[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014129530A1 - 切削工具 - Google Patents

切削工具 Download PDF

Info

Publication number
WO2014129530A1
WO2014129530A1 PCT/JP2014/053994 JP2014053994W WO2014129530A1 WO 2014129530 A1 WO2014129530 A1 WO 2014129530A1 JP 2014053994 W JP2014053994 W JP 2014053994W WO 2014129530 A1 WO2014129530 A1 WO 2014129530A1
Authority
WO
WIPO (PCT)
Prior art keywords
flank
columnar
average
coating layer
crystal
Prior art date
Application number
PCT/JP2014/053994
Other languages
English (en)
French (fr)
Inventor
ヨウセン シュ
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP14754575.0A priority Critical patent/EP2959993B1/en
Priority to US14/768,745 priority patent/US9555476B2/en
Priority to KR1020157022364A priority patent/KR101700699B1/ko
Priority to JP2014531794A priority patent/JP5744336B2/ja
Priority to CN201480008477.2A priority patent/CN104981310B/zh
Publication of WO2014129530A1 publication Critical patent/WO2014129530A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness

Definitions

  • the present invention relates to a cutting tool having a coating layer formed on the surface of a substrate.
  • the cutting tool has a coating layer formed on the surface of a base made of a sintered alloy such as cemented carbide or cermet, a high-hardness sintered body of diamond or cBN (cubic boron nitride), or a ceramic such as alumina or silicon nitride. Therefore, methods for improving wear resistance and fracture resistance are used.
  • a sintered alloy such as cemented carbide or cermet
  • a ceramic such as alumina or silicon nitride. Therefore, methods for improving wear resistance and fracture resistance are used.
  • Patent Document 1 a second columnar crystal of a TiAlN-based coating layer laminated in two layers is grown in an oblique direction at an angle of 1 to 15 ° on average with respect to a direction orthogonal to the surface of the substrate.
  • a coating film (coating layer) is disclosed.
  • the present invention is to solve the above-mentioned problems, and its purpose is to optimize the crystal state of the coating layer on the rake face and the flank face, to suppress crater wear on the rake face and to provide chipping resistance on the flank face.
  • An object of the present invention is to provide a cutting tool that enhances and improves the cutting performance comprehensively.
  • the cutting tool of the present invention comprises a base body and a coating layer made of columnar crystals that covers the surface of the base body, and a cutting edge is a cross ridge line between the rake face and the flank face, and the surface of the base body at the flank face
  • the average inclination angle in the longitudinal direction of the columnar crystal with respect to the direction orthogonal to the vertical direction is larger than the average inclination angle in the longitudinal direction of the columnar crystal with respect to the direction orthogonal to the surface of the substrate on the rake face.
  • Another cutting tool of the present invention comprises a base and a coating layer made of a columnar crystal covering the surface of the base, and a cross edge between the rake face and the flank face is used as a cutting edge, and the columnar shape is formed on the flank face.
  • the average direction of the longitudinal direction of the crystal is inclined with respect to the direction perpendicular to the surface of the substrate, and the average aspect ratio of the columnar crystal at the flank is greater than the average aspect ratio of the columnar crystal at the rake face. Is also big.
  • the coating layer is made of a columnar crystal
  • the average inclination angle of the columnar crystal in the longitudinal direction with respect to the direction orthogonal to the surface of the substrate at the flank is a direction orthogonal to the surface of the substrate at the rake surface. It is larger than the average inclination angle in the longitudinal direction of the columnar crystal. That is, the average direction in the longitudinal direction of the columnar crystal is inclined more obliquely with respect to the direction perpendicular to the surface of the substrate than on the rake face.
  • the tilt angle of the columnar crystal is smaller than that of the flank on the rake face, the hardness of the coating layer is high and crater wear can be suppressed.
  • the average orientation of the columnar crystals in the longitudinal direction on the flank is inclined with respect to the direction orthogonal to the surface of the substrate, and the average aspect ratio of the columnar crystals on the flank is It is larger than the average aspect ratio of the columnar crystal on the rake face.
  • the coating layer is likely to become high temperature and easily oxidized, but since the grain boundaries of the crystals constituting the coating layer increase, the oxidation of the coating layer that tends to proceed along this grain boundary is suppressed. Can do. As a result, the oxidation resistance of the coating layer on the rake face is improved, and crater wear that tends to proceed on the rake face can be suppressed.
  • FIG. 1 It is a schematic perspective view about an example of the cutting tool of this invention. It is the principal part enlarged view about (a) rake face and (b) flank of the cutting tool of FIG. It is a schematic diagram of the film-forming apparatus in the film-forming process of the coating layer of the cutting tool of FIGS. It is a schematic diagram which shows the rotation state of the sample of the film-forming apparatus of FIG.
  • the cutting tool 1 includes a base 2 and a coating layer 6 that covers the surface of the base 2.
  • the covering layer 6 is composed of elongated columnar crystals 7.
  • the columnar crystal 7 is defined as a direction in which the longest length of the crystal is the longitudinal direction of the crystal, and the longest length among the directions orthogonal to the longitudinal direction is the length in the width direction of the crystal.
  • the cutting tool 1 has a rake face 3 on the main surface, a flank face 4 on the side face, and a cutting edge 5 on the intersecting ridge line between the rake face 3 and the flank face 4.
  • the cutting tool 1 of FIG. 1 is a so-called negative type cutting insert in which the main surface is a substantially flat plate having a polygonal shape and both main surfaces can be used, and the back surface of the rake surface 3 constitutes a seating surface 8. When turning over and using again, the rake face 3 and the seating face 8 are reversed.
  • the present invention is not limited to a negative type cutting insert, and can be suitably used for a positive type cutting insert in which only one main surface is a rake face 3, for example.
  • the present invention can be applied to a circular or non-planar main surface, and can also be applied to a rotary tool.
  • the cutting tool 1 has an average inclination angle ⁇ 2 in the longitudinal direction of the columnar crystal 7 with respect to a direction perpendicular to the surface of the base body 2 (hereinafter sometimes referred to as a film thickness direction) on the flank 4.
  • the average inclination angle ⁇ 1 in the longitudinal direction of the columnar crystal 7 with respect to the film thickness direction on the rake face 3 is larger.
  • the rake face 3 since the tilt angle of the columnar crystal 7 is smaller than that of the flank face 4 ( ⁇ 1 ⁇ 2), the hardness of the coating layer 6 is high and crater wear can be suppressed. As a result, the life of the cutting tool 1 is extended.
  • the tilt angle of the columnar crystal 7 is measured in the field of view of 10 ⁇ m wide ⁇ thickness of the coating layer using electron backscatter diffraction (EBSD) in observation with a scanning electron microscope (SEM).
  • EBSD electron backscatter diffraction
  • SEM scanning electron microscope
  • the inclination angle ⁇ 2 of the flank 4 is measured.
  • the contour of each crystal is specified by confirming the orientation direction of each crystal plane of the coating layer 6 by the EBSD method with a color map. Then, from the outline of each columnar crystal 7, the longest direction is measured as the longitudinal direction of the columnar crystal 7, and the inclination from the film thickness direction, that is, the direction perpendicular to the surface of the substrate 2 is measured as the inclination angle. Is calculated as an average inclination angle. At this time, the orientation of the granular crystal having an aspect ratio smaller than 1.5 other than the columnar crystal 7 included in the coating layer 6 is not included in the calculation of the inclination angle of the columnar crystal.
  • the inclination angle ⁇ 2 of the columnar crystal 7 on the flank 4 is 10 to 50 °
  • the inclination angle ⁇ 1 of the columnar crystal 7 on the rake face 3 is 0 to 20 °.
  • the cutting edge 5 has a curved nose cutting edge 5a and a linear straight cutting edge 5b, and a nose portion 9 is provided on the flank 4 immediately below the nose cutting edge 5a.
