WO2014185355A1 - 重合体及び重合体の製造方法 - Google Patents
重合体及び重合体の製造方法 Download PDFInfo
- Publication number
- WO2014185355A1 WO2014185355A1 PCT/JP2014/062479 JP2014062479W WO2014185355A1 WO 2014185355 A1 WO2014185355 A1 WO 2014185355A1 JP 2014062479 W JP2014062479 W JP 2014062479W WO 2014185355 A1 WO2014185355 A1 WO 2014185355A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- polymer
- structural unit
- organic group
- independently represents
- Prior art date
Links
- 0 CC(C)(C)C(*)(*)C1(*)C2(C(*)(*3)*3=C)C(*)(*)C(*)(*)C1(*)O[C@]1OC21 Chemical compound CC(C)(C)C(*)(*)C1(*)C2(C(*)(*3)*3=C)C(*)(*)C(*)(*)C1(*)O[C@]1OC21 0.000 description 10
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/06—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
- C08G63/08—Lactones or lactides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F24/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a heterocyclic ring containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
- C09D167/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
Definitions
- the present invention relates to a polymer and a method for producing the polymer.
- Carbon dioxide is an inexpensive and easily available carbon source, and effective utilization is desired.
- the current industrial use of carbon dioxide is limited to the synthesis of urea, salicylic acid, carbonates and the like.
- synthesis of a polycarbonate by copolymerization with an epoxide is known, but its use range is limited.
- copolymerization of olefins and carbon dioxide which are more common monomers, copolymerization of carbon dioxide with diene, vinyl ether, acrylonitrile and the like was reported in the 1970s (see, for example, Non-Patent Documents 1 to 4). ).
- Non-Patent Document 5 discloses a polymer obtained by copolymerizing carbon dioxide and a lactone monomer having a 1,3-diene structure.
- Non-Patent Document 6 discloses a polymer composed of carbon dioxide and epoxy.
- Non-Patent Documents 1 to 4 do not disclose any homopolymerization of a lactone monomer. Further, the polymers disclosed in Non-Patent Documents 1 to 4 do not have a lactone ring. Since the technique disclosed in Non-Patent Document 5 has a high rate of other secondary reactions with respect to the homopolymerization reaction rate of the lactone monomer, the lactone monomer cannot be homopolymerized. Non-Patent Document 5 describes an attempt to homopolymerize a lactone monomer, but there is no report of success.
- Non-Patent Document 5 is a polymer having the following structural unit, for example, and at least one of carbon atoms other than the carbon atoms constituting a part of the main chain is included in the carbon atoms constituting the lactone ring. It is not cross-linked with the main chain atoms.
- Non-Patent Document 6 does not disclose any homopolymerization of a lactone monomer.
- the polymer disclosed in Non-Patent Document 6 does not have a lactone ring.
- the object of the present invention is to solve such problems and to provide a polymer obtained by homopolymerizing a lactone monomer.
- the lactone monomer was successfully homopolymerized by polymerizing the lactone monomer so that the other reaction rate with respect to the lactone monomer homopolymerization reaction rate was decreased.
- the present inventors have found that the above problems can be solved. Specifically, the above problem has been solved by the following means ⁇ 1>, preferably ⁇ 2> to ⁇ 18>.
- a polymer comprising ⁇ 2> The polymer according to ⁇ 1>, comprising a structural unit represented by the following general formula (Ia).
- R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- ⁇ 3> The polymer according to ⁇ 1>, comprising a structural unit represented by the following general formula (I).
- R 1 to R 5 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- ⁇ 4> Furthermore, any one of ⁇ 1> to ⁇ 3>, further comprising a structural unit represented by the following general formula (II-a) and / or a structural unit represented by the following general formula (III-a): The polymer described.
- R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 10 are each Independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- ⁇ 5> The polymer according to any one of ⁇ 1> to ⁇ 3>, further comprising a structural unit represented by the following general formula (II) and / or a structural unit represented by the following general formula (III): .
- R 1 to R 5 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 5 each independently represents one Represents a valent organic group or a hydrogen atom.
- R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 10 are each Independently represents a monovalent organic group, a halogen atom or a hydrogen atom
- R 1 R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 5 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 5 each independently represents one Represents a valent organic group, a halogen atom or a hydrogen atom
- R 1 to R 5 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 10 are each Independently represents a monovalent organic group, a halogen atom or a hydrogen atom, and in formula (III-a), R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom; ) ⁇ 9> A polymer obtained by radical polymerization of a compound represented by the following general formula (IV-a) alone.
- R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 5 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- Td thermal decomposition temperature
- TG thermogravimetry
- a method for producing a polymer comprising a step of polymerizing a raw material monomer containing a compound represented by the following general formula (IV-a) so that the other reaction rate relative to the monomer homopolymerization reaction rate decreases.
- R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- a method for producing a polymer comprising a step of polymerizing a raw material monomer containing a compound represented by the following general formula (IV) such that the other reaction rate relative to the monomer homopolymerization reaction rate decreases.
- R 1 to R 5 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- the method for producing a polymer according to ⁇ 14> or ⁇ 15> comprising a step of radical polymerization of the raw material monomer in the presence of at least one Bronsted acid or Lewis acid, or a step of emulsion polymerization.
- ⁇ 17> A method for producing a polymer, which is synthesized from a 1,3-diene compound and carbon dioxide in one pot.
- ⁇ 18> The method for producing a polymer according to any one of ⁇ 14> to ⁇ 17>, wherein the polymer is the polymer according to any one of ⁇ 1> to ⁇ 11>.
- a polymer obtained by homopolymerizing a lactone monomer can be provided.
- FIG. 1 is a diagram showing a 1 H NMR spectrum of a polymer of Example 1.
- FIG. 3 is a diagram showing a 13 C NMR spectrum of the polymer of Example 1.
- FIG. 2 is a graph showing an IR spectrum of the polymer of Example 1.
- FIG. 1 is a diagram showing an SEC chart of a polymer of Example 1.
- FIG. 2 is a diagram showing a TG chart of the polymer of Example 1.
- FIG. 2 is a diagram showing a DSC chart of the polymer of Example 1.
- FIG. 3 is a diagram showing a 13 C NMR spectrum of the polymer of Example 2.
- FIG. 6 is a diagram showing a 1 H NMR spectrum of the polymer of Example 5. 6 is a diagram showing a 13 C NMR spectrum of the polymer of Example 5.
- FIG. 1 is a diagram showing a 1 H NMR spectrum of a polymer of Example 1.
- FIG. 3 is a diagram showing a 13 C NMR spectrum of the polymer of Example 5.
- FIG. 6 is a graph showing an IR spectrum of the polymer of Example 5.
- FIG. 6 is a diagram showing an SEC chart of the polymer of Example 5.
- FIG. 6 is a diagram showing a TG chart of the polymer of Example 5.
- FIG. 6 is a diagram showing a DSC chart of the polymer of Example 5.
- 2 is a diagram showing a 1 H NMR spectrum of a polymer of Example 6.
- FIG. 6 is a diagram showing a 13 C NMR spectrum of the polymer of Example 6.
- FIG. 6 is a diagram showing an IR spectrum of the polymer of Example 6.
- FIG. FIG. 4 is a diagram showing an SEC chart of the polymer of Example 6.
- FIG. 10 is a diagram showing a TG chart of the polymer of Example 6.
- FIG. 6 is a diagram showing a DSC chart of the polymer of Example 6.
- the polymer obtained by homopolymerizing a lactone monomer does not mean only a homopolymer, but in a range not departing from the gist of the present invention, a small amount of other monomers are contained. It may be a polymer containing.
- the polymer of the present invention contains at least one carbon atom (excluding C in —C ( ⁇ O) O—) constituting a lactone ring containing 3 or more carbon atoms (hereinafter also simply referred to as a lactone ring).
- At least one of the atoms includes a structural unit that is bridged with an atom of the main chain.
- At least one of carbon atoms constituting the lactone ring containing 3 or more carbon atoms constitutes a part of the main chain.
- the carbon atom constituting the lactone ring (excluding C in —C ( ⁇ O) O—) other than the carbon atom constituting a part of the main chain.
- At least one of the following (also referred to as carbon atoms that do not constitute part of the main chain) includes a structural unit that is bridged with the main chain atoms.
- the carbon atoms constituting the lactone ring containing 3 or more carbon atoms at least one carbon atom excluding C of —C ( ⁇ O) O— constitutes a part of the main chain, and Among the carbon atoms constituting the lactone ring containing 3 or more carbon atoms, at least one of the carbon atoms that do not constitute a part of the main chain is cross-linked with the main chain atoms, thereby improving the heat resistance of the polymer. Can be improved. That is, the polymer of the present invention has a high thermal stability due to its rigid structure.
- the carbon atoms constituting the lactone ring containing 3 or more carbon atoms at least one carbon atom excluding C of —C ( ⁇ O) O— constitutes a part of the main chain.
- the carbon atoms constituting the lactone ring containing 3 or more carbon atoms one carbon atom excluding C in —C ( ⁇ O) O— constitutes a part of the main chain. Is preferred.
- the carbon atom adjacent to C of —C ( ⁇ O) O— preferably constitutes a part of the main chain.
- the polymer of the present invention is sufficient if the lactone ring contains 3 or more carbon atoms, preferably contains 4 or more carbon atoms, and more preferably contains 4 or 5 carbon atoms. .
- the lactone ring containing 3 or more carbon atoms is preferably a lactone ring forming a 5- to 8-membered ring, more preferably a lactone structure forming a 5- or 6-membered ring, and a lactone structure forming a 6-membered ring. Is more preferable.
- the lactone ring containing three or more carbon atoms used in the present invention may be condensed with another ring structure to form a polycyclic structure, but the other ring structure is condensed with the lactone ring. Preferably not.
- the polymer of the present invention includes carbon atoms constituting a part of the main chain in carbon atoms constituting a lactone ring containing 3 or more carbon atoms (excluding C in —C ( ⁇ O) O—). It includes a structural unit in which at least one of carbon atoms other than atoms is bridged with a main chain atom.
- the crosslinking in the polymer of the present invention means that at least one carbon atom that does not constitute a part of the main chain in the carbon atoms constituting the lactone ring (except for C in —C ( ⁇ O) O—).
- the polymer of the present invention among the carbon atoms constituting the lactone ring, at least carbon atoms adjacent to O of —C ( ⁇ O) O— among carbon atoms that do not constitute part of the main chain. It is preferably crosslinked with a carbon atom of the main chain. In particular, in the carbon atoms constituting the lactone ring, only the carbon atom directly bonded to O of —C ( ⁇ O) O— It is preferably crosslinked.
- the polymer of the present invention preferably has a glass transition temperature (Tg) of 120 ° C. or higher and 150 ° C. or higher when heated at 20 ° C./min by differential scanning calorimetry (DSC). More preferably, it is more preferably 170 ° C. or higher. Further, the polymer of the present invention preferably has a glass transition temperature (Tg) of 30 ° C. or higher when heated at 20 ° C./min by differential scanning calorimetry (DSC), and is 50 ° C. or higher. It is also preferable and it is also preferable that it is 70 degreeC or more.
- Tg glass transition temperature
- DSC differential scanning calorimetry
- the polymer of the present invention has a thermal decomposition temperature (Td) when the weight loss reaches 5% by heating at a temperature of 10 ° C./min in a temperature range of 40 to 500 ° C. by thermogravimetry (TG). Is preferably 220 ° C. or higher, more preferably 250 ° C. or higher, and even more preferably 300 ° C. or higher.
- the number average molecular weight (Mn) of the polymer of the present invention is preferably 1,000 to 400,000, more preferably 3,000 to 300,000, and 5,000 to 200,000. More preferred is 5,000 to 100,000.
- the weight average molecular weight (Mw) of the polymer of the present invention is preferably 2,000 to 800,000, more preferably 6,000 to 600,000, and 9,000 to 400,000. More preferably, it is particularly preferably 9,000 to 200,000.
- the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the polymer of the present invention were set within the above ranges, it is possible to eliminate severe conditions such as extremely high temperature and long time for the synthesis reaction. .
- the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the polymer of the present invention were measured by a SEC (Size Exclusion Chromatography) method. The measurement was performed under either of the following conditions (A) and (B).
- GPC device HLC8220GPC (manufactured by Tosoh Corporation) Column: TSKgel SuperHZM-H, TSKgel SuperHZ-2000, TSKgel SuperHZ-4000 (all manufactured by Tosoh Corporation) Solvent: Tetrahydrofuran Flow rate: 0.35 ml / min Column temperature: 40 ° C Mn and Mw were adjusted with respect to a standard polystyrene sample.
- GPC device HLC8220GPC (manufactured by Tosoh Corporation)
- Detector Viscotek TDA302 (manufactured by Viscotek)
- Column TSKgel SupermultiporeHZ-N, double-linked (manufactured by Tosoh Corporation)
- Solvent Tetrahydrofuran Flow rate: 0.35 ml / min
- Column temperature 40 ° C Mn and Mw are based on the relative refractive index increment calculated from the RI chart by the OmniSec program (manufactured by Viscotek).
- the polymer of the present invention preferably contains a structural unit represented by the following general formula (Ia), and may contain substantially only a structural unit represented by the following general formula (Ia). Good.
- substantially only the structural unit represented by the following general formula (I) means that the content of the structural unit represented by the following general formula (Ia) in the polymer of the present invention is 99% by mass. That means the above, preferably 100% by mass.
- R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom, and is preferably a monovalent organic group or a hydrogen atom.
- a hydrocarbon group is preferable, a linear or branched alkyl group is more preferable, a linear alkyl group having 1 to 3 carbon atoms is further preferable, and a methyl group is particularly preferable.
- R 1 to R 10 are preferably each independently a linear alkyl group having 1 to 3 carbon atoms or a hydrogen atom, More preferably, it is a hydrogen atom.
- R 3 to R 6 are preferably hydrogen atoms.
- the polymer of the present invention preferably contains a structural unit represented by the following general formula (I), and preferably substantially contains only a structural unit represented by the following general formula (I). .
- R 1 to R 5 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 5 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom, and is preferably a monovalent organic group or a hydrogen atom.
- a hydrocarbon group is preferable, a linear or branched alkyl group is more preferable, a linear alkyl group having 1 to 3 carbon atoms is further preferable, and a methyl group is particularly preferable.
- R 1 to R 5 are preferably each independently a linear alkyl group having 1 to 3 carbon atoms or a hydrogen atom, and a methyl group or a hydrogen atom It is more preferable that In particular, in the polymer of the present invention, in general formula (I), R 1 and R 2 are linear alkyl groups having 1 to 3 carbon atoms or hydrogen atoms, and R 3 to R 5 are each hydrogen atoms. Preferably there is.
- the polymer of the present invention may contain a structural unit other than the structural unit represented by the general formula (Ia).
- the polymer of the present invention may contain a structural unit represented by the following general formula (II-1).
- X represents an arbitrary structural unit.
- X represents an arbitrary structural unit and is not particularly limited, but is preferably a structural unit composed of a radical polymerizable monomer.
- radical polymerizable monomers include, for example, radical polymerizable monomers such as methyl acrylate, butyl acrylate, acrylic acid esters such as 2-hydroxyethyl acrylate, and methacrylate esters such as methyl methacrylate, 2-ethylhexyl, and lauryl.
- Aromatic unsaturated hydrocarbons such as styrene and ⁇ -methylstyrene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid and maleic acid, conjugated aliphatic dienes such as butadiene, isoprene and chloroprene, vinyl acetate and propion
- vinyl esters such as vinyl acid.
- the content of the structural unit represented by the following general formula (II-1) in all the structural units in the polymer of the present invention can be 0 to 10 mol%, or 0 to 5 mol%. Or 1 mol% or less.
- the polymer of the present invention further includes a structural unit represented by the following general formula (II-a) and / or the following general formula (III-a). ) May be included.
- R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 10 are each Independently represents a monovalent organic group, a halogen atom or a hydrogen atom, and in formula (III-a), R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom; ) In the general formula (II-a), R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom, and has the same meaning as R 1 to R 10 in the general formula (Ia). The preferred range is also the same.
- R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom, and has the same meaning as R 1 to R 10 in the general formula (Ia). The preferred range is also the same.
- the polymer of the present invention is represented by the structural unit represented by the following general formula (II) and / or the following general formula (III) in addition to the structural unit represented by the general formula (I). It is preferable that the structural unit is included.
- R 1 to R 5 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 5 each independently represents one Represents a valent organic group, a halogen atom or a hydrogen atom
- R 1 to R 5 each independently represents a monovalent organic group or a hydrogen atom.
- R 1 to R 5 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom, and is synonymous with R 1 to R 5 in the general formula (I).
- the range is the same.
- R 1 to R 5 each independently represents a monovalent organic group or a hydrogen atom, and has the same meaning as R 1 to R 5 in the general formula (I). It is.
- the content of the structural unit represented by the general formula (Ia) or the general formula (I) is 0.1 to 100 mol% in all the structural units in the polymer of the present invention. Or from 1 to 100 mol%, or from 5 to 100 mol%.
- the content of the structural unit represented by the general formula (II-a) or the general formula (II) is 0 to 99.9 mol% in all the structural units in the polymer of the present invention. It can also be 0 to 99 mol%, or 0 to 95 mol%.
- the content of the structural unit represented by the general formula (III-a) or the general formula (III) may be 0 to 95 mol%, or 0 to 99 mol%. It can also be 0 to 95 mol%.
- the polymer of the present invention includes the structural unit represented by the general formula (II-1) as a structural unit other than the structural units represented by the general formulas (Ia) to (III-a). Further, it may be included. In all the structural units in the polymer of the present invention, the content of the structural unit represented by the general formula (II-1) may be 0 to 10 mol%, or may be 0 to 5 mol%. It can also be 1 mol% or less.
- the polymer of the present invention preferably contains three structural units represented by the following general formula (A0), and substantially contains only three structural units represented by the following general formula (A0). Is preferred.
- substantially only the structural unit represented by the following general formula (A0) refers to the following general formula (A0) when the amount of all structural units in the polymer of the present invention is 100 mol%.
- the total of l, m, and n in the structural unit represented is 99 mol% or more, preferably 100 mol%.
- General formula (A0) (In general formula (A0), R 2 represents an alkyl group.
- R 2 is preferably a linear alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
- l can be 0.1 to 100 mol%, 1 to 100 mol%, or 5 to 100 mol%.
- m can be 0 to 99.9 mol%, 0 to 99 mol%, or 0 to 95 mol%.
