WO2014118934A1 - Film measuring device and film measuring method for battery electrode plate - Google Patents
Film measuring device and film measuring method for battery electrode plate Download PDFInfo
- Publication number
- WO2014118934A1 WO2014118934A1 PCT/JP2013/052174 JP2013052174W WO2014118934A1 WO 2014118934 A1 WO2014118934 A1 WO 2014118934A1 JP 2013052174 W JP2013052174 W JP 2013052174W WO 2014118934 A1 WO2014118934 A1 WO 2014118934A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- image
- pixel
- density
- target
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0616—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
- G01B11/0625—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a measuring device for determining at least one of the thickness, density and chromaticity value of a film formed on a substrate surface of a battery electrode plate by using the reflected luminance of light irradiated on the battery electrode plate. And a measuring method.
- a functional material is applied to both sides of the base material and then pressed to roll as a positive electrode or negative electrode sheet (battery electrode plate) Rolled up into a shape.
- the positive electrode base material is an aluminum thin film
- the negative electrode base material is a copper thin film.
- the thickness of the thin film is 10 to 25 micrometers. Since the functional material contains various particulate materials and carbon particles or coated carbon, the color is close to black.
- the functional material is mixed with water or an oily solvent, discharged from the slit die coat, and applied to one surface of the substrate. Thereafter, the functional material is fixed to the base material in a drying furnace, and the positive electrode or the negative electrode sheet is wound up as a roll. The sheet is rewound and applied to the other surface of the substrate in the same coating line, and then fixed in a drying furnace. Or you may perform the coating of both surfaces of a base material simultaneously.
- the thickness of the coating film on one side is 50 to 300 micrometers.
- the density of the film that changes due to press working cannot be measured with radiation. Since the measurement by radiation is essentially a measurement of the weight of the functional material, a change in density cannot be detected.
- Patent Document 1 a method of measuring the film thickness of the film on the base material of the battery electrode plate by measuring the reflection of light irradiated on the object has been developed (for example, Patent Document 1).
- the functional material of the positive electrode and the negative electrode is almost black as described above, it is difficult to accurately measure the film thickness based on the color gradation. Furthermore, the density of the film cannot be measured by the method of Patent Document 1.
- a measuring apparatus and a measuring method capable of accurately measuring at least one of the thickness, density and chromaticity value of the film on the substrate of the battery electrode plate have not been developed.
- At least one of the thickness, density, and chromaticity value of the film formed on the substrate surface of the battery electrode plate is accurately measured by using the reflection luminance of the light irradiated on the battery electrode plate.
- a measuring apparatus includes an optical system including a light source, an imaging unit, and a data processing unit, and irradiates a target which is a battery electrode plate made of a base material having a film on the surface by the optical system.
- the measurement apparatus is configured to acquire an image of the irradiated object by the imaging unit and process the image of the object by the data processing unit.
- the data processing unit obtains a reflection luminance obtained by removing reflection inside the optical system for each pixel of the target image from the data of the target image and the data of the quasi-black body image measured in advance. It is configured to obtain at least one of the thickness of the film, the density of the film, and the chromaticity value of the film using a reflection luminance obtained by removing reflection inside the optical system for the pixel.
- the data processing unit performs reflection inside the optical system for each pixel of the target image from the target image data and the pre-measured quasi-blackbody image data. Since the removed reflection luminance is obtained and the reflection luminance obtained by removing the reflection inside the optical system for each pixel is used, even when the reflection luminance of the target is low, the film thickness, the film density, and At least one of the chromaticity values of the film can be determined.
- the data processing unit is configured to obtain the density of the film using a standard deviation of the reflected luminance for each pixel. Has been.
- the film density can be obtained from the reflection luminance by utilizing the fact that the standard deviation of the reflection luminance has a predetermined relationship with the film density.
- the data processing unit obtains the thickness of the film by using an average value of reflection luminance for each pixel. It is configured.
- the film thickness can be obtained from the reflection luminance by utilizing the fact that the average value of the reflection luminance and the film thickness have a predetermined relationship.
- the imaging unit acquires the target color image
- the data processing unit reflects each pixel of the target color image.
- the luminance is used to determine the chromaticity value of the object.
- the optical system is configured to irradiate parallel light perpendicular to the surface of the object.
- the imaging unit acquires a two-dimensional image of the target.
- the reflected luminance of each pixel of the target two-dimensional image is used, a large amount of data is obtained and the measurement accuracy is improved.
- a measuring apparatus includes an optical system including a light source, an imaging unit, and a data processing unit, and irradiates a target which is a battery electrode plate made of a base material having a film on the surface by the optical system.
- the measurement apparatus is configured to acquire an image of the irradiated object by the imaging unit and process the image of the object by the data processing unit.
- the data processing unit is configured to obtain a reflection luminance for each pixel of the target image, and obtain a density of the film using a standard deviation of the reflection luminance for each pixel.
- the measuring apparatus of this aspect it is possible to obtain the film density from the reflection luminance by utilizing the fact that the standard deviation of the reflection luminance has a predetermined relationship with the film density.
- the measurement method is a measurement method for measuring at least one of the thickness of the film, the density of the film, and the chromaticity value of the film provided on the surface of the substrate of the battery electrode plate.
- the measurement method includes the steps of: irradiating light to a target that is a battery electrode plate; acquiring the image of the target; and data of the target image and data of a quasi-blackbody for each pixel. Determining the reflection luminance of the object from which the reflection inside the optical system is removed, and using the reflection luminance of the object from which the reflection inside the optical system is removed for each pixel, the thickness of the film, Determining at least one of density and chromaticity value of the film.
- the reflection luminance of the object from which the reflection inside the optical system is removed for each pixel is obtained from the data of the object image and the data of the quasi-blackbody, Since at least one of the thickness of the film, the density of the film, and the chromaticity value of the film is obtained using the reflected brightness of the object from which the reflection inside the optical system is removed, the reflected brightness of the object Even if it is low, at least one of the film thickness, the film density, and the film chromaticity value can be obtained with high accuracy.
- the density of the film is obtained using the standard deviation of the reflection luminance for each pixel.
- the film density can be obtained from the reflection luminance by utilizing the fact that the standard deviation of the reflection luminance has a predetermined relationship with the film density.
- the thickness of the film is obtained using the average value of the reflection luminance for each pixel.
- the film thickness can be obtained from the reflection luminance by utilizing the fact that the average value of the reflection luminance and the film thickness have a predetermined relationship.
- a reflectance is obtained from reflected luminance using a calibration plate, and the thickness of the film, the density of the film, and the like are calculated using the reflectance. At least one of the chromaticity values of the film is determined.
- traceable measurement is possible by using a calibration plate.
- FIG. 1 It is a figure which shows the structure of the measuring apparatus by one Embodiment of this invention. It is a figure which shows the image data which subtracted the data of the image of a cylindrical black body cavity from the image data of the film
- no. 4, no. 5 is a diagram showing measured values of average reflectances Rv (R%), Rv (G%), and Rv (B%) of six types of samples after pressing.
- Rv (R%), Rv (G%), and Rv (B%) are measured values of average reflectances after pressing.
- no. 3 is a diagram showing measured values of standard deviation values ⁇ ⁇ Rv (R%), ⁇ ⁇ Rv (G%), and ⁇ ⁇ Rv (B%) of six types of samples after pressing.
- FIG. 1 is a diagram showing a configuration of a measuring apparatus according to an embodiment of the present invention.
- the measuring apparatus 100 includes an optical system 101, an imaging unit 103, a data processing unit 105, and a data storage unit 107.
- the optical system 101 includes a light source 1011, a beam splitter 1013, and a telecentric lens 1015.
- the light source 1011 may be a light emitting diode (LED) light source having emission luminance in a wavelength range of 430 nanometers to 700 nanometers.
- LED light emitting diode
- the imaging unit 103 may be a color video camera.
- the color video camera signal is divided into R, G, and B color signals, and numerical values from 0 to 4095 are stored as (R, G, B) values corresponding to each pixel by a 12-bit AD converter.
- (R, G, B) data is obtained for each point of (X, Y) as one screen data.
- the measurement visual field is about 10 ⁇ 12 mm, and the RGB information of a small spot of about 9 ⁇ m ⁇ 9 ⁇ m per pixel can be obtained.
- About 60,000 points of RGB data can be obtained when the final measurement area of the measurement field of view is about 2 mm x 3 mm.
- the light from the light source 1011 is reflected by the beam splitter 1013, it is irradiated as parallel light substantially perpendicular to the surface of the object 201 via the telecentric lens 1015.
- the light reflected by the surface of the target 201 passes through the telecentric lens 1015 and the beam splitter 1013 and reaches the imaging unit 103.
- the telecentric lens 1015 forms parallel light substantially perpendicular to the surface of the target 201 and sends only the light reflected in a direction substantially perpendicular to the surface of the target 201 to the imaging unit 103.
- a two-dimensional image of the target 201 irradiated by the light source 1011 is collected by the imaging unit 103.
- the collected two-dimensional image data is sent to the data processing unit 105 for processing. Data necessary for the processing is stored in the data storage unit 107 and used by the data processing unit 105 as necessary.
- the film contains a lot of carbon and the color thereof is almost black. This means that the reflection luminance of the film when irradiated with light is extremely low. Therefore, it is not easy to detect the change in appearance.
- the inventors have conceived that it is necessary to remove the reflection luminance inside the optical system from the image data of the film in order to accurately acquire the extremely low reflection luminance of the film.
- the reflection brightness inside the optical system can be obtained from an image of a cylindrical black body cavity as a quasi-black body. Therefore, by subtracting the image data of the cylindrical black body cavity from the data of the film image, the reflection luminance inside the optical system can be removed from the image data of the film.
- FIGS. 2 to 7 are diagrams showing image data obtained by subtracting image data of a cylindrical black body cavity from image data of films of various thicknesses and densities.
- large diameter no. 3, no. 4, no. 5.
- Six types of samples after pressing were prepared. “Before pressing” is a sample that has not been pressurized after coating the membrane. “Large diameter” is a sample pressed with a cylinder having a diameter of 50 mm after coating a film. “No. 3”, “No. 4”, and “No. 5” are samples that were pressurized by changing the pressure with a cylinder having a diameter of 30 mm after coating the film. The applied pressure was increased in the order of “No. 3”, “No. 4”, and “No. 5”. “After pressing” is a sample after being pressed in the process. The pressurizing force of the five pressed samples is from “small diameter” to “large diameter”, “No. 3”, “No. 4”, “No. 5”, and “after pressing”.
- FIG. 2 is an image in which the brightness of the “before press” sample is 16 times.
- FIG. 3 is an image in which the brightness of the “large diameter” sample is 16 times.
- FIG. 4 is an image in which the luminance of the sample of “No. 3” is increased 16 times.
- FIG. 5 is an image in which the brightness of the sample of “No. 4” is increased 16 times.
- FIG. 6 is an image in which the brightness of the sample of “No. 5” is increased 16 times.
- FIG. 7 is an image in which the brightness of the “after press” sample is 8 times.
- the inventors have determined the reflection luminance of the film from the image obtained by subtracting the image data of the cylindrical black body cavity from the image data of the film. Furthermore, in order to ensure traceability, the reflectance was determined from the reflected luminance.
- the imaging unit 103 collects an image of reflected light reflected in a direction substantially perpendicular to the surface of the object 201 of parallel light irradiated in a direction substantially perpendicular to the surface of the object 201.
- FIG. 8 is a flowchart for explaining a method of measuring the reflectance of the film by the measuring apparatus 100.
- step S010 in FIG. 8 the brightness of the light source is set.
- a white LED (light emitting diode) light source was used as the light source. Specifically, it is model MCEC-CW8 (maximum rated current 0.15A, for high power coaxial lighting for applications MML) manufactured by Moritex Corporation.
- step S020 in FIG. 8 the shutter time of the camera is set.
- a sample that is considered to have the highest reflectance is selected from the samples to be measured, and a shutter time at which the R, G, and B values of the video signal of the camera 103 are not saturated is selected.
- the shutter time during sample measurement is 1 millisecond.
- the measurement apparatus 100 measures the reflection luminance of the low-reflectance calibration plate (SSL) having a mirror surface.
- a shutter time during which the values of R, G, and B are not saturated when SSL is measured is selected and measured.
- the shutter time during SSL measurement is set to 0.357 msec.
- the reflected luminance of SSL is described in column A of Table 1 described later.
- FIG. 10 is a diagram showing the reflectance distribution of the low reflectance calibration plate (SSL).
- the horizontal axis in FIG. 10 indicates the wavelength, and the vertical axis in FIG. 10 indicates the reflectance.
- FIG. 10 shows a spectral sensitivity curve obtained by multiplying the spectrum of the LED light source and the sensitivity distribution of R, G, and B.
- step S040 of FIG. 8 the measurement apparatus 100 measures the reflection luminance of the cylindrical black body cavity as a quasi-black body.
- the shutter time was 0.357 msec.
- the measured reflection luminance of the cylindrical black body cavity corresponds to the reflection luminance inside the optical system 101 including the light source 101.
- the reflection luminance of the cylindrical black body cavity is described in column B of Table 1.
- step S050 in FIG. 8 the luminance value with a reflectance of 1% when the shutter time is 1 millisecond is calculated.
- Table 1 is a table for explaining a calculation procedure of luminance values (R, G, and B values) with a reflectance of 1% when the shutter time is 1 millisecond.