  • the average inclination angle ⁇ 3 (not shown) in the longitudinal direction of the columnar crystal 7 in the nose portion 9 is larger than the inclination angle ⁇ 2 in the flank 4.
  • the inclination angle ⁇ 3 of the columnar crystal 7 in the nose portion 9 is an electron backscattering with respect to the coating layer 6 of the nose portion 9 on the polished surface obtained by polishing the cutting tool 1 by 0.1 mm to 0.2 mm from the rake face 3 side.
  • EBSD diffraction method
  • the direction in which the longest straight line can be drawn is taken as the longitudinal direction of the columnar crystal, and the inclination angle, which is the inclination from the film thickness direction in this longitudinal direction, is measured. Calculate as the angle of inclination.
  • the inclination angle of the flank 4 immediately below the straight cutting edge 5b is defined as the inclination angle ⁇ 2 of the flank 4.
  • the overall composition of the coating layer 6 is (Al 1-ab Ti a M b ) C 1-d N d (where M is a group of the fourth, fifth and sixth groups in the periodic table excluding Ti).
  • M is a group of the fourth, fifth and sixth groups in the periodic table excluding Ti.
  • the hardness and oxidation resistance of the coating layer are high, crater wear on the rake face 3 can be suppressed, and progress of wear on the flank face can also be suppressed.
  • the covering layer 6 may have a uniform structure as a whole, or may be a multilayer of two or more layers.
  • a unit layer having two or more types of thicknesses ranging from nm to several tens of nm is periodically repeated.
  • a laminated structure may also be used.
  • the coating layer 6 is a multilayer of two or more layers, it is not limited to the case where the composition of each layer is within the range of the overall composition of the coating layer 6, and the layer does not contain at least one of Ti and Al. May be included.
  • M 1 or more types chosen from Cr, W, Mo, Ta, Hf, Nb, Zr, Si, and Y are desirable, but when one or more types of Cr, Si, Nb, Mo, and W are contained, hardness Excellent wear resistance. Furthermore, if M is Nb or Mo, the oxidation resistance at high temperature is excellent, and therefore, for example, the progress of crater wear in high-speed cutting can be suppressed.
  • Ti and Al are based on a cubic TiN crystal structure and are replaced with Al, and are excellent in wear resistance and fracture resistance.
  • C and N which are non-metallic components of the coating layer 6 affect the hardness and toughness required for the cutting tool.
  • d N content ratio
  • the composition of the coating layer 6 can be measured by energy dispersive spectroscopy (EPMA) or X-ray photoelectron spectroscopy (XPS).
  • EPMA energy dispersive spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • the structure of the coating layer 6 is fine, the detailed structure can be confirmed by observation with a transmission electron microscope (TEM), and the detailed composition can be confirmed by energy dispersive X-ray analysis (EDS). .
  • TEM transmission electron microscope
  • EDS energy dispersive X-ray analysis
  • the ratio (tf / tr) between the thickness tf of the coating layer 6 on the flank 4 and the thickness tr of the coating layer 6 on the rake face 3 is 1.2 to 3.
  • the wear resistance of the flank 4 is improved, and the flank wear can be reduced to extend the tool life.
  • the ratio tn / tf between the thickness tn of the covering layer 6 at the nose portion 9 and the thickness tf of the covering layer 6 at the flank 4 is 1.2 to 2.0. Thereby, the wear resistance of the nose portion 9 can also be improved.
  • the thicknesses tr, tf, and tn at the rake face 3, the flank face 4, and the nose portion 9 of the covering layer 6 indicate the average values of the thicknesses at the respective positions of the covering layer 6.
  • the thickness can be determined by measuring the thickness at five arbitrary points and taking the average value.
  • the substrate 2 may be a cemented carbide or cermet hard alloy composed of a hard phase mainly composed of tungsten carbide or titanium carbonitride and a binder phase mainly composed of an iron group metal such as cobalt or nickel, or silicon nitride.
  • Hard materials such as ultra-high pressure sintered bodies that fire ceramics and aluminum oxide as a main component, hard phases composed of polycrystalline diamond and cubic boron nitride and binder phases such as ceramics and iron group metals under ultra-high pressure Preferably used.
  • the average aspect ratio of the columnar crystal 7 on the flank 4 is larger than the average aspect ratio of the columnar crystal 7 on the rake face 3.
  • the orientation of the columnar crystals 7 is inclined with respect to the thickness direction of the coating layer 6, which is a direction orthogonal to the surface of the substrate 2, and the average aspect ratio of the columnar crystals 7 is large. Therefore, even if a crack occurs in the coating layer 6, it is difficult to progress in the thickness direction of the coating layer 6, and the progress can be suppressed. As a result, the chipping resistance of the coating layer 6 on the flank 4 is improved, and boundary damage that easily occurs on the flank 4 can be suppressed.
  • the average aspect ratio of the columnar crystal 7 is smaller than that of the flank 4 on the rake face 3, the oxidation of the coating layer 6 that progresses deeper through the grain boundary of the crystal constituting the coating layer 6 is suppressed. can do. As a result, the oxidation resistance of the coating layer 6 on the rake face 3 is improved, and crater wear that tends to proceed on the rake face 3 can be suppressed.
  • the average aspect ratio of the columnar crystal 7 in the nose portion 9 is larger than the average aspect ratio of the columnar crystal 7 in the flank 4. Thereby, the chipping resistance in the nose portion 9 is further improved.
  • the aspect ratio of the columnar crystal 7 is such that the longest length in the direction perpendicular to the longitudinal direction of the crystal is the longest length of the crystal of the columnar crystal 7 described above. This refers to the ratio with the length in the width direction (length in the longitudinal direction / length in the width direction), and the average aspect ratio is an arbitrary 10 columnar crystals 7 observed in the region of width 10 ⁇ m ⁇ thickness of the coating layer 6. Refers to the average aspect ratio.
  • the average aspect ratio is calculated by the same method as described above.
  • the shape and inclination state of the crystals constituting each layer are confirmed.
  • the average value with the thickness ratio of each layer taken into consideration is defined as the overall crystal shape and tilted state of the covering layer 6.
  • the average value considering the thickness ratio of each layer is, for example, the inclination angle of the covering layer 6 in the covering layer in which the first layer having the first thickness and the second layer having the second thickness are stacked (the first layer is The tilt angle of the crystal constituting the structure ⁇ first thickness + the tilt angle of the crystal constituting the second layer ⁇ the second thickness) / (first thickness + second thickness).
  • the average aspect ratio of the columnar crystal 7 on the flank 4 is 3 to 15, and the average aspect ratio of the columnar crystal 7 on the rake face 3 is 1.5 to 5. In this range, the effect of suppressing the progress of crater wear on the rake face 3 is high, and the effect of suppressing chipping on the flank 4 is also high.
  • the ratio of the average crystal width of the columnar crystals 7 on the flank face 4 to the average crystal width of the columnar crystals 7 on the rake face 3 is 0.8 to 1.2. That is, since both the flank 4 and the rake face 3 are columnar crystals having the same crystal width, the flank 4 and the rake face 3 have high wear resistance and fracture resistance.
  • the average crystal width of the columnar crystal 7 refers to the average width of the columnar crystal 7 in the direction parallel to the surface of the substrate 2.
  • a specific measurement method is to draw a straight line parallel to the surface direction of the substrate 2 at an intermediate position in the thickness direction of the coating layer 6, measure the number of grain boundaries crossing the straight line, and measure the length of the straight line. Divided by the number of.
  • the average crystal width is measured at an intermediate position of the thickness of each layer. To do. And let the average value which considered the thickness ratio of each layer be the average crystal width of the coating layer 6.
  • FIG. When a plurality of layers are stacked and crystal growth is inherited between the layers, and the same crystal is formed in the upper and lower layers, it is counted as one columnar crystal over the plurality of layers.
  • the flank face 4 there are an average of 2 to 5 columnar crystals 7 in the longitudinal direction of the columnar crystals 7 in the covering layer 6, and in the rake face 3, the columnar crystals 7 are present in the covering layer 6.