- n can be 0 to 95 mol%, 0 to 99 mol%, or 0 to 95 mol%. it can.
- the polymer of the present invention preferably includes five structural units represented by the following general formula (A1), and substantially includes only five structural units represented by the following general formula (A1). Is preferred.
- substantially only the structural unit represented by the following general formula (A1) is the following general formula (A1) when the amount of all structural units in the polymer of the present invention is 100 mol%. It means that the total of l1, l2, m1, m2 and n1 in the structural unit represented is 99 mol% or more, preferably 100 mol%.
- General formula (A1) In general formula (A1), R 2 , R 3 and R 6 each independently represents an alkyl group.
- L 1, l 2, m 1, m 2 and n 1 represent the molar ratio of each structural unit.
- R 2 , R 3 and R 6 are preferably a linear alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
- l1 and l2 can be independently 0 to 100 mol% or 0 to 99 mol%.
- m1 and m2 can be independently 0 to 99.9 mol%, or can be 0 to 99 mol%. Or from 0 to 95 mol%.
- n1 can be 0 to 95 mol%, 0 to 99 mol%, 0 to 95 mol% It can also be.
- the polymer of the present invention preferably includes three structural units represented by the following general formula (A2), and substantially includes only three structural units represented by the following general formula (A2). Is preferred.
- substantially only the structural unit represented by the following general formula (A2) refers to the following general formula (A2) when the amount of all structural units in the polymer of the present invention is 100 mol%.
- the total of l3, m3 and n2 in the structural unit represented is 99 mol% or more, preferably 100 mol%.
- General formula (A2) (In general formula (A2), R 2 and R 4 each independently represents an alkyl group.
- L3, m3 and n2 represent the molar ratio of each structural unit.
- R 2 and R 4 are preferably linear alkyl groups having 1 to 3 carbon atoms, and more preferably methyl groups.
- l3, m3, and n2 represent the molar ratio of each structural unit, and are synonymous with m, l, and n in general formula (A0).
- the polymer of the present invention preferably includes two structural units represented by the following general formula (A3), and substantially includes only two structural units represented by the following general formula (A3). Is preferred.
- substantially only the structural unit represented by the following general formula (A3) refers to the following general formula (A2) when the amount of all structural units in the polymer of the present invention is 100 mol%. It means that the total of l4 and m4 in the structural unit represented is 99 mol% or more, preferably 100 mol%.
- General formula (A3) In general formula (A3), R 2 and R 6 each independently represents an alkyl group.
- L4 and m4 represent the molar ratio of each structural unit.
- R 2 and R 6 are preferably linear alkyl groups having 1 to 3 carbon atoms, and more preferably methyl groups.
- l4 can be 0.1 to 100 mol%, 1 to 100 mol%, or 5 to 100 mol%. it can.
- m4 can be 0 to 99.9 mol%, 0 to 99 mol%, or 0 to 95 mol%. it can.
- the polymer of the present invention preferably includes two structural units represented by the following general formula (A4), and substantially includes only two structural units represented by the following general formula (A4). Is preferred.
- substantially only the structural unit represented by the following general formula (A4) refers to the following general formula (A4) when the amount of all structural units in the polymer of the present invention is 100 mol%.
- the total of l5 and m5 in the structural unit represented is 99 mol% or more, preferably 100 mol%.
- General formula (A4) (In general formula (A4), R 1 , R 2 and R 6 each independently represents an alkyl group.
- R 1 , R 2 and R 6 are preferably linear alkyl groups having 1 to 3 carbon atoms, and more preferably methyl groups.
- l5 can be 0.1 to 100 mol%, 1 to 100 mol%, or 5 to 100 mol%. it can.
- m5 can be 0 to 99.9 mol%, 0 to 99 mol%, or 0 to 95 mol%. it can.
- the polymer of the present invention does not include the structural unit represented by the general formula (Ia), and is represented by the structural unit represented by the general formula (II-a) and the general formula (III-a). At least one of the structural units may be included.
- the content of the structural unit represented by the general formula (II-a) can be 0 to 99.9 mol% in all the structural units in the polymer of the present invention. It can also be 0-99 mol%, and can also be 0-95 mol%.
- the content of the structural unit represented by the general formula (III-a) can be 0 to 95 mol%, 0 to 99 mol%, 0 to 95 mol%. It can also be made into mol%.
- the polymer of the present invention includes a structural unit represented by the general formula (II-a) and a structural unit other than the structural unit represented by the general formula (III-a). ) May be further included.
- the content of the structural unit represented by the general formula (II-1) may be 0 to 10 mol%, or may be 0 to 5 mol%. It can also be 1 mol% or less.
- the polymer of the present invention may substantially contain only three structural units represented by the following general formula (A5).
- substantially only the structural unit represented by the following general formula (A5) refers to the following general formula (A5) when the amount of all structural units in the polymer of the present invention is 100 mol%.
- the sum of m1, m2 and n1 in the structural unit represented is 99 mol% or more, preferably 100 mol%.
- General formula (A5) In general formula (A5), R 2 , R 3 and R 6 each independently represent an alkyl group.
- R 2 , R 3 and R 6 are preferably a linear alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
- m1 and m2 can be independently 0 to 99.9 mol%, 1 to 99 mol%, or 1 It can also be -95 mol%.
- n1 can be 0 to 95 mol%, 1 to 99 mol%, or 1 to 95 mol%. it can.
- the method for producing a polymer of the present invention comprises a step of polymerizing a raw material monomer containing a compound represented by the following general formula (IV-a) so that the other reaction rate relative to the homopolymerization reaction rate of the raw material monomer is reduced Including.
- R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 10 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom, and has the same meaning as R 1 to R 10 in general formula (Ia). The preferred range is also the same.
- the method for producing a polymer of the present invention comprises a step of polymerizing a raw material monomer containing a compound represented by the following general formula (IV) so that the other reaction rate relative to the homopolymerization reaction rate of the raw material monomer is lowered. It is preferable to include.
- R 1 to R 5 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom.
- R 1 to R 5 each independently represents a monovalent organic group, a halogen atom or a hydrogen atom, and has the same meaning as R 1 to R 5 in the general formula (I). The range is the same.
- the inventors of the present invention are able to independently polymerize a monomer containing a compound represented by the general formula (IV-a), which has been conventionally difficult, by radical polymerization, by the polymer production method of the present invention. I found it. The reason for this is presumed, but as the cause of termination of the polymerization reaction in producing the polymer of the present invention, inhibition due to the presence of a stable isomer of lactone as an impurity and polymerization termination reaction due to chain transfer (degradative chain transfer) And by suppressing at least one of these termination factors, it is possible to polymerize the raw material monomer containing the compound represented by the general formula (IV-a) alone, As a result, it is considered that the polymer of the present invention described above can be obtained.
- the polymer of the present invention is a polymer obtained by radical polymerization of the compound represented by the general formula (IV-a) alone.
- the single compound represented by the general formula (IV-a) preferably means that the compound represented by the general formula (IV-a) substantially occupies the total amount of the raw material monomers.
- substantially the total amount of raw material monomers means that the compound represented by the general formula (IV-a) preferably occupies 99 mol% or more of the raw material monomers, and is represented by the general formula (IV-a). More preferably, the compound to be used occupies 100 mol% of the raw material monomer.
- the compound represented by the general formula (IV) preferably occupies 99 mol% or more of the raw material monomer, and the compound represented by the general formula (IV) occupies 100 mol% of the raw material monomer.
- the polymer obtained by the method for producing a polymer of the present invention is obtained by polymerizing a compound represented by the general formula (IV-a), which can be obtained directly from butadiene and carbon dioxide, for example, as raw material monomers. Can do.
- butadiene can be synthesized from plant materials. Therefore, the polymer obtained by the method for producing a polymer of the present invention can be used as a plastic material that does not depend on fossil fuel, and is preferable from the viewpoint of environmental conservation.
- the compound represented by the general formula (IV-a) can be synthesized with reference to, for example, J. Organomet. Chem. 1983, 255, 263-268.
- the method for producing a polymer of the present invention preferably includes a step of emulsion polymerization of a raw material monomer containing the compound represented by the general formula (IV-a).
- a production method can effectively suppress inhibition due to the presence of a stable isomer of a lactone that is an impurity among the factors for stopping the polymerization reaction when producing the polymer of the present invention described above.
- the polymer of the present invention particularly a polymer containing only the structural unit represented by the general formula (Ia) can be efficiently obtained.
- the yield and molecular weight of the polymerization reaction in the method for producing a polymer of the present invention are greatly reduced due to the presence of a stable isomer of the compound represented by the general formula (IV-a) (for example, a stable isomer of lactone).
- a stable isomer of the compound represented by the general formula (IV-a) for example, a stable isomer of lactone.
- Stable isomers of lactones are known to form during polymerization by thermal isomerization.
- the raw material monomer has a very low reactivity (polymerization activity) and requires a relatively high temperature (for example, a temperature exceeding 80 ° C.).
- the emulsion polymerization used in the method for producing a polymer of the present invention is particularly excellent in terms of polymerization reaction rate among radical polymerizations.
- the method for producing a polymer of the present invention includes a step of subjecting a raw material monomer containing the compound represented by the general formula (IV-a) to emulsion polymerization, whereby the thermal isomerization of the raw material monomer with respect to the homopolymerization reaction rate of the raw material monomer. It is considered that a high conversion can be achieved by reducing the relative rate of conversion and effectively suppressing the formation of stable isomers, and as a result, the polymer of the present invention described above can be obtained.
- the emulsion polymerization in the method for producing a polymer of the present invention is carried out, for example, by using an emulsion containing a raw material monomer, an emulsifier and a polymerization initiator at, for example, 70 to 200 ° C., preferably 80 to 150 ° C. for 1 hour or more, preferably It is preferable to polymerize with stirring for 24 hours or more and wash with a dispersion medium.
- a compound represented by the general formula (IV-a) is used, and the compound represented by the general formula (IV-a) is preferably used alone, and the general formula (IV-a) is preferably used. It is more preferable that the compound represented by) occupies substantially the entire amount of the raw material monomers. In particular, it is preferable to polymerize a raw material monomer in which 99 mol% or more is a compound represented by the general formula (IV-a), and 100 mol% is a compound represented by the general formula (IV-a). It is more preferable to polymerize raw material monomers.
- the emulsifier is not particularly limited, and any of an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant can be used.
- an anionic surfactant is emulsified. It is preferable from the viewpoint of stability.
- the anionic surfactant include fatty acid salts such as sodium lauryl sulfate, alkylbenzene sulfonates such as higher alcohol sulfate esters and sodium dodecylbenzenesulfonate, polyoxyethylene alkyl ether sulfates, and polyoxynonyl phenyl ethers.
- Ammonium sulfonate and polyoxyethylene-polyoxypropylene glycol ether sulfate can be used.
- surfactants that can be used for example, paragraphs 0038 to 0050 of JP-A-2008-33148 can be referred to, the contents of which are incorporated herein.
- the amount of the surfactant used for emulsion polymerization of the polymer of the present invention is preferably 0.1 to 100 mol, more preferably 1 to 10 mol, when the total amount of raw material monomers is 100 mol.
- the polymerization initiator only needs to have radical generating ability.
- inorganic peroxides such as persulfate and hydrogen peroxide, peroxides described in the catalog of organic peroxides of Nippon Oil & Fats Co., Ltd., and Wako Pure Chemical Industries, Ltd.
- the azo compounds described in Yaku Kogyo Co., Ltd. azo polymerization initiator catalog can be used.
- water-soluble peroxides such as persulfate and water-soluble azo compounds described in the Wako Pure Chemical Industries, Ltd. Azo Polymerization Initiator Catalog are preferable.
- Ammonium persulfate, sodium persulfate, potassium persulfate, azobis ( 2-methylpropionamidine) hydrochloride, azobis (2-methyl-N- (2-hydroxyethyl) propionamide), or azobiscyanovaleric acid is more preferred, especially ammonium persulfate, sodium persulfate, potassium persulfate, etc. Peroxides are preferred.
- the amount of the polymerization initiator used for the emulsion polymerization of the polymer of the present invention is preferably 0.01 to 10 mol, more preferably 0.1 to 5 mol, when the total amount of raw material monomers is 100 mol.
- the dispersion medium water or a mixture of water and an aqueous solvent is preferable.
- aqueous solvent for example, lower aliphatic alcohols, aromatic alcohols, polyhydric alcohols and alkyl ether derivatives of polyhydric alcohols, or lower ketones are particularly preferable, and lower aliphatic alcohols are more preferable.
- Specific examples include linear or branched aliphatic lower alcohols such as methanol, ethanol, n-propanol, 2-propanol, or t-butyl alcohol, aromatic alcohols such as benzyl alcohol, or 2-phenylethanol, and propylene glycol.
- Ethylene glycol diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol such as PEG200 or PEG400, polypropylene glycol such as dipropylene glycol and tripropylene glycol, 1,3-butanediol, 2,3-butanediol, 1 , 4-butanediol, 1,5-pentanediol, polyhydric alcohols such as hexylene glycol and ethylene glycol monomethyl ether, ethylene glycol Monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, 3-methyl-3-methoxybutanol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl Alkyl of polyhydric alcohols such as ether, triethylene glycol dimethyl ether
- the aqueous solvent is preferably 0 to 50% by mass, more preferably 0 to 10% by mass, based on the total amount of the solvent for the emulsion polymerization.
- the method for producing a polymer of the present invention preferably includes a step of radically polymerizing the compound represented by the general formula (IV-a) in the presence of at least one Bronsted acid or Lewis acid.
- the above-described polymer of the present invention for example, the polymer 2-1 can be efficiently obtained.
- the polymer containing the structural unit represented by the said general formula (I), the structural unit represented by the said general formula (II), and the structural unit represented by the said general formula (III) can be obtained efficiently. You can also.
- an allyl ester site (the general formula (IV-a), which is a partial structure of the monomer represented by the general formula (IV-a)).
- the polymerization termination reaction due to the chain transfer of the “C ( ⁇ O) OC—CR 3 ⁇ CR 4 R 5 ”) site in ()) can be suppressed.
- the polymerization termination reaction due to chain transfer of the allyl ester moiety can be suppressed, and at the same time, the allyl ester moiety can be polymerized.
- the relative rate of the side reaction with respect to the polymerization reaction rate of the compound represented by the general formula (IV-a) is decreased, and the yield of the polymer obtained and the overall molecular weight are greatly improved. It is believed that the polymer of the present invention can be obtained.
- the radical polymerization in the method for producing a polymer of the present invention includes, for example, a solution containing a raw material monomer, a polymerization initiator, and a dispersion medium in the presence of at least one Bronsted acid or Lewis acid, preferably 70 to 200 ° C., preferably It is preferable to perform polymerization at 80 to 150 ° C. with stirring for 3 hours or longer, preferably 24 hours or longer, and then wash with a dispersion medium.
- the polymerization method in the present invention is not particularly limited as long as it is radical polymerization, and a known polymerization method can be employed.
- a thermal radical polymerization method, a photo radical polymerization method, a living radical polymerization method and the like can be mentioned. From the viewpoint of the conversion rate of the reaction, the thermal radical polymerization method is preferable.
- Bronsted acid examples include hydrogen chloride, hydrogen bromide, hydrogen iodide, acetic acid, trifluoroacetic acid, phosphoric acid, phosphate ester, sulfuric acid, nitric acid, benzenesulfonic acid, paratoluenesulfonic acid, and the like.
- Lewis acids include aluminum trichloride, ethylaluminum dichloride, ethylaluminum sesquichloride, ethylaluminum chloride, ethoxyaluminum dichloride, triethylaluminum, aluminum triiodide, aluminum tribromide, antimony pentachloride, triethylaluminum, tetraethoxy.
- the amount of Bronsted acid or Lewis acid used is preferably 1 to 300 mol, more preferably 20 to 200 mol, and even more preferably 50 to 180 mol, when the total amount of raw material monomers is 100 mol.
- the raw material monomer is synonymous with the raw material monomer of the first embodiment described above, and the preferred range is also the same.
- the amount of the polymerization initiator used for the emulsion polymerization of the polymer of the present invention is preferably 0.01 to 10 mol, more preferably 0.1 to 5 mol, when the total amount of raw material monomers is 100 mol.
- dispersion medium the dispersion medium of the manufacturing method of the first embodiment described above can be used.
- Other dispersion media include, for example, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, t-butyl alcohol, cyclohexanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n- Propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono- n-propyl ether acetate, propylene glycol, propylene glycol Coal monomethyl ether, propylene glycol monoethyl ether, propylene glycol
- the polymer of the present invention can be synthesized from a 1,3-diene compound and carbon dioxide in one pot.
- the one-pot synthesis refers to, for example, synthesizing the compound (raw material monomer) represented by the general formula (IV-a) and then starting the polymerization without purification.
- the polymer of the present invention can be obtained directly from butadiene and carbon dioxide, for example.
- Butadiene can be synthesized from plant materials and can be a plastic material that does not depend on fossil fuels.
- the above polymers 2-1 to 2-5 or the polymer 3-1 are synthesized in one pot from at least one selected from 1,3-butadiene, 1,3-pentadiene and isoprene and carbon dioxide. You can also.
- the above-mentioned polymer 2-1 can be obtained by obtaining a compound represented by the following general formula (IV-a) from 1,3-butadiene and carbon dioxide and polymerizing the compound. .
- Formula (IV-a) (In general formula (IV-a), R 2 has the same meaning as R 2 in general formula (A0), and the preferred range is also the same.)
- a compound represented by the following general formula (IV-c) is obtained from 1,3-butadiene, 1,3-pentadiene and carbon dioxide, and polymerized to obtain the above-mentioned polymer 2-3. Obtainable.
- Formula (IV-c) (In the general formula (IV-c), R 2 and R 4 have the general formula (A2) in the same meaning as R 2 and R 4, and preferred ranges are also the same.)
- the polymer of the present invention can be used for various applications.
- the polymer of the present invention can be dissolved in an organic solvent, for example, and used as a varnish.
- this varnish can be solution-molded to form a molded body.
- the shape of the molded body is not particularly limited. For example, it may be a film shape (coating film, transparent film, etc.), a sheet shape, a tube shape (tube (for example, JP-A-2005-002531) or hose), an electronic device casing, etc. Can be molded.
- the polymer of the present invention can also be formed into a molded body by melt molding.
- an additive may be used together with the polymer.
- a mold release agent for example, a mold release agent, an antioxidant, an ultraviolet ray inhibitor, a flame retardant, a stabilizer and the like can be used.
- the molded product obtained using the polymer of the present invention has good transparency.
