WO2015072458A1 - Ni-Cr合金材およびそれを用いた油井用継目無管 - Google Patents
Ni-Cr合金材およびそれを用いた油井用継目無管 Download PDFInfo
- Publication number
- WO2015072458A1 WO2015072458A1 PCT/JP2014/079868 JP2014079868W WO2015072458A1 WO 2015072458 A1 WO2015072458 A1 WO 2015072458A1 JP 2014079868 W JP2014079868 W JP 2014079868W WO 2015072458 A1 WO2015072458 A1 WO 2015072458A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- content
- rem
- alloy
- alloy material
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/02—Rigid pipes of metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
Definitions
- the present invention relates to a Ni—Cr alloy material and a seamless oil country tubular goods using the same. More specifically, the present invention is excellent in hot workability and impact resistance, and has corrosion resistance (in particular, stress corrosion cracking in an environment containing a large amount of hydrogen sulfide at a high temperature exceeding 200 ° C.). The present invention relates to a high-strength Ni—Cr alloy material and an oil well seamless pipe using the same.
- “High strength” in this specification means that the yield strength (0.2% proof stress) is 965 MPa (140 ksi) or more.
- “Oil well tube” is described in the definition column of “steel pipe” for “oil well”, “tubing” and “drilling”, for example, number 3514 of JIS G 0203 (2009). As mentioned, it is a general term for casings, tubing, and drill pipes used for drilling oil or gas wells, extracting crude oil or natural gas, and the like.
- the “oil well seamless pipe” is a seamless pipe that can be used, for example, for drilling of an oil well or a gas well, extraction of crude oil or natural gas, and the like.
- Petroleum and natural gas contain corrosive substances such as carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), and chloride ions (Cl ⁇ ). Therefore, oil well pipe materials used for oil or natural gas mining are required to have excellent corrosion resistance against these corrosive substances.
- CO 2 carbon dioxide
- H 2 S hydrogen sulfide
- Cl ⁇ chloride ions
- oil well pipe materials used for oil or natural gas mining are required to have excellent corrosion resistance against these corrosive substances.
- the main corrosion factor of the oil well pipe is stress corrosion cracking. Therefore, high stress corrosion cracking resistance is required for oil country tubular goods used in an environment containing high temperature and hydrogen sulfide.
- Oil well pipe materials used in such wells are required to have high strength while maintaining corrosion resistance to carbon dioxide, hydrogen sulfide, and chloride ions. For this reason, in recent years, there has been a growing demand for high-strength well pipes having a high yield strength (0.2% yield strength) of 965 MPa or more.
- Ni—Cr alloy materials as disclosed in Patent Documents 1 to 3 has been attempted in the above severe corrosive environment where low alloy steel, martensitic stainless steel and duplex stainless steel cannot be applied. It was.
- Patent Document 1 For example, in the oil well pipe alloy of Patent Document 1, the contents of Ni and Cr are adjusted to a specific range, and Cr (%) + 10 Mo (%) + 5 W (%) and Mo (%) + (1/2) W (%) Value is adjusted to a specific range.
- Patent Document 1 according to the above-described alloy, even if it is a cold-worked material, if the temperature is 150 ° C. or less, the stress corrosion cracking resistance in the “H 2 S—CO 2 —Cl ⁇ ” environment is shown. It is disclosed that it can be secured.
- Patent Document 1 discloses that 0.2% proof stress of 965 MPa or more is obtained by containing N in a range of 0.05 to 0.30% by mass and performing cold working after the solution treatment. It is disclosed that it can be realized.
- Patent Document 2 In the oil well pipe alloy of Patent Document 2, the content of Ni and Cr is adjusted to a specific range, and Cr (%) + 10 Mo (%) + 5 W (%) and Mo (%) + (1/2) W (% ) Value is adjusted to a specific range. According to Patent Document 2, according to the above-described alloy, even in the case of a cold-worked material, in an extremely corrosive “H 2 S—CO 2 —Cl ⁇ ” environment, particularly in an adverse environment of 150 ° C. or less. It is disclosed that the stress corrosion cracking resistance can be ensured. Patent Document 2 discloses that N in a range of 0.05 to 0.25% by mass and a combination of cold working and aging treatment after solution treatment is 0 to 965 MPa or more. It is disclosed that 2% yield strength can be achieved.
- Patent Document 3 In the oil well pipe alloy of Patent Document 3, the contents of Mn, Ni, and Cr are adjusted to a specific range, and (1/2) Mn (%) + Ni (%), Cr (%) + Mo (%) + The values of (1/2) W (%) and Mo (%) + (1/2) W (%) are adjusted to a specific range.
- Patent Document 3 According to Patent Document 3, according to the above-described alloy, even in the case of a cold-worked material, in an extremely corrosive “H 2 S—CO 2 —Cl ⁇ ” environment, particularly in an adverse environment of 150 ° C. or less. It is disclosed that the stress corrosion cracking resistance can be ensured. Further, Patent Document 3 discloses that 0.2% of about 940 MPa is obtained by using N in a range of 0.1 to 0.4% by mass and cold working after solution treatment. It is disclosed that the yield strength can be realized.
- Patent Documents 1 to 3 when the N content is increased and strengthened as in Patent Documents 1 to 3 described above, there is a problem that the hot workability of the alloy is deteriorated. For this reason, in Patent Documents 1 to 3, the S content is reduced to 0.0007% or less by mass%, or contains Ca, Mg, Ti, or a rare earth element (hereinafter referred to as “REM”). Or a technique for improving the hot workability is disclosed.
- REM rare earth element
- Patent Document 4 In the high Cr-high Ni alloy material of Patent Document 4, the contents of Cu, Ni, and Cr are adjusted to a specific range, and the value of Cu + 0.4 (Mo-1.4) 2 is adjusted to a specific range. is doing.
- Patent Document 4 according to the above-mentioned alloy, 25% cold working is performed and a 0.2% proof stress is 861 to 964 MPa (87.75 to 98.28 kgf / mm 2 ), so-called “125 ksi class”. It is disclosed that even when the strength level is achieved, good stress corrosion cracking resistance can be secured in a corrosive environment of “H 2 S—CO 2 —Cl ⁇ ”.
- Patent Document 4 also discloses a technique for improving the hot workability by reducing the S content to 0.0007% or less by mass% or containing Ca, Mg, or REM. Has been.
- Patent Document 5 discloses that the content of Cr, Ni, Mo, Mn, and N is adjusted to a specific range, and elements such as Mg, Ca, and Ce are included, so that an acidic environment and a seawater environment are included.
- a super austenitic stainless steel having excellent corrosion resistance and excellent hot workability is disclosed.
- Patent Document 6 the contents of Cu, Ni, Cr, Mo, N, Al, and REM are adjusted to a specific range, and N (%) ⁇ P (%) / REM (% ) Value is adjusted to a specific range.
- Patent Document 6 according to the above-described alloy material, good hot workability can be secured, and cold rolling of 40% in cross-sectional reduction rate is performed, and high 0.2% proof stress of 941 to 1176 MPa is achieved. case also, H 2 S, Cl - in a corrosive environment containing such, at a temperature 177 ° C., it is disclosed that it is possible to ensure a good stress corrosion cracking resistance.
- Patent Document 7 discloses a method for producing stainless steel using an alloy in which the content of Cr, Ni, Si, Mn, C, N, Mo, S, B, P, and O is adjusted to a specific range. ing. Patent Document 7 describes that the above stainless steel is excellent in strength and stress corrosion cracking resistance.
- Patent Document 8 discloses an austenitic alloy in which the contents of C, Si, Mn, Cr, Ni, Mo, La, Al, Ca, O, P, and S are adjusted to a specific range. Patent Document 8 describes that the austenite alloy has high crack resistance in an environment where hydrogen sulfide is present.