  • the average number of columnar crystals 7 in the longitudinal direction is calculated as an average value at five arbitrary points by drawing a straight line in the thickness direction of the coating layer 6 and measuring the number of crystals crossing the straight line. To do.
  • FIG. 3 is a schematic view of an arc ion plating film forming apparatus (hereinafter abbreviated as AIP apparatus) 20 and an exemplary diagram showing a rotation state of a sample during film formation, for an example of a detailed film forming method. This will be described with reference to FIG.
  • the AIP apparatus 20 of FIG. 3 introduces a gas such as N 2 or Ar into the vacuum chamber 21 from the gas inlet 22, arranges the cathode electrode 23 and the anode electrode 24, and applies a high voltage therebetween. Then, a plasma is generated, and a desired metal or ceramic is evaporated from the target 25 by the plasma and ionized to be in a high energy state, and the ionized metal is attached to the surface of the sample (substrate 2) as shown in FIG. Further, the surface of the substrate 2 is covered with a coating layer 6. 3 and 4, the rotary table 26 is placed in the vacuum chamber 21.
  • a gas such as N 2 or Ar
  • a plurality of towers 35 each including a sub turntable 27, a plurality of shaft rods 28 mounted thereon, and a plurality of base bodies 2 skewered on the shaft rods 28 (see FIG. 3 shows 2 sets, and FIG. 4 shows 6 sets).
  • a heater 29 for heating the substrate 2 a gas discharge port 30 for discharging gas out of the system, and a bias power supply 31 for applying a bias voltage to the substrate 2 are arranged. ing.
  • the flank (side surface) of the substrate 2 is parallel to the surface of the target 25 as shown in FIG. Set to.
  • the metal source is evaporated and ionized by arc discharge or glow discharge, and at the same time, nitrogen (N 2 ) gas as a nitrogen source or methane (CH 4 ) / acetylene (C 2 H 2 ) as a carbon source.
  • N 2 nitrogen
  • CH 4 methane
  • C 2 H 2 acetylene
  • the turntable 26, the sub turntable 27, and the shaft rod 28 are rotated, respectively. That is, the turntable 26 and the sub turntable 27 rotate in the same direction (clockwise in FIG. 4). Then, the shaft 28 is rotated in the direction opposite to the rotation direction of the turntable 26 and the sub turntable 27 (counterclockwise in FIG. 4).
  • the rotation speed of the turntable 26 is 1 to 4 rpm
  • the rotation speed of the sub turntable 27 is 3 times or more, especially 5 to 10 times the rotation speed of the turntable 26.
  • the rotational speed of the shaft rod 28 is 1 to 5 rpm, particularly 1.5 to 3 rpm.
  • the inclination angle of the columnar crystal on the rake face and the inclination angle of the columnar crystal on the flank face can be controlled within a predetermined range.
  • the rotary table 26 and the sub rotary table 27 are rotated in the same direction (clockwise in FIG. 4), but the present invention is not limited to this, and the rotary table 26 and The sub turn table 27 can be rotated in the reverse direction. In this case, for example, by setting the rotation speed of the sub turntable 27 to 5 times or more, particularly 7 to 12 times the rotation speed of the turntable 26, the tilt angle of the columnar crystals is within a predetermined range. Can be adjusted.
  • the flank 4 is located at a position where the metal component from the target 25 comes linearly, so the metal component from the target 25 comes linearly. Therefore, the film forming speed tends to be high.
  • the rake face 3 has a form in which the metal component from the target 25 wraps around and flies in the direction of the target 25, so that the film forming speed tends to be slow.
  • the interval g between adjacent samples on the upper and lower sides is set to 0.5 to 1 times the thickness of the sample.
  • the average orientation in the longitudinal direction of the columnar crystals 7 on the flank 4 is inclined from the direction orthogonal to the surface of the substrate 2 (inclination angle ⁇ 2> 0 in FIG. 2), and the columnar crystals 7 on the flank 4
  • the average aspect ratio can be larger than the average aspect ratio of the columnar crystals 7 on the rake face 3. That is, by forming the gap g between adjacent samples in the upper and lower sides as narrow as 0.5 to 1 times the thickness of the sample, the coating layer is formed on the rake face and the main face forming the seating face and the side face forming the flank face.
  • the average inclination angle in the longitudinal direction of the columnar crystal 7 in the nose portion 9 can be further increased by narrowing the gap g between adjacent samples in the upper and lower directions to 0.5 to 1 times the thickness of the sample. it can.
  • the target 25 for example, metal titanium (Ti), metal aluminum (Al), metal M (where M is selected from Group 4, 5, 6 elements of the periodic table excluding Ti, rare earth elements, and Si) It is possible to use a metal target containing each of the seeds or more), an alloy target obtained by compounding them, a mixture target composed of these compound powders or sintered bodies, and set at the position of the side wall surface of the chamber.
  • Film formation conditions include using these targets to evaporate and ionize the metal source by arc discharge, glow discharge, or the like, and simultaneously use nitrogen (N 2 ) gas as a nitrogen source or methane (CH 4 ) / acetylene as a carbon source (
  • N 2 nitrogen
  • a coating layer is formed by an ion plating method or a sputtering method that reacts with a C 2 H 2 ) gas.
  • a high hardness coating layer can be produced in consideration of the crystal structure of the coating layer, and in order to improve the adhesion to the substrate, in this embodiment, 35 to 200 V, In particular, a bias voltage of 75 to 150 V is applied.
  • the main component is a tungsten carbide (WC) powder having an average particle size of 0.9 ⁇ m, 10% by mass of metallic cobalt (Co) powder having an average particle size of 1.2 ⁇ m, and chromium carbide (Cr 3 C 2 having an average particle size of 1.0 ⁇ m).
  • WC tungsten carbide
  • Co metallic cobalt
  • Cr 3 C 2 chromium carbide
  • ) Powder was added and mixed at a ratio of 0.5% by mass, formed into a throwaway tip shape of Kyocera's cutting tool BDMT11T308ER-JT by press molding, and then subjected to binder removal treatment in a vacuum of 0.01 Pa And sintered at 1450 ° C. for 1 hour to prepare a cemented carbide. Further, the rake face surface of each sample was polished by blasting, brushing or the like. Further, the prepared cemented carbide was subjected to blade edge processing (honing) by brushing.
  • a bias voltage shown in Table 1 was applied to the substrate thus prepared, and an arc current 150A was applied to each of the substrates.
  • a gap g between the rake face and the seating face of the set sample shown in Table 1 (in the table, The coating layer having the composition shown in Table 2 was formed at a film formation temperature of 540 ° C. while rotating the sample at the rotation speed of the rotary table, sub-rotation table, and shaft rod shown in Table 1. did.
  • the entire composition of the coating layer was measured by energy dispersive spectroscopy (EPMA) by observing a cross section including the coating layer of each sample with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • each coating layer was observed with the transmission electron microscope (TEM), and the detailed structure of the coating layer was confirmed with the energy dispersive X ray analysis method (EDS).
  • EDS energy dispersive X ray analysis method
  • the thickness of the coating layer at any five locations of the rake face, the flank face, and the nose portion was measured, and the average values were calculated as the coating layer thicknesses tr, tf, and tn.
  • EBSD electron backscatter diffraction
  • the outline of each crystal was specified from the color map, and the columnar crystal shape and inclination angle of the coating layer on the rake face, flank face and nose were measured.
  • the average aspect ratio is the aspect ratio
  • the average crystal width is the crystal width
  • the average number of columnar crystals in the longitudinal direction is the number of existence
  • the average inclination angle of the columnar crystals in the rake face, flank and nose Is ⁇ 1, ⁇ 2, ⁇ 3, and the rake face, flank face, and nose portion of the coating layer are expressed as thickness tr, tf, tn.
  • Cutting method Milling work material: Mold steel (SKD11) Cutting speed: 120 m / min Feed: 0.12 mm / rev Cutting depth: 2.0mm x 12.5mm Cutting state: Dry evaluation method: The cutting tool state was confirmed by observing the cutting tool after processing for 20 minutes. Abnormal wear conditions such as chipping and chipping were confirmed. Moreover, the processing time that could be processed until the tool life was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】耐チッピング性および耐摩耗性に優れた切削工具を提供する。 【解決手段】 基体(2)と、基体(2)の表面を被覆する柱状結晶(7)からなる被覆層(6)とを具備し、すくい面(3)と逃げ面(4)との交差稜線を切刃(5)とし、逃げ面(4)における基体(2)の表面に直交する方向に対する柱状結晶(7)の長手方向の平均の傾斜角(θ2)が、すくい面(3)における基体(2)の表面に直交する方向に対する柱状結晶(7)の長手方向の平均の傾斜角(θ1)よりも大きい切削工具(1)である。