- the molded product obtained using the polymer of the present invention can have a haze value of 5% or less, 3% or less, or 2% or less.
- the molded object obtained using the polymer of this invention has favorable intensity
- film obtained by using the polymer of the present invention can also be a 150 N / mm 2 or more, 180 N / mm 2 or more It can also be.
- the Martens hardness (based on ISO14577) is a hardness calculated from a load-indentation depth curve. Since the polymer of the present invention has a lactone ring and the lactone ring is opened in an alkaline solution, it can be suitably used, for example, as a resist material.
- Example 2 About the polymer 1 obtained in Example 1, the 1 H NMR spectrum was measured. The measurement was performed at room temperature using 500 MHz and DMSO-d 6 . The measurement results are shown in FIG.
- the polymer 1 obtained in Example 1 was measured for 13 C NMR spectrum. The measurement was performed at room temperature using 101 MHz and TFA. The measurement results are shown in FIG. In FIG. 2, the peaks of A (167 ppm), B (129 ppm), H (135 ppm), and E (62 ppm) each represent a peak of the monocyclic structural unit II. In FIG. 2, peaks of f (50 ppm), b (58 ppm), e (82 ppm), and a (179 ppm) each represent a peak of the bicyclic unit structure I. Further, in FIG. 2, the peaks of A ′ (175 ppm) and E (138 ppm) and F ′ (130 ppm) represent the monocyclic structural unit III.
- the IR spectrum (KBr disk) of the polymer 1 obtained in Example 1 was measured.
- the measurement results are shown in FIG.
- the absorption respectively was observed in 1770 cm -1 (bicyclic (bicyclic)) and 1716 cm -1 (monocyclic (monocyclic))).
- the molecular weight of the polymer 1 obtained in Example 1 was measured by the SEC (Size Exclusion Chromatography) method.
- the SEC chart is shown in FIG. The measurement was performed under the above condition (A).
- the number average molecular weight (Mn) was 5.0 ⁇ 10 3 and the weight average molecular weight (Mw) was 3.6 ⁇ 10 4 .
- the polymer 2 obtained in Example 2 was measured for 13 C NMR spectrum. The measurement was performed using chloroform at 101 MHz and room temperature. The measurement results are shown in FIG. In the spectrum shown in FIG. 7, symbols a to i respectively correspond to symbols a to i in the structure of the polymer 2 shown in FIG. From the results shown in FIG. 7, it was found that in Example 2, the polymer 2 was obtained.
- Example 3 The polymer 2 obtained in Example 3 was measured for 13 C NMR spectrum. The measurement was performed using chloroform at 101 MHz and room temperature. The measurement results were the same as in FIG. 7, and it was found that in Example 3, the polymer 2 was obtained.
- Example 4 The polymer 1 was synthesized from butadiene and carbon dioxide in one pot.
- thermogravimetry thermogravimetry
- a TG chart is shown in FIG. The measurement was performed by raising the temperature range of 40 to 500 ° C. at 10 ° C./min under atmospheric conditions. From the measurement results, it was found that the temperature at which the weight loss reached 5% was 340 ° C., and this was defined as the thermal decomposition temperature (Td). Further, the polymer 1 obtained in Example 1 was subjected to differential scanning calorimetry (DSC). A DSC chart is shown in FIG. The measurement was performed by raising the temperature range of 50 to 280 ° C. at 20 ° C./min, holding at 280 ° C.
- DSC differential scanning calorimetry
- Example 1 the polymer 1 was obtained. Moreover, it turned out that the polymer 1 obtained in Example 1 has favorable heat resistance.
- Example 1 of Polymer 1> ⁇ Preparation of Varnish Comprising Polymer 1 >> The polymer 1 obtained in Example 1 was dissolved in tetrahydrofuran and a 30% by mass solution was obtained. This was filtered using a filter (aperture 5 ⁇ m) to obtain a varnish.
- Example 4 of Polymer 1> ⁇ Creation of Molded Body Containing Polymer 1 >> The polymer 1 obtained in Example 1 was filled into a 30 mm ⁇ 50 mm S rectangular US frame (thickness: 200 ⁇ m), and the following molding was performed using an electric double vacuum press machine (manufactured by Baldwin Co., Ltd.). By performing press molding under the conditions, a transparent and uniform molded body made of the polymer 1 was obtained.
- Molding conditions >>> Temperature: 225 ° C Pressure: 20MPa Time: 3 minutes
- Example 5 The following polymer 3 was synthesized in one pot from 1,3-butadiene, isoprene and carbon dioxide.
- 1,3-butadiene (1.36 g, 25 mmol) was added with stirring for 3 minutes.
- 3.75 g (86 mmol) of CO 2 was added to the autoclave and heated at 80 ° C. for 20 hours.
- 1,1′-azobis (cyclohexane-1-carbonitrile) (V-40, manufactured by Wako Pure Chemical Industries) was added to the mixture.
- 1 mg (0.165 mmol) and 2.25 g (16.5 mmol) of zinc chloride (manufactured by Wako Pure Chemical Industries, Ltd.) were added and heated at 100 ° C. for 24 hours.
- the polymer 3 obtained in Example 5 was measured for 13 C NMR spectrum. The measurement was performed at room temperature using 101 MHz and TFA. The measurement results are shown in FIG. In FIG. 9, the peaks a ′′ -j ′′ and a ′ ′′-j ′ ′′ each represent a peak of a monocyclic unit structure (II). Further, in FIG. 9, the peak a ′′ ′′-j ′′ ′′ represents a monocyclic structural unit (III).
- Example 5 Further, the IR spectrum of the polymer 3 obtained in Example 5 was measured. The measurement results are shown in FIG. The wavelength and intensity of each peak in FIG. 10 are shown below.
- the molecular weight of the polymer 3 obtained in Example 5 was measured by the SEC method.
- the SEC chart is shown in FIG. The measurement was performed under the above condition (B).
- the number average molecular weight (Mn) was 1.6 ⁇ 10 4
- the weight average molecular weight (Mw) was 3.2 ⁇ 10 4
- Mw / Mn was 2.0.
- the polymer 3 obtained in Example 5 was subjected to thermogravimetry (TG).
- TG chart is shown in FIG. The measurement was performed by raising the temperature range of 40 to 500 ° C. at 10 ° C./min under atmospheric conditions. From the measurement results, it was found that the temperature at which the weight loss reached 5% was 240 ° C., and this was defined as the thermal decomposition temperature (Td).
- DSC differential scanning calorimetry
- a DSC chart is shown in FIG. The measurement was performed by raising the temperature range of ⁇ 70 to 280 ° C. at 20 ° C./min, holding at 280 ° C. for 10 minutes, and cooling to ⁇ 70 ° C.
- Example 5 the polymer 3 was obtained. Moreover, it turned out that the polymer 3 obtained in Example 5 has favorable heat resistance.
- Example 6 The following polymer 4 was synthesized from 1,3-butadiene, 1,3-pentadiene, and carbon dioxide in one pot.
- 1,3-butadiene (1.34 g, 25 mmol) was added with stirring for 3 minutes.
- 3.75 g (86 mmol) of CO 2 was added to the autoclave and heated at 80 ° C. for 20 hours.
- 1,1′-azobis (cyclohexane-1-carbonitrile) (V-40, manufactured by Wako Pure Chemical Industries) was added to the mixture.
- 1 mg (0.165 mmol) and 2.25 g (16.5 mmol) of zinc chloride (manufactured by Wako Pure Chemical Industries, Ltd.) were added and heated at 100 ° C. for 24 hours.
- the polymer 4 obtained in Example 6 was measured for 1 H NMR spectrum. The measurement was performed at room temperature using 400 MHz and DMSO-d 6 . The measurement results are shown in FIG.
- the polymer 4 obtained in Example 6 was measured for 13 C NMR spectrum. The measurement was performed at room temperature using 101 MHz and TFA (trifluoroacetic acid). The measurement results are shown in FIG. In FIG. 15, the peaks a′-j ′ each represent a peak of a monocyclic unit structure (II-a). In FIG. 15, the peaks aj represent the peaks of the bicyclic unit structure (Ia). Further, in FIG. 15, the peak a ′′ -j ′′ represents a monocyclic structural unit (III-a).
- Example 6 Further, the IR spectrum of the polymer 4 obtained in Example 6 was measured. The measurement results are shown in FIG. The wavelength and intensity of each peak in FIG. 16 are shown below.
- the molecular weight of the polymer 4 obtained in Example 6 was measured by the SEC method.
- the SEC chart is shown in FIG. The measurement was performed under the above condition (B).
- the number average molecular weight (Mn) was 5.5 ⁇ 10 3
- the weight average molecular weight (Mw) was 1.4 ⁇ 10 4
- Mw / Mn was 2.5.
- the polymer 4 obtained in Example 6 was subjected to thermogravimetry (TG).
- TG chart is shown in FIG. The measurement was performed by raising the temperature range of 40 to 500 ° C. at 10 ° C./min under atmospheric conditions. From the measurement results, it was found that the temperature at which the weight loss reached 5% was 277 ° C., and this was defined as the thermal decomposition temperature (Td).
- DSC differential scanning calorimetry
- a DSC chart is shown in FIG. The measurement was performed by raising the temperature range of ⁇ 70 to 280 ° C. at 20 ° C./min, holding at 280 ° C. for 10 minutes, and cooling to ⁇ 70 ° C.
- Example 6 the polymer 4 was obtained. Moreover, it turned out that the polymer 4 obtained in Example 6 has favorable heat resistance.
- the polymer of the present invention has excellent thermal properties.
- the polymer disclosed in Non-Patent Document 5 is shown to have a Tg (glass transition temperature) of ⁇ 30 ° C. or lower while using the same monomer represented by the general formula (IV) as a raw material.
- the polymer of this invention showed Tg exceeding 190 degreeC by comprising the structure represented by the said general formula (I).
- Td thermal decomposition temperature
- the polymer of the present invention has a sufficiently high Td (thermal decomposition temperature)
- it can be melt-molded without impairing properties by heating.
- the obtained molded body exhibited good hardness.
- the polymer of the present invention exhibits good solubility in various organic solvents, it can be used as a varnish.
- the polymer of this invention is excellent also in transparency, it can be used as a transparent coating material, for example.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
ラクトンモノマーを単独重合して得られる重合体を提供する。炭素原子を3つ以上含むラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)の少なくとも1つが主鎖の一部を構成し、前記ラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)中、前記主鎖の一部を構成する炭素原子以外の炭素原子の少なくとも1つが前記主鎖の原子と架橋している構造単位を含む、重合体。