- the numerical values in the columns labeled R, G, and B in Table 1 represent the values (counts) of R, G, and B.
- the column A in Table 1 shows the reflected luminance (R, G, B) of SSL when the shutter time is 0.357 msec.
- Column B in Table 1 shows the reflection luminance (R, G, B) of the cylindrical black body cavity when the shutter time is 0.357 msec.
- the column C in Table 1 shows the reflectivity (R, G, B) of SSL expressed in%.
- (AB) / C represents the value obtained by subtracting the value in the B column from the value in the A column and dividing by the value in the C column for each of R, G, and B, and setting the shutter time to 0.357 msec. This is a value of (R, G, B) corresponding to 1% reflectance in the case.
- D is a numerical value obtained by multiplying (AB) / C by 1 / 0.357 for each of R, G, and B, and corresponds to 1% reflectance when the shutter time is 1 msec (R , G, B). In this way, the luminance value (R, G, B values) with a reflectance of 1% when the shutter time is 1 msec can be calculated.
- step S060 of FIG. 8 the reflectance of the target is obtained.
- the reflection time (R, G, B) of the cylindrical black body cavity is measured by the measuring apparatus 100 with a shutter time of 1 millisecond.
- the reflection time (R, G, B) of the sample after pressing the positive electrode is measured by the measuring apparatus 100 with a shutter time of 1 millisecond.
- Table 2 is a table
- the numerical values in the columns labeled R, G, and B in Table 1 represent the values (counts) of R, G, and B.
- Column E in Table 2 shows the reflection luminance (R, G, B) of the cylindrical black body cavity when the shutter time is 1 millisecond.
- the column F in Table 2 shows the reflection luminance (R, G, B) of the sample after pressing the positive electrode when the shutter time is 1 millisecond.
- FE is a numerical value obtained by subtracting the value in the E column from the value in the F column for each of R, G, and B, and corresponds to the true reflected luminance of the sample after pressing the positive electrode.
- H is a value obtained by dividing the value of FE by the value of D in Table 1 for each of R, G, and B.
- Table 3 is a table
- FIG. 9 is a flowchart for explaining a method of obtaining the reflectance and the standard deviation of the reflectance from the measurement data. Each step in FIG. 9 is performed by the data processing unit 105.
- step S1010 of FIG. 9 the two-dimensional data (D1) of the measured value of the reflection luminance (R, G, B) of the cylindrical black body cavity is stored in the data storage unit 107.
- D1 is data corresponding to 201 pixels ⁇ 301 pixels at the center of the image.
- step S1020 of FIG. 9 the two-dimensional data (D2) of the measured value of the reflection luminance (R, G, B) of the sample after pressing the positive electrode is stored in the data storage unit 107.
- D2 is data corresponding to 201 pixels ⁇ 301 pixels at the center of the image.
- step S1030 in FIG. 9 the two-dimensional difference data (D2-D1) is stored in the data storage unit 107.
- D1-D2 is data corresponding to 201 pixels ⁇ 301 pixels at the center of the image.
- step S1040 of FIG. 9 the average values R, G, B and standard deviation values ⁇ ⁇ R, ⁇ ⁇ G, ⁇ ⁇ B of the two-dimensional difference data (D2-D1) are calculated.
- step S1050 of FIG. 9 the average reflectance Rv (R%), Rv (G%), Rv (B%) of each pixel and the standard of the reflectance of each pixel are obtained using the 1% reflectance already obtained. Deviation values ⁇ ⁇ Rv (R%), ⁇ ⁇ Rv (G%), and ⁇ ⁇ Rv (B%) are calculated.
- step S1060 in FIG. 9 chromaticity values are obtained from the average reflectances Rv (R%), Rv (G%), and Rv (B%). The chromaticity value will be described later.
- Fig. 11 shows the positive electrode before pressing, large diameter, no. 3, no. 4, no. 5 is a diagram showing measured values of average reflectances Rv (R%), Rv (G%), and Rv (B%) of six types of samples after pressing.
- the measured values of average reflectance are from small to large, before pressing, large diameter, No. 3, no. 4, no. 5.
- “inner”, “middle”, and “outer” indicate measured values at three locations in the radial direction of each sample.
- FIG. 12 shows the positive electrode before pressing, large diameter, No. 3, no. 4, no. 5 is a diagram showing measured values of standard deviation values ⁇ ⁇ Rv (R%), ⁇ ⁇ Rv (G%), and ⁇ ⁇ Rv (B%) of six types of samples after pressing.
- the measurement values of the standard deviation values are from small to large, before pressing, large diameter, No. 3, no. 4, no. 5. The order after pressing.
- Fig. 13 shows the positive electrode before pressing, large diameter, No. 3, no. 4, no. 5. It is a figure which shows the measured value of the film thickness and density by the conventional measuring method of six types of samples after a press.
- the vertical axis in FIG. 13 indicates the film thickness (left scale) and the film density (right scale).
- the film thickness was determined by measuring the thickness of the sample consisting of the substrate and the film with a precision contact dial gauge and subtracting the known thickness of the substrate.
- the density was calculated by measuring the weight of a circular sample having a diameter of 100 mm with an electronic balance, subtracting the known weight of the substrate to obtain the weight of the film, and using the measured value of the film thickness.
- FIG. 14 is a diagram showing the relationship between the film thickness and the reflectance of the positive electrode sample.
- the horizontal axis in FIG. 14 indicates the logarithmic value of the reflectance, and the vertical axis indicates the film thickness.
- FIG. 14 was prepared from the data of the measured values of average reflectance shown in FIG. 11 and the data of the measured values of film thickness by the conventional measuring method shown in FIG.
- the light irradiated on the film surface is reflected on the film surface, enters the film, and reaches the substrate (aluminum in the case of the positive electrode) while being irregularly reflected inside the gap. It is reflected, returns to the film surface, and is scattered and emitted from the film surface into the air.
- the amount of reflected light returning from within the film is absorbed by the film in the same manner as radiation, and therefore decreases as the film thickness increases. Therefore, the relationship between the film thickness and the reflectance as shown in FIG. 14 is obtained.
- a first-order approximation of the film thickness d is obtained by LOG (Rv-R), LOG (Rv-G), and LOG (Rv-B).
- the degree of correlation R 2 varies depending on R, G, and B, but a high value of 0.92 or higher was obtained. It can be expected that the degree of correlation further improves by increasing the number of data.
- FIG. 15 is a diagram showing the relationship between the film density and the standard deviation of the reflectance for the positive electrode sample.
- the horizontal axis of FIG. 15 indicates the standard deviation of the reflectance, and the vertical axis indicates the density of the film.
- FIG. 15 was created from the data of the measured value of the standard deviation of the reflectance shown in FIG. 12 and the data of the measured value of the film density by the conventional measuring method shown in FIG.
- FIG. 16 shows the negative electrode before pressing, large diameter, no. 3, no. 4, no. 5 is a diagram showing measured values of average reflectances Rv (R%), Rv (G%), and Rv (B%) of six types of samples after pressing.
- the measured values of average reflectance are from small to large, before pressing, large diameter, No. 3, no. 4, no. 5. The order after pressing.
- the average reflectance before pressing is about 0.01%, and the reflectance after pressing is 0.15% to 0.18%.
- FIG. 16 which shows the measured value of the average reflectance of the negative electrode sample, the average reflectance before pressing is about 0.019%, and the reflectance after pressing is about 0.09%.
- the change in average reflectance before and after pressing is much larger in the case of the positive electrode. This is presumably because the material of the positive electrode substrate and the film is different from the material of the negative electrode substrate and the film.
- FIG. 17 shows the negative electrode before pressing, large diameter, No. 3, no. 4, no. 5 is a diagram showing measured values of standard deviation values ⁇ ⁇ Rv (R%), ⁇ ⁇ Rv (G%), and ⁇ ⁇ Rv (B%) of six types of samples after pressing.
- the measurement values of the standard deviation values are from small to large, before pressing, large diameter, No. 3, no. 4, no. 5. The order after pressing.
- FIG. 18 shows the negative electrode before pressing, large diameter, No. 3, no. 4, no. 5. It is a figure which shows the measured value of the film thickness and density by the conventional measuring method of six types of samples after a press.
- the vertical axis in FIG. 18 indicates the film thickness (left scale) and the film density (right scale). The method for measuring the film thickness and the film density is the same as in FIG.
- FIG. 19 is a diagram showing the relationship between the film thickness and the reflectance of the negative electrode sample.
- the horizontal axis in FIG. 19 indicates the logarithmic value of the reflectance, and the vertical axis indicates the film thickness.
- FIG. 19 was created from the data of the measured values of average reflectance shown in FIG. 16 and the data of the measured values of film thickness by the conventional measuring method shown in FIG.
- the correlation degree R 2 is about 0.92 in the film thickness is thicker regions, 0.97 in thin region. It can be expected that the degree of correlation further improves by increasing the number of data.
- FIG. 20 is a diagram showing the relationship between the film density and the standard deviation of the reflectance for the negative electrode sample.
- the horizontal axis of FIG. 20 indicates the standard deviation of the reflectance, and the vertical axis indicates the density of the film.
- FIG. 20 was created from the measurement data of the standard deviation of reflectance shown in FIG. 17 and the measurement data of the film density by the conventional measurement method shown in FIG.
- the film thickness d can be measured using a first-order approximation of the logarithmic value of the average reflectance Rv (R, G, B) for both positive and negative electrodes.
- the density ⁇ can be measured by the linear expression of the standard deviation value ⁇ ⁇ Rv (R, G, B) of the reflectance for both positive and negative electrodes.
- the measuring apparatus and measuring method of the present invention it is necessary to create a calibration curve for each battery material and film thickness region, but the film thickness and film density on both surfaces are measured without being affected by the opposite surface. be able to.
- a film is applied on both sides, it is impossible to measure the film thickness on one side and measure the density of the film with a conventional measurement method including radiation measurement.
- What is important in the manufacturing process of the positive electrode and the negative electrode is to uniformly apply the battery material particle group to the base material and obtain a uniform porosity after drying. If the battery material component is non-uniform in the width direction or the porosity distribution is non-uniform, variations in battery performance will occur. Further, if there is a difference in the liquid concentration distribution at the time of ejection, a difference in the porosity distribution occurs, and similarly, the performance as a battery varies.
- the battery material is almost black, but the color will change if the concentration ratio of the constituent materials changes.
- FIG. 11 and FIG. 16 are observed, the magnitude relationship among the average reflectances Rv (R%), Rv (G%), and Rv (B%) varies from sample to sample. Therefore, it was decided to measure the color value of the sample.
- the chromaticity value display of RGB reflectance is obtained from the following formula did.
- chromaticity values are defined from the RGB signals.
- Grb the color video color.
- r Rv (R) / ⁇ ⁇ Rv (R, G, B) (8)
- g Rv (G) / ⁇ ⁇ Rv (R, G, B) (9)
- b Rv (B) / ⁇ ⁇ Rv (R, G, B) (10)
- the chromaticity value is (r, b) because it is more intuitive to see if the long wavelength side (R) and short wavelength side (B) increase in the reflectance distribution of the black material. This is because it was judged. Similar to the Yxy method, the chromaticity value may be (r, g).
- FIG. 21 shows the negative electrode before pressing, large diameter, no. 3, no. 4, no. 5 is a diagram showing chromaticity display after pressing.
- the horizontal axis of FIG. 21 indicates r obtained from Expression (8), and the vertical axis indicates b obtained from Expression (10).
- FIG. 21 also shows the average value for each state.
- the average value of chromaticity values is as follows: before pressing ⁇ large diameter pressing ⁇ No. 3 pressing ⁇ No. 4 pressing ⁇ No. 5 pressing ⁇ after pressing and (r, b) coordinates. The center point moves without intersecting.
- FIG. 22 is a diagram showing chromaticity value coordinates before and after pressing of the positive electrode sample and the negative electrode sample.
- the horizontal axis of FIG. 22 represents r obtained from the equation (8), and the vertical axis represents b obtained from the equation (10).
- the chromaticity values before and after pressing are clearly different for the positive electrode sample and the negative electrode sample. Therefore, the press state of the positive electrode and the negative electrode can be measured by the measuring apparatus of the present invention.
- the measuring apparatus of the present embodiment performs two-dimensional image measurement, it is possible to perform measurement immediately after ejection of intermittent coating and immediately after stopping.
- the measuring device is preferably installed immediately after coating.
- the calculation method shown above can be applied.
- the measuring apparatus of this embodiment can be used also for the measurement of a base material.
- the measurement was performed by calculating the relationship between the film thickness and the film density by converting the reflection luminance into the reflectance using a calibration plate.
- the measurement may be performed by obtaining the relationship between the reflected luminance, the film thickness, and the film density. In this case, a calibration plate is not necessary.
- the process of removing the reflection inside the optical system is performed using a quasi-black body.
- a quasi-black body it is not necessary to use a quasi-black body in the case of an object having a high reflection luminance. Even in such a case, the measurement can be performed using the relationship between the average value of the reflected luminance and the film thickness and the relationship between the standard deviation of the reflected luminance and the density.