- JP-A-57-203735 JP-A-57-207149 JP 58-21155 A Japanese Patent Laid-Open No. 11-302801 JP 2005-509751 gazette JP 2009-84668 A Japanese Unexamined Patent Publication No. 1-2262048 JP-A 63-274743
- the 0.2% proof stress is in the so-called “125 ksi class” strength level of 861 to 964 MPa, even in a corrosive environment containing hydrogen sulfide. Good stress corrosion cracking resistance can be ensured.
- the Mo content is 1.5% by mass or less, the hot workability is remarkably improved, and even if the Mannesmann pipe manufacturing method is applied, it should be a product pipe without any problems. Can do.
- the alloy disclosed in the above-mentioned Patent Document 6 is used, even if the temperature is 177 ° C. or less even in a corrosive environment containing hydrogen sulfide, the alloy has a high 0.2% proof stress of 965 MPa or more. Even so, good stress corrosion cracking resistance can be ensured.
- the toughness (impact resistance) inevitably decreases when the 0.2% proof stress is increased to 965 MPa or more by cold working. For this reason, it is assumed that the product is damaged when the product is transported or in use.
- the content of P is limited to 0.030% or less in mass% in order to avoid co-segregation of Mn and P.
- it contains 3.0 to 15.0% Mn by mass%, it is difficult to avoid co-segregation of Mn and P even if the P content is limited to 0.030% or less.
- toughness is reduced. Therefore, when strong cold working is performed to increase the strength, for example, as described above, there is a problem in product transportation. It might be.
- the alloy proposed in Patent Document 5 there is a problem that ductility and toughness are lowered when cold working with a high degree of work is performed for high strength. Further, in the case of the above-mentioned alloy, it is 1.0 to 6.0%, preferably 2.0 to 6.0%, more preferably 3.0 to 6.0%, and most preferably 4.0% by mass. Despite containing ⁇ 6.0% Mn, no consideration is given to the P content. For this reason, even if the amount of cold work is low, it is difficult to avoid a significant decrease in toughness due to co-segregation of Mn and P. In addition, the alloy of Patent Document 5 is a high temperature such that the temperature exceeds 200 ° C. in a corrosive environment containing hydrogen sulfide, particularly when the cold working is performed and the 0.2% proof stress is increased to 965 MPa or more. It is not an alloy that can stably ensure good stress corrosion cracking resistance in the region.
- Patent Document 7 describes an alloy that can stably ensure good stress corrosion cracking resistance in a high-temperature corrosive environment when the cold working is performed and the 0.2% proof stress is increased to 965 MPa or more. There is no description about an ingredient.
- Patent Document 8 does not describe the N content.
- Patent Document 8 does not mention an alloy composition that can realize a high strength of 965 MPa or more and that exhibits excellent corrosion resistance in a high-temperature corrosive environment.
- the present invention has been made in view of the above situation, and provides a Ni—Cr alloy material capable of preventing a decrease in hot workability, corrosion resistance, and toughness associated with an increase in strength, and an oil well seamless pipe using the same.
- the purpose is to provide. More specifically, the present invention is excellent in hot workability and toughness and corrosion resistance (more specifically, stress corrosion cracking resistance in an environment containing hydrogen sulfide at a high temperature exceeding 200 ° C. It is an object of the present invention to provide a high-strength Ni—Cr alloy material having a yield strength (0.2% proof stress) of 965 MPa or more and an oil well seamless pipe using the same.
- the present inventors first made a yield strength (using a Ni—Cr alloy material having various chemical compositions adjusted based on a conventionally proposed Ni—Cr alloy material. A basic survey was conducted to improve the 0.2% proof stress. As a result, the following items (a) to (e) were confirmed.
- the cold work rate is increased to increase the dislocation density of the alloy material, or the N content thereof, particularly the N in the solid solution state. Increasing the content is an effective means.
- the present invention has been completed on the basis of the above contents, and the gist thereof is the Ni—Cr alloy material shown below and an oil well seamless pipe using the same.
- Si 0.01 to 0.5%
- Mn 0.01% or more and less than 1.0%
- Cu 0.01% or more and less than 1.0%
- Ni 48% More than 55%
- Cr 22 to 28%
- Mo 5.6% or more and less than 7.0%
- N 0.04 to 0.16%
- ⁇ is the dislocation density in the unit of m ⁇ 2
- [REM (%)] means the content of REM in mass%.
- Ni—Cr alloy material according to the above (1), which contains 0.1% or more and less than 8.0% by mass.
- Ni—Cr alloy material according to (1) or (2) above containing 1% or more of Ti, Nb, Zr, and V in a total of 0.01 to 0.5% by mass.
- Ni—Cr alloy material according to any one of (1) to (3) above, containing 0.01 to 2.0% of Co by mass%.
- the Ni—Cr alloy material of the present invention is excellent in hot workability and toughness (impact resistance).
- the Ni—Cr alloy material of the present invention has a high strength such that the yield strength (0.2% proof stress) is 965 MPa or more, and the temperature is higher than 200 ° C., and also contains hydrogen sulfide.
- the corrosion resistance represented by the stress corrosion cracking resistance is also excellent.
- the Ni—Cr alloy material of the present invention can be suitably used as a material for a high-strength seamless pipe for oil wells.
- Si 0.01 to 0.5%
- Si is an element necessary for deoxidation and is contained by 0.01% or more.
- the Si content is set to 0.01 to 0.5%.
- a preferable lower limit of the Si content is 0.05%, and a more preferable lower limit is 0.07%.
- the upper limit with preferable Si content is 0.40%, and a more preferable upper limit is 0.33%.
- Mn 0.01% or more and less than 1.0%
- Mn is a component necessary as a deoxidation and / or desulfurization agent, but if its content is less than 0.01%, the effect is not sufficiently exhibited.
- hot workability falls that content of Mn is 1.0% or more. Therefore, the Mn content is 0.01% or more and less than 1.0%.
- a preferable lower limit of the Mn content is 0.10%, a more preferable lower limit is 0.20%, and a further preferable lower limit is 0.24%.
- the upper limit with preferable Mn content is 0.80%, a more preferable upper limit is 0.70%, and a more preferable upper limit is 0.66%.
- Cu 0.01% or more and less than 1.0% Cu is effective in stabilizing the passive film formed on the surface of the Ni-Cr alloy material, and improves pitting corrosion resistance and overall corrosion resistance. is necessary. However, if the Cu content is less than 0.01%, the effect is insufficient, and if it is 1.0% or more, the hot workability decreases. Therefore, the Cu content is set to 0.01% or more and less than 1.0%.
- the minimum with preferable Cu content is 0.20%, and a more preferable minimum is 0.55%.
- the upper limit with preferable Cu content is 0.85%, and a more preferable upper limit is 0.8%.
- Ni 48% or more and less than 55%
- Ni is contained as an austenite stabilizing element.
- Ni is contained in an amount of 48% or more from the viewpoint of corrosion resistance, but the inclusion of 55% or more causes an increase in cost and a decrease in hydrogen cracking resistance. Therefore, the Ni content is set to 48% or more and less than 55%.
- the minimum with preferable Ni content is 49%, and a more preferable minimum is 49.2%.
- the upper limit with preferable Ni content is 52%, and a more preferable upper limit is 51.1%.
- Cr 22-28% Cr is a component that remarkably improves the stress corrosion cracking resistance, but if the content is less than 22%, the effect is not sufficient.
- the Cr content is set to 22 to 28%.
- the minimum with preferable Cr content is 23%, and a more preferable minimum is 23.5%.