Description
本発明は、重合体及び重合体の製造方法に関する。
二酸化炭素は、安価で入手容易な炭素源であり、有効利用が望まれる。しかし、現行の二酸化炭素の工業的な利用は、尿素、サリチル酸、炭酸エステルなどの合成に限られる。高分子材料としての二酸化炭素の利用法としては、エポキシドとの共重合によるポリ炭酸エステル合成が知られているが、その利用範囲が限られている。より一般的なモノマーであるオレフィン類と二酸化炭素との共重合については、1970年代にジエン、ビニルエーテル、アクリロニトリルなどと二酸化炭素との共重合が報告されている(例えば非特許文献1~4を参照)。
高分子材料として二酸化炭素を利用した例として、例えば、非特許文献5には、二酸化炭素と1、3-ジエン構造より成るラクトンモノマーを共重合して成るポリマーが開示されている。また、非特許文献6には、二酸化炭素とエポキシ類から成るポリマーが開示されている。
Soga, K.; Hosoda, S.; Ikeda, S. Die Macromol. Chem. 1975, 176, 1907-1911.
Soga, K.; Hosoda, S.; Tasuka, Y.; Ikeda, S. J. Polym. Sci., Polym. Lett. 1975, 13, 265-268.
Soga, K.; Sato, M.; Hosoda, S.; Ikeda, S. J. Polym. Sci., Polym. Lett. 1975, 13, 543-548.
Chiang, W-Y. Proc. Natl. Sci. Council. R. O. C. 1978, 2, 170-176.
Haack, V.; Dinjus, E.; Pitter, S. Die Angew. Makromol. Chem. 1998, 257, 19-22.
Sugimoto, H.; Inoue, S. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 5561-5573.
非特許文献1~4には、ラクトンモノマーを単独重合することについては何ら開示されていない。また、非特許文献1~4に開示されたポリマーは、ラクトン環を有していない。
非特許文献5に開示された技術は、ラクトンモノマーの単独重合反応速度に対する他の副次的な反応の速度が高かったため、ラクトンモノマーを単独重合することができなかった。また、非特許文献5には、ラクトンモノマーを単独重合する試みについて記載があるが、成功したという報告はない。
また、非特許文献5に開示されたポリマーは、例えば下記構造単位を有するポリマーであり、ラクトン環を構成する炭素原子中、主鎖の一部を構成する炭素原子以外の炭素原子の少なくとも1つが主鎖の原子と架橋していない。
非特許文献5に開示された技術は、ラクトンモノマーの単独重合反応速度に対する他の副次的な反応の速度が高かったため、ラクトンモノマーを単独重合することができなかった。また、非特許文献5には、ラクトンモノマーを単独重合する試みについて記載があるが、成功したという報告はない。
また、非特許文献5に開示されたポリマーは、例えば下記構造単位を有するポリマーであり、ラクトン環を構成する炭素原子中、主鎖の一部を構成する炭素原子以外の炭素原子の少なくとも1つが主鎖の原子と架橋していない。
さらに、非特許文献5に開示されたポリマーは、逐次重合により得られるため、硫黄を含むコモノマーを必須としており、廃棄(焼却)時に有害物質を生成する懸念があり、ポリマー中の二酸化炭素含率も低下してしまう。環境保全の観点からこれらの点は望ましくない。
非特許文献6には、ラクトンモノマーを単独重合することについては何ら開示されていない。また、非特許文献6に開示されたポリマーは、ラクトン環を有していない。
本発明は、かかる問題点を解決することを目的としたものであって、ラクトンモノマーを単独重合して得られる重合体を提供することを目的とする。
非特許文献6には、ラクトンモノマーを単独重合することについては何ら開示されていない。また、非特許文献6に開示されたポリマーは、ラクトン環を有していない。
本発明は、かかる問題点を解決することを目的としたものであって、ラクトンモノマーを単独重合して得られる重合体を提供することを目的とする。
かかる状況のもと、本発明者が鋭意検討を行った結果、ラクトンモノマーの単独重合反応速度に対する他の反応速度が低下するようにラクトンモノマーを重合させることにより、ラクトンモノマーの単独重合に成功し、上記課題を解決しうることを見出した。
具体的には、以下の手段<1>により、好ましくは、<2>~<18>により、上記課題は解決された。
<1>炭素原子を3つ以上含むラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)の少なくとも1つが主鎖の一部を構成し、ラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)中、主鎖の一部を構成する炭素原子以外の炭素原子の少なくとも1つが主鎖の原子と架橋している構造単位を含む、重合体。
<2>下記一般式(I-a)で表される構造単位を含む、<1>に記載の重合体。
(一般式(I-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。)
<3>下記一般式(I)で表される構造単位を含む、<1>に記載の重合体。
(一般式(I)中、R1~R5はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。)
<4>更に、下記一般式(II-a)で表される構造単位及び/又は下記一般式(III-a)で表される構造単位を含む、<1>~<3>のいずれかに記載の重合体。
(一般式(II-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。一般式(III-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。)
<5>更に、下記一般式(II)で表される構造単位及び/又は下記一般式(III)で表される構造単位を含む、<1>~<3>のいずれかに記載の重合体。
(一般式(II)中、R1~R5はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。一般式(III)中、R1~R5はそれぞれ独立に、一価の有機基又は水素原子を表す。)
<6>下記一般式(I-a)で表される構造単位、下記一般式(II-a)及び下記一般式(III-a)で表される構造単位を含む、<1>に記載の重合体。
(一般式(I-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。一般式(II-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。一般式(III-a)中、R1R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。)
<7>下記一般式(I)で表される構造単位、下記一般式(II)及び下記一般式(III)で表される構造単位を含む、<1>に記載の重合体。
(一般式(I)中、R1~R5はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。一般式(II)中、R1~R5はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。一般式(III)中、R1~R5はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。)
<8>下記一般式(I-a)で表される構造単位、下記一般式(II-a)で表される構造単位及び下記一般式(III-a)で表される構造単位のうち少なくとも1種を含む、重合体。
(一般式(I-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。一般式(II-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。一般式(III-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。)
<9>下記一般式(IV-a)で表される化合物を単独でラジカル重合させてなる重合体。
(一般式(IV-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。)
<10>下記一般式(IV)で表される化合物を単独でラジカル重合させてなる重合体。
(一般式(IV)中、R1~R5はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。
<11>熱重量測定(TG)により、10℃/分で昇温させたときの熱分解温度(Td)が220℃以上である、<1>~<10>のいずれか1項に記載の重合体。
<12><1>~<11>のいずれかに記載の重合体を含むワニス。
<13><1>~<11>のいずれかに記載の重合体を含む成形体。
<14>下記一般式(IV-a)で表される化合物を含む原料モノマーを、モノマーの単独重合反応速度に対する他の反応速度が低下するように重合させる工程を含む、重合体の製造方法。
(一般式(IV-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。)
<15>下記一般式(IV)で表される化合物を含む原料モノマーを、モノマーの単独重合反応速度に対する他の反応速度が低下するように重合させる工程を含む、重合体の製造方法。
(一般式(IV)中、R1~R5はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。)
<16>原料モノマーを、少なくとも一種のブレンステッド酸もしくはルイス酸存在下でラジカル重合させる工程、又は、乳化重合させる工程を含む、<14>又は<15>に記載の重合体の製造方法。
<17>1、3-ジエン化合物と二酸化炭素とからワンポットで合成する、重合体の製造方法。
<18>重合体が、<1>~<11>のいずれかに記載の重合体である、<14>~<17>のいずれかに記載の重合体の製造方法。
具体的には、以下の手段<1>により、好ましくは、<2>~<18>により、上記課題は解決された。
<1>炭素原子を3つ以上含むラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)の少なくとも1つが主鎖の一部を構成し、ラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)中、主鎖の一部を構成する炭素原子以外の炭素原子の少なくとも1つが主鎖の原子と架橋している構造単位を含む、重合体。
<2>下記一般式(I-a)で表される構造単位を含む、<1>に記載の重合体。
<3>下記一般式(I)で表される構造単位を含む、<1>に記載の重合体。
<4>更に、下記一般式(II-a)で表される構造単位及び/又は下記一般式(III-a)で表される構造単位を含む、<1>~<3>のいずれかに記載の重合体。
<5>更に、下記一般式(II)で表される構造単位及び/又は下記一般式(III)で表される構造単位を含む、<1>~<3>のいずれかに記載の重合体。
<6>下記一般式(I-a)で表される構造単位、下記一般式(II-a)及び下記一般式(III-a)で表される構造単位を含む、<1>に記載の重合体。
<7>下記一般式(I)で表される構造単位、下記一般式(II)及び下記一般式(III)で表される構造単位を含む、<1>に記載の重合体。
<8>下記一般式(I-a)で表される構造単位、下記一般式(II-a)で表される構造単位及び下記一般式(III-a)で表される構造単位のうち少なくとも1種を含む、重合体。
<9>下記一般式(IV-a)で表される化合物を単独でラジカル重合させてなる重合体。
<10>下記一般式(IV)で表される化合物を単独でラジカル重合させてなる重合体。
<11>熱重量測定(TG)により、10℃/分で昇温させたときの熱分解温度(Td)が220℃以上である、<1>~<10>のいずれか1項に記載の重合体。
<12><1>~<11>のいずれかに記載の重合体を含むワニス。
<13><1>~<11>のいずれかに記載の重合体を含む成形体。
<14>下記一般式(IV-a)で表される化合物を含む原料モノマーを、モノマーの単独重合反応速度に対する他の反応速度が低下するように重合させる工程を含む、重合体の製造方法。
<15>下記一般式(IV)で表される化合物を含む原料モノマーを、モノマーの単独重合反応速度に対する他の反応速度が低下するように重合させる工程を含む、重合体の製造方法。
<16>原料モノマーを、少なくとも一種のブレンステッド酸もしくはルイス酸存在下でラジカル重合させる工程、又は、乳化重合させる工程を含む、<14>又は<15>に記載の重合体の製造方法。
<17>1、3-ジエン化合物と二酸化炭素とからワンポットで合成する、重合体の製造方法。
<18>重合体が、<1>~<11>のいずれかに記載の重合体である、<14>~<17>のいずれかに記載の重合体の製造方法。
本発明によれば、ラクトンモノマーを単独重合して得られる重合体を提供することができる。
以下において、本発明の内容について詳細に説明する。本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は置換基を有さないものと共に置換基を有するものをも包含するものである。
また、本明細書中において、“単量体”と“モノマー”とは同義である。本発明における単量体は、オリゴマー及びポリマーと区別され、重量平均分子量が2,000以下の化合物をいう。
本明細書中において、ラクトンモノマーを単独重合して得られる重合体とは、完全に単独重合体のもののみをいうのではなく、本発明の趣旨を逸脱しない範囲で、他のモノマーを微量に含んだ重合体であってもよい。
本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は置換基を有さないものと共に置換基を有するものをも包含するものである。
また、本明細書中において、“単量体”と“モノマー”とは同義である。本発明における単量体は、オリゴマー及びポリマーと区別され、重量平均分子量が2,000以下の化合物をいう。
本明細書中において、ラクトンモノマーを単独重合して得られる重合体とは、完全に単独重合体のもののみをいうのではなく、本発明の趣旨を逸脱しない範囲で、他のモノマーを微量に含んだ重合体であってもよい。
<重合体>
本発明の重合体は、炭素原子を3つ以上含むラクトン環(以下、単にラクトン環ともいう。)を構成する炭素原子(但し、-C(=O)O-のCは除く)の少なくとも1つが主鎖の一部を構成し、前記ラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)中、前記主鎖の一部を構成する炭素原子以外の炭素原子の少なくとも1つが前記主鎖の原子と架橋している構造単位を含む。
本発明の重合体は、炭素原子を3つ以上含むラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)の少なくとも1つが主鎖の一部を構成している。また、本発明の重合体は、前記ラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)中、前記主鎖の一部を構成する炭素原子以外の炭素原子(以下、主鎖の一部を構成しない炭素原子ともいう。)の少なくとも1つが前記主鎖の原子と架橋している構造単位を含む。
このように、炭素原子を3つ以上含むラクトン環を構成する炭素原子のうち、-C(=O)O-のCを除く少なくとも1つの炭素原子が主鎖の一部を構成し、かつ、炭素原子を3つ以上含むラクトン環を構成する炭素原子のうち、主鎖の一部を構成しない炭素原子の少なくとも1つが前記主鎖の原子と架橋していることにより、重合体の耐熱性を向上させることができる。すなわち、本発明の重合体は、剛直な構造に由来して熱安定性が高い。
本発明の重合体は、炭素原子を3つ以上含むラクトン環(以下、単にラクトン環ともいう。)を構成する炭素原子(但し、-C(=O)O-のCは除く)の少なくとも1つが主鎖の一部を構成し、前記ラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)中、前記主鎖の一部を構成する炭素原子以外の炭素原子の少なくとも1つが前記主鎖の原子と架橋している構造単位を含む。
本発明の重合体は、炭素原子を3つ以上含むラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)の少なくとも1つが主鎖の一部を構成している。また、本発明の重合体は、前記ラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)中、前記主鎖の一部を構成する炭素原子以外の炭素原子(以下、主鎖の一部を構成しない炭素原子ともいう。)の少なくとも1つが前記主鎖の原子と架橋している構造単位を含む。
このように、炭素原子を3つ以上含むラクトン環を構成する炭素原子のうち、-C(=O)O-のCを除く少なくとも1つの炭素原子が主鎖の一部を構成し、かつ、炭素原子を3つ以上含むラクトン環を構成する炭素原子のうち、主鎖の一部を構成しない炭素原子の少なくとも1つが前記主鎖の原子と架橋していることにより、重合体の耐熱性を向上させることができる。すなわち、本発明の重合体は、剛直な構造に由来して熱安定性が高い。
本発明の重合体は、炭素原子を3つ以上含むラクトン環を構成する炭素原子のうち、-C(=O)O-のCを除く少なくとも1つの炭素原子が主鎖の一部を構成していればよく、炭素原子を3つ以上含むラクトン環を構成する炭素原子のうち、-C(=O)O-のCを除く1つの炭素原子が主鎖の一部を構成していることが好ましい。また、本発明の重合体は、前記ラクトン環を構成する炭素原子のうち、-C(=O)O-のCに隣接した炭素原子が主鎖の一部を構成していることが好ましい。
本発明の重合体は、ラクトン環が炭素原子を3つ以上含んでいればよく、炭素原子を4つ以上含んでいることが好ましく、炭素原子を4つ又は5つ含んでいることがより好ましい。また、炭素原子を3つ以上含むラクトン環は、例えば、5~8員環を形成するラクトン環が好ましく、5又は6員環を形成するラクトン構造がより好ましく、6員環を形成するラクトン構造がさらに好ましい。
また、本発明で用いられる炭素原子を3つ以上含むラクトン環は、他の環構造が縮環して多環構造を形成していてもよいが、ラクトン環に他の環構造が縮環していないことが好ましい。
本発明の重合体は、ラクトン環が炭素原子を3つ以上含んでいればよく、炭素原子を4つ以上含んでいることが好ましく、炭素原子を4つ又は5つ含んでいることがより好ましい。また、炭素原子を3つ以上含むラクトン環は、例えば、5~8員環を形成するラクトン環が好ましく、5又は6員環を形成するラクトン構造がより好ましく、6員環を形成するラクトン構造がさらに好ましい。
また、本発明で用いられる炭素原子を3つ以上含むラクトン環は、他の環構造が縮環して多環構造を形成していてもよいが、ラクトン環に他の環構造が縮環していないことが好ましい。
また、本発明の重合体は、炭素原子を3つ以上含むラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)中、主鎖の一部を構成する炭素原子以外の炭素原子の少なくとも1つが主鎖の原子と架橋している構造単位を含む。
本発明の重合体における架橋とは、前記ラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)中、主鎖の一部を構成しない炭素原子の少なくとも1つが、主鎖の原子と結合されていればよく、主鎖の一部を構成しない炭素原子の少なくとも1つが、主鎖の炭素原子と直接結合していることが好ましい。
本発明の重合体は、炭素原子を3つ以上含むラクトン環を構成する炭素原子のうち、主鎖の一部を構成しない炭素原子の少なくとも1つが主鎖の原子と架橋していればよく、特に、前記ラクトン環を構成する炭素原子のうち、主鎖の一部を構成しない炭素原子の1つだけが主鎖の原子と架橋していることが好ましい。
また、本発明の重合体は、前記ラクトン環を構成する炭素原子中、主鎖の一部を構成しない炭素原子のうち、少なくとも、-C(=O)O-のOに隣接した炭素原子が主鎖の炭素原子と架橋していることが好ましく、特に、前記ラクトン環を構成する炭素原子中、-C(=O)O-のOに直接結合した炭素原子のみが主鎖の炭素原子と架橋していることが好ましい。
本発明の重合体における架橋とは、前記ラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)中、主鎖の一部を構成しない炭素原子の少なくとも1つが、主鎖の原子と結合されていればよく、主鎖の一部を構成しない炭素原子の少なくとも1つが、主鎖の炭素原子と直接結合していることが好ましい。
本発明の重合体は、炭素原子を3つ以上含むラクトン環を構成する炭素原子のうち、主鎖の一部を構成しない炭素原子の少なくとも1つが主鎖の原子と架橋していればよく、特に、前記ラクトン環を構成する炭素原子のうち、主鎖の一部を構成しない炭素原子の1つだけが主鎖の原子と架橋していることが好ましい。
また、本発明の重合体は、前記ラクトン環を構成する炭素原子中、主鎖の一部を構成しない炭素原子のうち、少なくとも、-C(=O)O-のOに隣接した炭素原子が主鎖の炭素原子と架橋していることが好ましく、特に、前記ラクトン環を構成する炭素原子中、-C(=O)O-のOに直接結合した炭素原子のみが主鎖の炭素原子と架橋していることが好ましい。
本発明の重合体は、示差走査熱量測定(DSC)により、20℃/分で昇温させたときのガラス転移温度(Tg)が120℃以上であることが好ましく、150℃以上であることがより好ましく、170℃以上であることがさらに好ましい。また、本発明の重合体は、示差走査熱量測定(DSC)により、20℃/分で昇温させたときのガラス転移温度(Tg)が30℃以上であることも好ましく、50℃以上であることも好ましく、70℃以上であることも好ましい。
本発明の重合体は、熱重量測定(TG)により、40~500℃の温度範囲を、温度10℃/分で昇温させ、重量減少が5%に達したときの熱分解温度(Td)が220℃以上であることが好ましく、250℃以上であることがより好ましく、300℃以上であることがさらに好ましい。
本発明の重合体は、熱重量測定(TG)により、40~500℃の温度範囲を、温度10℃/分で昇温させ、重量減少が5%に達したときの熱分解温度(Td)が220℃以上であることが好ましく、250℃以上であることがより好ましく、300℃以上であることがさらに好ましい。
本発明の重合体の数平均分子量(Mn)は、1,000~400,000であることが好ましく、3,000~300,000であることがより好ましく、5,000~200,000であることがさらに好ましく、5,000~100,000であることが特に好ましい。
本発明の重合体の重量平均分子量(Mw)は、2,000~800,000であることが好ましく、6,000~600,000であることがより好ましく、9,000~400,000であることがさらに好ましく、9,000~200,000であることが特に好ましい。