Description

切削工具
 本発明は基体の表面に被覆層が成膜されている切削工具に関する。
 切削工具は、超硬合金やサーメット等の焼結合金、ダイヤモンドやcBN(立方晶窒化硼素)の高硬度焼結体、アルミナや窒化珪素等のセラミックスからなる基体の表面に被覆層を成膜して、耐摩耗性および耐欠損性を向上させる手法が使われている。
 また、TiAlN等の被覆層が盛んに研究されている。例えば、特許文献1では、2層積層したTiAlN系の被覆層の2層目の柱状結晶を、基体の表面に直交する方向に対して平均で1~15°の角度で斜めの方向に成長させた被覆膜(被覆層)が開示されている。
特開2008-105164号公報
 しかしながら、特許文献1に記載された2層目を基体の表面に直交する方向に対して平均で1~15°の角度で斜めの方向に成長させた被覆膜(被覆層)であっても、切削工具全体としての切削性能は不十分であり、さらなる改善が必要であった。
 本発明は上記課題を解決するためのものであり、その目的は、すくい面および逃げ面における被覆層の結晶状態を最適にして、すくい面におけるクレータ摩耗を抑制するとともに逃げ面における耐チッピング性を高めて、総合的に切削性能を向上させる切削工具を提供することにある。
 本発明の切削工具は、基体と、該基体の表面を被覆する柱状結晶からなる被覆層とを具備し、すくい面と逃げ面との交差稜線を切刃とし、前記逃げ面における前記基体の表面に直交する方向に対する前記柱状結晶の長手方向の平均の傾斜角が、前記すくい面における前記基体の表面に直交する方向に対する前記柱状結晶の長手方向の平均の傾斜角よりも大きいものである。
 本発明の他の切削工具は、基体と、該基体の表面を被覆する柱状結晶からなる被覆層とを具備し、すくい面と逃げ面との交差稜線を切刃とし、前記逃げ面において前記柱状結晶の長手方向の平均の向きが前記基体の表面に直交する方向に対して傾斜しているとともに、前記逃げ面における前記柱状結晶の平均アスペクト比が前記すくい面における前記柱状結晶の平均アスペクト比よりも大きいものである。
 本発明の切削工具によれば、被覆層が柱状結晶からなり、逃げ面における基体の表面に直交する方向に対する柱状結晶の長手方向の平均の傾斜角が、すくい面における基体の表面に直交する方向に対する柱状結晶の長手方向の平均の傾斜角よりも大きい。すなわち、逃げ面ではすくい面よりも柱状結晶の長手方向の平均の向きが、基体の表面に直交する方向に対して、より斜めに傾斜している。これによって、逃げ面においては、被覆層のクラックの進展が抑制できて、耐チッピング性が向上し、境界損傷を抑制することができる。また、すくい面においては、逃げ面よりも柱状結晶の傾斜角が小さいために、被覆層の硬度が高く、クレータ摩耗を抑制できる。
 本発明の他の切削工具によれば、逃げ面において柱状結晶の長手方向の平均の向きが基体の表面に直交する方向に対して傾斜しているとともに、逃げ面における柱状結晶の平均アスペクト比がすくい面における柱状結晶の平均アスペクト比よりも大きい。これによって、逃げ面においては、被覆層中にクラックが発生しにくく、かつクラックが発生したとしてもその進展を抑制することができる。その結果、逃げ面における被覆層の耐チッピング性が向上し、逃げ面において発生しやすい境界損傷を抑制することができる。また、すくい面においては、被覆層が高温になりやすく酸化されやすいが、被覆層を構成する結晶の粒界が多くなるため、この粒界を伝って進行しやすい被覆層の酸化を抑制することができる。その結果、すくい面における被覆層の耐酸化性が向上し、すくい面において進行しやすいクレータ摩耗を抑制できる。
 つまり、いずれの場合においても、逃げ面においてクラックや境界損傷を抑制できるとともに、すくい面におけるクレータ摩耗の進行を抑制できる。その結果、工具寿命が延びる。
本発明の切削工具の一例についての概略斜視図である。 図1の切削工具の(a)すくい面、(b)逃げ面についての要部拡大図である。 図1、2の切削工具の被覆層の成膜工程における成膜装置の模式図である。 図3の成膜装置の試料の回転状態を示す模式図である。
 本発明の切削工具についての好適な実施態様である図1、2によれば、切削工具1は、基体2と、基体2の表面を被覆する被覆層6とを具備している。被覆層6は細長い柱状結晶7からなる。本発明において柱状結晶7とは、結晶の長さが最も長い方向を結晶の長手方向とし、この長手方向に直交する方向のうちの最も長い長さを結晶の幅方向の長さとして、結晶の長手方向の長さ/幅方向の長さの比であるアスペクト比が1.5以上の結晶を指す。被覆層6が柱状結晶7からなることによって、逃げ面4およびすくい面3の耐摩耗性および耐欠損性が高い。すなわち、被覆層6を構成する結晶が柱状結晶でなく粒状結晶からなると、逃げ面4およびすくい面3の耐摩耗性および耐欠損性が低い。
 また、切削工具1は、主面にすくい面3を、側面に逃げ面4を、すくい面3と逃げ面4との交差稜線に切刃5を有している。図1の切削工具1は、主面が多角形の概略平板状で両主面が使用可能な、いわゆるネガタイプの切削インサートであり、すくい面3の裏面は着座面8を構成する。使用時に裏返して再度使用する際には、すくい面3と着座面8とが逆転する。なお、本発明はネガタイプの切削インサートに限定されるものではなく、例えば、一方の主面のみをすくい面3とするポジタイプの切削インサートにも好適に使用可能である。さらに、主面が円形や、平面でない形状にも適用可能であり、回転工具に対しても適用可能である。
 本実施態様によれば、切削工具1は、逃げ面4における基体2の表面に直交する方向(以下、膜厚方向という場合がある。)に対する柱状結晶7の長手方向の平均の傾斜角θ2が、すくい面3における膜厚方向に対する柱状結晶7の長手方向の平均の傾斜角θ1よりも大きい。これによって、逃げ面4においては、被覆層6のクラックの進展が抑制できて、耐チッピング性が向上し、境界損傷を抑制することができる。また、すくい面3においては、逃げ面4よりも柱状結晶7の傾斜角が小さい(θ1<θ2)ために、被覆層6の硬度が高く、クレータ摩耗を抑制できる。その結果、切削工具1の寿命が延びる。