- the upper limit with preferable Cr content is 26%, and a more preferable upper limit is 25.7%.
- Mo 5.6% or more and less than 7.0% Mo, like Cu, is effective in stabilizing the passive film formed on the Ni—Cr alloy material surface, and is resistant to pitting corrosion and stress corrosion cracking. Has the effect of improving sex. However, when the Mo content is less than 5.6%, the effect is insufficient. On the other hand, when Mo is contained in an amount of 7.0% or more, the high temperature strength of austenite is increased, and formation of a harmful phase such as a sigma phase or a mu phase is promoted at the time of casting of the alloy. Thereby, hot workability is deteriorated. Furthermore, excessive content of Mo causes an increase in alloy cost. Therefore, the Mo content is set to 5.6% or more and less than 7.0%. A preferable lower limit of the Mo content is 5.7%, and a more preferable lower limit is 5.8%. Moreover, the upper limit with preferable Mo content is 6.8%, and a more preferable upper limit is 6.7%.
- N 0.04 to 0.16%
- N is an important element in the present invention.
- N has the effect of increasing the strength of the Ni—Cr alloy, but if its content is less than 0.04%, the desired high strength cannot be secured, and the stress corrosion cracking resistance due to the increase in dislocation density is abrupt. It tends to cause a decline.
- the N content exceeds 0.16%, the maximum hot workable temperature is lowered, and the stress corrosion cracking resistance accompanying the precipitation of chromium nitride is deteriorated. Therefore, the N content is set to 0.04 to 0.16%.
- a preferable lower limit of the N content is 0.06%, a more preferable lower limit is 0.08%, and a further preferable lower limit is 0.098%.
- the upper limit with preferable N content is 0.14%, and a more preferable upper limit is 0.125%.
- Al 0.03-0.20%
- Al not only fixes O (oxygen) in the alloy and improves hot workability, but also has an effect of preventing a decrease in the effect due to oxidation of REM.
- O oxygen
- REM is mostly consumed as an oxide.
- the hot workability is greatly reduced. Therefore, when it contains REM, it is essential to contain Al together.
- the content of Al is sol. If it is less than 0.03% with Al, the effect is not sufficient.
- Al is sol. If the Al content exceeds 0.20%, hot workability is reduced. Therefore, the content of Al is sol.
- the content of Al was 0.03 to 0.20%. sol.
- a preferable lower limit of the Al content in Al is 0.05%, a more preferable lower limit is 0.07%, and a further preferable lower limit is 0.076%. Also, sol. A preferable upper limit of the Al content in Al is 0.18%, a more preferable upper limit is 0.14%, and a further preferable upper limit is 0.135%. “Sol.Al” means so-called “acid-soluble Al”.
- REM 0.01 to 0.074% REM is an important element in the present invention. That is, REM is included because it has an effect of improving hot workability and stress corrosion cracking resistance. However, since REM easily oxidizes, it is essential to contain Al together. In addition, in the case of an alloy containing REM in combination with Ca and / or Mg, it is possible to stably suppress a decrease in hot workability in a low temperature range, and high strength and good in a low temperature range. Toughness and stress corrosion cracking resistance in a high temperature environment containing hydrogen sulfide. However, if the content of REM is less than 0.01%, the above effect is not sufficient, and the stress corrosion cracking resistance is lowered by increasing the strength.
- the content of REM exceeds 0.074%, even if combined with Ca and / or Mg, hot workability and toughness are deteriorated. Therefore, the content of REM is set to 0.01 to 0.074%.
- a preferable lower limit of the REM content is 0.015%, and a more preferable lower limit is 0.019%.
- the upper limit with preferable REM content is 0.06%, and a more preferable upper limit is 0.058%.
- REM refers to a total of 17 elements of Sc, Y, and lanthanoid
- REM content refers to the content when REM is 1 type, and the content thereof when 2 or more types are included. Refers to the total content.
- REM is also supplied as misch metal, which is generally an alloy of a plurality of types of REM. For this reason, one or more individual elements may be added and contained so that the amount of REM is in the above range. For example, the amount of REM may be added in the form of misch metal. You may make it contain so that it may become this range.
- One or more of Ca and Mg 0.0003 to 0.01% in total
- an alloy containing Ca and / or Mg combined with REM it is possible to stably suppress a decrease in hot workability in a low temperature region, and high strength and good in a low temperature region. It has toughness and resistance to stress corrosion cracking in a high temperature environment containing hydrogen sulfide. Said effect is acquired by containing 0.0003% or more of 1 or more types of Ca and Mg in total.
- the total content of one or more of Ca and Mg is set to 0.0003 to 0.01%.
- a preferable lower limit of the total content of one or more of Ca and Mg is 0.0005%, and a more preferable lower limit is 0.0007%.
- the upper limit with preferable 1 or more types of total content of Ca and Mg is 0.005%, and a more preferable upper limit is 0.0042%.
- the Ca content may be 0.0003 to 0.01%, and when Mg is contained alone, the Mg content is 0.0003 to 0.01%. %.
- W 0% or more and less than 8.0% W has an effect of improving stress corrosion cracking resistance. For this reason, you may contain W as needed. However, when W is contained in an amount of 8.0% or more, hot workability and economy are deteriorated. Therefore, the amount of W in the case of inclusion is set to less than 8.0%. When W is contained, the amount of W is preferably less than 7.0%.
- the amount of W when contained is preferably 0.1% or more.
- Ti, Nb, Zr, and V 0 to 0.5% in total of at least one kind Ti, Nb, Zr, and V all have the effect of refining crystal grains and improving strength and ductility. For this reason, if necessary, Ti, Nb, Zr, and V may be contained alone or in combination of two or more. However, when one or more of the above elements are contained in a total of more than 0.5%, hot workability is deteriorated and a large amount of inclusions are generated, and a ductility lowering phenomenon appears. Therefore, the amount when these elements are contained is 0.5% or less in total of one or more kinds. When these elements are contained, the total of one or more is preferably 0.3% or less.
- the amount of inclusion is set to 0.01% or more in total of one or more types. Is preferable, and it is more preferable to set it as 0.05% or more.
- Co 0 to 2.0% Co contributes to the stabilization of the austenite phase and has the effect of improving the stress corrosion cracking resistance at high temperatures. For this reason, you may contain Co as needed. However, an excessive content of Co leads to an increase in the alloy price and significantly impairs the economy. Therefore, the amount of Co in the case where the upper limit is included is set to 2.0% or less. When Co is contained, the amount of Co is preferably 1.0% or less.
- the amount of Co when contained is preferably 0.01% or more.
- the Ni—Cr alloy material of the present invention comprises the above-mentioned elements, the balance being Fe and impurities, and C, P, S, and O in the impurities are C: 0.03% or less, P: 0.00. It has a chemical composition of 03% or less, S: 0.001% or less, and O: 0.01% or less.
- Impurity refers to materials mixed from ore, scrap, or the production environment as raw materials when industrially producing alloy materials.
- C 0.03% or less C is contained as an impurity.
- M is an element such as Cr, Mo, and / or Fe. Stress corrosion cracking accompanied by intergranular fracture due to precipitation. Therefore, the C content is determined to be 0.03% or less.
- the upper limit with preferable C content in an impurity is 0.02%, A more preferable upper limit is 0.015%, Furthermore, a preferable upper limit is 0.012%.
- P 0.03% or less
- P is an impurity contained in the alloy and significantly reduces hot workability and stress corrosion cracking resistance. Therefore, the content of P is set to 0.03% or less.
- the upper limit with preferable P content in an impurity is 0.025%, A more preferable upper limit is 0.020%, Furthermore, a preferable upper limit is 0.019%.
- S 0.001% or less S, like P, is an impurity that significantly reduces hot workability. Since it is desirable that the content of S is as low as possible from the viewpoint of preventing the hot workability from being lowered, an upper limit is set to 0.001% or less. A preferable upper limit of the S content in the impurity is 0.0009%, a more preferable upper limit is 0.0008%, and a further preferable upper limit is 0.0006%.
- O (oxygen) 0.01% or less
- O (oxygen) is an impurity contained in the alloy and significantly reduces hot workability. Therefore, the O content is set to 0.01% or less.
- the upper limit with preferable O content in an impurity is 0.009%, and a more preferable upper limit is 0.005%.
- the dislocation density ⁇ of the structure when the dislocation density ⁇ of the structure is less than 7.0 ⁇ 10 15 m ⁇ 2 , a 0.2% yield strength of 965 MPa or more cannot be obtained.
- the dislocation density ⁇ exceeds [2.7 ⁇ 10 16 ⁇ 2.67 ⁇ 10 17 ⁇ [REM (%)]] m ⁇ 2 , in addition to causing a decrease in toughness, Decrease in stress corrosion cracking resistance at high temperatures exceeding 200 ° C. and in an environment containing hydrogen sulfide occurs. Therefore, the dislocation density is determined to satisfy the above formula.
- the dislocation density ⁇ is preferably 2.0 ⁇ 10 16 m ⁇ 2 or less.
- Ni—Cr alloy material of the present invention can be manufactured, for example, as follows.
- the chemical composition is adjusted by melting using an electric furnace, AOD furnace, VOD furnace or the like.
- the desulfurization treatment by combining REM and Ca and / or Mg it is desirable to add REM and Ca and / or Mg after sufficiently deoxidizing with Al or the like in advance.
- the molten metal whose chemical composition has been adjusted may then be cast into an ingot and then processed into a so-called “alloy piece” such as a slab, bloom, or billet by hot working such as forging.
- the molten metal may be continuously cast to form a so-called “alloy piece” such as a slab, bloom, or billet.
- the above “alloy piece” is used as a raw material and hot-worked into a desired shape such as a plate or pipe.
- a plate material when processing into a plate material, it can be hot processed into a plate or a coil by hot rolling.
- a pipe material when processing into a pipe material, it can be hot processed into a tubular shape by a hot extrusion pipe manufacturing method or a Mannesmann pipe manufacturing method.
- the hot-rolled material is subjected to solution heat treatment and then cold-worked by cold rolling so that the dislocation density ⁇ becomes a structure satisfying the above formula.
- the hot-worked raw tube is subjected to a solution heat treatment and then cold-worked by cold drawing such as cold drawing or pilger rolling.
- the above-described cold working performed once or a plurality of times may vary depending on the chemical composition of the alloy, but the cross-section reduction rate may be about 31 to 50%.
- an intermediate heat treatment is performed after cold working for further processing to a predetermined size.
- the cross-section reduction rate may be about 31 to 50%.
- the REM content when the REM content is large, it is necessary to control the cross-sectional reduction rate during cold working so that the dislocation density ⁇ does not exceed the value determined by the above formula. Moreover, when N content is high, it is good to suppress the cross-sectional reduction rate at the time of cold work. On the other hand, when the REM content is low or the N content is low, it is preferable to select a higher cross-sectional reduction rate during cold working.
- the above-described cross-sectional reduction rate during cold working may be set to 42% or more.
- the cross-sectional reduction rate is preferably 31% or more when the N content is around 0.16%.
- the N content for setting the dislocation density to 7.0 ⁇ 10 15 m ⁇ 2 or more may vary depending on the relationship with the content of other elements other than N.
- the upper limit of the above-described cross-section reduction rate during cold working depends on the REM content and the N content, but the cross-section reduction rate (%) is generally [ ⁇ (1.78-17.78 ⁇ [REM (% )]) 0.5-2 ⁇ [N (%)] ⁇ / 0.02] (wherein [REM (%)] and [N (%)] are REM in mass%, respectively, If the value is equal to or less than the value indicated by N), the dislocation density ⁇ can be controlled within a range not exceeding the value specified in the present invention. Note that, in the alloy material having a REM content of 0.05% or more and an N content of 0.14% or more, the range of the cross-sectional reduction rate allowed during cold working is narrow.
- An alloy having the chemical composition shown in Table 1 was melted in a vacuum high-frequency melting furnace and cast into a 50 kg ingot.
- Alloys A to I in Table 1 are alloys whose chemical compositions are within the range defined by the present invention.
- Alloys 1 to 13 are alloys whose chemical compositions deviate from the conditions specified in the present invention.
- Each ingot was subjected to a soaking treatment at 1200 ° C. for 3 hours, and then hot forged into a square material having a cross section of 50 mm ⁇ 50 mm.
- the square material thus obtained was further heated at 1200 ° C. for 1 h, and then hot rolled to finish a plate material having a thickness of 14.2 mm.
- the diameter is 10 mm and the length is 130 mm in a direction parallel to the rolling direction of the plate material (hereinafter referred to as “L direction”).
- Test specimens were collected and evaluated for hot workability using a greeble tester.
- the test piece heated at 1200 ° C. for 3 minutes was cooled at a rate of 100 ° C./min, and temperatures of 1100 ° C., 1000 ° C., 900 ° C., 800 ° C., and 700 ° C. At the time when each temperature was reached, the tensile fracture was performed.
- the hot workability was evaluated as good when the cross-sectional reduction rate after tensile fracture was 60% or more. This is based on the experience that when the above-mentioned cross-sectional reduction rate is less than 60%, a large number of surface flaws or cracks occur, for example, when hot pipes are made from alloy billets. .
- Table 1 also shows the hot workability test results described above.
- “ ⁇ ” in the hot workability column indicates that the cross-section reduction rate after tensile fracture at all test temperatures was 60% or more, and the hot workability was good.
- “x” indicates that the cross-sectional reduction rate after tensile fracture at least at any test temperature was less than 60%.
- the remainder of the 14.2 mm thick plate material obtained by hot rolling was used for solution treatment at 1100 ° C. for 1 h, followed by water cooling treatment to obtain an austenite single-phase structure having an FCC crystal structure.
- test pieces each having a length and width of 20 mm and a thickness of 2 mm were cut out from the central portion in the thickness direction of three types of cold-rolled materials having the thicknesses of 9.8 mm, 8.4 mm, and 7 mm, respectively.
- the surface of the test piece was electrolytically polished at 10 ° C., and the dislocation density was measured using the test piece after the electrolytic polishing.
- Non-Patent Document 1 The dislocation density was measured using an evaluation method based on the Williamson-Hall method described in Non-Patent Document 2 proposed by Nakajima et al. In Non-Patent Document 1.
- specimens were cut out from three types of cold-rolled materials having thicknesses obtained as described above of 9.8 mm, 8.4 mm, and 7 mm, respectively, and the tensile properties and toughness (impact resistance properties) were investigated. .
- test pieces were cut out from three types of cold rolled materials having the above-mentioned thicknesses of 9.8 mm, 8.4 mm, and 7 mm, respectively, and the corrosion resistance was investigated.
- each cold-rolled material was subjected to a low strain rate tensile test in which the parallel part had a diameter of 3.81 mm and a length of 25.4 mm in accordance with the low strain rate tensile test method specified in NACE TM0198. Pieces were collected. Specifically, a test piece was collected from each cold-rolled material so that the parallel part was parallel to the L direction. Then, a low strain rate tensile test according to NACE TM0198 was performed to evaluate the corrosion resistance.
