WO2014126834A2 - Method and apparatus for three-dimensional fabrication with feed through carrier - Google Patents
Method and apparatus for three-dimensional fabrication with feed through carrier Download PDFInfo
- Publication number
- WO2014126834A2 WO2014126834A2 PCT/US2014/015497 US2014015497W WO2014126834A2 WO 2014126834 A2 WO2014126834 A2 WO 2014126834A2 US 2014015497 W US2014015497 W US 2014015497W WO 2014126834 A2 WO2014126834 A2 WO 2014126834A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- build
- carrier
- region
- polymerizable liquid
- liquid
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/0061—Moulds or cores; Details thereof or accessories therefor characterised by the configuration of the material feeding channel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0888—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/40—Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0037—Production of three-dimensional images
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2240/00—Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2240/001—Designing or manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C2033/0005—Moulds or cores; Details thereof or accessories therefor with transparent parts, e.g. permitting visual inspection of the interior of the cavity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/08—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
- B29C35/0805—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
- B29C2035/0827—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2071/00—Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
- B29K2071/02—Polyalkylene oxides, e.g. PEO, i.e. polyethylene oxide, or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0005—Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0058—Liquid or visquous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2827/00—Use of polyvinylhalogenides or derivatives thereof as mould material
- B29K2827/12—Use of polyvinylhalogenides or derivatives thereof as mould material containing fluorine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2883/00—Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as mould material
- B29K2883/005—LSR, i.e. liquid silicone rubbers, or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0018—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
- B29K2995/0026—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0059—Degradable
- B29K2995/006—Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0065—Permeability to gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/753—Medical equipment; Accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/753—Medical equipment; Accessories therefor
- B29L2031/7532—Artificial members, protheses
- B29L2031/7534—Cardiovascular protheses
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49016—Desktop manufacturing [DTM]; Solid freeform machining [SFM]; Solid freeform fabrication [SFF]
Definitions
- the present invention concerns methods and apparatus for the fabrication of solid three-dimensional objects from liquid polymerizable materials.
- construction of a three-dimensional object is performed in a step-wise or layer-by-layer manner.
- layer formation is performed through solidification of photo curable resin under the action of visible or UV light irradiation.
- Two techniques are known; one in which new layers are formed at the top surface of the growing object; the other in which new layers are formed at the bottom surface of the growing object.
- Described herein are methods, systems and apparatus (including associated control methods, systems and apparatus), for the generally continuous production of a three- dimensional object.
- the three-dimensional object is produced from a liquid interface.
- continuous liquid interphase printing A schematic representation is given in Figure 1 herein.
- the interface is between first and second layers or zones of the same polymerizable liquid.
- the first layer or zone (sometimes also referred to as a "dead zone”) contains an inhibitor of polymerization (at least in a polymerization-inhibiting amount); in the second layer or zone the inhibitor has been consumed (or has not otherwise been incorporated or penetrated therein) to the point where polymerization is no longer substantially inhibited.
- the first and second zones do not form a strict interface between one another but rather there is a gradient of composition that can also be described as forming an interphase between them as opposed to a sharp interface, as the phases are miscible with one another, and further create a (partially or fully overlapping) gradient of polymerization therebetween (and also between the three-dimensional object being fabricated, and the build surface through which the polymerizable liquid is irradiated).
- the three-dimensional object can be fabricated, grown or produced continuously from that gradient of polymerization (rather than fabricated layer-by-layer).
- the creation of fault or cleavage lines in the object being produced which may occur in layer-by-layer techniques such as described in Y. Pan et al. or J. Joyce et al. (noted above), may be reduced or obviated.
- fault or cleavage lines can be intentionally introduced when desired as discussed further below.
- the first layer or zone is provided immediately on top of, or in contact with, a build plate.
- the build plate is transparent to the irradiation which initiates the polymerization (e.g., patterned radiation), but the build plate is preferably semipermeable to the polymerization inhibitor and allows the inhibitor of polymerization (e.g., oxygen) to pass partly or fully therethrough (e.g., to continuously feed inhibitor to the "dead zone").
- the build plate is preferably "fixed” or "stationary” in the sense that it need not slide, retract, rebound or the like to create separate or sequential steps (as in a layer-by layer process).
- minor motion of the build plate in the x and/or y directions that does not unduly disrupt the gradient of polymerization, but still permits continuous polymerization from the liquid interface, may still be accommodated in some embodiments, as also discussed below.
- the present invention provides a method of forming a three-dimensional object, comprising: providing a carrier and an optically transparent member having a build surface, said carrier and said build surface defining a build region therebetween; filling said build region with a polymerizable liquid; irradiating said build region through said optically transparent member to form a solid polymer from said polymerizable liquid while concurrently advancing said carrier away from said build surface to form said three- dimensional object from said solid polymer, while also concurrently (i) continuously maintaining a dead zone of polymerizable liquid in contact with said build surface, and (ii) continuously maintaining a gradient of polymerization zone between said dead zone and said solid polymer and in contact with each thereof, said gradient of polymerization zone comprising said polymerizable liquid in partially cured form (e.g., so that the formation of fault or cleavage lines between layers of solid polymer in said three-dimensional object is reduced).
- the optically transparent member comprises a semipermeable member, and said continuously maintaining a dead zone is carried out by feeding an inhibitor of polymerization through said optically transparent member, thereby creating a gradient of inhibitor in said dead zone and optionally in at least a portion of said gradient of polymerization zone; in other embodiments, the optically transparent member comprises a semipermeable member, and is configured to contain a sufficient amount (or “pool") of inhibitor to continuously maintain the dead zone for a sufficient length of time, to produce the article being fabricated without additional feeding of inhibitor during the process (which "pool" may be replenished or recharged between production runs).
- the optically transparent member is comprised of a semipermeable fluoropolymer, a rigid gas-permeable polymer, porous glass, or a combination thereof.
- the irradiating step is carried out with a two-dimensional radiation pattern projected into said build region, wherein said pattern varies over time while said concurrently advancing step continues for a time sufficient to form said three-dimensional object (i.e., during which time said gradient of polymerization zone is maintained).
- the thickness of the gradient of polymerization zone is in some embodiments at least as great as the thickness of the dead zone.
- the dead zone has a thickness of from 0.01, 0.1, 1 , 2, or 10 microns up to 100, 200 or 400 microns, or more, and/or said gradient of polymerization zone and said dead zone together have a thickness of from 1 or 2 microns up to 400, 600, or 1000 microns, or more.
- the gradient of polymerization zone is maintained (while polymerizing steps continue) for a time of at least 5, 10, 15, 20 or 30 seconds, up to 5, 10, 15 or 20 minutes or more, or until completion of the three-dimensional product.
- the method may further comprise the step of disrupting said gradient of polymerization zone for a time sufficient to form a cleavage line in said three-dimensional object (e.g., at a predetermined desired location for intentional cleavage, or at a location in said object where prevention of cleavage or reduction of cleavage is non-critical), and then reinstating said gradient of polymerization zone (e.g. by pausing, and resuming, the advancing step, increasing, then decreasing, the intensity of irradiation, and combinations thereof).
- the method may further comprise heating said polymerizable liquid as it is supplied to the build region and/or within the build region (e.g., by an amount as given in the Examples below) to reduce the viscosity thereof in the build region (e.g., by an amount as given in the Examples below).
- the method may be carried out and the apparatus implemented wherein said carrier has at least one channel formed therein, and said filling step is carried out by passing or forcing said poiymerizable liquid into said build region through said at least one channel (e.g., wherein said carrier has a plurality of channels formed therein, and wherein different poiymerizable liquids are forced through different ones of said plurality of channels; e.g., further comprising concurrently forming at least one, or a plurality of, external feed conduits separate from said object, each of said at least one feed conduits in fluid communication with a channel in said carrier, to supply at least one, or a plurality of different, poiymerizable liquids from said carrier to said build zone).
- the semipermeable member has a thickness of from 0.1 or 1 millimeters to 10 or 100 millimeters; and/or said semipermeable member has a permeability to oxygen of at least 10 Barrers.
- One particular aspect of the present invention is a method of forming a three- dimensional object, comprising the steps of:
- the carrier has at least one channel formed therein, and the filling step is carried out by passing or forcing the poiymerizable liquid into the build region through the at least one channel.
- the carrier has a plurality of channels formed therein, and wherein different polymerizable liquids are forced through different ones of the plurality of channels.
- the method further comprises concurrently forming at least one, or a plurality of, external feed conduits separate from the object, each of the at least one feed conduits in fluid communication with a channel in the carrier, to supply at least one, or a plurality of different, polymerizable liquids from the carrier to the build zone.
- the method may further comprise: (e) continuing and/or repeating steps (b) through (e) to produce a subsequent polymerized region adhered to a previous polymerized region until the continued or repeated deposition of polymerized regions adhered to one another forms the three-dimensional object.
- steps (b) through (e) are carried out concurrently.
- the build plate is substantially fixed or stationary.
- the source of polymerization inhibitor is a reservoir of polymerization inhibitor within the semipermeable member.
- the semipermeable member further comprises a feed surface separate from the build surface.
- the feed surface is in fluid contact with a polymerization inhibitor so as to provide the source of polymerization inhibitor.
- the method further comprises heating the polymerizable liquid to reduce the viscosity thereof in the build region.
- the method further comprises cooling the polymerizable liquid in the build region to dissipate heat generated by polymerization reactions.
- the the advancing step or steps is/are carried out at a cumulative rate of at least 0.1, 1, 10, 100 or 1000 microns per second.
- excess polymerizable liquid is supplied to the build region, removed or drained therefrom to cool the build region, and then optionally recirculated back to the build region.
- the advancing step is carried out by advancing the carrier vertically from the build surface.
- the semipermeable member comprises a top surface portion, a bottom surface portion, and an edge surface portion; the build surface is on the top surface portion; and the feed surface is on at least one of the top surface portion, the bottom surface portion, and the edge surface portion.
- the semipermeable member has a thickness of from 0.1 or 1 millimeters to 10 or 100 millimeters; and/or the semipermeable member has a permeability to oxygen of at least T.SxlO ⁇ m ⁇ a "1 (10 Barrers); and/or the semipermeable member is formed of a semipermeable fluoropolymer, a rigid gas-permeable polymer, porous glass, or a combination thereof.
- the irradiating step is carried out with actinic radiation.
- the carrier has a soluble sacrificial layer thereon, and the three- dimensional object is formed on the soluble sacrificial layer.
- the total surface area of the build region occupies at least seventy percent of the total surface area of the build surface; and/or lateral movement of the carrier and object in any direction is not more than thirty percent of the width of the build region in the corresponding direction.
- the polymerizable liquid comprises a free radical polymerizable liquid and the inhibitor comprises oxygen.
- the polymerizable liquid comprises an acid- catalyzed or cationically polymerizable liquid
- the inhibitor comprises a base
- the polymerizable liquid further comprises an active agent, a detectable agent, solid particles, or a combination thereof.
- the three-dimensional object comprises a medical device, rod or fibre.
- the irradiating step is carried out by maskless photolithography .
- the method further comprises the steps of: monitoring or detecting at least one process parameter and/or providing at least one known or predetermined process parameter; and then altering at least one process condition in response to the monitored process parameter or known process parameter.
- the carrier with the polymerized region adhered thereto is unidirectionally advanced away from the build surface on the stationary build plate.
- a further particular aspect of the invention is an apparatus for forming a three- dimensional object from a polymerizable liquid, comprising: (a) a support; (b) a carrier operatively associated with the support on which carrier the three-dimensional object is formed; (c) at least one channel formed in the carrier; (d) a build plate connected to the support, the build plate comprising a semipermeable member, the semipermeable member comprising a build surface, with the build surface and the carrier defining a build region therebetween; (e) a liquid polymer supply operatively associated with the build plate and configured to supply liquid polymer through the at least one channel into the build region for solidification/polymerization; (f) a radiation source operatively associated with the build plate and configured to irradiate the build region through the build plate and form a solid polymerized region therein from the liquid polymer; and (g) the build surface being in fluid communication by way of the semipermeable member with a source of polymerization inhibitor so as to promote formation or
- the carrier has a plurality of channels formed therein, configured for supply of different polymerizable liquids through different ones of the plurality of channels.
- the apparatus further comprises the apparatus further comprising at least one, or a plurality of, external feed conduits separate from the object (e.g., which may be constructed in the course of fabricating the object), each of the at least one feed conduits in fluid communication with a channel in the carrier, configured for supply of at least one, or a plurality of different, polymerizable liquids from the carrier to the build zone.
- the object e.g., which may be constructed in the course of fabricating the object
- each of the at least one feed conduits in fluid communication with a channel in the carrier, configured for supply of at least one, or a plurality of different, polymerizable liquids from the carrier to the build zone.
- the build plate is substantially fixed or stationary.
- the source of polymerization inhibitor is a reservoir of polymerization inhibitor within the semipermeable member.
- the semipermeable member further comprises a feed surface separate from the build surface.
- the feed surface is in fluid contact with a polymerization inhibitor so as to provide the source of polymerization inhibitor.
- the apparatus further comprises a controller operatively associated with the carrier and the light source for advancing the carrier away from the build plate during or after polymerization of liquid in the build region.
- the apparatus further comprises a heater operatively associated with the build plate and/or the liquid polymer supply, the heater onfigured to heat polymerizable liquid supplied into the build region.
- the apparatus further comprises a cooler operatively associated with the build plate and configured to cool polymerizable liquid in the build region.
- the semipermeable member comprises a top surface portion, a bottom surface portion, and an edge surface portion; the build surface is on the top surface portion; and the feed surface is on at least one of the top surface portion, the bottom surface portion, and the edge surface portion.
- Some embodiments of the foregoing futher comprise a pressure source operatively associated with the liquid polymer supply.
- the radiation source comprises a light source.
- Some embodiments of the foregoing futher comprise a spatial light modulation array operatively associated with the radiation source and the controller and configured to carry out irradiation of the polymerizable liquid by maskless photolithography.
- the carrier comprises a plate, post, web, film, reel, or combination thereof operatively associated with at least one actuator.
- the carrier comprises a drive, the drive and the controller configured to advance the carrier unidirectionally away from the build surface.
- the carrier has a soluble sacrificial layer thereon, and the three-dimensional object is formed on the soluble sacrificial layer.
- a polydimethylsiloxane (PDMS) coating is applied to the sliding build surface.
- the PDMS coating is said to absorb oxygen and create a thin lubricating film of unpolymerized resin through its action as a polymerization inhibitor.
- the PDMS coated build surface is directly replenished with oxygen by mechanically moving (sliding) the surface from beneath the growing object, while wiping unpolymerized resin therefrom with a wiper blade, and then returning it to its previous position beneath the growing object.
- auxiliary means of providing an inhibitor such as oxygen are provided (e.g., a compressor to associated channels)
- the process still employs a layer-by-layer approach with sliding and wiping of the surface.
- Figure 1 is a schematic illustration of one embodiment of a method of the present invention.
- Figure 2 is a perspective view of one embodiment of an apparatus of the present invention.
- Figure 3 provides side sectional views of alternate embodiments of rigid build plates for use in the present invention.
- FIG. 4 illustrates various alternate carriers for use in the present invention.
- Figure 5 illustrates a polymerization inhibitor in a rigid build plate aiding to establish a non-polymerized film on the build surface thereof.
- Figure 6 illustrates the migration of an inhibitor (in this case oxygen) through a build plate from a feed surface on the back of the plate to a build surface on the front of a plate to aid in establishing a non-polymerized film on the build surface.
- an inhibitor in this case oxygen
- Figure 7 schematically illustrates a growing three-dimensional object being advanced away from a build surface, and the gap that must be filled therebetween before subsequent polymerization can be carried out.
- Figure 8 schematically illustrates an embodiment of the invention which provides for the application of pressure to speed the filling of the gap shown in Figure 8.
- Figure 9 illustrates a rod or fiber that can be produced by the methods and apparatus of the present invention.
- Figure 10 is a photograph of a microneedle array fabricated with methods and apparatus of the present invention.
- the diameter of the carrier on which the array is held is approximately the same as a United States twenty-five cent coin (or "quarter"). Essentially the same carrier is used in the additional examples illustrated below.
- Figure 11 is a photograph of a second microneedle array fabricated with methods and apparatus of the present invention.
- Figure 12 is a photograph of a ring structure being fabricated with methods and apparatus of the present invention. Note the extensive “overhang” during fabrication.
- Figure 13 is a photograph of the completed ring of Figure 12.
- Figure 14 is a photograph of a four chess piece structures fabricated with methods and apparatus of the present invention.
- Figure 15 is a photograph of a rectangular prism structure fabricated with methods and apparatus of the present invention.
- Figure 16 is a photograph of a coil structure fabricated by methods and apparatus of the present invention. Note the extensive "overhang” during fabrication through to the completed structure.
- Figure 18 is a photograph of a chess piece similar to those shown Figure 14 above, but made with a dyed resin by the methods of the present invention.
- Figure 19 schematically illustrates the fabrication of a plurality of articles on the carrier, the carrier having a release layer thereon.
- Figure 20 schematically illustrates the release of a plurality of articles from the carrier with a release layer.
- Figure 21 is a photograph of an array of prisms fabricated by methods and apparatus of the present invention, on a release layer.
- Figure 22 is a photograph of the prisms shown in Figure 21 after release.
- Figure 23 is a photograph of a cylindrical caged structure produced by methods and apparatus of the present invention.
- Figure 24 is a photograph of an array similar to that of Figure 21, and produced by essentially the same methods, except that it comprises a polyethylene glycol polymer.
- Figure 25 is a photograph of a cylindrical cage structure similar to that of Figure 23, and produced by substantially the same methods, except that it comprises a polyethylene glycol polymer. The part was noted to be flexible.
- Figure 26 schematically illustrates an embodiment of an apparatus of the present invention in which one or more heaters are included to reduce the viscosity of the polymerizable liquid.
- Figure 27 schematically illustrates an embodiment of an apparatus of the present invention in which the build region is filled with polymerizable liquid fed through the carrier.
- Figure 28 schematically illustrates an embodiment of the invention in which external conduits are formed to facilitate feeding one or multiple polymerizable liquids from the carrier to the build region.
- Figures 29-31 are flow charts illustrating control systems and methods for carrying out the present invention.
- the device may otherwise be oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
- the terms “upwardly,” “downwardly,” “vertical,” “horizontal” and the like are used herein for the purpose of explanation only, unless specifically indicated otherwise.
- first, second, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. Rather, these terms are only used to distinguish one element, component, region, layer and/or section, from another element, component, region, layer and/or section. Thus, a first element, component, region, layer or section discussed herein could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.
- the sequence of operations (or steps) is not limited to the order presented in the claims or figures unless specifically indicated otherwise.
- the liquid can include a monomer, particularly photopolymerizable and/or free radical polymerizabie monomers, and a suitable initiator such as a free radical initiator, and combinations thereof.
- suitable initiator such as a free radical initiator, and combinations thereof. Examples include, but are not limited to, acrylics, methacrylics, acrylamides, styrenics, olefins, halogenated olefins, cyclic alkenes, maleic anhydride, alkenes, alkynes, carbon monoxide, functionalized oligomers, multifunctional cute site monomers, functionalized PEGs, etc, including combinations thereof.
- liquid resins, monomers and initiators include but are not limited to those set forth in US Patents Nos. 8,232,043; 8,1 19,214; 7,935,476; 7,767,728; 7,649,029; WO 2012129968 Al ; CN 102715751 A; JP 2012210408 A.
- the polymerizable liquid comprises a free radical polymerizable liquid (in which case an inhibitor may be oxygen as described below), in other embodiments the polymerizable liquid comprises an acid catalyzed, or cationically polymerized, polymerizable liquid. In such embodiments the polymerizable liquid comprises monomers contain groups suitable for acid catalysis, such as epoxide groups, vinyl ether groups, etc..
- suitable monomers include olefins such as methoxyethene, 4-methoxystyrene, styrene, 2-methylprop-l-ene, 1,3- butadiene, etc.; heterocycloic monomers (including lactones, lactams, and cyclic amines) such as oxirane, thietane, tetrahydrofuran, oxazoline, 1,3, dioxepane, oxetan-2-one, etc., and combinations thereof.
- olefins such as methoxyethene, 4-methoxystyrene, styrene, 2-methylprop-l-ene, 1,3- butadiene, etc.
- heterocycloic monomers including lactones, lactams, and cyclic amines
- a suitable (generally ionic or non-ionic) photoacid generator (PAG) is included in the acid catalyzed polymerizable liquid, examples of which include, but are not limited to onium salts, sulfonium and iodonium salts, etc., such as diphenyl iodide hexafluorophosphate, diphenyl iodide hexafluoroarsenate, diphenyl iodide hexafluoroantimonate, diphenyl p-methoxyphenyl triflate, diphenyl p-toluenyl triflate, diphenyl p-isobutylphenyl triflate, diphenyl p-tert-butylphenyl triflate, triphenylsulfonium hexafluororphosphate, triphenylsulfonium hexafluoroarsenate, triphenylsulfonium
- suitable resins includes photocurable hydrogels like poiy(ethylene glycols) (PEG) and gelatins.
- PEG hydrogels have been used to deliver a variety of biologicals, including Growth factors; however, a great challenge facing PEG hydrogels crosslinked by chain growth polymerizations is the potential for iixeversible protein damage.
- Conditions to maximize release of the biologicals from photopolymerized PEG diacrylate hydrogels can be enhanced by inclusion of affinity binding peptide sequences in the monomer resin solutions, prior to photopolymerization allowing sustained delivery.
- Gelatin is a biopolymer frequently used in food, cosmetic, pharmaceutical and photographic industries. It is obtained by thermal denaturation or chemical and physical degradation of collagen.
- gelatin There are three kinds of gelatin, including those found in animals, fish and humans. Gelatin from the skin of cold water fish is considered safe to use in pharmaceutical applications. UV or visible light can be used to crosslink appropriately modified gelatin. Methods for crosslinking gelatin include cure derivatives from dyes such as Rose Bengal.
- Photocurable silicone resins A suitable resin includes photocurable silicones.
- UV cure silicone rubber such as SilioprenTM UV Cure Silicone Rubber can be used as can LOCTITETM Cure Silicone adhesives sealants.
- Applications include optical instruments, medical and surgical equipment, exterior lighting and enclosures, electrical connectors / sensors, fiber optics and gaskets.
- Biodegradable resins are particularly important for implantable devices to deliver drugs or for temporary performance applications, like biodegradable screws and stents (US patents 7,919,162; 6,932,930).
- Biodegradable copolymers of lactic acid and glycolic acid (PLGA) can be dissolved in PEG dimethacryiate to yield a transparent resin suitable for use.
- Polycaprolactone and PLGA oligomers can be functionalized with acrylic or methacrylic groups to allow them to be effective resins for use.
- Photocurable polyurethanes A particularly useful resin is photocurable polyurethanes.
- a photopolymerizable polyurethane composition comprising (1) a polyurethane based on an aliphatic diisocyanate, poIy(hexamethylene isophthalate glycol) and, optionally, 1 ,4-butanediol; (2) a polyfunctional acrylic ester; (3) a photoinitiator; and (4) an anti-oxidant, can be formulated so that it provides a hard, abrasion-resistant, and stain- resistant material (US Patent 4,337,130).
- Photocurable thermoplastic polyurethane elastomers incorporate photoreactive diacetylene diols as chain extenders.
- High performance resins are used. Such high performance resins may sometimes require the use of heating to melt and/or reduce the viscosity thereof, as noted above and discussed further below.
- Examples of such resins include, but are not limited to, resins for those materials sometimes referred to as liquid crystalline polymers of esters, ester-imide, and ester-amide oligomers, as described in US Patents Nos. 7,507,784; 6,939,940.
- thermoset resins are sometimes employed as high- temperature thermoset resins, in the present invention they further comprise a suitable photoinitiator such as benzophenone, anthraquinone, amd fluoroenone initiators (including derivatives thereof), to initiate cross-linking on irradiation, as discussed further below.
- a suitable photoinitiator such as benzophenone, anthraquinone, amd fluoroenone initiators (including derivatives thereof), to initiate cross-linking on irradiation, as discussed further below.
- Particularly useful resins for dental applications include EnvisionTEC's Clear Guide, EnvisionTEC's E-Denstone Material.
- Particularly useful resins for hearing aid industries include EnvisionTEC's e-Shell 300 Series of resins.
- Particularly useful resins include EnvisionTEC's HTM140IV High Temperature Mold Material for use directly with vulcanized rubber in molding / casting applications.
- a particularly useful material for making tough and stiff parts includes EnvisionTEC's RC31 resin.
- a particulary useful resin for investment casting applications includes EnvisionTEC's Easy Cast EC500.
- the liquid resin or polymerizable material can have solid particles suspended or dispersed therein. Any suitable solid particle can be used, depending upon the end product being fabricated.
- the particles can be metallic, organic/polymeric, inorganic, or composites or mixtures thereof.
- the particles can be nonconductive, semi-conductive, or conductive (including metallic and non-metallic or polymer conductors); and the particles can be magnetic, ferromagnetic, paramagnetic, or nonmagnetic.
- the particles can be of any suitable shape, including spherical, elliptical, cylindrical, etc.
- the particles can comprise an active agent or detectable compound as described below, though these may also be provided dissolved solubilized in the liquid resin as also discussed below. For example, magnetic or paramagnetic particles or nanoparticles can be employed.
- the liquid resin can have additional ingredients solubilized therein, including pigments, dyes, active compounds or pharmaceutical compounds, detectable compounds (e.g., fluorescent, phosphorescent, radioactive), etc., again depending upon the particular purpose of the product being fabricated.
- additional ingredients include, but are not limited to, proteins, peptides, nucleic acids (DNA, RNA) such as siRNA, sugars, small organic compounds (drugs and drug-like compounds), etc., including combinations thereof.
- Inhibitors of polymerization may be in the form of a liquid or a gas.
- gas inhibitors are preferred.
- the specific inhibitor will depend upon the monomer being polymerized and the polymerization reaction.
- the inhibitor can conveniently be oxygen, which can be provided in the form of a gas such as air, a gas enriched in oxygen (optionally but in some embodiments preferably containing additional inert gases to reduce combustibility thereof), or in some embodiments pure oxygen gas.
- the inhibitor can be a base such as ammonia, trace amines (e.g. methyl amine, ethyl amine, di and trialkyl amines such as dimethyl amine, diethyl amine, trimethyl amine, triethyl amine, etc.), or carbon dioxide, including mixtures or combinations thereof.
- Polymerizable liquids carrying live cells may carry live cells as "particles" therein.
- Such polymerizable liquids are generally aqueous, and may be oxygenated, and may be considered as "emulsions" where the live cells are the discrete phase.
- Suitable live cells may be plant cells (e.g., monocot, dicot), animal cells (e.g., mammalian, avian, amphibian, reptile cells), microbial cells (e.g., prokaryote, eukaryote, protozoal, etc.), etc.
- the cells may be of differentiated cells from or corresponding to any type of tissue (e.g., blood, cartilage, bone, muscle, endocrine gland, exocrine gland, epithelial, endothelial, etc.), or may be undifferentiated cells such as stem cells or progenitor cells,
- the polymerizable liquid can be one that forms a hydrogel, including but not limited to those described in US Patents Nos. 7,651,683; 7,651,682; 7,556,490; 6,602,975; 5,836,313; etc.
- FIG. 2 A non-limiting embodiment of an apparatus of the invention is shown in Figure 2. It comprises a radiation source 11 such as a digital light processor (DLP) providing electromagnetic radiation 12 which though reflective mirror 13 illuminates a build chamber defined by wall 14 and a rigid build plate 15 forming the bottom of the build chamber, which build chamber is filled with liquid resin 16.
- the bottom of the chamber 15 is constructed of rigid build plate comprising a rigid semipermeable member as discussed further below.
- the top of the object under construction 17 is attached to a carrier 18.
- the carrier is driven in the vertical direction by linear stage 19, although alternate structures can be used as discussed below.
- a liquid resin reservoir, tubing, pumps liquid level sensors and/or valves can be included to replenish the pool of liquid resin in the build chamber (not shown for clarity) though in some embodiments a simple gravity feed may be employed,
- Drives/actuators for the carrier or linear stage, along with associated wiring, can be included in accordance with known techniques (again not shown for clarity).
- the drives/actuators, radiation source, and in some embodiments pumps and liquid level sensors can all be operatively associated with a suitable controller, again in accordance with known techniques.
- Build plates 15 used to carry out the present invention generally comprise or consist of a (typically rigid or solid, stationary, and/or fixed) semipermeable (or gas permeable) member, alone or in combination with one or more additional supporting substrates (e.g., clamps and tensioning members to rigidify an otherwise flexible semipermeable material).
- a semipermeable (or gas permeable) member typically rigid or solid, stationary, and/or fixed
- additional supporting substrates e.g., clamps and tensioning members to rigidify an otherwise flexible semipermeable material.
- the rigid semipermeable member can be made of any suitable material that is optically transparent at the relevant wavelengths (or otherwise transparent to the radiation source, whether or not it is visually transparent as perceived by the human eye— i.e., an optically transparent window may in some embodiments be visually opaque), including but not limited to porous or microporous glass, and the rigid gas permeable polymers used for the manufacture of rigid gas permeable contact lenses, See, e.g., Norman G. Gaylord, US Patent No. RES 1 ,406; see also US Patents Nos.