- the measuring device of this embodiment is installed on one side or both sides of the coating line and the press line after coating, moved in the width direction by the driving device, and the film thickness, density, and chromaticity value in the width direction and the line running direction. It is also possible to make measurements. In that case, it is desirable that the cylindrical black body cavity and the reflectance calibration plate be installed outside the line and calibrated at regular intervals. This can be done automatically by creating an automatic sequence.
- the measuring device of this embodiment can also be used as an off-line device.
- the camera used in the measurement apparatus of the present embodiment reduces the time for capturing one image when the number of horizontal scanning lines is reduced, and can measure in a short cycle.
- the vertical direction of the screen is 1,200 lines, so when the measurement line is 200 lines, one cycle is shortened to 1/6. Normal measurement is 30Hz, but 180Hz measurement is possible, and more responsive measurement is possible.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
This measuring device is provided with an optical system that includes a light source, an image capture unit, and a data processing unit. The measuring device is configured in such a manner that an object, which is a battery electrode plate comprising a substrate provided with a film on a surface, is illuminated by the optical system, an image of the illuminated object is acquired by the image capture unit, and the image of the object is processed by the data processing unit. The data processing unit is configured in such a manner as to determine, from data of the image of the object and data of an image of a premeasured quasi-blackbody, the reflection brightness of each pixel of the image of the object from which the internal reflection of the optical system has been eliminated, and uses the reflection brightness of each pixel from which the internal reflection of the optical system has been eliminated, to determine at least one of the thickness of the film, the density of the film, and the chromaticity value of the film.
Description
本発明は、電池電極板の基材面に形成された膜の厚さ、密度及び色度値の少なくとも一つを、電池電極板に照射された光の反射輝度を使用することによって求める測定装置及び測定方法に関する。
The present invention relates to a measuring device for determining at least one of the thickness, density and chromaticity value of a film formed on a substrate surface of a battery electrode plate by using the reflected luminance of light irradiated on the battery electrode plate. And a measuring method.
たとえば、リチウムイオン蓄電池の製造プロセスにおいて、正極または負極の電池電極板を製造する際に、基材の両面に機能材が塗布され、その後プレス加工されて正極または負極シート(電池電極板)としてロール状に巻き取られる。正極の基材はアルミニウムの薄膜などであり、負極の基材は、銅の薄膜などである。薄膜の厚さは10乃至25マイクロメータである。機能材は粒子状の各種の材料とカーボン粒子または被覆されたカーボンを含むので、その色は黒色に近い。
For example, in the manufacturing process of a lithium ion storage battery, when manufacturing a positive or negative battery electrode plate, a functional material is applied to both sides of the base material and then pressed to roll as a positive electrode or negative electrode sheet (battery electrode plate) Rolled up into a shape. The positive electrode base material is an aluminum thin film, and the negative electrode base material is a copper thin film. The thickness of the thin film is 10 to 25 micrometers. Since the functional material contains various particulate materials and carbon particles or coated carbon, the color is close to black.
機能材は、水または油性の溶剤と混合され、スリットダイコートから吐出されて基材の一方の面に塗布される。その後、機能材は乾燥炉で基材に固着され、正極または負極シートはロールとして巻き取られる。このシートを巻き戻して、同じ塗装ラインで基材の他方の面へ塗装を行い、さらに乾燥炉で固着を行う。あるいは、基材の両面の塗装を同時に行ってもよい。片面の塗装膜の厚さは50乃至300マイクロメータである。
The functional material is mixed with water or an oily solvent, discharged from the slit die coat, and applied to one surface of the substrate. Thereafter, the functional material is fixed to the base material in a drying furnace, and the positive electrode or the negative electrode sheet is wound up as a roll. The sheet is rewound and applied to the other surface of the substrate in the same coating line, and then fixed in a drying furnace. Or you may perform the coating of both surfaces of a base material simultaneously. The thickness of the coating film on one side is 50 to 300 micrometers.
従来、上記のプロセスにおいて、膜厚の測定には放射線膜厚計が使用されている。しかし、放射線による測定には以下の欠点がある。
Conventionally, in the above process, a radiation film thickness meter is used for measuring the film thickness. However, the measurement by radiation has the following drawbacks.
第一に、放射線では基材の両面の膜厚を分離して測定するのが困難である。
First, it is difficult to separate and measure the film thickness on both sides of the substrate with radiation.
第二に、放射線ではプレス加工により変化する膜の密度を測定することはできない。放射線による測定は、本質的には、機能材の重量の測定であるので、密度の変化を検出することはできない。
Second, the density of the film that changes due to press working cannot be measured with radiation. Since the measurement by radiation is essentially a measurement of the weight of the functional material, a change in density cannot be detected.
第三に、放射線は人体に有害であるので、厳重な管理が要求され、維持及び管理の負担が大きい。
Third, since radiation is harmful to the human body, strict management is required and the burden of maintenance and management is large.
放射線による測定のほかに、レーザ距離計、静電容量型距離計、渦電流方式の距離計などによる膜厚の測定も検討されているが、いずれも実用化に至っていない。
In addition to measurement by radiation, measurement of film thickness by a laser distance meter, a capacitive distance meter, an eddy current type distance meter, etc. has been studied, but none has been put into practical use.
他方、対象に照射された光の反射を測定することにより電池電極板の基材上の膜の膜厚を測定する方法が開発されている(たとえば、特許文献1)。しかし、正極及び負極の機能材は上述のようにほぼ黒色であるので、色の階調によって膜厚を正確に測定するのは困難である。さらに、特許文献1の方法によって膜の密度を測定することはできない。
On the other hand, a method of measuring the film thickness of the film on the base material of the battery electrode plate by measuring the reflection of light irradiated on the object has been developed (for example, Patent Document 1). However, since the functional material of the positive electrode and the negative electrode is almost black as described above, it is difficult to accurately measure the film thickness based on the color gradation. Furthermore, the density of the film cannot be measured by the method of Patent Document 1.
このように、電池電極板の基材上の膜の厚さ、密度及び色度値の少なくとも一つを正確に測定することのできる測定装置及び測定方法は開発されていない。
As described above, a measuring apparatus and a measuring method capable of accurately measuring at least one of the thickness, density and chromaticity value of the film on the substrate of the battery electrode plate have not been developed.
したがって、電池電極板の基材面に形成された膜の厚さ、密度及び色度値の少なくとも一つを、電池電極板に照射された光の反射輝度を使用することによって正確に測定することのできる測定装置及び測定方法に対するニーズがある。
Therefore, at least one of the thickness, density, and chromaticity value of the film formed on the substrate surface of the battery electrode plate is accurately measured by using the reflection luminance of the light irradiated on the battery electrode plate. There is a need for measuring devices and methods that can be used.
本発明の第1の態様による測定装置は、光源を含む光学系と撮像部とデータ処理部とを備え、前記光学系によって表面に膜を備えた基材からなる電池電極板である対象を照射し、照射された前記対象の画像を前記撮像部によって取得し、前記対象の画像を前記データ処理部によって処理するように構成された測定装置である。前記データ処理部は、前記対象の画像のデータと予め測定した準黒体の画像のデータとから、前記対象の画像の各画素について前記光学系内部の反射を除去した反射輝度を求め、前記各画素についての前記光学系内部の反射を除去した反射輝度を使用して、前記膜の厚さ、前記膜の密度及び前記膜の色度値の少なくとも一つを求めるように構成されている。
A measuring apparatus according to a first aspect of the present invention includes an optical system including a light source, an imaging unit, and a data processing unit, and irradiates a target which is a battery electrode plate made of a base material having a film on the surface by the optical system. The measurement apparatus is configured to acquire an image of the irradiated object by the imaging unit and process the image of the object by the data processing unit. The data processing unit obtains a reflection luminance obtained by removing reflection inside the optical system for each pixel of the target image from the data of the target image and the data of the quasi-black body image measured in advance. It is configured to obtain at least one of the thickness of the film, the density of the film, and the chromaticity value of the film using a reflection luminance obtained by removing reflection inside the optical system for the pixel.
本態様の測定装置によれば、前記データ処理部は、前記対象の画像のデータと予め測定した準黒体の画像のデータとから、前記対象の画像の各画素について前記光学系内部の反射を除去した反射輝度を求め、前記各画素についての前記光学系内部の反射を除去した反射輝度を使用するので、前記対象の反射輝度が低い場合でも、高い精度で膜の厚さ、膜の密度及び膜の色度値の少なくとも一つを求めることができる。
According to the measuring apparatus of this aspect, the data processing unit performs reflection inside the optical system for each pixel of the target image from the target image data and the pre-measured quasi-blackbody image data. Since the removed reflection luminance is obtained and the reflection luminance obtained by removing the reflection inside the optical system for each pixel is used, even when the reflection luminance of the target is low, the film thickness, the film density, and At least one of the chromaticity values of the film can be determined.
本発明の第1の態様の第1の実施形態による測定装置によれば、前記データ処理部は、前記各画素についての反射輝度の標準偏差を使用して、前記膜の密度を求めるように構成されている。
According to the measuring apparatus according to the first embodiment of the first aspect of the present invention, the data processing unit is configured to obtain the density of the film using a standard deviation of the reflected luminance for each pixel. Has been.
本実施形態によれば、反射輝度の標準偏差と膜の密度とが所定の関係を有することを利用して、反射輝度から膜の密度を求めることができる。
According to the present embodiment, the film density can be obtained from the reflection luminance by utilizing the fact that the standard deviation of the reflection luminance has a predetermined relationship with the film density.
本発明の第1の態様の第2の実施形態による測定装置によれば、前記データ処理部は、前記各画素についての反射輝度の平均値を使用して、前記膜の厚さを求めるように構成されている。
According to the measuring apparatus according to the second embodiment of the first aspect of the present invention, the data processing unit obtains the thickness of the film by using an average value of reflection luminance for each pixel. It is configured.
本実施形態によれば、反射輝度の平均値と膜厚とが所定の関係を有することを利用して、反射輝度から膜厚を求めることができる。
According to this embodiment, the film thickness can be obtained from the reflection luminance by utilizing the fact that the average value of the reflection luminance and the film thickness have a predetermined relationship.
本発明の第1の態様の第3の実施形態による測定装置において、前記撮像部は、前記対象のカラーの画像を取得し、前記データ処理部は、前記対象のカラーの画像の各画素の反射輝度を使用して、前記対象の色度値を求めるように構成されている。
In the measurement apparatus according to the third embodiment of the first aspect of the present invention, the imaging unit acquires the target color image, and the data processing unit reflects each pixel of the target color image. The luminance is used to determine the chromaticity value of the object.
本実施形態によれば、色度値の変化により膜の特性の変化を把握することができる。
According to the present embodiment, it is possible to grasp the change in the film characteristics from the change in the chromaticity value.
本発明の第1の態様の第4の実施形態による測定装置によれば、前記光学系は、前記対象の面に垂直に平行光を照射するように構成されている。
According to the measuring apparatus according to the fourth embodiment of the first aspect of the present invention, the optical system is configured to irradiate parallel light perpendicular to the surface of the object.
したがって、反射輝度と膜の厚さ、膜の密度または膜の色度値との関係を把握しやすい。
Therefore, it is easy to grasp the relationship between the reflected luminance and the film thickness, the film density, or the film chromaticity value.
本発明の第1の態様の第5の実施形態による測定装置によれば、前記撮像部は、前記対象の2次元の画像を取得する。
According to the measuring apparatus according to the fifth embodiment of the first aspect of the present invention, the imaging unit acquires a two-dimensional image of the target.
本実施形態によれば、対象の2次元の画像の各画素の反射輝度を使用するので、大量のデータが得られ、測定精度が向上する。
According to the present embodiment, since the reflected luminance of each pixel of the target two-dimensional image is used, a large amount of data is obtained and the measurement accuracy is improved.
本発明の第2の態様による測定装置は、光源を含む光学系と撮像部とデータ処理部とを備え、前記光学系によって表面に膜を備えた基材からなる電池電極板である対象を照射し、照射された前記対象の画像を前記撮像部によって取得し、前記対象の画像を前記データ処理部によって処理するように構成された測定装置である。前記データ処理部は、前記対象の画像の各画素について反射輝度を求め、前記各画素についての反射輝度の標準偏差を使用して、前記膜の密度を求めるように構成されている。
A measuring apparatus according to a second aspect of the present invention includes an optical system including a light source, an imaging unit, and a data processing unit, and irradiates a target which is a battery electrode plate made of a base material having a film on the surface by the optical system. The measurement apparatus is configured to acquire an image of the irradiated object by the imaging unit and process the image of the object by the data processing unit. The data processing unit is configured to obtain a reflection luminance for each pixel of the target image, and obtain a density of the film using a standard deviation of the reflection luminance for each pixel.
本態様の測定装置によれば、反射輝度の標準偏差と膜の密度とが所定の関係を有することを利用して、反射輝度から膜の密度を求めることができる。
According to the measuring apparatus of this aspect, it is possible to obtain the film density from the reflection luminance by utilizing the fact that the standard deviation of the reflection luminance has a predetermined relationship with the film density.