 なお、柱状結晶7の傾斜角の測定は、走査型電子顕微鏡(SEM)観察において、電子後方散乱回折法(EBSD)を用いて、幅10μm×被覆層の厚みの視野にて測定する。切削工具1を逃げ面4側から逃げ面4に平行に0.1mm~0.2mm研磨した研磨面にて観察される被覆層6のうち、基体2の表面が直線状である部位にてすくい面3の傾斜角θ1を測定する。同様に、切削工具1をすくい面3側から着座面8に平行に0.1mm~0.2mm研磨した研磨面にて観察される被覆層6のうち、基体2の表面が直線状である部位にて逃げ面4の傾斜角θ2を測定する。具体的な測定方法としては、EBSD法による被覆層6の各結晶面の配向方向をカラーマップにて確認することによって各結晶の輪郭を特定する。そして、各柱状結晶7の輪郭から、最も長い方向を柱状結晶7の長手方向として、膜厚方向、すなわち、基体2の表面に対して垂直な方向からの傾きを傾斜角として測定し、各結晶の平均値を平均の傾斜角として算出する。このとき、被覆層6に含まれる柱状結晶7以外のアスペクト比が1.5よりも小さい粒状結晶の向きは、柱状結晶の傾斜角の計算には含めない。
 ここで、本実施態様では、逃げ面4における柱状結晶7の傾斜角θ2が10~50°であり、すくい面3における柱状結晶7の傾斜角θ1が0~20°である。これによって、逃げ面4においては、被覆層6のクラックの進展を抑制する効果が高く、耐チッピング性が向上し、境界損傷がより抑制される。また、すくい面3においては、被覆層6の硬度が高く、クレータ摩耗をより効果的に抑制できる。
 また、本実施態様では、切刃5が曲線状のノーズ切刃5aと直線状の直線切刃5bとを有し、ノーズ切刃5aの直下の逃げ面4にノーズ部9が設けられるとともに、被覆層6は、ノーズ部9における柱状結晶7の長手方向の平均の傾斜角θ3(図示せず)が、逃げ面4における傾斜角θ2よりも大きい。これによって、微小チッピングが生じやすいノーズ部9における被覆層6の耐チッピング性を高めることができる。なお、ノーズ部9における柱状結晶7の傾斜角θ3は、切削工具1をすくい面3側から0.1mm~0.2mm研磨した研磨面におけるノーズ部9の被覆層6に対して、電子後方散乱回折法(EBSD)を用いて、幅10μm×被覆層の厚みの視野にて測定する。この視野であれば、ノーズ部9における基体2の表面はほぼ直線となる。この視野において、各結晶の輪郭から、最も長い直線が引ける方向を柱状結晶の長手方向として、この長手方向の膜厚方向からの傾きである傾斜角を測定し、各結晶の平均値を平均の傾斜角をとして算出する。また、本発明においては、直線切刃5bの直下の逃げ面4における傾斜角を、逃げ面4の傾斜角θ2とする。
 さらに、本実施態様では、被覆層6の全体組成は、(Al1-a-bTi)C1-d(ただし、MはTiを除く周期表第4、5および6族元素、Siおよび希土類金属元素より選ばれる一種以上の元素。0.2≦a≦0.7、0≦b≦0.2、0≦d≦1)からなる。この範囲であれば、被覆層の硬度および耐酸化性が高くて、すくい面3におけるクレータ摩耗が抑制できるとともに、逃げ面における摩耗の進行も抑制できる。なお、被覆層6は全体が均一な組織であってもよいが、2層以上の多層であってもよく、中でも2種類以上の厚みがnmから数十nmオーダーの単位層を周期的に繰り返し積層した構造であってもよい。このように、被覆層6が2層以上の多層の場合には、各層の組成が上記被覆層6の全体組成の範囲内にある場合に限定されず、TiおよびAlの少なくとも一方を含まない層が含まれていてもよい。
 なお、MとしてはCr、W、Mo、Ta、Hf、Nb、Zr、Si、Yから選ばれる1種以上が望ましいが、中でもCr、Si、Nb、MoおよびWの1種以上を含有すると硬度に優れて、耐摩耗性に優れる。さらに、MがNbまたはMoであれば高温での耐酸化性に優れるために、例えば、高速切削におけるクレータ摩耗の進行を抑制できる。なお、TiおよびAlは立方晶のTiN結晶構造を基本としてAlが置換した形態からなり、耐摩耗性および耐欠損性に優れる。
 また、被覆層6の非金属成分であるC、Nは切削工具に必要な硬度および靭性に影響を及ぼすものであり、本実施態様では、d(N含有比率)は0≦d≦1、特に、0.8≦d≦1である。ここで、本発明によれば、上記被覆層6の組成は、エネルギー分散型分光分析法(EPMA)またはX線光電子分光分析法(XPS)にて測定できる。さらに、被覆層6の構造が細かい場合には、透過型電子顕微鏡(TEM)観察して詳細な構造を確認し、エネルギー分散型X線分析法(EDS)にて詳細組成を確認することができる。
 さらに、本実施態様では、逃げ面4における被覆層6の厚みtfとすくい面3における被覆層6の厚みtrとの比(tf/tr)が1.2~3である。これによって、逃げ面4の耐摩耗性が向上し、逃げ面摩耗を小さくして工具寿命を延ばすことができる。また、本実施態様では、ノーズ部9における被覆層6の厚みtnと逃げ面4における被覆層6の厚みtfとの比tn/tfは1.2~2.0である。これによって、ノーズ部9の耐摩耗性も高めることができる。なお、本発明においては、被覆層6のすくい面3、逃げ面4、ノーズ部9における厚みtr、tf、tnは、被覆層6の各位置における厚みの平均値を指し、被覆層6の断面観察において任意5か所での厚みを測定してその平均値を取ることによって求めることができる。
 なお、基体2としては、炭化タングステンや炭窒化チタンを主成分とする硬質相とコバルト、ニッケル等の鉄族金属を主成分とする結合相とからなる超硬合金やサーメットの硬質合金、窒化ケイ素や酸化アルミニウムを主成分とするセラミックス、多結晶ダイヤモンドや立方晶窒化ホウ素からなる硬質相とセラミックスや鉄族金属等の結合相とを超高圧下で焼成する超高圧焼結体等の硬質材料が好適に使用される。
 また、本実施態様によれば、切削工具1は、図2に示すように、逃げ面4における柱状結晶7の平均アスペクト比がすくい面3における柱状結晶7の平均アスペクト比よりも大きい。これによって、逃げ面4においては、柱状結晶7の向きが基体2の表面に直交する方向である被覆層6の厚み方向に対して斜めに傾斜しているとともに柱状結晶7の平均アスペクト比が大きいので、被覆層6中にクラックが発生したとしても被覆層6の厚み方向に進展しにくくその進展を抑制することができる。その結果、逃げ面4における被覆層6の耐チッピング性が向上し、逃げ面4において発生しやすい境界損傷を抑制することができる。また、すくい面3においては、逃げ面4よりも柱状結晶7の平均アスペクト比が小さいために、被覆層6を構成する結晶の粒界を伝ってより深くまで進行する被覆層6の酸化を抑制することができる。その結果、すくい面3における被覆層6の耐酸化性が向上し、すくい面3において進行しやすいクレータ摩耗を抑制できる。
 さらに、本実施態様では、ノーズ部9における柱状結晶7の平均アスペクト比は逃げ面4における柱状結晶7の平均アスペクト比よりも大きい。これによって、ノーズ部9における耐チッピング性がさらに向上する。