- the rigid semipermeable member is formed of a material that does not swell when contacted to the liquid resin or material to be polymerized (i.e., is "non-swellable").
- Suitable materials for the rigid semipermeable member include rigid amorphous fluoropolyrners, such as those described in US Patent Nos.
- fluoropolyrners are particularly useful over silicones that would potentially swell when used in conjunction with organic liquid resin inks to be polymerized.
- silicone based window materials maybe suitable.
- the solubility or permeability of organic liquid resin inks can be dramatically decreased by a number of known parameters including increasing the crosslink density of the window material or increasing the molecular weight of the liquid resin ink.
- the build plate may be formed from a thin film or sheet of material which is flexible when separated from the apparatus of the invention, but which is clamped and tensioned when installed in the apparatus (e.g., with a tensioning ring) so that it is rendered rigid in the apparatus.
- Particular materials include TEFLON AF® fluoropolyrners, commercially available from DuPont. Additional materials include perfluoropolyether polymers such as described in US Patents Nos. 8,268,446; 8,263,129; 8,158,728; and 7,435,495.
- the semipermeable member typically comprises a top surface portion, a bottom surface portion, and an edge surface portion.
- the build surface is on the top surface portion; and the feed surface may be on one, two, or all three of the top surface portion, the bottom surface portion, and/or the edge surface portion.
- the feed surface is on the bottom surface portion, but alternate configurations where the feed surface is provided on an edge, and/or on the top surface portion (close to but separate or spaced away from the build surface) can be implemented with routine skill.
- the semipermeable member has, in some embodiments, a thickness of from 0.01, 0.1 or 1 millimeters to 10 or 100 millimeters, or more (depending upon the size of the item being fabricated, whether or not it is laminated to or in contact with an additional supporting plate such as glass, etc., as discussed further below.
- the permeability of the semipermeable member to the polymerization inhibitor will depend upon conditions such as the pressure of the atmosphere and/or inhibitor, the choice of inhibitor, the rate or speed of fabrication, etc.
- the permeability of the semipermeable member to oxygen may be from 10 or 20 Barrers, up to 1000 or 2000 Barrers, or more.
- a semipermeable member with a permeability of 10 Barrers used with a pure oxygen, or highly enriched oxygen, atmosphere under a pressure of 150 PSI may perform substantially the same as a semipermeable member with a permeability of 500 Barrers when the oxygen is supplied from the ambient atmosphere under atmospheric conditions.
- the semipermeable member may comprise a flexible polymer film (having any suitable thickness, e.g., from 0.001, 0.01, 0.1 or 1 millimeters to 5, 10, or 100 millimeters, or more), and the build plate may further comprise a tensioning member ⁇ e.g., a peripheral clamp and an operatively associated strain member or stretching member, as in a "drum head"; a plurality of peripheral clamps, etc., including combinations thereof) connected to the polymer film and to fix and rigidify the film (e.g., at least sufficiently so that the film does not stick to the object as the object is advanced and resiliently or elastically rebound therefrom).
- a tensioning member e.g., a peripheral clamp and an operatively associated strain member or stretching member, as in a "drum head”; a plurality of peripheral clamps, etc., including combinations thereof
- the film has a top surface and a bottom surface, with the build surface on the top surface and the feed surface preferably on the bottom surface.
- the semipermeable member comprises: (i) a polymer film layer (having any suitable thickness, e.g., from 0.001, 0.01, 0.1 or 1 millimeters to 5, 10 or 100 millimeters, or more), having a top surface positioned for contacting said polymerizable liquid and a bottom surface, and (ii) a rigid, gas permeable, optically transparent supporting member (having any suitable thickness, e.g., from 0.01, 0.1 or 1 millimeters to 10, 100, or 200 millimeters, or more), contacting said film layer bottom surface.
- the supporting member has a top surface contacting the film layer bottom surface, and the supporting member has a bottom surface which may serve as the feed surface for the polymerization inhibitor.
- Any suitable materials that are semipermeable that is, permeable to the polymerization inhibitor may be used.
- the polymer film or polymer film layer may, for example, be a fluoropolymer film, such as an amorphous thermoplastic fluoropolymer like TEFLON AF 1600TM or TEFLON AF 2400TM fluoropolymer films, or perfluoropolyether (PFPE), particularly a crosslinked PFPE film, or a crosslinked silicone polymer film.
- PFPE perfluoropolyether
- the supporting member comprises a silicone or crosslinked silicone polymer member such as a polydmiethylxiloxane member, a rigid gas permeable polymer member, or a porous or microporous glass member.
- Films can be laminated or clamped directly to the rigid supporting member without adhesive (e.g., using PFPE and PDMS materials), or silane coupling agents that react with the upper surface of a PDMS layer can be utilized to adhere to the first polymer film layer.
- UV-curable, acrylate- functional silicones can also be used as a tie layer between UV-curable PFPEs and rigid PDMS supporting layers.
- the semipermeable member allows inhibitor to pass therethrough, it can simply be configured to contain a sufficient amount (or “pool") of inhibitor to continuously maintain the dead zone for a sufficient length of time, to produce the article being fabricated without additional feeding of inhibitor during the process (which "pool” may be replenished or recharged between production runs).
- the size and internal volume of the member can be configured as appropriate for the particular article being fabricated to contain a sufficient pool of inhibitor.
- the carrier defines a "build region" on the build surface, within the total area of the build surface.
- the area of the build region within the build surface may be maximized (or conversely, the area of the build surface not devoted to the build region may be minimized).
- the total surface area of the build region can occupy at least fifty, sixty, seventy, eighty, or ninety percent of the total surface area of the build surface.
- the various components are mounted on a support or frame assembly 20. While the particular design of the support or frame assembly is not critical and can assume numerous configurations, in the illustrated embodiment it is comprised of a base 21 to which the radiation source 11 is securely or rigidly attached, a vertical member 22 to which the linear stage is operatively associated, and a horizontal table 23 to which wall 14 is removably or securely attached (or on which the wall is placed), and with the build plate rigidly fixed, either permanently or removably, to form the build chamber as described above.
- the build plate can consist of a single unitary and integral piece of a rigid semipermeable member, or can comprise additional materials.
- a porous or microporous glass can be laminated or fixed to a rigid semipermeable material.
- a semipermeable member as an upper portion can be fixed to a transparent lower member having purging channels formed therein for feeding gas carrying the polymerization inhibitor to the semipermeable member (through which it passes to the build surface to facilitate the formation of a release layer of unpolymerized liquid material, as noted above and below).
- Such purge channels may extend fully or partially through the base plate: For example, the purge channels may extend partially into the base plate, but then end in the region directly underlying the build surface to avoid introduction of distortion. Specific geometries will depend upon whether the feed surface for the inhibitor into the semipermeable member is located on the same side or opposite side as the build surface, on an edge portion thereof, or a combination of several thereof.
- any suitable radiation source can be used, depending upon the particular resin employed, including electron beam and ionizing radiation sources.
- the radiation source is an actinic radiation source, such as one or more light sources, and in particular one or more ultraviolet light sources.
- Any suitable light source can be used, such as incandescent lights, fluorescent lights, phosphorescent or luminescent lights, a laser, light-emitting diode, etc., including arrays thereof.
- the light source preferably includes a pattern-forming element operatively associated with a controller, as noted above.
- the light source or pattern forming element comprises a digital (or deformabie) micromirror device (DMD) with digital light processing (DLP), a spatial modulator (SLM), or a microelectromechanical system (MEMS) mirror array, a mask (aka a reticle), a silhouette, or a combination thereof.
- DMD digital (or deformabie) micromirror device
- DLP digital light processing
- SLM spatial modulator
- MEMS microelectromechanical system
- a mask aka a reticle
- silhouette or a combination thereof.
- the light source comprises a spatial light modulation array such as a liquid crystal light valve array or micromirror array or DMD (e.g., with an operatively associated digital light processor, typically in turn under the control of a suitable controller), configured to carry out exposure or irradiation of the polymerizable liquid without a mask, e.g., by maskless photolithography.
- a spatial light modulation array such as a liquid crystal light valve array or micromirror array or DMD (e.g., with an operatively associated digital light processor, typically in turn under the control of a suitable controller), configured to carry out exposure or irradiation of the polymerizable liquid without a mask, e.g., by maskless photolithography.
- Alternate carriers and actuator/drive arrangements are shown in Figure 4. Numerous variations can be employed, including a take-up reel, an XYZ drive assembly (e.g., as commonly used on an automated microscope stage), etc.
- the drive assembly will generally comprise a worm gear and motor, a rack and pinion and motor, a hydraulic, pneumatic, or piezoelectric drive, or the like, adapted to move or advance the carrier away from the build surface in the vertical or "Z" direction only.
- a spool or take-up real can be utilized, with associated drives or actuators and guides (not shown), particularly when the product being fabricated is an elongated rod or fiber (discussed further below).
- a pair of take-up reels with associated guides, and associated drives or actuators can be mounted on the linear stage to provide movement in either the X and/or Y direction in addition to or in combination with, movement in the Z direction provided by linear stage 19.
- an XYZ drive assembly like that used in an automated microscope can be used in place of linear stage 19 to move or advance the carrier away from the build surface in the X, Y, and/or Z direction, e.g., at an angle, or at changing angles, or combinations of directions at various stages.
- advancement away from the build plate can be carried out solely in the Z (or vertical) direction, or in at least the Z direction, by combining movement in the Z direction with movement in the X and/or Y directions.
- such movement may be carried out for purposes such as reducing "burn in" or fouling in a particular zone of the build surface.
- lateral movement (including movement in the X and/or Y direction or combination thereof) of the carrier and object (if such lateral movement is present) is preferably not more than, or less than, 80, 70, 60, 50, 40, 30, 20, or even 10 percent of the width (in the direction of that lateral movement) of the build region.
- the carrier is mounted on an elevator to advance up and away from a stationary build plate
- the converse arrangement may be used: That is, the carrier may be fixed and the build plate lowered to thereby advance the carrier away therefrom.
- the build plate is "stationary" in the sense that no lateral (X or Y) movement is required to replenish the inhibitor thereon, or no elastic build plate that must be stretched and then rebound (with associated over-advance, and back-up of, the carrier) need be employed.
- adhesion of the article to the carrier may sometimes be insufficient to retain the article on the carrier through to completion of the finished article or "build."
- an aluminum carrier may have lower adhesion than a poly(vinyl chloride) (or "PVC") carrier.
- PVC poly(vinyl chloride)
- any of a variety of techniques can be used to further secure the article to a less adhesive carrier, including but not limited to the application of adhesive tape such as "Greener Masking Tape for Basic Painting #2025 High adhesion" to further secure the article to the carrier during fabrication.
- Soluble sacrificial layers may be established between the carrier and the three-dimensional object, so that that sacrificial layer may be subsequently solubilized to conveniently release the three- dimensional object from the carrier once fabrication is complete.
- any suitable sacrificial layer such as an adhesive, that may be coated or otherwise provided on the carrier may be employed, and any suitable solvent (e.g., polar and non-polar organic solvents, aqueous solvents, etc, to solubilize the sacrificial release layer may be employed, though the sacrificial layer and its corresponding solvent should be chosen so that the particular material from which the three-dimensional object is formed is not itself unduly attacked or solubilized by that solvent.
- the sacrificial layer may be applied to the carrier by any suitable technique, such as spraying, dip coating, painting, etc.
- suitable materials for the soluble sacrificial release layer include but are not limited to: cyanoacrylate adhesive (acetone solvent); poly(vinylpyrrolidone) (water and/or isopropyl alcohol solvent); lacquers (acetone solvent); polyvinyl alcohol, polyacrylic acid, poly(methacrylic acid), polyacrylamide, polyalkylene oxides such as poly(ethylene oxide), sugars and saccharides such as sucrose and dextran (all water or aqueous solvents); etc. Lower surface energy solvents are in some embodiments particularly preferred.
- the actuator/drive and/or associated controller are configured to only advance the carrier away from the build plate (e.g., is unidirectional), as discussed further below.
- the actuator/drive and/or associated controller are configured as a continuous drive (as opposed to a step-wise drive), as also discussed below.
- the present invention provides a method of forming a three- dimensional object, comprising the steps of: (a) providing a carrier and a build plate, said build plate comprising a semipermeable member, said semipermeable member comprising a build surface and a feed surface separate from said build surface, with said build surface and said carrier defining a build region therebetween, and with said feed surface in fluid contact with a polymerization inhibitor; then (concurrently and/or sequentially) (b) filing said build region with a polymerizable liquid, said polymerizable liquid contacting said build segment, (c) irradiating said build region through said build plate to produce a solid polymerized region in said build region, with a liquid film release layer comprised of said polymerizable liquid formed between said solid polymerized region and said build surface, the polymerization of which liquid film is inhibited by said polymerization inhibitor; and (d) advancing said carrier with said polymerized region adhered thereto away from said build surface on said stationary build plate to create
- the method includes (e) continuing and/or repeating steps (b) through (d) to produce a subsequent polymerized region adhered to a previous polymerized region until the continued or repeated deposition of polymerized regions adhered to one another forms said three-dimensional object.
- the method can be carried out in a continuous fashion, though it will be appreciated that the individual steps noted above may be carried out sequentially, concurrently, or a combination thereof. Indeed, the rate of steps can be varied over time depending upon factors such as the density and/or complexity of the region under fabrication.
- the present invention in some embodiments permits elimination this "back-up" step and allows the earner to be advanced unidirectionally, or in a single direction, without intervening movement of the window for re-coating, or "snapping" of a pre-formed elastic release-layer.
- the advancing step is carried out sequentially in uniform increments (e.g., of from 0.1 or 1 microns, up to 10 or 100 microns, or more) for each step or increment. In some embodiments, the advancing step is carried out sequentially in variable increments (e.g., each increment ranging from 0.1 or 1 microns, up to 10 or 100 microns, or more) for each step or increment.
- the size of the increment, along with the rate of advancing, will depend in part upon factors such as temperature, pressure, structure of the article being produced (e.g., size, density, complexity, configuration, etc.)
- the advancing step is carried out continuously, at a uniform or variable rate.
- the rate of advance (whether carried out sequentially or continuously) is from about 0.1 1 , or 10 microns per second, up to about to 100, 1 ,000, or 10,000 microns per second, again depending again depending on factors such as temperature, pressure, structure of the article being produced, intensity of radiation, etc
- the filling step is carried out by forcing said polymerizable liquid into said build region under pressure.
- the advancing step or steps may be carried out at a rate or cumulative or average rate of at least 0.1, 1, 10, 50, 100, 500 or 1000 microns per second, or more.
- the pressure may be whatever is sufficient to increase the rate of said advancing step(s) at least 2, 4, 6, 8 or 10 times as compared to the maximum rate of repetition of said advancing steps in the absence of said pressure.
- a pressure of 10, 20, 30 or 40 pounds per square inch (PSI) up to, 200, 300, 400 or 500 PSI or more may be used.
- PSI pounds per square inch
- both the feed surface and the polymerizable liquid can be are in fluid contact with the same compressed gas (e.g., one comprising from 20 to 95 percent by volume of oxygen, the oxygen serving as the polymerization inhibitor.
- the size of the pressure vessel can be kept smaller relative to the size of the product being fabricated and higher pressures can (if desired) be more readily utilized.
- the irradiating step is in some embodiments carried out with patterned irradiation.
- the patterned irradiation may be a fixed pattern or may be a variable pattern created by a pattern generator (e.g., a DLP) as discussed above, depending upon the particular item being fabricated.
- a pattern generator e.g., a DLP
- each irradiating step may be any suitable time or duration depending on factors such as the intensity of the irradiation, the presence or absence of dyes in the polymerizable material, the rate of growth, etc.
- each irradiating step can be from 0.001, 0.01, 0.1, 1 or 10 microseconds, up to 1 , 10, or 100 minutes, or more, in duration.
- the interval between each irradiating step is in some embodiments preferably as brief as possible, e.g., from 0.001, 0.01, 0.1, or 1 microseconds up to 0.1, 1, or 10 seconds.
- the build surface is flat; in other the build surface is irregular such as convexly or concavely curved, or has walls or trenches formed therein. In either case the build surface may be smooth or textured. Curved and/or irregular build plates or build surfaces can be used in fiber or rod formation, to provide different materials to a single object being fabricated (that is, different polymerizable liquids to the same build surface through channels or trenches formed in the build surface, each associated with a separate liquid supply, etc.
- Carrier Feed Channels for Polymerizable liquid While polymerizable liquid may be provided directly to the build plate from a liquid conduit and reservoir system, in some embodiments the carrier include one or more feed channels therein.
- the carrier feed channels are in fluid communication with the polymerizable liquid supply, for example a reservoir and associated pump. Different carrier feed channels may be in fluid communication with the same supply and operate simultaneously with one another, or different carrier feed channels may be separately controllable from one another (for example, through the provision of a pump and/or valve for each). Separately controllable feed channels may be in fluid communication with a reservoir containing the same polymerizable liquid, or may be in fluid communiication with a reservoir containing different polymerizable liquids. Through the use of valve assemblies, different polymerizable liquids may in some embodiments be alternately fed through the same feed channel, if desired.
- the methods and apparatus of the invention can include process steps and apparatus features to implement process control, including feedback and feed-forward control, to, for example, enhance the speed and/or reliability of the method.
- a controller for use in carrying out the present invention may be implemented as hardware circuitry, software, or a combination thereof.
- the controller is a general purpose computer that runs software, operatively associated with monitors, drives, pumps, and other components through suitable interface hardware and/or software.
- Suitable software for the control of a three-dimensional printing or fabrication method and apparatus as described herein includes, but is not limited to, the ReplicatorG open source 3d printing program, 3DPrintTM controller software from 3D systems, Slic3r, Skeinforge, KISSlicer, Repetier-Host, PrintRun, Cura, etc., including combinations thereof.
- Process parameters to directly or indirectly monitor, continuously or intermittently, during the process(e.g., during one, some or all of said filling, irradiating and advancing steps) include, but are not limited to, irradiation intensity, temperature of carrier, polymerizable liquid in the build zone, temperature of growing product, temperature of build plate, pressure, speed of advance, pressure, force (e.g., exerted on the build plate through the carrier and product being fabricated), strain (e.g., exerted on the carrier by the growing product being fabricated), thickness of release layer, etc.
- Known parameters that may be used in feedback and/or feed-forward control systems include, but are not limited to, expected consumption of polymerizable liquid (e.g., from the known geometry or volume of the article being fabricated), degradation temperature of the polymer being formed from the polymerizable liquid, etc.
- Process conditions to directly or indirectly control, continuously or step-wise, in response to a monitored parameter, and/or known parameters include, but are not limited to, rate of supply of polymerizable liquid, temperature, pressure, rate or speed of advance of carrier, intensity of irradiation, duration of irradiation (e.g. for each "slice"), etc.
- the temperature of the polymerizable liquid in the build zone, or the temperature of the build plate can be monitored, directly or indirectly with an appropriate thermocouple, non-contact temperature sensor (e.g., an infrared temperature sensor), or other suitable temperature sensor, to determine whether the temperature exceeds the degradation temperature of the polymerized product. If so, a process parameter may be adjusted through a controller to reduce the temperature in the build zone and/or of the build plate. Suitable process parameters for such adjustment may include: decreasing temperature with a cooler, decreasing the rate of advance of the carrier, decreasing intensity of the irradiation, decreasing duration of radiation exposure, etc.
- the intensity of the irradiation source e.g., an ultraviolet light source such as a mercury lamp
- a photodetector to detect a decrease of intensity from the irriadiation source (e.g., through routine degredation thereof during use). If detected, a process parameter may be adjusted through a controller to accommodate the loss of intensity. Suitable process parameters for such adjustment may include: increasing temperature with a heater, decreasing the rate of advance of the carrier, increasing power to the light source, etc.
- control of temperature and/or pressure to enhance fabrication time may be achieved with heaters and coolers (individually, or in combination with one another and separately responsive to a controller), and/or with a pressure supply (e.g., pump, pressure vessel, valves and combinations thereof) and/or a pressure release mechanism such as a controllable valve (individually, or in combination with one another and separately responsive to a controller).
- a pressure supply e.g., pump, pressure vessel, valves and combinations thereof
- a pressure release mechanism such as a controllable valve
- the controller is configured to maintain the gradient of polymerization zone described herein ⁇ see, e.g., Figure 1) throughout the fabrication of some or all of the final product.
- the specific configuration ⁇ e.g., times, rate or speed of advancing, radiation intensity, temperature, etc.
- Configuration to maintain the gradient of polymerization zone may be carried out empirically, by entering a set of process parameters or instructions previously determined, or determined through a series of test runs or "trial and error"; configuration may be provided through pre-determined instructions; configuration may be achieved by suitable monitoring and feedback (as discussed above), combinations thereof, or in any other suitable manner.
- Three-dimensional products produced by the methods and processes of the present invention may be final, finished or substantially finished products, or may be intermediate products subject to further manufacturing steps such as surface treatment, laser cutting, electric discharge machining, etc., is intended.
- Intermediate products include products for which further additive manufacturing, in the same or a different apparatus, may be carried out).
- a fault or cleavage line may be introduced deliberately into an ongoing "build” by disrupting, and then reinstating, the gradient of polymerization zone, to terminate one region of the finished product, or simply because a particular region of the finished product or "build" is less fragile than others.
- Numerous different products can be made by the methods and apparatus of the present invention, including both large-scale models or prototypes, small custom products, miniature or microminiature products or devices, etc.
- Examples include, but are not limited to, medical devices and implantable medical devices such as stents, drug delivery depots, functional structures, microneedle arrays, fibers and rods such as waveguides, micromechanical devices, microfluidic devices, etc.
- the product can have a height of from 0.1 or 1 millimeters up to 10 or 100 millimeters, or more, and/or a maximum width of from 0.1 or 1 millimeters up to 10 or 100 millimeters, or more.
- the product can have a height of from 10 or 100 nanometers up to 10 or 100 microns, or more, and/or a maximum width of from 10 or 100 nanometers up to 10 or 100 microns, or more.
- the ratio of height to width of the product is at least 2: 1, 10:1, 50:1, or 100:1, or more, or a width to height ratio of 1 :1, 10:1, 50:1, or 100:1, or more.
- the product has at least one, or a plurality of, pores or channels formed therein, as discussed further below.
- the processes described herein can produce products with a variety of different properties.
- the products are rigid; in other embodiments the products are flexible or resilient.
- the products are a solid; in other embodiments, the products are a gel such as a hydrogel.
- the products have a shape memory (that is, return substantially to a previous shape after being deformed, so long as they are not deformed to the point of structural failure).
- the products are unitary (that is, formed of a single polymerizable liquid); in some embodiments, the products are composites (that is, formed of two or more different polymerizable liquids). Particular properties will be determined by factors such as the choice of polymerizable liquid(s) employed.
- the product or article made has at least one overhanging feature (or "overhang”), such as a bridging element between two supporting bodies, or a cantilevered element projecting from one substantially vertical support body.
- overhang such as a bridging element between two supporting bodies, or a cantilevered element projecting from one substantially vertical support body.
- UV curable adhesive A drop of ultraviolet (UV) curable adhesive was placed on a metal plate and covered with 10 mm thick plate of TEFLON® AF fluoropolymer (a amorphous, glassy polymer) as shown in Figure 5a. UV radiation was supplied to the adhesive from the side of Teflon AF as shown in Figure 5b. After UV exposure the two plates were separated. It was found that no force was required to separate the two plates. Upon examination of the samples it was discovered that the adhesive was cured only next to the metal plate, and that a thin film of uncured adhesive was present on the Teflon AF fluoropolymer plate and also on the cured portion of the adhesive as shown in Figure 5c.
- UV radiation was supplied to the adhesive from the side of Teflon AF as shown in Figure 5b. After UV exposure the two plates were separated. It was found that no force was required to separate the two plates. Upon examination of the samples it was discovered that the adhesive was cured only next to the metal plate, and that a thin film of un
- Teflon AF has a very high oxygen permeability coefficient. Constant supply of oxygen through 10mm think Teflon AF is sufficient to prevent a thin layer of acrylate adhesive from polymerization.
- the thickness of uncured adhesive layer in the above experiment was on the order of 10 microns and it can be increased or decreased by varying the amount of photo initiator present in the adhesive.
- Samples 1 and 2 were prepared in a similar manner wherein a drop of UV curable adhesive was placed on a metal plate and covered with 10 mm thick plate of TEFLON® AF fluoropolymer as shown in Figure 6a. Both samples were exposed to a nitrogen environment to eliminate any presence of oxygen as shown in Figure 6b. Next both samples were brought into a standard atmosphere environment and Sample 1 was immediately exposed to UV radiation while Sample 2 was exposed to UV radiation 10 minutes after being in the atmosphere environment. Both samples were exposed to the same amount of UV radiation as shown in Figure 6C and Figure 6E. Upon examination of the samples after UV exposure it was discovered that the adhesive was cured completely in Sample 1 as shown in Figure 6D and only next to the metal plate in Sample 2 as shown in Figure 6F.
- a highly oxygen permeable, and UV transparent material is used as the bottom of a chamber filled with photocurable resin in a device of the invention.
- the top of an object is attached to a support plate which is moved up at a substantially constant speed while the bottom portion of the object is constantly being formed just above the bottom of the chamber.
- the gap between the bottom of the object and the bottom of the chamber is always filled with resin.
- the resin in the gap is constantly replenished with supply resin contained in the chamber.
- the speed of the object's formation depends on the viscosity of the resin ⁇ , atmospheric pressure P, the height of the gap between the object and the bottom of the chamber h, and the linear dimension L of the object's bottom surface. Simple calculations are performed to estimate this speed using the theory of viscous flow between two parallel plates.
- the time ⁇ which is required to fill the gap shown on FIG 7 is given by the equation:
- the time ⁇ is estimated to be of an order of 1 second, resulting in fabrication speeds of 100 microns per second or 5 minutes per inch. These caiculations assume that the thickness of the uncured resin is maintained at about 100 microns. Depending on the chemistry of the resin and permeability of the base plate, this parameter may vary. If, for example, the gap is 25 microns, then fabrication speeds at atmospheric pressure will decrease according to Equation 1 by a factor of 16. However, increasing the ambient pressure to greater than atmospheric pressure, e.g., by applying external pressure on the order of 150 PSI as shown in Figure 8, may in some embodiments increase fabrication speed by a factor of 10.
- the gap of uncured resin can be controlled by altering the physical environment in the enclosed chamber contacting feed surface.
- an atmosphere of pure oxygen, or enriched in oxygen ⁇ e.g., 95% oxygen 5% carbon dioxide) can be provided in place of compressed air, order to increase the gap resulting in increase of fabrication time.
- the methods of the present invention can be used to make an elongate rod or fiber as shown in Figure 9, the rod or fiber having (for example) a width or diameter of 0.01 or 0.1 to 10 or 100 millimeters. While a circular cross-section is shown, any suitable cross-section can be utilized, including elliptical, polygonal (triangular, square, pentagonal, hexagonal, etc.) irregular, and combinations thereof.
- the rod or fiber can have a plurality of elongated pores or channels formed therein (e.g., 1 , 10, 100 1,000, 10,000 or 100,000 or more) of any suitable diameter (e.g., 0.1 or 1 microns, up to 10 or 100 microns or more) and any suitable cross- section as described above.
- Unpolymerized liquid in the pores or channels can be removed (if desired) by any suitable technique, such as blowing, pressure, vacuum, heating, drying and combinations thereof.
- the length of the rod or fiber can be increased by utilizing a take-up reel as described above, and the speed of fabrication of the rod or fiber can be increased by carrying out the polymerization under pressure as described above.
- a plurality of such rods or fibers can be constructed concurrently from a single build plate by providing a plurality of independent carriers or take-up reels.
- Such rods or fibers can be used for any purpose, such as utilizing each pore or channel therein as an independent channel in a microfiuidic system.
- An apparatus that can be used to carry out the present invention was assembled as described above, with a LOCTITETM UV Curing Wand System as the ultraviolet light source, a build plate comprised of 0.0025 inch thick Teflon AF 2400 film from Biogeneral clamped in a window and tensioned to substantial rigidity with a tensioning ring, optical components: from Newport Corporation, Edmund Optics, and Thorlabs, a DLP LightCrafter Development Kit from Texas Instruments as the digital projector, a THK Co., LTD ball screw linear stage serving as an elevator for the carrier, a continuous servo from Parallax Inc as the elevator and carrier drive or motor, a motion controller based on a Propeller microcontroller from Parallax Inc., a position controller based on a magnetic encoder from Austria Microsystems, motion control software written in SPIN language created by Parallax, open source Slic3r 3D slicing software, and image control software written using Qt framework and Visual C++.
- the array of microneedles shown in Figure 10 was made.
- the carrier was advanced uni directional ly by the ball screw at a continuous rate of 10 microns per second and successive exposures were carried out every 2 microns along the building height at a duration of 0.2 seconds per exposure.
- the total number of successive exposures was 350 and the total fabrication time was 70 seconds.
- the 2000 micron microneedle array shown in Figure 11 was made in like manner as described in example 6 above, with 1000 successive exposures over a total fabrication time of 200 seconds.