本発明の第3の態様による測定方法は、電池電極板の基材の表面に備わる膜の厚さ、膜の密度及び膜の色度値の少なくとも一つを測定する測定方法である。本測定方法は、電池電極板である対象に光を照射するステップと、前記対象の画像を取得するステップと、前記対象の画像のデータと準黒体の画像のデータとから、各画素について前記光学系内部の反射を除去した前記対象の反射輝度を求めるステップと、各画素についての前記光学系内部の反射を除去した前記対象の反射輝度を使用して、前記膜の厚さ、前記膜の密度及び前記膜の色度値の少なくとも一つを求めるステップと、を含む。
The measurement method according to the third aspect of the present invention is a measurement method for measuring at least one of the thickness of the film, the density of the film, and the chromaticity value of the film provided on the surface of the substrate of the battery electrode plate. The measurement method includes the steps of: irradiating light to a target that is a battery electrode plate; acquiring the image of the target; and data of the target image and data of a quasi-blackbody for each pixel. Determining the reflection luminance of the object from which the reflection inside the optical system is removed, and using the reflection luminance of the object from which the reflection inside the optical system is removed for each pixel, the thickness of the film, Determining at least one of density and chromaticity value of the film.
本態様の測定方法によれば、前記対象の画像のデータと準黒体の画像のデータとから、各画素について前記光学系内部の反射を除去した前記対象の反射輝度を求め、各画素についての前記光学系内部の反射を除去した前記対象の反射輝度を使用して、前記膜の厚さ、前記膜の密度及び前記膜の色度値の少なくとも一つを求めるので、前記対象の反射輝度が低い場合でも、高い精度で膜の厚さ、膜の密度及び膜の色度値の少なくとも一つを求めることができる。
According to the measurement method of this aspect, the reflection luminance of the object from which the reflection inside the optical system is removed for each pixel is obtained from the data of the object image and the data of the quasi-blackbody, Since at least one of the thickness of the film, the density of the film, and the chromaticity value of the film is obtained using the reflected brightness of the object from which the reflection inside the optical system is removed, the reflected brightness of the object Even if it is low, at least one of the film thickness, the film density, and the film chromaticity value can be obtained with high accuracy.
本発明の第3の態様の第1の実施形態による測定方法は、前記各画素についての反射輝度の標準偏差を使用して、前記膜の密度を求める。
In the measurement method according to the first embodiment of the third aspect of the present invention, the density of the film is obtained using the standard deviation of the reflection luminance for each pixel.
本実施形態によれば、反射輝度の標準偏差と膜の密度とが所定の関係を有することを利用して、反射輝度から膜の密度を求めることができる。
According to the present embodiment, the film density can be obtained from the reflection luminance by utilizing the fact that the standard deviation of the reflection luminance has a predetermined relationship with the film density.
本発明の第3の態様の第2の実施形態による測定方法は、前記各画素についての反射輝度の平均値を使用して、前記膜の厚さを求める。
In the measurement method according to the second embodiment of the third aspect of the present invention, the thickness of the film is obtained using the average value of the reflection luminance for each pixel.
本実施形態によれば、反射輝度の平均値と膜厚とが所定の関係を有することを利用して、反射輝度から膜厚を求めることができる。
According to this embodiment, the film thickness can be obtained from the reflection luminance by utilizing the fact that the average value of the reflection luminance and the film thickness have a predetermined relationship.
本発明の第3の態様の第3の実施形態による測定方法は、校正板を使用して反射輝度から反射率を求め、前記反射率を使用して前記膜の厚さ、前記膜の密度及び前記膜の色度値の少なくとも一つを求める。
In the measurement method according to the third embodiment of the third aspect of the present invention, a reflectance is obtained from reflected luminance using a calibration plate, and the thickness of the film, the density of the film, and the like are calculated using the reflectance. At least one of the chromaticity values of the film is determined.
本実施形態によれば、校正板を使用することによりトレーサブルな測定が可能となる。
According to this embodiment, traceable measurement is possible by using a calibration plate.
図1は、本発明の一実施形態による測定装置の構成を示す図である。測定装置100は、光学系101と、撮像部103と、データ処理部105と、データ記憶部107と、を含む。光学系101は、光源1011と、ビーム・スプリッタ1013と、テレセントリックレンズ1015と、を含む。光源1011は、430ナノメータ乃至700ナノメータの波長範囲に発光輝度を有する発光ダイオード(LED)光源であってもよい。
FIG. 1 is a diagram showing a configuration of a measuring apparatus according to an embodiment of the present invention. The measuring apparatus 100 includes an optical system 101, an imaging unit 103, a data processing unit 105, and a data storage unit 107. The optical system 101 includes a light source 1011, a beam splitter 1013, and a telecentric lens 1015. The light source 1011 may be a light emitting diode (LED) light source having emission luminance in a wavelength range of 430 nanometers to 700 nanometers.
撮像部103は、カラービデオカメラであってもよい。カラービデオカメラの信号は、R、G、Bの色信号に分けられ、12ビットのAD変換器により0~4095の数値が(R、G、B)の値として各画素に対応して記憶される。画素数は画面の水平方向X=1600、垂直方向Y=1200 である。一画面データとして(X、Y)の各点について(R、G、B)データが得られる。光学系101により、測定視野を約10×12mmとし、1画素の視野が約9μm×9μmと小さなスポットのRGB情報が得られる。測定視野のうち、最終的な測定エリアを約2mm×3mmとしたときに、約6万点のRGBデータが得られる。
The imaging unit 103 may be a color video camera. The color video camera signal is divided into R, G, and B color signals, and numerical values from 0 to 4095 are stored as (R, G, B) values corresponding to each pixel by a 12-bit AD converter. The The number of pixels is horizontal X = 1600 on the screen and vertical Y = 1200 mm. (R, G, B) data is obtained for each point of (X, Y) as one screen data. With the optical system 101, the measurement visual field is about 10 × 12 mm, and the RGB information of a small spot of about 9 μm × 9 μm per pixel can be obtained. About 60,000 points of RGB data can be obtained when the final measurement area of the measurement field of view is about 2 mm x 3 mm.
光源1011からの光は、ビーム・スプリッタ1013によって反射された後、テレセントリックレンズ1015を介して対象201の面に、該面に対してほぼ垂直な平行光として照射される。対象201の面に反射された光は、テレセントリックレンズ1015及びビーム・スプリッタ1013を通過し撮像部103に至る。テレセントリックレンズ1015は、対象201の面にほぼ垂直な平行光を形成するとともに、対象201の面に対してほぼ垂直な方向に反射された光のみを撮像部103に送る。このようにして、撮像部103によって、光源1011によって照射された対象201の2次元画像が採取される。採取された2次元画像のデータは、データ処理部105に送られて処理される。処理に必要なデータは、データ記憶部107に記憶され、必要に応じてデータ処理部105によって使用される。
After the light from the light source 1011 is reflected by the beam splitter 1013, it is irradiated as parallel light substantially perpendicular to the surface of the object 201 via the telecentric lens 1015. The light reflected by the surface of the target 201 passes through the telecentric lens 1015 and the beam splitter 1013 and reaches the imaging unit 103. The telecentric lens 1015 forms parallel light substantially perpendicular to the surface of the target 201 and sends only the light reflected in a direction substantially perpendicular to the surface of the target 201 to the imaging unit 103. In this way, a two-dimensional image of the target 201 irradiated by the light source 1011 is collected by the imaging unit 103. The collected two-dimensional image data is sent to the data processing unit 105 for processing. Data necessary for the processing is stored in the data storage unit 107 and used by the data processing unit 105 as necessary.
データ処理部105及びデータ記憶部107の機能については後で詳細に説明する。
The functions of the data processing unit 105 and the data storage unit 107 will be described in detail later.
発明者らは、リチウムイオン蓄電池の正極及び負極について、光を照射しながら種々の厚さ及び密度の膜のサンプルを詳細に観察した結果、膜の厚さまたは密度の変化により膜の外観が変化することを見出した。このことは、膜の外観画像により膜の厚さまたは密度を測定できる可能性を示唆するものである。
As a result of detailed observation of film samples of various thicknesses and densities while irradiating light on the positive electrode and the negative electrode of a lithium ion storage battery, the inventors changed the appearance of the film due to changes in the film thickness or density. I found out. This suggests the possibility of measuring the thickness or density of the film from the appearance image of the film.
ところで、上述のように膜はカーボンを多く含みその色はほぼ黒色である。このことは、光を照射した場合の膜の反射輝度が極めて低いことを意味する。したがって、上記の外観の変化を検出するのは容易ではない。
By the way, as described above, the film contains a lot of carbon and the color thereof is almost black. This means that the reflection luminance of the film when irradiated with light is extremely low. Therefore, it is not easy to detect the change in appearance.
そこで、発明者らは、膜の極めて低い反射輝度を正確に取得するために、膜の画像データから、光学系内部の反射輝度を除去する必要があることに想到した。光学系内部の反射輝度は、準黒体としての円筒状黒体空洞の画像から求めることができる。そこで、膜の画像のデータから円筒状黒体空洞の画像のデータを差し引くことにより、膜の画像データから、光学系内部の反射輝度を除去することができる。
Therefore, the inventors have conceived that it is necessary to remove the reflection luminance inside the optical system from the image data of the film in order to accurately acquire the extremely low reflection luminance of the film. The reflection brightness inside the optical system can be obtained from an image of a cylindrical black body cavity as a quasi-black body. Therefore, by subtracting the image data of the cylindrical black body cavity from the data of the film image, the reflection luminance inside the optical system can be removed from the image data of the film.
図2乃至図7は、種々の厚さ及び密度の膜の画像データから、円筒状黒体空洞の画像のデータを差し引いた画像データを示す図である。正極について、プレス前、大径、No.3、No.4、No.5、プレス後の6種類のサンプルを準備した。「プレス前」は、膜を塗装した後加圧していないサンプルである。「大径」は、膜を塗装した後、径50mmの円筒で加圧したサンプルである。「No.3」、「No.4」、「No.5」は、膜を塗装した後、径30mmの円筒で加圧力を変えて加圧したサンプルである。加圧力は、「No.3」、「No.4」、「No.5」の順に増加させた。「プレス後」は、プロセスでプレス加工した後のサンプルである。加圧した5個のサンプルの加圧力は、小から大に「大径」、「No.3」、「No.4」、「No.5」、「プレス後」の順である。
FIGS. 2 to 7 are diagrams showing image data obtained by subtracting image data of a cylindrical black body cavity from image data of films of various thicknesses and densities. For the positive electrode, before pressing, large diameter, no. 3, no. 4, no. 5. Six types of samples after pressing were prepared. “Before pressing” is a sample that has not been pressurized after coating the membrane. “Large diameter” is a sample pressed with a cylinder having a diameter of 50 mm after coating a film. “No. 3”, “No. 4”, and “No. 5” are samples that were pressurized by changing the pressure with a cylinder having a diameter of 30 mm after coating the film. The applied pressure was increased in the order of “No. 3”, “No. 4”, and “No. 5”. “After pressing” is a sample after being pressed in the process. The pressurizing force of the five pressed samples is from “small diameter” to “large diameter”, “No. 3”, “No. 4”, “No. 5”, and “after pressing”.
図2は、「プレス前」のサンプルの輝度を16倍とした画像である。
FIG. 2 is an image in which the brightness of the “before press” sample is 16 times.
図3は、「大径」のサンプルの輝度を16倍とした画像である。
FIG. 3 is an image in which the brightness of the “large diameter” sample is 16 times.
図4は、「No.3」のサンプルの輝度を16倍とした画像である。
FIG. 4 is an image in which the luminance of the sample of “No. 3” is increased 16 times.
図5は、「No.4」のサンプルの輝度を16倍とした画像である。
FIG. 5 is an image in which the brightness of the sample of “No. 4” is increased 16 times.
図6は、「No.5」のサンプルの輝度を16倍とした画像である。
FIG. 6 is an image in which the brightness of the sample of “No. 5” is increased 16 times.
図7は、「プレス後」のサンプルの輝度を8倍とした画像である。
FIG. 7 is an image in which the brightness of the “after press” sample is 8 times.
図2乃至図6に示した画像で輝度を16倍としたのは、目視による観察を容易にするためである。図7に示した画像で16倍ではなく8倍としたのは飽和を防止するためである。
The reason why the luminance is increased 16 times in the images shown in FIGS. 2 to 6 is to facilitate visual observation. The reason why the image shown in FIG. 7 is 8 times instead of 16 times is to prevent saturation.
図2乃至図7によれば、膜の画像データから、円筒状黒体空洞の画像のデータを差し引いた画像を肉眼で観察することにより、加圧の状況が異なり、したがって膜の厚さ及び密度が異なる膜の外観を識別することができる。
According to FIG. 2 to FIG. 7, by observing with the naked eye an image obtained by subtracting the image data of the cylindrical black body cavity from the image data of the film, the pressurization situation is different, and therefore the thickness and density of the film Can distinguish the appearance of different membranes.
そこで、発明者らは、膜の画像データから、円筒状黒体空洞の画像のデータを差し引いた画像から膜の反射輝度を求めることとした。さらに、トレーサビリティを確保するために、反射輝度から反射率を求めることとした。
Therefore, the inventors have determined the reflection luminance of the film from the image obtained by subtracting the image data of the cylindrical black body cavity from the image data of the film. Furthermore, in order to ensure traceability, the reflectance was determined from the reflected luminance.
上述のように、撮像部103は、対象201の面にほぼ垂直な方向に照射された平行光の、対象201の面に対してほぼ垂直な方向に反射された反射光の画像を採取する。
As described above, the imaging unit 103 collects an image of reflected light reflected in a direction substantially perpendicular to the surface of the object 201 of parallel light irradiated in a direction substantially perpendicular to the surface of the object 201.