 本発明において、柱状結晶7のアスペクト比は、上述した柱状結晶7の結晶の長さが最も長い方向を結晶の長手方向と、この長手方向に直交する方向のうちの最も長い長さを結晶の幅方向の長さとの比(長手方向の長さ/幅方向の長さ)を指し、平均アスペクト比は、幅10μm×被覆層6の厚みの領域にて観察される任意10個の柱状結晶7のアスペクト比の平均値を指す。
 なお、被覆層6として、複数層が積層されかつ層間で結晶の成長を引き継ぐ場合には、1つの柱状結晶とみなして、上記と同様の方法で平均アスペクト比を算出する。また、被覆層6として、複数層が積層されかつ層間で結晶の成長を引き継ぐことなく上下層で異なる結晶を構成している場合には、各層を構成する結晶の形状および傾斜状態をそれぞれ確認し、各層の厚み比率を加味した平均値を被覆層6の全体の結晶の形状および傾斜状態とする。各層の厚み比率を加味した平均値とは、例えば、第1厚みの第1層と第2厚みの第2層とが積層された被覆層における被覆層6の傾斜角は、(第1層を構成する結晶の傾斜角×第1厚み+第2層を構成する結晶の傾斜角×第2厚み)/(第1厚み+第2厚み)で算出する。
 ここで、本実施態様では、逃げ面4における柱状結晶7の平均アスペクト比が3~15、すくい面3における柱状結晶7の平均アスペクト比が1.5~5である。この範囲では、すくい面3のクレータ摩耗の進行を抑制する効果が高く、かつ逃げ面4におけるチッピングを抑制する効果も高い。
 また、本実施態様では、逃げ面4における柱状結晶7の平均結晶幅と、すくい面3における柱状結晶7の平均結晶幅との比が0.8~1.2である。つまり、逃げ面4およびすくい面3のどちらも同等の結晶幅を有する柱状結晶であることによって、逃げ面4およびすくい面3の耐摩耗性および耐欠損性が高い。なお、本発明における柱状結晶7の平均結晶幅とは、柱状結晶7の基体2の表面と平行な方向についての平均幅を指す。具体的な測定法は、被覆層6の厚み方向の中間位置において基体2の表面方向に平行に直線を引き、この直線を横切る粒界の数を計測し、直線の長さを計測した粒界の数で割って求められる。このとき、被覆層6として、複数層が積層されかつ層間で結晶の成長を引き継ぐことなく上下層で異なる結晶を構成している場合には、各層の厚みの中間位置で平均結晶幅をそれぞれ測定する。そして、各層の厚み比率を加味した平均値を被覆層6の平均結晶幅とする。複数層が積層されかつ層間で結晶の成長を引き継いで、上下層で同じ結晶を構成している場合には、複数層に亘って1つの柱状結晶としてカウントする。
 さらに、本実施態様では、逃げ面4において、被覆層6内には柱状結晶7の長手方向に平均2~5個の柱状結晶7が存在し、すくい面3において、被覆層6内には柱状結晶7の長手方向に平均3~10個の柱状結晶7が存在する。これによって、すくい面3では被覆層6の厚み方向に存在する粒界の数が多く、すくい面3における耐酸化性が高い。そのために、すくい面3におけるクレータ摩耗の進行が抑制される。また、逃げ面4では衝撃がかかった際に、衝撃が粒界を伝って被覆層6の厚み方向から傾斜する方向に伝わるので、衝撃が吸収されやすくチッピングの発生を抑制できる。なお、本発明において、柱状結晶7の長手方向の平均存在数は、被覆層6の厚み方向に直線を引いて、この直線を横切る結晶の数を測定し、任意5か所における平均値として算出する。
 (製造方法)
 次に、本発明の切削工具の製造方法について説明する。まず、工具形状の基体を従来公知の方法を用いて作製する。次に、基体の表面に、被覆層を成膜する。被覆層の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。詳細な成膜方法の一例について、アークイオンプレーティング成膜装置(以下、AIP装置と略す。)20の模式図である図3、および成膜中の試料の回転状態を示す模式図である図4を参照して説明する。
 図3のAIP装置20は、真空チャンバ21の中にNやAr等のガスをガス導入口22から導入し、カソード電極23とアノード電極24とを配置して、両者間に高電圧を印加してプラズマを発生させ、このプラズマによってターゲット25から所望の金属あるいはセラミックスを蒸発させるとともにイオン化させて高エネルギー状態とし、このイオン化した金属を試料(基体2)の表面に付着させて図2のように基体2の表面に被覆層6を被覆する構造となっている。また、図3、4によれば、真空チャンバ21内に回転テーブル26が載置されている。回転テーブル26の上には、サブ回転台27とその上に載置された複数本の軸棒28と、軸棒28に串刺しにされた複数個の基体2とからなるタワー35が複数(図3では2セット、図4では6セット図示されている。)配置された構成となっている。さらに、図3によれば、基体2を加熱するためのヒータ29と、ガスを系外に排出するためのガス排出口30と、基体2にバイアス電圧を印加するためのバイアス電源31が配置されている。
 ここで、本実施態様によれば、基体2を成膜チャンバ内にセットする際に、図3に示すように、ターゲット25の表面に対して基体2の逃げ面(側面)が平行になるようにセットする。そして、ターゲット25を用いて、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスと反応させることにより、基体2の表面に被覆層6を堆積させる。
 このとき、回転テーブル26とサブ回転台27と軸棒28を、それぞれ回転させるが、本実施態様例としては、図4に示す方向に回転する。すなわち、回転テーブル26とサブ回転台27とは同じ向き(図4では時計回り)に回転する。そして、軸棒28は回転テーブル26およびサブ回転台27の回転方向とは逆向き(図4では反時計回り)に回転させる。回転テーブル26の回転数は1~4rpmとし、サブ回転台27の回転数は回転テーブル26の回転数の3倍以上、特には5~10倍の回転数とする。また、軸棒28の回転数は1~5rpm、特に1.5~3rpmの回転数とする。これによって、すくい面における柱状結晶の傾斜角度と逃げ面における柱状結晶の傾斜角度とを所定の範囲内に制御することができる。なお、図4によれば、回転テーブル26とサブ回転台27とは同じ向き(図4では時計回り)に回転させているが、本発明はこれに限定されるものではなく、回転テーブル26とサブ回転台27とを逆回転とすることもできる。この場合には、例えば、サブ回転台27の回転数を回転テーブル26の回転数の5倍以上、特には7~12倍の回転数とすることによって、柱状結晶の傾斜角度を所定の範囲内に調整することができる。
 本実施態様によれば、基体2を上記方向でセットしているため、逃げ面4はターゲット25からの金属成分が直線的に飛来する位置となるのでターゲット25からの金属成分が直線的に飛来する形態となって成膜速度が速くなりやすい。一方、すくい面3はターゲット25の向きに対してターゲット25からの金属成分が回り込んで飛来する形態となるので成膜速度が遅くなりやすい。
 このとき、上下で隣り合う試料の間隔gを試料の厚みに対して0.5~1倍とする。これによって、逃げ面4において柱状結晶7の長手方向の平均の向きが基体2の表面に直交する方向から傾斜している(図2の傾斜角θ2>0)とともに、逃げ面4における柱状結晶7の平均アスペクト比がすくい面3における柱状結晶7の平均アスペクト比よりも大きい構成とすることができる。すなわち、上下で隣り合う試料の間隔gを試料の厚みに対して0.5~1倍と狭いことによって、すくい面および着座面をなす主面と逃げ面をなす側面における被覆層の成膜状態が変化し、成膜される結晶の成長状態を異ならせることができる。さらに、上下で隣り合う試料の間隔gを試料の厚みに対して0.5~1倍と狭いことによって、ノーズ部9における柱状結晶7の長手方向の平均の傾斜角を、より大きくすることができる。
 また、ターゲット25としては、例えば、金属チタン(Ti)、金属アルミニウム(Al)、金属M(ただし、MはTiを除く周期表第4、5、6族元素、希土類元素およびSiから選ばれる1種以上)をそれぞれ独立に含有する金属ターゲット、これらを複合化した合金ターゲット、これらの化合物粉末または焼結体からなる混合物ターゲットを用いることができ、チャンバの側壁面位置にセットする。
 成膜条件としては、これらのターゲットを用いて、アーク放電やグロー放電などにより金属源を蒸発させイオン化すると同時に、窒素源の窒素(N)ガスや炭素源のメタン(CH)/アセチレン(C)ガスと反応させるイオンプレーティング法またはスパッタリング法によって被覆層を成膜する。なお、上記被覆層を成膜する際には、被覆層の結晶構造を考慮して高硬度な被覆層を作製できるとともに基体との密着性を高めるために、本実施態様では、35~200V、特に75~150Vのバイアス電圧を印加する。
 平均粒径0.9μmの炭化タングステン(WC)粉末を主成分として、平均粒径1.2μmの金属コバルト(Co)粉末を10質量%、平均粒径1.0μmの炭化クロム(Cr)粉末を0.5質量%の割合で添加し混合して、プレス成形により京セラ製切削工具BDMT11T308ER-JT形状のスローアウェイチップ形状に成形した後、脱バインダ処理を施し、0.01Paの真空中、1450℃で1時間焼成して超硬合金を作製した。また、各試料のすくい面表面をブラスト加工、ブラシ加工等によって研磨加工した。さらに、作製した超硬合金にブラシ加工にて刃先処理(ホーニング)を施した。
 このようにして作製した基体に対して、表1に示すバイアス電圧を印加し、アーク電流150Aをそれぞれ流し、表1に示すセットされた試料のすくい面および着座面間の間隔g(表中、試料の厚みに対する比率で表記)と、表1に示す回転テーブル、サブ回転台、軸棒の回転数で試料を回転しながら、成膜温度540℃として表2に示す組成の被覆層を成膜した。なお、被覆層の全体組成は、各試料の被覆層を含む断面について走査型電子顕微鏡(SEM)観察を行い、エネルギー分散分光分析法(EPMA)にて測定した。また、各被覆層を透過型電子顕微鏡(TEM)にて観察し、エネルギー分散型X線分析法(EDS)にて、被覆層の詳細な構成を確認した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 また、SEM観察より、すくい面、逃げ面およびノーズ部の任意5か所における被覆層の厚みを測定し、その平均値を被覆層の厚みtr、tf、tnとして算出した。さらに、SEM観察において電子後方散乱回折法(EBSD)を用いて、カラーマップより各結晶の輪郭を特定し、すくい面、逃げ面およびノーズ部における被覆層の柱状結晶の形状および傾斜角を測定した。表中、平均アスペクト比についてはアスペクト比、平均結晶幅については結晶幅、柱状結晶の長手方向の平均存在個数については存在数、すくい面、逃げ面およびノーズ部における柱状結晶の平均の傾斜角についてはθ1、θ2、θ3、被覆層のすくい面、逃げ面およびノーズ部における厚みについては厚みtr、tf、tnと表記した。結果は表3、4に示した。
Figure JPOXMLDOC01-appb-T000003
 次に、得られたスローアウェイチップを用いて以下の切削条件にて切削試験を行った。結果は表4に示した。
切削方法:ミリング加工
被削材 :金型鋼(SKD11)
切削速度:120m/分
送り  :0.12mm/rev
切り込み:2.0mm×12.5mm
切削状態:乾式
評価方法:20分加工後の切削工具を観察して切刃状態を確認した。チッピングや欠けなど異常摩耗状態を確認した。また、工具寿命まで加工できた加工時間を確認した。
Figure JPOXMLDOC01-appb-T000004
 表1~4に示す結果より、すくい面および逃げ面における被覆層の柱状結晶の傾斜角θ1、θ2の関係が本発明の範囲外である試料No.8~11では、切刃においてチッピングが発生しやすく、かつ、すくい面におけるクレータ摩耗が進行して早期に寿命となった。また、すくい面における柱状結晶の平均アスペクト比が逃げ面における被覆層の柱状結晶の平均アスペクト比よりも大きい試料No.8では、逃げ面においてチッピングが発生しやすく、境界欠損した。すくい面における柱状結晶の平均アスペクト比と逃げ面における被覆層の柱状結晶の平均アスペクト比が同じである試料No.9では、逃げ面のノーズ部におけるノーズ摩耗が進行し、試料No.10では、すくい面におけるクレータ摩耗が進行し、いずれも早期に寿命となった。すくい面における結晶が柱状結晶ではなく平均アスペクト比が1.5未満の粒状結晶となった試料No.11では、すくい面におけるクレータ摩耗が進行して早期に寿命となった。
 これに対して、本発明の範囲内である試料No.1~7では、いずれも切刃におけるチッピングの発生が少なく、かつすくい面におけるクレータ摩耗の進行が遅くて良好な切削性能を発揮した。
 1 切削工具
 2 基体
 3 すくい面
 4 逃げ面
 5 切刃
  5a ノーズ切刃
  5b 直線切刃
 6 被覆層
 7 柱状結晶
 8 着座面
 9 ノーズ部