- microneedles for example with microneedles having widths of from 5 to 500 micrometers and heighths of 5 to 2000 micrometers or more, can be fabricated in like manner. While a square cross-section is shown, any suitable cross-section can be utilized, including circular, elliptical, polygonal (triangular, rectangular, pentagonal, hexagonal, etc.) irregular, and combinations thereof.
- the spacing between microneedles can be varied as desired, for example from 5 to 100 micrometers, and the microneedles or other microstructures can be arranged with respect to one another in any suitable pattern, e.g., square, rectangular, hexagonal, etc.
- a ring was fabricated using the apparatus described in Example 5 above, trimethylolpropane triacrylate as the polymerizable liquid, and Diphenyl (2,4,6- trimethylbenzoyl)phosphine oxide as photoinitiator.
- the carrier was advanced unidirectionally by the ball screw at a continuous rate of 20 microns per second and successive exposures were carried every 10 microns along the building height at a duration of 0.5 seconds per exposure. The total number of successive exposures was 1040 and the total fabrication time was 520 seconds.
- Figure 12 shows the ring during fabrication
- Figure 13 shows the ring after fabrication. Note the absence of supports for extensively overhung elements during fabrication.
- the chess piece shown in Figure 14 was made using the apparatus described in the examples above, trimethylolpropane triacrylate as the polymerizable liquid, and Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide as photoinitiator.
- the carrier was advanced unidirectionally by the ball screw at a continuous rate of 20 microns per second and successive exposures were carried every 10 microns along the building height at a duration of 0.5 seconds per exposure. The total number of successive exposures was 1070 and the total fabrication time was 535 seconds.
- the ribbed rectangular prism shown in Figure 15 was made using the apparatus described in the Examples above, trimethylolpropane triacrylate as the polymerizable liquid, and Diphenyl(2,4 ; 6-trimethylbenzoyI)phosphine oxide as the photoinitiator.
- the carrier was advanced unidirectionally by the worm gear at a continuous rate of 20 microns per second and successive exposures were carried every 10 microns along the building height at a duration of 0.5 second per exposure.
- the total number of successive exposures was 800 and the total fabrication time was 400 seconds.
- the coil or spiral shown in Figure 16 was made using the apparatus described in the examples above, trimethylolpropane triacrylate as the polymerizable liquid, and Diphenyl(2 J 4,6-trimethylbenzoyl)phosphine oxide as the photoinitiator.
- the carrier was advanced unidirectionally by the ball screw at a continuous rate of 20 microns per second and successive exposures were carried every 10 microns along building height at a duration of 0.5 seconds per exposure. The total number of successive exposures was 970 and the total fabrication time was 485 seconds.
- a deficiency of prior techniques is that the requirement to "break" adhesion from the build plate, e.g., by sliding the build plate, or by using an elastic build plate, made it problematic to employ a release layer or soluble adhesive layer on the carrier that might prematurely fail during the fabrication process.
- the present invention facilitates the employment of a release layer on the carrier during fabrication.
- the surface of the carrier can be coated with a release layer, i.e., a soluble sacrificial layer (e.g., cyanoacrylate adhesive), and array of objects can be printed as shown in Figure 19.
- a release layer i.e., a soluble sacrificial layer (e.g., cyanoacrylate adhesive)
- Any suitable thickness of release layer can be used, for example from 100 nanometers to 1 millimeter.
- Submerging the carrier with the fabricated objects into an appropriate solvent (e.g., acetone for cyanoacrylate adhesive) that selectively dissolves or solubilizes the release layer then releases the objects from the carrier as shown in Figure 20.
- the array of rectangular prisms with dimensions of 200 x 200 x 1000 micrometers shown in Figure 21 was made using the apparatus described above, trimethylolpropane triacrylate as the polymerizable liquid, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide as the photoinitiator, and cyanoacrylate adhesive as release layer.
- the carrier was advanced by the ball screw at a continuous rate of 10 microns per second and successive exposures were carried every 10 microns along the building height at a duration of 1 second per exposure. The total number of successive exposures was 100 and the total fabrication time was 100 seconds.
- the cyanoacrylate release layer was then dissolved by acetone to produce free floating prisms as shown in Figure 22.
- the cylindrical cage structure of Figure 23 was made using the apparatus described in the Example above, trimethylolpropane triacrylate as the polymerizable liquid, and diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide as photoinitiator.
- the carrier was advanced by the ball screw at a continuous rate of 20 microns per second and successive exposures were carried out every 10 micron along the building height at a duration of0.5 seconds per exposure.
- the total number of successive exposures was 1400 and the total fabrication time was 700 seconds. No removable supporting structures for cantilevered features or "overhangs" were used.
- Figure 24 and Figure 25 are photographs of array structures and cage structures, respectively, produced in like manner as those described above, except that they were fabricated using PEG (Poly(ethylene glycol) diacrylate, average Mn 700) as the polymerizable liquid and 5% of Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide as the photoinitiator. Processing conditions were otherwise the same as for the previously fabricated tri aery late parts.
- PEG Poly(ethylene glycol) diacrylate, average Mn 700
- Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide
- the cylindrical cage structure produced in Example 23 above and shown in Figure 25 was manually positioned between two glass microscope slides and pressure manually applied until the cylindrical cage structure was deformed and substantially flat. Manual pressure was then released, and the cage structure returned to its previous substantially cylindrical form,
- the flexibility, resiliency, and shape memory properties of the articles make them attractive for a variety of uses, including but not limited to stents for various biomedical applications.
- Stents are typically used as adjuncts to percutaneous transluminal balloon angioplasty procedures, in the treatment of occluded or partially occluded arteries and other blood vessels.
- a guiding catheter or sheath is percutaneous ly introduced into the cardiovascular system of a patient through a femoral artery and advanced through the vasculature until the distal end of the guiding catheter is positioned at a point proximal to the lesion site.
- a guidewire and a dilatation catheter having a balloon on the distal end are introduced through the guiding catheter with the guidewire sliding within the dilatation catheter.
- the guidewire is first advanced out of the guiding catheter into the patient's vasculature and is directed across the vascular lesion.
- the dilatation catheter is subsequently advanced over the previously advanced guidewire until the dilatation balloon is properly positioned across the vascular lesion.
- the expandable balloon is inflated to a predetermined size with a radiopaque liquid at relatively high pressure to radially compress the atherosclerotic plaque of the lesion against the inside of the artery wall and thereby dilate the lumen of the artery.
- the balloon is then deflated to a small profile so that the dilatation catheter can be withdrawn from the patient's vasculature and blood flow resumed through the dilated artery.
- Balloon angioplasty sometimes results in short or long term failure. That is, vessels may abruptly close shortly after the procedure or restenosis may occur gradually over a period of months thereafter.
- implantable intraluminal prostheses commonly referred to as stents, are used to achieve long term vessel patency.
- a stent functions as scaffolding to structurally support the vessel wall and thereby maintain luminal patency, and are transported to a lesion site by means of a delivery catheter.
- Types of stents may include balloon expandable stents, spring-like, self-expandable stents, and thermally expandable stents.
- Balloon expandable stents are delivered by a dilation catheter and are plastically deformed by an expandable member, such as an inflation balloon, from a small initial diameter to a larger expanded diameter.
- Self-expanding stents are formed as spring elements which are radially compressible about a delivery catheter. A compressed self-expanding stent is typically held in the compressed state by a delivery sheath. Upon delivery to a lesion site, the delivery sheath is retracted allowing the stent to expand.
- Thermally expandable stents are formed from shape memory alloys which have the ability to expand from a small initial diameter to a second larger diameter upon the application of heat to the alloy.
- Intraluminal prostheses such as stents have been developed using various polymeric materials and/or coatings of polymeric materials to overcome the limitations of conventional metallic prostheses.
- various mechanical properties e.g., modulus, hoop strength, flexibility, etc.
- intraluminal prostheses used to deliver pharmacological agents it would be desirable to be able to adjust the elution rate of a pharmacological agent therefrom.
- methods of manufacturing polymeric intraluminal prostheses include annealing the polymeric material to selectively modify the crystallinity or crystalline structure thereof is accomplished by the methods described herein, including but not limited to those set forth in connection with cylindrical cage structures as described above.
- Pharniaco logical agents disposed on or within the polymeric material may include, but are not limited to, agents selected from the following categories: antineoplastics, antimitotics, antiinflammatories, antiplatelets, anticoagulants, antifibrins, antithrombins, antiproliferatives, antibiotics, antioxidants, immunosuppressives, antiallergic substances, and combinations thereof.
- the degree of molecular crosslinking of the polymeric material of an intraluminal prostheses may be modified by subjecting the polymeric material to chemical treatment and/or irradiation.
- the polymeric material may be subjected to chemical treatment and/or irradiation before, during and/or after annealing. Such treatments may also act as a sterilization step,
- hypodermic injection including intravascular, intramuscular, etc.
- hypodermic needles do not deliver doses to the optimum location to elicit an immune response; they penetrate into muscle, a region known to have a lower density of immunologically sensitive cells than skin.
- Transdermal patches are effective for select time-released drugs (like nicotine and motion sickness medications), but the epidermis (specifically the stratum comeum) limits the diffusion of most drugs (>500 Da) through the skin. Clearly, the ability to transport therapeutics effectively into the body remains a significant challenge.
- controller image processing unit in some embodiments is constantly updating images of cross sectional layers of the part.
- the maximum speed of image update / can in some embodiments vary from 1 frame per second up to 1000 frames per second, depending on the hardware.
- the advancement dz of the part carrier during one image frame should be less than delta. If the fabrication speed is v then dz is given by
- fabrication speed v should be less than the maximum fabrication speed v raa x given by
- fabrication rate can be increased by heating the polymenzable liquid, or resin, to reduce the viscosity thereof, to facilitate filling of the build zone with the polymenzable liquid or migration of the polymerizable liquid into the build zone (with or without increased pressure).
- Some resins, such as high performance resins including those noted above, may be solid at room temperature and pressure, and heating may be a convenient way to liquefy the same.
- Heating may be carried out by any suitable technique, such as with closed-oven infrared heaters operatively associated with a temperature sensor and controller, as schematically illustrated in Figure 26. Numerous additional types and configurations of heaters may be used, alone or in combination with the foregoing and one another. Resistive heaters may be used, for example submersed in the polymerizable liquid on the build plate. Thermoelectric devices or Peltier heaters can be used, for example contacting the build plate and/or the polymerizable liquid. The polymerizable liquid can be pre-heated, in a storage reservoir and/or through various feed lines. One or more temperature sensors can be employed to detect ambient (in chamber) temperature, build plate temperature, carrier temperature, polymerizable liquid temperature (e.g., at any point, such as on the build plate), etc.
- the polymerizable liquid is heated by at least 5, 10, 20, 40, 60, 80, or 100 degrees Centigrade or more above room temperature.
- the polymerizable liquid has a viscosity of at least 100, 1,000, or 10,000 centipoise, up to 1,000,000 centipoise or more at 25 degrees Centigrade and atmospheric pressure (note 1 centipoise — 1 milliPascal seconds).
- such polymerizable liquids can have a viscosity when heated (e.g., by the amount described above) of not more than 1,000, 100, 10 or 1 centipoise. Specific end viscosity desired to be achieved will depend on factors such as the rate o fabrication desired, size and shape of the article being fabricated, the presence or absence of increased pressure, etc.
- Viscosity can be measured by any suitable technique, for example by a Brookfield viscometer having a cone and plate geometry, with a cone angle of 1 degree, a 40 millimeter diameter, operated at 60 revolutions per minute.
- Coolers can optionally be included if desired to more rapidly correct temperature (with heaters, or without heaters, e.g., to aid in dissipating heat generated exothermically by rapid photopolymerization.
- any suitable cooler configuration can be used, generally operatively associated with a controller and temperature sensor as noted above.
- Heat exchangers, heat sinks, refrigerants, thermoelectric devices such as Peltier coolers (which may also serve as Peltier heaters), etc. may be employed.
- the speed of the object's formation depends on the linear dimension L of the object's bottom surface, viscosity of the resin ⁇ , atmospheric pressure P, and the height of the gap between the object and the bottom of the chamber h.
- the time ⁇ which is required to fill the gap between the object and the bottom of the chamber is:
- polymerizable liquid or resin
- the pump can comprise any suitable pumping device, including but not limited to syringe pumps, gear pumps, peristaltic pumps, etc.
- the rate at which pump operates is controlled by a controller and depends on part geometry and speed of fabrication.
- the pressure of the polymerizable liquid may be
- viscosity of the resin ⁇ , atmospheric pressure P, and the height of the gap between the object and the bottom of the chamber h is no longer limited by above equation but it is rather controlled by the rate at which resin pump operates, the rate of the curing reaction and the ability to mitigate heat removal from the curing reaction.
- the pump in this example could comprise a syringe pump, gear pump, or peristaltic pump.
- the pump operation could be included into feedback loop controlled by central processing unit where pumping rates depend on pail; geometry and desired fabrication speed.
- resin delivery rate changes based on the cross sectional area of the part.
- a process to control resin delivery rate is described below. If the build speed is v and the cross section of the part A varies with time t as Aft) then resin delivery rate can be adjusted to correspond, in whole or in part, to:
- a central processing unit (CPU) serving as a controller can in real time calculate the current cross section of the part, then calculate delivery rate based on a rale such as the equation above and communicate the calculated rate to a resin delivery pump controller (RDPC).
- the RDPC can then adjust the speed of the resin delivery pump based on the data received from CPU.
- feed-forward control system can be used alone or in combination with other feed forward and feed-back control systems (e.g., temperature and/or pressure control) as described above.
- feed forward and feed-back control systems e.g., temperature and/or pressure control
- polymerizable liquid is supplied through one or more channels formed in the carrier, it may be desired that some, or all, of the article being fabricated be solid throughout.
- separate or external feed conduits in fluid communication with a (or each) channel supplying polymerizable liquid may be concurrently fabricated adjacent the article being fabricated (In contrast to one or more internal feed channels formed within the article being produced.
- the polymerizable liquid can then be provided through the external feed conduit(s) to the build plate and fabrication zone.
- multiple such feed conduits may be constructed, e.g., 2, 10, 100, or 1000 or more, depending on the size of the article being fabricated.
- Such external feed conduits may be used in combination, concurrently or sequentially (e.g., alternatively), with internal feed channels (i.e., channels formed within the article being fabricated).
- Articles can be fabricated using multiple resins by feeding the different resins through the build platform, and using them to create tubes or channels to deliver the resin to the correct area of the part being fabricated.
- Figure 28 illustrates the method that can be used to feed resin through the build platform, use it to fabricate the resin delivery channels in the necessary shape, and when necessary, feed extra resin to fabricate the part itself.
- the channel is cured shut and another channel can begin feeding the next resin to continue fabricating the part.
- a method and apparatus as described above may be controlled by a software program running in a general purpose computer with suitable interface hardware between that computer and the apparatus described above. Numerous alternatives are commercially available. Non-limiting examples of one combination of components is shown in Figures 29-31, where "Microcontroller" is Parallax Propeller, the Stepper Motor Driver is Sparkfun EasyDriver, the LED Driver is a Luxeon Single LED Driver, the USB to Serial is a Parallax USB to Serial converter, and the DLP System is a Texas Instruments LightCrafter system.
Landscapes
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Toxicology (AREA)
- Thermal Sciences (AREA)
- Cardiology (AREA)
- Dermatology (AREA)
- Anesthesiology (AREA)
- Medical Informatics (AREA)
- Hematology (AREA)
- Transplantation (AREA)
- Vascular Medicine (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Liquid Developers In Electrophotography (AREA)
- Inking, Control Or Cleaning Of Printing Machines (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14706223.6A EP2956822B1 (en) | 2013-02-12 | 2014-02-10 | Method and apparatus for three-dimensional fabrication with feed through carrier |
CA2898103A CA2898103A1 (en) | 2013-02-12 | 2014-02-10 | Method and apparatus for three-dimensional fabrication with feed through carrier |
JP2015557153A JP6522519B2 (en) | 2013-02-12 | 2014-02-10 | Method and apparatus for three-dimensional fabrication by feeding through a carrier |
CN201480008529.6A CN105452958B (en) | 2013-02-12 | 2014-02-10 | Method and apparatus for three-dimensional fabrication with feed through carrier |
MX2015010375A MX352425B (en) | 2013-02-12 | 2014-02-10 | Method and apparatus for three-dimensional fabrication with feed through carrier. |
BR112015018056A BR112015018056A2 (en) | 2013-02-12 | 2014-02-10 | method and apparatus for three-dimensional conveyor feed manufacturing |
KR1020157022106A KR20150117275A (en) | 2013-02-12 | 2014-02-10 | Method and apparatus for three-dimensional fabrication with feed through carrier |
US14/570,591 US9216546B2 (en) | 2013-02-12 | 2014-12-15 | Method and apparatus for three-dimensional fabrication with feed through carrier |
US14/937,237 US10150253B2 (en) | 2013-02-12 | 2015-11-10 | Method for three-dimensional fabrication with feed through carrier |
HK16103408.2A HK1215476A1 (en) | 2013-02-12 | 2016-03-23 | Method and apparatus for three-dimensional fabrication with feed through carrier |
US16/204,523 US10618215B2 (en) | 2013-02-12 | 2018-11-29 | Method for three-dimensional fabrication with feed-through carrier |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361763746P | 2013-02-12 | 2013-02-12 | |
US61/763,746 | 2013-02-12 | ||
US201361865841P | 2013-08-14 | 2013-08-14 | |
US61/865,841 | 2013-08-14 | ||
US201361919903P | 2013-12-23 | 2013-12-23 | |
US61/919,903 | 2013-12-23 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/570,591 Continuation US9216546B2 (en) | 2013-02-12 | 2014-12-15 | Method and apparatus for three-dimensional fabrication with feed through carrier |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2014126834A2 true WO2014126834A2 (en) | 2014-08-21 |
WO2014126834A3 WO2014126834A3 (en) | 2014-11-13 |
Family
ID=50156962
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/015506 WO2014126837A2 (en) | 2013-02-12 | 2014-02-10 | Continuous liquid interphase printing |
PCT/US2014/015497 WO2014126834A2 (en) | 2013-02-12 | 2014-02-10 | Method and apparatus for three-dimensional fabrication with feed through carrier |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/015506 WO2014126837A2 (en) | 2013-02-12 | 2014-02-10 | Continuous liquid interphase printing |
Country Status (16)
Country | Link |
---|---|
US (10) | US9205601B2 (en) |
EP (4) | EP2956822B1 (en) |
JP (3) | JP6356700B2 (en) |
KR (2) | KR20150117275A (en) |
CN (2) | CN105452958B (en) |
BR (2) | BR112015017976A2 (en) |
CA (2) | CA2898103A1 (en) |
DK (1) | DK2956823T4 (en) |
ES (1) | ES2588485T5 (en) |
HK (2) | HK1215477A1 (en) |
HR (1) | HRP20161016T4 (en) |
MX (2) | MX352989B (en) |
MY (1) | MY201381A (en) |
PL (1) | PL2956823T5 (en) |
TW (2) | TW201842404A (en) |
WO (2) | WO2014126837A2 (en) |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016109550A1 (en) | 2014-12-31 | 2016-07-07 | Carbon3D, Inc. | Three-dimensional printing of objects with breathing orifices |
WO2016112090A1 (en) * | 2015-01-07 | 2016-07-14 | Carbon3D, Inc. | Microfluidic devices and methods of making the same |
WO2016115236A1 (en) * | 2015-01-13 | 2016-07-21 | Carbon3D, Inc. | Three-dimensional printing with build plates having surface topologies for increasing permeability and related methods |
WO2016123506A1 (en) * | 2015-01-30 | 2016-08-04 | Carbon3D, Inc. | Build plates for continuous liquid interface printing having permeable sheets and related methods, systems and devices |
WO2016123499A1 (en) * | 2015-01-30 | 2016-08-04 | Carbon3D, Inc. | Build plates for continuous liquid interface printing having permeable base and adhesive for increasing permeability and related methods, systems and devices |
WO2016133759A1 (en) | 2015-02-20 | 2016-08-25 | Carbon3D, Inc. | Methods and apparatus for continuous liquid interface printing with electrochemically supported dead zone |
WO2016140888A1 (en) * | 2015-03-05 | 2016-09-09 | Carbon3D, Inc. | Fabrication of three dimensional objects with variable slice thickness |
WO2016145182A1 (en) * | 2015-03-12 | 2016-09-15 | Carbon3D, Inc. | Additive manufacturing using polymerization initiators or inhibitors having controlled migration |
WO2016145050A1 (en) * | 2015-03-10 | 2016-09-15 | Carbon3D, Inc. | Microfluidic devices having flexible features and methods of making the same |
US9453142B2 (en) | 2014-06-23 | 2016-09-27 | Carbon3D, Inc. | Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects |
EP2929682A4 (en) * | 2013-04-30 | 2016-10-19 | Hewlett Packard Development Co | Three-dimensional object construction |
EP3124509A1 (en) | 2015-07-31 | 2017-02-01 | Afinitica Technologies, S. L. | Fast light curing cyanoacrylate compositions |
WO2017040890A1 (en) * | 2015-09-04 | 2017-03-09 | Carbon3D, Inc. | Methods of making three dimensional objects from dual cure resins with supported second cure |
WO2017053783A1 (en) * | 2015-09-25 | 2017-03-30 | Carbon3D, Inc. | Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices |
WO2017079774A3 (en) * | 2015-11-12 | 2017-08-03 | Klaus Stadlmann | Stereolithography apparatus comprising a cartridge device |
WO2018044249A1 (en) * | 2016-09-01 | 2018-03-08 | Олег Юрьевич ХАЛИП | Device and method for forming a three-dimensional object from a liquid polymer |
WO2018143904A1 (en) * | 2017-02-02 | 2018-08-09 | Олег Юрьевич ХАЛИП | Method for producing a functional element-containing three-dimensional object from a liquid photopolymer cured by actinic radiation, and device for the implementation thereof |
JP2018537319A (en) * | 2015-12-16 | 2018-12-20 | スリーエム イノベイティブ プロパティズ カンパニー | Additive manufacturing system and additive manufacturing method |
CN109070444A (en) * | 2016-04-29 | 2018-12-21 | 美国圣戈班性能塑料公司 | Radiation-curable system and the method for preparing radiation-curable product |
WO2019055184A1 (en) | 2017-09-14 | 2019-03-21 | General Electric Company | Method and system for forming fiber-reinforced polymer components |
US10316213B1 (en) | 2017-05-01 | 2019-06-11 | Formlabs, Inc. | Dual-cure resins and related methods |
US10343331B2 (en) | 2015-12-22 | 2019-07-09 | Carbon, Inc. | Wash liquids for use in additive manufacturing with dual cure resins |
WO2019222094A1 (en) * | 2018-05-14 | 2019-11-21 | Carbon, Inc. | Stereolithography apparatus with individually addressable light source arrays |
US10500786B2 (en) | 2016-06-22 | 2019-12-10 | Carbon, Inc. | Dual cure resins containing microwave absorbing materials and methods of using the same |
WO2020001835A1 (en) | 2018-06-26 | 2020-01-02 | Arkema France | Curable compositions based on multistage polymers |
WO2020015905A1 (en) | 2018-07-18 | 2020-01-23 | Arkema France | Articles prepared using curable compositions based on polymerizable ionic species |
US10543638B2 (en) | 2015-01-22 | 2020-01-28 | The University Of Greenwich | Stent |
FR3085682A1 (en) | 2018-09-11 | 2020-03-13 | Arkema France | CROSSLINKABLE COMPOSITIONS HAVING LOW VISCOSITY FOR COATINGS AND MATERIALS WITH HIGH REFRACTION INDEX AND WITH HIGH THERMAL DEFLECTION TEMPERATURE |
WO2020141348A1 (en) | 2018-12-31 | 2020-07-09 | Arkema France | (meth)acrylate-functionalized branched polyalpha-olefins |