- the test environment in the low strain rate tensile test is an environment that simulates the atmosphere and severe oil well environment (H 2 S partial pressure: 0.689 MPa (100 psi), 25% NaCl + 0.5% CH 3 COOH, pH: 2. 8 and temperature: 204 ° C.). In any environment, the strain rate in the tensile test was 4.0 ⁇ 10 ⁇ 6 / s.
- each difference is referred to as “difference in fracture ductility”.
- the difference between the reference value of the rupture drawing and the three comparison values of the rupture drawing was determined (hereinafter, each difference is referred to as “the difference of the rupture drawing”).
- all the “differences in fracture ductility” shall be 20% or less of the “reference value for fracture ductility”, and all of the “differences in fracture drawing” shall be 20% or less of the “reference value for fracture drawing”.
- Table 2 shows the results of the above surveys.
- reference numerals 1 to 3 indicate the investigation results of cold rolled materials having thicknesses of 9.8 mm, 8.4 mm, and 7 mm, respectively.
- “ ⁇ ” in the “Corrosion resistance” column indicates that the target for corrosion resistance has been cleared, and “X” indicates that the target for corrosion resistance has not been cleared.
- FIG. 1 shows a change in yield strength and toughness due to changes in REM content and dislocation density.
- the content of at least one element other than REM is outside the scope of the present invention, and for alloy 6, the hot workability itself is inferior and toughness Therefore, the results of these alloys are excluded in FIG.
- an alloy material satisfying the conditions specified in the present invention is excellent in hot workability and toughness (impact resistance) at ⁇ 10 ° C. Furthermore, even if the alloy material satisfying the conditions specified in the present invention has a high yield strength (0.2% proof stress) of 965 MPa or more, it is corrosion resistant (particularly at a high temperature exceeding 200 ° C., and It is clear that it is excellent in stress corrosion cracking resistance in an environment containing hydrogen sulfide.
- the Ni—Cr alloy material of the present invention is excellent in hot workability and toughness (impact resistance), and has corrosion resistance (particularly temperature) even if the yield strength (0.2% proof stress) is 965 MPa or higher. Is superior in stress corrosion cracking resistance in an environment containing hydrogen sulfide at a high temperature exceeding 200 ° C. For this reason, the Ni—Cr alloy material of the present invention is suitable as a material for a high-strength seamless pipe for oil wells.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
CaおよびMgの1種以上:合計で0.0003~0.01%と、
Ti、Nb、Zr、およびVの1種以上:合計で0~0.5%と、
残部がFeおよび不純物とからなり、
不純物中のC、P、S、およびOが、C:0.03%以下、P:0.03%以下、S:0.001%以下、およびO:0.01%以下である化学組成を有し、
さらに、転位密度が下記の式を満たす、Ni-Cr合金材。
7.0×1015≦ρ≦2.7×1016-2.67×1017×[REM(%)]
上記の式において、ρは、単位がm-2での転位密度、[REM(%)]は、質量%でのREMの含有量を意味する。
Si:0.01~0.5%
Siは、脱酸のために必要な元素であり、0.01%以上含有させる。Siの含有量が0.5%を超えると、熱間加工性が低下する傾向が見られる。したがって、Siの含有量を0.01~0.5%とする。Si含有量の好ましい下限は0.05%であり、さらに好ましい下限は0.07%である。また、Si含有量の好ましい上限は0.40%であり、さらに好ましい上限は0.33%である。
Mnは、脱酸および/または脱硫剤として必要な成分であるが、その含有量が0.01%未満では効果が十分に発揮されない。一方、Mnの含有量が1.0%以上であると熱間加工性が低下する。したがって、Mnの含有量を0.01%以上で1.0%未満とした。Mn含有量の好ましい下限は0.10%であり、より好ましい下限は0.20%であり、さらに好ましい下限は0.24%である。また、Mn含有量の好ましい上限は0.80%であり、より好ましい上限は0.70%であり、さらに好ましい上限は0.66%である。
Cuは、Ni-Cr合金材表面に形成される不動態皮膜の安定化に効果があり、耐孔食性および耐全面腐食性を向上させるのに必要である。ただし、Cuの含有量が0.01%未満では効果が不十分であり、1.0%以上になると熱間加工性が低下する。このため、Cuの含有量を0.01%以上で1.0%未満とした。Cu含有量の好ましい下限は0.20%、さらに好ましい下限は0.55%である。また、Cu含有量の好ましい上限は0.85%であり、さらに好ましい上限は0.8%である。
Niは、オーステナイト安定化元素として含有させる。Niは、耐食性の観点から48%以上含有させるが、55%以上の含有はコストの増加および耐水素割れ性の低下を招く。このことから、Niの含有量を48%以上で55%未満とした。Ni含有量の好ましい下限は49%であり、さらに好ましい下限は49.2%である。また、Ni含有量の好ましい上限は52%であり、さらに好ましい上限は51.1%である。
Crは、耐応力腐食割れ性を著しく改善する成分であるが、含有量が22%未満ではその効果が十分ではない。一方、Crを28%を超えて含有させると熱間加工性の低下を招くとともに、シグマ相に代表されるTCP相を生じやすくなり、耐応力腐食割れ性が低下する。したがって、Crの含有量を22~28%とした。Cr含有量の好ましい下限は23%であり、さらに好ましい下限は23.5%である。また、Cr含有量の好ましい上限は26%であり、さらに好ましい上限は25.7%である。
Moは、Cuと同様に、Ni-Cr合金材表面に形成される不動態皮膜の安定化に効果があり、耐孔食性および耐応力腐食割れ性を改善する効果がある。しかしながら、Moの含有量が5.6%未満では効果が不十分である。一方、Moを7.0%以上含有させると、オーステナイトの高温強度が増加されるとともに、合金の鋳込み時にシグマ相またはミュー相等の有害相の形成が促進される。これにより、熱間加工性を悪化させる。さらに、Moの過剰な含有は合金コストの増加を招く。したがって、Moの含有量を5.6%以上で7.0%未満とした。Mo含有量の好ましい下限は5.7%であり、さらに好ましい下限は5.8%である。また、Mo含有量の好ましい上限は6.8%であり、さらに好ましい上限は6.7%である。
Nは、本発明において重要な元素である。Nは、Ni-Cr合金の強度を高める作用があるが、その含有量が0.04%未満では所望の高強度を確保できず、また、転位密度の増加による耐応力腐食割れ性の急激な低下を招きやすくなる。一方、Nの含有量が0.16%を超えると、熱間での加工可能最高温度の低下、およびクロム窒化物の析出に伴う耐応力腐食割れ性の悪化を招く。このことから、Nの含有量を0.04~0.16%とした。N含有量の好ましい下限は0.06%であり、より好ましい下限は0.08%であり、さらに好ましい下限は0.098%である。また、N含有量の好ましい上限は0.14%であり、さらに好ましい上限は0.125%である。
Alは、合金中のO(酸素)を固定し熱間加工性を改善するだけでなく、REMの酸化による効果の減少を防ぐ効果もある。REMを含有させて、Alを含有させないNi-Cr合金では、REMは大部分が酸化物として消費される。その結果、固溶Sの増大を招き、熱間加工性が大きく低下する。したがって、REMを含有させる場合には、Alを併せて含有させることが必須である。ただし、Alの含有量がsol.Alで0.03%未満ではその効果は十分ではない。一方、Alをsol.Alで0.20%を超えて含有させると却って熱間加工性を低下させる。したがって、Alの含有量をsol.Alで0.03~0.20%とした。sol.AlでのAl含有量の好ましい下限は0.05%であり、より好ましい下限は0.07%であり、さらに好ましい下限は0.076%である。また、sol.AlでのAl含有量の好ましい上限は0.18%であり、より好ましい上限は0.14%であり、さらに好ましい上限は0.135%である。なお、「sol.Al」とはいわゆる「酸可溶性Al」を意味する。
REMは、本発明において重要な元素である。すなわち、REMには、熱間加工性および耐応力腐食割れ性を改善する効果があるので含有させる。ただし、REMは酸化しやすいため、Alを共に含有させることが必須である。なお、REMをCaおよび/またはMgと複合して含有させた合金の場合は、低温域での熱間加工性の低下を安定して抑止することができるとともに、高強度、低温域での良好な靱性、および硫化水素を含む高温環境下での耐応力腐食割れ性を備えるものとなる。しかしながら、REMの含有量が0.01%未満では、上記の効果が十分ではなく、高強度化により耐応力腐食割れ性が低下する。一方、REMの含有量が0.074%を超えると、たとえCaおよび/またはMgと複合して含有させても、却って熱間加工性および靱性が低下する。したがって、REMの含有量を0.01~0.074%とした。REM含有量の好ましい下限は0.015%であり、さらに好ましい下限は0.019%である。また、REM含有量の好ましい上限は0.06%であり、さらに好ましい上限は0.058%である。
Caおよび/またはMgをREMと複合して含有させた合金の場合には、低温域での熱間加工性の低下を安定して抑止することができるとともに、高強度、低温域での良好な靱性、および硫化水素を含む高温環境下での耐応力腐食割れ性を備えるものとなる。上記の効果は、CaおよびMgの1種以上を合計で0.0003%以上含有することによって得られる。しかしながら、CaおよびMgの1種以上を合計で0.01%を超えて含有すると、たとえREMと複合して含有させても、却って熱間加工性の低下現象が生じる。したがって、CaおよびMgの1種以上の含有量を合計で0.0003~0.01%とした。CaおよびMgの1種以上の合計含有量の好ましい下限は0.0005%であり、さらに好ましい下限は0.0007%である。また、CaおよびMgの1種以上の合計含有量の好ましい上限は0.005%であり、さらに好ましい上限は0.0042%である。
Wは、耐応力腐食割れ性を向上させる作用を有する。このため、必要に応じてWを含有させてもよい。しかしながら、Wを8.0%以上含有させると、熱間加工性および経済性が悪化する。したがって、含有させる場合のWの量を8.0%未満とする。含有させる場合のWの量は、7.0%未満とすることが好ましい。
Ti、Nb、Zr、およびVはいずれも、結晶粒を微細化して、強度および延性を向上させる作用を有する。このため、必要に応じて、Ti、Nb、Zr、およびVを単独でまたは2種以上の複合で含有させてもよい。しかしながら、上記の元素を1種以上の合計で0.5%を超えて含有させると、熱間加工性を悪化させるとともに、介在物を多量に生じ、却って延性の低下現象が現れる。したがって、これらの元素を含有させる場合の量を、1種以上の合計で0.5%以下とする。これらの元素を含有させる場合の量は、1種以上の合計で0.3%以下とすることが好ましい。
Coは、オーステナイト相の安定化に寄与し、高温での耐応力腐食割れ性を向上させる作用を有する。このため、必要に応じてCoを含有させてもよい。しかしながら、Coの過剰な含有は合金価格の上昇を招き、経済性を著しく損なう。したがって、上限を設けて含有させる場合のCoの量を2.0%以下とする。含有させる場合のCoの量は、1.0%以下とすることが好ましい。
Cは、不純物として含有され、その含有量が0.03%を超えると、M23C6型炭化物(「M」は、Cr、Mo、および/またはFeなどの元素を指す。)の析出による粒界破壊を伴う応力腐食割れが生じやすくなる。したがって、Cの含有量を0.03%以下と定めた。不純物中のC含有量の好ましい上限は0.02%であり、より好ましい上限は0.015%であり、さらに好ましい上限は0.012%である。
Pは、合金中に含まれる不純物であり、熱間加工性および耐応力腐食割れ性を著しく低下させる。したがって、Pの含有量を0.03%以下とした。不純物中のP含有量の好ましい上限は0.025%であり、より好ましい上限は0.020%であり、さらに好ましい上限は0.019%である。
SもPと同様、熱間加工性を著しく低下させる不純物である。熱間加工性の低下を防止する観点からSの含有量はできる限り低いことが望ましいので、上限を設けて0.001%以下とした。不純物中のS含有量の好ましい上限は0.0009%であり、より好ましい上限は0.0008%であり、さらに好ましい上限は0.0006%である。
O(酸素)は合金中に含まれる不純物であり、熱間加工性を著しく低下させる。したがって、Oの含有量を0.01%以下とした。不純物中のO含有量の好ましい上限は0.009%であり、さらに好ましい上限は0.005%である。
上記(A)項に記載の化学組成を有する本発明のNi-Cr合金材の組織においては、転位密度が下記の式を満たしていなければならない。
7.0×1015≦ρ≦2.7×1016-2.67×1017×[REM(%)]
上記の式において、ρは、単位がm-2での転位密度、[REM(%)]は、質量%でのREMの含有量を意味する。
〔{(1.78-17.78×[REM(%)])0.5-2×[N(%)]}/0.02〕の式(上記の式において、[REM(%)]と[N(%)]はそれぞれ、質量%での、REMとNの含有量を意味する。)で示される値以下とすれば、転位密度ρを本発明で規定する値を超えない範囲に制御することができる。なお、REM含有量が0.05%以上、かつN含有量が0.14%以上の合金材では、冷間加工時に許容される断面減少率の範囲は狭い。
ρ=14.4ε2/b2
の式を計算して、単位がm-2での転位密度ρを求めた。
ρ=2.7×1016-2.67×1017×[REM(%)]
を表す。
Claims (5)
- 質量%で、Si:0.01~0.5%、Mn:0.01%以上で1.0%未満、Cu:0.01%以上で1.0%未満、Ni:48%以上で55%未満、Cr:22~28%、Mo:5.6%以上で7.0%未満、N:0.04~0.16%、sol.Al:0.03~0.20%、REM:0.01~0.074%、W:0%以上で8.0%未満、およびCo:0~2.0%と、
CaおよびMgの1種以上:合計で0.0003~0.01%と、
Ti、Nb、Zr、およびVの1種以上:合計で0~0.5%と、
残部がFeおよび不純物とからなり、
不純物中のC、P、S、およびOが、C:0.03%以下、P:0.03%以下、S:0.001%以下、およびO:0.01%以下である化学組成を有し、
さらに、転位密度が下記の式を満たす、Ni-Cr合金材。
7.0×1015≦ρ≦2.7×1016-2.67×1017×[REM(%)]
上記の式において、ρは、単位がm-2での転位密度、[REM(%)]は、質量%でのREMの含有量を意味する。 - 質量%で、Wを0.1%以上で8.0%未満含有する、請求項1に記載のNi-Cr合金材。
- 質量%で、Ti、Nb、Zr、およびVの1種以上を合計で0.01~0.5%含有する、請求項1または2に記載のNi-Cr合金材。
- 質量%で、Coを0.01~2.0%含有する、請求項1から3までのいずれかに記載のNi-Cr合金材。
- 請求項1から4までのいずれかに記載のNi-Cr合金材からなる、油井用継目無管。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480062058.7A CN105723009B (zh) | 2013-11-12 | 2014-11-11 | Ni‑Cr合金材料以及使用其的油井用无缝管 |
EP14862365.5A EP3070184B1 (en) | 2013-11-12 | 2014-11-11 | Ni-Cr ALLOY MATERIAL AND OIL WELL SEAMLESS PIPE USING SAME |
CA2929734A CA2929734C (en) | 2013-11-12 | 2014-11-11 | Ni-cr alloy material and seamless oil country tubular goods using the same |
US15/033,930 US10557574B2 (en) | 2013-11-12 | 2014-11-11 | Ni—Cr alloy material and seamless oil country tubular goods using the same |
ES14862365.5T ES2686974T3 (es) | 2013-11-12 | 2014-11-11 | Material de aleación de Ni-Cr y productos tubulares sin soldadura para pozos de petróleo que lo utilizan |
RU2016122870A RU2630131C1 (ru) | 2013-11-12 | 2014-11-11 | МАТЕРИАЛ СПЛАВА Ni-Cr И ИЗГОТОВЛЕННЫЕ ИЗ НЕГО БЕСШОВНЫЕ НЕФТЕПРОМЫСЛОВЫЕ ТРУБНЫЕ ИЗДЕЛИЯ |
JP2015547759A JP5979320B2 (ja) | 2013-11-12 | 2014-11-11 | Ni−Cr合金材およびそれを用いた油井用継目無管 |
KR1020167014629A KR101809393B1 (ko) | 2013-11-12 | 2014-11-11 | Ni-Cr 합금재 및 그것을 이용한 유정용 이음매 없는 관 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-234035 | 2013-11-12 | ||
JP2013234035 | 2013-11-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015072458A1 true WO2015072458A1 (ja) | 2015-05-21 |
Family
ID=53057392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/079868 WO2015072458A1 (ja) | 2013-11-12 | 2014-11-11 | Ni-Cr合金材およびそれを用いた油井用継目無管 |
Country Status (9)
Country | Link |
---|---|
US (1) | US10557574B2 (ja) |
EP (1) | EP3070184B1 (ja) |
JP (1) | JP5979320B2 (ja) |
KR (1) | KR101809393B1 (ja) |
CN (1) | CN105723009B (ja) |
CA (1) | CA2929734C (ja) |
ES (1) | ES2686974T3 (ja) |
RU (1) | RU2630131C1 (ja) |
WO (1) | WO2015072458A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021070735A1 (ja) * | 2019-10-10 | 2021-04-15 | ||
JP2021525310A (ja) * | 2018-05-23 | 2021-09-24 | エービー サンドビック マテリアルズ テクノロジー | 新しいオーステナイト合金 |
EP3744865A4 (en) * | 2018-01-26 | 2021-12-01 | Nippon Steel Corporation | CR-NI ALLOY AND SEAMLESS CR-NI ALLOY STEEL PIPE |
WO2023132339A1 (ja) | 2022-01-06 | 2023-07-13 | 日本製鉄株式会社 | Fe-Cr-Ni合金材 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106756246B (zh) * | 2016-10-31 | 2019-04-19 | 重庆材料研究院有限公司 | 一种核场废液处理用耐腐蚀合金材料及其制备方法 |
CN108825885A (zh) * | 2018-06-22 | 2018-11-16 | 苏州斯洁科电子有限公司 | 一种五金件用耐磨防腐复合套管 |
DE102020116858A1 (de) * | 2019-07-05 | 2021-01-07 | Vdm Metals International Gmbh | Nickel-Basislegierung für Pulver und Verfahren zur Herstellung eines Pulvers |
CN110923512B (zh) * | 2019-12-04 | 2020-12-04 | 上海江竑环保科技有限公司 | 一种抗高温腐蚀的合金机芯、生产工艺及电磁加热回转窑 |
CN115023509A (zh) * | 2020-01-31 | 2022-09-06 | 日本制铁株式会社 | 合金材料加热用抗氧化剂和使用了其的合金材料的加热方法 |
KR20230024248A (ko) | 2020-03-09 | 2023-02-20 | 에이티아이 인코포레이티드 | 내부식성 니켈계 합금 |
JP6839316B1 (ja) * | 2020-04-03 | 2021-03-03 | 日本冶金工業株式会社 | Ni−Cr−Mo−Nb系合金 |
JP2021183719A (ja) * | 2020-05-22 | 2021-12-02 | 日本製鉄株式会社 | Ni基合金管および溶接継手 |
CN111926216A (zh) * | 2020-07-13 | 2020-11-13 | 燕山大学 | 一种汽车蒙皮用耐腐蚀层的合金化粉末及激光合金化方法 |
CN113073234B (zh) * | 2021-03-23 | 2022-05-24 | 成都先进金属材料产业技术研究院股份有限公司 | 镍铬系高电阻电热合金及其制备方法 |
CN113337746B (zh) * | 2021-05-31 | 2022-03-15 | 上海大学 | 一种碳化物增强高熵合金复合材料的制备方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57203736A (en) * | 1981-06-10 | 1982-12-14 | Sumitomo Metal Ind Ltd | Alloy of high stress corrosion cracking resistance for high-strength oil well pipe |
JPS57203735A (en) | 1981-06-10 | 1982-12-14 | Sumitomo Metal Ind Ltd | Alloy of high stress corrosion cracking resistance for high-strength oil well pipe |
JPS57207149A (en) | 1981-06-17 | 1982-12-18 | Sumitomo Metal Ind Ltd | Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance |
JPS586928A (ja) * | 1981-07-03 | 1983-01-14 | Sumitomo Metal Ind Ltd | 耐応力腐食割れ性に優れた高強度油井管の製造法 |
JPS58210155A (ja) | 1982-05-31 | 1983-12-07 | Sumitomo Metal Ind Ltd | 耐食性の優れた油井管用高強度合金 |
JPS63274743A (ja) | 1987-04-30 | 1988-11-11 | Nippon Steel Corp | 硫化水素の存在する環境で高い割れ抵抗を有するオ−ステナイト合金 |
JPH01262048A (ja) | 1988-04-14 | 1989-10-18 | Nippon Steel Corp | 熱間加工性が優れ、偏析を軽減した高耐食性高合金の製造方法 |
JPH11302801A (ja) | 1998-04-24 | 1999-11-02 | Sumitomo Metal Ind Ltd | 耐応力腐食割れ性に優れた高Cr−高Ni合金 |
JP2005509751A (ja) | 2001-11-22 | 2005-04-14 | サンドビック アクティエボラーグ | 超オーステナイトステンレス鋼 |
WO2006003954A1 (ja) * | 2004-06-30 | 2006-01-12 | Sumitomo Metal Industries, Ltd. | Ni基合金素管及びその製造方法 |
JP2009084668A (ja) | 2007-10-03 | 2009-04-23 | Sumitomo Metal Ind Ltd | 高強度Cr−Ni合金材およびそれを用いた油井用継目無管 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4400211A (en) | 1981-06-10 | 1983-08-23 | Sumitomo Metal Industries, Ltd. | Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking |
US4400210A (en) | 1981-06-10 | 1983-08-23 | Sumitomo Metal Industries, Ltd. | Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking |
US4421571A (en) * | 1981-07-03 | 1983-12-20 | Sumitomo Metal Industries, Ltd. | Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking |
US4652315A (en) | 1983-06-20 | 1987-03-24 | Sumitomo Metal Industries, Ltd. | Precipitation-hardening nickel-base alloy and method of producing same |
RU2125110C1 (ru) | 1996-12-17 | 1999-01-20 | Байдуганов Александр Меркурьевич | Жаропрочный сплав |
RU2124065C1 (ru) * | 1997-11-25 | 1998-12-27 | Государственный научный центр РФ Всероссийский научно-исследовательский институт неорганических материалов им.акад.А.А.Бочвара | Аустенитный железохромоникелевый сплав для пружинных элементов атомных реакторов |
CN1974816A (zh) * | 2006-12-08 | 2007-06-06 | 杭正奎 | 耐高温镍铬合金及其制造方法 |
JP5176561B2 (ja) | 2007-07-02 | 2013-04-03 | 新日鐵住金株式会社 | 高合金管の製造方法 |
JP4310664B1 (ja) | 2008-01-25 | 2009-08-12 | 住友金属工業株式会社 | 溶接材料および溶接継手構造体 |
KR101259687B1 (ko) * | 2008-05-16 | 2013-05-02 | 신닛테츠스미킨 카부시키카이샤 | Ni-Cr 합금관 |
DE102008051014A1 (de) * | 2008-10-13 | 2010-04-22 | Schmidt + Clemens Gmbh + Co. Kg | Nickel-Chrom-Legierung |
JP4462452B1 (ja) | 2008-12-18 | 2010-05-12 | 住友金属工業株式会社 | 高合金管の製造方法 |
-
2014
- 2014-11-11 JP JP2015547759A patent/JP5979320B2/ja active Active
- 2014-11-11 US US15/033,930 patent/US10557574B2/en active Active
- 2014-11-11 RU RU2016122870A patent/RU2630131C1/ru not_active IP Right Cessation
- 2014-11-11 CA CA2929734A patent/CA2929734C/en not_active Expired - Fee Related
- 2014-11-11 ES ES14862365.5T patent/ES2686974T3/es active Active
- 2014-11-11 WO PCT/JP2014/079868 patent/WO2015072458A1/ja active Application Filing
- 2014-11-11 CN CN201480062058.7A patent/CN105723009B/zh not_active Expired - Fee Related
- 2014-11-11 EP EP14862365.5A patent/EP3070184B1/en active Active
- 2014-11-11 KR KR1020167014629A patent/KR101809393B1/ko active IP Right Grant
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57203736A (en) * | 1981-06-10 | 1982-12-14 | Sumitomo Metal Ind Ltd | Alloy of high stress corrosion cracking resistance for high-strength oil well pipe |
JPS57203735A (en) | 1981-06-10 | 1982-12-14 | Sumitomo Metal Ind Ltd | Alloy of high stress corrosion cracking resistance for high-strength oil well pipe |
JPS57207149A (en) | 1981-06-17 | 1982-12-18 | Sumitomo Metal Ind Ltd | Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance |
JPS586928A (ja) * | 1981-07-03 | 1983-01-14 | Sumitomo Metal Ind Ltd | 耐応力腐食割れ性に優れた高強度油井管の製造法 |
JPS58210155A (ja) | 1982-05-31 | 1983-12-07 | Sumitomo Metal Ind Ltd | 耐食性の優れた油井管用高強度合金 |
JPS63274743A (ja) | 1987-04-30 | 1988-11-11 | Nippon Steel Corp | 硫化水素の存在する環境で高い割れ抵抗を有するオ−ステナイト合金 |
JPH01262048A (ja) | 1988-04-14 | 1989-10-18 | Nippon Steel Corp | 熱間加工性が優れ、偏析を軽減した高耐食性高合金の製造方法 |
JPH11302801A (ja) | 1998-04-24 | 1999-11-02 | Sumitomo Metal Ind Ltd | 耐応力腐食割れ性に優れた高Cr−高Ni合金 |
JP2005509751A (ja) | 2001-11-22 | 2005-04-14 | サンドビック アクティエボラーグ | 超オーステナイトステンレス鋼 |
WO2006003954A1 (ja) * | 2004-06-30 | 2006-01-12 | Sumitomo Metal Industries, Ltd. | Ni基合金素管及びその製造方法 |
JP2009084668A (ja) | 2007-10-03 | 2009-04-23 | Sumitomo Metal Ind Ltd | 高強度Cr−Ni合金材およびそれを用いた油井用継目無管 |
Non-Patent Citations (4)
Title |
---|
G. K. WILLIAMSON; W. H. HALL, ACTA METALL., vol. 1, 1953, pages 22 |
H. M. RIETVELD, J. APPL. CRYST., vol. 2, 1969, pages 65 |
KOICHI NAKASHIMA ET AL., CAMP-ISIJ, vol. 17, 2004, pages 396 |
See also references of EP3070184A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3744865A4 (en) * | 2018-01-26 | 2021-12-01 | Nippon Steel Corporation | CR-NI ALLOY AND SEAMLESS CR-NI ALLOY STEEL PIPE |
JP2021525310A (ja) * | 2018-05-23 | 2021-09-24 | エービー サンドビック マテリアルズ テクノロジー | 新しいオーステナイト合金 |
JPWO2021070735A1 (ja) * | 2019-10-10 | 2021-04-15 | ||
JP7307370B2 (ja) | 2019-10-10 | 2023-07-12 | 日本製鉄株式会社 | 合金材および油井用継目無管 |
WO2023132339A1 (ja) | 2022-01-06 | 2023-07-13 | 日本製鉄株式会社 | Fe-Cr-Ni合金材 |
Also Published As
Publication number | Publication date |
---|---|
EP3070184A1 (en) | 2016-09-21 |
JPWO2015072458A1 (ja) | 2017-03-16 |
US10557574B2 (en) | 2020-02-11 |
EP3070184B1 (en) | 2018-06-13 |
US20160265694A1 (en) | 2016-09-15 |
RU2630131C1 (ru) | 2017-09-05 |
KR101809393B1 (ko) | 2017-12-14 |
CA2929734A1 (en) | 2015-05-21 |
JP5979320B2 (ja) | 2016-08-24 |
KR20160082534A (ko) | 2016-07-08 |
CN105723009A (zh) | 2016-06-29 |
CN105723009B (zh) | 2017-08-18 |
CA2929734C (en) | 2017-12-12 |
ES2686974T3 (es) | 2018-10-23 |
EP3070184A4 (en) | 2017-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5979320B2 (ja) | Ni−Cr合金材およびそれを用いた油井用継目無管 | |
JP5211841B2 (ja) | 二相ステンレス鋼管の製造方法 | |
EP2824198B1 (en) | Method for producing seamless steel pipe having high-strength and excellent sulfide stress cracking resistance | |
JP5880788B2 (ja) | 高強度油井用鋼材および油井管 | |
JP5124857B2 (ja) | マルテンサイト系ステンレス鋼 | |
WO2010082395A1 (ja) | 二相ステンレス鋼管の製造方法 | |
JP5176561B2 (ja) | 高合金管の製造方法 | |
JP4288528B2 (ja) | 高強度Cr−Ni合金材およびそれを用いた油井用継目無管 | |
WO2011136175A1 (ja) | 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管 | |
WO2010113843A1 (ja) | 高強度Cr-Ni合金継目無管の製造方法 | |
EP2684974B1 (en) | Duplex stainless steel | |
JP6904437B2 (ja) | Cr−Ni合金及びCr−Ni合金からなる継目無鋼管 | |
JP4462454B1 (ja) | 二相ステンレス鋼管の製造方法 | |
CN114502757B (zh) | 合金材料和油井用无缝管 | |
EP2843068B1 (en) | A METHOD OF MAKING A Cr-CONTAINING STEEL PIPE FOR LINEPIPE EXCELLENT IN INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE OF WELDED HEAT AFFECTED ZONE | |
JP6197591B2 (ja) | マルテンサイト系Cr含有鋼材 | |
JP2017020086A (ja) | マルテンサイト鋼材 | |
JP6303878B2 (ja) | マルテンサイト系Cr含有鋼材 | |
JP2017075343A (ja) | マルテンサイト鋼材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14862365 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015547759 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15033930 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2929734 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167014629 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014862365 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014862365 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016122870 Country of ref document: RU Kind code of ref document: A |