本発明の重合体の数平均分子量(Mn)及び重量平均分子量(Mw)を前記範囲内とすることで、良好な熱特性が発現すると共にポリマーに加工適性を付与し得る。また、本発明の重合体の数平均分子量(Mn)及び重量平均分子量(Mw)を前記範囲内とすることで、合成反応に著しい高温、長時間等の過酷な条件を不要にすることができる。
本発明の重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、SEC(Size Exclusion Chromatography)法により測定した。測定は、下記の条件(A)、(B)のいずれかにて行った。
本発明の重合体の重量平均分子量(Mw)は、2,000~800,000であることが好ましく、6,000~600,000であることがより好ましく、9,000~400,000であることがさらに好ましく、9,000~200,000であることが特に好ましい。
本発明の重合体の数平均分子量(Mn)及び重量平均分子量(Mw)を前記範囲内とすることで、良好な熱特性が発現すると共にポリマーに加工適性を付与し得る。また、本発明の重合体の数平均分子量(Mn)及び重量平均分子量(Mw)を前記範囲内とすることで、合成反応に著しい高温、長時間等の過酷な条件を不要にすることができる。
本発明の重合体の数平均分子量(Mn)及び重量平均分子量(Mw)は、SEC(Size Exclusion Chromatography)法により測定した。測定は、下記の条件(A)、(B)のいずれかにて行った。
<条件(A)>
GPC装置:HLC8220GPC((株)東ソー製)
カラム:TSKgel SuperHZM-H、TSKgel SuperHZ-2000、TSKgel SuperHZ-4000(いずれも(株)東ソー製)
溶媒:テトラヒドロフラン
流速:0.35ml/min
カラム温度:40℃
Mn、Mw、は、標準ポリスチレン試料に対して調整した。
<条件(B)>
GPC装置:HLC8220GPC((株)東ソー製)
検出器:Viscotek TDA302((株)Viscotek製)
カラム:TSKgel SupermultiporeHZ-N、二本連結((株)東ソー製)
溶媒:テトラヒドロフラン
流速:0.35ml/min
カラム温度:40℃
Mn、Mw、はOmniSecプログラム((株)Viscotek製)により、RIチャートから計算された比屈折率増分に基づく。
GPC装置:HLC8220GPC((株)東ソー製)
カラム:TSKgel SuperHZM-H、TSKgel SuperHZ-2000、TSKgel SuperHZ-4000(いずれも(株)東ソー製)
溶媒:テトラヒドロフラン
流速:0.35ml/min
カラム温度:40℃
Mn、Mw、は、標準ポリスチレン試料に対して調整した。
<条件(B)>
GPC装置:HLC8220GPC((株)東ソー製)
検出器:Viscotek TDA302((株)Viscotek製)
カラム:TSKgel SupermultiporeHZ-N、二本連結((株)東ソー製)
溶媒:テトラヒドロフラン
流速:0.35ml/min
カラム温度:40℃
Mn、Mw、はOmniSecプログラム((株)Viscotek製)により、RIチャートから計算された比屈折率増分に基づく。
<<第1の実施の形態>>
本発明の重合体は、下記一般式(I-a)で表される構造単位を含むことが好ましく、実質的に下記一般式(I-a)で表される構造単位のみを含んでいてもよい。ここで、実質的に下記一般式(I)で表される構造単位のみとは、本発明の重合体中、下記一般式(I-a)で表される構造単位の含有量が99質量%以上であることをいい、好ましくは100質量%であることをいう。
(一般式(I-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。)
一般式(I-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表し、一価の有機基又は水素原子であることが好ましい。
一価の有機基としては、炭化水素基が好ましく、直鎖状又は分岐状のアルキル基がより好ましく、炭素数1~3の直鎖状のアルキル基がさらに好ましく、メチル基が特に好ましい。
本発明の重合体は、一般式(I-a)中、R1~R10がそれぞれ独立に、炭素数1~3の直鎖状のアルキル基又は水素原子であることが好ましく、メチル基又は水素原子であることがより好ましい。特に、R3~R6が水素原子であることが好ましい。
本発明の重合体は、下記一般式(I-a)で表される構造単位を含むことが好ましく、実質的に下記一般式(I-a)で表される構造単位のみを含んでいてもよい。ここで、実質的に下記一般式(I)で表される構造単位のみとは、本発明の重合体中、下記一般式(I-a)で表される構造単位の含有量が99質量%以上であることをいい、好ましくは100質量%であることをいう。
一般式(I-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表し、一価の有機基又は水素原子であることが好ましい。
一価の有機基としては、炭化水素基が好ましく、直鎖状又は分岐状のアルキル基がより好ましく、炭素数1~3の直鎖状のアルキル基がさらに好ましく、メチル基が特に好ましい。
本発明の重合体は、一般式(I-a)中、R1~R10がそれぞれ独立に、炭素数1~3の直鎖状のアルキル基又は水素原子であることが好ましく、メチル基又は水素原子であることがより好ましい。特に、R3~R6が水素原子であることが好ましい。
特に、本発明の重合体は、下記一般式(I)で表される構造単位を含むことが好ましく、実質的に下記一般式(I)で表される構造単位のみを含んでいることが好ましい。
一般式(I)中、R1~R5はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表し、一価の有機基又は水素原子であることが好ましい。
一価の有機基としては、炭化水素基が好ましく、直鎖状又は分岐状のアルキル基がより好ましく、炭素数1~3の直鎖状のアルキル基がさらに好ましく、メチル基が特に好ましい。
本発明の重合体は、一般式(I)中、R1~R5がそれぞれ独立に、炭素数1~3の直鎖状のアルキル基又は水素原子であることが好ましく、メチル基又は水素原子であることがより好ましい。
特に、本発明の重合体は、一般式(I)中、R1及びR2が炭素数1~3の直鎖状のアルキル基又は水素原子であり、R3~R5がそれぞれ水素原子であることが好ましい。
本発明の重合体は、一般式(I-a)で表される構造単位以外の他の構造単位を含んでいてもよい。
例えば、本発明の重合体は、下記一般式(II-1)で表される構造単位を含んでいてもよい。
(一般式(II-1)中、Xは、任意の構造単位を表す。)
一般式(II-1)中、Xは、任意の構造単位を表し、特に制限はないが、ラジカル重合可能なモノマーより成る構造単位であることが好ましい。ラジカル重合可能なモノマーとしては、例えばラジカル重合性モノマーとしては、アクリル酸メチル、アクリル酸ブチル、アクリル酸2-ヒドロキシエチル等のアクリル酸エステル、メタクリル酸メチル、2-エチルヘキシル、ラウリル等のメタクリル酸エステル、スチレン、α-メチルスチレン等の芳香族不飽和炭化水素、アクリル酸、メタクリル酸、イタコン酸、マレイン酸等の不飽和カルボン酸、ブタジエン、イソプレン、クロロプレン等の共役脂肪族ジエン、酢酸ビニル、プロピオン酸ビニル等のビニルエステルが挙げられる。
本発明の重合体中の全構造単位中、下記一般式(II-1)で表される構造単位の含有量は、0~10モル%とすることもでき、0~5モル%とすることもでき、1モル%以下とすることもできる。
例えば、本発明の重合体は、下記一般式(II-1)で表される構造単位を含んでいてもよい。
一般式(II-1)中、Xは、任意の構造単位を表し、特に制限はないが、ラジカル重合可能なモノマーより成る構造単位であることが好ましい。ラジカル重合可能なモノマーとしては、例えばラジカル重合性モノマーとしては、アクリル酸メチル、アクリル酸ブチル、アクリル酸2-ヒドロキシエチル等のアクリル酸エステル、メタクリル酸メチル、2-エチルヘキシル、ラウリル等のメタクリル酸エステル、スチレン、α-メチルスチレン等の芳香族不飽和炭化水素、アクリル酸、メタクリル酸、イタコン酸、マレイン酸等の不飽和カルボン酸、ブタジエン、イソプレン、クロロプレン等の共役脂肪族ジエン、酢酸ビニル、プロピオン酸ビニル等のビニルエステルが挙げられる。
本発明の重合体中の全構造単位中、下記一般式(II-1)で表される構造単位の含有量は、0~10モル%とすることもでき、0~5モル%とすることもでき、1モル%以下とすることもできる。
<<第2の実施の形態>>
本発明の重合体は、一般式(I-a)で表される構造単位に加えて、更に、下記一般式(II-a)で表される構造単位及び/又は下記一般式(III-a)で表される構造単位を含んでいてもよい。
(一般式(I-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。一般式(II-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。一般式(III-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。)
一般式(II-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表し、一般式(I-a)中のR1~R10と同義であり、好ましい範囲も同様である。
一般式(III-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表し、前記一般式(I-a)中のR1~R10と同義であり、好ましい範囲も同様である。
本発明の重合体は、一般式(I-a)で表される構造単位に加えて、更に、下記一般式(II-a)で表される構造単位及び/又は下記一般式(III-a)で表される構造単位を含んでいてもよい。
一般式(II-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表し、一般式(I-a)中のR1~R10と同義であり、好ましい範囲も同様である。
一般式(III-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表し、前記一般式(I-a)中のR1~R10と同義であり、好ましい範囲も同様である。
特に、本発明の重合体は、前記一般式(I)で表される構造単位に加えて、更に、下記一般式(II)で表される構造単位及び/又は下記一般式(III)で表される構造単位を含んでいることが好ましい。
一般式(II)中、R1~R5はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表し、前記一般式(I)中のR1~R5と同義であり、好ましい範囲も同様である。一般式(III)中、R1~R5はそれぞれ独立に、一価の有機基又は水素原子を表し、前記一般式(I)中のR1~R5と同義であり、好ましい範囲も同様である。
本発明の重合体において、一般式(I-a)または一般式(I)で表される構造単位の含有量は、本発明の重合体中の全構造単位中、0.1~100モル%とすることもでき、1~100モル%とすることもでき、5~100モル%とすることもできる。
本発明の重合体において、一般式(II-a)または一般式(II)で表される構造単位の含有量は、本発明の重合体中の全構造単位中、0~99.9モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
本発明の重合体において、一般式(III-a)または一般式(III)で表される構造単位の含有量は、0~95モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
本発明の重合体において、一般式(II-a)または一般式(II)で表される構造単位の含有量は、本発明の重合体中の全構造単位中、0~99.9モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
本発明の重合体において、一般式(III-a)または一般式(III)で表される構造単位の含有量は、0~95モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
本発明の重合体は、一般式(I-a)~(III-a)で表される構造単位以外の他の構造単位として、上述した一般式(II-1)で表される構造単位をさらに含んでいてもよい。
本発明の重合体中の全構造単位中、一般式(II-1)で表される構造単位の含有量は、0~10モル%とすることもでき、0~5モル%とすることもでき、1モル%以下とすることもできる。
本発明の重合体中の全構造単位中、一般式(II-1)で表される構造単位の含有量は、0~10モル%とすることもでき、0~5モル%とすることもでき、1モル%以下とすることもできる。
以下、第2の実施の形態の重合体のより詳細な例について説明する。
<<重合体2-1>>
本発明の重合体は、下記一般式(A0)で表される3つの構造単位を含むことが好ましく、実質的に下記一般式(A0)で表される3つの構造単位のみを含んでいることが好ましい。ここで、実質的に下記一般式(A0)で表される構造単位のみとは、本発明の重合体中の全構造単位の量を100モル%としたときに、下記一般式(A0)で表される構造単位中のl、m及びnの合計が99モル%以上であることをいい、好ましくは100モル%であることをいう。
一般式(A0)
(一般式(A0)中、R2はアルキル基を表す。l、m、及びnは、各構造単位のモル比を表す。)
一般式(A0)中、R2は、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基がより好ましい。
l、m及びnの合計を100モル%としたときに、lは、0.1~100モル%とすることもでき、1~100モル%とすることもでき、5~100モル%とすることもできる。
l、m及びnの合計を100モル%としたときに、mは、0~99.9モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
l、m及びnの合計を100モル%としたときに、nは、0~95モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
<<重合体2-1>>
本発明の重合体は、下記一般式(A0)で表される3つの構造単位を含むことが好ましく、実質的に下記一般式(A0)で表される3つの構造単位のみを含んでいることが好ましい。ここで、実質的に下記一般式(A0)で表される構造単位のみとは、本発明の重合体中の全構造単位の量を100モル%としたときに、下記一般式(A0)で表される構造単位中のl、m及びnの合計が99モル%以上であることをいい、好ましくは100モル%であることをいう。
一般式(A0)
一般式(A0)中、R2は、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基がより好ましい。
l、m及びnの合計を100モル%としたときに、lは、0.1~100モル%とすることもでき、1~100モル%とすることもでき、5~100モル%とすることもできる。
l、m及びnの合計を100モル%としたときに、mは、0~99.9モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
l、m及びnの合計を100モル%としたときに、nは、0~95モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
<<重合体2-2>>
本発明の重合体は、下記一般式(A1)で表される5つの構造単位を含むことも好ましく、実質的に下記一般式(A1)で表される5つの構造単位のみを含んでいることが好ましい。ここで、実質的に下記一般式(A1)で表される構造単位のみとは、本発明の重合体中の全構造単位の量を100モル%としたときに、下記一般式(A1)で表される構造単位中のl1、l2、m1、m2及びn1合計が99モル%以上であることをいい、好ましくは100モル%であることをいう。
一般式(A1)
(一般式(A1)中、R2、R3及びR6は、それぞれ独立にアルキル基を表す。l1、l2、m1、m2及びn1は、各構造単位のモル比を表す。)
一般式(A1)中、R2、R3及びR6は、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基がより好ましい。
l1、l2、m1、m2及びn1の合計を100モル%としたときに、l1およびl2は、それぞれ独立に0~100モル%とすることもでき、0~99モル%とすることもできる。
l1、l2、m1、m2及びn1の合計を100モル%としたときに、m1およびm2は、それぞれ独立に0~99.9モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
l1、l2、m1、m2及びn1の合計を100モル%としたときに、n1は、0~95モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
本発明の重合体は、下記一般式(A1)で表される5つの構造単位を含むことも好ましく、実質的に下記一般式(A1)で表される5つの構造単位のみを含んでいることが好ましい。ここで、実質的に下記一般式(A1)で表される構造単位のみとは、本発明の重合体中の全構造単位の量を100モル%としたときに、下記一般式(A1)で表される構造単位中のl1、l2、m1、m2及びn1合計が99モル%以上であることをいい、好ましくは100モル%であることをいう。
一般式(A1)
一般式(A1)中、R2、R3及びR6は、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基がより好ましい。
l1、l2、m1、m2及びn1の合計を100モル%としたときに、l1およびl2は、それぞれ独立に0~100モル%とすることもでき、0~99モル%とすることもできる。
l1、l2、m1、m2及びn1の合計を100モル%としたときに、m1およびm2は、それぞれ独立に0~99.9モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
l1、l2、m1、m2及びn1の合計を100モル%としたときに、n1は、0~95モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
<<重合体2-3>>
本発明の重合体は、下記一般式(A2)で表される3つの構造単位を含むことも好ましく、実質的に下記一般式(A2)で表される3つの構造単位のみを含んでいることが好ましい。ここで、実質的に下記一般式(A2)で表される構造単位のみとは、本発明の重合体中の全構造単位の量を100モル%としたときに、下記一般式(A2)で表される構造単位中のl3、m3及びn2の合計が99モル%以上であることをいい、好ましくは100モル%であることをいう。
一般式(A2)
(一般式(A2)中、R2及びR4は、それぞれ独立にアルキル基を表す。l3、m3及びn2は、各構造単位のモル比を表す。)
一般式(A2)中、R2及びR4は、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基がより好ましい。
一般式(A2)中、l3、m3及びn2は、各構造単位のモル比を表し、上述した一般式(A0)中のm、l及びnと同義である。
本発明の重合体は、下記一般式(A2)で表される3つの構造単位を含むことも好ましく、実質的に下記一般式(A2)で表される3つの構造単位のみを含んでいることが好ましい。ここで、実質的に下記一般式(A2)で表される構造単位のみとは、本発明の重合体中の全構造単位の量を100モル%としたときに、下記一般式(A2)で表される構造単位中のl3、m3及びn2の合計が99モル%以上であることをいい、好ましくは100モル%であることをいう。
一般式(A2)
一般式(A2)中、R2及びR4は、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基がより好ましい。
一般式(A2)中、l3、m3及びn2は、各構造単位のモル比を表し、上述した一般式(A0)中のm、l及びnと同義である。
<<重合体2-4>>
本発明の重合体は、下記一般式(A3)で表される2つの構造単位を含むことも好ましく、実質的に下記一般式(A3)で表される2つの構造単位のみを含んでいることが好ましい。ここで、実質的に下記一般式(A3)で表される構造単位のみとは、本発明の重合体中の全構造単位の量を100モル%としたときに、下記一般式(A2)で表される構造単位中のl4及びm4の合計が99モル%以上であることをいい、好ましくは100モル%であることをいう。
一般式(A3)
(一般式(A3)中、R2及びR6は、それぞれ独立にアルキル基を表す。l4及びm4は、各構造単位のモル比を表す。)
一般式(A3)中、R2及びR6は、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基がより好ましい。
m4及びl4の合計を100モル%としたときに、l4は、0.1~100モル%とすることもでき、1~100モル%とすることもでき、5~100モル%とすることもできる。
m4及びl4の合計を100モル%としたときに、m4は、0~99.9モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
本発明の重合体は、下記一般式(A3)で表される2つの構造単位を含むことも好ましく、実質的に下記一般式(A3)で表される2つの構造単位のみを含んでいることが好ましい。ここで、実質的に下記一般式(A3)で表される構造単位のみとは、本発明の重合体中の全構造単位の量を100モル%としたときに、下記一般式(A2)で表される構造単位中のl4及びm4の合計が99モル%以上であることをいい、好ましくは100モル%であることをいう。
一般式(A3)
一般式(A3)中、R2及びR6は、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基がより好ましい。
m4及びl4の合計を100モル%としたときに、l4は、0.1~100モル%とすることもでき、1~100モル%とすることもでき、5~100モル%とすることもできる。
m4及びl4の合計を100モル%としたときに、m4は、0~99.9モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
<<重合体2-5>>
本発明の重合体は、下記一般式(A4)で表される2つの構造単位を含むことも好ましく、実質的に下記一般式(A4)で表される2つの構造単位のみを含んでいることが好ましい。ここで、実質的に下記一般式(A4)で表される構造単位のみとは、本発明の重合体中の全構造単位の量を100モル%としたときに、下記一般式(A4)で表される構造単位中のl5及びm5の合計が99モル%以上であることをいい、好ましくは100モル%であることをいう。
一般式(A4)
(一般式(A4)中、R1、R2及びR6は、それぞれ独立にアルキル基を表す。l5及びm5は、各構造単位のモル比を表す。)