WO2020216851A1 (en) | 2019-04-26 | 2020-10-29 | Arkema France | Cross-linkable compositions having a low viscosity for coatings and materials with a high refractive index and a high heat deflection temperature |
EP3766669A1 (en) | 2019-07-18 | 2021-01-20 | Bostik Sa | 3d-printing methods and systems |
WO2021009565A1 (en) | 2019-07-17 | 2021-01-21 | Arkema France | (meth)acrylate-functionalized oligomers and methods of preparing and using such oligomers |
WO2021019305A1 (en) | 2019-07-31 | 2021-02-04 | Arkema France | Method of making glycerol carbonate (meth)acrylate and curable compositions based thereon |
US10949902B2 (en) | 2016-07-18 | 2021-03-16 | Mastercard Asia/Pacific Pte. Ltd. | System and method for authentication and making payment when carrying out on-demand manufacturing |
US10953597B2 (en) | 2017-07-21 | 2021-03-23 | Saint-Gobain Performance Plastics Corporation | Method of forming a three-dimensional body |
WO2021079187A1 (en) | 2019-10-23 | 2021-04-29 | Arkema France | Multi(meth)acrylate-functionalized oligomers and methods of preparing and using such oligomers |
FR3105791A1 (en) | 2019-12-31 | 2021-07-02 | Arkema France | Crosslinkable composition comprising a mono (meth) acrylate having a 1,3-dioxolane ring |
EP3875552A1 (en) | 2020-03-04 | 2021-09-08 | Lambson Limited | Photoinitiator emulsions |
EP3876034A1 (en) | 2020-03-04 | 2021-09-08 | Arkema France | Curable composition comprising a photoinitiator |
WO2021198398A1 (en) | 2020-04-01 | 2021-10-07 | Arkema France | Elastic materials prepared from energy-curable liquid compositions |
WO2021198397A1 (en) | 2020-04-01 | 2021-10-07 | Arkema France | Elastic materials prepared from curable liquid compositions |
WO2021234703A1 (en) * | 2020-05-19 | 2021-11-25 | Technion Research & Development Foundation Limited | System and methods for fabrication of cured articles |
WO2021255161A1 (en) | 2020-06-18 | 2021-12-23 | Arkema France | Compositions and processes of forming 3d printable materials capable of low dielectric loss |
FR3111902A1 (en) | 2020-06-30 | 2021-12-31 | Arkema France | OLIGOMERS CONTAINING AN AMID FUNCTIONALIZED BY (METH) ACRYLATE |
US11267196B2 (en) | 2015-12-17 | 2022-03-08 | Klaus Stadlmann | Method for producing a three-dimensional object |
FR3118051A1 (en) | 2020-12-21 | 2022-06-24 | Arkema France | ACTINIC RADIATION CURABLE COMPOSITIONS CONTAINING A POLYAMIDE |
EP4029675A1 (en) | 2021-01-19 | 2022-07-20 | Bostik SA | 3d-printing methods and systems |
FR3118965A1 (en) | 2021-01-20 | 2022-07-22 | Arkema France | POLYMERIZABLE THIOXANTHONE |
EP4053115A1 (en) | 2021-03-01 | 2022-09-07 | Arkema France | Liquid type-ii photoinitiators |
EP3814117A4 (en) * | 2018-06-29 | 2022-09-21 | Intrepid Automation | Closed loop print process adjustment based on real time feedback |
JP2022169640A (en) * | 2015-12-22 | 2022-11-09 | カーボン,インコーポレイテッド | Dual precursor resin systems for additive manufacturing with dual cure resins |
US11518087B2 (en) | 2016-09-12 | 2022-12-06 | University Of Washington | Vat photopolymerization additive manufacturing of multi-material parts |
EP4151410A1 (en) | 2021-09-17 | 2023-03-22 | Arkema France | Photosensitive composition |
EP4177282A1 (en) | 2021-11-04 | 2023-05-10 | Arkema France | Polyglycerin-based urethane (meth)acrylate |
EP4206183A1 (en) | 2021-12-31 | 2023-07-05 | Arkema France | Polyhydroxylated photoinitiators |
WO2023126369A1 (en) | 2021-12-30 | 2023-07-06 | Arkema France | Polymeric cycloaliphatic epoxides |
EP4249518A1 (en) | 2022-03-25 | 2023-09-27 | Arkema France | Polymerizable photoinitiators |
US11801371B2 (en) | 2017-03-01 | 2023-10-31 | National University Of Singapore | Microneedle device |
US11993015B2 (en) | 2015-12-03 | 2024-05-28 | Carbon, Inc. | Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices |
EP4393720A1 (en) | 2022-12-30 | 2024-07-03 | Arkema France | Phosphine oxide-based photoinitiators |
US12064919B2 (en) | 2015-10-15 | 2024-08-20 | Saint-Gobain Ceramics & Plastics, Inc. | Method for forming a three dimensional body from a mixture with a high content of solid particles |
Families Citing this family (587)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014126837A2 (en) | 2013-02-12 | 2014-08-21 | Eipi Systems, Inc. | Continuous liquid interphase printing |
US9498920B2 (en) | 2013-02-12 | 2016-11-22 | Carbon3D, Inc. | Method and apparatus for three-dimensional fabrication |
GB2514139A (en) | 2013-05-14 | 2014-11-19 | Aghababaie Lin & Co Ltd | Apparatus for fabrication of three dimensional objects |
US9360757B2 (en) | 2013-08-14 | 2016-06-07 | Carbon3D, Inc. | Continuous liquid interphase printing |
US11260208B2 (en) | 2018-06-08 | 2022-03-01 | Acclarent, Inc. | Dilation catheter with removable bulb tip |
US9707748B2 (en) * | 2013-10-07 | 2017-07-18 | Planetary Systems Corporation | Printed spacecraft separation system |
US9248611B2 (en) | 2013-10-07 | 2016-02-02 | David A. Divine | 3-D printed packaging |
AT515138B1 (en) * | 2013-11-22 | 2016-05-15 | Tech Universität Wien | Apparatus for processing photopolymerizable material for the layered construction of a shaped body |
US10513081B1 (en) | 2013-12-10 | 2019-12-24 | Wells Fargo Bank, N.A. | Method of making a transaction instrument |
US10380476B1 (en) | 2013-12-10 | 2019-08-13 | Wells Fargo Bank, N.A. | Transaction instrument |
US10354175B1 (en) | 2013-12-10 | 2019-07-16 | Wells Fargo Bank, N.A. | Method of making a transaction instrument |
US10479126B1 (en) | 2013-12-10 | 2019-11-19 | Wells Fargo Bank, N.A. | Transaction instrument |
US20150197063A1 (en) * | 2014-01-12 | 2015-07-16 | Zohar SHINAR | Device, method, and system of three-dimensional printing |
US11154382B2 (en) | 2014-06-20 | 2021-10-26 | Align Technology, Inc. | Aligners with elastic layer |
US10555792B2 (en) | 2014-01-31 | 2020-02-11 | Align Technology, Inc. | Direct fabrication of orthodontic appliances with elastics |
EP3900664A1 (en) | 2014-01-31 | 2021-10-27 | Align Technology, Inc. | Orthodontic appliances with elastics |
US11497586B2 (en) | 2014-03-21 | 2022-11-15 | Align Technology, Inc. | Segmented orthodontic appliance with elastics |
US9844424B2 (en) | 2014-02-21 | 2017-12-19 | Align Technology, Inc. | Dental appliance with repositioning jaw elements |
US10537406B2 (en) | 2014-02-21 | 2020-01-21 | Align Technology, Inc. | Dental appliance with repositioning jaw elements |
US11318668B2 (en) * | 2014-02-28 | 2022-05-03 | Byung-keuk Lee | Method for 3D printing using photo-polymer and an apparatus thereof |
US10232605B2 (en) | 2014-03-21 | 2019-03-19 | Carbon, Inc. | Method for three-dimensional fabrication with gas injection through carrier |
WO2015164234A1 (en) | 2014-04-25 | 2015-10-29 | Carbon3D, Inc. | Continuous three dimensional fabrication from immiscible liquids |
US9841750B2 (en) | 2014-05-13 | 2017-12-12 | Autodesk, Inc. | Dynamic real-time slice engine for 3D printing |
US9782934B2 (en) | 2014-05-13 | 2017-10-10 | Autodesk, Inc. | 3D print adhesion reduction during cure process |
US10073424B2 (en) | 2014-05-13 | 2018-09-11 | Autodesk, Inc. | Intelligent 3D printing through optimization of 3D print parameters |
SG11201609656UA (en) | 2014-06-20 | 2017-01-27 | Carbon Inc | Three-dimensional printing with reciprocal feeding of polymerizable liquid |
PL3157459T3 (en) | 2014-06-20 | 2021-11-22 | Align Technology, Inc. | Elastic-coated orthodontic appliance |
WO2015195909A1 (en) | 2014-06-20 | 2015-12-23 | Carbon3D, Inc. | Three-dimensional printing using tiled light engines |
US10661501B2 (en) | 2014-06-20 | 2020-05-26 | Carbon, Inc. | Three-dimensional printing method using increased light intensity and apparatus therefor |
US10589512B2 (en) * | 2014-07-10 | 2020-03-17 | Carbon, Inc. | Methods and apparatus for continuous liquid interface production with rotation |
CN106575077A (en) | 2014-08-07 | 2017-04-19 | 奥宝科技有限公司 | Lift printing system |
US11390062B2 (en) | 2014-08-12 | 2022-07-19 | Carbon, Inc. | Three-dimensional printing with supported build plates |
US10668709B2 (en) | 2014-08-12 | 2020-06-02 | Carbon, Inc. | Three-dimensional printing using carriers with release mechanisms |
US9975295B2 (en) | 2014-08-12 | 2018-05-22 | Carbon, Inc. | Acceleration of stereolithography |
US10166725B2 (en) | 2014-09-08 | 2019-01-01 | Holo, Inc. | Three dimensional printing adhesion reduction using photoinhibition |
US10449016B2 (en) | 2014-09-19 | 2019-10-22 | Align Technology, Inc. | Arch adjustment appliance |
US9610141B2 (en) | 2014-09-19 | 2017-04-04 | Align Technology, Inc. | Arch expanding appliance |
US9873180B2 (en) | 2014-10-17 | 2018-01-23 | Applied Materials, Inc. | CMP pad construction with composite material properties using additive manufacturing processes |
WO2016060712A1 (en) | 2014-10-17 | 2016-04-21 | Applied Materials, Inc. | Cmp pad construction with composite material properties using additive manufacturing processes |
US9776361B2 (en) | 2014-10-17 | 2017-10-03 | Applied Materials, Inc. | Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles |
US11745302B2 (en) | 2014-10-17 | 2023-09-05 | Applied Materials, Inc. | Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process |
US10875153B2 (en) | 2014-10-17 | 2020-12-29 | Applied Materials, Inc. | Advanced polishing pad materials and formulations |
WO2016063270A1 (en) | 2014-10-19 | 2016-04-28 | Orbotech Ltd. | Llift printing of conductive traces onto a semiconductor substrate |
KR102446523B1 (en) | 2014-11-12 | 2022-09-22 | 오르보테크 엘티디. | Acousto-optic deflector with multiple output beams |
US9744001B2 (en) | 2014-11-13 | 2017-08-29 | Align Technology, Inc. | Dental appliance with cavity for an unerupted or erupting tooth |
US10730241B2 (en) * | 2014-11-17 | 2020-08-04 | Autodesk, Inc. | Techniques for automatically placing escape holes during three-dimensional printing |
WO2016106062A1 (en) | 2014-12-23 | 2016-06-30 | Bridgestone Americas Tire Operations, Llc | Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes |
WO2016112084A1 (en) * | 2015-01-06 | 2016-07-14 | Carbon3D, Inc. | Build plate for three dimensional printing having a rough or patterned surface |
CN107208256B (en) | 2015-01-19 | 2020-08-11 | 奥博泰克有限公司 | Printing of three-dimensional metal structures using sacrificial supports |
US10504386B2 (en) | 2015-01-27 | 2019-12-10 | Align Technology, Inc. | Training method and system for oral-cavity-imaging-and-modeling equipment |
AU2016215409B2 (en) | 2015-02-05 | 2020-10-01 | Carbon, Inc. | Method of additive manufacturing by intermittent exposure |
EP3253558B1 (en) | 2015-02-05 | 2020-04-08 | Carbon, Inc. | Method of additive manufacturing by fabrication through multiple zones |
US20160229123A1 (en) * | 2015-02-09 | 2016-08-11 | Carbon3D, Inc. | Remote three-dimensional continuous liquid interface production (clip) systems, related printers, and methods of operating the same |
WO2016140886A1 (en) | 2015-03-05 | 2016-09-09 | Carbon3D, Inc. | Fabrication of three dimensional objects with multiple operating modes |
US10336000B2 (en) | 2015-03-13 | 2019-07-02 | Carbon, Inc. | Methods, systems, and computer program products for determining orientation and fabrication parameters used in three-dimensional (3D) continuous liquid interface printing (CLIP) systems, and related printers |
WO2016149152A1 (en) | 2015-03-13 | 2016-09-22 | The University Of North Carolina At Chapel Hill | Polymeric microneedles and rapid additive manufacturing of the same |
CA2981062C (en) * | 2015-03-31 | 2023-08-15 | Dentsply Sirona Inc. | Three-dimensional fabricating systems for rapidly producing objects |
CN106142551A (en) * | 2015-04-10 | 2016-11-23 | 江苏威宝仕科技有限公司 | A kind of continuous ultraviolet photo-curing method for rapid shaping |
KR101681974B1 (en) * | 2015-04-28 | 2016-12-12 | 주식회사 쓰리디박스 | 3d printer |
WO2016172784A1 (en) * | 2015-04-30 | 2016-11-03 | Fortier, Raymond | Improved stereolithography system |
WO2016172804A1 (en) * | 2015-04-30 | 2016-11-03 | Fortier, Raymond | Improved stereolithography system |
EP3304201A4 (en) | 2015-04-30 | 2019-06-26 | Castanon, Diego | Improved stereolithography system |
WO2016172805A1 (en) * | 2015-04-30 | 2016-11-03 | Fortier, Raymond | Improved stereolithography system |
JP2018515371A (en) * | 2015-05-19 | 2018-06-14 | アディファブ アーペーエス | Layered modeling apparatus having a recoat unit and method using the layered modeling apparatus |
TWI667125B (en) * | 2015-05-20 | 2019-08-01 | 蔡枘頤 | A light-curable 3d machine light loading system calibration |
US10308007B2 (en) | 2015-06-18 | 2019-06-04 | University Of Southern California | Mask video projection based stereolithography with continuous resin flow |
DE102015212099B4 (en) | 2015-06-29 | 2022-01-27 | Adidas Ag | soles for sports shoes |
DE102015212153A1 (en) | 2015-06-30 | 2017-01-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Printing device for printing a three-dimensional structure |
WO2017007964A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Orthodontic appliances with variable properties and integrally formed components |
WO2017006178A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Systems, apparatuses and methods for substance delivery from dental appliances and for ornamental designs on dental appliances |
US11045282B2 (en) | 2015-07-07 | 2021-06-29 | Align Technology, Inc. | Direct fabrication of aligners with interproximal force coupling |
US10959810B2 (en) | 2015-07-07 | 2021-03-30 | Align Technology, Inc. | Direct fabrication of aligners for palate expansion and other applications |
US20170007359A1 (en) | 2015-07-07 | 2017-01-12 | Align Technology, Inc. | Direct fabrication of orthodontic appliances with variable properties |
US10743964B2 (en) | 2015-07-07 | 2020-08-18 | Align Technology, Inc. | Dual aligner assembly |
US10492888B2 (en) | 2015-07-07 | 2019-12-03 | Align Technology, Inc. | Dental materials using thermoset polymers |
US10874483B2 (en) | 2015-07-07 | 2020-12-29 | Align Technology, Inc. | Direct fabrication of attachment templates with adhesive |
US11963842B2 (en) | 2015-07-07 | 2024-04-23 | Align Technology, Inc. | Appliances for intraoral delivery of agents |
KR20180030609A (en) * | 2015-07-09 | 2018-03-23 | 오르보테크 엘티디. | Control of LIFT discharge angle |
US10139650B2 (en) | 2015-07-15 | 2018-11-27 | Timothy James | One piece eyewear with concealed hinges |
EP3328613A4 (en) * | 2015-07-30 | 2019-03-20 | Wildcat DP LLC | Material and method for 3-d fabrication |
HU230841B1 (en) | 2015-08-14 | 2018-08-28 | Marton Bartos | Device and method for producing 3 dimensional object |
WO2017040883A1 (en) | 2015-09-04 | 2017-03-09 | Carbon, Inc. | Cyanate ester dual cure resins for additive manufacturing |
US10792868B2 (en) | 2015-09-09 | 2020-10-06 | Carbon, Inc. | Method and apparatus for three-dimensional fabrication |
WO2017044381A1 (en) | 2015-09-09 | 2017-03-16 | Carbon3D, Inc. | Epoxy dual cure resins for additive manufacturing |
WO2017048710A1 (en) | 2015-09-14 | 2017-03-23 | Carbon, Inc. | Light-curable article of manufacture with portions of differing solubility |
DE102015115796A1 (en) | 2015-09-18 | 2017-03-23 | Osram Opto Semiconductors Gmbh | Method for forming one or more three-dimensional objects |
WO2017052237A1 (en) * | 2015-09-22 | 2017-03-30 | 주식회사 캐리마 | Photocurable 3d forming method and photocurable 3d forming apparatus |
WO2017059082A1 (en) | 2015-09-30 | 2017-04-06 | Carbon, Inc. | Method and apparatus for producing three-dimensional objects |
ITUB20154169A1 (en) | 2015-10-02 | 2017-04-02 | Thelyn S R L | Self-lubricating substrate photo-hardening method and apparatus for the formation of three-dimensional objects. |
TW201713488A (en) * | 2015-10-07 | 2017-04-16 | Shi-Bin Li | Light source adjusting method for 3D laser printer for providing an optical energy adjusting unit and an exposure time adjusting unit to realize an adjustable laser source output |
WO2017072263A1 (en) | 2015-10-28 | 2017-05-04 | Leoni Kabel Gmbh | Method for sheathing a product in strand form, cable, apparatus for the method, control method for the apparatus, and computer program product |
KR102533547B1 (en) * | 2015-10-30 | 2023-05-17 | 쇠라 테크널러지스 인코포레이티드 | Additive Manufacturing Systems and Methods |
US20180311893A1 (en) * | 2015-10-30 | 2018-11-01 | Jae-won Choi | Additive printing apparatus and method employing liquid bridge |
US10647873B2 (en) | 2015-10-30 | 2020-05-12 | Carbon, Inc. | Dual cure article of manufacture with portions of differing solubility |
CN106626373B (en) * | 2015-10-30 | 2019-08-23 | 杭州云中新材料有限公司 | A kind of dot matrix techniques 3D printing method and the equipment using it |
US10618141B2 (en) | 2015-10-30 | 2020-04-14 | Applied Materials, Inc. | Apparatus for forming a polishing article that has a desired zeta potential |
WO2017075575A1 (en) | 2015-10-30 | 2017-05-04 | Polar 3D Llc | Apparatus and method for forming 3d objects |
WO2017079502A1 (en) | 2015-11-05 | 2017-05-11 | Carbon, Inc. | Silicone dual cure resins for additive manufacturing |
US10384439B2 (en) | 2015-11-06 | 2019-08-20 | Stratasys, Inc. | Continuous liquid interface production system with viscosity pump |
US10593574B2 (en) | 2015-11-06 | 2020-03-17 | Applied Materials, Inc. | Techniques for combining CMP process tracking data with 3D printed CMP consumables |
US11554000B2 (en) | 2015-11-12 | 2023-01-17 | Align Technology, Inc. | Dental attachment formation structure |
US11931222B2 (en) | 2015-11-12 | 2024-03-19 | Align Technology, Inc. | Dental attachment formation structures |
EP3377290B1 (en) | 2015-11-22 | 2023-08-02 | Orbotech Ltd. | Control of surface properties of printed three-dimensional structures |
US11065616B2 (en) * | 2015-11-23 | 2021-07-20 | King Abdullah University Of Science And Technology | Methods of making microfluidic devices |
US11141919B2 (en) | 2015-12-09 | 2021-10-12 | Holo, Inc. | Multi-material stereolithographic three dimensional printing |
US11596502B2 (en) | 2015-12-09 | 2023-03-07 | Align Technology, Inc. | Dental attachment placement structure |
US11103330B2 (en) | 2015-12-09 | 2021-08-31 | Align Technology, Inc. | Dental attachment placement structure |
DE102015121858A1 (en) * | 2015-12-15 | 2017-06-22 | Heraeus Kulzer Gmbh | Process for producing large polymerized dental material blocks |
JP6886182B2 (en) * | 2015-12-16 | 2021-06-16 | 国立大学法人横浜国立大学 | Stereolithography equipment |
US11097531B2 (en) | 2015-12-17 | 2021-08-24 | Bridgestone Americas Tire Operations, Llc | Additive manufacturing cartridges and processes for producing cured polymeric products by additive manufacturing |
US10611080B2 (en) | 2015-12-22 | 2020-04-07 | Carbon, Inc. | Three-dimensional printing using selectively lockable carriers |
US10501572B2 (en) | 2015-12-22 | 2019-12-10 | Carbon, Inc. | Cyclic ester dual cure resins for additive manufacturing |
WO2017112521A1 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Production of flexible products by additive manufacturing with dual cure resins |
WO2017112483A2 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Accelerants for additive manufacturing with dual cure resins |
WO2017112571A1 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Dual cure additive manufacturing of rigid intermediates that generate semi-rigid, flexible, or elastic final products |
EP3394673A1 (en) | 2015-12-22 | 2018-10-31 | Carbon, Inc. | Fabrication of compound products from multiple intermediates by additive manufacturing with dual cure resins |
WO2017112751A1 (en) | 2015-12-22 | 2017-06-29 | Carbon, Inc. | Blocked silicone dual cure resins for additive manufacturing |
CN108473768A (en) | 2015-12-30 | 2018-08-31 | 美国圣戈班性能塑料公司 | Radiation-curable product and its preparation and application |
CN106976232B (en) * | 2016-01-13 | 2020-10-16 | 福建国锐中科光电有限公司 | Semipermeable element, application and preparation method thereof and 3D printing equipment |
US11123920B2 (en) | 2016-01-13 | 2021-09-21 | Fujian Institute Of Research On The Structure Of Matter, Chinese Academy Of Science | 3D printing apparatus and method |
CN106976230B (en) * | 2016-01-13 | 2019-08-20 | 中国科学院福建物质结构研究所 | A kind of 3D printing device and method |
US10391605B2 (en) | 2016-01-19 | 2019-08-27 | Applied Materials, Inc. | Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process |
US10259081B2 (en) | 2016-02-08 | 2019-04-16 | Board Of Regents, The University Of Texas System | Connecting metal foils/wires and components in 3D printed substrates with wire bonding |
US10569464B2 (en) | 2016-02-08 | 2020-02-25 | Board Of Regents, The University Of Texas System | Connecting metal foils/wires at different layers in 3D printed substrates with wire spanning |
JP6849457B2 (en) | 2016-03-09 | 2021-03-24 | キヤノン株式会社 | 3D modeling equipment |
DK3432889T3 (en) | 2016-03-23 | 2022-10-17 | Univ North Carolina Chapel Hill | GEOMETRICLY COMPLEX INTRAVAGINAL RINGS, SYSTEMS AND METHODS OF MAKING THEREOF |
AT518465B1 (en) * | 2016-03-25 | 2017-11-15 | Stadlmann Klaus | Plant and method for generating a three-dimensional body |
US10016661B2 (en) | 2016-04-06 | 2018-07-10 | Acushnet Company | Methods for making golf ball components using three-dimensional additive manufacturing systems |
WO2017174545A1 (en) | 2016-04-08 | 2017-10-12 | Solvay Specialty Polymers Usa, Llc | Photocurable polymers, photocurable polymer compositions and lithographic processes including the same |
EP3452271B1 (en) * | 2016-05-04 | 2024-09-04 | Saint-Gobain Ceramics&Plastics, Inc. | Method for forming a three-dimensional body having regions of different densities |
CN105773982B (en) * | 2016-05-13 | 2017-10-13 | 江苏锐辰光电技术有限公司 | Laser 3D printing machine Universal object stage |
AU2017273542B2 (en) | 2016-05-31 | 2023-07-06 | Northwestern University | Method for the fabrication of three-dimensional objects and apparatus for same |
WO2017218951A1 (en) | 2016-06-17 | 2017-12-21 | Align Technology, Inc. | Orthodontic appliance performance monitor |
EP3471599A4 (en) | 2016-06-17 | 2020-01-08 | Align Technology, Inc. | Intraoral appliances with sensing |
KR20190019130A (en) * | 2016-06-20 | 2019-02-26 | 비9크리에이션스, 엘엘씨 | System and method for reducing production time of three-dimensional laminate manufacturing |
EP3475051B1 (en) | 2016-06-27 | 2022-05-25 | Formlabs, Inc. | Position detection techniques for additive fabrication and related systems and methods |
US20180001552A1 (en) * | 2016-06-30 | 2018-01-04 | Carbon, Inc. | Method and apparatus for three-dimensional fabrication of continuous sheets of material |
CN211105627U (en) * | 2016-07-01 | 2020-07-28 | 卡本有限公司 | Build plate for three-dimensional printer, build plate assembly and apparatus for forming three-dimensional object from polymerizable liquid |
CN106042388A (en) * | 2016-07-25 | 2016-10-26 | 东莞中国科学院云计算产业技术创新与育成中心 | 3D printing device, control system of 3D printing device and work method of 3D printing device |
WO2018022940A1 (en) | 2016-07-27 | 2018-02-01 | Align Technology, Inc. | Intraoral scanner with dental diagnostics capabilities |
US10507087B2 (en) | 2016-07-27 | 2019-12-17 | Align Technology, Inc. | Methods and apparatuses for forming a three-dimensional volumetric model of a subject's teeth |
US10241401B2 (en) * | 2016-08-01 | 2019-03-26 | Macdermid Graphics Solutions Llc | Method of making a flexographic printing plate |
JP6964125B2 (en) * | 2016-08-03 | 2021-11-10 | スリーエム イノベイティブ プロパティズ カンパニー | Equipment and methods for progressively building up objects from photocurable materials |
EP3284583B1 (en) * | 2016-08-18 | 2019-02-20 | Cubicure GmbH | Method and device for lithography-based generative production of three-dimensional moulds |
KR102233625B1 (en) | 2016-08-23 | 2021-03-31 | 캐논 가부시끼가이샤 | Three dimensional manufacturing apparatus and method for manufacturing three dimensional manufactured product |
JP6783586B2 (en) * | 2016-08-23 | 2020-11-11 | キヤノン株式会社 | Manufacturing method of 3D modeling equipment and 3D modeled objects |
JP6849357B2 (en) * | 2016-09-16 | 2021-03-24 | キヤノン株式会社 | Manufacturing method of 3D modeling equipment and 3D modeled objects |
US11130286B2 (en) * | 2016-09-07 | 2021-09-28 | Canon Kabushiki Kaisha | Three-dimensional manufacturing apparatus, three-dimensional manufactured object producing method, and container for three-dimensional manufacturing apparatus |
WO2018062193A1 (en) * | 2016-09-28 | 2018-04-05 | 旭硝子株式会社 | Monomer composition and method of producing fluorine-containing polymer |
CN106626375A (en) * | 2016-09-29 | 2017-05-10 | 浙江迅实科技有限公司 | Quick 3D printing device and quick printing method |
CN106476279A (en) * | 2016-09-29 | 2017-03-08 | 浙江迅实科技有限公司 | A kind of 3D printing device Sheng Ye mechanism |
US10061201B2 (en) | 2016-10-24 | 2018-08-28 | Hrl Laboratories, Llc | Bottom up apparatus design for formation of self-propagating photopolymer waveguides |
EP3532267B1 (en) | 2016-10-27 | 2023-03-01 | Bridgestone Americas Tire Operations, LLC | Processes for producing cured polymeric products by additive manufacturing |
CN109922754B (en) | 2016-11-04 | 2021-10-01 | 阿莱恩技术有限公司 | Method and apparatus for dental images |
US11117316B2 (en) | 2016-11-04 | 2021-09-14 | Carbon, Inc. | Continuous liquid interface production with upconversion photopolymerization |
US11167490B2 (en) | 2016-11-08 | 2021-11-09 | Formlabs, Inc. | Multi-material separation layers for additive fabrication |
WO2018094131A1 (en) | 2016-11-21 | 2018-05-24 | Carbon, Inc. | Method of making three-dimensional object by delivering reactive component for subsequent cure |
JP7045386B2 (en) | 2016-11-23 | 2022-03-31 | アセニアム・オプティカル・サイエンシーズ・リミテッド・ライアビリティ・カンパニー | 3D printing of optical devices |
US11060193B2 (en) * | 2016-11-23 | 2021-07-13 | Institut National De La Recherche Scientifique | Method and system of laser-driven impact acceleration |
AU2017366755B2 (en) | 2016-12-02 | 2022-07-28 | Align Technology, Inc. | Methods and apparatuses for customizing rapid palatal expanders using digital models |
CN114224534A (en) | 2016-12-02 | 2022-03-25 | 阿莱恩技术有限公司 | Palatal expander and method of expanding a palate |
US11376101B2 (en) | 2016-12-02 | 2022-07-05 | Align Technology, Inc. | Force control, stop mechanism, regulating structure of removable arch adjustment appliance |
US11026831B2 (en) | 2016-12-02 | 2021-06-08 | Align Technology, Inc. | Dental appliance features for speech enhancement |
EP3548523B1 (en) * | 2016-12-05 | 2022-08-03 | Covestro Deutschland AG | Method and system for the production of an object through layered construction in a stamping process |
US20190369494A1 (en) | 2016-12-05 | 2019-12-05 | Arkemea Inc. | Initiator blends and photocurable compositions containing such initiator blends useful for 3d printing |
CN110062690B (en) | 2016-12-14 | 2021-07-27 | 卡本有限公司 | Continuous liquid interface production with force monitoring and feedback |
US11478987B2 (en) | 2016-12-14 | 2022-10-25 | Carbon, Inc. | Methods and apparatus for washing objects produced by stereolithography |
US11179926B2 (en) * | 2016-12-15 | 2021-11-23 | General Electric Company | Hybridized light sources |
US10548700B2 (en) | 2016-12-16 | 2020-02-04 | Align Technology, Inc. | Dental appliance etch template |
WO2018118769A1 (en) | 2016-12-19 | 2018-06-28 | Align Technology, Inc. | Aligners with enhanced gable bends |
US11059222B2 (en) * | 2016-12-21 | 2021-07-13 | 3D Systems, Inc. | Continuous digital production of 3D articles of manufacture |
WO2018118832A1 (en) | 2016-12-23 | 2018-06-28 | Carbon, Inc. | Adhesive sheet for securing 3d object to carrier platform and method of using same |
WO2018129020A1 (en) | 2017-01-05 | 2018-07-12 | Carbon, Inc. | Dual cure stereolithography resins containing thermoplastic particles |
JP7036035B2 (en) | 2017-01-12 | 2022-03-15 | コニカミノルタ株式会社 | Method for manufacturing resin composition and three-dimensional model |
US20180207863A1 (en) * | 2017-01-20 | 2018-07-26 | Southern Methodist University | Methods and apparatus for additive manufacturing using extrusion and curing and spatially-modulated multiple materials |
US10940638B2 (en) | 2017-01-24 | 2021-03-09 | Continuous Composites Inc. | Additive manufacturing system having finish-follower |
JP2020505256A (en) | 2017-01-27 | 2020-02-20 | アメリカ合衆国 | Method and apparatus for volume production of composite objects |
US20180215093A1 (en) * | 2017-01-30 | 2018-08-02 | Carbon, Inc. | Additive manufacturing with high intensity light |
US10926462B2 (en) | 2017-02-10 | 2021-02-23 | 3D Systems, Inc. | Integration of three dimensional printing processes |
US10779718B2 (en) | 2017-02-13 | 2020-09-22 | Align Technology, Inc. | Cheek retractor and mobile device holder |
US11148357B2 (en) | 2017-02-13 | 2021-10-19 | Carbon, Inc. | Method of making composite objects by additive manufacturing |
WO2018165090A1 (en) | 2017-03-09 | 2018-09-13 | Carbon, Inc. | Tough, high temperature polymers produced by stereolithography |
US10933579B2 (en) * | 2017-03-10 | 2021-03-02 | Prellis Biologics, Inc. | Methods and systems for printing biological material |
US11085018B2 (en) | 2017-03-10 | 2021-08-10 | Prellis Biologics, Inc. | Three-dimensional printed organs, devices, and matrices |
US10935891B2 (en) | 2017-03-13 | 2021-03-02 | Holo, Inc. | Multi wavelength stereolithography hardware configurations |
US10384394B2 (en) | 2017-03-15 | 2019-08-20 | Carbon, Inc. | Constant force compression lattice |
WO2018169826A1 (en) | 2017-03-15 | 2018-09-20 | Carbon, Inc. | Integrated additive manufacturing systems incorporating identification structures |
US10973611B2 (en) | 2017-03-20 | 2021-04-13 | Align Technology, Inc. | Generating a virtual depiction of an orthodontic treatment of a patient |
CN110520298A (en) | 2017-03-23 | 2019-11-29 | 卡本有限公司 | It can be used for manufacturing the lip supports object of object by increasing material manufacturing |
WO2018182974A1 (en) | 2017-03-27 | 2018-10-04 | Carbon, Inc. | Method of making three-dimensional objects by additive manufacturing |
US10932521B2 (en) | 2017-03-27 | 2021-03-02 | Adidas Ag | Footwear midsole with warped lattice structure and method of making the same |
US10575588B2 (en) | 2017-03-27 | 2020-03-03 | Adidas Ag | Footwear midsole with warped lattice structure and method of making the same |
US12090020B2 (en) | 2017-03-27 | 2024-09-17 | Align Technology, Inc. | Apparatuses and methods assisting in dental therapies |
CN110621475B (en) * | 2017-03-30 | 2021-12-10 | 美国陶氏有机硅公司 | Method for producing porous silicone articles and use of silicone articles |
US10613515B2 (en) | 2017-03-31 | 2020-04-07 | Align Technology, Inc. | Orthodontic appliances including at least partially un-erupted teeth and method of forming them |
US10239255B2 (en) | 2017-04-11 | 2019-03-26 | Molecule Corp | Fabrication of solid materials or films from a polymerizable liquid |
WO2018194805A1 (en) | 2017-04-21 | 2018-10-25 | Carbon, Inc. | Dental model and die assembly and method of making the same |
US11376786B2 (en) | 2017-04-21 | 2022-07-05 | Carbon, Inc. | Methods and apparatus for additive manufacturing |
US10429736B2 (en) * | 2017-04-27 | 2019-10-01 | Macdermid Graphics Solutions Llc | Method of making a flexographic printing plate |
GB2564956B (en) | 2017-05-15 | 2020-04-29 | Holo Inc | Viscous film three-dimensional printing systems and methods |
US10647028B2 (en) * | 2017-05-17 | 2020-05-12 | Formlabs, Inc. | Techniques for casting from additively fabricated molds and related systems and methods |
US11150694B2 (en) | 2017-05-23 | 2021-10-19 | Microsoft Technology Licensing, Llc | Fit system using collapsible beams for wearable articles |
TW201901887A (en) | 2017-05-24 | 2019-01-01 | 以色列商奧寶科技股份有限公司 | Electrical interconnection circuit components on the substrate without prior patterning |
EP3635105A4 (en) | 2017-05-25 | 2021-03-31 | Prellis Biologics, Inc. | Three-dimensional printed organs, devices, and matrices |
US11226559B2 (en) | 2017-06-08 | 2022-01-18 | Carbon, Inc. | Blocking groups for light polymerizable resins useful in additive manufacturing |
US11045283B2 (en) | 2017-06-09 | 2021-06-29 | Align Technology, Inc. | Palatal expander with skeletal anchorage devices |
EP3638146B1 (en) | 2017-06-16 | 2024-07-10 | Align Technology, Inc. | Automatic detection of tooth type and eruption status |
US10245785B2 (en) | 2017-06-16 | 2019-04-02 | Holo, Inc. | Methods for stereolithography three-dimensional printing |
JP7092125B2 (en) * | 2017-06-19 | 2022-06-28 | ソニーグループ株式会社 | Modeling device and optical head unit |
DE102017210384B3 (en) * | 2017-06-21 | 2018-08-30 | Sirona Dental Systems Gmbh | Containers for use in stereolithography equipment and stereolithography equipment |
US11458673B2 (en) | 2017-06-21 | 2022-10-04 | Carbon, Inc. | Resin dispenser for additive manufacturing |
WO2019005808A1 (en) | 2017-06-26 | 2019-01-03 | Align Technology, Inc. | Biosensor performance indicator for intraoral appliances |
US11135766B2 (en) | 2017-06-29 | 2021-10-05 | Carbon, Inc. | Products containing nylon 6 produced by stereolithography and methods of making the same |
US11084222B2 (en) | 2017-06-30 | 2021-08-10 | Autodesk, Inc. | Systems and methods for determining dynamic forces in a liquefier system in additive manufacturing |
CN115006018A (en) | 2017-06-30 | 2022-09-06 | 阿莱恩技术有限公司 | Computer-implemented method and system for designing and/or manufacturing an orthodontic appliance for treating or preventing temporomandibular joint dysfunction |
US11793606B2 (en) | 2017-06-30 | 2023-10-24 | Align Technology, Inc. | Devices, systems, and methods for dental arch expansion |
WO2019006409A1 (en) | 2017-06-30 | 2019-01-03 | Align Technology, Inc. | 3d printed composites from a single resin by patterned light exposures |
US11135653B2 (en) | 2017-07-06 | 2021-10-05 | General Electric Company | DMLM build release layer and method of use thereof |
US11919246B2 (en) | 2017-07-11 | 2024-03-05 | Daniel S. Clark | 5D part growing machine with volumetric display technology |
US10967578B2 (en) | 2017-07-11 | 2021-04-06 | Daniel S. Clark | 5D part growing machine with volumetric display technology |
US10568696B2 (en) | 2017-07-17 | 2020-02-25 | International Business Machines Corporation | Apparatus for supporting personalized coronary stents |
US10885521B2 (en) | 2017-07-17 | 2021-01-05 | Align Technology, Inc. | Method and apparatuses for interactive ordering of dental aligners |
US11419702B2 (en) | 2017-07-21 | 2022-08-23 | Align Technology, Inc. | Palatal contour anchorage |
US10751932B2 (en) | 2017-07-21 | 2020-08-25 | Wisconsin Alumni Research Foundation | Joint structures |
BR112020001626A2 (en) | 2017-07-25 | 2020-07-21 | 3M Innovative Properties Company | photopolymerizable compositions including a urethane component and a reactive diluent, articles and methods |
US11471999B2 (en) | 2017-07-26 | 2022-10-18 | Applied Materials, Inc. | Integrated abrasive polishing pads and manufacturing methods |
EP4278957A3 (en) | 2017-07-27 | 2024-01-24 | Align Technology, Inc. | System and methods for processing an orthodontic aligner by means of an optical coherence tomography |
EP3658070A1 (en) | 2017-07-27 | 2020-06-03 | Align Technology, Inc. | Tooth shading, transparency and glazing |
WO2019032286A1 (en) | 2017-08-07 | 2019-02-14 | Applied Materials, Inc. | Abrasive delivery polishing pads and manufacturing methods thereof |
US20190046297A1 (en) * | 2017-08-11 | 2019-02-14 | Align Technology, Inc. | Devices and systems for creation of attachments for use with dental appliances and changeable shaped attachments |
US11135765B2 (en) | 2017-08-11 | 2021-10-05 | Carbon, Inc. | Serially curable resins useful in additive manufacturing |
US11116605B2 (en) | 2017-08-15 | 2021-09-14 | Align Technology, Inc. | Buccal corridor assessment and computation |
CN115006019A (en) | 2017-08-17 | 2022-09-06 | 阿莱恩技术有限公司 | System, method and apparatus for correcting malocclusions |
WO2019036677A1 (en) | 2017-08-17 | 2019-02-21 | Align Technology, Inc. | Dental appliance compliance monitoring |
KR20190033887A (en) * | 2017-09-22 | 2019-04-01 | 최형준 | Super hydrophobic or Super Oleophobic transparent window for 3D printer and 3D printer having the same |
EP3684826B1 (en) | 2017-09-22 | 2022-04-20 | Carbon, Inc. | Production of light-transmissive objects by additive manufacturing |
CN111107975A (en) * | 2017-09-22 | 2020-05-05 | 柯尼卡美能达株式会社 | Resin composition, method for producing three-dimensional object using same, three-dimensional object, fitting for holding object, and industrial robot using same |
JP7309315B2 (en) * | 2017-09-22 | 2023-07-18 | コニカミノルタ株式会社 | RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT |
JP7115491B2 (en) | 2017-09-22 | 2022-08-09 | コニカミノルタ株式会社 | RESIN COMPOSITION, METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME, AND 3D PRODUCT |
WO2019067604A1 (en) | 2017-09-26 | 2019-04-04 | Saint-Gobain Performance Plastics Corporation | Photocurable compositions and methods for 3d printing using them |
US10590066B2 (en) | 2017-09-29 | 2020-03-17 | 3D-Biomaterials, Llc | Biocompositions for 3D printing |
EP3687439B1 (en) | 2017-09-29 | 2024-05-15 | Align Technology, Inc. | Cellular architecture for controlled focal stiffness across intraoral appliances |
US10783629B2 (en) | 2017-09-29 | 2020-09-22 | Align Technology, Inc. | Aligner image based quality control system |
US10414090B2 (en) * | 2017-10-02 | 2019-09-17 | Global Filtration Systems | Method of stabilizing a photohardening inhibitor-permeable film in the manufacture of three-dimensional objects |
US11220054B2 (en) * | 2017-10-02 | 2022-01-11 | Global Filtration Systems | Method of stabilizing a photohardening inhibitor-permeable film in the manufacture of three-dimensional objects |
US11351724B2 (en) | 2017-10-03 | 2022-06-07 | General Electric Company | Selective sintering additive manufacturing method |
US11420384B2 (en) | 2017-10-03 | 2022-08-23 | General Electric Company | Selective curing additive manufacturing method |
US10813720B2 (en) | 2017-10-05 | 2020-10-27 | Align Technology, Inc. | Interproximal reduction templates |
US11801643B2 (en) | 2017-10-09 | 2023-10-31 | Carbon, Inc. | Performance optimization in additive manufacturing |
CN111247623B (en) * | 2017-10-17 | 2024-03-08 | 佳能株式会社 | Imprint apparatus and article manufacturing method |
EP3697595A4 (en) | 2017-10-20 | 2021-07-28 | Formlabs, Inc. | Techniques for application of light in additive fabrication and related systems and methods |
JP7222990B2 (en) | 2017-10-23 | 2023-02-15 | カーボン,インコーポレイテッド | Compensating for window variability in additive manufacturing |
WO2019083876A1 (en) | 2017-10-26 | 2019-05-02 | Carbon, Inc. | Reduction of shrinkage or warping in objects produced by additive manufacturing |
WO2019084326A1 (en) | 2017-10-27 | 2019-05-02 | Align Technology, Inc. | Alternative bite adjustment structures |
EP3700734B1 (en) | 2017-10-27 | 2022-08-10 | Carbon, Inc. | Reduction of polymerization inhibitor irregularity on windows for additive manufacturing |
WO2019089252A1 (en) | 2017-10-31 | 2019-05-09 | Carbon, Inc. | Mass customization in additive manufacturing |
US11576752B2 (en) | 2017-10-31 | 2023-02-14 | Align Technology, Inc. | Dental appliance having selective occlusal loading and controlled intercuspation |
WO2019089269A1 (en) | 2017-10-31 | 2019-05-09 | Carbon, Inc. | Efficient surface texturing of objects produced by additive manufacturing |
WO2019089782A1 (en) | 2017-11-01 | 2019-05-09 | Align Technology, Inc. | Systems and methods for correcting malocclusions of teeth |
CN115252177B (en) | 2017-11-01 | 2024-10-11 | 阿莱恩技术有限公司 | Automated treatment planning |
US11022888B2 (en) * | 2017-11-01 | 2021-06-01 | Syracuse University | Synthesis of superhydrophobic microporous surfaces via light-directed photopolymerization and phase separation |
US11254052B2 (en) | 2017-11-02 | 2022-02-22 | General Electric Company | Vatless additive manufacturing apparatus and method |
US11590691B2 (en) | 2017-11-02 | 2023-02-28 | General Electric Company | Plate-based additive manufacturing apparatus and method |
US11534974B2 (en) | 2017-11-17 | 2022-12-27 | Align Technology, Inc. | Customized fabrication of orthodontic retainers based on patient anatomy |
US11535714B2 (en) | 2017-11-20 | 2022-12-27 | Carbon, Inc. | Light-curable siloxane resins for additive manufacturing |
US10482365B1 (en) | 2017-11-21 | 2019-11-19 | Wells Fargo Bank, N.A. | Transaction instrument containing metal inclusions |
WO2019103855A1 (en) | 2017-11-22 | 2019-05-31 | 3M Innovative Properties Company | Photopolymerizable compositions including a urethane component and a monofunctional reactive diluent, articles, and methods |
EP3713535A1 (en) | 2017-11-22 | 2020-09-30 | 3M Innovative Properties Company | Orthodontic articles comprising cured free-radically polymerizable composition comprising polymer or macromolecule with photoinitiator group |
US11904031B2 (en) | 2017-11-22 | 2024-02-20 | 3M Innovative Properties Company | Orthodontic articles comprising polymerized composition comprising at least two free-radical initiators |
WO2019104079A1 (en) | 2017-11-22 | 2019-05-31 | 3M Innovative Properties Company | Orthodontic articles comprising polymerized composition comprising at least two free-radical initiators |
US11219506B2 (en) | 2017-11-30 | 2022-01-11 | Align Technology, Inc. | Sensors for monitoring oral appliances |
US11479628B2 (en) | 2017-12-08 | 2022-10-25 | Carbon, Inc. | Shelf stable, low tin concentration, dual cure additive manufacturing resins |
CN111788058B (en) | 2017-12-14 | 2022-10-25 | 南洋理工大学 | Directional polymerization method for creating complex three-dimensional (3D) structures in soft materials |
WO2019118876A1 (en) | 2017-12-15 | 2019-06-20 | Align Technology, Inc. | Closed loop adaptive orthodontic treatment methods and apparatuses |
US10980613B2 (en) | 2017-12-29 | 2021-04-20 | Align Technology, Inc. | Augmented reality enhancements for dental practitioners |
WO2019140164A1 (en) * | 2018-01-12 | 2019-07-18 | University Of Florida Research Foundation, Inc. | Multi-material microstereolithography using injection of resin |
US11616302B2 (en) | 2018-01-15 | 2023-03-28 | Rogers Corporation | Dielectric resonator antenna having first and second dielectric portions |
CN108213433A (en) * | 2018-01-25 | 2018-06-29 | 安徽科元三维技术有限公司 | SLM print control systems |
JP7427595B2 (en) | 2018-01-26 | 2024-02-05 | アライン テクノロジー, インコーポレイテッド | Intraoral scanning and tracking for diagnosis |
US10821668B2 (en) | 2018-01-26 | 2020-11-03 | General Electric Company | Method for producing a component layer-by- layer |
US10821669B2 (en) | 2018-01-26 | 2020-11-03 | General Electric Company | Method for producing a component layer-by-layer |
US11273022B2 (en) | 2018-02-13 | 2022-03-15 | Emanate Biomedical, Inc. | Oral appliance in a blockchain system |
WO2019164808A1 (en) | 2018-02-20 | 2019-08-29 | The Regents Of The University Of Michigan | Polymerization photoinhibitor |
US11504115B2 (en) | 2018-02-21 | 2022-11-22 | Cilag Gmbh International | Three dimensional adjuncts |
USD882782S1 (en) | 2018-02-21 | 2020-04-28 | Ethicon Llc | Three dimensional adjunct |
WO2019165070A1 (en) | 2018-02-21 | 2019-08-29 | Carbon, Inc. | Enhancing adhesion of objects to carriers during additive manufacturing |
US10959721B2 (en) | 2018-02-21 | 2021-03-30 | Ethicon Llc | Three dimensional adjuncts |
US11426938B2 (en) | 2018-02-21 | 2022-08-30 | Carbon, Inc. | Rapid wash system for additive manufacturing |
US11504905B2 (en) | 2018-02-21 | 2022-11-22 | Carbon, Inc. | Methods of reducing distortion of additively manufactured objects |
US11230050B2 (en) | 2018-02-27 | 2022-01-25 | Carbon, Inc. | Lattice base structures for additive manufacturing |
US12042994B2 (en) | 2018-03-02 | 2024-07-23 | Carbon, Inc. | Sustainable additive manufacturing resins and methods of recycling |
US20210016496A1 (en) * | 2018-03-09 | 2021-01-21 | Northwestern University | High-throughput 3d printing of customized aspheric imaging lenses |
WO2019175716A1 (en) | 2018-03-15 | 2019-09-19 | 3M Innovative Properties Company | Photopolymerizable compositions including a polypropylene oxide component, articles, and methods |
US11541600B2 (en) | 2018-03-20 | 2023-01-03 | Carbon, Inc. | Rapid wash carrier platform for additive manufacturing of dental models |
US11117315B2 (en) | 2018-03-21 | 2021-09-14 | Carbon, Inc. | Additive manufacturing carrier platform with window damage protection features |
CA3094583A1 (en) | 2018-03-22 | 2019-09-26 | Tissium Sa | 3d printing composition for biomaterials |
WO2019190902A1 (en) | 2018-03-27 | 2019-10-03 | Carbon, Inc. | Functional surface coating methods foradditively manufactured products |
US11937991B2 (en) | 2018-03-27 | 2024-03-26 | Align Technology, Inc. | Dental attachment placement structure |
CN112166039B (en) * | 2018-04-06 | 2023-09-05 | 聚合-医药有限公司 | Methods and compositions for photopolymerized additive manufacturing |
CN116211501A (en) | 2018-04-11 | 2023-06-06 | 阿莱恩技术有限公司 | Palate expander, palate expander device and system, and method for forming palate expander |
WO2019204258A1 (en) | 2018-04-17 | 2019-10-24 | Carbon, Inc. | Temperature regulated stereolithography apparatus with infrared heating |
US11639416B2 (en) | 2018-04-19 | 2023-05-02 | Poly-Med, Inc. | Macromers and compositions for photocuring processes |
WO2019204095A1 (en) | 2018-04-20 | 2019-10-24 | Carbon, Inc. | Bonded surface coating methods for additively manufactured products |
WO2019209732A1 (en) | 2018-04-23 | 2019-10-31 | Carbon, Inc. | Resin extractor for additive manufacturing |
US11978547B2 (en) | 2018-04-30 | 2024-05-07 | Align Technology, Inc. | Systems and methods for treatment using domain-specific treatment protocols |
CN112074544B (en) | 2018-05-04 | 2023-06-13 | 阿莱恩技术有限公司 | Polymerizable monomer and polymerization method thereof |
EP3564206B1 (en) | 2018-05-04 | 2020-11-04 | Align Technology, Inc. | Novel polymerisable monomers and their use as reactive diluents in curable compositions |
AU2019262641A1 (en) | 2018-05-04 | 2020-12-03 | Align Technology, Inc. | Curable composition for use in a high temperature lithography-based photopolymerization process and method of producing crosslinked polymers therefrom |
CN108297398A (en) * | 2018-05-05 | 2018-07-20 | 宁波市石生科技有限公司 | A kind of photocuring three-dimensional manufacturing device |
EP3766670B1 (en) | 2018-05-05 | 2024-02-07 | Luxcreo (Beijing) Inc. | Three-dimensional printing device, and three-dimensional printing method |
CN112088085A (en) * | 2018-05-07 | 2020-12-15 | 福姆实验室公司 | Multi-material separation layer for additive manufacturing |
WO2019217641A1 (en) | 2018-05-11 | 2019-11-14 | Carbon, Inc. | Sustainable chemistry systems for recyclable dental models and other additively manufactured products |
US11026766B2 (en) | 2018-05-21 | 2021-06-08 | Align Technology, Inc. | Photo realistic rendering of smile image after treatment |
US11185436B2 (en) | 2018-05-31 | 2021-11-30 | Frantz Design Inc. | Methods and system for homogeneous dental appliance |
US11167491B2 (en) | 2018-06-01 | 2021-11-09 | Formlabs, Inc. | Multi-film containers for additive fabrication and related systems and methods |
US11440256B2 (en) | 2018-06-15 | 2022-09-13 | Howmedica Osteonics Corp. | Stackable build plates for additive manufacturing powder handling |
CN112352002B (en) | 2018-06-19 | 2022-10-14 | 3M创新有限公司 | Aqueous dispersions comprising polyester particles, photopolymerizable compositions, articles, and methods |
WO2019245892A1 (en) | 2018-06-20 | 2019-12-26 | Carbon, Inc. | Method of treating additive manufacturing objects with a compound of interest |
US11151292B2 (en) | 2018-06-27 | 2021-10-19 | Carbon, Inc. | Additive manufacturing method including thermal modeling and control |
CN109016495B (en) * | 2018-06-28 | 2020-06-19 | 西安交通大学 | Continuous forming 3D printing equipment and operation method |
WO2020003197A2 (en) | 2018-06-29 | 2020-01-02 | 3M Innovative Properties Company | Orthodontic articles prepared using a polycarbonate diol, polymerizable compositions, and methods of making the articles |
EP3813764A2 (en) | 2018-06-29 | 2021-05-05 | 3M Innovative Properties Company | Orthodontic articles prepared using a polycarbonate diol, polymerizable compositions, and methods of making the articles |
JP7010455B2 (en) | 2018-06-29 | 2022-01-26 | スリーエム イノベイティブ プロパティズ カンパニー | Orthodontic articles prepared using polycarbonate diol and its manufacturing method |
US11553988B2 (en) | 2018-06-29 | 2023-01-17 | Align Technology, Inc. | Photo of a patient with new simulated smile in an orthodontic treatment review software |
EP3813763A1 (en) | 2018-06-29 | 2021-05-05 | 3M Innovative Properties Company | Orthodontic articles comprising cured free-radically polymerizable composition with improved strength in aqueous environment |
EP3752123A1 (en) | 2018-06-29 | 2020-12-23 | 3M Innovative Properties Company | Photopolymerizable compositions including a polyurethane methacrylate polymer prepared using a polycarbonate diol, articles, and methods |
EP3819101A4 (en) * | 2018-07-05 | 2022-03-30 | Mitsui Chemicals, Inc. | Three-dimensional-modeling device, control device, and method for manufacturing modeled object |
US10835349B2 (en) | 2018-07-20 | 2020-11-17 | Align Technology, Inc. | Parametric blurring of colors for teeth in generated images |
US20210238340A1 (en) | 2018-07-27 | 2021-08-05 | Carbon, Inc. | Branched reactive blocked prepolymers for additive manufacturing |
US11235515B2 (en) | 2018-07-28 | 2022-02-01 | CALT Dynamics Limited | Methods, systems, and devices for three-dimensional object generation and physical mask curing |
WO2020028192A1 (en) | 2018-07-28 | 2020-02-06 | Calt Dynamics Ltd | Methods, systems, and devices for three-dimensional object generation and physical mask curing |
US11198249B2 (en) * | 2018-07-30 | 2021-12-14 | General Electric Company | Method of joining additively manufactured components |
WO2020028498A1 (en) | 2018-08-01 | 2020-02-06 | Carbon, Inc. | Method for rapid encapsulation of microelectronic devices |
WO2020028232A1 (en) | 2018-08-01 | 2020-02-06 | Carbon, Inc. | Production of low density products by additive manufacturing |
US20210242097A1 (en) | 2018-08-02 | 2021-08-05 | Carbon, Inc. | Method of Packaging an Integrated Circuit |
CN109130173A (en) * | 2018-08-15 | 2019-01-04 | 吴晶军 | A kind of three-dimensionally shaped method |
US11203156B2 (en) | 2018-08-20 | 2021-12-21 | NEXA3D Inc. | Methods and systems for photo-curing photo-sensitive material for printing and other applications |
US11192305B2 (en) | 2018-08-24 | 2021-12-07 | Carbon, Inc. | Window cassettes for reduced polymerization inhibitor irregularity during additive manufacturing |
US11504903B2 (en) | 2018-08-28 | 2022-11-22 | Carbon, Inc. | 1K alcohol dual cure resins for additive manufacturing |
US11104060B2 (en) | 2018-08-29 | 2021-08-31 | Massachusetts Institute Of Technology | Methods and apparatus for fabrication with a movable sheet |
US11407183B2 (en) | 2018-08-31 | 2022-08-09 | Carbon, Inc. | Additively manufactured objects with pre-formed bonding features and methods of making the same |
EP3843963A4 (en) | 2018-08-31 | 2022-09-07 | 3M Innovative Properties Company | Additive manufacturing method for making non-oxide ceramic articles, and aerogels, xerogels, and porous ceramic articles |
KR20210042171A (en) | 2018-09-04 | 2021-04-16 | 어플라이드 머티어리얼스, 인코포레이티드 | Formulations for advanced polishing pads |
US11376792B2 (en) | 2018-09-05 | 2022-07-05 | Carbon, Inc. | Robotic additive manufacturing system |
CN115943062A (en) | 2018-09-10 | 2023-04-07 | 卡本有限公司 | Dual cure additive manufacturing resin for producing flame retardant objects |
US11552390B2 (en) | 2018-09-11 | 2023-01-10 | Rogers Corporation | Dielectric resonator antenna system |
US11135744B2 (en) | 2018-09-13 | 2021-10-05 | Carbon, Inc. | Reversible thermosets for additive manufacturing |
US11241822B2 (en) | 2018-09-25 | 2022-02-08 | Carbon, Inc. | Dual cure resins for additive manufacturing |
WO2020069152A1 (en) | 2018-09-26 | 2020-04-02 | Carbon, Inc. | Spin cleaning method and apparatus for additive manufacturing |
US11235523B2 (en) * | 2018-09-26 | 2022-02-01 | Board Of Trustees Of The University Of Arkansas | Resin extrusion printhead for 3D printing |
US11278375B2 (en) | 2018-09-27 | 2022-03-22 | Align Technology, Inc. | Aligner damage prediction and mitigation |
WO2020069060A1 (en) | 2018-09-28 | 2020-04-02 | Carbon, Inc. | Thermally regulated window cassette for additive manufacturing apparatus |
WO2020069167A1 (en) | 2018-09-28 | 2020-04-02 | Carbon, Inc. | Removable build platform for an additive manufacturing apparatus |
WO2020069281A1 (en) | 2018-09-28 | 2020-04-02 | Carbon, Inc. | Removable window cassette for an additive manufacturing apparatus |
TWI820237B (en) | 2018-10-18 | 2023-11-01 | 美商羅傑斯公司 | Polymer structure, its stereolithography method of manufacture, and electronic device comprising same |
WO2020086370A1 (en) | 2018-10-22 | 2020-04-30 | Carbon, Inc. | Shock absorbing lattice structure produced by additive manufacturing |
US11867248B2 (en) | 2018-10-22 | 2024-01-09 | Carbon, Inc. | Lattice transitioning structures in additively manufactured products |
CN109228315B (en) * | 2018-10-22 | 2021-05-14 | 泰州极光电子科技有限公司 | Continuous 3D printing system |
US11420362B2 (en) | 2018-10-31 | 2022-08-23 | Align Technology, Inc. | Mechanisms to automate removal of aligner from mold |
WO2020092485A1 (en) | 2018-10-31 | 2020-05-07 | Carbon, Inc. | Apparatuses for additively manufacturing three-dimensional objects |
DE102018127451A1 (en) | 2018-11-05 | 2020-05-07 | Bayerische Motoren Werke Aktiengesellschaft | Device and method for additive manufacturing of a component |
DE102018127581A1 (en) | 2018-11-06 | 2020-05-07 | Bayerische Motoren Werke Aktiengesellschaft | Device and method for additive manufacturing of a component |
CA3129247A1 (en) | 2018-11-09 | 2020-05-14 | NEXA3D Inc. | Three-dimensional printing system |
US11189021B2 (en) | 2018-11-16 | 2021-11-30 | Align Technology, Inc. | Machine based three-dimensional (3D) object defect detection |
CN113015511A (en) | 2018-11-19 | 2021-06-22 | 3M创新有限公司 | Orthodontic articles, methods, and polymerizable compositions comprising polyester urethane (meth) acrylate polymers and monofunctional (meth) acrylate monomers |