図8は、測定装置100により膜の反射率を測定する方法を説明するための流れ図である。
FIG. 8 is a flowchart for explaining a method of measuring the reflectance of the film by the measuring apparatus 100.
図8のステップS010において、光源の輝度を設定する。対象の低い反射率を考慮して十分な輝度を設定する。光源として白色LED(発光ダイオード)光源を使用した。具体的には、株式会社モリテックスの型式MCEC-CW8(最大定格電流0.15A、用途MML用ハイパワー同軸照明用)である。
In step S010 in FIG. 8, the brightness of the light source is set. Set a sufficient brightness considering the low reflectance of the object. A white LED (light emitting diode) light source was used as the light source. Specifically, it is model MCEC-CW8 (maximum rated current 0.15A, for high power coaxial lighting for applications MML) manufactured by Moritex Corporation.
図8のステップS020において、カメラのシャッター時間を設定する。測定対象のサンプルの中で最も反射率が高いと思われるものを選び、カメラ103のビデオ信号のR、G、Bの値が飽和しないシャッター時間を選択する。本実施形態において、サンプル測定時のシャッター時間を1ミリ秒とした。
In step S020 in FIG. 8, the shutter time of the camera is set. A sample that is considered to have the highest reflectance is selected from the samples to be measured, and a shutter time at which the R, G, and B values of the video signal of the camera 103 are not saturated is selected. In this embodiment, the shutter time during sample measurement is 1 millisecond.
図8のステップS030において、測定装置100によって鏡面の低反射率校正板(SSL)の反射輝度を測定する。SSLを測定したときにR、G、Bの値が飽和しないシャッター時間を選択し、測定する。本実施形態においては、SSL測定時のシャッター時間を0.357m秒とした。SSLの反射輝度は、R=2415.5、G=3310.7、B=3752.2であった。SSLの反射輝度は、後で説明する表1のA欄に記載する。
In step S030 of FIG. 8, the measurement apparatus 100 measures the reflection luminance of the low-reflectance calibration plate (SSL) having a mirror surface. A shutter time during which the values of R, G, and B are not saturated when SSL is measured is selected and measured. In this embodiment, the shutter time during SSL measurement is set to 0.357 msec. The reflected luminance of SSL was R = 2415.5, G = 3310.7, and B = 3752.2. The reflected luminance of SSL is described in column A of Table 1 described later.
図10は、低反射率校正板(SSL)の反射率分布を示す図である。図10の横軸は波長を示し、図10の縦軸は反射率を示す。図10には、LED光源のスペクトルとR、G、Bの感度分布の掛け算をした分光感度曲線を示した。
FIG. 10 is a diagram showing the reflectance distribution of the low reflectance calibration plate (SSL). The horizontal axis in FIG. 10 indicates the wavelength, and the vertical axis in FIG. 10 indicates the reflectance. FIG. 10 shows a spectral sensitivity curve obtained by multiplying the spectrum of the LED light source and the sensitivity distribution of R, G, and B.
図8のステップS040において、測定装置100によって準黒体としての円筒状黒体空洞の反射輝度を測定する。シャッター時間は、0.357m秒とした。測定された円筒状黒体空洞の反射輝度は、光源101を含む光学系101の内部の反射輝度に相当する。円筒状黒体空洞の反射輝度は、表1のB欄に記載する。
In step S040 of FIG. 8, the measurement apparatus 100 measures the reflection luminance of the cylindrical black body cavity as a quasi-black body. The shutter time was 0.357 msec. The measured reflection luminance of the cylindrical black body cavity corresponds to the reflection luminance inside the optical system 101 including the light source 101. The reflection luminance of the cylindrical black body cavity is described in column B of Table 1.
図8のステップS050において、シャッター時間1ミリ秒の場合の反射率1%の輝度値を計算する。
In step S050 in FIG. 8, the luminance value with a reflectance of 1% when the shutter time is 1 millisecond is calculated.
表1は、シャッター時間1ミリ秒の場合の反射率1%の輝度値(R、G、Bの値)の計算手順を説明するための表である。表1のR、G、Bと記した列の数値は、R、G、Bの値(カウント)を表す。
Table 1 is a table for explaining a calculation procedure of luminance values (R, G, and B values) with a reflectance of 1% when the shutter time is 1 millisecond. The numerical values in the columns labeled R, G, and B in Table 1 represent the values (counts) of R, G, and B.
表1のA欄は、シャッター時間を0.357m秒とした場合のSSLの反射輝度(R、G、B)である。表1のB欄は、シャッター時間を0.357m秒とした場合の円筒状黒体空洞の反射輝度(R、G、B)である。表1のC欄は、%で表示したSSLの反射率(R、G、B)である。(A-B)/Cは、R、G、Bのそれぞれについて、A欄の値からB欄の値を引いてC欄の値で割った値を示し、シャッター時間を0.357m秒とした場合の1%反射率に相当する(R、G、B)の値である。Dは、R、G、Bのそれぞれについて、(A-B)/Cに1/0.357を乗じた数値であり、シャッター時間を1m秒とした場合の1%反射率に相当する(R、G、B)の値である。このようにして、シャッター時間を1m秒とした場合の反射率1%の輝度値(R、G、Bの値)を計算することができる。
The column A in Table 1 shows the reflected luminance (R, G, B) of SSL when the shutter time is 0.357 msec. Column B in Table 1 shows the reflection luminance (R, G, B) of the cylindrical black body cavity when the shutter time is 0.357 msec. The column C in Table 1 shows the reflectivity (R, G, B) of SSL expressed in%. (AB) / C represents the value obtained by subtracting the value in the B column from the value in the A column and dividing by the value in the C column for each of R, G, and B, and setting the shutter time to 0.357 msec. This is a value of (R, G, B) corresponding to 1% reflectance in the case. D is a numerical value obtained by multiplying (AB) / C by 1 / 0.357 for each of R, G, and B, and corresponds to 1% reflectance when the shutter time is 1 msec (R , G, B). In this way, the luminance value (R, G, B values) with a reflectance of 1% when the shutter time is 1 msec can be calculated.
図8のステップS060において、対象の反射率を求める。最初に、シャッター時間を1ミリ秒として、測定装置100によって円筒状黒体空洞の反射輝度(R、G、B)を測定する。つぎに、シャッター時間を1ミリ秒として、測定装置100によって正極のプレス後のサンプルの反射輝度(R、G、B)を測定する。
In step S060 of FIG. 8, the reflectance of the target is obtained. First, the reflection time (R, G, B) of the cylindrical black body cavity is measured by the measuring apparatus 100 with a shutter time of 1 millisecond. Next, the reflection time (R, G, B) of the sample after pressing the positive electrode is measured by the measuring apparatus 100 with a shutter time of 1 millisecond.
表2は、正極のプレス後のサンプルの反射率を求める手順を示す表である。表1のR、G、Bと記した列の数値は、R、G、Bの値(カウント)を表す。
Table 2 is a table | surface which shows the procedure which calculates | requires the reflectance of the sample after the positive electrode press. The numerical values in the columns labeled R, G, and B in Table 1 represent the values (counts) of R, G, and B.
表2のE欄は、シャッター時間を1ミリ秒とした場合の円筒状黒体空洞の反射輝度(R、G、B)である。表2のF欄は、シャッター時間を1ミリ秒とした場合の正極のプレス後のサンプルの反射輝度(R、G、B)である。F-Eは、R、G、Bのそれぞれについて、F欄の値からE欄の値を引いた数値であり、正極のプレス後のサンプルの真の反射輝度に相当する。Hは、R、G、Bのそれぞれについて、F-Eの数値を表1のDの数値で除した数値であり、正極のプレス後のサンプルの反射率Rv(R%)、Rv(G%),Rv(B%)に相当する。
Column E in Table 2 shows the reflection luminance (R, G, B) of the cylindrical black body cavity when the shutter time is 1 millisecond. The column F in Table 2 shows the reflection luminance (R, G, B) of the sample after pressing the positive electrode when the shutter time is 1 millisecond. FE is a numerical value obtained by subtracting the value in the E column from the value in the F column for each of R, G, and B, and corresponds to the true reflected luminance of the sample after pressing the positive electrode. H is a value obtained by dividing the value of FE by the value of D in Table 1 for each of R, G, and B. The reflectivity Rv (R%) and Rv (G%) of the sample after pressing the positive electrode ), Rv (B%).
表3は、正極のプレス前のサンプルの反射率を求める手順を示す表である。
Table 3 is a table | surface which shows the procedure which calculates | requires the reflectance of the sample before the positive electrode press.
正極プレス前の反射率はRv(R%)=0.0091%、Rv(G% )=0.0086%、Rv(B%)=0.0093%と計算される。正極プレス後の反射率に比較し、1/10以下と小さい。
The reflectance before positive electrode pressing is calculated as Rv (R%) = 0.0091%, Rv (G%) = 0.0086%, Rv (B%) = 0.0093%. Compared to reflectivity after positive electrode pressing, it is as small as 1/10 or less.
表3でRはE=820.6、F=833.3でその差は12.7と極めて小さい。この数値の信頼性があるのは、カラービデオカメラのAD変換器が12ビットで、0~4,095の高解像度のためである。また、約6万点の画素の平均値を取っていることも寄与している。
In Table 3, R is E = 820.6, F = 833.3, and the difference is very small at 12.7. The reason why this numerical value is reliable is because the AD converter of the color video camera has 12 bits and a high resolution of 0 to 4,095. In addition, taking an average value of about 60,000 pixels also contributes.
図9は、測定データから反射率及び反射率の標準偏差を求める方法を説明するための流れ図である。図9の各ステップは、データ処理部105によって実施される。
FIG. 9 is a flowchart for explaining a method of obtaining the reflectance and the standard deviation of the reflectance from the measurement data. Each step in FIG. 9 is performed by the data processing unit 105.
図9のステップS1010において、円筒状黒体空洞の反射輝度(R、G、B)の測定値の2次元データ(D1)をデータ記憶部107に記憶する。D1は、画像中心の201点×301点の画素に対応するデータである。
In step S1010 of FIG. 9, the two-dimensional data (D1) of the measured value of the reflection luminance (R, G, B) of the cylindrical black body cavity is stored in the data storage unit 107. D1 is data corresponding to 201 pixels × 301 pixels at the center of the image.
図9のステップS1020において、正極のプレス後のサンプルの反射輝度(R、G、B)の測定値の2次元データ(D2)をデータ記憶部107に記憶する。D2は、画像中心の201点×301点の画素に対応するデータである。
In step S1020 of FIG. 9, the two-dimensional data (D2) of the measured value of the reflection luminance (R, G, B) of the sample after pressing the positive electrode is stored in the data storage unit 107. D2 is data corresponding to 201 pixels × 301 pixels at the center of the image.
図9のステップS1030において、差分の2次元データ(D2-D1)をデータ記憶部107に記憶する。D1-D2は、画像中心の201点×301点の画素に対応するデータである。
In step S1030 in FIG. 9, the two-dimensional difference data (D2-D1) is stored in the data storage unit 107. D1-D2 is data corresponding to 201 pixels × 301 pixels at the center of the image.
図9のステップS1040において、差分の2次元データ(D2-D1)の平均値R、G、Bと標準偏差値σ・R、σ・G、σ・Bとを計算する。
In step S1040 of FIG. 9, the average values R, G, B and standard deviation values σ · R, σ · G, σ · B of the two-dimensional difference data (D2-D1) are calculated.
図9のステップS1050において、すでに求めた1%反射率を使用して、各画素の平均反射率Rv(R%)、Rv(G% )、Rv(B%)と各画素の反射率の標準偏差値σ・Rv(R%)、σ・Rv(G% )、σ・Rv(B%)を計算する。
In step S1050 of FIG. 9, the average reflectance Rv (R%), Rv (G%), Rv (B%) of each pixel and the standard of the reflectance of each pixel are obtained using the 1% reflectance already obtained. Deviation values σ · Rv (R%), σ · Rv (G%), and σ · Rv (B%) are calculated.
図9のステップS1060において、平均反射率Rv(R%)、Rv(G% )、Rv(B%)から色度値を求める。色度値については後で説明する。
In step S1060 in FIG. 9, chromaticity values are obtained from the average reflectances Rv (R%), Rv (G%), and Rv (B%). The chromaticity value will be described later.
図11は、正極について、プレス前、大径、No.3、No.4、No.5、プレス後の6種類のサンプルの平均反射率Rv(R%)、Rv(G%)、Rv(B%)の測定値を示す図である。平均反射率の測定値の大きさは、小から大に、プレス前、大径、No.3、No.4、No.5、プレス後の順である。なお、図11以下の図において、「内」、「中」、「外」は、各サンプルの径方向の3か所の測定値を示す。
Fig. 11 shows the positive electrode before pressing, large diameter, no. 3, no. 4, no. 5 is a diagram showing measured values of average reflectances Rv (R%), Rv (G%), and Rv (B%) of six types of samples after pressing. The measured values of average reflectance are from small to large, before pressing, large diameter, No. 3, no. 4, no. 5. The order after pressing. In FIG. 11 and subsequent figures, “inner”, “middle”, and “outer” indicate measured values at three locations in the radial direction of each sample.
図12は、正極について、プレス前、大径、No.3、No.4、No.5、プレス後の6種類のサンプルの標準偏差値σ・Rv(R%)、σ・Rv(G%)、σ・Rv(B%)の測定値を示す図である。標準偏差値の測定値の大きさは、小から大に、プレス前、大径、No.3、No.4、No.5、プレス後の順である。
FIG. 12 shows the positive electrode before pressing, large diameter, No. 3, no. 4, no. 5 is a diagram showing measured values of standard deviation values σ · Rv (R%), σ · Rv (G%), and σ · Rv (B%) of six types of samples after pressing. The measurement values of the standard deviation values are from small to large, before pressing, large diameter, No. 3, no. 4, no. 5. The order after pressing.
図13は、正極について、プレス前、大径、No.3、No.4、No.5、プレス後の6種類のサンプルの従来の測定方法による膜厚及び密度の測定値を示す図である。図13の縦軸は、膜厚(左側目盛り)及び膜の密度(右側目盛り)を示す。膜厚は、精密な接触式ダイアルゲージで基材及び膜からなるサンプルの厚さを測定し、既知である基材の厚さを差し引いて求めた。密度は、直径100ミリメータの円形のサンプルの重量を電子天秤で測定し、既知である基材の重量を差し引いて膜の重量を求め、膜厚の測定値を使用して計算した。
Fig. 13 shows the positive electrode before pressing, large diameter, No. 3, no. 4, no. 5. It is a figure which shows the measured value of the film thickness and density by the conventional measuring method of six types of samples after a press. The vertical axis in FIG. 13 indicates the film thickness (left scale) and the film density (right scale). The film thickness was determined by measuring the thickness of the sample consisting of the substrate and the film with a precision contact dial gauge and subtracting the known thickness of the substrate. The density was calculated by measuring the weight of a circular sample having a diameter of 100 mm with an electronic balance, subtracting the known weight of the substrate to obtain the weight of the film, and using the measured value of the film thickness.
図14は、正極のサンプルについて、膜厚と反射率との関係を示す図である。図14の横軸は、反射率の対数値を示し、縦軸は膜厚を示す。図14は、図11に示した平均反射率の測定値のデータと図13に示した従来の測定方法による膜厚の測定値のデータとから作成した。
FIG. 14 is a diagram showing the relationship between the film thickness and the reflectance of the positive electrode sample. The horizontal axis in FIG. 14 indicates the logarithmic value of the reflectance, and the vertical axis indicates the film thickness. FIG. 14 was prepared from the data of the measured values of average reflectance shown in FIG. 11 and the data of the measured values of film thickness by the conventional measuring method shown in FIG.
膜内部には空隙があるので、膜表面に照射した光は、膜表面で反射するとともに、膜内に進入し、空隙の内部で乱反射しながら基材(正極の場合はアルミニウム)に到達して反射し、膜表面に戻り、膜表面から空気中に散乱して放射される。膜内から戻る光の反射光量は放射線などと同様に、膜に吸収されるので膜厚が大きくなるにしたがって減少する。そこで、図14に示したような膜厚と反射率との関係が得られる。
Since there is a gap inside the film, the light irradiated on the film surface is reflected on the film surface, enters the film, and reaches the substrate (aluminum in the case of the positive electrode) while being irregularly reflected inside the gap. It is reflected, returns to the film surface, and is scattered and emitted from the film surface into the air. The amount of reflected light returning from within the film is absorbed by the film in the same manner as radiation, and therefore decreases as the film thickness increases. Therefore, the relationship between the film thickness and the reflectance as shown in FIG. 14 is obtained.
プレス前の表面はほぼ拡散表面に近いので表面そのものからの反射率は小さい。しかし、加圧しプレス後の表面は一部光沢度が増しており、測定される反射光は、表面からの反射と膜内からの反射との和になる。そこで膜厚の厚い領域と、膜厚が薄い領域との2グループに分けて、近似式を作成した。
∙ Since the surface before pressing is almost close to the diffusing surface, the reflectivity from the surface itself is small. However, the surface after pressing and pressing is partially glossy, and the reflected light to be measured is the sum of reflection from the surface and reflection from within the film. Therefore, the approximate expression was created by dividing into two groups of a thick film region and a thin film region.
このようにすると、膜厚dの一次近似式がLOG(Rv-R)、LOG(Rv-G)、LOG(Rv-B)で求まる。相関度R2は、R、G、Bによって異なるが、0.92以上の高い値が得られた。データ数を増やすことにより相関度がさらに向上することが期待できる。
In this way, a first-order approximation of the film thickness d is obtained by LOG (Rv-R), LOG (Rv-G), and LOG (Rv-B). The degree of correlation R 2 varies depending on R, G, and B, but a high value of 0.92 or higher was obtained. It can be expected that the degree of correlation further improves by increasing the number of data.
図14の中で二つの膜厚領域で相関度の高いLOG(Rv-G)を用いた近似式の例を以下に示す。
厚い領域: d=-46.419LOG(Rv-G)-2.1635 R2=0.9743 (1)
薄い領域: d=-12.74LOG(Rv-G2)+55.105 R2=0.9713 (2)
上記の一次近似式の係数は、膜の材料が異なれば変化することは、放射線などと同じである。したがって、膜の材料毎に検量線の作成が必要である。 An example of an approximate expression using LOG (Rv−G) having a high degree of correlation in two film thickness regions in FIG. 14 is shown below.
Thick area: d = -46.419 LOG (Rv-G) -2.1635 R 2 = 0.9743 (1)
Thin area: d = -12.74 LOG (Rv-G2) +55.105 R 2 = 0.9713 (2)
The coefficient of the first-order approximation formula is the same as that of radiation or the like, if the film material is different. Therefore, it is necessary to create a calibration curve for each material of the film.
厚い領域: d=-46.419LOG(Rv-G)-2.1635 R2=0.9743 (1)
薄い領域: d=-12.74LOG(Rv-G2)+55.105 R2=0.9713 (2)
上記の一次近似式の係数は、膜の材料が異なれば変化することは、放射線などと同じである。したがって、膜の材料毎に検量線の作成が必要である。 An example of an approximate expression using LOG (Rv−G) having a high degree of correlation in two film thickness regions in FIG. 14 is shown below.
Thick area: d = -46.419 LOG (Rv-G) -2.1635 R 2 = 0.9743 (1)
Thin area: d = -12.74 LOG (Rv-G2) +55.105 R 2 = 0.9713 (2)
The coefficient of the first-order approximation formula is the same as that of radiation or the like, if the film material is different. Therefore, it is necessary to create a calibration curve for each material of the film.
図15は、正極のサンプルについて、膜の密度と反射率の標準偏差との関係を示す図である。図15の横軸は、反射率の標準偏差を示し、縦軸は膜の密度を示す。図15は、図12に示した反射率の標準偏差の測定値のデータと図13に示した従来の測定方法による膜の密度の測定値のデータとから作成した。
FIG. 15 is a diagram showing the relationship between the film density and the standard deviation of the reflectance for the positive electrode sample. The horizontal axis of FIG. 15 indicates the standard deviation of the reflectance, and the vertical axis indicates the density of the film. FIG. 15 was created from the data of the measured value of the standard deviation of the reflectance shown in FIG. 12 and the data of the measured value of the film density by the conventional measuring method shown in FIG.
密度が小さい時は、σ・Rv(R、G、B%)の値は小さく、密度が大きくなると、σ・Rv(R、G、B%)の値は大きくなっている。プレスにより表面光沢は上昇するが、均一なプレスがされるわけではないので、垂直反射率のσはR、G、Bの全ての色で、増大している。
When the density is small, the value of σ · Rv (R, G, B%) is small, and when the density is large, the value of σ · Rv (R, G, B%) is large. Although the surface gloss is increased by pressing, since the uniform pressing is not performed, the σ of the vertical reflectance increases for all the colors of R, G, and B.
この場合には、膜の密度ρとσ・Rv(R%)、σ・Rv(G%)、σ・Rv(B%)の関係は、図15に示したように、一次式で近似でき、相関度R2は約0.93と高い。以下に相関度の最も高いRv(G%)の近似式を示す。
In this case, the relationship between the film density ρ and σ · Rv (R%), σ · Rv (G%), and σ · Rv (B%) can be approximated by a linear expression as shown in FIG. , correlation R 2 is as high as about 0.93. The approximate expression of Rv (G%) having the highest degree of correlation is shown below.
ρ=18.188σ・Rv(G%)+2.7643 R2=0.9356 式(3)
この時の近似式の係数は、同じ正極でも電池材料成分、膜厚レンジの影響も受けるので、サンプル数と、データ数を増やすことにより、より精度の高い近似式を求めることができる。 ρ = 18.188σ · Rv (G%) + 2.7643 R 2 = 0.9356 Formula (3)
Since the coefficient of the approximate expression at this time is influenced by the battery material component and the film thickness range even with the same positive electrode, an approximate expression with higher accuracy can be obtained by increasing the number of samples and the number of data.
この時の近似式の係数は、同じ正極でも電池材料成分、膜厚レンジの影響も受けるので、サンプル数と、データ数を増やすことにより、より精度の高い近似式を求めることができる。 ρ = 18.188σ · Rv (G%) + 2.7643 R 2 = 0.9356 Formula (3)
Since the coefficient of the approximate expression at this time is influenced by the battery material component and the film thickness range even with the same positive electrode, an approximate expression with higher accuracy can be obtained by increasing the number of samples and the number of data.
このように、発明者らの新たな知見によれば、膜の密度と反射率の標準偏差との間には高い相関関係があり、反射率の標準偏差から膜の密度を求めることができる。
Thus, according to the inventors' new knowledge, there is a high correlation between the density of the film and the standard deviation of the reflectance, and the density of the film can be obtained from the standard deviation of the reflectance.
図16は、負極について、プレス前、大径、No.3、No.4、No.5、プレス後の6種類のサンプルの平均反射率Rv(R%)、Rv(G%)、Rv(B%)の測定値を示す図である。平均反射率の測定値の大きさは、小から大に、プレス前、大径、No.3、No.4、No.5、プレス後の順である。
FIG. 16 shows the negative electrode before pressing, large diameter, no. 3, no. 4, no. 5 is a diagram showing measured values of average reflectances Rv (R%), Rv (G%), and Rv (B%) of six types of samples after pressing. The measured values of average reflectance are from small to large, before pressing, large diameter, No. 3, no. 4, no. 5. The order after pressing.
正極のサンプルの平均反射率の測定値を示す図11によると、プレス前の平均反射率は約0.01%であり、プレス後の反射率は0.15%乃至0.18%である。一方、負極のサンプルの平均反射率の測定値を示す図16によると、プレス前の平均反射率は約0.019%であり、プレス後の反射率は約0.09%である。このように、平均反射率のプレス前後の変化は、正極の場合の方がはるかに大きい。これは、正極の基材及び膜の材料が負極の基材及び膜の材料と異なるためと考えられる。
According to FIG. 11 showing the measured value of the average reflectance of the positive electrode sample, the average reflectance before pressing is about 0.01%, and the reflectance after pressing is 0.15% to 0.18%. On the other hand, according to FIG. 16 which shows the measured value of the average reflectance of the negative electrode sample, the average reflectance before pressing is about 0.019%, and the reflectance after pressing is about 0.09%. Thus, the change in average reflectance before and after pressing is much larger in the case of the positive electrode. This is presumably because the material of the positive electrode substrate and the film is different from the material of the negative electrode substrate and the film.
図17は、負極について、プレス前、大径、No.3、No.4、No.5、プレス後の6種類のサンプルの標準偏差値σ・Rv(R%)、σ・Rv(G%)、σ・Rv(B%)の測定値を示す図である。標準偏差値の測定値の大きさは、小から大に、プレス前、大径、No.3、No.4、No.5、プレス後の順である。
FIG. 17 shows the negative electrode before pressing, large diameter, No. 3, no. 4, no. 5 is a diagram showing measured values of standard deviation values σ · Rv (R%), σ · Rv (G%), and σ · Rv (B%) of six types of samples after pressing. The measurement values of the standard deviation values are from small to large, before pressing, large diameter, No. 3, no. 4, no. 5. The order after pressing.
図18は、負極について、プレス前、大径、No.3、No.4、No.5、プレス後の6種類のサンプルの従来の測定方法による膜厚及び密度の測定値を示す図である。図18の縦軸は、膜厚(左側目盛り)及び膜の密度(右側目盛り)を示す。膜厚及び膜の密度の測定方法は図13の場合と同様である。
FIG. 18 shows the negative electrode before pressing, large diameter, No. 3, no. 4, no. 5. It is a figure which shows the measured value of the film thickness and density by the conventional measuring method of six types of samples after a press. The vertical axis in FIG. 18 indicates the film thickness (left scale) and the film density (right scale). The method for measuring the film thickness and the film density is the same as in FIG.
図19は、負極のサンプルについて、膜厚と反射率との関係を示す図である。図19の横軸は、反射率の対数値を示し、縦軸は膜厚を示す。図19は、図16に示した平均反射率の測定値のデータと図18に示した従来の測定方法による膜厚の測定値のデータとから作成した。
FIG. 19 is a diagram showing the relationship between the film thickness and the reflectance of the negative electrode sample. The horizontal axis in FIG. 19 indicates the logarithmic value of the reflectance, and the vertical axis indicates the film thickness. FIG. 19 was created from the data of the measured values of average reflectance shown in FIG. 16 and the data of the measured values of film thickness by the conventional measuring method shown in FIG.