一般式(A4)中、R1、R2及びR6は、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基がより好ましい。
l5及びm5の合計を100モル%としたときに、l5は、0.1~100モル%とすることもでき、1~100モル%とすることもでき、5~100モル%とすることもできる。
l5及びm5の合計を100モル%としたときに、m5は、0~99.9モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
本発明の重合体は、下記一般式(A4)で表される2つの構造単位を含むことも好ましく、実質的に下記一般式(A4)で表される2つの構造単位のみを含んでいることが好ましい。ここで、実質的に下記一般式(A4)で表される構造単位のみとは、本発明の重合体中の全構造単位の量を100モル%としたときに、下記一般式(A4)で表される構造単位中のl5及びm5の合計が99モル%以上であることをいい、好ましくは100モル%であることをいう。
一般式(A4)
一般式(A4)中、R1、R2及びR6は、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基がより好ましい。
l5及びm5の合計を100モル%としたときに、l5は、0.1~100モル%とすることもでき、1~100モル%とすることもでき、5~100モル%とすることもできる。
l5及びm5の合計を100モル%としたときに、m5は、0~99.9モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
<<第3の実施の形態>>
本発明の重合体は、一般式(I-a)で表される構造単位を含まずに、一般式(II-a)で表される構造単位及び一般式(III-a)で表される構造単位のうち少なくとも1種を含んでいてもよい。
本発明の重合体において、一般式(II-a)で表される構造単位の含有量は、本発明の重合体中の全構造単位中、0~99.9モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
本発明の重合体において、一般式(III-a)で表される構造単位の含有量は、0~95モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
本発明の重合体は、一般式(I-a)で表される構造単位を含まずに、一般式(II-a)で表される構造単位及び一般式(III-a)で表される構造単位のうち少なくとも1種を含んでいてもよい。
本発明の重合体において、一般式(II-a)で表される構造単位の含有量は、本発明の重合体中の全構造単位中、0~99.9モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
本発明の重合体において、一般式(III-a)で表される構造単位の含有量は、0~95モル%とすることもでき、0~99モル%とすることもでき、0~95モル%とすることもできる。
本発明の重合体は、一般式(II-a)で表される構造単位及び一般式(III-a)で表される構造単位以外の他の構造単位として、上述した一般式(II-1)で表される構造単位をさらに含んでいてもよい。
本発明の重合体中の全構造単位中、一般式(II-1)で表される構造単位の含有量は、0~10モル%とすることもでき、0~5モル%とすることもでき、1モル%以下とすることもできる。
以下、第3の実施の形態の重合体のより詳細な例について説明する。
本発明の重合体中の全構造単位中、一般式(II-1)で表される構造単位の含有量は、0~10モル%とすることもでき、0~5モル%とすることもでき、1モル%以下とすることもできる。
以下、第3の実施の形態の重合体のより詳細な例について説明する。
<<重合体3-1>>
本発明の重合体は、実質的に下記一般式(A5)で表される3つの構造単位のみを含んでいてもよい。ここで、実質的に下記一般式(A5)で表される構造単位のみとは、本発明の重合体中の全構造単位の量を100モル%としたときに、下記一般式(A5)で表される構造単位中のm1、m2及びn1の合計が99モル%以上であることをいい、好ましくは100モル%であることをいう。
一般式(A5)
(一般式(A5)中、R2、R3及びR6は、それぞれ独立にアルキル基を表す。m1、m2及びn1は、各構造単位のモル比を表す。)
一般式(A5)中、R2、R3及びR6は、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基がより好ましい。
m1、m2、及びn1の合計を100モル%としたときに、m1およびm2は、それぞれ独立に0~99.9モル%とすることもでき、1~99モル%とすることもでき、1~95モル%とすることもできる。
m1、m2及びn1の合計を100モル%としたときに、n1は、0~95モル%とすることもでき、1~99モル%とすることもでき、1~95モル%とすることもできる。
本発明の重合体は、実質的に下記一般式(A5)で表される3つの構造単位のみを含んでいてもよい。ここで、実質的に下記一般式(A5)で表される構造単位のみとは、本発明の重合体中の全構造単位の量を100モル%としたときに、下記一般式(A5)で表される構造単位中のm1、m2及びn1の合計が99モル%以上であることをいい、好ましくは100モル%であることをいう。
一般式(A5)
一般式(A5)中、R2、R3及びR6は、炭素数1~3の直鎖状のアルキル基が好ましく、メチル基がより好ましい。
m1、m2、及びn1の合計を100モル%としたときに、m1およびm2は、それぞれ独立に0~99.9モル%とすることもでき、1~99モル%とすることもでき、1~95モル%とすることもできる。
m1、m2及びn1の合計を100モル%としたときに、n1は、0~95モル%とすることもでき、1~99モル%とすることもでき、1~95モル%とすることもできる。
<重合体の製造方法>
本発明の重合体の製造方法は、下記一般式(IV-a)で表される化合物を含む原料モノマーを、原料モノマーの単独重合反応速度に対する他の反応速度が低下するように重合させる工程を含む。
(一般式(IV-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表す。)
一般式(IV-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表し、上記一般式(I-a)中のR1~R10と同義であり、好ましい範囲も同様である。
本発明の重合体の製造方法は、下記一般式(IV-a)で表される化合物を含む原料モノマーを、原料モノマーの単独重合反応速度に対する他の反応速度が低下するように重合させる工程を含む。
一般式(IV-a)中、R1~R10はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表し、上記一般式(I-a)中のR1~R10と同義であり、好ましい範囲も同様である。
特に、本発明の重合体の製造方法は、下記一般式(IV)で表される化合物を含む原料モノマーを、原料モノマーの単独重合反応速度に対する他の反応速度が低下するように重合させる工程を含むことが好ましい。
一般式(IV)中、R1~R5はそれぞれ独立に、一価の有機基、ハロゲン原子又は水素原子を表し、前記一般式(I)中のR1~R5と同義であり、好ましい範囲も同様である。
本願発明者らは、本発明の重合体の製造方法によって、従来困難とされていた前記一般式(IV-a)で表される化合物を含むモノマーをラジカル重合により単独で重合させることができることを見出した。
この理由は推定であるが、本発明の重合体を製造する際の重合反応の停止要因としては、不純物であるラクトンの安定異性体の存在による阻害と、連鎖移動による重合停止反応(degradative chain transfer)による停止が挙げられ、これらの停止要因のうち少なくともいずれか一方を抑制することで、前記一般式(IV-a)で表される化合物を含む原料モノマーを単独で重合させることが可能となり、その結果、上述した本発明の重合体を得ることができると考えられる。
この理由は推定であるが、本発明の重合体を製造する際の重合反応の停止要因としては、不純物であるラクトンの安定異性体の存在による阻害と、連鎖移動による重合停止反応(degradative chain transfer)による停止が挙げられ、これらの停止要因のうち少なくともいずれか一方を抑制することで、前記一般式(IV-a)で表される化合物を含む原料モノマーを単独で重合させることが可能となり、その結果、上述した本発明の重合体を得ることができると考えられる。
本発明の重合体は、前記一般式(IV-a)で表される化合物を単独でラジカル重合させてなる重合体である。ここで、前記一般式(IV-a)で表される化合物が単独とは、前記一般式(IV-a)で表される化合物が実質的に原料モノマーの全量を占めることが好ましい。ここで、実質的に原料モノマーの全量とは、前記一般式(IV-a)で表される化合物が原料モノマーの99モル%以上を占めることが好ましく、前記一般式(IV-a)で表される化合物が原料モノマーの100モル%を占めることがより好ましい。特に、前記一般式(IV)で表される化合物が原料モノマーの99モル%以上を占めることが好ましく、前記一般式(IV)で表される化合物が原料モノマーの100モル%を占めることがより好ましい。
本発明の重合体の製造方法によって得られる重合体は、原料モノマーとして、例えば、ブタジエンと二酸化炭素から直接得ることができる前記一般式(IV-a)で表される化合物を重合させて得ることができる。ここで、ブタジエンは、植物原料からの合成も可能である。そのため、本発明の重合体の製造方法によって得られる重合体は、化石燃料に依存しないプラスチック材料として用いることができ、環境保全の観点からも好ましい。一般式(IV-a)で表される化合物は、例えば、J. Organomet. Chem. 1983, 255, 263-268を参照して合成することができる。
本発明の重合体の製造方法によって得られる重合体は、原料モノマーとして、例えば、ブタジエンと二酸化炭素から直接得ることができる前記一般式(IV-a)で表される化合物を重合させて得ることができる。ここで、ブタジエンは、植物原料からの合成も可能である。そのため、本発明の重合体の製造方法によって得られる重合体は、化石燃料に依存しないプラスチック材料として用いることができ、環境保全の観点からも好ましい。一般式(IV-a)で表される化合物は、例えば、J. Organomet. Chem. 1983, 255, 263-268を参照して合成することができる。
<<第1の実施の形態>>
本発明の重合体の製造方法は、前記一般式(IV-a)で表される化合物を含む原料モノマーを、乳化重合させる工程を含むことが好ましい。このような製造方法により、上述した本発明の重合体を製造する際の重合反応の停止要因のうち、不純物であるラクトンの安定異性体の存在による阻害を効果的に抑制することができ、上述した本発明の重合体、特に前記一般式(I-a)で表される構造単位のみを含む重合体を効率的に得ることができる。
本発明の重合体の製造方法における重合反応は、前記一般式(IV-a)で表される化合物の安定異性体(例えばラクトンの安定異性体)の存在により、収量及び分子量が大きく低下する。上述した本発明の重合体を得るためには、原料モノマー(前記一般式(IV-a)で表される化合物を含む原料モノマー)の純度を高めることが好ましいが、原料モノマーの単独重合反応速度に対する他の反応速度を低下させることも好ましい。
ラクトンの安定異性体は、熱異性化によって重合中に生成することが知られている。一方、本発明の重合体の製造方法における重合反応では、原料モノマーの反応性(重合活性)が非常に低く、比較的高温(例えば、80℃を超える温度)を必要とする。
本発明の重合体の製造方法で用いる乳化重合は、ラジカル重合の中でも特に重合反応速度の面で優れている。本発明の重合体の製造方法は、前記一般式(IV-a)で表される化合物を含む原料モノマーを乳化重合させる工程を含むことにより、原料モノマーの単独重合反応速度に対する原料モノマーの熱異性化の相対的な速度を低下させ、安定異性体の生成を効果的に抑えて高い転化率を達成でき、その結果、上述した本発明の重合体が得られると考えられる。
本発明の重合体の製造方法は、前記一般式(IV-a)で表される化合物を含む原料モノマーを、乳化重合させる工程を含むことが好ましい。このような製造方法により、上述した本発明の重合体を製造する際の重合反応の停止要因のうち、不純物であるラクトンの安定異性体の存在による阻害を効果的に抑制することができ、上述した本発明の重合体、特に前記一般式(I-a)で表される構造単位のみを含む重合体を効率的に得ることができる。
本発明の重合体の製造方法における重合反応は、前記一般式(IV-a)で表される化合物の安定異性体(例えばラクトンの安定異性体)の存在により、収量及び分子量が大きく低下する。上述した本発明の重合体を得るためには、原料モノマー(前記一般式(IV-a)で表される化合物を含む原料モノマー)の純度を高めることが好ましいが、原料モノマーの単独重合反応速度に対する他の反応速度を低下させることも好ましい。
ラクトンの安定異性体は、熱異性化によって重合中に生成することが知られている。一方、本発明の重合体の製造方法における重合反応では、原料モノマーの反応性(重合活性)が非常に低く、比較的高温(例えば、80℃を超える温度)を必要とする。
本発明の重合体の製造方法で用いる乳化重合は、ラジカル重合の中でも特に重合反応速度の面で優れている。本発明の重合体の製造方法は、前記一般式(IV-a)で表される化合物を含む原料モノマーを乳化重合させる工程を含むことにより、原料モノマーの単独重合反応速度に対する原料モノマーの熱異性化の相対的な速度を低下させ、安定異性体の生成を効果的に抑えて高い転化率を達成でき、その結果、上述した本発明の重合体が得られると考えられる。
本発明の重合体の製造方法における乳化重合は、例えば、原料モノマーと乳化剤と重合開始剤とを含む乳化液を、例えば、70~200℃、好ましくは80~150℃で1時間以上、好ましくは24時間以上攪拌しながら重合させ、分散媒で洗浄することが好ましい。
原料モノマーとしては、前記一般式(IV-a)で表される化合物が用いられ、前記一般式(IV-a)で表される化合物を単独で用いることが好ましく、前記一般式(IV-a)で表される化合物が実質的に原料モノマーの全量を占めることがより好ましい。特に、99モル%以上が前記一般式(IV-a)で表される化合物である原料モノマーを重合させることが好ましく、100モル%が前記一般式(IV-a)で表される化合物である原料モノマーを重合させることがより好ましい。
乳化剤としては、特に限定されず、アニオン性界面活性剤、非イオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤のいずれも用いることができるが、特に、アニオン性界面活性剤が乳化安定性の観点から好ましい。
アニオン性界面活性剤としては、例えば、ラウリル硫酸ナトリウム等の脂肪酸塩や、高級アルコール硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシノニルフェニルエーテルスルホン酸アンモニウム、ポリオキシエチレン-ポリオキシプロピレングリコールエーテル硫酸塩を用いることができる。その他に用いることができる界面活性剤としては、例えば、特開2008-33148号公報の段落0038~0050を参酌することができ、この内容は本願明細書に組み込まれる。
本発明の重合体の乳化重合に使用する界面活性剤の量は、原料モノマーの合計を100モルとしたとき、0.1~100モルが好ましく、1~10モルがより好ましい。
アニオン性界面活性剤としては、例えば、ラウリル硫酸ナトリウム等の脂肪酸塩や、高級アルコール硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシノニルフェニルエーテルスルホン酸アンモニウム、ポリオキシエチレン-ポリオキシプロピレングリコールエーテル硫酸塩を用いることができる。その他に用いることができる界面活性剤としては、例えば、特開2008-33148号公報の段落0038~0050を参酌することができ、この内容は本願明細書に組み込まれる。
本発明の重合体の乳化重合に使用する界面活性剤の量は、原料モノマーの合計を100モルとしたとき、0.1~100モルが好ましく、1~10モルがより好ましい。
重合開始剤としては、ラジカル発生能があればよく、例えば、過硫酸塩や過酸化水素などの無機過酸化物、日本油脂(株)有機過酸化物カタログなどに記載の過酸化物及び和光純薬工業(株)アゾ重合開始剤カタログなどに記載のアゾ化合物を用いることができる。その中でも、過硫酸塩などの水溶性過酸化物及び和光純薬工業(株)アゾ重合開始剤カタログなどに記載の水溶性アゾ化合物が好ましく、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム、アゾビス(2-メチルプロピオンアミジン)塩酸塩、アゾビス(2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド)、又はアゾビスシアノ吉草酸がより好ましく、特に、過硫酸アンモニウム、過硫酸ナトリウム、又は過硫酸カリウムなどの過酸化物が好ましい。
本発明の重合体の乳化重合に使用する重合開始剤の量は、原料モノマーの合計を100モルとしたとき、0.01~10モルが好ましく、0.1~5モルがより好ましい。
本発明の重合体の乳化重合に使用する重合開始剤の量は、原料モノマーの合計を100モルとしたとき、0.01~10モルが好ましく、0.1~5モルがより好ましい。
分散媒としては、水又は水と水系溶媒との混合物が好ましい。水系溶媒としては、例えば、低級脂肪族アルコール、芳香族アルコール、多価アルコール及び多価アルコールのアルキルエーテル誘導体、又は低級ケトンが特に好ましく、低級脂肪族アルコールがより好ましい。
具体例としては、メタノール、エタノール、n-プロパノール、2-プロパノール、又はt-ブチルアルコールなどの直鎖あるいは分岐の脂肪族低級アルコール、ベンジルアルコール、又は2-フェニルエタノールなどの芳香族アルコール、プロピレングリコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、PEG200、又はPEG400などのポリエチレングリコール、ジプロピレングリコール、トリプロピレングリコールなどのポリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、又はヘキシレングリコールなどの多価アルコール及びエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、3-メチル-3-メトキシブタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテルアセテート、又はエチレングリコールモノエチルエーテルアセテートなどの多価アルコールのアルキルエーテル誘導体、アルコールのアルキルエーテル誘導体、アセトンなどの低級ケトンを挙げることができる。
これらの中でもメタノール、エタノール、n-プロパノール、2-プロパノール、エチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、アセトン、ジプロピレングリコール、又は3-メチル-3-メトキシブタノールが好ましく、メタノールが特に好ましい。
本発明の重合体の乳化重合時において水系溶媒は、乳化重合の溶媒総量に対して0~50質量%が好ましく、0~10質量%がより好ましい。
具体例としては、メタノール、エタノール、n-プロパノール、2-プロパノール、又はt-ブチルアルコールなどの直鎖あるいは分岐の脂肪族低級アルコール、ベンジルアルコール、又は2-フェニルエタノールなどの芳香族アルコール、プロピレングリコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、PEG200、又はPEG400などのポリエチレングリコール、ジプロピレングリコール、トリプロピレングリコールなどのポリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、又はヘキシレングリコールなどの多価アルコール及びエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、3-メチル-3-メトキシブタノール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテルアセテート、又はエチレングリコールモノエチルエーテルアセテートなどの多価アルコールのアルキルエーテル誘導体、アルコールのアルキルエーテル誘導体、アセトンなどの低級ケトンを挙げることができる。
これらの中でもメタノール、エタノール、n-プロパノール、2-プロパノール、エチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、アセトン、ジプロピレングリコール、又は3-メチル-3-メトキシブタノールが好ましく、メタノールが特に好ましい。
本発明の重合体の乳化重合時において水系溶媒は、乳化重合の溶媒総量に対して0~50質量%が好ましく、0~10質量%がより好ましい。
<<第2の実施の形態>>
本発明の重合体の製造方法は、前記一般式(IV-a)で表される化合物を、少なくとも一種のブレンステッド酸もしくはルイス酸存在下でラジカル重合させる工程を含むことが好ましい。このような製造方法により、上述した本発明の重合体、例えば、重合体2-1を効率的に得ることができる。また、前記一般式(I)で表される構造単位、前記一般式(II)で表される構造単位及び前記一般式(III)で表される構造単位を含む重合体を効率的に得ることもできる。
この理由は推定であるが、少なくとも一種のブレンステッド酸もしくはルイス酸の添加により、前記一般式(IV-a)で表されるモノマーの部分構造であるアリルエステル部位(前記一般式(IV-a)中の「C(=O)O-C-CR3=CR4R5」の部位)部位の連鎖移動による重合停止反応を抑制することができる。また、少なくとも一種のブレンステッド酸もしくはルイス酸存在下でラジカル重合させることにより、前記アリルエステル部位の連鎖移動による重合停止反応を抑制すると同時に、アリルエステル部位を重合させることができる。その結果、前記一般式(IV-a)で表される化合物の重合反応速度に対する副反応の相対的な速度が低下し、得られる重合体の収量及び全体の分子量が大きく向上するため、上述した本発明の重合体を得ることができると考えられる。
本発明の重合体の製造方法は、前記一般式(IV-a)で表される化合物を、少なくとも一種のブレンステッド酸もしくはルイス酸存在下でラジカル重合させる工程を含むことが好ましい。このような製造方法により、上述した本発明の重合体、例えば、重合体2-1を効率的に得ることができる。また、前記一般式(I)で表される構造単位、前記一般式(II)で表される構造単位及び前記一般式(III)で表される構造単位を含む重合体を効率的に得ることもできる。