WO2020113200A1 (en) * | 2018-12-01 | 2020-06-04 | Innovamake, Inc. | System and method for three-dimensional production |
US11498274B2 (en) | 2018-12-03 | 2022-11-15 | Carbon, Inc. | Window thermal profile calibration in additive manufacturing |
GB2594171A (en) | 2018-12-04 | 2021-10-20 | Rogers Corp | Dielectric electromagnetic structure and method of making the same |
WO2020117407A1 (en) | 2018-12-07 | 2020-06-11 | Carbon, Inc. | Methods of surface finishing objects produced by additive manufacturing |
FR3090300B1 (en) | 2018-12-19 | 2021-08-06 | Oreal | Applicator for applying a cosmetic product to the eyelashes and / or eyebrows. |
FR3090296B1 (en) | 2018-12-19 | 2020-12-11 | Oreal | Applicator for applying a cosmetic product to the eyelashes and / or eyebrows. |
FR3090297B1 (en) | 2018-12-19 | 2021-10-15 | Oreal | Spiral cosmetic applicator |
FR3090294B1 (en) | 2018-12-19 | 2021-04-30 | Oreal | Applicator for applying a cosmetic product to the eyelashes and / or eyebrows |
FR3090298B1 (en) | 2018-12-19 | 2021-04-30 | Oreal | Applicator for applying a cosmetic product (F) to the eyelashes and / or eyebrows. |
FR3090301B1 (en) | 2018-12-19 | 2021-05-14 | Oreal | Applicator comprising an application member with an open branch |
FR3090299B1 (en) | 2018-12-19 | 2021-04-30 | Oreal | Applicator comprising an application member manufactured by additive synthesis |
FR3090295B1 (en) | 2018-12-19 | 2021-09-10 | Oreal | Method for generating a digital model of a cosmetic product applicator |
WO2020131675A1 (en) | 2018-12-21 | 2020-06-25 | Carbon, Inc. | Energy absorbing dual cure polyurethane elastomers for additive manufacturing |
WO2020139858A1 (en) * | 2018-12-26 | 2020-07-02 | Holo, Inc. | Sensors for three-dimensional printing systems and methods |
JP7544712B2 (en) | 2018-12-31 | 2024-09-03 | ストラタシス リミテッド | Additive Manufacturing of Radioactive Phantoms |
CN115943067B (en) | 2018-12-31 | 2024-08-09 | 斯特拉塔西斯公司 | Laminate manufacturing using weak gel-forming material |
US11478334B2 (en) | 2019-01-03 | 2022-10-25 | Align Technology, Inc. | Systems and methods for nonlinear tooth modeling |
WO2020142144A1 (en) | 2019-01-04 | 2020-07-09 | Carbon, Inc. | Additively manufactured products having a matte surface finish |
US11779243B2 (en) | 2019-01-07 | 2023-10-10 | Align Technology, Inc. | Customized aligner change indicator |
WO2020146000A1 (en) | 2019-01-07 | 2020-07-16 | Carbon, Inc. | Systems and methods for resin recovery in additive manufacturing |
KR102150879B1 (en) * | 2019-01-09 | 2020-09-03 | (주)링크솔루션 | Stereo lithography 3d printer comprising floating solution for reducing resin usage |
US11982991B2 (en) | 2019-01-09 | 2024-05-14 | Carbon, Inc. | Systems and apparatuses for additive manufacturing with process update and lock down |
US11859027B2 (en) | 2019-01-18 | 2024-01-02 | Carbon, Inc. | Apparatus for determining the photosensitivity of a stereolithography resin |
US12121413B2 (en) | 2019-01-29 | 2024-10-22 | Solventum Intellectual Properties Company | Orthodontic articles and methods of making and postprocessing same |
US11794412B2 (en) | 2019-02-20 | 2023-10-24 | General Electric Company | Method and apparatus for layer thickness control in additive manufacturing |
US11498283B2 (en) | 2019-02-20 | 2022-11-15 | General Electric Company | Method and apparatus for build thickness control in additive manufacturing |
US11801642B2 (en) | 2019-02-26 | 2023-10-31 | Carbon, Inc. | Resin level detection in additive manufacturing |
WO2020185692A2 (en) * | 2019-03-07 | 2020-09-17 | Northwestern University | Rapid, large volume, dead layer-free 3d printing |
EP3705266B1 (en) | 2019-03-08 | 2022-08-17 | Ivoclar Vivadent AG | Method for additive manufacture of a three dimensional product |
US11179891B2 (en) | 2019-03-15 | 2021-11-23 | General Electric Company | Method and apparatus for additive manufacturing with shared components |
US20200290262A1 (en) | 2019-03-15 | 2020-09-17 | Align Technology, Inc. | Thermoforming multiple aligners in parallel |
AU2020241100B2 (en) | 2019-03-18 | 2022-12-01 | NEXA3D Inc. | Method and system for additive manufacture |
EP3946944B1 (en) * | 2019-03-27 | 2023-03-08 | 3D Systems, Inc. | High productivity system for printing precision articles |
US11555095B2 (en) | 2019-03-29 | 2023-01-17 | Carbon, Inc. | Dual cure resin for the production of moisture-resistant articles by additive manufacturing |
US11295444B2 (en) | 2019-04-01 | 2022-04-05 | Align Technology, Inc. | Vision and geometric approaches to detect defects in dental appliances |
US10967573B2 (en) | 2019-04-02 | 2021-04-06 | NEXA3D Inc. | Tank assembly and components thereof for a 3D printing system |
US11511485B2 (en) | 2019-04-02 | 2022-11-29 | Align Technology, Inc. | 3D printed objects with selective overcure regions |
EP3946906A4 (en) * | 2019-04-04 | 2022-12-28 | Calt Dynamics Ltd | Methods, systems and devices for three-dimensional object generation and physical mask curing |
WO2020214720A1 (en) | 2019-04-16 | 2020-10-22 | Saint-Gobain Performance Plastics Corporation | Dual cure compositions |
CA3136654C (en) | 2019-04-17 | 2024-04-23 | Origin Laboratories, Inc. | Method for regulating temperature at a resin interface in an additive manufacturing process |
US11235533B2 (en) | 2019-04-26 | 2022-02-01 | Carbon, Inc. | Resin viscosity detection in additive manufacturing |
WO2020223058A1 (en) | 2019-04-30 | 2020-11-05 | Carbon, Inc. | Low viscosity dual cure additive manufacturing resins |
US20220143917A1 (en) | 2019-04-30 | 2022-05-12 | Carbon, Inc. | Mass customization in additive manufacturing |
CN113906834B (en) | 2019-05-01 | 2024-09-13 | Io技术集团公司 | Method for electrically connecting chip and top connector using 3D printing |
BR112021022291A2 (en) | 2019-05-08 | 2021-12-28 | Saint Gobain Performance Plastics Corp | Hydrophilic polymeric compositions |
WO2020234775A1 (en) | 2019-05-21 | 2020-11-26 | 3M Innovative Properties Company | Orthodontic articles comprising polymerized composition with pendent cyclic moieties, methods, and polymerizable compositions |
FR3096606A1 (en) | 2019-05-29 | 2020-12-04 | Elkem Silicones France Sas | Additive manufacturing method to produce a silicone elastomer article |
EP3942366B1 (en) | 2019-05-30 | 2023-11-15 | Rogers Corporation | Photocurable compositions for stereolithography, stereolithography methods using the compositions, polymer components formed by the stereolithography methods, and a device including the polymer components |
CA3137929A1 (en) | 2019-05-31 | 2020-12-03 | The Procter & Gamble Company | Methods of making a deflection member |
WO2020256825A1 (en) | 2019-06-18 | 2020-12-24 | Carbon, Inc. | Additive manufacturing method and apparatus for the production of dental crowns and other objects |
WO2020263482A1 (en) | 2019-06-24 | 2020-12-30 | Carbon, Inc. | Preemptive apparatus failure detection in additive manufacturing |
WO2020263480A1 (en) | 2019-06-28 | 2020-12-30 | Carbon, Inc. | Dual cure additive manufacturing resins for the production of objects with mixed tensile properties |
WO2021015979A1 (en) | 2019-07-22 | 2021-01-28 | Specialized Bicycle Components, Inc. | Bicycle saddle |
CN114206589A (en) | 2019-07-29 | 2022-03-18 | 阿莱恩技术有限公司 | System and method for additive manufacturing of dental devices using photopolymer resins |
EP4007691A4 (en) | 2019-08-02 | 2023-11-08 | Origin Laboratories, Inc. | Method and system for interlayer feedback control and failure detection in an additive manufacturing process |
US20220380260A1 (en) | 2019-08-06 | 2022-12-01 | 3M Innovative Properties Company | Continuous Additive Manufacturing Method for Making Ceramic Articles, and Ceramic Articles |
WO2021025876A1 (en) | 2019-08-06 | 2021-02-11 | Carbon, Inc. | Additive manufacturing apparatus with purged light engine |
US11446860B2 (en) | 2019-08-16 | 2022-09-20 | General Electric Company | Method and apparatus for separation of cured resin layer from resin support in additive manufacturing |
EP4021704B1 (en) | 2019-08-30 | 2024-01-10 | Carbon, Inc. | Divided resin cassettes for enhanced work flow in additive manufacturing of dental products and the like |
US11840023B2 (en) * | 2019-08-30 | 2023-12-12 | Carbon, Inc. | Mutliphysics model for inverse warping of data file in preparation for additive manufacturing |
WO2021046376A1 (en) | 2019-09-06 | 2021-03-11 | Carbon, Inc. | Cushions containing shock absorbing triply periodic lattice and related methods |
CN114340874B (en) | 2019-09-12 | 2024-06-14 | 舒万诺知识产权公司 | Apparatus, system, method for post-curing articles, and post-cured articles |
EP3791804B1 (en) | 2019-09-16 | 2023-11-29 | Ethicon LLC | Compressible non-fibrous adjuncts |
EP3791808B1 (en) | 2019-09-16 | 2024-09-25 | Ethicon LLC | Compressible non-fibrous adjuncts |
EP3791809B1 (en) | 2019-09-16 | 2024-07-17 | Ethicon LLC | Compressible non-fibrous adjuncts |
EP3791807B1 (en) | 2019-09-16 | 2023-10-04 | Ethicon LLC | Compressible non-fibrous adjuncts |
EP3791799A1 (en) | 2019-09-16 | 2021-03-17 | Ethicon LLC | Compressible non-fibrous adjuncts |
EP3791806A1 (en) | 2019-09-16 | 2021-03-17 | Ethicon LLC | Compressible non-fibrous adjuncts |
EP4052656A1 (en) | 2019-09-16 | 2022-09-07 | Ethicon LLC | Compressible non-fibrous adjuncts |
US11490890B2 (en) | 2019-09-16 | 2022-11-08 | Cilag Gmbh International | Compressible non-fibrous adjuncts |
EP3791800B1 (en) | 2019-09-16 | 2024-09-25 | Ethicon LLC | Compressible non-fibrous adjuncts |
WO2021055458A1 (en) | 2019-09-16 | 2021-03-25 | Carbon, Inc. | Bio absorbable resin for additive manufacturing |
US11638584B2 (en) | 2019-09-16 | 2023-05-02 | Cilag Gmbh International | Compressible non-fibrous adjuncts |
EP3791810B1 (en) | 2019-09-16 | 2023-12-20 | Ethicon LLC | Compressible non-fibrous adjuncts |
CN114364467A (en) | 2019-09-20 | 2022-04-15 | 卡本有限公司 | Cleaning of objects additively manufactured by vacuum cycle nucleation |
US20220371277A1 (en) | 2019-09-25 | 2022-11-24 | Carbon, Inc. | Particle coating methods for additively manufactured products |
EP3812131B1 (en) | 2019-10-23 | 2022-04-13 | Ivoclar Vivadent AG | Stereolithography method |
US20220403102A1 (en) | 2019-10-25 | 2022-12-22 | Carbon, Inc. | Mechanically anisotropic 3d printed flexible polymeric sheath |
US20220227058A1 (en) * | 2019-10-25 | 2022-07-21 | Hewlett-Packard Development Company, L.P. | Chamber temperature control |
WO2021087061A2 (en) | 2019-10-31 | 2021-05-06 | Align Technology, Inc. | Crystallizable resins |
WO2021101801A1 (en) | 2019-11-18 | 2021-05-27 | Carbon, Inc. | Partial dentures and methods of making the same |
US11911955B1 (en) * | 2019-12-03 | 2024-02-27 | Triad National Security, Llc | System and method embodiments for modifying gas content in printable compositions for additive manufacturing |
WO2021116859A1 (en) | 2019-12-12 | 2021-06-17 | 3M Innovative Properties Company | Polymer bond abrasive articles including continuous polymer matrix, and methods of making same |
US20230150189A1 (en) | 2019-12-13 | 2023-05-18 | Carbon, Inc. | Additive manufacturing from a velocity induced dead zone |
US11713367B2 (en) | 2019-12-23 | 2023-08-01 | Carbon, Inc. | Inhibition of crystallization in polyurethane resins |
WO2021130624A1 (en) | 2019-12-27 | 2021-07-01 | 3M Innovative Properties Company | Preformed orthodontic aligner attachments |
WO2021146237A1 (en) | 2020-01-17 | 2021-07-22 | Carbon, Inc. | Chemical recycling of additively manufactured objects |
US11440259B2 (en) | 2020-01-31 | 2022-09-13 | Carbon, Inc. | Resin reclamation centrifuge rotor for additively manufactured objects |
US11446750B2 (en) | 2020-02-03 | 2022-09-20 | Io Tech Group Ltd. | Systems for printing solder paste and other viscous materials at high resolution |
US11622451B2 (en) | 2020-02-26 | 2023-04-04 | Io Tech Group Ltd. | Systems and methods for solder paste printing on components |
US20230078824A1 (en) | 2020-02-28 | 2023-03-16 | Carbon, Inc. | Methods of making a three-dimensional object |
EP4110843A1 (en) | 2020-02-28 | 2023-01-04 | Carbon, Inc. | One part moisture curable resins for additive manufacturing |
WO2021178363A1 (en) | 2020-03-02 | 2021-09-10 | Align Technology, Inc. | Low viscosity photo-curable resins for the direct fabrication of orthodontic appliances |
US11470956B2 (en) | 2020-03-06 | 2022-10-18 | Applied Materials, Inc. | Brush, method of forming a brush, and structure embodied in a machine readable medium used in a design process |
US11859057B2 (en) | 2020-03-12 | 2024-01-02 | Carbon, Inc. | Partially reversible thermosets useful for recycling |
CN115485310A (en) | 2020-03-13 | 2022-12-16 | 阿莱恩技术有限公司 | Weak covalent crosslinking for toughness enhancement in thermosets |
WO2021183263A1 (en) | 2020-03-13 | 2021-09-16 | Carbon, Inc. | Additively manufactured products having a matte surface finish |
WO2021202655A1 (en) | 2020-04-03 | 2021-10-07 | Carbon, Inc. | Resins and methods for additive manufacturing of energy absorbing three-dimensional objects |
US11482790B2 (en) | 2020-04-08 | 2022-10-25 | Rogers Corporation | Dielectric lens and electromagnetic device with same |
US11655329B2 (en) | 2020-04-24 | 2023-05-23 | Carbon, Inc. | Delayed action catalysts for dual cure additive manufacturing resins |
WO2021222086A1 (en) | 2020-04-28 | 2021-11-04 | Carbon, Inc. | Methods of making a three-dimensional object |
US20230158735A1 (en) | 2020-04-28 | 2023-05-25 | 3M Innovative Properties Company | Methods of Making Additive Manufactured Articles Using Multilayer Articles, Objects Prepared by the Methods, and Multilayer Articles |
WO2021221900A1 (en) | 2020-04-30 | 2021-11-04 | Carbon, Inc. | Film remover apparatus for additive manufacturing build platforms and related methods |
WO2021221877A1 (en) | 2020-04-30 | 2021-11-04 | Carbon, Inc. | Film applicator apparatus for additive manufacturing build platforms and related systems |
US11207830B2 (en) | 2020-05-11 | 2021-12-28 | Io Tech Group Ltd. | Methods for negative 3D printing machine at high resolution |
US11548219B2 (en) | 2020-05-15 | 2023-01-10 | Carbon, Inc. | Apparatus and methods for controlled validation of additive manufacturing systems |
US11497124B2 (en) | 2020-06-09 | 2022-11-08 | Io Tech Group Ltd. | Methods for printing conformal materials on component edges at high resolution |
WO2022027071A1 (en) | 2020-07-31 | 2022-02-03 | Align Technology, Inc. | Direct fabrication of mixed metal and polymer orthodontic devices |
US11691332B2 (en) | 2020-08-05 | 2023-07-04 | Io Tech Group Ltd. | Systems and methods for 3D printing with vacuum assisted laser printing machine |
CN112008982B (en) * | 2020-08-14 | 2023-03-21 | 珠海赛纳三维科技有限公司 | Model printing device |
US11661468B2 (en) | 2020-08-27 | 2023-05-30 | Align Technology, Inc. | Additive manufacturing using variable temperature-controlled resins |
EP4188274A1 (en) | 2020-08-31 | 2023-06-07 | Align Technology, Inc. | 3d printed composites from phase separated materials |
US11701826B2 (en) * | 2020-08-31 | 2023-07-18 | Nissan North America, Inc. | 3-D printer apparatus |
USD1029255S1 (en) | 2020-09-01 | 2024-05-28 | Cilag Gmbh International | Stapling cartridge assembly with a compressible adjunct |
US11413819B2 (en) | 2020-09-03 | 2022-08-16 | NEXA3D Inc. | Multi-material membrane for vat polymerization printer |
US11820061B2 (en) | 2020-09-10 | 2023-11-21 | Regents Of The University Of Minnesota | Additively manufactured self-supporting microfluidics |
EP4210883B1 (en) | 2020-09-11 | 2024-02-14 | 3M Innovative Properties Company | Investment casting compositions and methods |
DE102020124546B4 (en) | 2020-09-21 | 2024-03-28 | Audi Aktiengesellschaft | 3D printing process and device for producing a 3D component |
WO2022066565A1 (en) | 2020-09-25 | 2022-03-31 | Carbon, Inc. | Epoxy dual cure resin for the production of moisture-resistant articles by additive manufacturing |
US11786008B2 (en) | 2020-10-07 | 2023-10-17 | Adidas Ag | Footwear with 3-D printed midsole |
WO2022076235A1 (en) | 2020-10-09 | 2022-04-14 | Carbon, Inc. | Vapor spin cleaning of additively manufactured parts |
US11992084B2 (en) | 2020-10-13 | 2024-05-28 | Adidas Ag | Footwear midsole with 3-D printed mesh having an anisotropic structure and methods of making the same |
US11589647B2 (en) | 2020-10-13 | 2023-02-28 | Adidas Ag | Footwear midsole with anisotropic mesh and methods of making the same |
US12082646B2 (en) | 2020-10-13 | 2024-09-10 | Adidas Ag | Footwear and footwear components having a mesh component |
US11633907B2 (en) * | 2020-10-16 | 2023-04-25 | Indizen Optical Technologies S.L. | Eyewear lens creation using additive techniques with diffuse light |
JP2023547191A (en) | 2020-10-28 | 2023-11-09 | スリーエム イノベイティブ プロパティズ カンパニー | Methods and systems for processing photopolymerizable compositions |
WO2022115197A2 (en) * | 2020-10-29 | 2022-06-02 | Seurat Technologies, Inc. | Light valve cooling system |
CN112477134B (en) | 2020-11-03 | 2023-01-06 | 深圳市纵维立方科技有限公司 | Material feeding unit and 3D printer |
WO2022106998A1 (en) | 2020-11-20 | 2022-05-27 | 3M Innovative Properties Company | Articles, methods and compositions comprising polymerizable dicarbonyl polymers |
US11707883B2 (en) | 2020-11-20 | 2023-07-25 | General Electric Company | Foil interaction device for additive manufacturing |
WO2022125881A1 (en) | 2020-12-11 | 2022-06-16 | Carbon, Inc. | Force-regulated additive manufacturing |
WO2022149084A1 (en) | 2021-01-08 | 2022-07-14 | 3M Innovative Properties Company | Prescription attachments for use in each phase of combination orthodontic treatment |
US11878389B2 (en) | 2021-02-10 | 2024-01-23 | Applied Materials, Inc. | Structures formed using an additive manufacturing process for regenerating surface texture in situ |
US20240235049A9 (en) | 2021-02-24 | 2024-07-11 | 3M Innovative Properties Company | Methods of Manufacturing Electromagnetic Radiation Altering Articles, Articles Made by the Methods, Apparatuses, and Methods of Altering Electromagnetic Radiation |
US11865780B2 (en) | 2021-02-26 | 2024-01-09 | General Electric Company | Accumalator assembly for additive manufacturing |
CN112590213B (en) * | 2021-03-04 | 2021-06-25 | 源秩科技(上海)有限公司 | Photocuring three-dimensional printing device and printing method |
WO2022212475A1 (en) | 2021-04-01 | 2022-10-06 | Carbon, Inc. | Hybrid surface lattices for additively manufactured products |
WO2022212472A1 (en) | 2021-04-01 | 2022-10-06 | Carbon, Inc. | Systems and methods for constructing lattice objects for additive manufacturing |
WO2022226416A1 (en) | 2021-04-23 | 2022-10-27 | Align Technology, Inc. | Monomeric and polymeric compositions and methods of producing and using the same |
USD990180S1 (en) | 2021-04-30 | 2023-06-27 | Specialized Bicycle Components, Inc. | Bicycle saddle |
EP4334389A1 (en) | 2021-05-06 | 2024-03-13 | 3M Innovative Properties Company | Precursor compositions including a curable component and surface coated or modified hollow glass microspheres, articles, additive manufacturing methods, and methods of interfering with electromagnetic radiation |
US20220380549A1 (en) | 2021-05-12 | 2022-12-01 | Elkem Silicones USA Corp. | Method for producing a three-dimensional printed article |
US11964425B2 (en) | 2021-05-12 | 2024-04-23 | Elkem Silicones USA Corp. | Method for producing a three-dimensional printed article |
WO2022256635A1 (en) | 2021-06-03 | 2022-12-08 | Carbon, Inc. | Methods for the rapid production of blocked prepolymers |
EP4313534A1 (en) | 2021-06-09 | 2024-02-07 | Carbon, Inc. | Systems and methods for making polymer dental appliances |
WO2022266331A1 (en) | 2021-06-16 | 2022-12-22 | Carbon, Inc. | Methods for surface coating additively manufactured objects |
US11951679B2 (en) | 2021-06-16 | 2024-04-09 | General Electric Company | Additive manufacturing system |
US11731367B2 (en) | 2021-06-23 | 2023-08-22 | General Electric Company | Drive system for additive manufacturing |
CA3216617A1 (en) | 2021-06-24 | 2022-12-29 | Amos Gottlieb | Laminates and 3d printers |
CN117545799A (en) | 2021-06-24 | 2024-02-09 | 阿莱恩技术有限公司 | Recovery of monomer and oligomer components from polymeric materials |
US11958250B2 (en) | 2021-06-24 | 2024-04-16 | General Electric Company | Reclamation system for additive manufacturing |
US11958249B2 (en) | 2021-06-24 | 2024-04-16 | General Electric Company | Reclamation system for additive manufacturing |
US20230021953A1 (en) | 2021-06-24 | 2023-01-26 | Align Technology, Inc. | Multi-valent polymerizable compositions and methods of producing and using the same |
US11952457B2 (en) | 2021-06-30 | 2024-04-09 | Carbon, Inc. | Bioabsorbable resin for additive manufacturing with non-cytotoxic photoinitiator |
US11826950B2 (en) | 2021-07-09 | 2023-11-28 | General Electric Company | Resin management system for additive manufacturing |
WO2023019183A1 (en) | 2021-08-10 | 2023-02-16 | Align Technology, Inc. | Systems and methods for customizing orthodontic treatment and treatment planning |
EP4392891A2 (en) | 2021-08-24 | 2024-07-03 | Carbon, Inc. | Versatile lattice cell transitioning for additively manufactured products |
US11884000B2 (en) | 2021-08-27 | 2024-01-30 | Carbon, Inc. | One part, catalyst containing, moisture curable dual cure resins for additive manufacturing |
US20240343004A1 (en) | 2021-08-31 | 2024-10-17 | 3M Innovative Properties Company | Infiltrated Three-Dimensional Articles and Methods of Making Same |
US11813799B2 (en) | 2021-09-01 | 2023-11-14 | General Electric Company | Control systems and methods for additive manufacturing |
WO2023049377A1 (en) | 2021-09-24 | 2023-03-30 | Align Technology, Inc. | Palatal expansion appliances and methods of producing and using the same |
US12053925B2 (en) | 2021-10-14 | 2024-08-06 | Align Technology, Inc. | Recoating system including multiple blades |
WO2023064488A1 (en) | 2021-10-14 | 2023-04-20 | Align Technology, Inc. | Recoating system |
US20230133005A1 (en) | 2021-10-28 | 2023-05-04 | Align Technology, Inc. | Systems for post-processing additively manufactured objects |
GB2627401A (en) | 2021-11-04 | 2024-08-21 | Procter & Gamble | Web material structuring belt, method for making and method for using |
DE112022005294T5 (en) | 2021-11-04 | 2024-08-29 | The Procter & Gamble Company | WEB MATERIAL STRUCTURING TAPE, METHOD OF MANUFACTURING AND METHOD OF USING |
GB2626904A (en) | 2021-11-04 | 2024-08-07 | Procter & Gamble | Web material structuring belt, method for making structured web material and structured web material made by the method |
GB2627655A (en) | 2021-11-04 | 2024-08-28 | Procter & Gamble | Web material structuring belt, method for making structured web material and structured web material made by the method |
EP4433307A1 (en) | 2021-11-16 | 2024-09-25 | Carbon, Inc. | Method for additively manufacturing composite objects for securing to wearable articles and articles obtained thereby |
DE102021130480A1 (en) | 2021-11-22 | 2023-05-25 | Engelbert Strauss Gmbh & Co Kg | knee pad |
WO2023096876A2 (en) | 2021-11-23 | 2023-06-01 | Align Technology, Inc. | Orthodontic aligner manufacturing and quality assessment system |
EP4457252A1 (en) | 2021-12-30 | 2024-11-06 | Align Technology, Inc. | Synthesis of para-alkylated syringyl (meth)acrylate derivatives and photopolymerizable compositions for additive manufacturing in dental applications |
CN118488891A (en) | 2021-12-30 | 2024-08-13 | 阿莱恩技术有限公司 | Apparatus and method for controlling particle distribution in polymers |
WO2023123326A1 (en) | 2021-12-31 | 2023-07-06 | Elkem Silicones Shanghai Co., Ltd. | Silicone composition and a method for photopolymerization-based 3d printing |
US20230301762A1 (en) | 2022-02-01 | 2023-09-28 | Align Technology, Inc. | Mold arch reinforcement and labeling for dental appliance manufacturing |
US20230256672A1 (en) * | 2022-02-14 | 2023-08-17 | Lung Biotechnology Pbc | High density mesh for inverted 3d printing |
US20230264428A1 (en) | 2022-02-23 | 2023-08-24 | Align Technology, Inc. | Indirect temperature monitoring for additive manufacturing |
WO2023172605A1 (en) * | 2022-03-08 | 2023-09-14 | Kinetic 3D Llc | Devices, systems, processes, and methods relating to tankless production of three-dimensional target objects |
WO2023177815A1 (en) * | 2022-03-17 | 2023-09-21 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and systems for making polymeric microstructures |
WO2023205716A1 (en) | 2022-04-22 | 2023-10-26 | Carbon, Inc. | Hollow dental molds configured for high throughput cleaning |
WO2023220523A1 (en) | 2022-05-09 | 2023-11-16 | Carbon, Inc. | Method for direct coloration of resins for additive manufacturing |
CN115071126B (en) * | 2022-06-06 | 2023-06-13 | 江苏大学 | Photocurable 4D printing method for multilayer structure with adjustable shape recovery speed and multilayer structure thereof |
US20240005472A1 (en) | 2022-06-30 | 2024-01-04 | Align Technology, Inc. | Defect detection for dental appliances |
WO2024005907A1 (en) * | 2022-06-30 | 2024-01-04 | Carnegie Mellon University | Biodegradable hydrogel actuator with shape morphing capability for soft robotics and methods of fabrication |
US20240016579A1 (en) | 2022-07-06 | 2024-01-18 | Align Technology, Inc. | Additively manufactured dental attachment placement devices using curable compositions |
US20240016578A1 (en) | 2022-07-06 | 2024-01-18 | Align Technology, Inc. | Methods for additively manufacturing medical devices using bioglass fiber reinforced polymers |
WO2024026293A1 (en) | 2022-07-26 | 2024-02-01 | Align Technology, Inc. | Method of determining tooth root apices using intraoral scans and panoramic radiographs |
US12023865B2 (en) | 2022-08-11 | 2024-07-02 | NEXA3D Inc. | Light engines for vat polymerization 3D printers |
WO2024039675A1 (en) | 2022-08-15 | 2024-02-22 | Align Technology, Inc. | Vinyl ether-based inkjet ink photopolymerized by thiol-ene click chemistry used for toughening of photopolymers |
US20240051225A1 (en) | 2022-08-15 | 2024-02-15 | Align Technology, Inc. | Methods for producing additively manufactured objects with heterogeneous properties |
EP4327789A1 (en) | 2022-08-21 | 2024-02-28 | Frantz Design Incorporated | An adjustable thermoplastic dental appliance system and method |
WO2024052875A1 (en) | 2022-09-09 | 2024-03-14 | Solventum Intellectual Properties Company | Transfer apparatus for orthodontic appliances and related methods of manufacturing |
WO2024059564A1 (en) | 2022-09-12 | 2024-03-21 | Align Technology, Inc. | Systems and methods for teeth whitening simulation |
WO2024056948A1 (en) | 2022-09-15 | 2024-03-21 | Elkem Silicones France Sas | Additive manufacturing method for producing a silicone elastomer article |
US20240091906A1 (en) | 2022-09-15 | 2024-03-21 | Align Technology, Inc. | Systems and methods for modifying surfaces of additively manufactured objects |
US20240100775A1 (en) * | 2022-09-22 | 2024-03-28 | Cubicure Gmbh | Modular build platforms for additive manufacturing |
EP4344873A1 (en) | 2022-09-27 | 2024-04-03 | Elkem Silicones France SAS | Post-treatment of a 3d-printed elastomer silicone article |
US20240227301A9 (en) | 2022-10-20 | 2024-07-11 | Align Technology, Inc. | Systems and methods for generating directly manufacturable dental appliances |
US20240191006A1 (en) | 2022-10-26 | 2024-06-13 | Align Technology, Inc. | Curable compositions comprising a polymerizable reactive diluent for fabrication of orthodontic appliances |
US20240140065A1 (en) | 2022-10-26 | 2024-05-02 | Align Technology, Inc. | Materials and additively manufactured objects with mechanically interlocking elements |
US20240140031A1 (en) | 2022-10-26 | 2024-05-02 | Align Technology, Inc. | Additive manufacturing systems with fixed substrates |
WO2024097181A1 (en) | 2022-11-01 | 2024-05-10 | Align Technology, Inc. | Prefabricated support structures and/or overlays for additive manufacturing |
WO2024127105A1 (en) | 2022-12-14 | 2024-06-20 | Solventum Intellectual Properties Company | Transfer apparatus for orthodontic appliances and related methods of manufacturing |
WO2024141095A1 (en) | 2022-12-30 | 2024-07-04 | Elkem Silicones Shanghai Co., Ltd. | Method for manufacturing 3d printed article using a photocurable silicone composition |
US20240216106A1 (en) | 2023-01-04 | 2024-07-04 | Align Technology, Inc. | Methods and apparatuses including tooth eruption prediction |
US20240227300A1 (en) | 2023-01-09 | 2024-07-11 | Align Technology, Inc. | Methods for generating support structures for additively manufactured objects |
DE102023101333A1 (en) | 2023-01-19 | 2024-07-25 | Oechsler Ag | Method for producing a coated object |
FR3145164A1 (en) | 2023-01-20 | 2024-07-26 | Elkem Silicones France Sas | Additive manufacturing method for producing a silicone elastomer article |
WO2024173543A2 (en) | 2023-02-15 | 2024-08-22 | Align Technology, Inc. | Monomer compounds for 3d printing resins |
WO2024173708A1 (en) | 2023-02-16 | 2024-08-22 | Align Technology, Inc. | Cyclic initiators in additive manufacturing |
US20240352179A1 (en) | 2023-02-22 | 2024-10-24 | Align Technology, Inc. | Polymerizable polyurethanes and compositions containing the same for use in 3d printable dental materials |
WO2024182521A1 (en) | 2023-02-28 | 2024-09-06 | Align Technology, Inc. | Additives for 3d printing polymer resins |
WO2024180438A1 (en) | 2023-03-01 | 2024-09-06 | Solventum Intellectual Properties Company | Ceramic veneers and continuous additive manufacturing method for making ceramic veneers |
US20240300174A1 (en) | 2023-03-10 | 2024-09-12 | Align Technology, Inc. | Substrates and associated materials for additive manufacturing |
US20240300185A1 (en) | 2023-03-10 | 2024-09-12 | Align Technology, Inc. | Additive manufacturing systems with error correction and associated methods |
WO2024192136A1 (en) | 2023-03-14 | 2024-09-19 | Align Technology, Inc. | Photocurable polymers and compositions for 3d printing resins |
US20240352174A1 (en) | 2023-03-14 | 2024-10-24 | Align Technology, Inc. | Crosslinkers and compositions |
WO2024197214A1 (en) | 2023-03-22 | 2024-09-26 | Carbon, Inc. | Combination additive and subtractive manufacturing methods and apparatus for light polymerizable resins |
WO2024200927A1 (en) | 2023-03-31 | 2024-10-03 | Elkem Silicones France Sas | Method for preparing organopolysiloxanes with (meth)acrylate functions |
WO2024216149A1 (en) | 2023-04-14 | 2024-10-17 | Align Technology, Inc. | Dental appliance occlusal element |
US20240342995A1 (en) | 2023-04-14 | 2024-10-17 | Align Technology, Inc. | Systems and methods for designing objects |
US20240365922A1 (en) | 2023-05-05 | 2024-11-07 | Adidas Ag | Shoe midsole lattice structures |
Citations (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4337130A (en) | 1980-06-25 | 1982-06-29 | E. I. Du Pont De Nemours And Company | Photocurable polyurethane film coatings |
USRE31406E (en) | 1972-06-16 | 1983-10-04 | Syntex (U.S.A.) Inc. | Oxygen permeable contact lens composition, methods and article of manufacture |
US4845089A (en) | 1986-05-16 | 1989-07-04 | Bayer Aktiengesellschaft | Arthropodicidal and fungicidal methods of using 1-aralkylpyrazoles |
US4923906A (en) | 1987-04-30 | 1990-05-08 | Ciba-Geigy Corporation | Rigid, gas-permeable polysiloxane contact lenses |
US5017461A (en) | 1988-03-15 | 1991-05-21 | Fujitsu Limited | Formation of a negative resist pattern utilize water-soluble polymeric material and photoacid generator |
US5051115A (en) | 1986-05-21 | 1991-09-24 | Linde Aktiengesellschaft | Pressure swing adsorption process |
US5070170A (en) | 1988-02-26 | 1991-12-03 | Ciba-Geigy Corporation | Wettable, rigid gas permeable, substantially non-swellable contact lens containing block copolymer polysiloxane-polyoxyalkylene backbone units, and use thereof |
US5141665A (en) | 1987-03-31 | 1992-08-25 | Sherman Laboratories, Inc. | Cleaning, conditioning, storing and wetting system and method for rigid gas permeable contact lenses and other contact lenses |
US5162469A (en) | 1991-08-05 | 1992-11-10 | Optical Research Inc. | Composition for rigid gas permeable contact lenses |
US5236637A (en) | 1984-08-08 | 1993-08-17 | 3D Systems, Inc. | Method of and apparatus for production of three dimensional objects by stereolithography |
US5308685A (en) | 1992-01-13 | 1994-05-03 | E. I. Du Pont De Nemours And Company | Protective coating for machine-readable markings |
US5310571A (en) | 1992-09-01 | 1994-05-10 | Allergan, Inc. | Chemical treatment to improve oxygen permeability through and protein deposition on hydrophilic (soft) and rigid gas permeable (RGP) contact lenses |
US5349394A (en) | 1990-04-17 | 1994-09-20 | Pilkington Diffractive Lenses Limited | Rigid gas permeable lenses |
US5374500A (en) | 1993-04-02 | 1994-12-20 | International Business Machines Corporation | Positive photoresist composition containing photoacid generator and use thereof |
US5691541A (en) | 1996-05-14 | 1997-11-25 | The Regents Of The University Of California | Maskless, reticle-free, lithography |
US5836313A (en) | 1993-02-08 | 1998-11-17 | Massachusetts Institute Of Technology | Methods for making composite hydrogels for corneal prostheses |
US6238852B1 (en) | 1999-01-04 | 2001-05-29 | Anvik Corporation | Maskless lithography system and method with doubled throughput |
US6248509B1 (en) | 1999-07-27 | 2001-06-19 | James E. Sanford | Maskless photoresist exposure system using mems devices |
US6312134B1 (en) | 1996-07-25 | 2001-11-06 | Anvik Corporation | Seamless, maskless lithography system using spatial light modulator |
US6602975B2 (en) | 1992-02-28 | 2003-08-05 | Board Of Regents, The University Of Texas System | Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers |
US6692891B2 (en) | 2000-06-30 | 2004-02-17 | Hynix Semiconductor Inc | Photoresist composition containing photo radical generator with photoacid generator |
US6932930B2 (en) | 2003-03-10 | 2005-08-23 | Synecor, Llc | Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same |
US6939940B2 (en) | 2000-09-13 | 2005-09-06 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers |
US7097302B2 (en) | 2004-07-03 | 2006-08-29 | Mcgregor Scott D | Rigid gas permeable contact lens with 3-part curvature |
US7344731B2 (en) | 2005-06-06 | 2008-03-18 | Bausch & Lomb Incorporated | Rigid gas permeable lens material |
US7435495B2 (en) | 2004-01-23 | 2008-10-14 | The University Of North Carolina At Chapel Hill | Liquid materials for use in electrochemical cells |
US7438846B2 (en) | 2001-04-23 | 2008-10-21 | Envisiontec Gmbh | Apparatus and method for the non-destructive separation of hardened material layers from a flat construction plane |
US7534844B2 (en) | 2005-02-16 | 2009-05-19 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University | Monomer substituted photoacid generator of fluoroalkylsulfon and a polymer thereof |
US7550246B2 (en) | 2003-09-29 | 2009-06-23 | Japan Science And Technology Agency | Photoacid generator |
US7556490B2 (en) | 2004-07-30 | 2009-07-07 | Board Of Regents, The University Of Texas System | Multi-material stereolithography |
US7649029B2 (en) | 2004-05-17 | 2010-01-19 | 3M Innovative Properties Company | Dental compositions containing nanozirconia fillers |
US7651683B2 (en) | 2003-10-29 | 2010-01-26 | Gentis, Inc. | Polymerizable emulsions for tissue engineering |
US7767728B2 (en) | 2006-02-13 | 2010-08-03 | 3M Innovative Properties Company | Curable compositions for optical articles |
US7824839B2 (en) | 2006-04-21 | 2010-11-02 | Cornell Research Foundation, Inc. | Photoacid generator compounds and compositions |
US7862176B2 (en) | 2007-11-24 | 2011-01-04 | Truform Optics | Method of fitting rigid gas-permeable contact lenses from high resolution imaging |
US7892474B2 (en) | 2006-11-15 | 2011-02-22 | Envisiontec Gmbh | Continuous generative process for producing a three-dimensional object |
US7902526B2 (en) | 2008-04-28 | 2011-03-08 | Massachusetts Institute Of Technology | 3D two-photon lithographic microfabrication system |
US7935476B2 (en) | 2006-08-14 | 2011-05-03 | Gary Ganghui Teng | Negative laser sensitive lithographic printing plate having specific photosensitive composition |
US8119214B2 (en) | 2004-09-01 | 2012-02-21 | Appleton Papers Inc | Encapsulated cure systems |
US8158728B2 (en) | 2004-02-13 | 2012-04-17 | The University Of North Carolina At Chapel Hill | Methods and materials for fabricating microfluidic devices |
US8232043B2 (en) | 2005-11-18 | 2012-07-31 | Agfa Graphics Nv | Method of making a lithographic printing plate |
US8263129B2 (en) | 2003-12-19 | 2012-09-11 | The University Of North Carolina At Chapel Hill | Methods for fabricating isolated micro-and nano-structures using soft or imprint lithography |
US8268446B2 (en) | 2003-09-23 | 2012-09-18 | The University Of North Carolina At Chapel Hill | Photocurable perfluoropolyethers for use as novel materials in microfluidic devices |
WO2012129968A1 (en) | 2011-03-30 | 2012-10-04 | 上海吉岳化工科技有限公司 | Gel pad and method for producing same by ultraviolet light curing |
US20130292862A1 (en) | 2012-05-03 | 2013-11-07 | B9Creations, LLC | Solid Image Apparatus With Improved Part Separation From The Image Plate |
US20130295212A1 (en) | 2012-04-27 | 2013-11-07 | University Of Southern California | Digital mask-image-projection-based additive manufacturing that applies shearing force to detach each added layer |
Family Cites Families (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1010157A (en) | 1910-12-15 | 1911-11-28 | Bliss E W Co | Feed mechanism for perforating-machines. |
FR2232331B1 (en) | 1973-06-06 | 1978-03-24 | Guerin A Ets | |
US4575330A (en) | 1984-08-08 | 1986-03-11 | Uvp, Inc. | Apparatus for production of three-dimensional objects by stereolithography |
US5571471A (en) | 1984-08-08 | 1996-11-05 | 3D Systems, Inc. | Method of production of three-dimensional objects by stereolithography |
US5263130A (en) | 1986-06-03 | 1993-11-16 | Cubital Ltd. | Three dimensional modelling apparatus |
IL84936A (en) | 1987-12-23 | 1997-02-18 | Cubital Ltd | Three-dimensional modelling apparatus |
DE3750709T2 (en) | 1986-06-03 | 1995-03-16 | Cubital Ltd | Device for developing three-dimensional models. |
US4801477A (en) | 1987-09-29 | 1989-01-31 | Fudim Efrem V | Method and apparatus for production of three-dimensional objects by photosolidification |
US5776409A (en) | 1988-04-18 | 1998-07-07 | 3D Systems, Inc. | Thermal stereolithograp using slice techniques |
US5711911A (en) | 1988-04-18 | 1998-01-27 | 3D Systems, Inc. | Method of and apparatus for making a three-dimensional object by stereolithography |
US5772947A (en) | 1988-04-18 | 1998-06-30 | 3D Systems Inc | Stereolithographic curl reduction |
US5256340A (en) | 1988-04-18 | 1993-10-26 | 3D Systems, Inc. | Method of making a three-dimensional object by stereolithography |
US5059359A (en) | 1988-04-18 | 1991-10-22 | 3 D Systems, Inc. | Methods and apparatus for production of three-dimensional objects by stereolithography |
US5523193A (en) | 1988-05-31 | 1996-06-04 | Texas Instruments Incorporated | Method and apparatus for patterning and imaging member |
US5258146A (en) | 1988-09-26 | 1993-11-02 | 3D Systems, Inc. | Method of and apparatus for measuring and controlling fluid level in stereolithography |
US5171490A (en) | 1988-11-29 | 1992-12-15 | Fudim Efrem V | Method and apparatus for production of three-dimensional objects by irradiation of photopolymers |
US5143663A (en) | 1989-06-12 | 1992-09-01 | 3D Systems, Inc. | Stereolithography method and apparatus |
JPH03244528A (en) | 1989-09-28 | 1991-10-31 | Three D Syst Inc | Device and method forming substantially flat and solid face for processing planograph |
US5143817A (en) | 1989-12-22 | 1992-09-01 | E. I. Du Pont De Nemours And Company | Solid imaging system |
US5158858A (en) | 1990-07-05 | 1992-10-27 | E. I. Du Pont De Nemours And Company | Solid imaging system using differential tension elastomeric film |
US5192559A (en) | 1990-09-27 | 1993-03-09 | 3D Systems, Inc. | Apparatus for building three-dimensional objects with sheets |
US5198159A (en) | 1990-10-09 | 1993-03-30 | Matsushita Electric Works, Ltd. | Process of fabricating three-dimensional objects from a light curable resin liquid |
US5122441A (en) | 1990-10-29 | 1992-06-16 | E. I. Du Pont De Nemours And Company | Method for fabricating an integral three-dimensional object from layers of a photoformable composition |
US5597520A (en) | 1990-10-30 | 1997-01-28 | Smalley; Dennis R. | Simultaneous multiple layer curing in stereolithography |
US5271882A (en) | 1990-11-09 | 1993-12-21 | Tokai Kogyo Kabushiki Kaisha | Blow molding process with sheet interposed between mold and product being molded |
DE4125534A1 (en) | 1991-08-01 | 1993-02-18 | Eos Electro Optical Syst | Three=dimensional layering - in which transparent sealed cover is used over bath to allow radiation through but exclude ambient atmos. |
US5247180A (en) | 1991-12-30 | 1993-09-21 | Texas Instruments Incorporated | Stereolithographic apparatus and method of use |
DE9319405U1 (en) | 1993-12-17 | 1994-03-31 | Forschungszentrum Informatik an der Universität Karlsruhe, 76131 Karlsruhe | Device for producing a three-dimensional object (model) according to the principle of photofixing |
JPH07299874A (en) * | 1994-04-28 | 1995-11-14 | Hikari Syst Kenkyusho:Kk | Optical molding device using high na optical system |
JPH08150662A (en) * | 1994-11-30 | 1996-06-11 | Olympus Optical Co Ltd | Optical shaping apparatus and method using powder mixed photo-setting resin |
JPH08192469A (en) | 1995-01-20 | 1996-07-30 | Ushio Inc | Photo-setting resin curing method |
JP3246848B2 (en) | 1995-02-22 | 2002-01-15 | アピックヤマダ株式会社 | General-purpose gate position resin molding apparatus and resin molding method |
JPH10249943A (en) | 1997-03-10 | 1998-09-22 | Hitachi Ltd | Apparatus for stereo lithography |
US5945058A (en) | 1997-05-13 | 1999-08-31 | 3D Systems, Inc. | Method and apparatus for identifying surface features associated with selected lamina of a three-dimensional object being stereolithographically formed |
US6503231B1 (en) | 1998-06-10 | 2003-01-07 | Georgia Tech Research Corporation | Microneedle device for transport of molecules across tissue |
US6391245B1 (en) | 1999-04-13 | 2002-05-21 | Eom Technologies, L.L.C. | Method for creating three-dimensional objects by cross-sectional lithography |
US6611707B1 (en) | 1999-06-04 | 2003-08-26 | Georgia Tech Research Corporation | Microneedle drug delivery device |
JP3971541B2 (en) | 1999-12-24 | 2007-09-05 | 富士通株式会社 | Semiconductor device manufacturing method and split mold used in this method |
US6547552B1 (en) | 2000-02-08 | 2003-04-15 | Efrem V. Fudim | Fabrication of three-dimensional objects by irradiation of radiation-curable materials |
DE10015408A1 (en) | 2000-03-28 | 2001-10-11 | Fraunhofer Ges Forschung | Producing components from light-curable materials, e.g. for rapid prototyping, involves continuous material supply and support platform movement |
DE10018987A1 (en) | 2000-04-17 | 2001-10-31 | Envision Technologies Gmbh | Device and method for producing three-dimensional objects |
JP3433158B2 (en) * | 2000-05-31 | 2003-08-04 | 三洋電機株式会社 | Stereolithography |
US20010048183A1 (en) | 2000-05-31 | 2001-12-06 | Sanyo Electric Co., Ltd | Optical shaping apparatus and optical shaping process |
US7318718B2 (en) | 2000-06-06 | 2008-01-15 | Teijin Seiki Co., Ltd. | Stereolithographic apparatus and method for manufacturing three-dimensional object |
US6500378B1 (en) | 2000-07-13 | 2002-12-31 | Eom Technologies, L.L.C. | Method and apparatus for creating three-dimensional objects by cross-sectional lithography |
US6439869B1 (en) | 2000-08-16 | 2002-08-27 | Micron Technology, Inc. | Apparatus for molding semiconductor components |
DE20106887U1 (en) | 2001-04-20 | 2001-09-06 | Envision Technologies GmbH, 45768 Marl | Device for producing a three-dimensional object |
US7095484B1 (en) | 2001-06-27 | 2006-08-22 | University Of South Florida | Method and apparatus for maskless photolithography |
SE0102736D0 (en) | 2001-08-14 | 2001-08-14 | Patrick Griss | Side opened out-of-plane microneedles for microfluidic transdermal interfacing and fabrication process of side opened out-of-plane microneedles |
US7023432B2 (en) | 2001-09-24 | 2006-04-04 | Geomagic, Inc. | Methods, apparatus and computer program products that reconstruct surfaces from data point sets |
US20030173713A1 (en) | 2001-12-10 | 2003-09-18 | Wen-Chiang Huang | Maskless stereo lithography method and apparatus for freeform fabrication of 3-D objects |
US20060066006A1 (en) | 2002-07-19 | 2006-03-30 | Haraldsson K T | Fabrication of 3d photopolymeric devices |
US7093756B2 (en) | 2002-10-31 | 2006-08-22 | Sap Aktiengesellschaft | Distributed production control |
DE102004022606A1 (en) | 2004-05-07 | 2005-12-15 | Envisiontec Gmbh | Method for producing a three-dimensional object with improved separation of hardened material layers from a building level |
EP1894705B1 (en) | 2004-05-10 | 2010-08-25 | Envisiontec GmbH | Method and device for creating a three dimensional object with resolution enhancement by means of pixel shift |
DE102004022961B4 (en) | 2004-05-10 | 2008-11-20 | Envisiontec Gmbh | Method for producing a three-dimensional object with resolution improvement by means of pixel shift |
EP1810206B1 (en) | 2004-10-19 | 2014-07-09 | Rolls-Royce Corporation | Method associated with anisotropic shrink in sintered ceramic items |
US20080213461A1 (en) | 2005-06-17 | 2008-09-04 | Georgia Tech Research Corporation | Coated Microstructures and Methods of Manufacture Thereof |
US7709544B2 (en) | 2005-10-25 | 2010-05-04 | Massachusetts Institute Of Technology | Microstructure synthesis by flow lithography and polymerization |
DE102006019963B4 (en) | 2006-04-28 | 2023-12-07 | Envisiontec Gmbh | Device and method for producing a three-dimensional object by layer-by-layer solidifying a material that can be solidified under the influence of electromagnetic radiation using mask exposure |
DE102006019964C5 (en) | 2006-04-28 | 2021-08-26 | Envisiontec Gmbh | Device and method for producing a three-dimensional object by means of mask exposure |
JP2007299874A (en) | 2006-04-28 | 2007-11-15 | Matsushita Electric Ind Co Ltd | Thermally conductive substrate, and electrically conductive substrate |
US7636610B2 (en) | 2006-07-19 | 2009-12-22 | Envisiontec Gmbh | Method and device for producing a three-dimensional object, and computer and data carrier useful therefor |
DE102006040642A1 (en) | 2006-08-30 | 2008-03-13 | Robert Bosch Gmbh | Microneedles for placement in the skin for transdermal application of pharmaceuticals |
WO2008053481A1 (en) | 2006-11-01 | 2008-05-08 | Svip 6 Llc | Microneedle arrays |
WO2008055533A1 (en) | 2006-11-10 | 2008-05-15 | Envisiontec Gmbh | Continuous, generative method and apparatus for the production of a three-dimensional object |
JP2008150662A (en) | 2006-12-18 | 2008-07-03 | Seiko Epson Corp | Mask vapor deposition method, method for producing organic electroluminescent equipment, and mask vapor deposition device |
JP5073284B2 (en) | 2006-12-22 | 2012-11-14 | ローランドディー.ジー.株式会社 | 3D modeling equipment |
US8003039B2 (en) | 2007-01-17 | 2011-08-23 | 3D Systems, Inc. | Method for tilting solid image build platform for reducing air entrainment and for build release |
EP2011631B1 (en) | 2007-07-04 | 2012-04-18 | Envisiontec GmbH | Process and device for producing a three-dimensional object |
EP2052693B2 (en) | 2007-10-26 | 2021-02-17 | Envisiontec GmbH | Process and freeform fabrication system for producing a three-dimensional object |
AU2008327083B2 (en) | 2007-11-21 | 2014-01-16 | Bioserentach Co., Ltd. | Preparation for application to body surface and preparation holding sheet for application to body surface |
US8286236B2 (en) | 2007-12-21 | 2012-10-09 | The Invention Science Fund I, Llc | Manufacturing control system |
JP5234319B2 (en) | 2008-01-21 | 2013-07-10 | ソニー株式会社 | Stereolithography apparatus and stereolithography method |
US8246888B2 (en) | 2008-10-17 | 2012-08-21 | Stratasys, Inc. | Support material for digital manufacturing systems |
WO2010077097A2 (en) | 2008-12-30 | 2010-07-08 | 주식회사 캐리마 | High-speed stacking stereolithography device |
JP2010249943A (en) | 2009-04-13 | 2010-11-04 | Olympus Imaging Corp | System for display screen hood composed of strap and camera, and strap and camera applied to the system |
US20100323301A1 (en) | 2009-06-23 | 2010-12-23 | Huey-Ru Tang Lee | Method and apparatus for making three-dimensional parts |
IT1395683B1 (en) | 2009-08-03 | 2012-10-16 | Dws Srl | PERFECT STEREOLITOGRAPHIC MACHINE |
US8372330B2 (en) | 2009-10-19 | 2013-02-12 | Global Filtration Systems | Resin solidification substrate and assembly |
US8834423B2 (en) | 2009-10-23 | 2014-09-16 | University of Pittsburgh—of the Commonwealth System of Higher Education | Dissolvable microneedle arrays for transdermal delivery to human skin |
IT1397457B1 (en) | 2010-01-12 | 2013-01-10 | Dws Srl | MODELING PLATE FOR A STEREOLITHOGRAPHIC MACHINE, A STEREOLITHOGRAPHIC MACHINE USING SUCH A MODELING AND TOOL PLATE FOR CLEANING SUCH A MODELING PLATE. |
KR101006414B1 (en) | 2010-03-10 | 2011-01-06 | 주식회사 캐리마 | Rapid layer upon layer form stereolithography |
EP2605805B1 (en) | 2010-08-20 | 2019-01-09 | Case Western Reserve University | Continuous digital light processing additive manufacturing of implants |
ES2934103T3 (en) | 2011-01-31 | 2023-02-16 | Global Filtration Systems Dba Gulf Filtration Systems Inc | Apparatus for manufacturing three-dimensional objects from multiple solidifiable materials |
KR20120119250A (en) | 2011-04-21 | 2012-10-31 | (주)마이티시스템 | Tiered-structure embedded microneedle |
EP2744640B1 (en) | 2011-08-20 | 2022-08-17 | Zydex Pty Ltd | Apparatus and method for making an object |
US8708906B1 (en) | 2011-09-07 | 2014-04-29 | Allen J. Orehek | Method for the prevention of dementia and Alzheimer's disease |
SG11201405876YA (en) | 2012-03-22 | 2014-10-30 | Univ Colorado Regents | Liquid deposition photolithography |
TWI554289B (en) | 2012-06-29 | 2016-10-21 | 國立成功大學 | Embeddable patch for transdermal drug delivery and method of manufacturing the same |
JP2015522342A (en) | 2012-06-29 | 2015-08-06 | イーエルシー マネージメント エルエルシー | Microneedles containing one or more cosmetic ingredients |
US20140085620A1 (en) | 2012-09-24 | 2014-03-27 | Maxim Lobovsky | 3d printer with self-leveling platform |
CN103029301B (en) | 2012-12-31 | 2016-02-10 | 刘彦君 | A kind of light solidifying quick forming device and method thereof |
CN203254661U (en) | 2012-12-31 | 2013-10-30 | 刘彦君 | Light-curing rapid forming apparatus |
WO2014126837A2 (en) | 2013-02-12 | 2014-08-21 | Eipi Systems, Inc. | Continuous liquid interphase printing |
US9498920B2 (en) | 2013-02-12 | 2016-11-22 | Carbon3D, Inc. | Method and apparatus for three-dimensional fabrication |
JP6456353B2 (en) | 2013-03-12 | 2019-01-23 | オレンジ・メーカー・エルエルシー | 3D printing using spiral stacking |
JP2015027738A (en) | 2013-07-30 | 2015-02-12 | ローランドディー.ジー.株式会社 | Three-dimensional contouring apparatus |
DE202013103446U1 (en) | 2013-07-31 | 2013-08-26 | Tangible Engineering Gmbh | Compact apparatus for producing a three-dimensional object by solidifying a photo-hardening material |
US9360757B2 (en) | 2013-08-14 | 2016-06-07 | Carbon3D, Inc. | Continuous liquid interphase printing |
CN103895231A (en) | 2014-04-09 | 2014-07-02 | 刘彦君 | Light-cured rapid forming device and method |
US9782934B2 (en) | 2014-05-13 | 2017-10-10 | Autodesk, Inc. | 3D print adhesion reduction during cure process |
US10073424B2 (en) | 2014-05-13 | 2018-09-11 | Autodesk, Inc. | Intelligent 3D printing through optimization of 3D print parameters |
AU2016215409B2 (en) | 2015-02-05 | 2020-10-01 | Carbon, Inc. | Method of additive manufacturing by intermittent exposure |
US11000992B2 (en) | 2015-02-20 | 2021-05-11 | Carbon, Inc. | Methods and apparatus for continuous liquid interface printing with electrochemically supported dead zone |
EP3304201A4 (en) | 2015-04-30 | 2019-06-26 | Castanon, Diego | Improved stereolithography system |
KR20180044231A (en) | 2015-05-19 | 2018-05-02 | 로렌스 칼슨 | Stable basic electrolyte materials and solvent materials comprising them |
US10384439B2 (en) | 2015-11-06 | 2019-08-20 | Stratasys, Inc. | Continuous liquid interface production system with viscosity pump |
-
2014
- 2014-02-10 WO PCT/US2014/015506 patent/WO2014126837A2/en active Application Filing
- 2014-02-10 CA CA2898103A patent/CA2898103A1/en not_active Abandoned
- 2014-02-10 EP EP14706223.6A patent/EP2956822B1/en active Active
- 2014-02-10 ES ES14706224T patent/ES2588485T5/en active Active
- 2014-02-10 JP JP2015557154A patent/JP6356700B2/en active Active
- 2014-02-10 MY MYPI2015702305A patent/MY201381A/en unknown
- 2014-02-10 PL PL14706224T patent/PL2956823T5/en unknown
- 2014-02-10 TW TW107128194A patent/TW201842404A/en unknown
- 2014-02-10 KR KR1020157022106A patent/KR20150117275A/en not_active Application Discontinuation
- 2014-02-10 CN CN201480008529.6A patent/CN105452958B/en active Active
- 2014-02-10 BR BR112015017976A patent/BR112015017976A2/en not_active IP Right Cessation
- 2014-02-10 CN CN201480008364.2A patent/CN105122135B/en active Active
- 2014-02-10 CA CA2898106A patent/CA2898106A1/en not_active Abandoned
- 2014-02-10 DK DK14706224.4T patent/DK2956823T4/en active
- 2014-02-10 TW TW103104226A patent/TWI655498B/en active
- 2014-02-10 MX MX2015010376A patent/MX352989B/en active IP Right Grant
- 2014-02-10 MX MX2015010375A patent/MX352425B/en active IP Right Grant
- 2014-02-10 BR BR112015018056A patent/BR112015018056A2/en not_active IP Right Cessation
- 2014-02-10 JP JP2015557153A patent/JP6522519B2/en active Active
- 2014-02-10 EP EP16171600.6A patent/EP3187938A1/en not_active Withdrawn
- 2014-02-10 EP EP16171599.0A patent/EP3203318A1/en not_active Withdrawn
- 2014-02-10 EP EP14706224.4A patent/EP2956823B2/en active Active
- 2014-02-10 KR KR1020157022103A patent/KR20150117273A/en not_active Application Discontinuation
- 2014-02-10 WO PCT/US2014/015497 patent/WO2014126834A2/en active Application Filing
- 2014-12-12 US US14/569,202 patent/US9205601B2/en active Active
- 2014-12-15 US US14/570,591 patent/US9216546B2/en active Active
- 2014-12-16 US US14/572,128 patent/US9211678B2/en active Active
-
2015
- 2015-11-10 US US14/937,304 patent/US10144181B2/en active Active
- 2015-11-10 US US14/937,237 patent/US10150253B2/en active Active
- 2015-11-10 US US14/937,151 patent/US10093064B2/en active Active
-
2016
- 2016-03-23 HK HK16103409.1A patent/HK1215477A1/en unknown
- 2016-03-23 HK HK16103408.2A patent/HK1215476A1/en unknown
- 2016-08-16 HR HRP20161016TT patent/HRP20161016T4/en unknown
-
2018
- 2018-08-20 US US16/105,378 patent/US10596755B2/en active Active
- 2018-11-29 US US16/204,523 patent/US10618215B2/en active Active
- 2018-11-29 US US16/204,570 patent/US20200139617A1/en not_active Abandoned
-
2019
- 2019-01-15 JP JP2019004485A patent/JP6700443B2/en active Active
-
2020
- 2020-03-19 US US16/824,077 patent/US11235516B2/en active Active
Patent Citations (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE31406E (en) | 1972-06-16 | 1983-10-04 | Syntex (U.S.A.) Inc. | Oxygen permeable contact lens composition, methods and article of manufacture |
US4337130A (en) | 1980-06-25 | 1982-06-29 | E. I. Du Pont De Nemours And Company | Photocurable polyurethane film coatings |
US5236637A (en) | 1984-08-08 | 1993-08-17 | 3D Systems, Inc. | Method of and apparatus for production of three dimensional objects by stereolithography |
US4845089A (en) | 1986-05-16 | 1989-07-04 | Bayer Aktiengesellschaft | Arthropodicidal and fungicidal methods of using 1-aralkylpyrazoles |
US5051115A (en) | 1986-05-21 | 1991-09-24 | Linde Aktiengesellschaft | Pressure swing adsorption process |
US5141665A (en) | 1987-03-31 | 1992-08-25 | Sherman Laboratories, Inc. | Cleaning, conditioning, storing and wetting system and method for rigid gas permeable contact lenses and other contact lenses |
US4923906A (en) | 1987-04-30 | 1990-05-08 | Ciba-Geigy Corporation | Rigid, gas-permeable polysiloxane contact lenses |
US5070170A (en) | 1988-02-26 | 1991-12-03 | Ciba-Geigy Corporation | Wettable, rigid gas permeable, substantially non-swellable contact lens containing block copolymer polysiloxane-polyoxyalkylene backbone units, and use thereof |
US5017461A (en) | 1988-03-15 | 1991-05-21 | Fujitsu Limited | Formation of a negative resist pattern utilize water-soluble polymeric material and photoacid generator |
US5349394A (en) | 1990-04-17 | 1994-09-20 | Pilkington Diffractive Lenses Limited | Rigid gas permeable lenses |
US5162469A (en) | 1991-08-05 | 1992-11-10 | Optical Research Inc. | Composition for rigid gas permeable contact lenses |
US5308685A (en) | 1992-01-13 | 1994-05-03 | E. I. Du Pont De Nemours And Company | Protective coating for machine-readable markings |
US6602975B2 (en) | 1992-02-28 | 2003-08-05 | Board Of Regents, The University Of Texas System | Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers |
US5310571A (en) | 1992-09-01 | 1994-05-10 | Allergan, Inc. | Chemical treatment to improve oxygen permeability through and protein deposition on hydrophilic (soft) and rigid gas permeable (RGP) contact lenses |
US5836313A (en) | 1993-02-08 | 1998-11-17 | Massachusetts Institute Of Technology | Methods for making composite hydrogels for corneal prostheses |
US5374500A (en) | 1993-04-02 | 1994-12-20 | International Business Machines Corporation | Positive photoresist composition containing photoacid generator and use thereof |
US5691541A (en) | 1996-05-14 | 1997-11-25 | The Regents Of The University Of California | Maskless, reticle-free, lithography |
US6312134B1 (en) | 1996-07-25 | 2001-11-06 | Anvik Corporation | Seamless, maskless lithography system using spatial light modulator |
US6238852B1 (en) | 1999-01-04 | 2001-05-29 | Anvik Corporation | Maskless lithography system and method with doubled throughput |
US6248509B1 (en) | 1999-07-27 | 2001-06-19 | James E. Sanford | Maskless photoresist exposure system using mems devices |
US6692891B2 (en) | 2000-06-30 | 2004-02-17 | Hynix Semiconductor Inc | Photoresist composition containing photo radical generator with photoacid generator |
US6939940B2 (en) | 2000-09-13 | 2005-09-06 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers |
US7507784B2 (en) | 2000-09-13 | 2009-03-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers |
US7438846B2 (en) | 2001-04-23 | 2008-10-21 | Envisiontec Gmbh | Apparatus and method for the non-destructive separation of hardened material layers from a flat construction plane |
US6932930B2 (en) | 2003-03-10 | 2005-08-23 | Synecor, Llc | Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same |
US7919162B2 (en) | 2003-03-10 | 2011-04-05 | Synecor, Llc | Intraluminal prostheses having polymeric material with selectively modified crystallinity and methods of making same |
US8268446B2 (en) | 2003-09-23 | 2012-09-18 | The University Of North Carolina At Chapel Hill | Photocurable perfluoropolyethers for use as novel materials in microfluidic devices |
US7550246B2 (en) | 2003-09-29 | 2009-06-23 | Japan Science And Technology Agency | Photoacid generator |
US7651683B2 (en) | 2003-10-29 | 2010-01-26 | Gentis, Inc. | Polymerizable emulsions for tissue engineering |
US7651682B2 (en) | 2003-10-29 | 2010-01-26 | Gentis, Inc. | Polymerizable emulsions for tissue engineering |
US8263129B2 (en) | 2003-12-19 | 2012-09-11 | The University Of North Carolina At Chapel Hill | Methods for fabricating isolated micro-and nano-structures using soft or imprint lithography |
US7435495B2 (en) | 2004-01-23 | 2008-10-14 | The University Of North Carolina At Chapel Hill | Liquid materials for use in electrochemical cells |
US8158728B2 (en) | 2004-02-13 | 2012-04-17 | The University Of North Carolina At Chapel Hill | Methods and materials for fabricating microfluidic devices |
US7649029B2 (en) | 2004-05-17 | 2010-01-19 | 3M Innovative Properties Company | Dental compositions containing nanozirconia fillers |
US7097302B2 (en) | 2004-07-03 | 2006-08-29 | Mcgregor Scott D | Rigid gas permeable contact lens with 3-part curvature |
US7556490B2 (en) | 2004-07-30 | 2009-07-07 | Board Of Regents, The University Of Texas System | Multi-material stereolithography |
US8119214B2 (en) | 2004-09-01 | 2012-02-21 | Appleton Papers Inc | Encapsulated cure systems |
US7534844B2 (en) | 2005-02-16 | 2009-05-19 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University | Monomer substituted photoacid generator of fluoroalkylsulfon and a polymer thereof |
US7344731B2 (en) | 2005-06-06 | 2008-03-18 | Bausch & Lomb Incorporated | Rigid gas permeable lens material |
US8232043B2 (en) | 2005-11-18 | 2012-07-31 | Agfa Graphics Nv | Method of making a lithographic printing plate |
US7767728B2 (en) | 2006-02-13 | 2010-08-03 | 3M Innovative Properties Company | Curable compositions for optical articles |
US7824839B2 (en) | 2006-04-21 | 2010-11-02 | Cornell Research Foundation, Inc. | Photoacid generator compounds and compositions |
US7935476B2 (en) | 2006-08-14 | 2011-05-03 | Gary Ganghui Teng | Negative laser sensitive lithographic printing plate having specific photosensitive composition |
US7892474B2 (en) | 2006-11-15 | 2011-02-22 | Envisiontec Gmbh | Continuous generative process for producing a three-dimensional object |
US7862176B2 (en) | 2007-11-24 | 2011-01-04 | Truform Optics | Method of fitting rigid gas-permeable contact lenses from high resolution imaging |
US7902526B2 (en) | 2008-04-28 | 2011-03-08 | Massachusetts Institute Of Technology | 3D two-photon lithographic microfabrication system |
WO2012129968A1 (en) | 2011-03-30 | 2012-10-04 | 上海吉岳化工科技有限公司 | Gel pad and method for producing same by ultraviolet light curing |
CN102715751A (en) | 2011-03-30 | 2012-10-10 | 朱雪兵 | Gel pad and UV-curving production method thereof |
JP2012210408A (en) | 2011-03-30 | 2012-11-01 | New Concept Developments Group Ltd | Gel mat and method for producing same by ultraviolet light curing |
US20130295212A1 (en) | 2012-04-27 | 2013-11-07 | University Of Southern California | Digital mask-image-projection-based additive manufacturing that applies shearing force to detach each added layer |
US20130292862A1 (en) | 2012-05-03 | 2013-11-07 | B9Creations, LLC | Solid Image Apparatus With Improved Part Separation From The Image Plate |
Non-Patent Citations (1)
Title |
---|
Y. PAN ET AL., J MANUFACTURING SCI. AND ENG., vol. 134, October 2012 (2012-10-01), pages 051011 - 1 |
Cited By (126)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2929682A4 (en) * | 2013-04-30 | 2016-10-19 | Hewlett Packard Development Co | Three-dimensional object construction |
US10899868B2 (en) | 2014-06-23 | 2021-01-26 | Carbon, Inc. | Methods for producing footwear with materials having multiple mechanisms of hardening |
US9676963B2 (en) | 2014-06-23 | 2017-06-13 | Carbon, Inc. | Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening |
US10240066B2 (en) | 2014-06-23 | 2019-03-26 | Carbon, Inc. | Methods of producing polyurea three-dimensional objects from materials having multiple mechanisms of hardening |
US11358342B2 (en) | 2014-06-23 | 2022-06-14 | Carbon, Inc. | Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening |
US11312084B2 (en) | 2014-06-23 | 2022-04-26 | Carbon, Inc. | Methods for producing helmet inserts with materials having multiple mechanisms of hardening |
US9982164B2 (en) | 2014-06-23 | 2018-05-29 | Carbon, Inc. | Polyurea resins having multiple mechanisms of hardening for use in producing three-dimensional objects |
US11850803B2 (en) | 2014-06-23 | 2023-12-26 | Carbon, Inc. | Methods for producing three-dimensional objects with apparatus having feed channels |
US11299579B2 (en) | 2014-06-23 | 2022-04-12 | Carbon, Inc. | Water cure methods for producing three-dimensional objects from materials having multiple mechanisms of hardening |
US9453142B2 (en) | 2014-06-23 | 2016-09-27 | Carbon3D, Inc. | Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects |
US10155882B2 (en) | 2014-06-23 | 2018-12-18 | Carbon, Inc. | Methods of producing EPOXY three-dimensional objects from materials having multiple mechanisms of hardening |
US11440266B2 (en) | 2014-06-23 | 2022-09-13 | Carbon, Inc. | Methods of producing epoxy three-dimensional objects from materials having multiple mechanisms of hardening |
US10647879B2 (en) | 2014-06-23 | 2020-05-12 | Carbon, Inc. | Methods for producing a dental mold, dental implant or dental aligner from materials having multiple mechanisms of hardening |
US10647880B2 (en) | 2014-06-23 | 2020-05-12 | Carbon, Inc. | Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening |
US9598606B2 (en) | 2014-06-23 | 2017-03-21 | Carbon, Inc. | Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening |
US11707893B2 (en) | 2014-06-23 | 2023-07-25 | Carbon, Inc. | Methods for producing three-dimensional objects with apparatus having feed channels |
US10968307B2 (en) | 2014-06-23 | 2021-04-06 | Carbon, Inc. | Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening |
US20170355132A1 (en) * | 2014-12-31 | 2017-12-14 | Carbon, Inc. | Three-dimensional printing of objects with breathing orifices |
WO2016109550A1 (en) | 2014-12-31 | 2016-07-07 | Carbon3D, Inc. | Three-dimensional printing of objects with breathing orifices |
WO2016112090A1 (en) * | 2015-01-07 | 2016-07-14 | Carbon3D, Inc. | Microfluidic devices and methods of making the same |
WO2016115236A1 (en) * | 2015-01-13 | 2016-07-21 | Carbon3D, Inc. | Three-dimensional printing with build plates having surface topologies for increasing permeability and related methods |
US11518096B2 (en) * | 2015-01-13 | 2022-12-06 | Carbon, Inc. | Three-dimensional printing with build plates having surface topologies for increasing permeability and related methods |
US10543638B2 (en) | 2015-01-22 | 2020-01-28 | The University Of Greenwich | Stent |
WO2016123506A1 (en) * | 2015-01-30 | 2016-08-04 | Carbon3D, Inc. | Build plates for continuous liquid interface printing having permeable sheets and related methods, systems and devices |
WO2016123499A1 (en) * | 2015-01-30 | 2016-08-04 | Carbon3D, Inc. | Build plates for continuous liquid interface printing having permeable base and adhesive for increasing permeability and related methods, systems and devices |
US11020898B2 (en) | 2015-01-30 | 2021-06-01 | Carbon, Inc. | Build plates for continuous liquid interface printing having permeable base and adhesive for increasing permeability and related methods, systems and devices |
US20180133959A1 (en) * | 2015-01-30 | 2018-05-17 | Carbon, Inc. | Build plates for continuous liquid interface printing having permeable sheets and related methods, systems and devices |
US11000992B2 (en) | 2015-02-20 | 2021-05-11 | Carbon, Inc. | Methods and apparatus for continuous liquid interface printing with electrochemically supported dead zone |
US20180009163A1 (en) * | 2015-02-20 | 2018-01-11 | Carbon, Inc. | Methods and apparatus for continuous liquid interface printing with electrochemically supported dead zone |
WO2016133759A1 (en) | 2015-02-20 | 2016-08-25 | Carbon3D, Inc. | Methods and apparatus for continuous liquid interface printing with electrochemically supported dead zone |
US20180015662A1 (en) * | 2015-03-05 | 2018-01-18 | Carbon, Inc. | Fabrication of three dimensional objects with variable slice thickness |
WO2016140888A1 (en) * | 2015-03-05 | 2016-09-09 | Carbon3D, Inc. | Fabrication of three dimensional objects with variable slice thickness |
WO2016145050A1 (en) * | 2015-03-10 | 2016-09-15 | Carbon3D, Inc. | Microfluidic devices having flexible features and methods of making the same |
WO2016145182A1 (en) * | 2015-03-12 | 2016-09-15 | Carbon3D, Inc. | Additive manufacturing using polymerization initiators or inhibitors having controlled migration |
US10626310B2 (en) | 2015-07-31 | 2020-04-21 | Afinitica Technologies, S.L. | Fast light curing cyanoacrylate compositions |
WO2017021785A1 (en) | 2015-07-31 | 2017-02-09 | Afinitica Technologies, S.L. | Fast light curing cyanoacrylate compositions |
EP3124509A1 (en) | 2015-07-31 | 2017-02-01 | Afinitica Technologies, S. L. | Fast light curing cyanoacrylate compositions |
WO2017040890A1 (en) * | 2015-09-04 | 2017-03-09 | Carbon3D, Inc. | Methods of making three dimensional objects from dual cure resins with supported second cure |
JP2018528886A (en) * | 2015-09-25 | 2018-10-04 | カーボン,インコーポレイテッド | Build plate assembly for continuous liquid interphase printing with lighting panel and associated method, system and device |
US11220051B2 (en) | 2015-09-25 | 2022-01-11 | Carbon, Inc. | Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices |
WO2017053783A1 (en) * | 2015-09-25 | 2017-03-30 | Carbon3D, Inc. | Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices |
US12064919B2 (en) | 2015-10-15 | 2024-08-20 | Saint-Gobain Ceramics & Plastics, Inc. | Method for forming a three dimensional body from a mixture with a high content of solid particles |
EP3711928A3 (en) * | 2015-11-12 | 2020-10-28 | Klaus Stadlmann | Stereolithography device with cartridge device |
US12103225B2 (en) | 2015-11-12 | 2024-10-01 | Klaus Stadlmann | Stereolithography device comprising cartridge device |
WO2017079774A3 (en) * | 2015-11-12 | 2017-08-03 | Klaus Stadlmann | Stereolithography apparatus comprising a cartridge device |
CN112277313B (en) * | 2015-11-12 | 2022-02-25 | 克劳斯·斯塔德曼 | Stereolithography apparatus with drum mechanism |
RU2723240C2 (en) * | 2015-11-12 | 2020-06-09 | Клаус ШТАДЛЬМАНН | Stereolithography device with cartridge accessory |
CN108602249A (en) * | 2015-11-12 | 2018-09-28 | 克劳斯·斯塔德曼 | Stereolithography apparatus with drum mechanism |
US11173699B2 (en) | 2015-11-12 | 2021-11-16 | Klaus Stadlmann | Stereolithography apparatus comprising a cartridge device |
CN108602249B (en) * | 2015-11-12 | 2021-03-02 | 克劳斯·斯塔德曼 | Stereolithography apparatus and drum mechanism |
CN112277313A (en) * | 2015-11-12 | 2021-01-29 | 克劳斯·斯塔德曼 | Stereolithography apparatus with drum mechanism |
US11993015B2 (en) | 2015-12-03 | 2024-05-28 | Carbon, Inc. | Build plate assemblies for continuous liquid interphase printing having lighting panels and related methods, systems and devices |
US11577453B2 (en) | 2015-12-16 | 2023-02-14 | 3M Innovative Properties Company | Additive manufacturing system and a method of additive manufacturing |
JP2018537319A (en) * | 2015-12-16 | 2018-12-20 | スリーエム イノベイティブ プロパティズ カンパニー | Additive manufacturing system and additive manufacturing method |
US11267196B2 (en) | 2015-12-17 | 2022-03-08 | Klaus Stadlmann | Method for producing a three-dimensional object |
US10471656B2 (en) | 2015-12-22 | 2019-11-12 | Carbon, Inc. | Wash liquids for use in additive manufacturing with dual cure resins |
US10343331B2 (en) | 2015-12-22 | 2019-07-09 | Carbon, Inc. | Wash liquids for use in additive manufacturing with dual cure resins |
JP7411742B2 (en) | 2015-12-22 | 2024-01-11 | カーボン,インコーポレイテッド | Dual precursor resin system for additive manufacturing using dual cured resins |
JP2022169640A (en) * | 2015-12-22 | 2022-11-09 | カーボン,インコーポレイテッド | Dual precursor resin systems for additive manufacturing with dual cure resins |
US10792858B2 (en) | 2015-12-22 | 2020-10-06 | Carbon, Inc. | Wash liquids for use in additive manufacturing with dual cure resin |
EP3448664A4 (en) * | 2016-04-29 | 2019-11-20 | Saint-Gobain Performance Plastics Corporation | Radiation curable system and method for making a radiation curable article |
CN109070444A (en) * | 2016-04-29 | 2018-12-21 | 美国圣戈班性能塑料公司 | Radiation-curable system and the method for preparing radiation-curable product |
CN109070444B (en) * | 2016-04-29 | 2021-11-19 | 美国圣戈班性能塑料公司 | Radiation curable system and method of making a radiation curable article |
US10500786B2 (en) | 2016-06-22 | 2019-12-10 | Carbon, Inc. | Dual cure resins containing microwave absorbing materials and methods of using the same |
US10949902B2 (en) | 2016-07-18 | 2021-03-16 | Mastercard Asia/Pacific Pte. Ltd. | System and method for authentication and making payment when carrying out on-demand manufacturing |
WO2018044249A1 (en) * | 2016-09-01 | 2018-03-08 | Олег Юрьевич ХАЛИП | Device and method for forming a three-dimensional object from a liquid polymer |
RU2722902C1 (en) * | 2016-09-01 | 2020-06-04 | Олег Юрьевич Халип | Method of forming three-dimensional article from liquid photopolymer using wave actuation of actinic radiation and device for implementation thereof |
US11518087B2 (en) | 2016-09-12 | 2022-12-06 | University Of Washington | Vat photopolymerization additive manufacturing of multi-material parts |
WO2018143904A1 (en) * | 2017-02-02 | 2018-08-09 | Олег Юрьевич ХАЛИП | Method for producing a functional element-containing three-dimensional object from a liquid photopolymer cured by actinic radiation, and device for the implementation thereof |
US11801371B2 (en) | 2017-03-01 | 2023-10-31 | National University Of Singapore | Microneedle device |
US10316213B1 (en) | 2017-05-01 | 2019-06-11 | Formlabs, Inc. | Dual-cure resins and related methods |
US10793745B2 (en) | 2017-05-01 | 2020-10-06 | Formlabs, Inc. | Dual-cure resins and related methods |
US10953597B2 (en) | 2017-07-21 | 2021-03-23 | Saint-Gobain Performance Plastics Corporation | Method of forming a three-dimensional body |
US12059840B2 (en) | 2017-07-21 | 2024-08-13 | Saint-Gobain Performance Plastics Corporation | Method of forming a three-dimensional body |
EP3681705A4 (en) * | 2017-09-14 | 2021-06-02 | General Electric Company | Method and system for forming fiber-reinforced polymer components |
WO2019055184A1 (en) | 2017-09-14 | 2019-03-21 | General Electric Company | Method and system for forming fiber-reinforced polymer components |
US11104061B2 (en) | 2018-05-14 | 2021-08-31 | Carbon, Inc. | Stereolithography apparatus with individually addressable light source arrays |
WO2019222094A1 (en) * | 2018-05-14 | 2019-11-21 | Carbon, Inc. | Stereolithography apparatus with individually addressable light source arrays |
WO2020001835A1 (en) | 2018-06-26 | 2020-01-02 | Arkema France | Curable compositions based on multistage polymers |
EP3814117A4 (en) * | 2018-06-29 | 2022-09-21 | Intrepid Automation | Closed loop print process adjustment based on real time feedback |
US11820073B2 (en) | 2018-06-29 | 2023-11-21 | Intrepid Automation | Closed loop print process adjustment based on real time feedback |
WO2020015905A1 (en) | 2018-07-18 | 2020-01-23 | Arkema France | Articles prepared using curable compositions based on polymerizable ionic species |
US11603424B2 (en) | 2018-09-11 | 2023-03-14 | Arkema France | Crosslinkable compositions having a low viscosity for coatings and materials having a high refractive index and having a high heat deflection temperature |
WO2020053512A1 (en) | 2018-09-11 | 2020-03-19 | Arkema France | Crosslinkable compositions having a low viscosity for coatings and materials with a high refractive index and a high heat deflection temperature |
FR3085682A1 (en) | 2018-09-11 | 2020-03-13 | Arkema France | CROSSLINKABLE COMPOSITIONS HAVING LOW VISCOSITY FOR COATINGS AND MATERIALS WITH HIGH REFRACTION INDEX AND WITH HIGH THERMAL DEFLECTION TEMPERATURE |
WO2020141348A1 (en) | 2018-12-31 | 2020-07-09 | Arkema France | (meth)acrylate-functionalized branched polyalpha-olefins |
WO2020216851A1 (en) | 2019-04-26 | 2020-10-29 | Arkema France | Cross-linkable compositions having a low viscosity for coatings and materials with a high refractive index and a high heat deflection temperature |
FR3095443A1 (en) | 2019-04-26 | 2020-10-30 | Arkema France | Crosslinkable compositions having low viscosity for coatings and materials with high refractive index and high thermal deflection temperature |
WO2021009565A1 (en) | 2019-07-17 | 2021-01-21 | Arkema France | (meth)acrylate-functionalized oligomers and methods of preparing and using such oligomers |
WO2021009382A1 (en) | 2019-07-18 | 2021-01-21 | Bostik Sa | 3d-printing methods and systems |
EP3766669A1 (en) | 2019-07-18 | 2021-01-20 | Bostik Sa | 3d-printing methods and systems |
WO2021019305A1 (en) | 2019-07-31 | 2021-02-04 | Arkema France | Method of making glycerol carbonate (meth)acrylate and curable compositions based thereon |
WO2021079187A1 (en) | 2019-10-23 | 2021-04-29 | Arkema France | Multi(meth)acrylate-functionalized oligomers and methods of preparing and using such oligomers |
WO2021136721A1 (en) | 2019-12-31 | 2021-07-08 | Arkema France | Crosslinkable composition comprising a mono(meth)acrylate having a 1,3 dioxolane ring |
FR3105791A1 (en) | 2019-12-31 | 2021-07-02 | Arkema France | Crosslinkable composition comprising a mono (meth) acrylate having a 1,3-dioxolane ring |
WO2021176021A1 (en) | 2020-03-04 | 2021-09-10 | Lambson Limited | Photoinitiator emulsions |
EP3875552A1 (en) | 2020-03-04 | 2021-09-08 | Lambson Limited | Photoinitiator emulsions |
EP3876034A1 (en) | 2020-03-04 | 2021-09-08 | Arkema France | Curable composition comprising a photoinitiator |
WO2021176023A1 (en) | 2020-03-04 | 2021-09-10 | Arkema France | Curable composition comprising a photoinitiator |
WO2021198397A1 (en) | 2020-04-01 | 2021-10-07 | Arkema France | Elastic materials prepared from curable liquid compositions |
WO2021198398A1 (en) | 2020-04-01 | 2021-10-07 | Arkema France | Elastic materials prepared from energy-curable liquid compositions |
WO2021234703A1 (en) * | 2020-05-19 | 2021-11-25 | Technion Research & Development Foundation Limited | System and methods for fabrication of cured articles |
FR3111637A1 (en) | 2020-06-18 | 2021-12-24 | Arkema France | COMPOSITIONS AND METHODS FOR FORMING 3D PRINTABLE MATERIALS CAPABLE OF LOW DIELECTRIC LOSS |
WO2021255161A1 (en) | 2020-06-18 | 2021-12-23 | Arkema France | Compositions and processes of forming 3d printable materials capable of low dielectric loss |
WO2022003075A1 (en) | 2020-06-30 | 2022-01-06 | Arkema France | (meth)acryloyl-functionalized amide-containing oligomers |
FR3111902A1 (en) | 2020-06-30 | 2021-12-31 | Arkema France | OLIGOMERS CONTAINING AN AMID FUNCTIONALIZED BY (METH) ACRYLATE |
WO2022136142A1 (en) | 2020-12-21 | 2022-06-30 | Arkema France | Actinic radiation-curable compositions containing polyamide |
FR3118051A1 (en) | 2020-12-21 | 2022-06-24 | Arkema France | ACTINIC RADIATION CURABLE COMPOSITIONS CONTAINING A POLYAMIDE |
WO2022157102A1 (en) | 2021-01-19 | 2022-07-28 | Bostik Sa | 3d-printing methods and systems |
EP4029675A1 (en) | 2021-01-19 | 2022-07-20 | Bostik SA | 3d-printing methods and systems |
WO2022157274A1 (en) | 2021-01-20 | 2022-07-28 | Arkema France | Polymerizable thioxanthone photoinitiators |
FR3118965A1 (en) | 2021-01-20 | 2022-07-22 | Arkema France | POLYMERIZABLE THIOXANTHONE |
EP4053115A1 (en) | 2021-03-01 | 2022-09-07 | Arkema France | Liquid type-ii photoinitiators |
WO2022184292A1 (en) | 2021-03-01 | 2022-09-09 | Arkema France | Type-ii photoinitiators |
EP4151410A1 (en) | 2021-09-17 | 2023-03-22 | Arkema France | Photosensitive composition |
WO2023041579A1 (en) | 2021-09-17 | 2023-03-23 | Arkema France | Photosensitive composition |
EP4177282A1 (en) | 2021-11-04 | 2023-05-10 | Arkema France | Polyglycerin-based urethane (meth)acrylate |
WO2023078591A1 (en) | 2021-11-04 | 2023-05-11 | Arkema France | Polyglycerin-based urethane (meth)acrylate |
FR3131585A1 (en) | 2021-12-30 | 2023-07-07 | Arkema France | POLYMERIC CYCLOALIPHATIC EPOXIDES |
WO2023126369A1 (en) | 2021-12-30 | 2023-07-06 | Arkema France | Polymeric cycloaliphatic epoxides |
WO2023126223A1 (en) | 2021-12-31 | 2023-07-06 | Arkema France | Polyhydroxylated photoinitiators |
EP4206183A1 (en) | 2021-12-31 | 2023-07-05 | Arkema France | Polyhydroxylated photoinitiators |
WO2023180075A1 (en) | 2022-03-25 | 2023-09-28 | Arkema France | Polymerizable photoinitiators |
EP4249518A1 (en) | 2022-03-25 | 2023-09-27 | Arkema France | Polymerizable photoinitiators |
EP4393720A1 (en) | 2022-12-30 | 2024-07-03 | Arkema France | Phosphine oxide-based photoinitiators |
WO2024141190A1 (en) | 2022-12-30 | 2024-07-04 | Arkema France | Phosphine oxide-based photoinitiators |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11235516B2 (en) | Method and apparatus for three-dimensional fabrication | |
US20230373156A9 (en) | Method and apparatus for three-dimensional fabrication | |
US11141910B2 (en) | Continuous liquid interphase printing | |
US10232605B2 (en) | Method for three-dimensional fabrication with gas injection through carrier | |
US11786711B2 (en) | Continuous liquid interphase printing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480008529.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14706223 Country of ref document: EP Kind code of ref document: A2 |
|
ENP | Entry into the national phase |
Ref document number: 2898103 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2015557153 Country of ref document: JP Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015018056 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2015/010375 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20157022106 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014706223 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 112015018056 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150728 |