Claims (9)

  1.  基体と、該基体の表面を被覆する柱状結晶からなる被覆層とを具備し、すくい面と逃げ面との交差稜線を切刃とし、前記逃げ面における前記基体の表面に直交する方向に対する前記柱状結晶の長手方向の平均の傾斜角(θ2)が、前記すくい面における前記基体の表面に直交する方向に対する前記柱状結晶の長手方向の平均の傾斜角(θ1)よりも大きい切削工具。
  2.  前記逃げ面における前記柱状結晶の前記傾斜角(θ2)が10~50°であり、前記すくい面における前記柱状結晶の前記傾斜角(θ1)が0~20°である請求項1記載の切削工具。
  3.  前記被覆層の全体組成が、(Al1-a-bTi)C1-d(ただし、MはTiを除く周期表第4、5および6族元素、Siおよび希土類元素より選ばれる一種以上の元素。0.2≦a≦0.7、0≦b≦0.2、0≦d≦1)からなる請求項1または2記載の切削工具。
  4.  前記逃げ面における前記被覆層の厚みtfと前記すくい面における前記被覆層の厚みtrとの比(tf/tr)が1.2~3である請求項1乃至3のいずれか記載の切削工具。
  5.  基体と、該基体の表面を被覆する柱状結晶からなる被覆層とを具備し、すくい面と逃げ面との交差稜線を切刃とし、前記逃げ面において前記柱状結晶の長手方向の平均の向きが前記基体の表面に直交する方向に対して傾斜しているとともに、前記逃げ面における前記柱状結晶の平均アスペクト比が前記すくい面における前記柱状結晶の平均アスペクト比よりも大きい切削工具。
  6.  前記逃げ面における前記柱状結晶の平均アスペクト比が3~15、前記すくい面における前記柱状結晶の平均アスペクト比が1.5~5である請求項5記載の切削工具。
  7.  前記逃げ面における前記柱状結晶の平均結晶幅と、前記すくい面における前記柱状結晶の平均結晶幅との比が0.8~1.2である請求項5または6記載の切削工具。
  8.  前記逃げ面の前記被覆層に、前記柱状結晶が該柱状結晶の長手方向に平均2~5個存在し、前記すくい面の前記被覆層に、前記柱状結晶が該柱状結晶の長手方向に平均3~10個存在する請求項5乃至7のいずれか記載の切削工具。
  9.  前記切刃が曲線状のノーズ切刃と直線状の直線切刃とを有し、前記ノーズ切刃の直下の前記逃げ面にノーズ部が設けられるとともに、前記被覆層は、前記ノーズ部における前記柱状結晶の長手方向の平均の傾斜角(θ3)が、前記逃げ面における前記柱状結晶の長手方向の平均の傾斜角(θ2)よりも大きい請求項1乃至8のいずれか記載の切削工具。 
PCT/JP2014/053994 2013-02-22 2014-02-20 切削工具 WO2014129530A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14754575.0A EP2959993B1 (en) 2013-02-22 2014-02-20 Cutting tool
US14/768,745 US9555476B2 (en) 2013-02-22 2014-02-20 Cutting tool
KR1020157022364A KR101700699B1 (ko) 2013-02-22 2014-02-20 절삭 공구
JP2014531794A JP5744336B2 (ja) 2013-02-22 2014-02-20 切削工具
CN201480008477.2A CN104981310B (zh) 2013-02-22 2014-02-20 切削工具

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-033527 2013-02-22
JP2013033527 2013-02-22
JP2013109112 2013-05-23
JP2013-109112 2013-05-23

Publications (1)

Publication Number Publication Date
WO2014129530A1 true WO2014129530A1 (ja) 2014-08-28

Family

ID=51391314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053994 WO2014129530A1 (ja) 2013-02-22 2014-02-20 切削工具

Country Status (6)

Country Link
US (1) US9555476B2 (ja)
EP (1) EP2959993B1 (ja)
JP (1) JP5744336B2 (ja)
KR (1) KR101700699B1 (ja)
CN (1) CN104981310B (ja)
WO (1) WO2014129530A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113834A (ja) * 2015-12-24 2017-06-29 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP2019005894A (ja) * 2017-06-27 2019-01-17 株式会社タンガロイ 被覆切削工具
JP7124236B1 (ja) * 2021-06-14 2022-08-23 住友電工ハードメタル株式会社 切削工具

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108966B2 (ja) * 2020-06-24 2022-07-29 株式会社タンガロイ 被覆切削工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105164A (ja) 2006-10-27 2008-05-08 Kyocera Corp 表面被覆切削工具
JP2008155328A (ja) * 2006-12-25 2008-07-10 Kyocera Corp 表面被覆工具
JP2008238336A (ja) * 2007-03-27 2008-10-09 Kyocera Corp 回転工具
JP2008284636A (ja) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd 被覆切削工具
JP2011020179A (ja) * 2009-07-13 2011-02-03 Mitsubishi Materials Corp 耐欠損性と耐摩耗性にすぐれたダイヤモンド被覆工具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4960149B2 (ja) * 2007-05-29 2012-06-27 京セラ株式会社 表面被覆切削工具
US8475944B2 (en) * 2007-06-28 2013-07-02 Kennametal Inc. Coated ceramic cutting insert and method for making the same
JP5383019B2 (ja) * 2007-09-11 2014-01-08 京セラ株式会社 エンドミル
WO2009096476A1 (ja) * 2008-01-29 2009-08-06 Kyocera Corporation 切削工具
JP5052666B2 (ja) * 2008-10-28 2012-10-17 京セラ株式会社 表面被覆工具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105164A (ja) 2006-10-27 2008-05-08 Kyocera Corp 表面被覆切削工具
JP2008155328A (ja) * 2006-12-25 2008-07-10 Kyocera Corp 表面被覆工具
JP2008238336A (ja) * 2007-03-27 2008-10-09 Kyocera Corp 回転工具
JP2008284636A (ja) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd 被覆切削工具
JP2011020179A (ja) * 2009-07-13 2011-02-03 Mitsubishi Materials Corp 耐欠損性と耐摩耗性にすぐれたダイヤモンド被覆工具

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113834A (ja) * 2015-12-24 2017-06-29 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP2019005894A (ja) * 2017-06-27 2019-01-17 株式会社タンガロイ 被覆切削工具
JP7124236B1 (ja) * 2021-06-14 2022-08-23 住友電工ハードメタル株式会社 切削工具
WO2022264197A1 (ja) * 2021-06-14 2022-12-22 住友電工ハードメタル株式会社 切削工具
US11534837B1 (en) 2021-06-14 2022-12-27 Sumitomo Electric Hardmetal Corp. Cutting tool

Also Published As

Publication number Publication date
EP2959993A4 (en) 2016-10-12
JP5744336B2 (ja) 2015-07-08
JPWO2014129530A1 (ja) 2017-02-02
US9555476B2 (en) 2017-01-31
KR101700699B1 (ko) 2017-02-13
US20160001374A1 (en) 2016-01-07
CN104981310A (zh) 2015-10-14
EP2959993A1 (en) 2015-12-30
KR20150106967A (ko) 2015-09-22
EP2959993B1 (en) 2019-09-04
CN104981310B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6268530B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5052666B2 (ja) 表面被覆工具
US9725811B2 (en) Coated cutting tool
WO2012043459A1 (ja) 切削工具
JP5883161B2 (ja) 切削工具
JP2009066673A (ja) エンドミル
JP5956576B2 (ja) 切削工具
WO2018216256A1 (ja) 被膜および切削工具
JP5744336B2 (ja) 切削工具
JP2015110256A (ja) 表面被覆切削工具
WO2023243007A1 (ja) 切削工具
WO2023243008A1 (ja) 切削工具
CN104508185A (zh) 涂层切削刀片
JP7310340B2 (ja) 被覆切削工具
JP5495735B2 (ja) 切削工具
JP5922546B2 (ja) 切削工具
WO2020213264A1 (ja) 切削工具
JP7418714B2 (ja) 被覆切削工具
JP6743350B2 (ja) 切削工具
JP6743349B2 (ja) 切削工具
WO2020213263A1 (ja) 切削工具
JP2024005015A (ja) 切削工具
JP6062623B2 (ja) 切削工具
JP2024005014A (ja) 切削工具
JP2022080501A (ja) 被覆切削工具

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014531794

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754575

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14768745

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157022364

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014754575

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE