[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014199595A1 - シートヒータ - Google Patents

シートヒータ Download PDF

Info

Publication number
WO2014199595A1
WO2014199595A1 PCT/JP2014/002963 JP2014002963W WO2014199595A1 WO 2014199595 A1 WO2014199595 A1 WO 2014199595A1 JP 2014002963 W JP2014002963 W JP 2014002963W WO 2014199595 A1 WO2014199595 A1 WO 2014199595A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
airgel
silica
planar heating
layer
Prior art date
Application number
PCT/JP2014/002963
Other languages
English (en)
French (fr)
Inventor
茂昭 酒谷
一摩 及川
高田 健太郎
阿部 憲生
孝昭 兵頭
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201480029028.6A priority Critical patent/CN105228492B/zh
Priority to JP2015522518A priority patent/JP6134916B2/ja
Priority to EP14811442.4A priority patent/EP3009049B1/en
Priority to US14/774,667 priority patent/US9936539B2/en
Publication of WO2014199595A1 publication Critical patent/WO2014199595A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/36Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heating conductor embedded in insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/56Heating or ventilating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/56Heating or ventilating devices
    • B60N2/5678Heating or ventilating devices characterised by electrical systems
    • B60N2/5685Resistance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/342Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/029Heaters specially adapted for seat warmers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/037Heaters with zones of different power density

Definitions

  • the present invention relates to a heat insulating structure for providing a seat using a heat efficient heating seat in a heating seat.
  • Conventional heating seats for example, have been provided with a seat heater sandwiched between a cushion member of the seat and an outer skin member covering the seat (see, for example, a seat installed in an automobile) (for example, Patent Document 1).
  • Such seat heaters are installed in automobiles and the like in order to improve comfort in cold weather.
  • FIG. 9 is a cross-sectional view of a conventional heating seat 901.
  • a skin 903 is disposed so as to cover from above the cushion portion 902 of the seat 901 installed in the automobile vehicle.
  • a seat heater 904 is disposed between the skin 903 and the cushion portion 902 (Patent Document 1).
  • the seat heater 904 is a seat-shaped electric heater that warms the occupant's buttocks through the skin 903. Or it can warm your back.
  • the seat heater 904 has a structure in which a heating wire made of copper or the like is sewn or attached to a fibrous material such as a nonwoven fabric.
  • the conventional heating seat 901 heat generated from the seat heater 904 is transmitted by heat conduction to the skin 903, and warms the butt of the passenger.
  • part of the heat generated from the seat heater 904 also moves to the cushion portion 902 due to heat conduction and is used to increase the temperature of the cushion portion 902. Accordingly, the electrical energy generated in the vehicle by the amount of heat transferred to the cushion portion 902 is not used for the original heating application. For this reason, there has been a problem that fuel consumption is reduced.
  • Patent Document 2 In order to suppress heat transfer to the cushion portion 902 side, a structure in which a heat insulating material is installed between the cushion portion 902 and the seat heater 904 has been proposed (Patent Document 2).
  • Patent Document 2 a vacuum heat insulating material obtained by vacuum-sealing a core material made of silica-based fibers such as glass wool with a laminate film is used as a heat insulating material.
  • the heat insulating material suppresses heat from which part of heat generated from the seat heater 904 escapes to the cushion portion 902. This can be expected to promote the rise in temperature on the skin 903 side.
  • the heat transfer from the seat heater 904 to the cushion portion 902 is provided between the cushion portion 902 and the seat heater 904 by disposing a heat insulator having a thermal conductivity smaller than that of the cushion portion 902. It is suggested that the seat 901 can be heated with a smaller amount of heat generated from the planar heating element.
  • Patent Document 2 has an effect of suppressing heat escaping to the cushion portion 902 by the heat insulator between the cushion portion 902 and the seat heater 904.
  • heat is transmitted to the cushion layer 902 through the air layer included in the heat insulating body, so that there is a problem that the heat escapes.
  • the present invention solves the above-mentioned conventional problems, and in a heating seat 901, the heat insulating structure for suppressing the heat transfer to the cushion portion 902 provided in the seat 901 and providing a heat-efficient heating seat 901 is provided. It is about.
  • the sheet heater of the present invention is a porous material having fine pores of 68 nm or less, which is a mean free step of air, in a part or all of a fibrous base material such as a nonwoven fabric. It has a structure that holds an airgel layer made of silica. In this layer, an excellent heat insulating effect is exhibited by preventing the heat transport by air. The heat generated by the heating wire provided on the surface layer of the fiber is prevented from conducting heat in the airgel layer. For this reason, heat is efficiently transmitted to a necessary portion.
  • the sheet heater including the porous silica of the present invention it is possible to selectively control heat conduction and heat insulation by suppressing heat conduction through the air layer while using a flexible fiber base material.
  • the heat generated by the heating wire of the heater can be made uniform quickly and efficiently in the plane.
  • FIG. 1A is a cross-sectional view of a heating seat in Embodiment 1.
  • FIG. 1B is a cross-sectional view of the planar heating element of the first embodiment.
  • FIG. 2 is a flowchart of the manufacturing process of the planar heating element in the first embodiment.
  • FIG. 3 is a cross-sectional view of the sheet heating element according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the planar heating element of Comparative Example 1.
  • FIG. 5 is a cross-sectional view of the sheet heating element according to the second embodiment.
  • FIG. 6 is a cross-sectional view of the planar heating element of the second embodiment.
  • FIG. 7A is a cross-sectional view of the planar heating element of Example 3.
  • FIG. 7B is a cross-sectional view of the planar heating element of Example 4.
  • FIG. 7C is a cross-sectional view of the planar heating element of Example 5.
  • FIG. 8 is a cross-sectional view of the planar heating element of Example 6.
  • FIG. 9 is a schematic cross-sectional view of a conventional heating seat described in Patent Document 1. As shown in FIG.
  • FIG. 1A represents a schematic cross-sectional view of a heating seat 901 in Embodiment 1
  • FIG. 1B is a schematic cross-sectional view of a seat heater for an automobile seat in Embodiment 1.
  • FIG. 1A and FIG. 1B the same components as those in FIG.
  • FIG. 1A 1st Embodiment is described using FIG. 1A and FIG. 1B.
  • FIG. 1A is a sectional view of a seat 901 for heating an automobile.
  • the seat 901 includes a cushion part 902, a sheet heating element 101 disposed on the cushion part 902, and a skin 903 disposed on the sheet heating element 101.
  • FIG. 1B is a cross-sectional view of planar heating element 101 in the first embodiment.
  • the upper side is the front side of the vehicle body
  • the lower side is the rear side of the vehicle body.
  • the planar heating element 101 includes a heating wire 201, a fiber layer 101b, and an airgel layer 101a made of silica arranged in a gap between the fibers.
  • the heating wire 201 is an electrode formed by forming an electric heater wire into a planar shape, printing a PTC (positive temperature coefficient) resistor and an electrode, and extruding a PTC resistor into a thin film sheet. Along with that, it is thermocompression bonded to a nonwoven fabric or a resin sheet.
  • the fiber layer 101b is a composite fiber containing cellulose (polyethylene terephthalate), pulp, or the like, a cellulose fiber, a resin fiber such as polypropylene or PVA (polyvinyl alcohol), or a nonwoven fabric. More preferably, from the viewpoint of safety, a fiber subjected to a flame retardant treatment should be used. For example, it is considered that a phosphorus-based one is suitable as a flame retardant. Further, inorganic fibers such as glass wool may be used.
  • silica aerogel powder having a particle diameter of 100 nm to 500 ⁇ m.
  • the powder is smaller than this particle size, the specific surface area will increase extremely. As a result, the viscosity increase of the resin is large, and the moldability is impaired.
  • a silica airgel layer 101a is included in a lower portion of the fiber layer 101b in a fiber portion connected to the fiber layer 101b.
  • a heating wire 201 made of copper or the like is sewed and attached to a fiber layer 101b made only of fibers with a thread material or the like.
  • the opening part may be provided in the predetermined location.
  • the airgel layer 101a made of silica is a layer that exists in a form in which the airgel enters the voids of the fiber layer 101b and is replaced with air.
  • This airgel has a porous structure including pores on the order of several tens of nm.
  • the heat insulating performance of the silica airgel layer 101a is generally 0.01 W / m ⁇ K to 0.03 W / m ⁇ K.
  • non-woven fabrics and heat insulating glass wool using fibers such as PET generally have a thermal conductivity of 0.04 W / m ⁇ K to 0.07 W / m ⁇ K.
  • the soft urethane foam of the cushion portion 902 used for the seat 901 of an automobile generally has a thermal conductivity of 0.04 W / m ⁇ K to 0.06 W / m ⁇ K. Accordingly, the airgel layer 101a has lower thermal conductivity and higher heat insulation performance than the fiber layer 101b containing only fibers and the cushion portion 902.
  • the airgel layer 101a having a thermal conductivity smaller than that of the cushion portion 902 and the fiber layer 101b is disposed inside the planar heating element 101.
  • heat transfer from the planar heating element 101 to the cushion portion 902 can be suppressed.
  • the seat 901 can be heated with a smaller amount of heat generated from the sheet heating element 101, and an energy saving effect is obtained. Further, the seat 901 can be heated with a smaller amount of heat generation.
  • the electric power input to the planar heating element 101 is configured as described above. Can be reduced. For this reason, fuel required for power generation can be saved, and fuel consumption can be reduced.
  • capacitance of the generator for power generation and the storage battery which stores the generated electricity can be made small. This reduces the weight, which leads to a reduction in fuel consumption.
  • the airgel layer 101a basically follows the fiber and remains flexible because it is held by the fiber. Therefore, the sitting feeling is not hindered.
  • silica aerogel which is a porous body of silica having pores of 10 nm or more and 68 nm or less is preferable. It is a heat insulating material component whose thermal conductivity is lower than that of air. Heat transfer from the planar heating element 101 to the cushion portion 902 can be suppressed, and the seat 901 can be heated with a smaller calorific value from the planar heating element 101.
  • the air can move freely in the pores because it is larger than 68 nm, which is the mean free path of air.
  • the airgel produced in the present invention is not formed with independent pores but is formed in a form in which the pores are connected. Therefore, the air which exists in the pore of an airgel moves freely, and the effect which suppresses heat conduction of air will become thin.
  • the above pore size is an average value. If the average value is in the above range, the above effect can be obtained as a whole.
  • the size of all the pores is not the average value but the above numerical range.
  • the contact angle of water is larger than 110 degrees, the water in contact with the airgel surface becomes nearly spherical and can be prevented from being drawn into the pores of the gel by capillary action.
  • It is preferably 120 to 150 degrees with 10 degrees from both ends.
  • the functional group is composed of a trimethylsilyl group or a methyl group, it can suppress a hydrogen bond with a water molecule like a hydroxyl group or a carboxyl group having a hydroxyl group.
  • the starting material for silica airgel is alkoxysilane or water glass. It is a porous silica material produced using a sol-gel synthesis reaction. Since it is an aggregate in which fine particles are connected, it can be deformed when a load is applied to the seat 901 by the sitting of a human body. As a result, the seating feeling of the cushion is not hindered.
  • the pores are not independent, but are formed in a form in which the pores are connected, and the primary particles of silica are connected in a daisy chain. If it is this structure, it can deform
  • the silica aerogel is preferably a powder mainly composed of silica powder such as fumed silica such as aerosil, colloidal silica, hollow silica having a hollow structure, etc., as reinforcing fine particles having a gel skeleton in a porous silica. It is preferable that the particle diameter is 10 nm or more and 200 nm or less.
  • Silica powder such as fumed silica such as aerosil or colloidal silica or hollow silica having a hollow structure is hydrophilic having a hydrophilic group on the surface and can be uniformly dispersed in alkoxysilane or water glass.
  • the above particle diameter is an average value. Even if it is a three-dimensional structure and all of them are not in the above numerical range, the above-mentioned effects can be obtained as a whole if they are in the above range on average.
  • the formation of the airgel layer 101a includes a sol adjustment process, an impregnation process, a curing process, a hydrophobization process, and a drying process, as shown in FIG.
  • the aqueous sodium water glass solution is adjusted to pH 3 or less with an acidic ion exchange resin or mineral acid.
  • the SiO2 concentration at this time is 6 wt% or more and 20 wt% or less, more preferably 8 wt% or more and 17 wt% or less.
  • the concentration is lower than 6 wt%, the gel skeleton is weak, so that it shrinks due to the stress applied to the gel during drying, and a porous body cannot be obtained.
  • the concentration is higher than 20 wt%, the skeleton is sufficient, but the concentration variation easily occurs and gelation proceeds rapidly, so that it is difficult to obtain a uniform gel.
  • a time required for impregnating the fibers for example, a gelation time of 5 minutes or more can be secured, and a uniform gel can be obtained. Therefore, it can be said to be an appropriate concentration range from the viewpoint of workability and gel physical properties.
  • the acidic ion exchange resin a resin having a sulfo group is preferable, and when adding a mineral acid, hydrochloric acid or sulfuric acid is suitable.
  • the base added at this time may be ammonia water, NaOH, KOH or the like, but is not limited thereto.
  • the impregnation method at this time may be a dipping method, a coating method, or drawing, but it is necessary to complete the impregnation until the gelation is completed.
  • the fibers are allowed to stand at 20 ° to 100 °, more preferably 80 ° to 100 °.
  • the organic solvent may be, for example, IPA, ethanol, petrolatum, toluene, xylene and the like.
  • toluene and xylene which are non-polar solvents that do not mix with water, are only effective in preventing drying of the gel surface from the viewpoint of incompatibility due to penetration into the gel. There is no concern.
  • the necessary time is 1 hour or more, preferably 10 hours or more.
  • gelation proceeds with time, but it takes time to form a gel skeleton. For example, in the case of 10 degrees, it is necessary to stand for 50 hours.
  • it is preferably between 80 ° and less than 100 °, more preferably between 80 ° and 95 °. This is because if it is close to 100 degrees, the evaporation is not good.
  • the gel has the shape of a porous body, but the wall of the gel is hydrophilic including silanol groups, so the porous body is destroyed and contracted by the stress depending on the surface tension of water during drying. End up.
  • ⁇ Hydrophobicization process> In order to prevent this shrinkage behavior, the surface of the gel is replaced with hydrophobic groups.
  • a liquid used for the hydrophobization mono, di, or trimethylchlorosilane, trimethylmethoxysilane, or hexamethyldisiloxane is reacted with hydrochloric acid. This reaction should be carried out at 20 to 100 degrees, more preferably 30 to 70 degrees. In addition, acceleration by ultrasonic waves is an effective means for this reaction.
  • the silanol group is replaced with, for example, a trimethylsilyl group, and the gel surface and the porous wall surface inside the gel are replaced with hydrophobic properties.
  • water may be replaced with an organic solvent before hydrophobization.
  • the organic solvent used is generally an aliphatic alcohol, ether, ester, or ketone, or an aliphatic or aromatic hydrocarbon.
  • Preferred solvents are methanol, ethanol, isopropyl alcohol, acetone, etc., and a mixture thereof may be used.
  • the fiber which has the desired airgel layer 101a can be created by drying the containing solution.
  • drying may be performed by raising the temperature to the boiling point of the solvent or by taking time below the boiling point, and further, a drying method using supercritical or a drying method using microwaves may be used.
  • Example 1 As the fiber to be impregnated with the airgel layer 301a, a fiber made of PET having a thickness of 1 mm, a fiber basis weight of 105 g / m 2 and a fiber diameter of about 30 ⁇ m was selected.
  • the theoretical value is calculated so that half the fiber thickness is filled with the gel, and PET and sol solution are uniformly applied to the fiber from the surface layer at a weight ratio of 1: 2.5, and gelled in the fiber. It was.
  • the fibers were immersed in a mixed solution of hexamethyldisiloxane, 12N hydrochloric acid and isopropyl alcohol (IPA), and left at 55 ° C. for 12 hours to hydrophobize the silanol groups on the gel surface.
  • IPA isopropyl alcohol
  • IPA IPA was used to suppress complete separation of the solution. Then, it was completed by drying for 2 hours in a 150 degree drying oven.
  • a sheet heating element 101 was formed by sewing a heating wire made of a copper wire on the obtained fiber to the PET fiber.
  • FIG. 3 is a schematic cross-sectional view of the sheet heating element 101 according to the first embodiment.
  • the planar heating element 101 has an airgel layer 301a containing aerogel only at the lower part of the PET fiber layer, and a PET fiber layer 301b made of only PET fibers at the upper part, and a heating wire 302 made of copper wire on the surface layer. It consists of the structure which has.
  • FIG. 4 is a schematic cross-sectional view of the sheet heating element 101 of Comparative Example 1 in which the airgel layer 301a is not provided with respect to Example 1. According to an experiment, it was confirmed that when the airgel layer 301a is disposed as in Example 1, the power input to the planar heating element 101 can be reduced by about 1.5% compared to the case where the airgel layer 301a is not disposed. In addition, the time taken for the in-plane temperature to equalize was also shortened by about 2 minutes.
  • Example 1 was a case where the airgel layer 301a was formed up to half of the fiber, but an application example of the impregnation structure of the airgel layer 301a is shown in FIG.
  • FIG. 5 shows an example in which a sheet heating element 101 was impregnated with the same water glass aqueous solution raw material used in Example 1 with a pH-adjusted sol solution on the entire surface of the PET fiber used in Example 1.
  • 1 is a schematic cross-sectional view of a sheet heating element 101 produced by performing a curing process, a hydrophobizing process, and a drying process similar to those of No. 1 to form an airgel layer 301a made of silica and then sewing a Cu heating wire.
  • the airgel layer 301a is impregnated on the entire surface of the PET fiber to reduce the thermal conductivity of all the fibers, such a heat insulating effect can be expected.
  • the airgel layer 301a containing the airgel in the fiber is inserted into or pasted at a desired place, that is, between the sheet heating element 101 and the cushion portion 902 by post-processing, and used as a member that enhances the heat insulation effect. The same effect can be expected.
  • FIG. 6 is a cross-sectional view of planar heating element 101 of the heating seat in the second embodiment.
  • a drawing pattern is applied in the PET fiber layer 301b by the airgel layer 301a. This can partially change the thermal conductivity.
  • the airgel layer 301 a is provided only in the lower part of the heating wire 302 of the planar heating element 101 and only in the void portion of the fiber up to the lower surface of the planar heating element 101.
  • the sheet heater is characterized by accelerating soaking in the surface direction as compared with the case where the drawing pattern of the airgel layer 301a is not formed.
  • Embodiment 1 the heat insulating properties in the in-plane direction around the heating wire 302 were the same.
  • a part of the heat generated from the heating wire 302 on the planar heating element 101 is preferentially conducted to a portion where the airgel layer 301a is not present.
  • heat equalization can be achieved more efficiently, unnecessary heat transfer can be suppressed, and an energy saving effect can be obtained.
  • Examples 3, 4, and 5 are application examples of the structure corresponding to Embodiment 2 of the present invention, and cross-sectional views thereof are shown in FIGS. 7A to 7C.
  • FIG. 7A is a cross-sectional view of a planar heating element 101 corresponding to the third embodiment.
  • an airgel layer 301a impregnated with an airgel is formed on the PET fiber layer 301b, and a PET fiber layer 301b made of only fibers not impregnated with the airgel is formed on the surface layer portion except directly under the heating wire 302.
  • An airgel layer 301 a is provided immediately below the heating wire 302.
  • the airgel layer 301 a is also provided on the entire lower surface of the planar heating element 101.
  • Each airgel layer 301a is connected.
  • the airgel layer 301 a is not provided on the upper portion of the sheet heating element 101 immediately below the heating wire 302.
  • the heat generated by the heating wire 302 is preferentially transmitted to the surface layer portion of the fiber base material of the sheet heating element 101.
  • the manufacturing method of the airgel layer 101a and the fibers used were the same as in Example 1.
  • FIG. 7B is a cross-sectional view of the planar heating element 101 corresponding to the fourth embodiment.
  • the entire lower surface of the sheet heating element 101 is the airgel layer 301a.
  • the upper part of the planar heating element 101 is as follows. In the in-plane direction of the base material of the planar heating element 101, an airgel layer 301 a is provided between the heating wires 302 in the plurality of heating wires 302 and immediately below the heating wires 302 having a smaller interval. The other is the PET fiber layer 301b.
  • an airgel layer 301a is provided just below between adjacent heating wires 302.
  • the airgel layer 301a is provided only immediately below the heating wires 302 where the heating wires 302 are small and dense.
  • the thermal conductivity of the surface portion can be made different as in Example 3.
  • heat generated by the heating wire 302 is preferentially transmitted in a direction far from the heating wire 302 of the surface layer portion of the fiber base material of the sheet heating element 101, and soaking is promoted.
  • a shortening effect was confirmed in the time until the temperature reached equilibrium.
  • the manufacturing method of the airgel layer 301a and the fibers used were the same as those in Example 1.
  • FIG. 7C is a cross-sectional view of the planar heating element 101 corresponding to the fifth embodiment.
  • the manufacturing method of the airgel layer 101a and the fibers used were the same as those in Example 1.
  • the technical idea aims to prioritize the time until the person senses the heat generated by the heating wire 302. That is, in the in-plane direction of the substrate of the planar heating element 101, the PET fiber layer 301b that does not include an airgel is provided directly below the heating wire 302 and below the adjacent heating wires 302. Alternatively, a PET fiber layer 301b that does not include an airgel may be provided below the narrower side among the plurality of heating wires 302. The other part is an airgel layer 301a. The entire lower surface of the sheet heating element 101 is also an airgel layer 301a.
  • FIG. 8 is a cross-sectional view of planar heating element 101 in the third embodiment.
  • the planar heating element 101 includes an airgel layer 301a, a PET fiber layer 301b, a heating wire 302, and a cover fiber layer 801.
  • Components other than the cover fiber layer 801 are the same as those in the first embodiment shown in FIG.
  • the cover fiber layer has a basis weight that does not affect the flexibility and cushioning properties on one or both sides in order to prevent the silica airgel particles, which are porous porous silica, from sliding off. 801 is provided to improve durability.
  • the surface remains tacky until gelation.
  • the thin cover fiber layer 801 is laminated to complete the gelation.
  • the cover fiber layer 801 can be fixed to the airgel layer 301a. Thereby, it is not necessary to provide a new adhesive layer, and it is possible to efficiently take measures against powder falling.
  • cover fiber layer 801 for example, spunbond fibers are preferable, and the basis weight of the fibers is preferably 20 g / m 2 or more and 100 g / m 2 or less.
  • the fiber thickness corresponds to a spunbond fiber having a thickness of about 0.1 to 0.3 mm. That is, when it is out of this range, the function as the cover layer cannot be satisfied.
  • the basis weight is less than 20 g / m 2 , the voids of the fibers become large, and the airgel particles slide down from the gaps of the voids, so that the protective effect cannot be sufficiently exhibited.
  • the basis weight exceeds 100 g / m 2 , the thickness increases, the influence of the thermal conductivity of the cover fiber layer 801 cannot be ignored, and the heat insulating performance of the planar heating element cannot be fully exhibited.
  • Example 6 As Example 6, a PET spunbond fiber having a thickness of 0.15 mm and a basis weight of 60 g / m 2 was used as the cover fiber layer 801. Other members are the same as those in the fifth embodiment. In the evaluation, compared with the case of Example 1, the effect was not inferior, and the energy saving effect similar to that of Example 1 could be confirmed as compared with Comparative Example 1.
  • Example 6 Although the case where only the powder fall countermeasure of one side was described was described, when the airgel appeared on the entire surface as shown in FIG. However, it can be expected to have the same powder-off measures and energy-saving effects.
  • Example 6 fibers were used for the cover fiber layer 801. However, even if an organic film such as PET having a thickness of 0.3 mm or less is laminated, powder falling can be prevented without impairing flexibility.
  • the configuration for heating on the seat surface of the seat 901 has been disclosed. A similar configuration may be applied. Moreover, you may apply the same structure when performing a radiant heating of a ceiling or a step.
  • the fiber structure itself without the heating wire 302 can be used as a heat insulating member, and the cover fiber layer 801 can be formed on both sides or one side in order to prevent the silica airgel particles from sliding off.
  • a heat insulating member maintaining excellent heat insulating performance can be formed.
  • the seat according to the present invention can be used for various heating in various seats such as an automobile, a general house, an office, an aircraft, a theater, an outdoor watching place, and an outdoor work place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Surface Heating Bodies (AREA)
  • Chair Legs, Seat Parts, And Backrests (AREA)

Abstract

上面に複数の電熱線を有し繊維層(101b)を含む面状発熱体(101)と、面状発熱体(101)の下面に位置するクッション部(902)と、面状発熱体(101)の上方に位置する表皮(903)と、を備えた座席(901)であるシートヒータであり、面状発熱体(101)は、繊維層(101b)の空隙部分に平均細孔径が10nm以上68nm以下の細孔を有するシリカの多孔体であるシリカエアロゲルを有する座席(901)であるシートヒータ。

Description

シートヒータ
 本発明は、暖房用の座席において、熱効率のよい暖房用の座席を用いた座席を提供する断熱構造に関する。
 従来の暖房用座席は、例えば、自動車車両に設置した座席に見られるように、座席のクッション部材と、それを覆う表皮部材との間にシートヒータを挟んで配設したものがあった(例えば特許文献1参照)。
 このようなシートヒータは、寒冷時の快適性を向上させる上で自動車車両等に設置される。しかし、省エネの観点から、より少ない電力量で、ヒータの機能をまかなえることが望ましい。
 特に近年では、電気自動車の普及が求められる。その結果、出来るだけエネルギー効率を上げ、少ない電力消費で暖房をまかなうことが必要である。その結果、走行距離の増加につながるため、極めて重要な技術である。そのような観点では、鉄道車両や航空機においても同じような課題を抱えていると言える。
 図9は、従来の暖房用の座席901の断面図である。自動車車両に設置された座席901のクッション部902の上側から覆うように表皮903が配設されている。シートヒータ904が、表皮903およびクッション部902の間に挟まれて配設されている(特許文献1)。シートヒータ904は、表皮903を通して乗員の尻部を暖めるシート状の電気ヒータである。または、背中を暖めるものでもある。
 一般的にシートヒータ904は、不織布などの繊維状のものに銅などからなる電熱線が縫いつけ、あるいは貼り付けられた構造からなる。
 また、従来の暖房用の座席901おいては、シートヒータ904から発生する熱が、表皮903への熱伝導により伝わり、乗員の尻部を暖める。一方で、シートヒータ904から発生する熱の一部は熱伝導によりクッション部902へも移動してクッション部902の温度上昇に使われる。従って、クッション部902へ移動した熱の分だけ車両で発生する電気エネルギーが本来の暖房用途に使われない。そのため、燃費が低下するといった課題があった。
 このクッション部902の側への熱移動を抑制するため、クッション部902とシートヒータ904との間に断熱材を設置する構造が提案されている(特許文献2)。特許文献2では断熱材として、グラスウールなどシリカ系の繊維からなる心材をラミネートフィルムによって真空封止した真空断熱材を用いている。断熱材はシートヒータ904から発生する熱の一部がクッション部902に逃げる熱を抑制する。このことによって、表皮903の側の温度の立ち上がりを促進する効果が期待できる。
 また、この座席901では、クッション部902とシートヒータ904との間にクッション部902よりも小さな熱伝導率を有した断熱体を配設することによって、シートヒータ904からクッション部902への熱移動を抑制でき、面状発熱体からのより少ない発熱量で座席901の暖房が可能となることが示唆されている。
 このことは、シートヒータ904で発熱させた熱を有効利用し、エネルギー効率を向上させるという点で大きな利点があると考えられる。
 しかしながら、従来の構成(特許文献2)では、クッション部902とシートヒータ904との間の断熱体により、クッション部902へ逃げる熱を抑制する効果はある。しかし、時間の経過とともに、熱は断熱体内に内包される空気層を伝わって、クッション部902へ伝熱するため、熱が逃げてしまうという課題があった。
 本発明は、前記従来の課題を解決するもので、暖房用の座席901において、座席901に設けたクッション部902への熱移動を抑制し、熱効率のよい暖房用の座席901を提供する断熱構造に関するものである。
特開2008-67850号公報 特開2009-268718号公報
 上記目的を達成するために、本発明のシートヒータは、不織布などの繊維状のものからなる基材の一部、あるいは、すべてに空気の平均自由工程である68nm以下の細孔を有する多孔質シリカからなるエアロゲル層を保持した構造を有する。この層では、空気による熱の輸送が妨げられることで、優れた断熱効果を発揮させる。この繊維の表層に具備された電熱線で発生させた熱は、エアロゲル層で熱伝導を妨げられる。このため、必要な箇所に効率的に、熱が伝わることを実現させる。
 本願発明の多孔質シリカを包含するシートヒータによれば、柔軟性を有する繊維基材を用いながら、空気層を介した熱伝導を抑制することで熱伝導と断熱を選択的に制御することができ、ヒータの電熱線で生じた熱を効率的にすばやく面内で均一化することができる。
図1Aは、実施の形態1における暖房用の座席の断面図である。 図1Bは、実施の形態1の面状発熱体の断面図である。 図2は、実施の形態1における面状発熱体の製造工程のフローチャートである。 図3は、実施例1の面状発熱体の断面図である。 図4は、比較例1の面状発熱体の断面図である。 図5は、実施例2の面状発熱体の断面図である。 図6は、実施の形態2の面状発熱体の断面図である。 図7Aは、実施例3の面状発熱体の断面図である。 図7Bは、実施例4の面状発熱体の断面図である。 図7Cは、実施例5の面状発熱体の断面図である。 図8は、実施例6の面状発熱体の断面図である。 図9は、特許文献1に記載された従来の暖房用の座席の断面模式図である。
 以下本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1Aは、実施の形態1における暖房用の座席901の断面模式図を表し、図1Bは、実施の形態1における自動車座席用シートヒータの断面模式図である。図1A、図1Bにおいて、図9と同じ構成要素については同じ符号を用い、説明を省略する。
 第1の実施の形態について、図1A、図1Bを用いて説明する。
 図1Aは、自動車暖房用の座席901の断面図である。図中、向かって左が車体前方側、右が車体後方側である。座席901は、クッション部902と、クッション部902上に配設された面状発熱体101と、面状発熱体101上に配設された表皮903とを備えている。
 図1Bは、実施の形態1における面状発熱体101の断面図である。同図において、配設方向として、向かって上が車体前方側、下が車体後方側である。
 面状発熱体101は、電熱線201と、繊維層101bと、その繊維間の空隙に配置されたシリカからなるエアロゲル層101aとからなる。
 <電熱線201>
 電熱線201は、電気ヒータ線を配設して面状に成形したもの、PTC(positive temperature coefficient)抵抗体と電極とを印刷したもの、PTC抵抗体を薄膜シート状に押出し成形したものを電極と共に不織布や樹脂シートに熱圧着したもの等である。
 <繊維層101b>
 繊維層101bは、PET(ポリエチレンテレフタレート)、パルプ等を含む複合繊維やセルロース系のもの、ポリプロピレンやPVA(ポリビニルアルコール)等の樹脂系の繊維、不織布である。より好ましくは、安全性の観点から繊維に難燃処理を施したものを用いるべきであり、例えば難燃剤としてはリン系のものが適すると考えられる。また、グラスウールなどの無機系の繊維でもよい。
 繊維層101bとして、樹脂シートを用いる場合は、粒子径が100nm以上から500μm以下のシリカエアロゲルの粉末を均一に混ぜ込むことが好ましい。
 この粒子径より小さい粉末の場合、比表面積が極端に増大してしまう。結果、樹脂の粘度上昇が大きく、成形性が損なわれてしまう。
 粒子径がこの範囲よりも大きい場合、粒子を分布させた時の均一性が、損なわれてしまう。結果、熱伝導率を下げる効果が低くなる。
 図1Bに示したように、繊維層101bの下部にシリカのエアロゲル層101aを、繊維層101bからつながる繊維の部分に包含している。繊維のみからなる繊維層101bに、銅などからなる電熱線201が糸材などによって縫い付け、貼り付けられている。また、表皮の吊り込み部を避けるために所定の箇所に開孔部を設けていてもよい。
 <エアロゲル層101a>
 シリカからなるエアロゲル層101aは、繊維層101bの空隙にエアロゲルが入り込み、空気に置き換わる形で存在している層である。このエアロゲルは、数10nmオーダの細孔を含む多孔体構造を有している。シリカのエアロゲル層101aの断熱性能としては、一般に、熱伝導率0.01W/m・K~0.03W/m・Kである。また、PETなどの繊維が用いられた不織布や断熱グラスウールは、一般に熱伝導率が0.04W/m・K~0.07W/m・Kである。
 一方、自動車の座席901に使用されるクッション部902の軟質ウレタンフォームは、一般に、熱伝導率は0.04W/m・K~0.06W/m・Kである。したがって、繊維のみの繊維層101bや、クッション部902と比べてエアロゲル層101aの熱伝導率は低く、断熱性能が高い。
 <効果>
 上記構成により、面状発熱体101の内部に、クッション部902、および、繊維層101bよりも小さな熱伝導率を有するエアロゲル層101aを配設した。このことで、面状発熱体101からクッション部902への熱移動を抑制できる。結果、面状発熱体101からのより少ない発熱量で座席901の暖房が可能となり、省エネ効果がある。また、より少ない発熱量で座席901の暖房が可能となる。
 従って、特に、ガソリン車やディーゼル車のように燃料を使用して発電する自動車で、面状発熱体101のような電気暖房を行なう場合は、上記構成により、面状発熱体101への投入電力を低減できる。このため、発電に必要な燃料を節約でき、燃費の低減が可能となる。なお、前記のように投入電力が小さくなると、発電のための発電機や発電した電気を蓄える蓄電池の容量を小さくすることができる。この分、軽量化され、これも燃費の低減に繋がる。
 また、人体の着座により座席901に荷重が印加された場合、エアロゲル層101aは、繊維に保持されているため基本的に繊維に追従し、可撓性を有したままである。よって、着座感を阻害することがない。
 <エアロゲル層101a>
 エアロゲルとしては、10nm以上68nm以下の細孔を有するシリカの多孔体であるシリカエアロゲルがよい。熱伝導率が空気の熱伝導率よりも低い断熱材成分である。面状発熱体101からクッション部902への熱移動を抑制でき、面状発熱体101からのより少ない発熱量で座席901の暖房が可能となるものである。
 細孔が、68nmより大きい場合であると、空気の平均自由工程である68nmより大きいので、細孔内で空気が自由に動くことができる。本発明で作製したエアロゲルは細孔が独立ではなく、細孔間が繋がった形で構成される。よってエアロゲルの細孔内に存在する空気が自由に動いてしまい、空気の熱伝導を抑制する効果が薄まってしまう。
 一方、細孔が、10nmより小さい場合は、空気を閉じ込める効果はあるものの、全体に占める細孔容積の割合も小さくなってしまい、固体熱伝導の性質(熱伝導率)が大きくなり、断熱材としてよくない。
 上記細孔寸法は平均値である。3次元の構造であり、すべてが、上記数値範囲でなくともよい、平均値が上記範囲なら、全体として上記効果がでる。
 なお、平均値でなく、全ての細孔の大きさが、上記の数値範囲なら、さらに好ましい。
 <エアロゲル層101aの表面>
 シリカエアロゲルの表面および細孔の壁面が、水の接触角が110度以上を示す疎水性であるのがよい。表面の官能基にトリメチルシリル基あるいはメチル基を有するものがよい。さらに、細孔のサイズが20nm以上68nm以下であるものがよい。この結果、面状発熱体101からクッション部902への熱移動を抑制でき、面状発熱体101での少ない発熱量で座席901の暖房が可能となるものである。
 水の接触角が110度より大きいと、エアロゲル表面に接した水が球状を近くなるとともに、ゲルの細孔に毛管現象によって細孔に引き込まれることを抑制することができる。
 また、160度以上になると、例えば粘着剤との接着は非常に困難であり、施工時の貼り付けに穴加工によるカシメ、インシュロックなどでの固定を必要である。
 両端から10度入った120度~150度が好ましい。
 官能基としてはトリメチルシリル基あるいはメチル基で構成しておけば、水酸基あるいは水酸基を持つカルボキシル基のように、水分子と水素結合を起こすことを抑制できる。
 シリカエアロゲルの出発原料は、アルコキシシランあるいは水ガラスである。ゾルゲル合成反応を用いて作成したシリカ多孔体である。微粒子が連なった集合体であるため、人体の着座により座席901に荷重が印加された場合、変形することができる。結果、クッションの着座感などを阻害することがない。
 アルコキシシランあるいは水ガラスから合成されたエアロゲルでは、細孔が独立ではなく、細孔間が繋がった形で構成されており、またシリカの一次粒子が数珠繋ぎとなる。この構造であれば、数珠の集合体全体で外力に対して変形することができることと、さらに繊維自体の柔軟性も加わり着座感に違和感を生じさせない。
 <粒子径>
 シリカエアロゲルは、シリカ多孔体中にゲル骨格の強化微粒子として、アエロジルなどのフュームドシリカ、コロイダルシリカ、中空構造を持つ中空シリカ、などのシリカ粉末を主成分とする粉末がよい。その粒子径が10nm以上200nm以下のものを含有するのがよい。
 アエロジルなどのフュームドシリカあるいはコロイダルシリカ、中空構造を持つ中空シリカなどのシリカ粉末は、表面が親水基を有する親水性であり、アルコキシシランあるいは水ガラスに均一に分散させることができる。
 200nmより大きくなると沈降を防止するために分散剤を新たに添加する必要が発生してしまうことと、粒子自身が持つ熱伝導を無視できなくなり、粒子の添加が断熱性能を悪化させる要因となってしまう。
 10nmより小さくなると、孔より小さくなり、ゲル骨格を強度アップできない。
 上記粒子径は平均値である。3次元の構造であり、すべてが、上記数値範囲でなくとも、平均的に上記範囲なら、全体として上記効果がでる。
 なお、平均値でなく、絶対値として、上記の数値範囲なら、さらに好ましい。
 <エアロゲル層101aの形成方法>
 次に、本発明の実施の形態1におけるエアロゲル層101aの形成方法について図2のフローチャートを用いて説明する。まず、はじめにエアロゲルの製造方法について、簡略的に記載するが、エアロゲルの製造方法についてはこの限りではない。
 エアロゲル層101aの形成は図2に示すとおり、ゾル調整工程、含浸工程、養生工程、疎水化工程、乾燥工程からなる。
 <ゾル調整工程>
 ナトリウム水ガラス水溶液を酸性イオン交換樹脂あるいは鉱酸によって、pH3以下にする。このときのSiO2濃度は6wt%以上20wt%以下であり、より好ましくは8wt%以上17wt%以下である。
 6wt%より濃度が薄いと、ゲルの骨格が弱いため、乾燥時にゲルにかかる応力によって収縮してしまい、多孔体が得られない。
 20wt%より濃度が高すぎる場合には、骨格は十分であるが、濃度バラつきが出来やすくかつ急激にゲル化が進むため、均一なゲルを得るのが困難となる。
 さらに、8wt%以上17wt%以下の範囲であれば、以上に加えさらに以下の利点がある。繊維を含浸させるまでに要する時間、たとえば5分間以上のゲル化時間を確保でき、かつ均一なゲルが得られるため、作業性およびゲル物性の観点から適切な濃度範囲といえる。
 酸性イオン交換樹脂には、スルホ基を有する樹脂が好ましく、鉱酸を加える場合は塩酸あるいは硫酸が適するが、いずれにおいてもこの限りではない。
 次に、塩基を加え、pHを7付近まで調整する。この時加える塩基としては、アンモニア水、NaOH、KOHなどでよいがこの限りではない。
 次に、ゲル化が開始するまでに、すみやかにPET繊維の所望の箇所にゾル溶液を含浸させる。この時の含浸工法は、浸漬法でも塗布法でも描画でもかまわないが、ゲル化が完遂するまでに含浸させ終わることを必要とする。
 今回の説明では、脱Naを行う工程から説明したが、あらかじめ脱Naを施し、安定化させた水溶液を用い、その溶液のpHを7付近に調整したゾル溶液を繊維に含浸させる方法をとってもよい。
 <養生工程>
 次に、ゲルの骨格を強固にさせるため、繊維ごと20度以上100度未満、より好ましくは80度以上100度未満で静置する。
 なお、この時、ゲルの乾燥を防ぐために、水あるいは、有機溶媒に浸すことが好ましい。有機溶媒は、例えば、IPA、エタノール、ワセリン、トルエン、キシレンなどでよい。
 特に水とは混ざらない非極性溶媒であるトルエン、キシレンであれば、ゲルへの浸入による相溶が無いという観点ではゲルの表面の乾燥を防ぐ効果のみでゲル中に保持された水成分溶出の懸念はない。
 そのために、必要な時間としては、1時間以上であり、好ましくは10時間以上であればよい。
 20度より低い場合は、ゲル化は経時的に進行するが、ゲル骨格形成時間を要してしまう。例えば、10度の場合で50時間の静置が必要となる。
 一方、100度以上の場合は、ゲル中の水あるいは、表面に浸した水が沸騰してしまうため、乾燥あるいはゲルの崩壊を招くため適用が難しい。
 ゲルの骨格を強化せしめ、かつ、短時間で養生を行うためには、80度以上100度未満の間がよく、さらには、80度以上95度以下が好ましい。100度に近くなれば、蒸発が激しくよくないためである。
 たとえば80度であれば12時間以上の加温を行えばよく、95度であれば5時間以上の加温で強化が完了する。
 20度以上80度未満の加温であっても十分な加温時間をかければ問題を生じることはない。
 この時点でゲルは多孔体の形状を有しているが、ゲルの壁面はシラノール基を含む親水性であるため、乾燥時に水の表面張力に依存する応力によって、多孔体が破壊され、収縮してしまう。
 <疎水化工程>
 この収縮挙動を防ぐために、ゲルの表面を疎水基に置換する。この疎水化に使用する液としては、モノ、ジ、あるいはトリメチルクロロシラン、あるいはトリメチルメトキシシランまたはヘキサメチルジシロキサンを塩酸で反応させる。この反応は、20度以上100度以下、より好ましくは、30度以上70度以下で、実施されるべきである。また、この反応には超音波による加速も有効な手段である。
 20度より低いと反応が進まない。100度より高いと、蒸発し酸性が変化する。30度以上となると、反応が進みよりよい。70度以下とすると、蒸発がなく、反応も進む。
 この反応によって、シラノール基は例えばトリメチルシリル基に置き換わり、ゲル表面およびゲル内部の多孔体壁面が疎水性の性質に置き換わる。
 また水分量を低減させるため、あらかじめ疎水化の前に、水から有機溶媒へと置換しておいてもよい。使用される有機溶媒としては、一般に脂肪族アルコール、エーテル、エステル、またはケトン、または脂肪族または芳香族炭化水素である。好ましい溶剤は、メタノール、エタノール、イソプロピルアルコール、アセトンなどであり、これらの混合液としてもよい。
 <乾燥工程>
 最後に、含有する溶液を乾燥させることによって所望のエアロゲル層101aを有する繊維を作成しうる。また乾燥は溶媒の沸点以上に上げる、あるいは沸点以下で時間をかけることで乾かしてもよく、さらには、超臨界を用いた乾燥法やマイクロ波を用いた乾燥法を用いても良い。
 ここで、複数の実施例で効果を検証した結果を記す。
 <実施例1>
 エアロゲル層301aを含浸させる繊維として、PETからなる厚み1mmで繊維の目付けが105g/m2、繊維径が約30μmのものを選定した。
 次に、珪酸ソーダから脱ナトリウム化し、SiO濃度を16wt%まで高めた水ガラス水溶液に対し、12規定塩酸を滴下して攪拌し、pHを7~7.5付近へと調整した。
 その後、理論値で繊維の半分の厚みがゲルで埋まるように計算し、PETとゾル溶液を重量比で1:2.5の割合で表層から均一に繊維に塗布し、繊維中でゲル化させた。
 その後、80度で12時間、水を加えて浸漬させた状態で炉内に静置した。12時間後、ヘキサメチルジシロキサンと12規定塩酸、イソプロピルアルコール(IPA)の混合液中で繊維を浸漬させ、55度で12時間放置することによってゲル表面のシラノール基を疎水化させた。
 なおIPAは溶液の完全分離を抑制するために使用した。その後、150度の乾燥炉にて2時間乾燥させることによって完成させた。この得られた繊維に銅線からなる電熱線をPET繊維に縫い付けることで面状発熱体101を形成した。
 図3が実施例1の面状発熱体101の断面模式図である。面状発熱体101はPET繊維層の下部のみにエアロゲルを含むエアロゲル層301aと、上部にPET繊維のみからなるPET繊維層301bとを有しており、表層には銅線からなる電熱線302を有する構造からなる。
 <比較例>
 図4は実施例1に対してエアロゲル層301aを設けなかった比較例1の面状発熱体101の断面模式図である。実験によると、実施例1のようにエアロゲル層301aを配設すると、エアロゲル層301aを配設しない場合より、面状発熱体101への投入電力を約1.5割削減できることが確認された。また面内温度が均熱化するのにかかる時間も、約2分短縮された。
 実施例1は繊維の半分までエアロゲル層301aを形成した場合であったが、エアロゲル層301aの含浸構造に関して、その応用例を図5に示す。
 <実施例2>
 図5は面状発熱体101において、実施例1で使用した同一の水ガラス水溶液の原料を用いて、pH調整したゾル溶液を実施例1で使用したPET繊維の繊維全面に含浸させ、実施例1と同様の養生工程、疎水化工程、乾燥工程を施し、シリカからなるエアロゲル層301aを形成した後、Cuの電熱線を縫い付けることによって作製した面状発熱体101の断面模式図である。図5のように、エアロゲル層301aをPET繊維全面に含浸させ、繊維すべての熱伝導率を低下させても、このような断熱効果は期待できる。
 また、繊維にエアロゲルを含んだエアロゲル層301aを後加工により、所望の場所、すなわち、面状発熱体101とクッション部902の間に挿入、あるいは貼り付けし、断熱効果を高める部材として使用しても同様の効果が期待できる。
 (実施の形態2)
 実施の形態2を、図6を用いて説明する。図6は、実施の形態2における暖房用の座席の面状発熱体101の断面図である。実施の形態1と相違する点は、エアロゲル層301aによって、PET繊維層301b中に描画パターンを施すことである。このことで、部分的に熱伝導率を変化させたことができる。面状発熱体101の電熱線302の下部で、かつ、面状発熱体101の下面までの繊維の空隙部分にのみエアロゲル層301aを設けている。
 この構造では、エアロゲル層301aにより、熱が下部へ行かず、面方向へ広がる。面状発熱体101の面内での電熱線302間に、優先的に熱を伝わりやすくする。
 このことにより、エアロゲル層301aの描画パターンを形成しないものと比較して、面方向の均熱化を加速させることを特徴とするシートヒータである。
 実施の形態1では、電熱線302周辺の面内方向での断熱性が同一であった。しかし、この実施の形態2では、図6のように、面状発熱体101上の電熱線302から発生した熱の一部が、優先的にエアロゲル層301aがない部分に熱伝導する。このことによって、より効率的に均熱化がはかることができ、不要な熱移動を抑制でき、さらに省エネ効果がある。
 実施例3、4、5は本発明の実施の形態2に相当する構造の応用例であり、その断面図を図7A~図7Cに示す。
 <実施例3>
 図7Aは、実施例3に相当する面状発熱体101の断面図である。実施例3では、PET繊維層301bに、エアロゲルを含浸させたエアロゲル層301aと、電熱線302の直下を除く表層部にエアロゲルを含浸させない繊維のみからなるPET繊維層301bを形成する。電熱線302直下には、エアロゲル層301aを設ける。または、面状発熱体101の下面全体にもエアロゲル層301aを設ける。それぞれのエアロゲル層301aはつながっている。電熱線302間の直下で、面状発熱体101の上部には、エアロゲル層301aを設けない。
 表面部分の熱伝導率に差をつけることで、電熱線302で発生させた熱を面状発熱体101の繊維基材の表層部分を優先的に熱が伝わりやすくしたものである。なお、エアロゲル層101aの製造方法、用いた繊維は実施例1と同様のものとした。
 <実施例4>
 図7Bは、実施例4に相当する面状発熱体101の断面図である。実施例4では、面状発熱体101の下方全体は、全面がエアロゲル層301aである。面状発熱体101の上方は以下である。面状発熱体101の基材の面内方向において、複数の電熱線302において、電熱線302間で、間隔が小さい方の電熱線302間の直下にエアロゲル層301aを設けた。その他は、PET繊維層301bである。または、隣接する電熱線302の間のみの直下にエアロゲル層301aを設けた。または、電熱線302間が小さい、密集したところの、電熱線302間の直下にのみエアロゲル層301aを設ける。
 表面部分のPET繊維層301bに、部分的に、エアロゲル層301aを設けることで、実施例3同様、表面部分の熱伝導率に差をつけることができる。このことで、電熱線302で発生させた熱を、面状発熱体101の繊維基材の表層部分の電熱線302から遠い方向に優先的に熱が伝わりやすくし、均熱化を促進したものであり、温度が平衡に達するまでの時間に短縮効果が確認された。なお、エアロゲル層301aの製造方法、用いた繊維は実施例1と同様のものとした。
 <実施例5>
 図7Cは、実施例5に相当する面状発熱体101の断面図である。エアロゲル層101aの製造方法、用いた繊維は実施例1と同様のものとした。
 実施例5では、技術思想として、実施例4とは異なり電熱線302で発生させた熱を人が感知するまでの時間を優先させることを狙ったものである。すなわち、面状発熱体101の基材の面内方向において、電熱線302の直下および隣接する電熱線302同士間の下部にエアロゲルを含まないPET繊維層301bを設けた。または、複数の電熱線302間の内、狭い方の下方に、エアロゲルを含まないPET繊維層301bを設けてもよい。他の部分は、エアロゲル層301aである。面状発熱体101の下方全面も、エアロゲル層301aである。
 上記構造で、電熱線302の密集部における均熱を高め、温度を上げる構造を実現した。使用した部材、エアロゲル形成のための原料および製造方法は、実施例1に記したものと同様である。また描画には、ディスペンサ装置として武蔵エンジニアリングのショットマスターを使用し、ゲル化前のゾル溶液を繊維に塗布する形で形成した。
 エアロゲルを有しない比較例1と比較して、実施例3の場合で約1.5割、実施例4の場合で約1.6割、実施例5の場合で約1割の投入電力の低減効果が確認された。
 (実施の形態3)
 実施の形態3を、図8を参照して説明する。図8は、実施の形態3における面状発熱体101の断面図である。面状発熱体101は、エアロゲル層301a、PET繊維層301b、電熱線302、カバー繊維層801からなる。
 カバー繊維層801以外の構成要素は、図3に示す実施の形態1のものと同じである。
 実施の形態1,2と異なる点は、細孔を有するシリカの多孔体であるシリカエアロゲル粒子の滑落を防止するため、片面あるいは両面に、柔軟性、クッション性に影響がない目付けのカバー繊維層801を設け、耐久性を向上させたことを特徴とするものである。
 実施の形態1で述べたように、ゾル調整溶液を繊維に塗布後、ゲル化までは表面に粘着性が残っている。この段階で、薄いカバー繊維層801を張り合わせ、ゲル化を完成させる。このことで、カバー繊維層801を、エアロゲル層301aに固着させることができる。これによって、新たな接着層を設ける必要がなく、効率的に粉落ちの対策が可能となる。
 カバー繊維層801としては、例えば、スパンボンドの繊維などが好ましく、繊維の目付けとしては20g/m以上100g/m以下のものが好ましい。
 この場合、繊維厚みとしては0.1~0.3mm程度のスパンボンド繊維に相当する。すなわち、この範囲を外れた場合には、カバー層としての機能を満足しえない。
 目付けが20g/mより小さい場合は、繊維の空隙が大きくなってしまい、空隙の隙間からエアロゲル粒子が滑落してしまい、保護効果を十分に発揮できない。
 また、目付けが100g/mを超えてくると、厚みが増してしまい、カバー繊維層801の熱伝導率の影響を無視できなくなり、面状発熱体の断熱性能が十分に発揮できない。
 <実施例6>
 実施例6として、厚さ0.15mmで目付け60g/mのPETのスパンボンド繊維をカバー繊維層801として用いた。他の部材は、実施例5と同じである。評価では、実施例1の場合と比較して、効果に遜色はなく、比較例1と比較して実施例1同様の省エネ効果を確認することができた。
 また、実施例6では、片側の粉落ち対策のみの場合を記したが、図5のような全面にエアロゲルが表面現れる場合には、両面にはり合わせして、粉落ちを防ぐように配置したとしても同様の粉落ち対策と省エネ効果が期待できる。
 また、実施例6では、カバー繊維層801に繊維を用いたが、厚さ0.3mm以下のPET等の有機フィルムを張り合わせしても柔軟性を損なうことなく粉落ちは防止できる。
 尚、第1~第6の実施例では、座席901の座面で暖房を行う際の構成を開示したが、座席の背もたれや肘掛、ヘッドレスト、オットマン、ドアトリム、ステアリングホイール等で暖房を行う際に同様な構成を適用してもよい。また、天井や足元の輻射暖房を行う際に同様な構成を適用してもよい。
 また、面状発熱体において、電熱線302を設けない繊維構造体そのものを、断熱部材として使用でき、シリカエアロゲル粒子の滑落を防止するためにカバー繊維層801をその両面あるいは片面に形成してもすぐれた断熱性能を維持した断熱部材を形成することができる。
 上記実施の形態は適時組み合わせることができる。
 以上のように、本発明にかかる座席は、自動車や一般住宅、オフィス、航空機、劇場、屋外観戦場所、屋外作業場所等のさまざまな座席での多様な暖房に展開が可能である。
 101  面状発熱体
 101a  エアロゲル層
 101b  繊維層
 201  電熱線
 301a  エアロゲル層
 301b  PET繊維層
 302  電熱線
 801  カバー繊維層
 901  座席
 902  クッション部
 903  表皮
 904  シートヒータ

Claims (11)

  1. 上面に複数の熱線を有し、繊維を含む面状発熱体と、
    前記面状発熱体の下面に位置するクッション部と、
    前記面状発熱体の上方に位置する表皮と、を備えたシートヒータであり、
    前記面状発熱体は、前記繊維の空隙部分に平均細孔径が10nm以上68nm以下の細孔を有するシリカの多孔体であるシリカエアロゲルを有するシートヒータ。
  2. 前記シリカエアロゲルの表面と細孔の壁面は、水の接触角で110度以上を示す疎水性であって、前記表面と前記壁面に存在する官能基にトリメチルシリル基あるいはメチル基を有するものであることを特徴とする請求項1に記載のシートヒータ。
  3. 前記シリカエアロゲルの出発原料が、アルコキシシランあるいは水ガラスであり、ゾルゲル合成反応を用いて作成したシリカ多孔体である前記シリカエアロゲルであることを特徴とする請求項1または2に記載のシートヒータ。
  4. 前記シリカエアロゲルは、アエロジルのフュームドシリカ、コロイダルシリカ、中空構造を持つ中空シリカのいずれかを1つ以上を含む粉末を含み、
    前記粉末の平均粒子径が10nm以上200nm以下のものであることを特徴とした請求項1から3のいずれか1項に記載のシートヒータ。
  5. 前記面状発熱体の全体の空隙部分に、前記シリカエアロゲルを、設けた請求項1に記載のシートヒータ。
  6. 前記面状発熱体の内部下方で下面全体の下方部の空隙部分のみに、前記シリカエアロゲルを、設けた請求項1に記載のシートヒータ。
  7. 前記面状発熱体の内部上方の上方部の空隙部分において、
    前記熱線の下部の熱線下部部分にのみ前記シリカエアロゲルを設けた請求項6に記載のシートヒータ。
  8. 前記面状発熱体の内部上方の上方部の空隙部分において、
    前記複数の熱線の下部の領域と、隣接する複数の前記熱線の間の下部の領域のみに、前記シリカエアロゲルを設けた請求項6に記載のシートヒータ。
  9. 前記面状発熱体の内部上方の上方部の空隙部分において、
    隣接する複数の前記熱線の間の下部の領域および、前記隣接する複数の前記熱線の下部の領域以外に前記シリカエアロゲルを設けた請求項6に記載のシートヒータ。
  10. 前記面状発熱体の前記熱線の下部で、かつ、前記面状発熱体の下面までの空隙部分にのみ前記シリカエアロゲルを設けた、請求項1に記載のシートヒータ。
  11. 前記請求項1から10のいずれか1項に記載のシートヒータにおいて、
    片面あるいは両面にエアロゲル層を含まない、柔目付けが前記エアロゲルを含浸させる層よりも少ない繊維層を設けたことを特徴とするシートヒータ。
PCT/JP2014/002963 2013-06-10 2014-06-04 シートヒータ WO2014199595A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480029028.6A CN105228492B (zh) 2013-06-10 2014-06-04 座椅加热器
JP2015522518A JP6134916B2 (ja) 2013-06-10 2014-06-04 シートヒータ
EP14811442.4A EP3009049B1 (en) 2013-06-10 2014-06-04 Seat heater
US14/774,667 US9936539B2 (en) 2013-06-10 2014-06-04 Seat heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013121515 2013-06-10
JP2013-121515 2013-06-10

Publications (1)

Publication Number Publication Date
WO2014199595A1 true WO2014199595A1 (ja) 2014-12-18

Family

ID=52021913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002963 WO2014199595A1 (ja) 2013-06-10 2014-06-04 シートヒータ

Country Status (5)

Country Link
US (1) US9936539B2 (ja)
EP (1) EP3009049B1 (ja)
JP (1) JP6134916B2 (ja)
CN (1) CN105228492B (ja)
WO (1) WO2014199595A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101764A (ja) * 2015-12-03 2017-06-08 パナソニックIpマネジメント株式会社 断熱シートおよびその製造方法並びに、この断熱シートを用いた背もたれ付きシート
JP2017143015A (ja) * 2016-02-12 2017-08-17 パナソニックIpマネジメント株式会社 局所ヒータおよびこれを用いた着座シート
WO2017141644A1 (ja) * 2016-02-15 2017-08-24 日立化成株式会社 エアロゲル積層体及び断熱材
WO2017168845A1 (ja) * 2016-03-29 2017-10-05 日立化成株式会社 エアロゲル層付き部材
WO2017168847A1 (ja) * 2016-03-29 2017-10-05 日立化成株式会社 エアロゲル層付き部材
CN111207439A (zh) * 2020-01-13 2020-05-29 杭州慈源科技有限公司 一种微孔加热器结构

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3418255A4 (en) * 2016-02-15 2019-02-27 Panasonic Intellectual Property Management Co., Ltd. Water-repellent treatment method and method for producing a leaf-shaped element therewith
JP6634595B2 (ja) * 2016-02-18 2020-01-22 パナソニックIpマネジメント株式会社 断熱材及びその製造方法
US11091076B1 (en) * 2020-01-31 2021-08-17 Faurecia Automotive Seating, Llc Seat back heater mat attachment
EP4144501A1 (de) * 2021-09-07 2023-03-08 Benecke-Kaliko AG Formteil und verfahren zur herstellung desselben sowie verwendung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387117U (ja) * 1989-12-25 1991-09-04
JPH10236817A (ja) * 1996-12-24 1998-09-08 Matsushita Electric Works Ltd 疎水性エアロゲルの製法
JP2008067850A (ja) 2006-09-13 2008-03-27 Denso Corp シートヒータ
JP2009268718A (ja) 2008-05-08 2009-11-19 Panasonic Corp 座席
JP2012045273A (ja) * 2010-08-30 2012-03-08 Lixil Corp 暖房便座及び暖房便座用面状ヒータ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8320567V0 (it) * 1983-01-21 1983-01-21 I R C A Ind Resistenze Corazza Elemento riscaldante elettrico, in particolare per piani lisci di cottura.
US6197270B1 (en) 1996-12-20 2001-03-06 Matsushita Electric Works, Ltd. Process for producing aerogel
JP3783470B2 (ja) 1999-06-08 2006-06-07 光洋サーモシステム株式会社 断熱体およびそれを用いた電気加熱ユニット並びにその製法
IL155922A0 (en) * 2000-12-22 2003-12-23 Aspen Aerogels Inc Aerogel composite with fibrous batting
GB0213405D0 (en) * 2002-06-12 2002-07-24 Ceramaspeed Ltd Thermal insulation material
US10201935B2 (en) * 2007-03-19 2019-02-12 Augustine Temperature Management LLC Electric heating pad
DE102007056465B4 (de) * 2007-11-22 2010-06-02 I.G. Bauerhin Gmbh Kraftfahrzeugsitz mit Sitzheizung
CN102450091A (zh) * 2009-05-26 2012-05-09 松下电器产业株式会社 面状采暖器以及具备该面状采暖器的座椅
KR101047965B1 (ko) * 2009-06-11 2011-07-12 한국에너지기술연구원 에어로겔 매트, 이의 제조방법 및 제조장치
EP2557894B1 (en) * 2010-04-06 2017-08-09 Nichias Corporation Jacket heater and method for attaching same
JP5750578B2 (ja) * 2011-03-07 2015-07-22 パナソニックIpマネジメント株式会社 車両用シートヒータ
JP5708286B2 (ja) * 2011-06-14 2015-04-30 トヨタ紡織株式会社 ヒータ構造体
CN102351494B (zh) * 2011-07-20 2013-07-24 厦门大学 一种泡沫材料增强二氧化硅气凝胶复合材料的制备方法
US10520126B2 (en) * 2013-02-28 2019-12-31 Panasonic Intellectual Property Management Co., Ltd. Heat insulating structure using aerogel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387117U (ja) * 1989-12-25 1991-09-04
JPH10236817A (ja) * 1996-12-24 1998-09-08 Matsushita Electric Works Ltd 疎水性エアロゲルの製法
JP2008067850A (ja) 2006-09-13 2008-03-27 Denso Corp シートヒータ
JP2009268718A (ja) 2008-05-08 2009-11-19 Panasonic Corp 座席
JP2012045273A (ja) * 2010-08-30 2012-03-08 Lixil Corp 暖房便座及び暖房便座用面状ヒータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3009049A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017101764A (ja) * 2015-12-03 2017-06-08 パナソニックIpマネジメント株式会社 断熱シートおよびその製造方法並びに、この断熱シートを用いた背もたれ付きシート
JP2017143015A (ja) * 2016-02-12 2017-08-17 パナソニックIpマネジメント株式会社 局所ヒータおよびこれを用いた着座シート
WO2017141644A1 (ja) * 2016-02-15 2017-08-24 日立化成株式会社 エアロゲル積層体及び断熱材
WO2017168845A1 (ja) * 2016-03-29 2017-10-05 日立化成株式会社 エアロゲル層付き部材
WO2017168847A1 (ja) * 2016-03-29 2017-10-05 日立化成株式会社 エアロゲル層付き部材
CN111207439A (zh) * 2020-01-13 2020-05-29 杭州慈源科技有限公司 一种微孔加热器结构

Also Published As

Publication number Publication date
CN105228492B (zh) 2018-07-31
JPWO2014199595A1 (ja) 2017-02-23
US20160029438A1 (en) 2016-01-28
US9936539B2 (en) 2018-04-03
CN105228492A (zh) 2016-01-06
JP6134916B2 (ja) 2017-05-31
EP3009049B1 (en) 2017-08-09
EP3009049A1 (en) 2016-04-20
EP3009049A4 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP6134916B2 (ja) シートヒータ
EP3281928B1 (en) Method for manufacturing low-dust high-insulation aerogel blanket
US10493741B2 (en) Apparatus and method for manufacturing composite sheet comprising aerogel sheet
US10682839B2 (en) Apparatus and method for manufacturing composite sheet comprising aerogel sheet
US20160003404A1 (en) Heat insulating structure using aerogel
JP2017215014A (ja) 断熱材とその断熱材を使用した機器
MXPA03004333A (es) Material compuesto de aerogel con napa fibrosa.
KR101336964B1 (ko) 유리장섬유 단열재 성형용 에어로젤 바인더 및 이를 이용한 단열재 성형방법
JP6771195B2 (ja) 断熱材およびそれを使用した機器と断熱材の製造方法
KR20180109078A (ko) 보강된 에어로겔 합성물을 포함하는 개선된 라미네이트
CN102740516A (zh) 用于复杂造型表面的加热装置
AU2013231509A1 (en) Thermally conductive composite element based on expanded graphite
JP7270125B2 (ja) 断熱シートおよびこれを用いた断熱体およびその製造方法
Lan et al. Tuning solid–air interface of porous graphene paper for enhanced electromagnetic interference shielding
JP6998504B2 (ja) 断熱材およびその断熱材を用いた機器
KR101323618B1 (ko) 에어로겔 코팅액, 이로 코팅된 에어로겔 시트 제조방법 및 그 제조방법으로 제조된 에어로겔 시트
JP7223600B2 (ja) 断熱部材およびその製造方法
KR102666096B1 (ko) 단열코팅층이 연속무늬 형상으로 형성되는 실리카-에어로젤 절연시트의 연속 제조방법
Huang et al. Multifunctional composite foam with high strength and sound‐absorbing based on step assembly strategy for high performance electromagnetic shielding
CN205723873U (zh) 一种环氧板蚀刻芯片电池加热片
JP2004340415A (ja) 冷蔵庫
CN103502365B (zh) 用于制造用于电绝缘纸的多孔颗粒复合材料的方法
CN108189489A (zh) 二氧化硅气凝胶复合材料及其制备方法和应用
CN207648348U (zh) 管路电热保温装置
JP2020044677A (ja) 断熱部材およびそれを用いた内装部品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029028.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522518

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14774667

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014811442

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014811442

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE