) CH2CH (CH32) , 3-methyl-3-pentyl (-C (CH3) (CH2CH32) , 2-methyl-3-pentyl (-CH (CH2CH3) CH (CH32) , 2, 3-dimethyl-2-butyl (-C (CH32CH (CH32) , 3, 3-dimethyl-2-butyl (-CH (CH3) C (CH33, n-heptyl and n-octyl, etc.
The term “aminoalkyl” refers to a C1-10 linear or branched-chain alkyl group substituted with one or more amino groups. In some embodiments, the aminoalkyl group refers to a C1-6 aminoalkyl group, wherein the alkyl group is as defined herein. Some non-limiting examples of the aminoalkyl group include aminomethyl, 2-aminoethyl, 2-aminoisopropyl, aminopropyl, aminobutyl and aminohexyl, etc.
The term "alkoxy" refers to an alkyl group attached to the rest part of the molecule through an oxygen atom, wherein the alkyl group is as defined herein. Unless otherwise specified, the alkoxy group contains 1-10 carbon atoms. In some embodiments, the alkoxy group contains 1-6 carbon atoms. In other embodiments, the alkoxy group contains 1-4 carbon atoms. In still other embodiments, the alkoxy group contains 1-3 carbon atoms. Some non-limiting examples of the alkoxy group include methoxy (MeO, -OCH3) ,  ethoxy (EtO, -OCH2CH3) , propoxy (n-PrO, n-propoxy, -OCH2CH2CH3) , isopropoxy (i-PrO, i-propoxy, -OCH (CH32) , n-butoxy (n-BuO, -OCH2CH2CH2CH3) , 1-methyl-propoxy (s-BuO, s-butoxy, -OCH (CH3) CH2CH3) , 2-methyl-l-propoxy (i-BuO, i-butoxy, -OCH2CH (CH32) , tert-butoxy (t-BuO, t-butoxy, -OC(CH33) , n-pentoxy (-OCH2CH2CH2CH2CH3) , 2-pentoxy (-OCH (CH3) CH2CH2CH3) , 3-pentoxy (-OCH (CH2CH32) , 2-methyl-2-butoxy (-OC (CH32CH2CH3) , 3-methyl-2-butoxy (-OCH (CH3) CH (CH32) , 3-methyl-l-butoxy (-OCH2CH2CH (CH32) , 2-methyl-l-butoxy (-OCH2CH (CH3) CH2CH3) and n-hexyloxy (-OCH2CH2CH2CH2CH2CH3) , etc.
The terms "haloalkyl" , "haloalkenyl" and "haloalkoxy" respectively refer to alkyl, alkenyl or alkoxy, as the case may be, substituted with one or more halogen atoms. Wherein the alkyl, alkenyl and alkoxy are as defined herein. Some non-limiting examples of these groups include -CF3, -CH2Cl, -CH2CF3, -CH2CH2CF3, -OCF3, -OCHF2, -OCHCl2, -OCH2CHF2, -OCH2CHCl2 and -OCH (CH3) CHF2, etc.
The term “alkylamino” refers to “N-alkylamino” and “N, N-dialkylamino” wherein amino groups are independently substituted with one alkyl radical or two alkyl radicals, respectively. Wherein the amino group and the alkyl group are as defined herein. In some embidiments, the alkylamino radical is “lower alkylamino” radical having one or two C1-6 alkyl groups attached to a nitrogen atom. In other embodiments, the alkylamino radical refers to C1-4 lower alkylamino group. In still other embodiments, the alkylamino radical refers to C1-3 lower alkylamino group. Some non-limiting examples of suitable alkylamino radical include mono or dialkylamino. Some examples include, but are not limited to, methylamino, ethylamino, isopropylamino, propylamino, tert-butylamino, n-butylamino, 1-methylpropylamino, n-pentylamino, n-hexylamino, N,N-dimethylamino and N, N-diethylamino, etc.
The term “alkylthio” refers to a radical containing a linear or branched-alkyl radical of one to ten carbon atoms, attached to a divalent sulfur atom. Wherein the alkyl group is as defined herein. Some non-limiting examples of the alkylthio group include methylthio (CH3S-) and ethylthio, etc.
The term "cycloalkyl" refers to a monovalent or multivalent saturated ring having 3 to 12 carbon atoms as a monocyclic, bicyclic, or tricyclic ring system. Wherein, the cycloalkyl group may be optionally substituted with one or more substituents disclosed herein. In some embodiments, the cycloalkyl contains 3 to 12 carbon atoms. In still other embodiments, the cycloalkyl contains 3 to 8 carbon atoms. In yet other embodiments, the cycloalkyl contains 3 to 6 carbon atoms. Some examples include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cyclohendecyl and cyclododecyl, etc.
The term “cycloalkylalkyl” refers to an alkyl radical substituted with one or more cycloalkyl radicals, wherein the cycloalkyl and alkyl are as defined herein. Some non-limiting examples of the cycloalkylalkyl group include cyclopropylmethyl, cyclopropylethyl, cyclopropylpropyl, cyclobutylmethyl, cyclobutylethyl, cyclobutylpropyl, cyclopentylmethyl, cyclopentylethyl, cyclopentylpropyl, cyclohexylmethyl, cyclohexylethyl and cyclohexylpropyl, etc.
The term "cycloalkyloxy" or “cycloalkoxy” refers to a cycloalkyl group, attached to the rest part of  the molecule through an oxygen atom. Wherein the cycloalkyl group is as defined herein. Some non-limiting examples of the cycloalkyloxy group include cyclopropoxy, cyclopentyloxy and cyclohexyloxy, etc.
The term "cycloalkylamino" refers to an amino group is substituted with one or two cycloalkyl radicals. Some non-limiting examples of such radical include cyclopropylamino, cyclobutylamino, cyclopentylamino and cyclohexylamino, etc. In some embodiments, the cycloalkyl of cycloalkylamino group may be optionally substituted with one or more substituents disclosed herein.
The term “heterocyclyl” refers to a saturated or unsaturation, nonaromatic, monocyclic, bicyclic or tricyclic ring system in which at least one ring member is selected from nitrogen, sulfur and oxygen. Wherein, the heterocyclyl group may be optionally substituted with one or more substituents disclosed herein. Unless otherwise specified, the heterocyclyl group may be carbon or nitrogen linked, and a -CH2-group can be optionally replaced by a -C (=O) -group. In which, the sulfur can be optionally oxygenized to S-oxide and the nitrogen can be optionally oxygenized to N-oxide. In some embodiments, the heterocyclyl group may be a C2-10 heterocyclyl group, which refers to a heterocyclyl group containing 2 to 10 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen. In other embodiments, the heterocyclyl group may be a C2-9 heterocyclyl group, which refers to a heterocyclyl group containing 2 to 9 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen. In still other embodiments, the heterocyclyl group may be a C2-7 heterocyclyl group, which refers to an heterocyclyl group containing 2 to 7 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen. In yet other embodiments, the heterocyclyl group may be a C2-5 heterocyclyl group, which refers to a heterocyclyl group containing 2 to 5 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen. Some non-limiting examples of the heterocyclyl group include oxiranyl, thietanyl, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, oxazolidinyl, tetrahydrofuranyl, dihydrothienyl, dihydropyranyl, piperidinyl, morpholinyl, tetrahydropyrimidinyl, oxazinanyl, thiomorpholinyl and piperazinyl, etc. A -CH2-group of the heterocyclyl group may be substituted with -C (=O) , some non-limiting examples of such group include 2-oxopyrrolidinyl, 2-piperidinonyl, 3-morpholinonyl, 3-thiomorpholinonyl and oxotetrahydropyrimidinyl, etc.
The term “heterocyclylalkyl” refers to a heterocyclyl group attached to the rest of the molecule through an alkyl group, wherein the heterocyclyl and alkyl are as defined herein. Some non-limiting examples of such group included pyrrolidinylmethyl, piperidinylmethyl, piperidinylethyl, morpholinylmethyl and morpholinylethyl, etc.
The term “halogen” refers to fluorine (F) , chlorine (Cl) , bromine (Br) or iodine (I) .
The term “aryl” refers to monocyclic, bicyclic and tricyclic carbocyclic ring systems having a total of six to fourteen ring members, or six to twelve ring members, or six to ten ring members, wherein at least one ring in the system is aromatic, wherein each ring in the system contains 3 to 7 ring members and that has a single point or multipoint of attachment to the rest of the molecule. Wherein the aryl may be optionally substituted with the substituent disclosed herein. The term “aryl” and “aromatic ring” can be used interchangeably herein. Some non-limiting examples of the aryl group include phenyl, 2, 3-dihydro-1H-indenyl,  naphthalenyl and anthracenyl, etc.
The term “arylalkyl” or “aralkyl” refers to an aryl group attached to the rest of the molecule through an alkyl group, wherein the aryl and alkyl are as defined herein. Some non-limiting examples of such group include benzyl, phenylethyl and naphthalenylmethyl, etc.
The term “arylamino” refers to an amino group substituted with one or two aryl groups. Some non-limiting examples of such group included N-phenylamino. In some embodiments, the aryl group of the arylamino may be further substituted.
The term “heteroaryl” refers to monocyclic, bicyclic and tricyclic carbocyclic ring systems having a total of five to twelve ring members, or five to ten ring members, or five to six ring members, wherein at least one ring in the system is aromatic, and in which at least one ring member is selected from nitrogen, sulfur and oxygen, and wherein each ring in the system contains 3 to 7 ring members and that has a single point or multipoint of attachment to the rest of the molecule. The term “hetreroaryl” and “heteroaromatic ring” or “heteroaromatic compound” can be used interchangeably herein. In other embodiments, the heteroaryl group may be a C1-9 heteroaryl group, which refers to a heteroaryl group containing 1 to 9 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen. In other embodiments, the heteroaryl group may be a C1-7 heteroaryl group, which refers to a heteroaryl group containing 1 to 7 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen. In still other embodiments, the heteroaryl group may be a C1-6 heteroaryl group, which refers to a heteroaryl group containing 1 to 6 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen. In other embodiments, the heteroaryl group may be a C1-5 heteroaryl group, which refers to a heteroaryl group containing 1 to 5 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen. In still other embodiments, the heteroaryl group may be a C1-4 heteroaryl group, which refers to a heteroaryl group containing 1 to 4 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen. In yet other embodiments, the heteroaryl group may be a C1-3 heteroaryl group, which refers to a heteroaryl group containing 1 to 3 carbon atoms and at least one heteroatom selected from nitrogen, sulfur and oxygen. Some non-limiting examples of such group include furanyl, imidazolyl, isoxazolyl, oxazolyl, pyrrolyl, pyrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, thienyl, diazolyl, triazolyl, tetrazolyl, thiazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, pyranyl and triazinyl, etc, and also include the following bicycle ring, but atre not limited to: benzimidazolyl, benzofuranyl, benzothiophenyl, indolyl, oxoindolyl, indolinyl, imidazopyridyl, pyrazopryridyl, pyrazopyrimidinyl, quinolyl, isoquinolyl and quinazolinyl, etc. The heteroaryl group may be optionally substituted with one or more substituents disclosed herein.
The term “heteroarylalkyl” refers to an heteroaryl group attached to the rest of the molecule through a alkyl group, wherein the heteroaryl and alkyl are as defined herein. The "heteroarylalkyl" group may be optionally substituted with one or more substituents disclosed herein. Some non-limiting examples of such group included pyridylmethyl, pyrrolylethyl and quinolylmethyl, etc.
The term “comprise” is an open expression, it means comprising the contents disclosed herein, but  don’ t exclude other contents.
Furthermore, unless otherwise stated, the phrase "each…is independently" is used interchangeably with the phrase "each (of) …and…is independently" . It should be understood broadly that the specific options expressed by the same symbol are independently of each other in different radicals; or the specific options expressed by the same symbol are independently of each other in same radicals. Such as Formula (a) , multiple n are independently of each other, multiple R6 are independently of each other,
Figure PCTCN2014092400-appb-000031
As described herein, a system containing a group formed by connecting a double bond with a wave bond indicates that it is (Z) or (E) configuration, or a combination thereof.
Figure PCTCN2014092400-appb-000032
The solvent used for the reaction of the invention is not particularly restricted, any solvent is contained in the invention so long as it can dissolve the raw materials to a certain extent and doesn’ t inhibit the reaction. Additionally, many similar modifications in the art, substitutions to same object, or solvent, solvent composition and the solvent composition with different proportions which are equivalent to those described in the invention, all are deemed to be included in the present invention. Wherein the solvent could be alcohols, alcohol-water mixtures, ethers, halohydrocarbons, esters, ketones, aromatic hydrocarbons, alkanes, acetonitrile, trifluoroethanol, N, N-dimethyl formamide (DMF) , N-methylpyrolidone (NMP) , or a combination thereof. Such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, a ethanol-water mixture at a volume ratio of 50:50, trifluoroethanol, tert-butanol, petroleum ether, n-pentane, n-hexane, n-heptane, cyclohexane, isopropyl ether, DMF, tetrahydrofuran, ethyl ether, dioxane, methyl tertiary butyl ether (MTBE) , 1, 2-dimethoxylethane, NMP, 2-methoxyethanol, 1, 2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dichloromethane, 1, 2-dichloroethane, chloroform, tetrachloromethane, ethyl acetate, isopropyl acetate, acetone, butanone, benzene, toluene, xylene or a combination thereof.
The amount of water in the solvent is not particularly restricted. So long as the solvent containing a certain amount of water can be used in the reaction disclosed herein, which is deemed to be included in the present invention. The amount of water in the solvent is approximately less than 0.05%, less than 0.1%, less than 0.2%, less than 0.5%, less than 5%, less than 10%, less than 25%, less than 30%, or 0%.
The solvent used for the recrystallization of the invention is not particularly restricted, any solvent is contained in the invention so long as it can dissolve the crude product and the crystal product can precipitate out under certain conditions. Additionally, many similar modifications in the art, substitutions to same object, or solvent, solvent composition and the solvent composition with different proportions which are equivalent to those described in the invention, all are deemed to be included in the present invention. Wherein the solvent  could be alcohols, alcohol-water mixtures, ethers, alkanes, halohydrocarbons, esters, ketones, aromatic hydrocarbons, acetonitrile, N, N-dimethyl formamide (DMF) , N-methylpyrolidone (NMP) , or a combination thereof. Such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, tert-butanol, trifluoroethanol, a ethanol-water mixture at a volume ratio of 50: 50, petroleum ether, n-pentane, n-hexane, n-heptane, cyclohexane, DMF, tetrahydrofuran, ethyl ether, isopropyl ether, dioxane, methyl tertiary butyl ether (MTBE) , 1,2-dimethoxylethane, NMP, 2-methoxyethanol, 1, 2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dichloromethane, 1, 2-dichloroethane, chloroform, tetrachloromethane, ethyl acetate, isopropyl acetate, acetone, butanone, benzene, toluene, xylene or a combination thereof.
Any temperature is included in the present invention so long as it is applicable for the one-pot reaction. Additionally, many similar modifications in the art, substitutions to same object, or temperature and temperature scope which are equivalent to those described in the invention, all are deemed to be included in the present invention. In some embodiments, the one-pot reaction temperature is from approximately room temperature (usually 25 ℃) to 154 ℃. The reaction is carried out at a low temperature at the beginning or at the earlier stage, after rising of the temperature, the reaction is carried out at a higher temperature, which may be from approximately 25 ℃ to solvent boiling point, from approximately 30 ℃ to solvent boiling point, from approximately 25 ℃ to 154 ℃, or from approximately 30 ℃ to 154 ℃.
Any temperature is included in the present invention so long as it is applicable for the cooling after one-pot reaction. . Additionally, many similar modifications in the art, substitutions to same object, or temperature and temperature scope which are equivalent to those described in the invention, all are deemed to be included in the present invention. In some embodiments, the cooling temperature is approximately from -80 ℃ to 60 ℃. After the one-pot reaction is complete, the reaction mixture cooling is carried out at a higher temperature, may be from solvent boiling point to 60 ℃, from solvent boiling point to 40 ℃, from solvent boiling point to 30 ℃, from solvent boiling point to 25 ℃, from solvent boiling point to 0 ℃, from solvent boiling point to -10 ℃, from solvent boiling point to -15 ℃, from solvent boiling point to -20 ℃, from solvent boiling point to -40 ℃, from solvent boiling point to -50 ℃, or solvent boiling point to -80 ℃, and may be from approximately 60 ℃ to -20 ℃, from approximately 50 ℃ to -20 ℃, from approximately 40 ℃to 10 ℃, from approximately 30 ℃ to 10 ℃, or from approximately room temperature (usually 25 ℃) to 10 ℃. The reaction mixture cooling at the later stage is carried out at a lower temperature, may be from approximately -80 ℃ to approximately 10 ℃, from approximately -60 ℃ to approximately 10 ℃, from approximately -40 ℃ to approximately 10 ℃, from approximately -20 ℃ to approximately 10 ℃, or from approximately -10 ℃ to approximately 10 ℃, from approximately 0 ℃ to approximately 10 ℃.
Any temperature is included in the present invention so long as it can applicable for the crystallization process of recrystallization. Additionally, many similar modifications in the art, substitutions to same object, or temperature and temperature scope which are equivalent to those described in the invention, all are deemed to be included in the present invention. In some embodiments, the crystallization temperature is approximately from -80 ℃ to 60 ℃. After all the crude product is dissolved completely, the crystallization is  at a higher temperature, may be from solvent boiling point to 60 ℃, from solvent boiling point to 50 ℃, from solvent boiling point to 40 ℃, from solvent boiling point to 30 ℃, from solvent boiling point to 25 ℃, from solvent boiling point to 0 ℃, from solvent boiling point to -10 ℃, from solvent boiling point to -15 ℃, from solvent boiling point to -20 ℃, from solvent boiling point to -30 ℃, from solvent boiling point to -40 ℃, from solvent boiling point to -50 ℃, or solvent boiling point to -80 ℃, and may be from approximately 60 ℃to -20 ℃, from approximately 50 ℃ to -20 ℃, from approximately 40 ℃ to 10 ℃, from approximately 30 ℃to 10 ℃, or from approximately room temperature (usually 25 ℃) to 10 ℃. The crystallization at the later stage is at a lower temperature, may be from approximately -80 ℃ to approximately 10 ℃, from approximately -60 ℃ to approximately 10 ℃, from approximately -40 ℃ to approximately 10 ℃, from approximately -20 ℃ to approximately 10 ℃, from approximately -10 ℃ to approximately 10 ℃, or from approximately 0 ℃ to approximately 10 ℃.
Any halogenating agent is included in the present invention so long as it is applicable for the halogenating reaction. For example, N-bromosuccinimide (NBS) , N-chlorosuccinimide (NCS) , N-iodosuccinimide (NIS) , 1, 3-dibromo-5, 5-dimethylhydantoin, 1, 3-dichloro-5, 5-dimethylhydantoin, iodomethane, etc, or a combination thereof.
The base used in the present invention may be an organic base or inorganic base. The organic base may be triethylamine, trimethylamine, N, N-diisopropylethylamine, N-methylmorpholine, N-methylpiperidine or a combination thereof; and can also be a base formed by reacting an organic solvent with an alkali metal. The alkali metal comprises lithium, sodium and potassium, or a combination thereof. The organic solvent can be one or more alcohols, or a combination thereof. The alcohols include, but are not limited to, methanol, ethanol, propanol, i-propanol, n-butanol, i-butanol, tert-butanol and a combination thereof. The inorganic bases include, but are not limited to, alkali metal hydroxide, alkaline earth metal hydroxide, alkali metal alkoxide, alkaline earth metal alkoxide, alkali metal carbonate, alkaline earth metal carbonate and ammonia. In some embodiments, the inorganic base is ammonia, sodium hydroxide, calcium hydroxide, magnesium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, sodium tert-butoxide, sodium isopropoxide or potassium tert-butoxide.
After the reaction proceeds to a certain extent in the present invention, such as the raw material is consumed more than 20%, more than 30%, more than 40%, more than 50%, more than 70%, more than 80%, more than 90%, more than 95%, or completely by monitoring, the reaction mixture is worked up, such as cooled, collected, drawn, filtered, separated, purified or a combination thereof. The reaction can be monitored by conventional method such as thin-layer chromatography (TLC) , high performance liquid chromatography (HPLC) , gas chromatography (GC) , and the like. The reaction mixture can be worked up by conventional method, for example, the crude product can be collected by concentrating the reaction mixture through vacuum evaporation or conventional distillation and which is used directly in the next operation; or the crude product can be obtained by filtration of the reaction mixture and which is used directly in the next operation; or the crude product can be get by pouring the supernatant liquid of the reaction mixture after standing for a while and  which is used directly in the next operation. And the reaction mixture can be purified by suitable methods such as extraction, distillation, crystallization, column chromatography, washing, trituration with suitable organic solvents or a combination thereof.
Unless otherwise stated, structures depicted herein are also meant to include all isomeric (e. g., enantiomeric, diastereomeric, and geometric (or conformeric) ) forms of the structure; for example, the R and S configurations for each asymmetric center, (Z) and (E) double bond isomers, and (Z) and (E) conformational isomers. Therefore, single stereochemical isomers as well as enantiomeric, diastereomeric, or geometric (or conformeric) mixtures of the present compounds are within the scope disclosed herein.
Stereochemical definitions and conventions used herein generally follow Parker et al., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, New York and Eliel et al., Stereochemistry of Organic Compounds, John Wiley &Sons, Inc., New York, 1994. The compounds disclosed herein may contain asymmetric or chiral centers, and therefore exist in different stereoisomeric forms. It is intended that all stereoisomeric forms of the compounds disclosed herein, including, but not limited to, diastereomers, enantiomers and atropisomers, as well as mixtures thereof such as racemic mixtures, form part of the present invention. Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane-polarized light. In describing an optically active compound, the prefixes D and L, or R and S, are used to denote the absolute configuration of the molecule about its chiral center (s) . The prefixes d and 1 or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or l meaning that the compound is levorotatory. A compound prefixed with (+) or d is dextrorotatory. For a given chemical structure, these stereoisomers are identical except that they are mirror images of one another. A specific stereoisomer is referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture. A 50: 50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process. The term "racemic mixture" or "racemate" refers to an equimolar mixture of two enantiomeric species, devoid of optical activity.
The term "tautomer" or "tautomeric form" refers to structural isomers of different energies which are interconvertible via a low energy barrier. If tautomerism could happen (such as in a solvent) , the chemical balance between tautomers can be reached. For example, proton tautomers (also known as prototropic tautomers) include interconversions via migration of a proton, such as keto-enol and imine-enamine isomerizations. Valence tautomers include interconversions by reorganization of some of the bonding electrons. The specific example of keto-enol tautomerisms is hexane-2, 4-dione and 4-hydroxyhex-3-en-2-one tautomerism. Another example of tautomerisms is phenol-keto tautomerism. The specific example of phenol-keto tautomerisms is pyridin-4-ol and pyridin-4 (3H) -one tautomerism. Unless otherwise stated, all tautomers of the present compounds are within the scope disclosed herein.
GENERAL SYNTHETIC PROCEDURES
In the present invention, if the chemical name of the compound doesn’ t match the corresponding  structure, the compound is characterized by the corresponding structure.
Generally, the compounds of Formula (I) , Formula (Ia) , Formula (I-1) , Formula (Ia-1) , Formula (I-2) or Formula (Ia-2) disclosed herein may be prepared by methods described herein, wherein the substituents are as defined in Formula (I) , Formula (Ia) , Formula (I-1) , Formula (Ia-1) , Formula (I-2) or Formula (Ia-2) , except where further noted. The following examples are presented to further exemplify the invention.
Persons skilled in the art will recognize that the chemical reactions described may be readily adapted to prepare a number of other compounds disclosed herein, and alternative methods for preparing the compounds disclosed herein are deemed to be within the scope disclosed herein. For example, the synthesis of non-exemplified compounds according to the invention may be successfully performed by modifications apparent to those skilled in the art, e.g., by appropriately protecting interfering groups, by utilizing other suitable reagents known in the art other than those described, and/or by making routine modifications of reaction conditions. Alternatively, other reactions disclosed herein or known in the art will be recognized as having applicability for preparing other compounds disclosed herein.
In the examples described below, unless otherwise indicated all temperatures are set forth in degrees Celsius (℃) . Reagents were purchased from commercial suppliers such as Aldrich Chemical Company, Arco Chemical Company and Alfa Chemical Company, and were used without further purification unless otherwise indicated. Common solvents were purchased from commercial suppliers such as Shantou XiLong Chemical Factory, Guangdong Guanghua Reagent Chemical Factory Co. Ltd., Guangzhou Reagent Chemical Factory, Tianjin YuYu Fine Chemical Ltd., Qingdao Tenglong Reagent Chemical Ltd., and Qingdao Ocean Chemical Factory.
Column chromatography was conducted using a silica gel column. Silica gel (200 –300 mesh) was purchased from Qingdao Ocean Chemical Factory. 1H NMR spectra were recorded by a Bruker Avance 400 MHz spectrometer or Bruker Avance III HD 600 spectrometer, using CDCl3, DMSO-d6, CD3OD or acetone-d6 (reported in ppm) as solvent, and using TMS (0 ppm) or chloroform (7.25 ppm) as the reference standard. When peak multiplicities are reported, the following abbreviations are used: s (singlet) , d (doublet) , t (triplet) , m (multiplet) , br (broadened) , dd (doublet of doublets) , dt (doublet of triplets) , ddd (doublet of doublet of doublets) , ddt (doublet of doublet of triplets) , dddd (doublet of doublet of doublet of doublets) , td (triplet of doublets) , brs (broadened singlet) . Coupling constants, when given, are reported in Hertz (Hz) .
Low-resolution mass spectral (MS) data were also determined on an Agilent 6320 series LC-MS spectrometer equipped with G1312A binary pumps, a G1316A TCC (Temperature Control of Column, maintained at 30 ℃) , a G1329A autosampler and a G1315B DAD detector were used in the analysis. An ESI source was used on the LC-MS spectrometer.
Low-resolution mass spectral (MS) data were also determined on an Agilent 6120 series LC-MS spectrometer equipped with G1312A binary pumps, a G1316A TCC (Temperature Control of Column, maintained at 30 ℃) , a G1329A autosampler and a G1315B DAD detector were used in the analysis. An ESI source was used on the LC-MS spectrometer.
Both LC-MS spectrometers were equipped with an Agilent Zorbax SB-C18, 2.1 x 30 mm, 5 μm column. Injection volume was decided by the sample concentration. The flow rate was 0.6 mL/min. The HPLC peaks were recorded by UV-Vis wavelength at 210 nm and 254 nm. The mobile phase was 0.1%formic acid in acetonitrile (phase A) and 0.1%formic acid in ultrapure water (phase B) . The gradient condition is shown in Table 1:
Table 1: The gradient condition of the mobile phase in Low-resolution mass spectrum analysis
Time (min) A (CH3CN, 0.1%HCOOH) B (H2O, 0.1%HCOOH)
0-3 5-100 95-0
3-6 100 0
6-6.1 100-5 0-95
6.1-8 5 95
Purities of compounds were assessed by Agilent 1100 Series high performance liquid chromatography (HPLC) with UV detection at 210 nm and 254 nm (Zorbax SB-C18, 2.1 × 30 mm, 4 micorn, 10 min, 0.6 mL/min flow rate, 5 to 95 % (0.1 %formic acid in CH3CN) in (0.1 %formic acid in H2O) . Column was operated at 40 ℃.
The following abbreviations are used throughout the specification:
CDC13   chloroform-d
DMF-d6   N, N-dimethylformamide-d6
DMSO-d6   dimethyl sulfoxide-d6
Acetone-d6   acetone-d6
D2O   water-d2
EA, EtOAc   ethyl acetate
DMF  N, N-dimethylformamide
THF   tetrahydrofuran
NMP   N-methylprrolidone
MeCN, CH3CN   acetonitrile
DCM, CH2Cl2   dichloromethane
CHCl3   chloroform
CCl4     tetrachloromethane
PE       petroleum ether
CH3OH, MeOH   methanol
g   gram
c   concentration
mol   mole
mmol   millimole
h   hour, hours
min   minute, minutes
mL   milliliter
v/v. v: v   the ratio of volume
DMSO   dimethyl sulfoxide
NBS   N-bromosuccinimide
NCS   N-chlorosuccinimide
NIS   N-iodosuccinimide
EXAMPLES
The preparation methods of optically pure dihydropyrimidine compounds disclosed in the examples of the present invention. Skilled in the art can learn from this article to properly improve the process parameters to implement the preparation method. Of particular note is that all similar substitutions and modifications to the skilled person are obvious, and they are deemed to be included in the present invention. The methods disclosed herein were described in the preferred examples. Related person can clearly realize and apply the techniques disclosed herein by making some changes, appropriate alterations or combinations to the methods without departing from spirit, principles and scope of the present disclosure.
In order to further understand the invention, it is detailed below through examples.
Example
Example 1: the preparation of (R) -ethyl 4- (2-bromo-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000033
Step 1) (R) -1-ethoxy-1-oxopropan-2-yl 3-oxobutanoate
Figure PCTCN2014092400-appb-000034
A flask was charged with (D) -ethyl 2-hydroxypropanoate (11.8 g, 10 mmol) and 2,2, 6-trimethyl-4H-1, 3-dioxin-4-one (14.2 g, 10 mmol) in turn, and then equipped with distillation apparatus or water segregator. The mixture was stirred at 120 ℃ for 4 hours. After the reaction, the mixture was cooled and concentrated to obtain the title compound as puce liquid (12.9 g, 64%) .
MS (ESI, pos. ion) m/z: 203.1 [M+H] +
Step 2) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-bromo-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000035
Method one:
To a flask were added 2-thiazolecarboxamidine hydrochloride (16.4 g, 0.1 mol) , 2-bromo-4-fluorobenzaldehyde (20.3 g, 0.1 mol) , (R) -1-ethoxy-1-oxopropan-2-yl 3-oxobutanoate (20.2 g, 0.1 mol) , anhydrous sodium acetate (8.2 g, 0.1 mol) and ethanol (74 g) in turn. The mixture was stirred at 78 ℃ for 16 hours. After the reaction, the mixture was cooled to 30 ℃, kept at 30 ℃ and stirred for 6 hours. The resulting mixture was filtered. The filter cake was washed with water (330 mL) and dried in vacuo at 60 ℃ for 8 hours to obtain the crude product. To the crude product was added n-propanol (74 g) . The mixture was heated until dissolved completely, cooled to 25 ℃, and then kept at 25 ℃, stirred and crystallized for 5 hours. The resulting mixture was filtered. The filter cake was dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellow solid (13.4 g, 27%) .
Figure PCTCN2014092400-appb-000036
MS (ESI, pos. ion) m/z: 497.7 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 10.02 (s, 1H) , 7.97 (d, 1H) , 7.89 (d, 1H) , 7.54 (dd, 1H) , 7.36 (dd, 1H) , 7.23 (td, 1H) , 6.00 (s, 1H) , 4.82 (q, 1H) , 4.14-4.01 (m, 2H) , 2.47 (s, 3H) , 1.22 (d, 3H) , 1.13 (t, 3H) .
The compound 5 can be prepared under the reaction conditions shown in table 2 by using method one described in step 2 of Example 1.
Table 2: The reaction conditions
Figure PCTCN2014092400-appb-000037
Figure PCTCN2014092400-appb-000038
Method two:
To a flask were added 2-thiazolecarboxamidine hydrochloride (16.4 g, 0.1 mol) , 2-bromo-4-fluorobenzaldehyde (20.3 g, 0.1 mol) , (R) -1-ethoxy-1-oxopropan-2-yl 3-oxobutanoate (20.2 g, 0.1 mol) , anhydrous sodium acetate (8.2 g, 0.1 mol) and ethanol (74 g) in turn. The mixture was stirred at 78 ℃ for 16 hours. After the reaction, the reaction mixture was cooled to 30 ℃, kept at 30 ℃ and stirred for 6 hours. The mixture was filtered. The filtrate was washed with ethanol (50 g) and water (330 mL) in turn, and then dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellow solid (14.4 g, 29%) .
Figure PCTCN2014092400-appb-000039
MS (ESI, pos. ion) m/z: 497.7 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 10.02 (s, 1H) , 7.97 (d, 1H) , 7.89 (d, 1H) , 7.54 (dd, 1H) , 7.36 (dd, 1H) ,  7.23 (td, 1H) , 6.00 (s, 1H) , 4.82 (q, 1H) , 4.14-4.01 (m, 2H) , 2.47 (s, 3H) , 1.22 (d, 3H) , 1.13 (t, 3H) .
The compound 5 can be prepared under the reaction conditions shown in table 3 by using method two described in step 2 of Example 1.
Table 3: The reaction conditions
Figure PCTCN2014092400-appb-000040
Figure PCTCN2014092400-appb-000041
Method three:
To a flask were added 2-thiazolecarboxamidine hydrochloride (16.4 g, 0.1 mol) , 2-bromo-4-fluorobenzaldehyde (20.3 g, 0.1 mol) , (R) -1-ethoxy-1-oxopropan-2-yl 3-oxobutanoate (20.2 g, 0.1 mol) , anhydrous sodium acetate (8.2 g, 0.1 mol) and ethanol (74 g) in turn. The mixture was stirred at 78 ℃ for 16 hours. After the reaction, the mixture was cooled to 30 ℃, kept at 30 ℃ and stirred for 6 hours. The resulting mixture was filtered. The filter cake was washed with water (330 mL) and dried in vacuo at 60 ℃ for 8 hours to obtain the crude product. The crude product was triturated with n-propanol (50 g) at 30 ℃ for 5 hours and filtered. The filter cake was washed with n-propanol (12.8 g) and dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellow solid (13.9 g, 28%) .
Figure PCTCN2014092400-appb-000042
MS (ESI, pos. ion) m/z: 497.7 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 10.02 (s, 1H) , 7.97 (d, 1H) , 7.89 (d, 1H) , 7.54 (dd, 1H) , 7.36 (dd, 1H) , 7.23 (td, 1H) , 6.00 (s, 1H) , 4.82 (q, 1H) , 4.14-4.01 (m, 2H) , 2.47 (s, 3H) , 1.22 (d, 3H) , 1.13 (t, 3H) .
The compound 5 can be prepared under the reaction conditions shown in table 4 by using method three described in step 2 of Example 1.
Table 4: The reaction conditions
Figure PCTCN2014092400-appb-000043
Figure PCTCN2014092400-appb-000044
Step 3) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-bromo-4-fluorophenyl) -6-bromomethyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000045
To a flask were added (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-bromo-4-fluorophenyl) -6-methyl-2-(thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (49.6 g, 0.1 mol) and tetrachloromethane (1000 g) . The mixture was heated at 76 ℃, NBS was added (19.6 g, 0.11 mol) , and then the reaction mixture was stirred for 30 min. After the reaction, the reaction mixture was cooled and concentrated. To the residue was added ethanol (250 g) . The resulting mixture was cooled to 0 ℃, kept at 0 ℃ and stirred. After the solid precipitated out completely, the mixture was filtered. The filter cake was washed with ethanol (50 g) and dried in vacuo at 60 ℃ for 6 hours to obtain the product as a yellow solid (37.4 g, 65%) .
MS (ESI, pos. ion) m/z: 575.8 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 8.03 (d, 1H) , 7.98 (br, 1H) , 7.58 (dd, 2H) , 7.43 (dd, 1H) , 7.27 (td, 1H) , 6.01 (s, 1H) , 4.94 (q, 1H) , 4.85 (br, 2H) , 4.14-4.02 (m, 2H) , 1.28 (d, 3H) , 1.16 (t, 3H) .
The compound A1 can be prepared under the reaction conditions shown in table 5 according to the procedure described in step 3 of Example 1
Table 5: The reaction conditions
Figure PCTCN2014092400-appb-000046
Step 4) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-bromo-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2 -yl) -1, 4-dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000047
To a flask were added (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4-(2-bromo-4-fluorophenyl) -6- (bromomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (57.5 g, 0.1 mol) , i-propanol (287 g) and morpholine (34.8 g, 0.4 mol) . The mixture was stirred at 55 ℃ for 4 hours. After the reaction, the mixture was cooled to 0 ℃, kept at this temperature and stirred. After the solid precipitated out completely, the mixture was filtered. The filter cake was washed with i-propanol (58 g) followed by water (575 g) , and then dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellowish solid (40.1 g, 69%) .
MS (ESI, pos. ion) m/z: 581.2 [M+H] +
1H NMR (600 MHz, DMSO-d6) : δ 9.98 (s, 1H) , 8.03 (d, 1H) , 7.96 (d, 1H) , 7.56 (d, 1H) , 7.42 (dd, 1H) , 7.23 (td, 1H) , 6.05 (s, 1H) , 4.84 (q, 1H) , 4.14-4.05 (m, 2H) , 3.92 (dd, 2H) , 3.67 (br, 4H) , 2.55 (br, 4H) , 1.23 (d, 3H) , 1.16 (t,3H) .
Step 5) (R) -ethyl 4- (2-bromo-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine  -5-carboxylate
Figure PCTCN2014092400-appb-000048
To a flask were added anhydrous ethanol (435 g) and lithium (1.74 g, 0.25 mol) in turn. The mixture was stirred at 43 ℃ until the lithium was consumed entirely, and then a solution of (R)- (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-bromo-4-fluorophenyl) -6- (morphplinomethyl) -2- (thiazol-2-yl) -1,4-dihydropyrimidine-5-carboxylate (58.1 g, 0.1 mol) in ethanol (435 g) was added. The reaction mixture was stirred at 78 ℃ for 1.5 hours. After the reaction, the reaction mixture was cooled and concentrated. To the residue was added ethyl acetate (580 g) . The mixture was washed with water (250 g × 2) . The combined organic layers were concentrated to obtain the product as a yellow solid (39.7 g, 78%) .
MS (ESI, pos. ion) m/z: 509.1 [M+H] +
1H NMR (600 MHz, DMSO-d6) : δ 9.69 (s, 1H) , 8.02 (d, 1H) , 7.93 (d, 1H) , 7.57 (dd, 1H) , 7.40 (dd, 1H) , 7.22 (td, 1H) , 6.05 (s, 1H) , 3.96 (q, 2H) , 3.93 (dd, 2H) , 3.68 (br, 4H) , 2.56 (br, 4H) , 1.05 (t, 3H) .
Example 2: the preparation of (R) -methyl 4- (2-bromo-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1,4-dihydropyrimidine -5-carboxylate
Figure PCTCN2014092400-appb-000049
To a flask were added anhydrous methanol (870 g) and lithium (1.74 g, 0.25 mol) in turn. The mixture was stirred at 43 ℃ until the lithium was consumed entirely, and then (R)- (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-bromo-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1,4-dihydropyrimidine-5-carboxylate (58.1 g, 0.1 mol) was added. The reaction mixture was allowed to warm up to 60 ℃ and stirred for 1.5 hours. After the reaction, the reaction mixture was cooled and concentrated. To the residue was added ethyl acetate (580 g) . The mixture was washed with water (250 g × 2) . The combined organic layers were concentrated to obtain the product as yellow thick oil (36.1 g, 73%) .
MS (ESI, pos. ion) m/z: 494.7 [M+H] +
1H NMR (600 MHz, DMSO-d6) : δ 9.71 (s, 1H) , 8.02 (d, 1H) , 7.94 (d, 1H) , 7.55 (dd, 1H) , 7.37 (dd, 1H) , 7.20 (td, 1H) , 6.02 (s, 1H) , 3.91 (dd, 2H) , 3.67 (br, 4H) , 3.52 (s, 3H) , 2.55 (br, 4H) .
Example 3: the preparation of (R) -3- (morpholin-3-yl) propanoic acid hydrochloride
Figure PCTCN2014092400-appb-000050
Step 1) (S) -tert-butyl 3-formylmorpholine-4-carboxylate
Figure PCTCN2014092400-appb-000051
To a flask were added (R) -tert-butyl 3- (hydroxymethyl) morpholine-4-carboxylate (1.47 g, 6.77 mmol) and DCM (30 mL) in turn, and then Dess-Martin periodinane (3.44 g, 8.12 mmol) was added at 0 ℃. The mixture was stirred at 0 ℃ for 1 hour. After the reaction, the mixture was quenched with saturated aqueous sodium bicarbonate (30 mL) and separated. The organic layer was washed with saturated aqueous sodium bicarbonate (30 mL × 3) and saturated aqueous sodium chloride (30 mL) , dried over anhydrous sodium sulfate and filtered. The filtrate was used directly at next operation.
Step 2) (R) -tert-butyl 3- (3-ethoxy-3-oxoprop-1-en-1-yl) morpholine-4-carboxylate
Figure PCTCN2014092400-appb-000052
To a flask were added (S) -tert-butyl 3-formylmorpholine-4-carboxylate (1.46 g, 6.77 mmol) , DCM (40 mL) and ethyl (triphenylphosphoranylidene) acetate (2.36 g, 6.77 mmol) in turn. The mixture was stirred at 25 ℃ for 12 hours. After the reaction, the mixture was filtered. The filtrate was concentrated. The residue was purified by silica gel chromatography eluted with PE/EtOAc (V/V) = 10/1 to give the product as a colorless oil (1.05 g, 54%) .
MS (ESI, pos. ion) m/z: 186.1 [M+H-100] +
1H NMR (400 MHz, CDCl3) : δ 6.69 (dd, 1H) , 5.89 (dd, 1H) , 4.56 (s, 1H) , 4.20-4.12 (m, 2H) , 3.94-3.82 (m,2H) , 3.77-3.65 (m, 2H) , 353-3.43 (m, 1H) , 3.27-3.10 (m, 1H) , 1.41 (s, 9H) , 1.29-1.23 (m, 3H) .
Step 3) (R) -tert-butyl 3- (3-ethoxy-3-oxopropyl) morpholine-4-carboxylate
Figure PCTCN2014092400-appb-000053
To a flask were added (R) -tert-butyl 3- (3-ethoxy-3-oxoprop-1-en-1-yl) morpholine-4-carboxylate (1.05 g, 3.68 mmol) , anhydrous ethanol (20 mL) and Pd-C (10%, 0.2 g) in turn. The mixture was stirred at 30 ℃ under hydrogen atmosphere overnight and filtered. The filtrate was concentrated to give the product as colorless oil (0.96 g, 91%) .
MS (ESI, pos. ion) m/z: 188.1 [M+H-100] +
1H NMR (400 MHz, CDCl3) : δ 4.12 (q, 2H) , 3.98 (s, 1H) , 3.84-3.69 (m, 3H) , 3.56 (dd, 1H) , 3.42 (td, 1H) , 3.12 (t, 1H) , 2.37-2.27 (m, 2H) , 2.25-2.15 (m, 1H) , 1.92-1.83 (m, 1H) , 1.45 (s, 9H) , 1.25 (t, 3H) .
Step 4) (R) -3- (4- (tert-butoxycarbonyl) morpholin-3-yl) propanoic acid
Figure PCTCN2014092400-appb-000054
To a flask were added (R) -tert-butyl 3- (3-ethoxy-3-oxopropyl) morpholine-4-carboxylate (0.96 g, 3.34 mmol) , anhydrous ethanol (10 mL) and a solution of lithium hydroxide hydrate (1.4 g, 33.4 mmol) in water (10 mL) in turn. The mixture was stirred at 25 ℃ for 30 min. After the reaction, to the reaction mixture was added ethyl acetate (150 mL) and water (50 mL) . The resulting mixture was adjusted to pH 5-6 with concentrated hydrochloric acid at 0 ℃. After the mixture was partitioned. The organic layer was washed with saturated aqueous sodium chloride (100 mL) , dried over anhydrous sodium sulfate and concentrated to give the product as colorless oil (0.85 g, 98%) .
MS (ESI, pos. ion) m/z: 160.1 [M+H-100] +
1H NMR (400 MHz, CDCl3) : δ 8.08 (br, 1H) , 4.03 (brs, 1H) , 3.88-3.72 (m, 3H) , 3.58 (dd, 1H) , 3.44 (td, 1H) , 3.13 (t, 1H) , 2.43-2.29 (m, 2H) , 2.27-2.20 (m, 1H) , 1.94-1.83 (m, 1H) , 1.46 (s, 9H) .
Step 5) (R) -3- (morpholin-3-yl) propanoic acid hydrochloride
Figure PCTCN2014092400-appb-000055
To a flask were added (R) -3- (4- (tert-butoxycarbonyl) morpholin-3-yl) propanoic acid (0.9 g, 3.47 mmol) and a solution of hydrogen chloride in ethyl acetate (4 mol/L, 15 mL) in turn. The mixture was stirred at 25 ℃ for 4 hours. After the reaction, the mixture was filtered to give the product as a white solid (0.53 g, 78%) .
MS (ESI, pos. ion) m/z: 160.1 [M+H] +
1H NMR (400 MHz, D2O) : δ 4.04-3.96 (m, 2H) , 3.75-3.68 (m, 1H) , 3.52 (dd, 1H) , 3.40-3.35 (m, 1H) , 3.34-3.29 (m, 1H) , 3.22-3.15 (m, 1H) , 2.47 (t, 2H) , 1.83 (ddd, 2H) .
The compound VI hydrochloride can be prepared under the reaction conditions shown in table 6 according to the procedure described in Example 3.
Table 6: The reaction conditions for preparation of the compound (VI) hydrochloride
Figure PCTCN2014092400-appb-000056
Figure PCTCN2014092400-appb-000057
Table 6-1: The NMR and MS datum of the compound (VI) hydrochloride
Figure PCTCN2014092400-appb-000058
Example 4: the preparation of (2R, 3S) -2-methylmorpholine-3-carboxylic acid) 
Figure PCTCN2014092400-appb-000059
The title compound ( (2R, 3S) -2-methylmorpholine-3-carboxylic acid) was prepared according to the procedure described in example 34 of patent WO2014029193.
MS (ESI, pos. ion) m/z: 146.2 [M+H] +
1H NMR (600 MHz, D2O) : δ 4.01-3.98 (m, 1H) , 3.82-3.77 (m, 1H) , 3.76-3.72 (m, 1H) , 3.37 (d, 1H) , 3.27-3.24 (m, 1H) , 3.19-3.14 (m, 1H) , 1.26 (d, 3H) .
Example 5: the preparation of (S) -4- ( ( (R) -6- (2-bromo-4-fluorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
Figure PCTCN2014092400-appb-000060
Step 1) (S) -4- ( ( (R) -6- (2-bromo-4-fluorophenyl) -5- ( ( ( (R) -1-ethoxy-1-oxopropan-2-yl) oxy) carbonyl) -2-(thiazol-2-yl) -3, 6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
Figure PCTCN2014092400-appb-000061
To a flask were added (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4-(2-bromo-4-fluorophenyl) -6- (bromomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (57.5 g, 0.1 mol) , ethanol (840 g) , (S) -morpholine-3-carboxylic acid (13.1 g, 0.1 mol) and potassium carbonate (27.6 g, 0.2 mol) in turn. The mixture was stirred at 30 ℃ under nitrogen atmosphere for 12 hours. After the reaction, the mixture was filtered. The filtrate was concentrated. To the residue was added water (840 g) , the resulting mixture was extracted with ethyl acetate (840 mL) . The organic layer was discarded. To the aqueous layer was added ethyl acetate (900 mL) , and the mixture was adjusted to pH 3-6 with concentrated hydrochloric acid. The organic layer was dried over anhydrous sodium sulfate and concentrated to give the product as a yellow solid (46.3 g, 74%) .
MS (ESI, pos. ion) m/z: 624.5 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 8.03 (d, 1H) , 7.94 (d, 1H) , 7.56 (dd, 1H) , 7.42 (dd, 1H) , 7.22 (td, 1H) , 6.06 (s, 1H) , 4.84 (q, 1H) , 4.23-4.13 (m, 1H) , 4.12-4.03 (m, 3H) , 3.98-3.88 (m, 1H) , 3.85 (dd, 1H) , 3.73-3.65 (m,2H) , 3.58-3.51 (m, 1H) , 3.10-3.04 (m, 1H) , 2.42-2.38 (m, 1H) , 1.24 (d, 3H) , 1.13 (t, 3H) .
The compound E can be prepared under the reaction conditions shown in table 7 according to the procedure described in step 1 of Example 5.
Table 7: The reaction conditions for preparation of compound E
Figure PCTCN2014092400-appb-000062
Table 7-1: The NMR and MS datum of compound E
Figure PCTCN2014092400-appb-000063
Figure PCTCN2014092400-appb-000064
Step 2) (S) -4- ( ( (R) -6- (2-bromo-4-fluorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3, 6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
Figure PCTCN2014092400-appb-000065
To a flask were added anhydrous ethanol (940 g) and lithium (2.43 g, 0.35 mol) in turn. The mixture was stirred at 43 ℃ until the lithium was consumed entirely, and then (S)-4- ( ( (R) -6- (2-bromo-4-fluorophenyl) -5- ( ( ( (R) -1-ethoxy-1-oxopropan-2-yl) oxy) carbonyl) -2- (thiazol-2-yl) -3, 6 -dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid (62.5 g, 0.1 mol) was added. The reaction mixture was allowed to warm up to 78 ℃ and stirred for 12 hours. After the reaction, the mixture was cooled and concentrated. To the residue was added water (1200 g) , the resulting mixture was extracted with ethyl acetate (1000 mL) . The organic layer was discarded. To the aqueous layer was added ethyl acetate (1280 mL) , the mixture was adjusted to pH 3-6 with concentrated hydrochloric acid. The organic layer was dried over  anhydrous sodium sulfate and concentrated to give the product as a yellow solid (37.1 g, 67%) .
MS (ESI, pos. ion) m/z: 553.2 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 12.85 (br, 1H) , 9.80 (s, 1H) , 8.00 (d, 1H) , 7.91 (d, 1H) , 7.54 (dd, 1H) , 7.39 (dd, 1H) , 7.19 (td, 1H) , 6.01 (s, 1H) , 4.25 (d, 1H) , 4.02 (d, 1H) , 3.97-3.91 (m, 3H) , 3.81 (dd, 1H) , 3.72-3.69 (m, 1H) , 3.66-3.63 (m, 1H) , 3.61-3.58 (m, 1H) , 3.10-3.03 (m, 1H) , 2.42-2.35 (m, 1H) , 1.04 (t, 3H) .
The compound F can be prepared under the reaction conditions shown in table 8 according to the procedure described in step 2 of Example 5.
Table 8: The reaction conditions for preparation of compound F
Figure PCTCN2014092400-appb-000066
Figure PCTCN2014092400-appb-000067
Table 8-1: The NMR and MS datum of compound F
Figure PCTCN2014092400-appb-000068
Figure PCTCN2014092400-appb-000069
Figure PCTCN2014092400-appb-000070
Example 6: the preparation of (R) -ethyl 4- (2-bromo-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000071
Step 1) (R) -ethyl 4- (2-bromo-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000072
To a flask were added anhydrous ethanol (500 g) and lithium (2.43 g, 0.35 mol) in turn. The mixture was stirred at 43 ℃ until the lithium was consumed entirely, and then (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4-(2-bromo-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (49.6 g, 0.1 mol) was added. The reaction mixture was stirred at 78 ℃ for 6 hours. After the reaction, the reaction mixture was cooled to 10 ℃, kept at 10 ℃ and stirred for 8 hours. The mixture was filtered. The filter cake was washed with anhydrous ethanol (50 g) and water (500 g) in turn, and then dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellowish solid (31.8 g, 75%) .
MS (ESI, pos. ion) m/z: 424.0 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 9.88 (s, 1H) , 7.97 (d, 1H) , 7.89 (d, 1H) , 7.54 (dd, 1H) , 7.35 (dd, 1H) , 7.23 (td, 1H) , 5.96 (s, 1H) , 3.93 (q, 2H) , 2.46 (s, 3H) , 1.03 (t, 3H) .
The compound G can be prepared under the reaction conditions shown in table 9 according to the procedure described in step 1 of Example 6.
Table 9: The reaction conditions for preparation of compound G
Figure PCTCN2014092400-appb-000074
Table 9-1: The NMR, MS and specific rotation datum of the compound G
Figure PCTCN2014092400-appb-000075
Step 2) (R) -ethyl 4- (2-bromo-4-fluorophenyl) -6-bromomethyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000076
To a flask were added (R) -ethyl 4- (2-bromo-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1,4-dihydropyrimidine-5-carboxylate (42.4 g, 0.1 mol) and CCl4 (800 mL) , followed by NBS (19.6 g, 0.11 mol) at 70 ℃. The mixture was stirred for 30 min. After the reaction, the mixture was cooled and filtered. The filtrate was concentrated to obtain the product as a yellow solid (34.2 g, 68%) .
MS (ESI, pos. ion) m/z: 503.9 [M+H] +
1H NMR (600 MHz, DMSO-d6) : δ 10.23 (s, 1H) , 8.01 (d, 1H) , 7.98 (d, 1H) , 7.62 (dd, 1H) , 7.42 (dd, 1H) , 7.29 (td, 1H) , 6.01 (s, 1H) , 4.79 (br, 2H) , 4.01 (q, 2H) , 1.08 (t, 3H) .
The compound J can be prepared under the reaction conditions shown in table 10 according to the procedure described in step 2 of Example 6.
Table 10: The reaction conditions for preparation of compound J
Figure PCTCN2014092400-appb-000077
Table 10-1: The NMR and MS datum of compound J
Figure PCTCN2014092400-appb-000078
Step 3) (R) -ethyl 4- (2-bromo-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine -5-carboxylate
Figure PCTCN2014092400-appb-000079
To a flask were added (R) -ethyl 4- (2-bromo-4-fluorophenyl) -6- (bromomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate (50.3 g, 0.1 mol) , anhydrous ethanol (302 g) and morpholine (34.8 g, 0.4 mol) . The mixture was stirred at 25 ℃ under nitrogen atmosphere for 6 hours. After the reaction, the mixture was concentrated. To the residue was added ethyl acetate (500 g) , the resulting mixture was washed with water (250 mL × 2) . The organic layer was concentrated to give the product as tawny oil (37.7 g, 74%)
MS (ESI, pos. ion) m/z: 509.1 [M+H] +
1H NMR (600 MHz, DMSO-d6) : δ 9.69 (s, 1H) , 8.02 (d, 1H) , 7.93 (d, 1H) , 7.57 (dd, 1H) , 7.40 (dd, 1H) , 7.22 (td, 1H) , 6.05 (s, 1H) , 3.96 (q, 4H) , 3.93 (dd, 2H) , 3.68 (br, 4H) , 2.56 (br, 4H) , 1.05 (t, 3H) .
The compound L can be prepared under the reaction conditions shown in table 11 according to the procedure described in step 3 of Example 6.
Table 11: The reaction conditions for preparation of compound L
Figure PCTCN2014092400-appb-000080
Figure PCTCN2014092400-appb-000081
Table 11-1: The NMR and MS datum of compound L
Figure PCTCN2014092400-appb-000082
Example 7: the preparation of (S) -4- ( ( (R) -6- (2-bromo-4-fluorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
Figure PCTCN2014092400-appb-000083
To a flask were added (R) -ethyl 4- (2-bromo-4-fluorophenyl) -6- (bromomethyl) -2- (thiazol-2-yl) -1,4-dihydropyrimidine-5-carboxylate (5.03 g, 10 mmol) , (S) -morpholine-3-carboxylic acid (1.31 g, 10 mmol) , potassium carbonate (2.76 g, 20 mmol) and ethanol (100 mL) . The mixture was stirred at 30 ℃ under nitrogen atmosphere for 12 hours. After the reaction, the mixture was filtered. The filtrate was concentrated. To the residue was added water (100 mL) , the resulting mixture was extracted with ethyl acetate (100 mL) . The organic layer was discarded. To the aqueous layer was added ethyl acetate (100 mL) , the mixture was adjusted to pH 3-6 with concentrated hydrochloric acid. The organic layer was dried over anhydrous sodium sulfate and concentrated to give the product as a yellow solid (4.4 g, 80%) .
MS (ESI, pos. ion) m/z: 553.2 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 12.85 (br, 1H) , 9.80 (s, 1H) , 8.00 (d, 1H) , 7.91 (d, 1H) , 7.54 (dd, 1H) , 7.39 (dd, 1H) , 7.19 (td, 1H) , 6.01 (s, 1H) , 4.25 (d, 1H) , 4.02 (d, 1H) , 3.97-3.91 (m, 3H) , 3.81 (dd, 1H) , 3.72-3.69 (m, 1H) , 3.66-3.63 (m, 1H) , 3.61-3.58 (m, 1H) , 3.10-3.03 (m, 1H) , 2.42-2.35 (m, 1H) , 1.04 (t, 3H) .
The compound F can be prepared under the reaction conditions shown in table 12 according to the procedure described in Example 7.
Table 12: The reaction conditions for preparation of compound F
Figure PCTCN2014092400-appb-000084
Figure PCTCN2014092400-appb-000085
Figure PCTCN2014092400-appb-000086
Table 12-1: The NMR and MS datum of compound L
Figure PCTCN2014092400-appb-000087
Figure PCTCN2014092400-appb-000088
Example 8: the preparation of (R) -ethyl 4- (2-chloro-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000089
Step 1) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-chloro-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
Method one:
To a flask were added 2-thiazolecarboxamidine hydrochloride (16.4 g, 0.1 mol) , 2-chloro-4-fluorobenzaldehyde (15.9 g, 0.1 mol) , (R) -1-ethoxy-1-oxopropan-2-yl 3-oxobutanoate (20.2 g, 0.1 mol) , anhydrous sodium acetate (8.2 g, 0.1 mol) and ethanol (74 g) in turn. The mixture was stirred at 78 ℃ for 16 hours. After the reaction, the mixture was cooled to 30 ℃, kept at 30 ℃ and stirred for 6 hours. The resulting mixture was filtered. The filter cake was washed with water (330 mL) and dried in vacuo at 60 ℃ for 8 hours to obtain the crude product. To the crude product was added n-propanol (50 g) . The mixture was heated until dissolved completely, cooled to 30 ℃, and then kept at 30 ℃, stirred and crystallized for 8 hours. The resulting mixture was filtered. The filter cake was dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellow solid (10.4 g, 23%) .
Figure PCTCN2014092400-appb-000091
MS (ESI, pos. ion) m/z: 452.2 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 10.05 (s, 1H) , 7.98 (d, 1H) , 7.91 (d, 1H) , 7.42-7.37 (m, 2H) , 7.20 (td, 1H) , 6.03 (s, 1H) , 4.84 (q, 1H) , 4.12-4.04 (m, 2H) , 2.47 (s, 3H) , 1.22 (d, 3H) , 1.14 (t, 3H) .
The compound 8 can be prepared under the reaction conditions shown in table 13 by using method one described in step 1 of Example 8.
Table 13: The reaction conditions
Figure PCTCN2014092400-appb-000092
Figure PCTCN2014092400-appb-000093
Method two
To a flask were added 2-thiazolecarboxamidine hydrochloride (16.4 g, 0.1 mol) , 2-chloro-4-fluorobenzaldehyde (15.9 g, 0.1 mol) , (R) -1-ethoxy-1-oxopropan-2-yl 3-oxobutanoate (20.2 g, 0.1 mol) , anhydrous sodium acetate (8.2 g, 0.1 mol) and ethanol (74 g) in turn. The mixture was stirred at 78 ℃ for 16 hours. After the reaction, the reaction mixture was cooled to 30 ℃, kept at 30 ℃ and stirred for 6 hours. The mixture was filtered. The filtrate was washed with ethanol (16.4 g) and water (330 mL) in turn, and then dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellow solid (12.2 g, 27%) .
Figure PCTCN2014092400-appb-000094
MS (ESI, pos. ion) m/z: 452.2 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 10.05 (s, 1H) , 7.98 (d, 1H) , 7.91 (d, 1H) , 7.42-7.37 (m, 2H) , 7.20 (td, 1H) , 6.03 (s, 1H) , 4.84 (q, 1H) , 4.12-4.04 (m, 2H) , 2.47 (s, 3H) , 1.22 (d, 3H) , 1.14 (t, 3H) .
The compound 8 can be prepared under the reaction conditions shown in table 14 by using method two described in step 1 of Example 8.
Table 14: The reaction conditions
Figure PCTCN2014092400-appb-000095
Figure PCTCN2014092400-appb-000096
Method three:
To a flask were added 2-thiazolecarboxamidine hydrochloride (16.4 g, 0.1 mol) , 2-chloro-4-fluorobenzaldehyde (15.9 g, 0.1 mol) , (R) -1-ethoxy-1-oxopropan-2-yl 3-oxobutanoate (20.2 g, 0.1 mol) , anhydrous sodium acetate (8.2 g, 0.1 mol) and ethanol (74 g) in turn. The mixture was stirred at 78 ℃ for 16 hours. After the reaction, the mixture was cooled to 30 ℃, kept at 30 ℃ and stirred for 6 hours. The resulting mixture was filtered. The filter cake was washed with water (330 mL) and dried in vacuo at 60 ℃ for 8 hours to obtain the crude product. The crude product was triturated with n-propanol (50 g) at 30 ℃ for 5 hours and filtered. The filter cake was dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellow solid (11.3 g, 25%) .
Figure PCTCN2014092400-appb-000097
MS (ESI, pos. ion) m/z: 452.2 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 10.05 (s, 1H) , 7.98 (d, 1H) , 7.91 (d, 1H) , 7.42-7.37 (m, 2H) , 7.20 (td, 1H) , 6.03 (s, 1H) , 4.84 (q, 1H) , 4.12-4.04 (m, 2H) , 2.47 (s, 3H) , 1.22 (d, 3H) , 1.14 (t, 3H) .
The compound 8 can be prepared under the reaction conditions shown in table 15 by using method three described in step 1 of Example 8.
Table 15: The reaction conditions
Figure PCTCN2014092400-appb-000098
Step 2) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-chloro-4-fluorophenyl) -6-bromomethyl-2- (thiazol-2 -yl) -1, 4-dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000099
To a flask were added (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-chloro-4-fluorophenyl) -6-methyl- 2-(thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (45.2 g, 0.1 mol) and tetrachloromethane (900 g) . The mixture was heated at 76 ℃, NBS was added (19.6 g, 0.11 mol) , and then the reaction mixture was stirred for 30 min. After the reaction, the reaction mixture was cooled and concentrated. To the residue was added ethanol (226 g) . The resulting mixture was cooled to 0 ℃, kept at 0 ℃ and stirred. After the solid precipitated out completely, the mixture was filtered. The filter cake was washed with ethanol (45 g) and dried in vacuo at 60 ℃ for 6 hours to obtain the product as a yellow solid (31.3 g, 59%) .
MS (ESI, pos. ion) m/z: 531.6 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 10.37 (s, 1H) , 8.03 (d, 1H) , 8.00 (d, 1H) , 7.47-7.42 (m, 2H) , 7.23 (td, 1H) , 6.01 (s, 1H) , 4.94 (q, 1H) , 4.87-4.78 (m, 2H) , 4.16-4.04 (m, 2H) , 1.27 (d, 3H) , 1.15 (t, 3H) .
The compound A2 can be prepared under the reaction conditions shown in table 16 according to the procedure described in step 2 of Example 8.
Table 16: The reaction conditions
Figure PCTCN2014092400-appb-000100
Step 3) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-chloro-4-fluorophenyl) -6-morpholinomethyl-2- (thiazol-2 -yl) -1, 4-dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000101
To a flask were added (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-chloro-4-fluorophenyl) -6-(bromomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (53.1 g, 0.1 mol) , i-propanol (287 g) and  morpholine (34.8 g, 0.4 mol) . The mixture was stirred at 55 ℃ for 4 hours. After the reaction, the mixture was cooled to 0 ℃, kept at this temperature and stirred. After the solid precipitated out completely, the mixture was filtered. The filter cake was washed with i-propanol (53 g) followed by water (530 g) , and then dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellowish solid (34.4 g, 64%) .
MS (ESI, pos. ion) m/z: 537.2 [M+H] +
1H NMR (600 MHz, DMSO-d6) : δ 9.77 (s, 1H) , 8.04 (d, 1H) , 7.95 (d, 1H) , 7.44-7.41 (m, 2H) , 7.18 (td, 1H) , 6.09 (s, 1H) , 4.86 (q, 1H) , 4.12-4.04 (m, 2H) , 3.90 (dd, 2H) , 3.68 (t, 4H) , 2.56 (br, 4H) , 1.25 (d, 3H) , 1.14 (t, 3H) .
Step 4) (R) -ethyl 4- (2-chloro-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine -5-carboxylate
Figure PCTCN2014092400-appb-000102
To a flask were added anhydrous ethanol (403 g) and lithium (1.74 g, 0.25 mol) in turn. The mixture was stirred at 43 ℃ until the lithium was consumed entirely, and then a solution of (R)- (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-chloro-4-fluorophenyl) -6- (morphplinomethyl) -2- (thiazol-2-yl) -1,4-dihydropyrimidine-5-carboxylate (53.7 g, 0.1 mol) in ethanol (403 g) was added. The reaction mixture was stirred at 78 ℃ for 1.5 hours. After the reaction, the reaction mixture was cooled and concentrated. To the residue was added ethyl acetate (540 g) . The mixture was washed with water (250 g × 2) . The organic layer was concentrated to obtain the product as yellow thick oil (34.9 g, 75%) .
MS (ESI, pos. ion) m/z: 465.2 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 9.65 (s, 1H) , 8.00 (d, 1H) , 7.91 (d, 1H) , 7.40-7.37 (m, 2H) , 7.15 (td, 1H) , 6.03 (s, 1H) , 3.94 (q, 2H) , 3.88 (dd, 2H) , 3.65 (br, 4H) , 2.56 (br, 4H) , 1.05 (t, 3H) .
Example 9: the preparation of (R) -methyl 4- (2-chloro-4-fluorophenyl) -6- (morpholinomethyl) -2-(thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000103
To a flask were added anhydrous methanol (806 g) and lithium (1.74 g, 0.25 mol) in turn. The mixture was stirred at 43 ℃ until the lithium was consumed entirely, and then  (R) - (R) -1-ethoxy-1-oxopropan-2-yl
4- (2-chloro-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1,4-dihydropyrimidine-5-carboxylate (53.7 g, 0.1 mol) was added. The reaction mixture was allowed to warm up to 60 ℃ and stirred for 1.5 hours. After the reaction, the reaction mixture was cooled and concentrated. To the residue was added ethyl acetate (540 g) .The mixture was washed with water (250 g × 2) . The organic layer was concentrated to obtain the product as yellow thick oil (32.9 g, 73%) .
MS (ESI, pos.ion) m/z: 450.8 [M+H]+
1H NMR (600 MHz, DMSO-d6): δ 9.72 (s,1H) , 8.03 (d,1H) , 7.94 (d,1H) , 7.43-7.38 (m,2H) , 7.17 (td,1H) , 6.05 (s,1H) ,3.93 (dd,2H) , 3.68 (br,4H) ,3.53 (s,3H) , 2.56 (br,4H) .
Example 10: the preparation of (S)-4- ( ( (R) -6- (2-chloro-4-fluorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl)-3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
Figure PCTCN2014092400-appb-000104
Step 1) (S) -4- ( ( (R) -6- (2-chloro-4-fluorophenyl)-5- ( ( ( (R) -1-ethoxy-1-oxopropan-2-yl) oxy) carbonyl) -2-(thiazol-2-yl)- 3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
Figure PCTCN2014092400-appb-000105
To a flask were added (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2-chloro-4-fluorophenyl) -6- (bromomethyl) -2- (thiazol-2-yl) -1,4-dihydropyrimidine-5-carboxylate (53.1 g, 0.1 mol) , ethanol (800 g) , (S) -morpholine-3-carboxylic acid (13.1 g, 0.1 mol) and potassium carbonate (27.6 g, 0.2 mol) in turn. The mixture was stirred at 30 ℃ for 12 hours. After the reaction, the mixture was filtered. The filtrate was concentrated. To the residue was added water (840 g) , the resulting mixture was extracted with ethyl acetate (840 mL) , the organic layer was discarded. To the aqueous layer was added ethyl acetate (900 mL) , the mixture was adjusted to pH 3-6 with concentrated hydrochloric acid. The organic layer was dried over anhydrous sodium sulfate and concentrated to give the product as a yellow solid (41.8 g, 72%).
MS (ESI, pos.ion) m/z: 581.1 [M+H]+
1H NMR (400MHz, DMSO-d6): δ 8.01 (d,1H) , 7.96 (d,1H) , 7.43-7.39 (m,2H) , 7.18 (td,1H) , 6.04 (s,1H) ,  4.86 (q, 1H) , 4.25-4.14 (m, 1H) , 4.11-4.02 (m, 3H) , 3.99-3.87 (m, 1H) , 3.84 (dd, 1H) , 3.74-3.65 (m, 2H) , 3.57-3.51 (m,1H) , 3.11-3.04 (m, 1H) , 2.43-2.38 (m, 1H) , 1.22 (d, 3H) , 1.14 (t, 3H) .
The compound Q can be prepared under the reaction conditions shown in table 17 according to the procedure described in step 1 of Example 10.
Table 17: The reaction conditions for preparation of compound Q
Figure PCTCN2014092400-appb-000106
Table 17-1: The NMR and MS datum of compound Q
Figure PCTCN2014092400-appb-000107
Figure PCTCN2014092400-appb-000108
Step 2) (S) -4- ( ( (R) -6- (2-chloro-4-fluorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3, 6-dihydropyrimidin-4-yl)methyl) morpholine-3-carboxylic acid
Figure PCTCN2014092400-appb-000109
To a flask were added anhydrous ethanol (870 g) and lithium (2.43 g, 0.35 mol) in turn. The mixture was stirred at 43 ℃ until the lithium was consumed entirely, and then (S)-4- ( ( (R) -6- (2-chloro-4-fluorophenyl) -5- ( ( ( (R) -1-ethoxy-1-oxopropan-2-yl) oxy) carbonyl) -2- (thiazol-2-yl) -3, 6 -dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid (58.1 g, 0.1 mol) was added. The reaction  mixture was allowed to warm up to 78 ℃ and stirred for 12 hours. After the reaction, the mixture was cooled and concentrated. To the residue was added water (1100 g) , the resulting mixture was extracted with ethyl acetate (1000 mL) . The organic layer was discarded. To the aqueous layer was added ethyl acetate (1280 mL) , the mixture was adjusted to pH 3-6 with concentrated hydrochloric acid. The organic layer was dried over anhydrous sodium sulfate and concentrated to give the product as a yellow solid (33.1 g, 65%) .
MS (ESI, pos. ion) m/z: 509.2 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 13.00 (br, 1H) , 9.95 (s, 1H) , 8.02 (d, 1H) , 7.93 (d, 1H) , 7.46-7.38 (m, 2H) , 7.17 (td, 1H) , 6.05 (s, 1H) , 4.20 (d, 1H) , 4.05-4.02 (m, 1H) , 3.97-3.91 (m, 3H) , 3.81 (dd, 1H) , 3.72-3.63 (m, 2H) , 3.58-3.53 (m, 1H) , 3.08-3.05 (m, 1H) , 2.42-2.38 (m, 1H) , 1.06 (t, 3H) .
The compound X can be prepared under the reaction conditions shown in table 18 according to the procedure described in step 2 of Example 10.
Table 18: The reaction conditions for preparation of compound X
Figure PCTCN2014092400-appb-000110
Figure PCTCN2014092400-appb-000111
Table 18-1: The NMR and MS datum of compound X
Figure PCTCN2014092400-appb-000112
Figure PCTCN2014092400-appb-000113
Figure PCTCN2014092400-appb-000114
Example 11: the preparation of (R) -ethyl 4-(2-chloro-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000115
Step 1) (R) -ethyl 4- (2-chloro-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000116
To a flask were added anhydrous ethanol (360 g) and lithium (2.43 g, 0.35 mol) in turn. The mixture was stirred at 43 ℃ until the lithium was consumed entirely, and then (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4-(2-chloro-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (45.2 g, 0.1 mol) was added. The reaction mixture was stirred at 78 ℃ for 6 hours. After the reaction, the reaction mixture was cooled to 10 ℃, kept at 10 ℃ and stirred for 8 hours. The mixture was filtered. The filtrate was washed with anhydrous ethanol (45 g) and water (500 g) in turn, and then dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellow solid (23.6 g, 62%) .
Figure PCTCN2014092400-appb-000117
MS (ESI, pos. ion) m/z: 380.2 [M+H] +
1H NMR (600 MHz, DMSO-d6) : δ 9.92 (s, 1H) , 7.97 (d, 1H) , 7.90 (d, 1H) , 7.41 (dd, 1H) , 7.37 (dd, 1H) , 7.19 (td, 1H) , 6.00 (s, 1H) , 3.93 (q, 2H) , 2.46 (s, 3H) , 1.03 (t, 3H) .
The compound T can be prepared under the reaction conditions shown in table 19 according to the  procedure described in step 1 of Example 11.
Table 19: The reaction conditions for preparation of compound T
Figure PCTCN2014092400-appb-000118
Table 19-1: The NMR, MS and specific rotation datum of the compound T
Figure PCTCN2014092400-appb-000119
Step 2) (R) -ethyl 4- (2-chloro-4-fluorophenyl) -6-bromomethyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine -5-carboxylate
Figure PCTCN2014092400-appb-000120
To a dry flask were added (R) -ethyl 4- (2-chloro-4-fluorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (38 g, 0.1 mol) and CCl4 (760 g) , followed by NBS (19.6 g, 0.11 mol) at 70 ℃. The mixture was stirred for 30 min and cooled, and then filtered. The filtrate was concentrated to obtain a yellow solid (37.6 g, 82%) .
MS (ESI, pos. ion) m/z: 457.9 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 9.67 (s, 1H) , 8.01 (d, 1H) , 7.97 (br, 1H) , 7.44-7.41 (m, 2H) , 7.22 (td, 1H) , 5.99 (s, 1H) , 4.83 (br, 2H) , 4.02 (q, 2H) , 1.07 (t, 3H) .
The compound W can be prepared under the reaction conditions shown in table 20 according to the procedure described in step 2 of Example 11.
Table 20: The reaction conditions for preparation of compound W
Figure PCTCN2014092400-appb-000121
Table 20-1: The NMR and MS datum of compound W
Figure PCTCN2014092400-appb-000122
Step 3) (R) -ethyl 4- (2-chloro-4-fluorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine -5-carboxylate
Figure PCTCN2014092400-appb-000123
To a flask were added (R) -ethyl 4- (2-chloro-4-fluorophenyl) -6- (bromomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate (45.9 g, 0.1 mol) , anhydrous ethanol (275 g) and morpholine (34.8 g, 0.4 mol) . The mixture was stirred at 25 ℃ under nitrogen atmosphere for 6 hours. After the reaction, the mixture was concentrated. To the residue was added ethyl acetate (500 g) , the resulting mixture was washed with water (250 mL × 2) . The organic layer was concentrated to give the product as tawny oil (35.8 g, 77%) 
MS (ESI, pos. ion) m/z: 465.2 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 9.65 (s, 1H) , 8.00 (d, 1H) , 7.91 (d, 1H) , 7.40-7.37 (m, 2H) , 7.15 (td, 1H) , 6.03 (s, 1H) , 3.94 (q, 2H) , 3.88 (dd, 2H) , 3.65 (br, 4H) , 2.56 (br, 4H) , 1.05 (t, 3H) .
The compound U can be prepared under the reaction conditions shown in table 21 according to the procedure described in step 3 of Example 11.
Table 21: The reaction conditions for preparation of compound U
Figure PCTCN2014092400-appb-000124
Table 21-1: The NMR and MS datum of compound U
Figure PCTCN2014092400-appb-000125
Example 12: the preparation of (S) -4- ( ( (R) -6- (2-chloro-4-fluorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
Figure PCTCN2014092400-appb-000126
To a flask were added (R) -ethyl 4- (2-chloro-4-fluorophenyl) -6- (bromomethyl) -2-(thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (4.59 g, 10 mmol) , (S) -morpholine-3-carboxylic acid (1.31 g, 10 mmol) , potassium carbonate (2.76g, 20 mmol) and ethanol (90 mL) . The mixture was stirred at 30 ℃under nitrogen atmosphere for 12 hours. After the reaction, the mixture was filtered. The filtrate was concentrated. To the residue was added water (100 mL) , the resulting mixture was extracted with ethyl acetate (100 mL) . The organic layer was discarded. To the aqueous layer was added ethyl acetate (100 mL) , and the mixture was adjusted to pH 3-6 with concentrated hydrochloric acid. The organic layer was dried over anhydrous sodium sulfate and concentrated to give the product as a yellow solid (3.96 g, 78%) .
MS (ESI, pos. ion) m/z: 509.2 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 13.00 (br, 1H) , 9.95 (s, 1H) , 8.02 (d, 1H) , 7.93 (d, 1H) , 7.46-7.38 (m, 2H) , 7.17 (td, 1H) , 6.05 (s, 1H) , 4.20 (d, 1H) , 4.05-4.02 (m, 1H) , 3.97-3.91 (m, 3H) , 3.81 (dd, 1H) , 3.72-3.63 (m, 2H) ,3.58-3.53 (m, 1H) , 3.08-3.05 (m, 1H) , 2.42-2.38 (m, 1H) , 1.06 (t, 3H) .
The compound X can be prepared under the reaction conditions shown in table 22 according to the procedure described Example 12.
Table 22: The reaction conditions for preparation of compound X
Figure PCTCN2014092400-appb-000127
Figure PCTCN2014092400-appb-000128
Figure PCTCN2014092400-appb-000129
Table 22-1: The NMR and MS datum of compound X
Figure PCTCN2014092400-appb-000130
Figure PCTCN2014092400-appb-000131
Example 13: the preparation of (R) -ethyl 4- (2, 4-dichlorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000132
Step 1) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2, 4-dichlorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000133
Method one:
To a flask were added 2-thiazolecarboxamidine hydrochloride (16.4 g, 0.1 mol) , 2,4-dichlorobenzaldehyde (17.5 g, 0.1 mol) , (R) -1-ethoxy-1-oxopropan-2-yl 3-oxobutanoate (20.2 g, 0.1 mol) ,  anhydrous sodium acetate (8.2 g, 0.1 mol) and ethanol (107 g) in turn. The mixture was stirred at 78 ℃ for 16 hours. After the reaction, the mixture was cooled to 30 ℃, kept at 30 ℃ and stirred for 6 hours. The resulting mixture was filtered. The filter cake was washed with water (330 mL) and dried in vacuo at 60 ℃ for 8 hours to obtain the crude product. To the crude product was added n-propanol (82 g) . The mixture was heated until dissolved completely, cooled to 30 ℃, and then kept at 30 ℃, stirred and crystallized for 5 hours. The resulting mixture was filtered. The filter cake was dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellow solid (12.1 g, 25.9%) .
Figure PCTCN2014092400-appb-000134
MS (ESI, pos. ion) m/z: 467.7 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 10.07 (s, 1H) , 7.98 (d, 1H) , 7.91 (d, 1H) , 7.59 (d, 1H) , 7.41 (dd, 1H) , 7.36 (d, H) , 6.03 (s, 1H) , 4.83 (q, 1H) , 4.12-4.03 (m, 2H) , 2.47 (s, 3H) , 1.22 (d, 3H) , 1.13 (t, 3H) .
The compound 10 can be prepared under the reaction conditions shown in table 23 by using method one described in step 1 of Example 13.
Table 23: The reaction conditions
Figure PCTCN2014092400-appb-000135
Method two
To a flask were added 2-thiazolecarboxamidine hydrochloride (16.4 g, 0.1 mol) , 2,4-dichlorobenzaldehyde (17.5 g, 0.1 mol) , (R) -1-ethoxy-1-oxopropan-2-yl 3-oxobutanoate (20.2 g, 0.1 mol) ,  anhydrous sodium acetate (8.2 g, 0.1 mol) and ethanol (107 g) in turn. The mixture was stirred at 78 ℃ for 16 hours. After the reaction, the reaction mixture was cooled to 30 ℃, kept at 30 ℃ and stirred for 3 hours. The mixture was filtered. The filtrate was washed with ethanol (50 g) and water (330 mL) in turn, and then dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellow solid (14.4 g, 30.8%) .
Figure PCTCN2014092400-appb-000136
MS (ESI, pos. ion) m/z: 467.7 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 10.07 (s, 1H) , 7.98 (d, 1H) , 7.91 (d, 1H) , 7.59 (d, 1H) , 7.41 (dd, 1H) , 7.36 (d,1H) , 6.03 (s, 1H) , 4.83 (q, 1H) , 4.12-4.03 (m, 2H) , 2.47 (s, 3H) , 1.22 (d, 3H) , 1.13 (t, 3H) .
The compound 10 can be prepared under the reaction conditions shown in table 24 by using method two described in step 1 of Example 13.
Table 24: The reaction conditions
Figure PCTCN2014092400-appb-000137
Method three:
To a flask were added 2-thiazolecarboxamidine hydrochloride (16.4 g, 0.1 mol) , 2,4-dichlorobenzaldehyde (17.5 g, 0.1 mol) , (R) -1-ethoxy-1-oxopropan-2-yl 3-oxobutanoate (20.2 g, 0.1 mol) , anhydrous sodium acetate (8.2 g, 0.1 mol) and ethanol (107 g) in turn. The mixture was stirred at 78 ℃ for 16 hours. After the reaction, the mixture was cooled to 30 ℃, kept at 30 ℃ and stirred for 3 hours. The resulting mixture was filtered. The filter cake was washed with water (330 mL) and dried in vacuo at 60 ℃ for 8 hours to obtain the crude product. The crude product was triturated with i-propanol (82 g) at 30 ℃ for 5 hours and filtered. The filter cake was dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellow solid (12.9 g, 27.5%) .
Figure PCTCN2014092400-appb-000138
MS (ESI, pos. ion) m/z: 467.7 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 10.07 (s, 1H) , 7.98 (d, 1H) , 7.91 (d, 1H) , 7.59 (d, 1H) , 7.41 (dd, 1H) , 7.36 (d,1H) , 6.03 (s, 1H) , 4.83 (q, 1H) , 4.12-4.03 (m, 2H) , 2.47 (s, 3H) , 1.22 (d, 3H) , 1.13 (t, 3H) .
The compound 10 can be prepared under the reaction conditions shown in table 25 by using method three described in step 1 of Example 13.
Table 25: The reaction conditions
Figure PCTCN2014092400-appb-000139
Figure PCTCN2014092400-appb-000140
Step 2) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2, 4-dichlorophenyl) -6-bromomethyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000141
To a flask were added (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2, 4-dichlorophenyl) -6-methyl-2-(thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (46.8 g, 0.1 mol) and tetrachloromethane (936 g) . The mixture was heated at 76 ℃, NBS was added (19.6 g, 0.11 mol) , and then the reaction mixture was stirred for 30 min. After the reaction, the reaction mixture was cooled and concentrated. To the residue was added ethanol (234 g) . The resulting mixture was cooled to 0 ℃, kept at 0 ℃ and stirred. After solid was precipitated out completely, the mixture was filtered. The filter cake was washed with ethanol (47 g) and dried in vacuo at 60 ℃ for 6 hours to obtain the product as a yellow solid (30.1 g, 55%) .
MS (ESI, pos. ion) m/z: 548.0 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 9.81 (s, 1H) , 8.01 (d, 1H) , 7.96 (d, 1H) , 7.59 (br, 2H) , 7.39 (br, 2H) , 6.01 (s,1H) , 4.96 (q, 1H) , 4.88-4.79 (m, 2H) , 4.14-4.03 (m, 2H) , 1.26 (d, 3H) , 1.12 (t, 3H) .
The compound A3 can be prepared under the reaction conditions shown in table 26 according to the procedure described in step 2 of Example 13
Table 26: The reaction conditions
Figure PCTCN2014092400-appb-000142
Step 3) (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2, 4-dichlorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4- dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000143
To a flask were added (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2, 4-dichlorophenyl) -6-(bromomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (54.7 g, 0.1 mol) , i-propanol (273 g) and morpholine (34.8 g, 0.4 mol) . The mixture was stirred at 55 ℃ for 4 hours. After the reaction, the mixture was cooled to 0 ℃, kept at this temperature and stirred. After the solid precipitated out completely, the mixture was filtered. The filter cake was washed with i-propanol (55 g) followed by water (550 g) , and then dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellowish solid (33.7 g, 61%) .
MS (ESI, pos. ion) m/z: 553.1 [M+H] +
1H NMR (600 MHz, DMSO-d6) : δ 9.87 (s, 1H) , 8.01 (d, 1H) , 7.96 (d, 1H) , 7.59 (br, 1H) , 7.38 (br, 2H) , 6.05 (s,1H) , 4.86 (q, 1H) , 4.14-4.06 (m, 2H) , 3.92 (dd, 2H) , 3.67 (br, 4H) , 2.56 (br, 4H) , 1.24 (d, 3H) , 1.13 (t, 3H) .
Step 4) (R) -ethyl 4- (2, 4-dichlorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine -5-carboxylate
Figure PCTCN2014092400-appb-000144
To a flask were added anhydrous ethanol (415 g) and lithium (1.74 g, 0.25 mol) in turn. The mixture was stirred at 43 ℃ until the lithium was consumed entirely, and then a solution of (R)- (R) -1-ethoxy-1-oxopropan-2-yl 4- (2, 4-dichlorophenyl) -6- (morphplinomethyl) -2- (thiazol-2-yl) -1,4-dihydropyrimidine-5-carboxylate (55.3 g, 0.1 mol) in ethanol (415 g) was added. The reaction mixture was stirred at 78 ℃ for 1.5 hours. After the reaction, the reaction mixture was cooled and concentrated. To the residue was added ethyl acetate (540 g) . The mixture was washed with water (250 g × 2) . The organic layer was concentrated to obtain the product as yellow thick oil (34.6 g, 72%) .
MS (ESI, pos. ion) m/z: 480.7 [M+H] +
1H NMR (600 MHz, DMSO-d6) : δ 9.69 (s, 1H) , 8.03 (d, 1H) , 7.94 (d, 1H) , 7.60 (s, 1H) , 7.39 (s, 2H) , 6.06(s, 1H) , 3.97 (q, 2H) , 3.92 (dd, 2H) , 3.67 (br, 4H) , 2.56 (br, 4H) , 1.06 (t, 3H) .
Example 14: the preparation of (R) -methyl 4- (2, 4-dichlorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4  -dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000145
To a flask were added anhydrous methanol (830 g) and lithium (1.74 g, 0.25 mol) in turn. The mixture was stirred at 43 ℃ until the lithium was consumed entirely, and then (R)- (R) -1-ethoxy-1-oxopropan-2-yl 4- (2, 4-dichlorophenyl) -6- (morphplinomethyl) -2- (thiazol-2-yl) -1,4-dihydropyrimidine-5-carboxylate (55.3 g, 0.1 mol) was added. The reaction mixture was stirred at 60 ℃ for 1.5 hours. After the reaction, the reaction mixture was cooled and concentrated. To the residue was added ethyl acetate (550 g) . The mixture was washed with water (250 g × 2) . The combined organic layers were concentrated to obtain the product as yellow thick oil (32.2 g, 69%) .
MS (ESI, pos. ion) m/z: 467.1 [M+H] +
1H NMR (400 MHz, CDCl3) : δ 9.73 (s, 1H) , 7.87 (d, 1H) , 7.47 (d, 1H) , 7.42 (d, 1H) , 7.24 (d, 1H) , 7.18 (dd, 1H) , 6.21 (s, 1H) , 4.02 (d, 1H) , 3.89 (d, 1H) , 3.85 (t, 4H) , 3.62 (s, 3H) , 2.65 (t, 4H) .
Example 15: the preparation of (S) -4- ( ( (R) -6- (2, 4-dichlorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
Figure PCTCN2014092400-appb-000146
Step 1) (S) -4- ( ( (R) -6- (2, 4-dichlorophenyl) -5- ( ( ( (R) -1-ethoxy-1-oxopropan-2-yl) oxy) carbonyl) -2-(thiazol-2-yl) -3, 6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
Figure PCTCN2014092400-appb-000147
To a flask were added (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4- (2, 4-dichlorophenyl) -6-(bromomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (54.7 g, 0.1 mol) , ethanol (820 g) ,  (S)-morpholine-3-carboxylic acid (13.1 g, 0.1 mol) and potassium carbonate (27.6 g, 0.2 mol) in turn. The mixture was stirred at 30 ℃ for 12 hours. After the reaction, the mixture was filtered. The filtrate was concentrated. To the residue was added water (820 g) , the resulting mixture was extracted with ethyl acetate (820 mL) . The organic layer was discarded. To the aqueous layer was added ethyl acetate (900 mL) , the mixture was adjusted to pH 3-6 with concentrated hydrochloric acid. The organic layer was dried over anhydrous sodium sulfate and concentrated to give the product as a yellow solid (43.6 g, 73%) .
MS (ESI, pos. ion) m/z: 596.6 [M+H] +
1H NMR (400MHz, DMSO-d6) : δ 12.87 (br, 1H) , 9.93 (s, 1H) , 8.04 (d, 1H) , 7.96 (d, 1H) , 7.60 (d, 1H) , 7.43-7.37 (m, 2H) , 6.09 (s, 1H) , 4.85 (q, 1H) , 4.22 (d, 1H) , 4.13-3.99 (m, 4H) , 3.85 (dd, 1H) , 3.74-3.61 (m, 3H) , 3.12-3.04 (m, 1H) , 2.43-2.38 (m, 1H) , 1.24 (d, 3H) , 1.13 (t, 3H) .
The compound H can be prepared under the reaction conditions shown in table 27 according to the procedure described in step 1 of Example 15.
Table 27: The reaction conditions for preparation of compound H
Figure PCTCN2014092400-appb-000148
Figure PCTCN2014092400-appb-000149
Table 27-1: The NMR and MS datum of compound H
Figure PCTCN2014092400-appb-000150
Step 2) (S) -4- ( ( (R) -6- (2, 4-dichlorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3, 6-dihydropyrimidin-4-yl)methyl) morpholine-3-carboxylic acid
Figure PCTCN2014092400-appb-000151
To a flask were added anhydrous ethanol (870 g) and lithium (2.43 g, 0.35 mol) in turn. The mixture was stirred at 43 ℃ until the lithium was consumed entirely, and then (S)-4- ( ( (R) -6- (2, 4-dichlorohenyl) -5- ( ( ( (R) -1-ethoxy-1-oxopropan-2-yl) oxy) carbonyl) -2- (thiazol-2-yl) -3, 6-dihyd ropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid (59.7 g, 0.1 mol) was added. The reaction mixture was allowed to warm up to 78 ℃ and stirred for 12 hours. After the reaction, the mixture was cooled and concentrated. To the residue was added water (1200 g) , the resulting mixture was extracted with ethyl acetate (1200 mL) The organic layer was discarded. To the aqueous layer was added ethyl acetate (1280 mL) , and the mixture was adjusted to pH 3-6 with concentrated hydrochloric acid. The organic layer was dried over anhydrous sodium sulfate and concentrated to give the product as a yellow solid (35.7 g, 68%) .
MS (ESI, pos. ion) m/z: 524.7 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 12.86 (br, 1H) , 9.84 (s, 1H) , 8.03 (d, 1H) , 7.94 (d, 1H) , 7.60 (br, 1H) , 7.42-7.36 (m, 2H) , 6.05 (s, 1H) , 4.25 (d, 1H) , 4.09-3.91 (m, 4H) , 3.83 (dd, 1H) , 3.75-3.58 (m, 3H) , 3.12-3.03 (m,1H) , 2.43-2.36 (m, 1H) , 1.06 (t, 3H) .
The compound XX can be prepared under the reaction conditions shown in table 28 according to the procedure described in step 2 of Example 15.
Table 28: The reaction conditions for preparation of compound XX
Figure PCTCN2014092400-appb-000152
Figure PCTCN2014092400-appb-000153
Figure PCTCN2014092400-appb-000154
Table 28-1: The NMR and MS datum of compound XX
Figure PCTCN2014092400-appb-000155
Figure PCTCN2014092400-appb-000156
Example 16: the preparation of (R) -ethyl 4- (2, 4-dichlorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate
Figure PCTCN2014092400-appb-000157
Step 1) (R) -ethyl 4- (2, 4-dichlorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine -5-carboxylate
Figure PCTCN2014092400-appb-000158
To a flask were added anhydrous ethanol (374 g) and lithium (2.43 g, 0.35 mol) in turn. The mixture was stirred at 43 ℃ until the lithium was consumed entirely, and then (R) - (R) -1-ethoxy-1-oxopropan-2-yl 4-(2, 4-dichlorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (46.8 g, 0.1 mol) was added. The reaction mixture was stirred at 78 ℃ for 6 hours. After the reaction, the reaction mixture was  cooled to 10 ℃, kept at 10 ℃ and stirred for 8 hours. The mixture was filtered. The filter cake was washed with anhydrous ethanol (47 g) and water (500 g) in turn, and then dried in vacuo at 60 ℃ for 8 hours to obtain the product as a yellow solid (28.1 g, 71%) .
Figure PCTCN2014092400-appb-000159
MS (ESI, pos. ion) m/z: 396.1 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 9.93 (s, 1H) , 7.97 (d, 1H) , 7.90 (d, 1H) , 7.58 (d, 1H) , 7.41 (dd, 1H) , 7.35 (d,1H) , 6.00 (s, 1H) , 3.93 (q, 2H) , 2.46 (s, 3H) , 1.03 (t, 3H) .
The compound TT can be prepared under the reaction conditions shown in table 29 according to the procedure described in step 1 of Example 16.
Table 29: The reaction conditions for preparation of compound TT
Figure PCTCN2014092400-appb-000160
Figure PCTCN2014092400-appb-000161
Table 29-1: The NMR, MS and specific rotation datum of the compound TT
Figure PCTCN2014092400-appb-000162
Step 2) (R) -ethyl 4- (2, 4-dichlorophenyl) -6- (bromomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine -5-carboxylate
Figure PCTCN2014092400-appb-000163
To a flask were added (R) -ethyl 4- (2, 4-chlorophenyl) -6-methyl-2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (39.6 g, 0.1 mol) and CCl4 (800 mL) , followed by NBS (19.6 g, 0.11 mol) at 70 ℃. The mixture was stirred for 30 min. After the reaction, the mixture was cooled and filtered. The filtrate was concentrated to obtain the product as a yellow solid (37.1 g, 78%) .
MS (ESI, pos. ion) m/z: 475.6 [M+H] +
1H NMR (600 MHz, DMSO-d6) : δ 8.03 (d, 1H) , 7.98 (d, 1H) , 7.66-7.62 (m, 1H) , 7.47-7.35 (m, 2H) , 5.99 (s,1H) , 4.82 (br, 2H) , 4.02 (q, 2H) , 1.09 (t, 3H) .
The compound WW can be prepared under the reaction conditions shown in table 30 according to the procedure described in step 2 of Example 16.
Table 30: The reaction conditions for preparation of compound WW
Figure PCTCN2014092400-appb-000164
Figure PCTCN2014092400-appb-000165
Table 30-1: The NMR and MS datum of compound WW
Figure PCTCN2014092400-appb-000166
Step 3) (R) -ethyl 4- (2, 4-dichlorophenyl) -6- (morpholinomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine -5-carboxylate
Figure PCTCN2014092400-appb-000167
To a flask were added (R) -ethyl 4- (2, 4-dichlorophenyl) -6- (bromomethyl) -2- (thiazol-2-yl) -1, 4 -dihydropyrimidine-5-carboxylate (47.5 g, 0.1 mol) , anhydrous ethanol (285 g) and morpholine (34.8 g, 0.4 mol) . The mixture was stirred at 25 ℃ for 6 hours. After the reaction, the mixture was concentrated. To the residue was added ethyl acetate (475 g) , the resulting mixture was washed with water (250 mL × 2) . The organic layer was concentrated to give the product as tawny oil (37.5 g, 78%)
MS (ESI, pos. ion) m/z: 480.7 [M+H] +
1H NMR (600 MHz, DMSO-d6) : δ 9.69 (s, 1H) , 8.03 (d, 1H) , 7.94 (d, 1H) , 7.60 (s, 1H) , 7.39 (s, 2H) , 6.06(s, 1H) , 3.97 (q, 2H) , 3.92 (dd, 2H) , 3.67 (br, 4H) , 2.56 (br, 4H) , 1.06 (t, 3H) .
The compound UU can be prepared under the reaction conditions shown in table 31 according to the procedure described in step 3 of Example 16.
Table 31: The reaction conditions for preparation of compound UU
Figure PCTCN2014092400-appb-000168
Table 31-1: The NMR and MS datum of compound UU
Figure PCTCN2014092400-appb-000169
Example 17: the preparation of (S) -4- ( ( (R) -6- (2, 4-dichlorophenyl) -5- (ethoxycarbonyl) -2- (thiazol-2-yl) -3,6-dihydropyrimidin-4-yl) methyl) morpholine-3-carboxylic acid
Figure PCTCN2014092400-appb-000170
To a flask were added (R) -ethyl 4- (2, 4-dichlorophenyl) -6- (bromomethyl) -2- (thiazol-2-yl) -1, 4-dihydropyrimidine-5-carboxylate (4.75 g, 10 mmol) , (S) -morpholine-3-carboxylic acid (1.31 g, 10 mmol) , potassium carbonate (2.76g, 20 mmol) and ethanol (95 mL) . The mixture was stirred at 30 ℃ for 12 hours.  After the reaction, the mixture was filtered. The filtrate was concentrated. To the residue was added water (100 mL) , the resulting mixture was extracted with ethyl acetate (100 mL) . The organic layer was discarded. To the aqueous layer was added ethyl acetate (100 mL) , the mixture was adjusted to pH 3-6 with concentrated hydrochloric acid. The organic layer was dried over anhydrous sodium sulfate and concentrated to give the product as a yellow solid (4.1 g, 78%) .
MS (ESI, pos. ion) m/z: 524.7 [M+H] +
1H NMR (400 MHz, DMSO-d6) : δ 12.86 (br, 1H) , 9.84 (s, 1H) , 8.03 (d, 1H) , 7.94 (d, 1H) , 7.60 (br, 1H) ,7.42-7.36 (m, 2H) , 6.05 (s, 1H) , 4.25 (d, 1H) , 4.09-3.91 (m, 4H) , 3.83 (dd, 1H) , 3.75-3.58 (m, 3H) , 3.12-3.03 (m, 1H) , 2.43-2.36 (m, 1H) , 1.06 (t, 3H) .
The compound XX can be prepared under the reaction conditions shown in table 32 according to the procedure described in Example 17.
Table 32: The reaction conditions for preparation of compound XX
Figure PCTCN2014092400-appb-000171
Figure PCTCN2014092400-appb-000172
Table 32-1: The NMR and MS datum of compound XX
Figure PCTCN2014092400-appb-000173
Figure PCTCN2014092400-appb-000174
Figure PCTCN2014092400-appb-000175
In the specification, Unless specified or limited otherwise, terms such as "first" and "second" are used herein for purposes of description and are not intended to indicate or imply relative importance or significance.
Reference throughout this specification to "an embodiment, " "some embodiments, " "one embodiment" , "another example, " "an example, " "a specific examples, " or "some examples, " means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases such as " in some embodiments, " "in one embodiment" , "in an embodiment" , "in another example, " in an example, " "in a specific examples, " or "in some examples, " in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Although explanatory embodiments have been shown and described, it would be appreciated by those skilled in the art that the above embodiments cannot be construed to limit the present disclosure, and changes, alternatives, and modifications can be made in the embodiments without departing from spirit, principles and scope of the present disclosure.

Claims (66)

  1. A process for preparing a dihydropyrimidine compound having Formula (I) , or a tautomer thereof having Formula (Ia) ,
    Figure PCTCN2014092400-appb-100001
    wherein each R1 and R2 is independently F, Cl, or Br;
    R3 is C1-4 alkyl;
    Z is -O-, -S-, -S (=O) t-, or -N (R4) -;
    Y is -O-, -S-, -S (=O) t-, - (CH2q-, or -N (R5) -;
    each t and q is independently 0, 1, or 2;
    each of R4 and R5 is independently H or C1-4 alkyl;
    each R6 is independently H, deuterium, halo, C1-4 alkyl, C1-4 haloalkyl, amino, C1-4 alkylamino, C1-4 alkoxy, nitro, triazolyl, tetrazyl, - (CR7R7am-OH, -S (=O) qOR8a, - (CR7R7am-S (=O) qN (R8a2, - (CR7R7at-N (R8a2, -(CR7R7am-C (=O) O-R8, - (CR7R7am-C (=O) O- (CR7R7am-OC (=O) O-R8, -(CR7R7am-C (=O) O- (CR7R7am-OC (=O) -R8, - (CR7R7am-C (=O) O- (CR7R7am-C (=O) O-R8, -(CR7R7am-OC (=O) -R8, or - (CR7R7am-C (=O) -N (R8R8a) ;
    each R7a and R7 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8; or R7a and R7, together with the carbon atom to which they are attached, form a C3-6 cycloalkyl group, C2-9 heterocyclyl goup, or - (C=O) -;
    each R8 and R8a is independently H, C1-4 alkyl, amino-C1-4-alkyl, C1-4 alkoxy, C1-6 alkyl-S (=O) q-, C6-10 aryl, C1-9 heteroaryl, C3-6 cycloalkyl, C2-9 heterocyclyl, C6-10 aryl-C1-6-alkyl, C1-9 heteroaryl-C1-6-alkyl, C3-6 cycloalkyl-C1-4-alkyl, C2-9 heterocyclyl-C1-6-alkyl, C2-9 heterocyclyl-S (=O) q-, C1-9 heteroaryl-S (=O) q-, C3-6 cycloalkyl-S (=O) q-, C6-10 aryl-S (=O) q-, - (CH2m-OH, - (CH2m-C (=O) O- (CH2m-H, or -(CH2m-OC (=O) - (CH2m-H;
    each R9 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkylthio, C3-6 cycloalkyl, -(CR7R7am-C (=O) -N (R8R8a) , or - (CR7R7am-C (=O) O-R8
    R10 is H or deuterium;
    n is 0, 1, 2, 3, 4, or 5;
    each m is independently 0, 1, 2, 3, or 4;
    f is 1, 2, 3, or 4; and
    j is 0, 1, or 2;
    wherein the process comprises the steps of:
    step (A) : reacting an amidine compound of Formula (II) , or a salt thereof
    Figure PCTCN2014092400-appb-100002
    with an aldehyde compound of Formula (III)
    Figure PCTCN2014092400-appb-100003
    and a compound of Formula (IVa)
    Figure PCTCN2014092400-appb-100004
    to obtain a compound of Formula (Va) ,
    Figure PCTCN2014092400-appb-100005
    wherein R3b is methoxy or ethoxy; and
    R3a is H or C1-3 alkyl;
    step (B) : halogenating the compound of Formula (Va) to form a halide; and then reacting the halide with a compound of Formula (VI) , or a salt thereof to obtain a compound of Formula (VIIa) ,
    Figure PCTCN2014092400-appb-100006
    step (C) : forming the compound of Formula (I) or Formula (Ia) from the compound of Formula (VIIa) by  means of a transesterification.
  2. The process of claim 1, the dihydropyrimidine compound having Formula (I-1) , or a tautomer thereof having Formula (Ia-1) ,
    Figure PCTCN2014092400-appb-100007
    wherein, each R6 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, amino, C1-4 alkylamino, C1-4 alkoxy, nitro, triazolyl, tetrazyl, - (CR7R7am-OH, -S (=O) qOR8a, - (CR7R7am-S (=O) qN (R8a2, - (CR7R7at-N (R8a2, -(CR7R7am-C (=O) O-R8, - (CR7R7am-C (=O) O- (CR7R7am-OC (=O) O-R8, -(CR7R7am-C (=O) O- (CR7R7am-OC (=O) -R8, - (CR7R7am-C (=O) O- (CR7R7am-C (=O) O-R8, -(CR7R7am-OC (=O) -R8, or - (CR7R7am-C (=O) -N (R8R8a) ; and
    each R7a and R7 is independently H, C1-4 alkyl, C1-4 haloalkyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8.
  3. The process of claim 2, the dihydropyrimidine compound having Formula (I-2) , or a tautomer thereof having Formula (Ia-2) ,
    Figure PCTCN2014092400-appb-100008
    wherein R1 is F or Cl; and R2 is Cl or Br.
  4. The process of claim 1, 2, or 3, wherein
    R3 is methyl, ethyl, propyl, isopropyl, tert-butyl, or butyl;
    Z is -O-, -S-, or -N (CH3) -;
    Y is -O-, -S-, -S (=O) 2-, or- (CH2q-;
    each R6 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, amino, C1-4 alkylamino, C1-4 alkoxy, nitro, triazolyl, tetrazyl, - (CR7R7am-OH, - (CR7R7am-C (=O) O-R8, - (CR7R7at-N (R8a2, -S (=O) qOR8a, -(CR7R7am-S (=O) qN (R8a2, - (CR7R7am-C (=O) O- (CR7R7am-OC (=O) O-R8,  -(CR7R7am-C (=O) O- (CR7R7am-OC (=O) -R8, - (CR7R7am-C (=O) O- (CR7R7am-C (=O) O-R8, -(CR7R7am-OC (=O) -R8, or - (CR7R7am-C (=O) N (R8R8a) ;
    each R7a and R7 is independently H, methyl, ethyl, trifluoromethyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8
    each R8 and R8a is independently H, methyl, ethyl, propyl, isopropyl, aminomethyl, methoxy, C1-4 alkyl-S (=O) 2-, phenyl, pyridyl, thiazolyl, furanyl, imidazolyl, isoxazolyl, oxazolyl, pyrrolyl, pyrimidinyl, pyridazinyl, diazolyl, triazolyl, tetrazolyl, thienyl, pyrazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, pyrazinyl, pyranyl, triazinyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropyl-S (=O) 2-, cyclobutyl-S (=O) 2-, cyclopentyl-S (=O) 2-, cyclohexyl-S (=O) 2-, naphthyl-S (=O) 2-, phenyl-S (=O) 2-, - (CH2m-OH, -(CH2m-C (=O) O- (CH2m-H, or - (CH2m-OC (=O) - (CH2m-H;
    R3b is methoxy or ethoxy; and
    R3a is H, methyl, ethyl, isopropyl, or propyl.
  5. The process of claim 1, 2, or 3, wherein the reaction in step (A) is performed at a temperature from 25 ℃ to 154℃.
  6. The process of claim 5, wherein the in step (A) is performed at a temperature from 60 ℃ to 100℃.
  7. The process of claim 1, 2, or 3, wherein the step (A) further comprises a step of cooling the resulting compound of Formula (Va) of step (A) to obtain a solid compound of Formula (Va) at a cooling temperature from -40 ℃ to 40 ℃.
  8. The process of claim 7, wherein the cooling temperature is from 25 ℃ to 40℃.
  9. The process of claim 1, 2, or 3, wherein the cooling is performed for a period of from 0 hour to 24 hours. 
  10. The process of claim 9, wherein the cooling is performed for from 1 minute to 24 hours, preferably, the cooling is performed for from 1 hour to 8 hours.
  11. The process of claim 1, 2, or 3, wherein the amidine compound of Formula (II) reacts with the aldehyde compound of Formula (III) and the compound of Formula (IVa) in a first organic solvent, and the first organic solvent is applied in an amount of 0 equivalent to 80 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof.
  12. The process of 11, wherein the first organic solvent a is applied in an amount of 1 equivalent to 20 equivalents per 1 equivalent of the amidine compound by weight of Formula (II) , or a salt thereof.
  13. The process of claim 1, 2, or 3, wherein step (A) further comprises a step of purifying the solid compound of Formula (Va) .
  14. The process of claim 13, wherein the solid compound of Formula (Va) is purified by at least one of the following methods:
    (1) trituration;
    (2) recrystallization;
    (3) washing.
  15. The process of claim 14, wherein the purification is carried out in a second organic solvent.
  16. The process of claim 14, wherein the trituration is carried out at a temperature from -20 ℃ to 50 ℃.
  17. The process of claim 16, wherein the trituration is carried out at a temperature from 0 ℃ to 40 ℃.
  18. The process of claim 14, wherein the recrystallization comprises a crystallization process at a temperature from -30 ℃ to 40 ℃.
  19. The process of claim 18, wherein the crystallization process is carried out at a temperature is from 0 ℃ to 40℃.
  20. The process of claim 14, wherein the recrystallization comprises a crystallization process of from 1 hour to 20 hours.
  21. The process of claim 20, wherein the recrystallization comprises a crystallization process of from 1 hour to 10 hours.
  22. The process of claim 14, wherein the washing is performed at a temperature from 0℃ to 30 ℃.
  23. The process of claim 15, wherein the second organic solvent is applied in an amount of 2 equivalent to 20 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof.
  24. The process of claim 11 or 15, wherein each of the first organic solvent and the second organic solvent is independently a C1-4 alcohol, a C1-4 alcohol-water mixture, acetone, diethyl ether, isopropyl ether, petroleum ether, tetrahydrofuran, acetonitrile, cyclopentane, cyclohexane, n-hexane, a C1-4 haloalkane solvent, ethyl acetate, trifluoroethanol, 2-methoxyethanol, 1, 2-dimethoxyethane, 2-methoxyethyl ether, N, N-dimethyl formamide, N-methylpyrolidone, or a combination thereof.
  25. The process of claim 24, wherein each of the first organic solvent and the second organic solvent is independently methanol, ethanol, n-propanol, i-propanol, n-butanol, tert-butanol, an ethanol-water mixture at a volume ratio of from 10: 90 to 90: 10, acetone, tetrahydrofuran, N-methylpyrolidone, trifluoroethanol, 2-methoxyethanol, 1, 2-dimethoxyethane, 2-methoxyethyl ether, ethyl acetate, glycol, N, N-dimethyl formamide, or a combination thereof.
  26. The process of claim 1, 2, or 3, wherein the halogenating reaction in step (B) is carried out in a third organic solvent, and wherein the third organic solvent is one or more C1-4 alcohols, one or more C1-4 haloalkanes, acetonitrile, isopropyl ether, petroleum ether, toluene, xylene, tetrahydrofuran, ethyl acetate, acetone, or a combination thereof.
  27. The process of claim 26, wherein the third organic solvent is dichloromethane, chloroform, tetrachloromethane, acetonitrile, isopropyl ether, petroleum ether, tetrahydrofuran, methanol, ethanol, propanol, i-propanol, n-butanol, tert-butanol, ethyl acetate, acetone, or a combination thereof.
  28. The process of claim 1, 2, or 3, wherein the halogenating reaction in step (B) is carried out in the presence of a halogenating agent, and wherein the halogenating agent is N-bromosuccinimide, N-chlorosuccinimide, N-iodosuccinimide, 1, 3-dibromo-5, 5-dimethylhydantoin, or 1, 3-dichloro-5, 5-dimethylhydantoin, or a combination thereof.
  29. The process of claim 1, 2, or 3, wherein the transesterification in step (C) is performed in the present of a base, and wherein the base is formed by reacting lithium, sodium, or potassium or a combination thereof with a C1-4 alcohol.
  30. The process of claim 29, wherein the C1-4 alcohol is methanol, ethanol, propanol, i-propanol, n-butanol, i-butanol, or tert-butanol.
  31. The process of claim 29, wherein the lithium, sodium or potassium or a combination thereof is applied in an amount of 2 equivalents to 6 equivalents per 1 equivalent by mole of the compound of Formula (VIIa) .
  32. The process of claim 1, 2, or 3, wherein the compound of Formula (IVa) in step (A) is prepared by a process comprising reacting a compound of Formula (VIIIa) with a compound of Formula (IX) ,
    Figure PCTCN2014092400-appb-100009
  33. A compound having Formula (Va) , or a tautomer thereof having Formula (Va1) , or a salt thereof, or a combination thereof,
    Figure PCTCN2014092400-appb-100010
    wherein each R1 and R2 is independently F, Cl, or Br;
    R3b is methoxy or ethoxy;
    R3a is H or C1-3 alkyl;
    each R9 is independently H, halo, C1-4 alkyl, C1-4 alkylthio, C1-4 haloalkyl, C3-6 cycloalkyl, -(CR7R7am-C (=O) -N (R8R8a) , or - (CR7R7am-C (=O) O-R8
    each R7a and R7 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8;  or R7a and R7, together with the carbon atom to which they are attached, form a C3-6 cycloalkyl group, C2-9 heterocyclyl goup, or - (C=O) -;
    each R8 and R8a is independently H, C1-4 alkyl, amino-C1-4-alkyl, C1-4 alkoxy, C1-6 alkyl-S (=O) q-, C6-10 aryl, C1-9 heteroaryl, C3-6 cycloalkyl, C2-9 heterocyclyl, C6-10 aryl-C1-6-alkyl, C1-9 heteroaryl-C1-6-alkyl, C3-6 cycloalkyl-C1-4-alkyl, C2-9 heterocyclyl-C1-6-alkyl, C2-9 heterocyclyl-S (=O) q-, C1-9 heteroaryl-S (=O) q-, C3-6 cycloalkyl-S (=O) q-, C6-10 aryl-S (=O) q-, - (CH2m-OH, - (CH2m-C (=O) O- (CH2m-H, or -(CH2m-OC (=O) - (CH2m-H;
    each m is independently 0, 1, 2, 3, or 4;
    R10 is H or deuterium;
    f is 1, 2, 3, or 4;
    j is 0, 1, or 2;
    Z is -O-, -S-, -S (=O) t, or -N (R4) -;
    t is 0, 1, or 2; and
    R4 is H or C1-4 alkyl.
  34. The compound of claim 33 having Formula (Va-1) , or a tautomer thereof having Formula (Va1-1) , or a salt thereof, or a combination thereof,
    Figure PCTCN2014092400-appb-100011
  35. The compound of claim 33 or 34 having Formula (Va-2) , or a tautomer thereof having Formula (Va1-2) , or a salt thereof, or a combination thereof,
    Figure PCTCN2014092400-appb-100012
    wherein R1 is F or Cl; and R2 is Cl or Br;
    Z is -O-, -S-, or -N (CH3) -;
    R3b is methoxy or ethoxy; and
    R3a is H, methyl, ethyl, isopropyl, or propyl.
  36. A process for preparing a dihydropyrimidine compound having Formula (I) , or a tautomer thereof having Formula (Ia) ,
    Figure PCTCN2014092400-appb-100013
    wherein each R1 and R2 is independently F, Cl, or Br;
    R3 is C1-4 alkyl;
    Z is -O-, -S-, -S (=O) t-, or -N (R4) -;
    Y is -O-, -S-, -S (=O) t-, - (CH2) q-, or -N (R5) -;
    each t and q is independently 0, 1, or 2;
    each of R4 and R5 is independently H or C1-4 alkyl;
    each R6 is independently H, deuterium, halo, C1-4 alkyl, C1-4 haloalkyl, amino, C1-4 alkylamino, C1-4 alkoxy, nitro, triazolyl, tetrazyl, - (CR7R7am-OH, - (CR7R7am-C (=O) O-R8, - (CR7R7at-N (R8a2, -S (=O) qOR8a, -(CR7R7am-S (=O) qN (R8a2, - (CR7R7am-C (=O) O- (CR7R7am-OC (=O) O-R8, -(CR7R7am-C (=O) O- (CR7R7am-OC (=O) -R8, - (CR7R7am-C (=O) O- (CR7R7am-C (=O) O-R8, -(CR7R7am-OC (=O) -R8, or - (CR7R7am-C (=O) N (R8R8a) ;
    each R7a and R7 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8; or R7a and R7, together with the carbon atom to which they are attached, form a C3-6 cycloalkyl group, C2-9 heterocyclyl goup, or - (C=O) -;
    each R8 and R8a is independently H, C1-4 alkyl, amino-C1-4-alkyl, C1-4 alkoxy, C1-6 alkyl-S (=O) q-, C6-10 aryl, C1-9 heteroaryl, C3-6 cycloalkyl, C2-9 heterocyclyl, C6-10 aryl-C1-6-alkyl, C1-9 heteroaryl-C1-6-alkyl, C3-6 cycloalkyl-C1-4-alkyl, C2-9 heterocyclyl-C1-6-alkyl, C2-9 heterocyclyl-S (=O) q-, C1-9 heteroaryl-S (=O) q-, C3-6 cycloalkyl-S (=O) q-, C6-10 aryl-S (=O) q-, - (CH2m-OH, - (CH2m-C (=O) O- (CH2m-H, or -(CH2m-OC (=O) - (CH2m-H;
    each R9 is independently H, halo, C1-4 alkyl, C1-4 alkylthio, C1-4 haloalkyl, C3-6 cycloalkyl, -(CR7R7am-C (=O) -N (R8R8a) , or - (CR7R7am-C (=O) O-R8
    R10 is H or deuterium;
    n is 0, 1, 2, 3, 4, or 5;
    each m is independently 0, 1, 2, 3, or 4;
    f is 1, 2, 3, or 4; and
    j is 0, 1, or 2;
    wherein the process comprises the steps of:
    step (1) : reacting an amidine compound of Formula (II) , or a salt thereof
    Figure PCTCN2014092400-appb-100014
    with an aldehyde compound of Formula (III)
    Figure PCTCN2014092400-appb-100015
    and a compound of Formula (IVa)
    Figure PCTCN2014092400-appb-100016
    to obtain a compound (Va) ,
    Figure PCTCN2014092400-appb-100017
    step (2) : forming a compound of Formula (X) from a compound of Formula (Va) by means of a transesterification,
    Figure PCTCN2014092400-appb-100018
    wherein R3b is methoxy or ethoxy; and
    R3a is H or C1-3 alkyl; and
    step (3) : halogenating the compound of Formula (X) to form a halide; and then reacting the halide with a compound of Formula (VI) , or a salt thereof to obtain a compound of Formula (I) or Formula (Ia) ,
    Figure PCTCN2014092400-appb-100019
  37. The process of claim 36, wherein the dihydropyrimidine compound having Formula (I-1) , or a tautomer thereof having Formula (Ia-1) ,
    Figure PCTCN2014092400-appb-100020
    wherein, each R6 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, amino, C1-4 alkylamino, C1-4 alkoxy, nitro, triazolyl, tetrazyl, - (CR7R7am-OH, - (CR7R7am-C (=O) O-R8, - (CR7R7at-N (R8a2, -S (=O) qOR8a, -(CR7R7am-S (=O) qN (R8a2, - (CR7R7am-C (=O) O- (CR7R7am-OC (=O) O-R8, -(CR7R7am-C (=O) O- (CR7R7am-OC (=O) -R8, - (CR7R7am-C (=O) O- (CR7R7am-C (=O) O-R8, -(CR7R7am-OC (=O) -R8, or - (CR7R7am-C (=O) N (R8R8a) ; and
    each R7a and R7 is independently H, C1-4 alkyl, C1-4 haloalkyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8.
  38. The process of claim 37, the dihydropyrimidine compound having Formula (I-2) , or a tautomer thereof having Formula (Ia-2) ,
    Figure PCTCN2014092400-appb-100021
    wherein R1 is F or Cl; and R2 is Cl or Br.
  39. The process of claim 36, 37, or 38, wherein
    R3 is methyl, ethyl, propyl, isopropyl, tert-butyl, or butyl;
    Z is -O-, -S-, or -N (CH3) -;
    Y is -O-, -S-, -S (=O) 2-, or- (CH2q-;
    each R6 is independently H, halo, C1-4 alkyl, C1-4 haloalkyl, amino, C1-4 alkylamino, C1-4 alkoxy, nitro, triazolyl, tetrazyl, - (CR7R7am-OH, -S (=O) qOR8a, - (CR7R7am-S (=O) qN (R8a2, - (CR7R7at-N (R8a2, -(CR7R7am-C (=O) O-R8, - (CR7R7am-C (=O) O- (CR7R7am-OC (=O) O-R8, -(CR7R7am-C (=O) O- (CR7R7am-OC (=O) -R8, - (CR7R7am-C (=O) O- (CR7R7am-C (=O) O-R8,  -(CR7R7am-OC (=O) -R8, or - (CR7R7am-C (=O) -N (R8R8a) ;
    each R7a and R7 is independently H, methyl, ethyl, trifluoromethyl, - (CH2m-OH, or - (CH2m-C (=O) O-R8
    each R8 and R8a is independently H, methyl, ethyl, propyl, isopropyl, aminomethyl, methoxy, C1-4 alkyl-S (=O) 2-, phenyl, pyridyl, thiazolyl, furanyl, imidazolyl, isoxazolyl, oxazolyl, pyrrolyl, pyrimidinyl, pyridazinyl, diazolyl, triazolyl, tetrazolyl, thienyl, pyrazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, pyrazinyl, pyranyl, triazinyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropyl-S (=O) 2-, cyclobutyl-S (=O) 2-, cyclopentyl-S (=O) 2-, cyclohexyl-S (=O) 2-, naphthyl-S (=O) 2-, phenyl-S (=O) 2-, - (CH2m-OH, -(CH2m-C (=O) O- (CH2m-H, or - (CH2m-OC (=O) - (CH2m-H;
    R3b is methoxy or ethoxy; and
    R3a is H, methyl, ethyl, isopropyl, or propyl.
  40. The process of claim 36, 37, or 38, wherein the reaction in step (1) is performed at a temperature from 25 ℃ to 154 ℃.
  41. The process of claim 40, wherein the reaction in step (1) is performed at a temperature from 60 ℃ to 100 ℃.
  42. The process of claim 36, 37, or 38, wherein the step (1) further comprises a step of cooling the resulting compound of Formula (Va) of step (A) to obtain a solid compound of Formula (Va) at a cooling temperature from -40 ℃ to 40 ℃.
  43. The process of claim 42, wherein the cooling temperature is from 25 ℃ to 40 ℃.
  44. The process of claim 42, wherein the cooling is performed for a period of from 0 hour to 24 hours.
  45. The process of claim 44, wherein the cooling is performed for from 1 minute to 24 hours, preferably, the cooling is performed for from 1 hour to 8 hours.
  46. The process of claim 36, 37, or 38, wherein the amidine compound of Formula (II) reacts with the aldehyde compound of Formula (III) and the compound of Formula (IVa) in a first organic solvent, the first organic solvent is applied in an amount of 1 equivalent to 80 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof.
  47. The process of 46, wherein the first organic solvent is applied in an amount of 1 equivalent to 20 equivalents per 1 equivalent of the amidine compound by weight of Formula (II) , or a salt thereof.
  48. The process of claim 42, wherein the step (1) further comprises a step of purifying the solid compound of Formula (Va) .
  49. The process of claim 48, wherein the solid compound of Formula (Va) is purified by at least one of the following methods:
    (1) trituration;
    (2) recrystallization;
    (3) washing.
  50. The process of claim 49, wherein the purification is carried out in a second organic solvent.
  51. The process of claim 49, wherein the trituration is carried out at a temperature from -20 ℃ to 50 ℃.
  52. The process of claim 51, wherein the trituration is carried out at a temperature from 0 ℃ to 40 ℃.
  53. The process of claim 49, wherein the recrystallization comprises a crystallization process at a temperature from -30 ℃ to 40 ℃.
  54. The process of claim 53, wherein the crystallization process is carried out at a temperature from 0 ℃ to 40 ℃.
  55. The process of claim 49, wherein the recrystallization comprises a crystallization process of from 1 hour to 20 hours.
  56. The process of claim 55, wherein the recrystallization comprises a crystallization process of from 1 hour to 10 hours.
  57. The process of claim 49, wherein the washing is performed at a temperature from 0℃ to 30 ℃.
  58. The process of claim 50, wherein the second organic solvent is applied in an amount of 2 equivalent to 20 equivalents per 1 equivalent by weight of the amidine compound of Formula (II) , or a salt thereof.
  59. The process of claim 46, or 50, wherein each of the first organic solvent and the second organic solvent is independently a C1-4 alcohol, a C1-4 alcohol-water mixture, acetone, diethyl ether, isopropyl ether, petroleum ether, tetrahydrofuran, acetonitrile, cyclopentane, cyclohexane, n-hexane, C1-4 haloalkanes solvent, ethyl acetate, trifluoroethanol, 2-methoxyethanol, 1, 2-dimethoxyethane, 2-methoxyethyl ether, N, N-dimethyl formamide, N-methylpyrolidone, or a combination thereof.
  60. The process of claim 59, wherein each of the first organic solvent and the second organic solvent is independently methanol, ethanol, n-propanol, i-propanol, n-butanol, tert-butanol, an ethanol-water mixture at a volume ratio from 10: 90 to 90: 10, acetone, tetrahydrofuran, N-methylpyrolidone, trifluoroethanol, 2-methoxyethanol, 1, 2-dimethoxyethane, 2-methoxyethyl ether, ethyl acetate, glycol, N, N-dimethyl formamide, or a combination thereof.
  61. The process of claim 36, 37, or 38, wherein the transesterification in step (2) is performed in the present of a base, and wherein the base is formed by reacting lithium, sodium, or potassium or a combination thereof with a C1-4 alcohol.
  62. The process of claim 61, wherein the C1-4 alcohol is methanol, ethanol, propanol, i-propanol, n-butanol, i-butanol, or tert-butanol.
  63. The process of claim 61, wherein the lithium, sodium, potassium or a combination thereof is applied in an amount of 2 equivalents to 8 equivalents per 1 equivalent by mole of the compound of Formula (Va) .
  64. The process of claim 36, 37, or 38, wherein the halogenating reaction in step (3) is carried out in a forth organic solvent, and wherein the organic solvent is one or more C1-4 alcohols, one or more C1-4 haloalkanes, ethyl acetate, acetonitrile, isopropyl ether, petroleum ether, toluene, xylene, tetrahydrofuran, acetone, or a combination thereof.
  65. The process of claim 64, wherein the forth organic solvent is methanol, ethanol, propanol, i-propanol, n-butanol, tert-butanol, dichloromethane, chloroform, tetrachloromethane, ethyl acetate, acetonitrile, isopropyl  ether, petroleum ether, tetrahydrofuran, acetone, or a combination thereof.
  66. The process of claim 36, 37, or 38, wherein the halogenating reaction in step (3) is carried out in the presence of a halogenating agent, and wherein the halogenating agent is N-bromosuccinimide, N-chlorosuccinimide, N-iodosuccinimide, 1, 3-dibromo-5, 5-dimethylhydantoin, 1,3-dichloro-5, 5-dimethylhydantoin, or a combination thereof.
PCT/CN2014/092400 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediates thereof WO2015078391A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES14865774.5T ES2688600T3 (en) 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediates thereof
AU2014356984A AU2014356984B2 (en) 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediates thereof
EP14865774.5A EP3074393B1 (en) 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediates thereof
CA2927373A CA2927373C (en) 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediates thereof
RU2016124161A RU2688193C1 (en) 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediate compounds thereof
KR1020167017092A KR102284938B1 (en) 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediates thereof
JP2016531043A JP6434511B2 (en) 2013-11-27 2014-11-27 Method for producing dihydropyrimidine derivatives and intermediates thereof
US15/023,676 US9617252B2 (en) 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediates thereof
SG11201601813UA SG11201601813UA (en) 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediates thereof
ZA2016/01737A ZA201601737B (en) 2013-11-27 2016-03-14 Processes for preparing dihydropyrimidine derivatives and intermediates thereof
HK16112468.0A HK1224287A1 (en) 2013-11-27 2016-10-28 Processes for preparing dihydropyrimidine derivatives and intermediates thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310636920.8 2013-11-27
CN201310636920 2013-11-27
CN201410121009.8 2014-03-27
CN201410121009 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015078391A1 true WO2015078391A1 (en) 2015-06-04

Family

ID=53198382

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2014/092401 WO2015078392A1 (en) 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediates thereof
PCT/CN2014/092400 WO2015078391A1 (en) 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediates thereof
PCT/CN2014/092402 WO2015078393A1 (en) 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediates thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092401 WO2015078392A1 (en) 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediates thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092402 WO2015078393A1 (en) 2013-11-27 2014-11-27 Processes for preparing dihydropyrimidine derivatives and intermediates thereof

Country Status (14)

Country Link
US (3) US9643962B2 (en)
EP (3) EP3074393B1 (en)
JP (2) JP6434511B2 (en)
KR (2) KR102284944B1 (en)
CN (4) CN104672224B (en)
AU (3) AU2014356985B2 (en)
CA (1) CA2927373C (en)
ES (1) ES2688600T3 (en)
HK (1) HK1224287A1 (en)
MY (1) MY172391A (en)
RU (2) RU2697707C9 (en)
SG (1) SG11201601813UA (en)
WO (3) WO2015078392A1 (en)
ZA (1) ZA201601737B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160347746A1 (en) * 2014-03-28 2016-12-01 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals
JP2016538291A (en) * 2013-11-27 2016-12-08 サンシャイン・レイク・ファーマ・カンパニー・リミテッドSunshine Lake Pharma Co.,Ltd. Method for producing dihydropyrimidine derivatives and intermediates thereof
WO2018090862A1 (en) 2016-11-18 2018-05-24 四川科伦博泰生物医药股份有限公司 Dihydropyrimidine compound and preparation method and use thereof
WO2019218883A1 (en) 2018-05-16 2019-11-21 四川科伦博泰生物医药股份有限公司 Solid form of dihydropyrimidine compound and preparation method therefor and use thereof
US11166954B2 (en) 2016-11-18 2021-11-09 Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. Dihydropyrimidine compound and preparation method and use thereof

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014352404B2 (en) * 2013-11-19 2018-07-19 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals
WO2016161268A1 (en) 2015-04-01 2016-10-06 Enanta Pharmaceuticals, Inc. Hepatitis b antviral agents
US10738035B2 (en) 2015-05-13 2020-08-11 Enanta Pharmaceuticals, Inc. Hepatitis B antiviral agents
WO2017011552A1 (en) 2015-07-13 2017-01-19 Enanta Pharmaceuticals, Inc. Hepatitis b antiviral agents
US10301255B2 (en) 2015-07-22 2019-05-28 Enanta Pharmaceuticals, Inc. Hepatitis B antiviral agents
WO2017136403A1 (en) 2016-02-02 2017-08-10 Enanta Pharmaceuticals, Inc. Hepatitis b antiviral agents
PL3426245T3 (en) 2016-03-07 2023-05-22 Enanta Pharmaceuticals, Inc. Hepatitis b antiviral agents
CN107200733A (en) * 2016-03-18 2017-09-26 广东东阳光药业有限公司 The crystal formation of dihydropyrimidine derivatives and its application in medicine
EP3468561A4 (en) 2016-06-10 2019-12-04 Enanta Pharmaceuticals, Inc. Hepatitis b antiviral agents
CN107674072B (en) * 2016-08-01 2020-11-24 广东东阳光药业有限公司 Process for producing dihydropyrimidine derivative and acid adduct thereof
AU2018291688B2 (en) 2017-06-27 2022-02-03 Janssen Pharmaceutica Nv Heteroaryldihydropyrimidine derivatives and methods of treating hepatitis B infections
CN107501257B (en) * 2017-08-17 2020-05-29 山东大学 Dihydropyrimidine-triazole derivative and preparation method and application thereof
JP7221277B2 (en) 2017-08-28 2023-02-13 エナンタ ファーマシューティカルズ インコーポレイテッド Hepatitis B antiviral agent
JP7202373B2 (en) * 2017-10-18 2023-01-11 サンシャイン・レイク・ファーマ・カンパニー・リミテッド Dihydropyrimidine compounds and their use in medicine
US10723733B2 (en) 2017-12-06 2020-07-28 Enanta Pharmaceuticals, Inc. Hepatitis B antiviral agents
US10428070B2 (en) 2017-12-06 2019-10-01 Enanta Pharmaceuticals, Inc. Hepatitis B antiviral agents
CN108117535A (en) * 2017-12-20 2018-06-05 淮阴师范学院 The preparation method of naphtho- [2,3-b] furans -4,9- derovatives
WO2019143902A2 (en) 2018-01-22 2019-07-25 Enanta Pharmaceuticals, Inc. Substituted heterocycles as antiviral agents
WO2019191166A1 (en) 2018-03-29 2019-10-03 Enanta Pharmaceuticals, Inc. Hepatitis b antiviral agents
US11053235B2 (en) 2018-08-09 2021-07-06 Janssen Sciences Ireland Unlimited Company Substituted 1,4-dihydropyrimidines for the treatment of HBV infection or HBV-induced diseases
WO2020061435A1 (en) 2018-09-21 2020-03-26 Enanta Pharmaceuticals, Inc. Functionalized heterocycles as antiviral agents
BR112021009854A2 (en) 2018-11-21 2021-08-17 Enanta Pharmaceuticals, Inc. heterocycles functionalized as antiviral agents
US11236111B2 (en) 2019-06-03 2022-02-01 Enanta Pharmaceuticals, Inc. Hepatitis B antiviral agents
US11760755B2 (en) 2019-06-04 2023-09-19 Enanta Pharmaceuticals, Inc. Hepatitis B antiviral agents
WO2020247575A1 (en) 2019-06-04 2020-12-10 Enanta Pharmaceuticals, Inc. Hepatitis b antiviral agents
US11738019B2 (en) 2019-07-11 2023-08-29 Enanta Pharmaceuticals, Inc. Substituted heterocycles as antiviral agents
US11236108B2 (en) 2019-09-17 2022-02-01 Enanta Pharmaceuticals, Inc. Functionalized heterocycles as antiviral agents
US11802125B2 (en) 2020-03-16 2023-10-31 Enanta Pharmaceuticals, Inc. Functionalized heterocyclic compounds as antiviral agents
WO2022052923A1 (en) * 2020-09-08 2022-03-17 和博医药有限公司 Dihydropyrimidine compound and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054329A1 (en) 1998-04-18 1999-10-28 Bayer Aktiengesellschaft Novel 2-heterocyclically substituted dihydropyrimidines
WO2001068641A1 (en) 2000-03-17 2001-09-20 Bayer Aktiengesellschaft 6-aminoalkyl-dihydropyrimidines and the use thereof as medicaments against viral diseases
WO2008009210A1 (en) 2006-07-10 2008-01-24 Beijing Molecule Science And Technology Co., Ltd Optical pure dihydropyrimidine compounds, their uses in the manufacture of a medicamnent for the treatment or the prevention of virosis diseases
WO2008154817A1 (en) 2007-06-18 2008-12-24 Zhang, Zhongneng Bromo-phenyl substituted thiazolyl dihydropyrimidines
WO2010069147A1 (en) 2008-12-17 2010-06-24 张中能 Dihydropyrimidine derivatives, compositions thereof and their use
WO2014029193A1 (en) 2012-08-24 2014-02-27 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202654A3 (en) 1985-05-20 1987-12-16 E.R. Squibb & Sons, Inc. 5-carboxy-1,4-dihydropyrimidine derivatives
GB8906168D0 (en) 1989-03-17 1989-05-04 Pfizer Ltd Therapeutic agents
SE9702564D0 (en) 1997-07-02 1997-07-02 Astra Ab New compounds
SE9702563D0 (en) 1997-07-02 1997-07-02 Astra Ab Compounds
DE19817264A1 (en) 1998-04-18 1999-10-21 Bayer Ag New dihydropyrimidine derivatives and their corresponding mesomers useful as antiviral agents
DE19817265A1 (en) 1998-04-18 1999-10-21 Bayer Ag Treating hepatitis B using new or known dihydropyrimidine derivative antiviral agents
WO2000058302A1 (en) 1999-03-25 2000-10-05 Bayer Aktiengesellschaft Dihydropyrimidines and their use in the treatment of hepatitis b
DE10012549A1 (en) 2000-03-15 2001-09-20 Bayer Ag New heterocyclic-substituted dihydropyrimidine derivatives useful for treatment of viral infections, especially hepatitis B infections
DE10012823A1 (en) 2000-03-16 2001-09-20 Bayer Ag New alkyl-6-aminoalkyl-dihydropyrimidine-5-carboxylate derivatives, useful for the treatment of viral, especially hepatitis B, infections
DE10012824A1 (en) 2000-03-16 2001-09-20 Bayer Ag New 6-hydroxyhydrocarbyl or 6-thiohydrocarbyl-dihydropyrimidine-5-carboxylic acid derivatives, useful for the treatment of viral infections, especially hepatitis B infections
DE10013125A1 (en) 2000-03-17 2001-09-20 Bayer Ag New 4-dihalophenyl-dihydropyrimidine-5-carboxylate ester derivatives, useful as antiviral agents having strong activity against hepatitis B virus and low cytotoxicity
DE10125131A1 (en) * 2001-05-23 2002-12-05 Bayer Ag Process for the cleavage of the methyl 4- (2-chloro-4-fluorophenyl) -2- (3,5-difluoro-2-pyridinyl) -6-methyl-1,4-dihydro-5-pyrmidinecarboxylate racemate
WO2005007124A2 (en) 2003-07-23 2005-01-27 Bristol-Myers Squibb Company Substituted dihydropyrimidine inhibitors of calcium channel function
US8101615B2 (en) * 2004-02-26 2012-01-24 Bayer Pharma Aktiengesellschaft 1,4-diaryl-dihydropyrimidin-2-ones and their use as human neutrophil elastase inhibitors
CN101104617B (en) 2006-07-10 2010-06-23 北京摩力克科技有限公司 Dihydropyrimidine compounds and use of the same in preparing medicament for curing and preventing virosis
CN101225084A (en) 2007-01-16 2008-07-23 北京摩力克科技有限公司 Dihydropyrimidine compound and use thereof in preparation of medicine treating and preventing virus diseases
CN100453542C (en) 2007-04-30 2009-01-21 广东东阳光药业有限公司 Resolution method for 2-hetero ring substituted dihydropyrimidine racemic compounds
CN101054331A (en) 2007-05-29 2007-10-17 广东东阳光药业有限公司 Racemization method for asymmetry optical activity 2-heterocycle substituted dihydropyrimidines compound
WO2008154820A1 (en) 2007-06-18 2008-12-24 Zhang, Zhongneng Carbethoxy-substituted thiazolyl dihydropyrimidines
CN101328169B (en) 2007-06-18 2011-05-25 张中能 Diethylcarbamyl-substituted thiazole dihydropyrimidine
CN101328170B (en) 2007-06-18 2011-09-14 张中能 Fluorophenyl-substituted thiazole dihydropyrimidine
CN101468986B (en) 2007-12-26 2010-12-29 香港南北兄弟国际投资有限公司 Method for splitting dihydropyrimidine racemic compound
CN101468987B (en) 2007-12-26 2011-06-08 香港南北兄弟国际投资有限公司 Method for splitting 2-heterocycle substituted dihydropyrimidine racemic compound
CN101744823B (en) 2008-12-17 2013-06-19 广东东阳光药业有限公司 Solid dispersion of dihydropyrimidine compounds and preparation thereof for medical purpose
RU2011143740A (en) * 2009-03-30 2013-05-10 Астеллас Фарма Инк. Compound pyrimidine
CN101575318B (en) 2009-06-25 2012-02-08 中国人民解放军军事医学科学院毒物药物研究所 Novel dihydropyridine compound and application thereof on preparing drugs for curing and/or preventing virus diseases
US9487534B2 (en) 2011-08-02 2016-11-08 Scripps Research Institute, A Not-For-Profit Public Benefit Corporation Of California Modulators of virus assembly as antiviral agents
EA026977B1 (en) 2012-01-06 2017-06-30 Янссен Сайенсиз Айрлэнд Юси 4,4-disubstituted 1,4-dihydropyrimidines and the use thereof as medicaments for the treatment of hepatitis b
KR20140143160A (en) * 2012-03-31 2014-12-15 에프. 호프만-라 로슈 아게 Novel 4-methyl-dihydropyrimidines for the treatment and prophylaxis of hepatitis b virus infection
US20130267517A1 (en) 2012-03-31 2013-10-10 Hoffmann-La Roche Inc. Novel 4-methyl-dihydropyrimidines for the treatment and prophylaxis of hepatitis b virus infection
WO2013173736A1 (en) * 2012-05-17 2013-11-21 Array Biopharma Inc. Process for making hydroxylated cyclopentylpyrimidine compounds
CN103664897B (en) 2012-09-01 2018-04-03 广东东阳光药业有限公司 Dihydropyrimidines and its application in medicine
CN103664925B (en) 2012-09-07 2018-01-23 广东东阳光药业有限公司 The Dihydropyrimidines of heteroaryl substitution and its application in medicine
SG11201500377UA (en) * 2012-09-10 2015-02-27 Hoffmann La Roche 6-amino acid heteroaryldihydropyrimidines for the treatment and prophylaxis of hepatitis b virus infection
CN103664899B (en) 2012-09-11 2017-06-16 广东东阳光药业有限公司 The Dihydropyrimidines of heteroaryl substitution and its application in medicine
CA2889892A1 (en) 2012-11-09 2014-05-15 Indiana University Research And Technology Corporation Alternative uses for hbv assembly effectors
CA2907490A1 (en) 2013-03-20 2014-09-25 Indiana University Research And Technology Corporation Fluorescent-hap: a diagnostic stain for hbv cores in cells
JP6533217B2 (en) 2013-05-17 2019-06-19 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 6-Bridged Heteroaryldihydropyrimidines for the Treatment and Prevention of Hepatitis B Virus Infection
AU2014352404B2 (en) 2013-11-19 2018-07-19 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals
CN104650069B (en) 2013-11-19 2019-04-19 广东东阳光药业有限公司 4- methyl Dihydropyrimidines and its application in drug
CN104650070B (en) 2013-11-25 2018-09-14 广东东阳光药业有限公司 Dihydropyrimidines and its application in drug
RU2697707C9 (en) * 2013-11-27 2019-10-03 Саншайн Лейк Фарма Ко., Лтд. Processes for preparing dihydropyrimidine derivatives and intermediate products thereof
EP3114128B1 (en) 2014-03-07 2019-01-02 F. Hoffmann-La Roche AG Novel 6-fused heteroaryldihydropyrimidines for the treatment and prophylaxis of hepatitis b virus infection
EP3122747B1 (en) 2014-03-28 2020-05-20 North & South Brother Pharmacy Investment Company Limited Dihydropyrimidine compounds and their application in pharmaceuticals
CA2950807C (en) 2014-05-30 2022-05-31 Medshine Discovery Inc. Dihydropyrimido fused ring derivative as hbv inhibitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054329A1 (en) 1998-04-18 1999-10-28 Bayer Aktiengesellschaft Novel 2-heterocyclically substituted dihydropyrimidines
WO2001068641A1 (en) 2000-03-17 2001-09-20 Bayer Aktiengesellschaft 6-aminoalkyl-dihydropyrimidines and the use thereof as medicaments against viral diseases
WO2008009210A1 (en) 2006-07-10 2008-01-24 Beijing Molecule Science And Technology Co., Ltd Optical pure dihydropyrimidine compounds, their uses in the manufacture of a medicamnent for the treatment or the prevention of virosis diseases
WO2008154817A1 (en) 2007-06-18 2008-12-24 Zhang, Zhongneng Bromo-phenyl substituted thiazolyl dihydropyrimidines
CN101328171A (en) * 2007-06-18 2008-12-24 张中能 Bromophenyl-substituted thiazole dihydropyrimidine
WO2010069147A1 (en) 2008-12-17 2010-06-24 张中能 Dihydropyrimidine derivatives, compositions thereof and their use
WO2014029193A1 (en) 2012-08-24 2014-02-27 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ELIEL ET AL.: "Stereochemistry of Organic Compounds", 1994, JOHN WILEY & SONS, INC.
PARKER ET AL.: "McGraw-Hill Dictionary of Chemical Terms", 1984, MCGRAW-HILL BOOK COMPANY
SCIENCE, vol. 299, 2003, pages 893 - 896

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016538291A (en) * 2013-11-27 2016-12-08 サンシャイン・レイク・ファーマ・カンパニー・リミテッドSunshine Lake Pharma Co.,Ltd. Method for producing dihydropyrimidine derivatives and intermediates thereof
JP2016539940A (en) * 2013-11-27 2016-12-22 サンシャイン・レイク・ファーマ・カンパニー・リミテッドSunshine Lake Pharma Co.,Ltd. Method for producing dihydropyrimidine derivatives and intermediates thereof
US20160347746A1 (en) * 2014-03-28 2016-12-01 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals
US9771358B2 (en) * 2014-03-28 2017-09-26 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals
AU2015236982B2 (en) * 2014-03-28 2017-12-14 Sunshine Lake Pharma Co., Ltd. Dihydropyrimidine compounds and their application in pharmaceuticals
WO2018090862A1 (en) 2016-11-18 2018-05-24 四川科伦博泰生物医药股份有限公司 Dihydropyrimidine compound and preparation method and use thereof
US10696669B2 (en) 2016-11-18 2020-06-30 Sichuan Kelun-Biotech Biopharmaceuticals Co., Ltd. Dihydropyrimidine compound and preparation method and use thereof
US11166954B2 (en) 2016-11-18 2021-11-09 Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. Dihydropyrimidine compound and preparation method and use thereof
WO2019218883A1 (en) 2018-05-16 2019-11-21 四川科伦博泰生物医药股份有限公司 Solid form of dihydropyrimidine compound and preparation method therefor and use thereof
EP3766880A4 (en) * 2018-05-16 2021-08-11 Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. Solid form of dihydropyrimidine compound and preparation method therefor and use thereof
US11434235B2 (en) 2018-05-16 2022-09-06 Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. Solid form of dihydropyrimidine compound and preparation method therefor and use thereof

Also Published As

Publication number Publication date
KR102284938B1 (en) 2021-08-02
CN104672223A (en) 2015-06-03
CN104672222A (en) 2015-06-03
ZA201601737B (en) 2019-09-25
EP3074393B1 (en) 2018-08-15
AU2014356985B2 (en) 2018-06-21
CN104672225B (en) 2019-02-12
AU2014356984A1 (en) 2016-04-07
AU2014356986B2 (en) 2018-01-04
EP3074393A4 (en) 2017-04-19
CN104672225A (en) 2015-06-03
WO2015078392A1 (en) 2015-06-04
JP2016538291A (en) 2016-12-08
EP3074394A1 (en) 2016-10-05
RU2016124161A (en) 2017-12-29
RU2688193C1 (en) 2019-05-21
WO2015078393A1 (en) 2015-06-04
MY172391A (en) 2019-11-22
CA2927373C (en) 2021-07-13
CN104672222B (en) 2018-03-13
RU2016124160A (en) 2018-01-12
EP3074392A4 (en) 2017-04-19
CN104672223B (en) 2018-03-13
ES2688600T3 (en) 2018-11-05
EP3074394B1 (en) 2019-02-20
HK1224287A1 (en) 2017-08-18
AU2014356985A1 (en) 2016-04-07
EP3074392B1 (en) 2019-04-03
US9573941B2 (en) 2017-02-21
CN104672224B (en) 2019-06-25
CA2927373A1 (en) 2015-06-04
JP6382977B2 (en) 2018-08-29
AU2014356986A1 (en) 2016-04-07
SG11201601813UA (en) 2016-04-28
KR102284944B1 (en) 2021-08-03
EP3074393A1 (en) 2016-10-05
EP3074394A4 (en) 2017-04-26
US20160264563A1 (en) 2016-09-15
JP2016539940A (en) 2016-12-22
US20160244438A1 (en) 2016-08-25
AU2014356984B2 (en) 2018-01-04
US9617252B2 (en) 2017-04-11
KR20160089512A (en) 2016-07-27
EP3074392A1 (en) 2016-10-05
RU2697707C1 (en) 2019-08-19
US20160264562A1 (en) 2016-09-15
RU2697707C9 (en) 2019-10-03
JP6434511B2 (en) 2018-12-05
CN104672224A (en) 2015-06-03
US9643962B2 (en) 2017-05-09
KR20160089513A (en) 2016-07-27

Similar Documents

Publication Publication Date Title
EP3074393A1 (en) Processes for preparing dihydropyrimidine derivatives and intermediates thereof
WO2018045911A1 (en) Dihydropyrimidines, preparation method and use thereof
JP2017512789A (en) Dihydropyrimidine compounds and their application in medicine
EP3092236A2 (en) Novel glutaminase inhibitors
EP3426244B1 (en) 3-phosphoglycerate dehydrogenase inhibitors and uses thereof
EP3658554A1 (en) Dihydropyrimidine compounds and uses thereof in medicine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865774

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014865774

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865774

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15023676

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014356984

Country of ref document: AU

Date of ref document: 20141127

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2927373

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016531043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167017092

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016124161

Country of ref document: RU

Kind code of ref document: A