図14の場合と同様に、膜厚の厚い領域と、膜厚が薄い領域との2グループに分けて、近似式を作成した。
As in the case of FIG. 14, approximate equations were created by dividing into two groups of a thick film region and a thin film region.
相関度R2は、相関度R2は膜厚が厚い領域で約0.92、薄い領域で0.97である。データ数を増やすことにより相関度がさらに向上することが期待できる。
Correlation R 2, the correlation degree R 2 is about 0.92 in the film thickness is thicker regions, 0.97 in thin region. It can be expected that the degree of correlation further improves by increasing the number of data.
図20は、負極のサンプルについて、膜の密度と反射率の標準偏差との関係を示す図である。図20の横軸は、反射率の標準偏差を示し、縦軸は膜の密度を示す。図20は、図17に示した反射率の標準偏差の測定値のデータと図18に示した従来の測定方法による膜の密度の測定値のデータとから作成した。
FIG. 20 is a diagram showing the relationship between the film density and the standard deviation of the reflectance for the negative electrode sample. The horizontal axis of FIG. 20 indicates the standard deviation of the reflectance, and the vertical axis indicates the density of the film. FIG. 20 was created from the measurement data of the standard deviation of reflectance shown in FIG. 17 and the measurement data of the film density by the conventional measurement method shown in FIG.
この場合には、膜の密度ρとσ・Rv(R%)、σ・Rv(G%)、σ・Rv(B%)の関係は、図20に示したように、一次式で近似でき、相関度R2は約0.91と高い。同じ材料のサンプル数と、データ数を増やすことにより、より精度の高い近似式を求めることができる。
In this case, the relationship between the film density ρ and σ · Rv (R%), σ · Rv (G%), and σ · Rv (B%) can be approximated by a linear expression as shown in FIG. , correlation R 2 is as high as about 0.91. By increasing the number of samples of the same material and the number of data, a more accurate approximate expression can be obtained.
図14及び図19に示すように、正負極共に、平均反射率Rv(R、G、B)の対数値の一次近似式を用いて、膜厚dが測定できることが分かった。
As shown in FIG. 14 and FIG. 19, it was found that the film thickness d can be measured using a first-order approximation of the logarithmic value of the average reflectance Rv (R, G, B) for both positive and negative electrodes.
図15及び図20に示すように、正負極共に、反射率の標準偏差値σ・Rv(R、G、B)の一次式により密度ρが測定できることが分かった。
15 and 20, it was found that the density ρ can be measured by the linear expression of the standard deviation value σ · Rv (R, G, B) of the reflectance for both positive and negative electrodes.
本発明の測定装置及び測定方法によれば、電池材料、膜厚領域ごとに検量線の作成が必要であるが、反対面の影響を受けずに両面の膜厚及び膜の密度の測定を行うことができる。両面に膜が付与された場合に一方の面の膜厚を測定すること及び膜の密度を測定することは、放射線測定を含む従来の測定方法では不可能であった。
According to the measuring apparatus and measuring method of the present invention, it is necessary to create a calibration curve for each battery material and film thickness region, but the film thickness and film density on both surfaces are measured without being affected by the opposite surface. be able to. When a film is applied on both sides, it is impossible to measure the film thickness on one side and measure the density of the film with a conventional measurement method including radiation measurement.
正極及び負極の製造プロセスにおいて重要なことは、基材に電池材料粒子群を均一に塗布し、乾燥後に均一な空隙率を得ることである。幅方向に電池材料成分が不均一であったり、空隙率分布が不均一であったりすると、電池としての性能にばらつきが生じることになる。また、また吐出時の液体濃度分布に差があれば、空隙率分布に差が生じ、同様に電池としての性能にばらつきが生じる。
What is important in the manufacturing process of the positive electrode and the negative electrode is to uniformly apply the battery material particle group to the base material and obtain a uniform porosity after drying. If the battery material component is non-uniform in the width direction or the porosity distribution is non-uniform, variations in battery performance will occur. Further, if there is a difference in the liquid concentration distribution at the time of ejection, a difference in the porosity distribution occurs, and similarly, the performance as a battery varies.
電池材料はほぼ黒色をしているが、構成材料の濃度比率が変われば色も変わると考えられる。実際、図11及び図16を観察すると、平均反射率Rv(R%)、Rv(G%)、Rv(B%)の間の大きさの関係は、サンプルごとに異なる。そこで、サンプルの色彩値を測定することとした。
The battery material is almost black, but the color will change if the concentration ratio of the constituent materials changes. In fact, when FIG. 11 and FIG. 16 are observed, the magnitude relationship among the average reflectances Rv (R%), Rv (G%), and Rv (B%) varies from sample to sample. Therefore, it was decided to measure the color value of the sample.
具体的に、通常の色彩値測定で求める反射色三刺激値法の三刺激値X、Y、Zの表示方法を参考にして、RGB反射率の色度値表示を次の式から求めることにした。
Specifically, with reference to the display method of tristimulus values X, Y, and Z of the reflected color tristimulus value method obtained by normal color value measurement, the chromaticity value display of RGB reflectance is obtained from the following formula did.
XYZ値法では、Yxyで色彩値を表現している。色度値x、yは次式で表される。
x=X/(X+Y+Z) (4)
y=Y/(X+Y+Z) (5)
z=Z/(X+Y+Z) (6) In the XYZ value method, color values are expressed in Yxy. The chromaticity values x and y are expressed by the following equations.
x = X / (X + Y + Z) (4)
y = Y / (X + Y + Z) (5)
z = Z / (X + Y + Z) (6)
x=X/(X+Y+Z) (4)
y=Y/(X+Y+Z) (5)
z=Z/(X+Y+Z) (6) In the XYZ value method, color values are expressed in Yxy. The chromaticity values x and y are expressed by the following equations.
x = X / (X + Y + Z) (4)
y = Y / (X + Y + Z) (5)
z = Z / (X + Y + Z) (6)
本発明ではカラービデオカメラを使用しているのでそのRGB信号から色度値を定義する。色度値の計算方法を以下に示す。
X=Rv(R)、Y=Rv(G)、Z=Rv(B) (7) Since a color video camera is used in the present invention, chromaticity values are defined from the RGB signals. The calculation method of the chromaticity value is shown below.
X = Rv (R), Y = Rv (G), Z = Rv (B) (7)
X=Rv(R)、Y=Rv(G)、Z=Rv(B) (7) Since a color video camera is used in the present invention, chromaticity values are defined from the RGB signals. The calculation method of the chromaticity value is shown below.
X = Rv (R), Y = Rv (G), Z = Rv (B) (7)
カラービデオ色をGrbで表すことにする。
r=Rv(R)/Σ{Rv(R、G、B) (8)
g=Rv(G)/Σ{Rv(R、G、B) (9)
b=Rv(B)/Σ{Rv(R、G、B) (10) Let Grb represent the color video color.
r = Rv (R) / Σ {Rv (R, G, B) (8)
g = Rv (G) / Σ {Rv (R, G, B) (9)
b = Rv (B) / Σ {Rv (R, G, B) (10)
r=Rv(R)/Σ{Rv(R、G、B) (8)
g=Rv(G)/Σ{Rv(R、G、B) (9)
b=Rv(B)/Σ{Rv(R、G、B) (10) Let Grb represent the color video color.
r = Rv (R) / Σ {Rv (R, G, B) (8)
g = Rv (G) / Σ {Rv (R, G, B) (9)
b = Rv (B) / Σ {Rv (R, G, B) (10)
色度値を(r、b)としたのは、黒色の材料の反射率分布で長波長側(R)と短波長側(B)が増えるかどうかを見た方が、直感的であると判断したからである。Yxy法とならって色度値を(r、g)としても良い。
The chromaticity value is (r, b) because it is more intuitive to see if the long wavelength side (R) and short wavelength side (B) increase in the reflectance distribution of the black material. This is because it was judged. Similar to the Yxy method, the chromaticity value may be (r, g).
図21は、負極のプレス前、大径、No.3、No.4、No.5、プレス後の色度表示を示す図である。図21の横軸は、式(8)から求めたrを示し、縦軸は、式(10)から求めたbを示す。
FIG. 21 shows the negative electrode before pressing, large diameter, no. 3, no. 4, no. 5 is a diagram showing chromaticity display after pressing. The horizontal axis of FIG. 21 indicates r obtained from Expression (8), and the vertical axis indicates b obtained from Expression (10).
図21には、状態ごとの平均値も図示した。プレス前とプレス後の平均色度値は(r=0.334、b=0.362)と(0.330、0.331)であり、明確に異なる。また加圧により、色度値の平均値は、プレス前→大径加圧→No.3加圧→No.4加圧→No.5加圧→プレス後と(r、b)座標上を交わることなく、中心点が移動している。
FIG. 21 also shows the average value for each state. The average chromaticity values before and after pressing are (r = 0.334, b = 0.362) and (0.330, 0.331), which are clearly different. Also, by pressing, the average value of chromaticity values is as follows: before pressing → large diameter pressing → No. 3 pressing → No. 4 pressing → No. 5 pressing → after pressing and (r, b) coordinates. The center point moves without intersecting.
このことは、プレス前からプレス後にかけて色相も一様に変化していることになる。
This means that the hue changes uniformly from before to after pressing.
塗工プロセスの乾燥後に、色度座標変化をモニターして、この値が大きく変化した場合には、
均一な塗工ができていないという情報を提供することができる。 After drying the coating process, monitor the chromaticity coordinate change and if this value changes significantly,
Information that uniform coating is not completed can be provided.
均一な塗工ができていないという情報を提供することができる。 After drying the coating process, monitor the chromaticity coordinate change and if this value changes significantly,
Information that uniform coating is not completed can be provided.
図22は、正極サンプル及び負極サンプルのプレス前とプレス後の色度値座標を示す図である。図22の横軸は、式(8)から求めたrを示し、縦軸は、式(10)から求めたbを示す。図22によれば、正極サンプル及び負極サンプルについて、プレス前とプレス後の色度値は明らかに異なる。したがって、本発明の測定装置により、正極及び負極のプレスの状態を測定することができる。
FIG. 22 is a diagram showing chromaticity value coordinates before and after pressing of the positive electrode sample and the negative electrode sample. The horizontal axis of FIG. 22 represents r obtained from the equation (8), and the vertical axis represents b obtained from the equation (10). According to FIG. 22, the chromaticity values before and after pressing are clearly different for the positive electrode sample and the negative electrode sample. Therefore, the press state of the positive electrode and the negative electrode can be measured by the measuring apparatus of the present invention.
本実施形態の測定装置は、二次元画像計測を行うので、間欠塗工の吐出直後、停止直後の測定も可能である。この場合の装置の測定装置の設置場所は、塗工直後が望ましい。また、ウエットの状態でも、上記に示した計算方法を応用できる可能性が高い。
Since the measuring apparatus of the present embodiment performs two-dimensional image measurement, it is possible to perform measurement immediately after ejection of intermittent coating and immediately after stopping. In this case, the measuring device is preferably installed immediately after coating. In addition, even in the wet state, there is a high possibility that the calculation method shown above can be applied.
また、基材のアルミニウム、銅の表面が酸化された場合には、電極としての性能が劣化する。基材の色測定については、未塗工部の反射色を測定すればよい。この場合には反射率が高いので、高反射率校正板が必要になる。また、対象に応じてシャッター時間を調整する必要がある。反射率への変換は、表1、表2で示した考え方で行うことができる。色度値についても同様である。このように、本実施形態の測定装置は基材の測定にも使用することができる。
Also, when the surface of aluminum or copper as a base material is oxidized, the performance as an electrode deteriorates. What is necessary is just to measure the reflective color of an uncoated part about the color measurement of a base material. In this case, since the reflectance is high, a high reflectance calibration plate is required. In addition, it is necessary to adjust the shutter time according to the target. Conversion to reflectance can be performed based on the concept shown in Tables 1 and 2. The same applies to the chromaticity value. Thus, the measuring apparatus of this embodiment can be used also for the measurement of a base material.
上述の実施形態においては、校正板を使用して反射輝度を反射率に変換して膜厚及び膜の密度との関係を求めて測定を行った。しかし、使用目的によっては、反射輝度と膜厚及び膜の密度との関係を求めて測定を行ってもよい。この場合には校正板は不要である。
In the above-described embodiment, the measurement was performed by calculating the relationship between the film thickness and the film density by converting the reflection luminance into the reflectance using a calibration plate. However, depending on the purpose of use, the measurement may be performed by obtaining the relationship between the reflected luminance, the film thickness, and the film density. In this case, a calibration plate is not necessary.
また、上述の実施形態においては、対象が黒色であり反射輝度が小さいので、準黒体を使用して光学系内部の反射を除去する処理を行った。しかし、反射輝度が大きい対象の場合には、準黒体を使用する必要はない。その場合にも、反射輝度の平均値と膜厚との関係及び反射輝度の標準偏差と密度との関係を利用して測定を行うことができる。
Further, in the above-described embodiment, since the target is black and the reflection luminance is low, the process of removing the reflection inside the optical system is performed using a quasi-black body. However, it is not necessary to use a quasi-black body in the case of an object having a high reflection luminance. Even in such a case, the measurement can be performed using the relationship between the average value of the reflected luminance and the film thickness and the relationship between the standard deviation of the reflected luminance and the density.
本実施形態の測定装置は、塗工ライン、塗工後のプレスラインの片面もしくは両面に設置し、駆動装置により幅方向に移動させ、幅方向とライン走行方向の膜厚、密度、色度値の測定を行うことも可能である。その場合に、円筒状黒体空洞及び反射率校正板をラインの外側に設置しておき、一定時間ごとに校正することが望ましい。これは自動シーケンスを組むことにより、自動的に行える。
The measuring device of this embodiment is installed on one side or both sides of the coating line and the press line after coating, moved in the width direction by the driving device, and the film thickness, density, and chromaticity value in the width direction and the line running direction. It is also possible to make measurements. In that case, it is desirable that the cylindrical black body cavity and the reflectance calibration plate be installed outside the line and calibrated at regular intervals. This can be done automatically by creating an automatic sequence.
本実施形態の測定装置は、オフライン器としても使用可能である。
The measuring device of this embodiment can also be used as an off-line device.
本実施形態の測定装置に使用したカメラは、水平走査線の数を減らすと1画像の取り込み時間が短くなり、短周期での測定が可能である。現在画面縦方向が1,200ラインであるので、測定ラインを200ラインとしたときに、1周期が1/6と短くなる。通常の測定は30Hzであるが180Hzの測定が可能となり、さらに応答性の高い測定が可能となる。
The camera used in the measurement apparatus of the present embodiment reduces the time for capturing one image when the number of horizontal scanning lines is reduced, and can measure in a short cycle. Currently, the vertical direction of the screen is 1,200 lines, so when the measurement line is 200 lines, one cycle is shortened to 1/6. Normal measurement is 30Hz, but 180Hz measurement is possible, and more responsive measurement is possible.
Claims (11)
- 光源を含む光学系と撮像部とデータ処理部とを備え、前記光学系によって表面に膜を備えた基材からなる電池電極板である対象を照射し、照射された前記対象の画像を前記撮像部によって取得し、前記対象の画像を前記データ処理部によって処理するように構成された測定装置であって、
前記データ処理部は、前記対象の画像のデータと予め測定した準黒体の画像のデータとから、前記対象の画像の各画素について前記光学系内部の反射を除去した反射輝度を求め、前記各画素についての前記光学系内部の反射を除去した反射輝度を使用して、前記膜の厚さ、前記膜の密度及び前記膜の色度値の少なくとも一つを求めるように構成された測定装置。 An optical system including a light source, an imaging unit, and a data processing unit are provided. The optical system irradiates a target, which is a battery electrode plate made of a base material having a film on the surface, and captures an image of the irradiated target A measuring device configured to be acquired by a processing unit and to process the target image by the data processing unit,
The data processing unit obtains a reflection luminance obtained by removing reflection inside the optical system for each pixel of the target image from the data of the target image and the data of the quasi-black body image measured in advance. A measurement apparatus configured to obtain at least one of the thickness of the film, the density of the film, and the chromaticity value of the film using a reflection luminance obtained by removing reflection inside the optical system for the pixel. - 前記データ処理部は、前記各画素についての反射輝度の標準偏差を使用して、前記膜の密度を求めるように構成された請求項1に記載の測定装置。 The measurement apparatus according to claim 1, wherein the data processing unit is configured to obtain the density of the film using a standard deviation of reflection luminance for each pixel.
- 前記データ処理部は、前記各画素についての反射輝度の平均値を使用して、前記膜の厚さを求めるように構成された請求項1または2に記載の測定装置。 The measurement apparatus according to claim 1 or 2, wherein the data processing unit is configured to obtain the thickness of the film using an average value of reflection luminance for each pixel.
- 前記撮像部は、前記対象のカラーの画像を取得し、前記データ処理部は、前記対象のカラーの画像の各画素の反射輝度を使用して、前記対象の色度値を求めるように構成された請求項1から3のいずれかに記載の測定装置。 The imaging unit is configured to acquire an image of the target color, and the data processing unit is configured to obtain a chromaticity value of the target using a reflection luminance of each pixel of the target color image. The measuring apparatus according to claim 1.
- 前記光学系は、前記対象の面に垂直に平行光を照射するように構成された請求項1から4のいずれかに記載の測定装置。 The measuring apparatus according to any one of claims 1 to 4, wherein the optical system is configured to irradiate parallel light perpendicularly to the surface of the object.
- 前記撮像部は、前記対象の2次元の画像を取得する請求項1から5のいずれかに記載の測定装置。 The measuring apparatus according to claim 1, wherein the imaging unit acquires a two-dimensional image of the target.
- 光源を含む光学系と撮像部とデータ処理部とを備え、前記光学系によって表面に膜を備えた基材からなる電池電極板である対象を照射し、照射された前記対象の画像を前記撮像部によって取得し、前記対象の画像を前記データ処理部によって処理するように構成された測定装置であって、
前記データ処理部は、前記対象の画像の各画素について反射輝度を求め、前記各画素についての反射輝度の標準偏差を使用して、前記膜の密度を求めるように構成された測定装置。 An optical system including a light source, an imaging unit, and a data processing unit are provided. The optical system irradiates a target, which is a battery electrode plate made of a base material having a film on the surface, and captures an image of the irradiated target A measuring device configured to be acquired by a processing unit and to process the target image by the data processing unit,
The measurement apparatus configured to obtain a reflection luminance for each pixel of the target image and obtain a density of the film using a standard deviation of the reflection luminance for each pixel. - 電池電極板の基材の表面に備わる膜の厚さ、膜の密度及び膜の色度値の少なくとも一つを測定する測定方法であって、
電池電極板である対象に光を照射するステップと、
前記対象の画像を取得するステップと、
前記対象の画像のデータと準黒体の画像のデータとから、各画素について前記光学系内部の反射を除去した前記対象の反射輝度を求めるステップと、
各画素についての前記光学系内部の反射を除去した前記対象の反射輝度を使用して、前記膜の厚さ、前記膜の密度及び前記膜の色度値の少なくとも一つを求めるステップと、を含む測定方法。 A measurement method for measuring at least one of a film thickness, a film density, and a film chromaticity value provided on a surface of a substrate of a battery electrode plate,
Irradiating light to an object that is a battery electrode plate;
Obtaining an image of the object;
From the data of the target image and the data of the quasi-blackbody image, obtaining the reflection luminance of the target with the reflection inside the optical system removed for each pixel;
Determining at least one of the thickness of the film, the density of the film, and the chromaticity value of the film using the reflected luminance of the object from which reflection inside the optical system for each pixel is removed; and Including measurement methods. - 前記各画素についての反射輝度の標準偏差を使用して、前記膜の密度を求める請求項8に記載の測定方法。 The measurement method according to claim 8, wherein the density of the film is obtained by using a standard deviation of reflected luminance for each pixel.
- 前記各画素についての反射輝度の平均値を使用して、前記膜の厚さを求める請求項8または9に記載の測定方法。 The measurement method according to claim 8 or 9, wherein the thickness of the film is obtained using an average value of reflection luminance for each pixel.
- 校正板を使用して反射輝度から反射率を求め、前記反射率を使用して前記膜の厚さ、前記膜の密度及び前記膜の色度値の少なくとも一つを求める請求項8から10のいずれかに記載の測定方法。 11. The reflectivity is obtained from reflection luminance using a calibration plate, and at least one of the thickness of the film, the density of the film, and the chromaticity value of the film is obtained using the reflectivity. The measuring method in any one.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/052174 WO2014118934A1 (en) | 2013-01-31 | 2013-01-31 | Film measuring device and film measuring method for battery electrode plate |
JP2013512682A JP5318303B1 (en) | 2013-01-31 | 2013-01-31 | Battery electrode plate film measuring apparatus and film measuring method |
JP2013168217A JP2014149286A (en) | 2013-01-31 | 2013-08-13 | Surface roughness measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/052174 WO2014118934A1 (en) | 2013-01-31 | 2013-01-31 | Film measuring device and film measuring method for battery electrode plate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014118934A1 true WO2014118934A1 (en) | 2014-08-07 |
Family
ID=49595797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/052174 WO2014118934A1 (en) | 2013-01-31 | 2013-01-31 | Film measuring device and film measuring method for battery electrode plate |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5318303B1 (en) |
WO (1) | WO2014118934A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110108239A (en) * | 2019-05-21 | 2019-08-09 | 东莞维科电池有限公司 | Pole piece new Methods of Quality Information Acquisition method, system and equipment |
CN115336032A (en) * | 2020-04-13 | 2022-11-11 | 株式会社Lg新能源 | Electrode quality evaluation method and electrode manufacturing method |
JP2023513068A (en) * | 2020-09-10 | 2023-03-30 | エルジー エナジー ソリューション リミテッド | Electrode drying device and electrode drying method |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6585842B2 (en) * | 2016-06-08 | 2019-10-02 | 株式会社エンビジョンAescジャパン | Nonaqueous electrolyte secondary battery |
WO2017212594A1 (en) * | 2016-06-08 | 2017-12-14 | 日産自動車株式会社 | Nonaqueous electrolyte secondary battery |
CN108956372B (en) * | 2018-09-21 | 2023-12-26 | 开封市测控技术有限公司 | Point inspection device for surface density measuring instrument and calibration method thereof |
KR102704976B1 (en) | 2020-04-13 | 2024-09-09 | 주식회사 엘지에너지솔루션 | Quality evaluation method of electrode and manufacturing method of electrode |
US11971344B2 (en) | 2020-04-13 | 2024-04-30 | Lg Energy Solution, Ltd. | Electrode quality evaluation method and electrode manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10239027A (en) * | 1997-02-27 | 1998-09-11 | Chuo Seiki Kk | Film thickness measuring device |
JP2007066821A (en) * | 2005-09-02 | 2007-03-15 | Matsushita Electric Ind Co Ltd | Film measuring instrument for porous film on battery electrode plate, and coating apparatus using the same |
JP2012209074A (en) * | 2011-03-29 | 2012-10-25 | Toray Eng Co Ltd | Apparatus for manufacturing electrode plate |
-
2013
- 2013-01-31 WO PCT/JP2013/052174 patent/WO2014118934A1/en active Application Filing
- 2013-01-31 JP JP2013512682A patent/JP5318303B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10239027A (en) * | 1997-02-27 | 1998-09-11 | Chuo Seiki Kk | Film thickness measuring device |
JP2007066821A (en) * | 2005-09-02 | 2007-03-15 | Matsushita Electric Ind Co Ltd | Film measuring instrument for porous film on battery electrode plate, and coating apparatus using the same |
JP2012209074A (en) * | 2011-03-29 | 2012-10-25 | Toray Eng Co Ltd | Apparatus for manufacturing electrode plate |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110108239A (en) * | 2019-05-21 | 2019-08-09 | 东莞维科电池有限公司 | Pole piece new Methods of Quality Information Acquisition method, system and equipment |
CN115336032A (en) * | 2020-04-13 | 2022-11-11 | 株式会社Lg新能源 | Electrode quality evaluation method and electrode manufacturing method |
JP2023513068A (en) * | 2020-09-10 | 2023-03-30 | エルジー エナジー ソリューション リミテッド | Electrode drying device and electrode drying method |
JP7546952B2 (en) | 2020-09-10 | 2024-09-09 | エルジー エナジー ソリューション リミテッド | Electrode drying device and electrode drying method |
Also Published As
Publication number | Publication date |
---|---|
JP5318303B1 (en) | 2013-10-16 |
JPWO2014118934A1 (en) | 2017-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5318303B1 (en) | Battery electrode plate film measuring apparatus and film measuring method | |
JP4797593B2 (en) | Gloss measuring apparatus and program | |
EA009014B1 (en) | System, method and coating for strain analysis | |
US20160282279A1 (en) | Multiscale uniformity analysis of a material | |
US11099063B2 (en) | Apparatus and method for profiling a beam of a light emitting semiconductor device | |
KR101291914B1 (en) | Method for light emitting module's optical axis measuring | |
JPH0420845A (en) | Method for measuring gloss irregularity | |
RU2515123C1 (en) | Method of mould control | |
US20120105860A1 (en) | Method and device for carrying out an optical comparison between at least two samples, preferably by comparing sections that can be selected | |
JP2014149286A (en) | Surface roughness measurement device | |
CN115683937A (en) | Lithium battery pole piece surface density detection system and method based on linear array photoelectric sensor | |
WO2002039076A1 (en) | Method for correcting sensor output | |
WO2014118935A1 (en) | Surface roughness measuring device and surface roughness measuring method | |
JPH03252512A (en) | Method and device for on-line measurement of oil film or coated film | |
JPWO2002039094A1 (en) | Measurement method and apparatus using image sensor | |
JP2015178995A (en) | Tone calibration device, imaging device and tone inspection device | |
US6515293B1 (en) | Method and apparatus for detecting thickness of thin layer formed on a wafer | |
TWI719610B (en) | Method of spectral analysing with a color camera | |
TWI416063B (en) | Method of measuring the amount of glue | |
CN115200477B (en) | Measuring device and method for pole piece | |
CN114838815B (en) | Device and method for representing uniformity of laser illumination light in multiple dimensions | |
WO2024171934A1 (en) | Inspection device | |
JP2015121461A (en) | Color evaluation method | |
JPH0540422Y2 (en) | ||
JP2006292668A (en) | Surface inspection device and surface inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013512682 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13873207 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13873207 Country of ref document: EP Kind code of ref document: A1 |