この理由は推定であるが、少なくとも一種のブレンステッド酸もしくはルイス酸の添加により、前記一般式(IV-a)で表されるモノマーの部分構造であるアリルエステル部位(前記一般式(IV-a)中の「C(=O)O-C-CR3=CR4R5」の部位)部位の連鎖移動による重合停止反応を抑制することができる。また、少なくとも一種のブレンステッド酸もしくはルイス酸存在下でラジカル重合させることにより、前記アリルエステル部位の連鎖移動による重合停止反応を抑制すると同時に、アリルエステル部位を重合させることができる。その結果、前記一般式(IV-a)で表される化合物の重合反応速度に対する副反応の相対的な速度が低下し、得られる重合体の収量及び全体の分子量が大きく向上するため、上述した本発明の重合体を得ることができると考えられる。
本発明の重合体の製造方法におけるラジカル重合は、例えば、原料モノマーと重合開始剤と分散媒とを含む溶液を、少なくとも一種のブレンステッド酸もしくはルイス酸存在下で、70~200℃、好ましくは80~150℃で3時間以上、好ましくは24時間以上攪拌しながら重合させた後、分散媒で洗浄することが好ましい。
本発明における重合方法としては、ラジカル重合であれば特に制限はなく、公知の重合方法を採用することができる。例えば、熱ラジカル重合方法、光ラジカル重合方法、リビングラジカル重合方法等が挙げられるが、反応の転化率の観点から、熱ラジカル重合方法が好ましい。
ブレンステッド酸としては、例えば、塩化水素、臭化水素、ヨウ化水素、酢酸、トリフルオロ酢酸、リン酸、リン酸エステル、硫酸、硝酸、ベンゼンスルホン酸、パラトルエンスルホン酸、などが挙げられる。ルイス酸としては、例えば、三塩化アルミニウム、エチルアルミニウムジクロリド、エチルアルミニウムセスキクロリド、エチルアルミニウムクロリド、エトキシアルミニウムジクロリド、トリエチルアルミニウム、三沃化アルミニウム、三臭化アルミニウム、五塩化アンチモン、トリエチルアルミニウム、テトラエトキシジリコニウム、テトラt-ブトキシジリコニウム、テトラアセチルアセトンジリコニウム、四塩化スズ、三塩化アンチモン、三塩化鉄、四塩化チタン、塩化亜鉛、二塩化水銀、二塩化カドミウム、三フッ化ホウ素、三塩化ホウ素、三臭化ホウ素、三沃化ホウ素及び、これらのルイス酸と水との反応物などが挙げられる。これらは1種単独でも2種以上組合わせて使用することができる。これらのブレンステッド酸のうち、分子量の観点から、酢酸が好ましい。また、これらのルイス酸のうち、重合収率および分子量の観点から、塩化亜鉛が好ましい。
ブレンステッド酸もしくはルイス酸の使用量は、原料モノマーの合計を100モルとしたとき、1~300モルが好ましく、20~200モルがより好ましく、50~180モルがさらに好ましい。
ブレンステッド酸もしくはルイス酸の使用量は、原料モノマーの合計を100モルとしたとき、1~300モルが好ましく、20~200モルがより好ましく、50~180モルがさらに好ましい。
原料モノマーとしては、上述した第1の実施の形態の原料モノマーと同義であり、好ましい範囲も同様である。
重合開始剤としては、上述した第1の実施の形態の重合開始剤と同義であり、アゾ化合物及び水溶性アゾ化合物が好ましい。本発明の重合体の乳化重合に使用する重合開始剤の量は、原料モノマーの合計を100モルとしたとき、0.01~10モルが好ましく、0.1~5モルがより好ましい。
分散媒としては、上述した第1の実施の形態の製造方法の分散媒を用いることができる。また、その他の分散媒として、例えば、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、t-ブチルアルコール、シクロヘキサノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチル酪酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メトキシブチルプチレート、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸メチル、ピルピン酸エチル、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ベンジルエチルエーテル、ジ-n-ヘキシルエーテル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、γ-プチロラクトン、トルエン、キシレン、カブロン酸、カプリル酸、オクタン、デカン、1-オクタノール、1-ノナノール、ベンジルアルコール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、炭酸エチレン、炭酸プロピレンなどを挙げることができる。これらの分散媒の中では、収率の観点から、炭酸エチレンが好ましい。上記の分散媒は、単独又は2種以上を混合して使用することができる。
<<第3の実施の形態>>
本発明の重合体は、1、3-ジエン化合物と二酸化炭素とからワンポットで合成することができる。ワンポットで合成とは、例えば、前記一般式(IV-a)で表される化合物(原料モノマー)を合成した後、そのまま精製を行わず重合を開始することをいう。本発明の重合体は、例えば、ブタジエンと二酸化炭素から直接得ることができる。ブタジエンは植物原料からの合成も可能であり、化石燃料に依存しないプラスチック材料になりうる。
例えば、1,3-ブタジエン、1,3-ペンタジエンおよびイソプレンから選択される少なくとも1種と、二酸化炭素から、上述した重合体2-1~2-5または重合体3-1をワンポットで合成することもできる。
本発明の重合体は、1、3-ジエン化合物と二酸化炭素とからワンポットで合成することができる。ワンポットで合成とは、例えば、前記一般式(IV-a)で表される化合物(原料モノマー)を合成した後、そのまま精製を行わず重合を開始することをいう。本発明の重合体は、例えば、ブタジエンと二酸化炭素から直接得ることができる。ブタジエンは植物原料からの合成も可能であり、化石燃料に依存しないプラスチック材料になりうる。
例えば、1,3-ブタジエン、1,3-ペンタジエンおよびイソプレンから選択される少なくとも1種と、二酸化炭素から、上述した重合体2-1~2-5または重合体3-1をワンポットで合成することもできる。
具体的に、1,3-ブタジエンと二酸化炭素から、下記一般式(IV-a)で表される化合物を得て、これを重合させることにより、上述した重合体2-1を得ることができる。
一般式(IV-a)
(一般式(IV-a)中、R2は、一般式(A0)中のR2と同義であり、好ましい範囲も同様である。)
一般式(IV-a)
また、1,3-ブタジエンとイソプレンと二酸化炭素から、下記一般式(IV-b1)で表される化合物と下記一般式(IV-b2)で表される化合物を含む混合物を得て、これらを重合させることにより、上述した重合体2-2または重合体3-1を得ることができる。
一般式(IV-b1)
(一般式(IV-b1)中、R2及びR3は、一般式(A1)中のR2及びR3と同義であり、好ましい範囲も同様である。)
一般式(IV-b2)
(一般式(IV-b2)中、R2及びR6は、一般式(A1)中のR2及びR6と同義であり、好ましい範囲も同様である。)
一般式(IV-b1)
一般式(IV-b2)
また、1,3-ブタジエンと1,3-ペンタジエンと二酸化炭素から、下記一般式(IV-c)で表される化合物を得て、これを重合させることにより、上述した重合体2-3を得ることができる。
一般式(IV-c)
(一般式(IV-c)中、R2及びR4は、一般式(A2)中のR2及びR4と同義であり、好ましい範囲も同様である。)
一般式(IV-c)
また、1,3-ブタジエンとイソプレンと二酸化炭素から、下記一般式(IV-d)で表される化合物のみを得て、これを重合させることにより、上述した重合体2-4を得ることができる。
一般式(IV-d)
(一般式(IV-d)中、R2及びR6は、一般式(A3)中のR2及びR6と同義であり、好ましい範囲も同様である。)
一般式(IV-d)
また、イソプレンと二酸化炭素から、下記一般式(IV-e)で表される化合物のみを得て、これを重合させることにより、上述した重合体2-5を得ることができる。
一般式(IV-e)
(一般式(IV-e)中、R1、R2及びR6は、一般式(A4)中のR1、R2及びR6と同義であり、好ましい範囲も同様である。)
一般式(IV-e)
<<本発明の重合体の用途>>
本発明の重合体は、様々な用途に用いることができる。本発明の重合体は、例えば有機溶剤に溶解して、ワニスとして用いることができる。また、このワニスを溶液成形して、成形体とすることができる。成形体の形状は特に問わないが、例えば、フィルム状(コーティングフィルム、透明フィルム等)、シート状、管状(チューブ(例えば特開2005-002531号公報)やホース)、電子機器の筐体等に成形することができる。また、本発明の重合体は、溶融成形により成形体を形成することもできる。
本発明の重合体を前記成形体に成形する場合、重合体とともに添加剤を用いてもよい。添加剤としては、例えば、離形剤、酸化防止剤、紫外線防止剤、難燃剤、安定剤等を用いることができる。
本発明の重合体を用いて得られた成形体は、透明性も良好である。例えば、本発明の重合体を用いて得られた成形体は、ヘイズ値を5%以下とすることもでき、3%以下とすることもでき、2%以下とすることもできる。
また、本発明の重合体を用いて得られた成形体は、強度も良好である。例えば本発明の重合体を用いて得られた膜(膜厚:50~500μm)についてのマルテンス硬さを求めたときの値を、150N/mm2以上とすることもでき、180N/mm2以上とすることもできる。ここで、マルテンス硬さとは(ISO14577準拠)荷重-押し込み深さ曲線より算出される硬さである。
本発明の重合体は、ラクトン環を有しており、アルカリ溶液中においてラクトン環が開環するため、例えば、レジスト材料としても好適に用いることができる。
本発明の重合体は、様々な用途に用いることができる。本発明の重合体は、例えば有機溶剤に溶解して、ワニスとして用いることができる。また、このワニスを溶液成形して、成形体とすることができる。成形体の形状は特に問わないが、例えば、フィルム状(コーティングフィルム、透明フィルム等)、シート状、管状(チューブ(例えば特開2005-002531号公報)やホース)、電子機器の筐体等に成形することができる。また、本発明の重合体は、溶融成形により成形体を形成することもできる。
本発明の重合体を前記成形体に成形する場合、重合体とともに添加剤を用いてもよい。添加剤としては、例えば、離形剤、酸化防止剤、紫外線防止剤、難燃剤、安定剤等を用いることができる。
本発明の重合体を用いて得られた成形体は、透明性も良好である。例えば、本発明の重合体を用いて得られた成形体は、ヘイズ値を5%以下とすることもでき、3%以下とすることもでき、2%以下とすることもできる。
また、本発明の重合体を用いて得られた成形体は、強度も良好である。例えば本発明の重合体を用いて得られた膜(膜厚:50~500μm)についてのマルテンス硬さを求めたときの値を、150N/mm2以上とすることもでき、180N/mm2以上とすることもできる。ここで、マルテンス硬さとは(ISO14577準拠)荷重-押し込み深さ曲線より算出される硬さである。
本発明の重合体は、ラクトン環を有しており、アルカリ溶液中においてラクトン環が開環するため、例えば、レジスト材料としても好適に用いることができる。
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
<<重合体1の合成例>>
22.5 mL(150mmol)の不飽和ラクトン2に、2,2’-アゾビス(シクロヘキサンニトリル)(和光純薬製)367mg(1.50 mmol、1mol%)及び炭酸エチレン(和光純薬製)52.8 g(600 mmol、 4.0equiv.)を溶解させ、塩化亜鉛(和光純薬製)20.4g(150mmol、1.0equiv.)を添加し、100℃で40時間加熱した。反応後の混合物をメタノールで洗浄し、未反応のモノマー、溶媒及び塩化亜鉛を除いた後、熱DMF(dimethylformamide)に再溶解させ、1N塩酸水溶液に滴下することで再沈殿を行った。再沈殿を2回繰り返した後、重合生成物(重合体1)を得た(17.1 g、75%、数平均分子量2.5×104、PDI(polydispersity index):7.4、Tg =192℃、Td = 381℃)。
上記重合体1の構造中、l、m及びnは、各構造単位のモル比を表し、l:m:n=3:4:3を表す。
22.5 mL(150mmol)の不飽和ラクトン2に、2,2’-アゾビス(シクロヘキサンニトリル)(和光純薬製)367mg(1.50 mmol、1mol%)及び炭酸エチレン(和光純薬製)52.8 g(600 mmol、 4.0equiv.)を溶解させ、塩化亜鉛(和光純薬製)20.4g(150mmol、1.0equiv.)を添加し、100℃で40時間加熱した。反応後の混合物をメタノールで洗浄し、未反応のモノマー、溶媒及び塩化亜鉛を除いた後、熱DMF(dimethylformamide)に再溶解させ、1N塩酸水溶液に滴下することで再沈殿を行った。再沈殿を2回繰り返した後、重合生成物(重合体1)を得た(17.1 g、75%、数平均分子量2.5×104、PDI(polydispersity index):7.4、Tg =192℃、Td = 381℃)。
上記重合体1の構造中、l、m及びnは、各構造単位のモル比を表し、l:m:n=3:4:3を表す。
実施例1で得られた重合体1について、1H NMRスペクトルを測定した。測定は、500MHz、DMSO-d6を用いて、室温で行った。測定結果を図1に示す。
また、実施例1で得られた重合体1について、13C NMRスペクトルを測定した。測定は、101MHz、TFAを用いて、室温で行った。測定結果を図2に示す。図2中、A(167ppm)、B(129ppm)、H(135ppm)、E(62ppm)のピークは、それぞれ単環の構造単位IIのピークを表す。また、図2中、f(50ppm)、b(58ppm)、e(82ppm)及びa(179ppm)のピークは、それぞれ二環の単位構造Iのピークを表す。さらに、図2中、A'(175ppm)およびE(138ppm)及びF’(130ppm)のピークは、単環の構造単位IIIを表す。
また、実施例1で得られた重合体1について、IRスペクトル(KBr disk)を測定した。測定結果を図3に示す。図3から分かるように、1770cm-1(二環(bicyclic))及び1716cm-1(単環(monocyclic)))にそれぞれ吸収が観察された。
また、実施例1で得られた重合体1について、SEC(Size Exclusion Chromatography)法により分子量を測定した。SECチャートを図4に示す。測定は、上記条件(A)にて行った。数平均分子量(Mn)は5.0×103、重量平均分子量(Mw)は3.6×104であった。
また、実施例1で得られた重合体1について、SEC(Size Exclusion Chromatography)法により分子量を測定した。SECチャートを図4に示す。測定は、上記条件(A)にて行った。数平均分子量(Mn)は5.0×103、重量平均分子量(Mw)は3.6×104であった。
<<重合体2の合成例>>
0.15mL(1.0mmol)の不飽和ラクトン2に、ペルオキソ二硫酸ジカリウム(和光純薬製)2.7mg (10μmol、1mol%)を加え、15mMのラウリル硫酸ナトリウム水溶液を2.5mL加え、常温下で激しく攪拌し乳化液とした。100℃下で24時間加熱した後、反応後の混合物をメタノール及び水で洗浄し、未反応のモノマー、溶媒及び乳化剤を除き、重合生成物(重合体2)を得た(32.8 mg、22%、数平均分子量:8.1×103、PDI:1.2)
0.15mL(1.0mmol)の不飽和ラクトン2に、ペルオキソ二硫酸ジカリウム(和光純薬製)2.7mg (10μmol、1mol%)を加え、15mMのラウリル硫酸ナトリウム水溶液を2.5mL加え、常温下で激しく攪拌し乳化液とした。100℃下で24時間加熱した後、反応後の混合物をメタノール及び水で洗浄し、未反応のモノマー、溶媒及び乳化剤を除き、重合生成物(重合体2)を得た(32.8 mg、22%、数平均分子量:8.1×103、PDI:1.2)
実施例2で得られた重合体2について、13C NMRスペクトルを測定した。測定は、クロロホルムを用いて、101MHz、室温で行った。測定結果を図7に示す。図7に示すスペクトル中、a~iの記号は、それぞれ図7に示す重合体2の構造中のa~iの記号に対応する。図7に示す結果から、実施例2では、前記重合体2が得られることが分かった。
<<重合体2の合成例>>
0.15mL(1.0mmol)の不飽和ラクトン2に、酢酸(関東化学製、2.0mmol)2,2‘-アゾビス(シクロヘキサンニトリル)(和光純薬製、2.4mg(0.01mmol))を加え、100℃下で24時間加熱した。反応後の混合物をメタノール及び水で洗浄し、未反応のモノマー、添加剤を除き、重合生成物(重合体2)を得た(25.8 mg、17%、数平均分子量:1.9×104、PDI:1.1)
0.15mL(1.0mmol)の不飽和ラクトン2に、酢酸(関東化学製、2.0mmol)2,2‘-アゾビス(シクロヘキサンニトリル)(和光純薬製、2.4mg(0.01mmol))を加え、100℃下で24時間加熱した。反応後の混合物をメタノール及び水で洗浄し、未反応のモノマー、添加剤を除き、重合生成物(重合体2)を得た(25.8 mg、17%、数平均分子量:1.9×104、PDI:1.1)
実施例3で得られた重合体2について、13C NMRスペクトルを測定した。測定は、クロロホルムを用いて、101MHz、室温で行った。測定結果は図7と同様であり、実施例3では、前記重合体2が得られることが分かった。
<<重合体1の合成例>>
50mLのステンレス製オートクレーブ中でPd(acac)2 (和光純薬製、15.3mg、 0.050mmol) とPPh3 (関東化学製、39.3mg、0.0150mmol) および炭酸エチレン(和光純薬製、7.50g(85.2 mmol))を加え、混合物を-20℃に冷却し6分攪拌しながらブタジエン(高千穂化学製)雰囲気にさらすことによって、ブタジエン(4.06g、74.6mmol)を加えた。オートクレーブに3.81gのCO2を加え、80℃ で4時間加熱し、冷却、圧開放の後、少量サンプリングを行いラクトンの収率を求めた。
得られた混合物に対し2,2‘-アゾビス(シクロヘキサンニトリル)(和光純薬製、40.1mg(0.164mmol))および塩化亜鉛(和光純薬製、2.25g(16.5mmol))を添加し100℃で24時間加熱した。反応後の混合物を粉砕しメタノールおよびヘキサンで洗浄し、未反応のモノマー、溶媒、塩化亜鉛を除いた。粗生成物を熱DMFに溶解させ1N塩酸水溶液に滴下することで再沈殿を行い、重合生成物を得た(乾燥後収量2.37g、ブタジエン基準収率42%)。
50mLのステンレス製オートクレーブ中でPd(acac)2 (和光純薬製、15.3mg、 0.050mmol) とPPh3 (関東化学製、39.3mg、0.0150mmol) および炭酸エチレン(和光純薬製、7.50g(85.2 mmol))を加え、混合物を-20℃に冷却し6分攪拌しながらブタジエン(高千穂化学製)雰囲気にさらすことによって、ブタジエン(4.06g、74.6mmol)を加えた。オートクレーブに3.81gのCO2を加え、80℃ で4時間加熱し、冷却、圧開放の後、少量サンプリングを行いラクトンの収率を求めた。
得られた混合物に対し2,2‘-アゾビス(シクロヘキサンニトリル)(和光純薬製、40.1mg(0.164mmol))および塩化亜鉛(和光純薬製、2.25g(16.5mmol))を添加し100℃で24時間加熱した。反応後の混合物を粉砕しメタノールおよびヘキサンで洗浄し、未反応のモノマー、溶媒、塩化亜鉛を除いた。粗生成物を熱DMFに溶解させ1N塩酸水溶液に滴下することで再沈殿を行い、重合生成物を得た(乾燥後収量2.37g、ブタジエン基準収率42%)。
<重合体1の耐熱性評価>
実施例1で得られた重合体1について、熱重量測定(TG)を行った。TGチャートを図5に示す。測定は、大気条件下、40~500℃の温度範囲を、10℃/分で昇温させて行った。測定結果より、重量減少が5%に達した温度は340℃であることが分かり、これを熱分解温度(Td)とした。
また、実施例1で得られた重合体1について、示差走査熱量測定(DSC)を行った。DSCチャートを図6に示す。測定は、50~280℃の温度範囲を20℃/分で昇温させ、280℃で10分間保持し、20℃/分の速度で50℃まで冷却して行った。図6から、昇温過程で観測されたガラス転移温度(Tg)が192℃であることが分かった。
以上の結果から、実施例1では、前記重合体1が得られることが分かった。また、実施例1で得られた重合体1は、耐熱性が良好であることが分かった。
実施例1で得られた重合体1について、熱重量測定(TG)を行った。TGチャートを図5に示す。測定は、大気条件下、40~500℃の温度範囲を、10℃/分で昇温させて行った。測定結果より、重量減少が5%に達した温度は340℃であることが分かり、これを熱分解温度(Td)とした。
また、実施例1で得られた重合体1について、示差走査熱量測定(DSC)を行った。DSCチャートを図6に示す。測定は、50~280℃の温度範囲を20℃/分で昇温させ、280℃で10分間保持し、20℃/分の速度で50℃まで冷却して行った。図6から、昇温過程で観測されたガラス転移温度(Tg)が192℃であることが分かった。
以上の結果から、実施例1では、前記重合体1が得られることが分かった。また、実施例1で得られた重合体1は、耐熱性が良好であることが分かった。
<重合体1の適用例1>
<<重合体1を含んで成るワニスの調整>>
実施例1で得られた重合体1をテトラフヒドロフランに溶解し、30質量%の溶液を得た。これをフィルター(目開き5μm)を用いてろ過し、ワニスとした。
<<重合体1を含んで成るワニスの調整>>
実施例1で得られた重合体1をテトラフヒドロフランに溶解し、30質量%の溶液を得た。これをフィルター(目開き5μm)を用いてろ過し、ワニスとした。
<重合体1の適用例2>
<<重合体1を含んで成るコーティング膜の作成>>
前記適用例2で得られたワニスを、バーコーター(第一理化株式会社製、#12)を用い、フィルム厚80μm、A4大のトリアセチルセルロース(以下、TAC)フィルム上に塗布した。室温で、5分間乾燥した後、70℃で30分間、次いで100℃で1時間送風乾燥を行いうことでコーティングフィルム(コート厚10μm)を得た。
<<重合体1を含んで成るコーティング膜の作成>>
前記適用例2で得られたワニスを、バーコーター(第一理化株式会社製、#12)を用い、フィルム厚80μm、A4大のトリアセチルセルロース(以下、TAC)フィルム上に塗布した。室温で、5分間乾燥した後、70℃で30分間、次いで100℃で1時間送風乾燥を行いうことでコーティングフィルム(コート厚10μm)を得た。
<重合体1の適用例3>
<<重合体1を含んで成るフィルムの作成>>
前記適用例2で得られたワニスを、ベーカー式アプリケーター(有限会社イーガーコーポレーション製)を用い、塗布幅250mm、塗布厚400μmでガラス基板上(300mm×400mm)に塗布した。室温で乾燥後、ガラス基板上より丁寧に剥がし、ステンレス製の枠に弛み無く固定し、70℃で30分間送風乾燥を行い、さらに100℃で1時間真空乾燥することで重合体1より成る透明フィルム(膜厚40μm)を得た。
<<重合体1を含んで成るフィルムの作成>>
前記適用例2で得られたワニスを、ベーカー式アプリケーター(有限会社イーガーコーポレーション製)を用い、塗布幅250mm、塗布厚400μmでガラス基板上(300mm×400mm)に塗布した。室温で乾燥後、ガラス基板上より丁寧に剥がし、ステンレス製の枠に弛み無く固定し、70℃で30分間送風乾燥を行い、さらに100℃で1時間真空乾燥することで重合体1より成る透明フィルム(膜厚40μm)を得た。
<重合体1の適用例4>
<<重合体1を含んで成る成形体の作成>>
実施例1で得られた重合体1を、30mm×50mmのS長方形US製枠(厚さ200μm)に充填し、電動式二連真空プレス機(株式会社ボールドウィン社製)を用い、下記の成形条件にてプレス成形を行うことで、重合体1より成る透明均一な成形体を得た。
<<<成形条件>>>
温度:225℃
圧力:20MPa
時間:3分間
<<重合体1を含んで成る成形体の作成>>
実施例1で得られた重合体1を、30mm×50mmのS長方形US製枠(厚さ200μm)に充填し、電動式二連真空プレス機(株式会社ボールドウィン社製)を用い、下記の成形条件にてプレス成形を行うことで、重合体1より成る透明均一な成形体を得た。
<<<成形条件>>>
温度:225℃
圧力:20MPa
時間:3分間
<評価>
<<(1)フィルム透明性>>
前記適用例3で得られたフィルムの透明度をヘイズメーターNDH5000(日本電色工業株式会社製)にて測定した。ヘイズ値は1.6%であった。
<<(2)成形体強度>>
前記適用例4で得られた膜のマルテンス硬さを測定した。測定には、微小膜硬度計HM500型(フィッシャー・インストルメンツ社製)を用いた。圧子はダイアモンド製ベルコビッチ圧子を使用し、最大荷重10mNまで負荷時間10secかけてサンプル表面に押し込み、5秒間保持後荷重を取り除き、マルテンス硬さを求めた。得られた値は206N/mm2であった。
ここで、マルテンス硬さとは(ISO14577準拠)荷重-押し込み深さ曲線より算出される硬さである。
<<(1)フィルム透明性>>
前記適用例3で得られたフィルムの透明度をヘイズメーターNDH5000(日本電色工業株式会社製)にて測定した。ヘイズ値は1.6%であった。
<<(2)成形体強度>>
前記適用例4で得られた膜のマルテンス硬さを測定した。測定には、微小膜硬度計HM500型(フィッシャー・インストルメンツ社製)を用いた。圧子はダイアモンド製ベルコビッチ圧子を使用し、最大荷重10mNまで負荷時間10secかけてサンプル表面に押し込み、5秒間保持後荷重を取り除き、マルテンス硬さを求めた。得られた値は206N/mm2であった。
ここで、マルテンス硬さとは(ISO14577準拠)荷重-押し込み深さ曲線より算出される硬さである。
<実施例5>
下記重合体3を、1,3-ブタジエンと、イソプレンと、二酸化炭素とからワンポットで合成した。下記構造中、m1、m2、及びn1は、各構造単位のモル比を表し、m1:m2:n1=1:1:1を表す。
重合体3
下記重合体3を、1,3-ブタジエンと、イソプレンと、二酸化炭素とからワンポットで合成した。下記構造中、m1、m2、及びn1は、各構造単位のモル比を表し、m1:m2:n1=1:1:1を表す。
重合体3
<<重合体3の合成例>>
50mLのステンレス製オートクレーブに、パラジウム(II)アセチルアセトン)Pd(acac)2 )(和光純薬製、30.6mg、 0.10mmol) と、トリフェニフホフスィン(PPh3)(関東化学製、78.8mg、0.30mmol) と、イソプレン(東京化成工業製、5.0mL、50mmol)を炭酸エチレン(和光純薬製、7.50g)に加え、撹拌した。混合物を-20℃に冷却し3分間攪拌しながら1,3-ブタジエン(1.36g、25mmol)を加えた。オートクレーブに3.75g(86mmol)のCO2を加え、80℃で20時間加熱した。ガスの圧力を解放し、15分間真空にして、完全に残留ジエンを取り除いた後、混合物に1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)(和光純薬製、V-40)40.1mg(0.165mmol)および塩化亜鉛(和光純薬製)2.25g(16.5mmol)を添加して、100℃で24時間加熱した。得られた混合物を過剰のメタノール(300mL)で希釈し、沈殿物を回収し、メタノール(300mL)および水(300mL)で洗浄した。残留固形分を熱ジメチルホルムアミド(DMF)(100mL)中に溶解し、塩酸水溶液(1.0M、1.0L)で再沈殿し、三次元重合体3を得た(乾燥後収量2.20g、Mnは5.5×103、Mw/Mnは2.5、重合体3中に取り込まれた二酸化炭素は20質量%、1,3-ブタジエンおよびイソプレンの合計に基づく収率は46質量%)。
50mLのステンレス製オートクレーブに、パラジウム(II)アセチルアセトン)Pd(acac)2 )(和光純薬製、30.6mg、 0.10mmol) と、トリフェニフホフスィン(PPh3)(関東化学製、78.8mg、0.30mmol) と、イソプレン(東京化成工業製、5.0mL、50mmol)を炭酸エチレン(和光純薬製、7.50g)に加え、撹拌した。混合物を-20℃に冷却し3分間攪拌しながら1,3-ブタジエン(1.36g、25mmol)を加えた。オートクレーブに3.75g(86mmol)のCO2を加え、80℃で20時間加熱した。ガスの圧力を解放し、15分間真空にして、完全に残留ジエンを取り除いた後、混合物に1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)(和光純薬製、V-40)40.1mg(0.165mmol)および塩化亜鉛(和光純薬製)2.25g(16.5mmol)を添加して、100℃で24時間加熱した。得られた混合物を過剰のメタノール(300mL)で希釈し、沈殿物を回収し、メタノール(300mL)および水(300mL)で洗浄した。残留固形分を熱ジメチルホルムアミド(DMF)(100mL)中に溶解し、塩酸水溶液(1.0M、1.0L)で再沈殿し、三次元重合体3を得た(乾燥後収量2.20g、Mnは5.5×103、Mw/Mnは2.5、重合体3中に取り込まれた二酸化炭素は20質量%、1,3-ブタジエンおよびイソプレンの合計に基づく収率は46質量%)。
実施例5で得られた重合体3について、1H NMRスペクトルを測定した。測定は、400MHz、DMSO-d6を用いて、室温で行った。測定結果を図8に示す。
また、実施例5で得られた重合体3について、13C NMRスペクトルを測定した。測定は、101MHz、TFAを用いて、室温で行った。測定結果を図9に示す。図9中、a’’-j’’、a’’’-j’’’のピークは、それぞれ単環の単位構造(II)のピークを表す。さらに、図9中、a’’’’-j’’’’のピークは、単環の構造単位(III)を表す。
また、実施例5で得られた重合体3について、SEC法により分子量を測定した。SECチャートを図11に示す。測定は、上記条件(B)にて行った。数平均分子量(Mn)は1.6×104、重量平均分子量(Mw)は3.2×104、Mw/Mnは2.0であった。
実施例5で得られた重合体3について、熱重量測定(TG)を行った。TGチャートを図12に示す。測定は、大気条件下、40~500℃の温度範囲を、10℃/分で昇温させて行った。測定結果より、重量減少が5%に達した温度は240℃であることが分かり、これを熱分解温度(Td)とした。
また、実施例5で得られた重合体3について、示差走査熱量測定(DSC)を行った。DSCチャートを図13に示す。測定は、-70~280℃の温度範囲を20℃/分で昇温させ、280℃で10分間保持し、20℃/分の速度で-70℃まで冷却して行った。図13から、昇温過程で観測されたガラス転移温度(Tg)が33℃であることが分かった。
以上の結果から、実施例5では、重合体3が得られることが分かった。また、実施例5で得られた重合体3は、耐熱性が良好であることが分かった。
また、実施例5で得られた重合体3について、示差走査熱量測定(DSC)を行った。DSCチャートを図13に示す。測定は、-70~280℃の温度範囲を20℃/分で昇温させ、280℃で10分間保持し、20℃/分の速度で-70℃まで冷却して行った。図13から、昇温過程で観測されたガラス転移温度(Tg)が33℃であることが分かった。
以上の結果から、実施例5では、重合体3が得られることが分かった。また、実施例5で得られた重合体3は、耐熱性が良好であることが分かった。
<実施例6>
下記重合体4を、1,3-ブタジエンと、1,3-ペンタジエンと、二酸化炭素とからワンポットで合成した。下記構造中、l3、m3及びn2は、各構造単位のモル比を表し、l3:m3:n2=1:4:5を表す。
重合体4
下記重合体4を、1,3-ブタジエンと、1,3-ペンタジエンと、二酸化炭素とからワンポットで合成した。下記構造中、l3、m3及びn2は、各構造単位のモル比を表し、l3:m3:n2=1:4:5を表す。
重合体4
<<重合体4の合成例>>
50mLのステンレス製オートクレーブに、パラジウム(II)アセチルアセトン)Pd(acac)2 )(和光純薬製、30.6mg、 0.10mmol) と、トリフェニフホフスィン(PPh3)(関東化学製、78.8mg、0.30mmol) と、1,3-ペンタジエン(東京化成工業製、5.0mL、50mmol)を炭酸エチレン(和光純薬製、7.50g)に加え、撹拌した。混合物を-20℃に冷却し3分間攪拌しながら1,3-ブタジエン(1.34g、25mmol)を加えた。オートクレーブに3.75g(86mmol)のCO2を加え、80℃で20時間加熱した。ガスの圧力を解放し、15分間真空にして、完全に残留ジエンを取り除いた後、混合物に1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)(和光純薬製、V-40)40.1mg(0.165mmol)および塩化亜鉛(和光純薬製)2.25g(16.5mmol)を添加して、100℃で24時間加熱した。得られた混合物を過剰のメタノール(300mL)で希釈し、沈殿物を回収し、メタノール(300mL)および水(300mL)で洗浄した。残留固形分を熱ジメチルホルムアミド(DMF)(100mL)中に溶解し、塩酸水溶液(1.0M、1.0L)で再沈殿し、三次元重合体3を得た(乾燥後収量2.74g、Mnは1.6×104、Mw/Mnは2.0、重合体3中に取り込まれた二酸化炭素は24質量%、1,3-ブタジエンおよび1,3-ペンタジエンの合計に基づく収率は35質量%)。
50mLのステンレス製オートクレーブに、パラジウム(II)アセチルアセトン)Pd(acac)2 )(和光純薬製、30.6mg、 0.10mmol) と、トリフェニフホフスィン(PPh3)(関東化学製、78.8mg、0.30mmol) と、1,3-ペンタジエン(東京化成工業製、5.0mL、50mmol)を炭酸エチレン(和光純薬製、7.50g)に加え、撹拌した。混合物を-20℃に冷却し3分間攪拌しながら1,3-ブタジエン(1.34g、25mmol)を加えた。オートクレーブに3.75g(86mmol)のCO2を加え、80℃で20時間加熱した。ガスの圧力を解放し、15分間真空にして、完全に残留ジエンを取り除いた後、混合物に1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)(和光純薬製、V-40)40.1mg(0.165mmol)および塩化亜鉛(和光純薬製)2.25g(16.5mmol)を添加して、100℃で24時間加熱した。得られた混合物を過剰のメタノール(300mL)で希釈し、沈殿物を回収し、メタノール(300mL)および水(300mL)で洗浄した。残留固形分を熱ジメチルホルムアミド(DMF)(100mL)中に溶解し、塩酸水溶液(1.0M、1.0L)で再沈殿し、三次元重合体3を得た(乾燥後収量2.74g、Mnは1.6×104、Mw/Mnは2.0、重合体3中に取り込まれた二酸化炭素は24質量%、1,3-ブタジエンおよび1,3-ペンタジエンの合計に基づく収率は35質量%)。
実施例6で得られた重合体4について、1H NMRスペクトルを測定した。測定は、400MHz、DMSO-d6を用いて、室温で行った。測定結果を図14に示す。
また、実施例6で得られた重合体4について、13C NMRスペクトルを測定した。測定は、101MHz、TFA(trifluoroacetic acid)を用いて、室温で行った。測定結果を図15に示す。図15中、a’-j’のピークは、それぞれ単環の単位構造(II-a)のピークを表す。また、図15中、a-jのピークは、それぞれ二環の単位構造(I-a)のピークを表す。さらに、図15中、a’’-j’’のピークは、単環の構造単位(III-a)を表す。
また、実施例6で得られた重合体4について、SEC法により分子量を測定した。SECチャートを図17に示す。測定は、上記条件(B)にて行った。数平均分子量(Mn)は5.5×103、重量平均分子量(Mw)は1.4×104、Mw/Mnは2.5であった。
実施例6で得られた重合体4について、熱重量測定(TG)を行った。TGチャートを図18に示す。測定は、大気条件下、40~500℃の温度範囲を、10℃/分で昇温させて行った。測定結果より、重量減少が5%に達した温度は277℃であることが分かり、これを熱分解温度(Td)とした。
また、実施例6で得られた重合体4について、示差走査熱量測定(DSC)を行った。DSCチャートを図19に示す。測定は、-70~280℃の温度範囲を20℃/分で昇温させ、280℃で10分間保持し、20℃/分の速度で-70℃まで冷却して行った。図19から、昇温過程で観測されたガラス転移温度(Tg)が63℃であることが分かった。
以上の結果から、実施例6では、重合体4が得られることが分かった。また、実施例6で得られた重合体4は、耐熱性が良好であることが分かった。
また、実施例6で得られた重合体4について、示差走査熱量測定(DSC)を行った。DSCチャートを図19に示す。測定は、-70~280℃の温度範囲を20℃/分で昇温させ、280℃で10分間保持し、20℃/分の速度で-70℃まで冷却して行った。図19から、昇温過程で観測されたガラス転移温度(Tg)が63℃であることが分かった。
以上の結果から、実施例6では、重合体4が得られることが分かった。また、実施例6で得られた重合体4は、耐熱性が良好であることが分かった。
本発明の重合体は、優れた熱特性を有する。前記非特許文献5に開示されたポリマーは、一般式(IV)で表される同様のモノマーを原料としていながら、そのTg(ガラス転移温度)は-30℃以下であることが示されている(非特許文献5 Tab.2参照)。これに対し、本発明の重合体は、前記一般式(I)で表される構造を含んで成ることで190℃を超えるTgを示した。
また、本発明の重合体は、Td(熱分解温度)も十分高いため、加熱により性質を損なうこと無く溶融成形することが可能である。得られた成形体は、良好な硬度を発現した。
加えて、本発明の重合体は、種々の有機溶媒に良好な溶解性を示すため、ワニスとしての使用が可能である。また、本発明の重合体は、透明性にも優れているため、例えば透明コーティング材料として使用することが可能である。
また、本発明の重合体は、Td(熱分解温度)も十分高いため、加熱により性質を損なうこと無く溶融成形することが可能である。得られた成形体は、良好な硬度を発現した。
加えて、本発明の重合体は、種々の有機溶媒に良好な溶解性を示すため、ワニスとしての使用が可能である。また、本発明の重合体は、透明性にも優れているため、例えば透明コーティング材料として使用することが可能である。
Claims (18)
- 炭素原子を3つ以上含むラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)の少なくとも1つが主鎖の一部を構成し、前記ラクトン環を構成する炭素原子(但し、-C(=O)O-のCは除く)中、前記主鎖の一部を構成する炭素原子以外の炭素原子の少なくとも1つが前記主鎖の原子と架橋している構造単位を含む、重合体。
- 熱重量測定(TG)により、10℃/分で昇温させたときの熱分解温度(Td)が220℃以上である、請求項1~10のいずれか1項に記載の重合体。
- 請求項1~11のいずれか1項に記載の重合体を含むワニス。
- 請求項1~11のいずれか1項に記載の重合体を含む成形体。
- 前記原料モノマーを、少なくとも一種のブレンステッド酸もしくはルイス酸存在下でラジカル重合させる工程、又は、乳化重合させる工程を含む、請求項14又は15記載の重合体の製造方法。
- 1、3-ジエン化合物と二酸化炭素とからワンポットで合成する、重合体の製造方法。
- 前記重合体が、請求項1~11のいずれか1項に記載の重合体である、請求項14~17のいずれか1項に記載の重合体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480026811.7A CN105377912B (zh) | 2013-05-13 | 2014-05-09 | 聚合物及聚合物的制造方法 |
EP14797767.2A EP2998330B1 (en) | 2013-05-13 | 2014-05-09 | Polymer and method for producing polymer |
US14/939,160 US9796812B2 (en) | 2013-05-13 | 2015-11-12 | Polymers and processes for preparing the polymers |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-101306 | 2013-05-13 | ||
JP2013101306 | 2013-05-13 | ||
JP2013-262358 | 2013-12-19 | ||
JP2013262358A JP6017407B2 (ja) | 2013-05-13 | 2013-12-19 | 重合体及び重合体の製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/939,160 Continuation US9796812B2 (en) | 2013-05-13 | 2015-11-12 | Polymers and processes for preparing the polymers |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014185355A1 true WO2014185355A1 (ja) | 2014-11-20 |
Family
ID=51898333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/062479 WO2014185355A1 (ja) | 2013-05-13 | 2014-05-09 | 重合体及び重合体の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9796812B2 (ja) |
EP (1) | EP2998330B1 (ja) |
JP (1) | JP6017407B2 (ja) |
CN (1) | CN105377912B (ja) |
WO (1) | WO2014185355A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017179066A (ja) * | 2016-03-29 | 2017-10-05 | 株式会社日本触媒 | ラクトン環含有重合体とそれを含む樹脂組成物および樹脂成形体 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11697698B2 (en) * | 2018-04-25 | 2023-07-11 | The University Of Tokyo | Method for producing copolymer of allyl monomer having polar group |
US20220073675A1 (en) * | 2020-09-08 | 2022-03-10 | James M. Eagan | Degradable polymer structures from carbon dioxide and olefin and corresponding method |
CN112409518B (zh) * | 2020-12-03 | 2022-05-13 | 上海科技大学 | 一种由惰性双烯内酯单体合成高分子量聚合物的方法 |
US20240343846A1 (en) * | 2021-08-31 | 2024-10-17 | The University Of Tokyo | Polar group-containing olefin copolymer, and production method therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08231648A (ja) * | 1995-01-17 | 1996-09-10 | Degussa Ag | キャスティングガラスの製造のため又は熱形状安定性の成形体の製造のための成形材料用のコポリマーの製造方法 |
EP0960897A1 (de) * | 1998-05-26 | 1999-12-01 | Forschungszentrum Karlsruhe GmbH | Verfahren zur Herstellung von Polymeren mit 2-Ethyliden-6-hepten-5-olid |
JP2005002531A (ja) | 2003-06-16 | 2005-01-06 | Kurabe Ind Co Ltd | チューブの製造方法 |
WO2008044536A1 (fr) * | 2006-10-05 | 2008-04-17 | Nissan Chemical Industries, Ltd. | Composé polymérisable bifonctionnel, composition de cristaux liquides polymérisable et film orienté |
WO2012002512A1 (ja) * | 2010-06-30 | 2012-01-05 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法並びに重合性化合物 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4071667A (en) * | 1976-01-02 | 1978-01-31 | Tokyo Institute Of Technology | Process of preparing polyesters having carbonyl group and ether linkage in the principal chain thereof |
EP0050445B1 (en) * | 1980-10-20 | 1984-05-30 | Imperial Chemical Industries Plc | Telomerization of butadiene and carbon dioxide |
JP2003195504A (ja) | 2001-12-26 | 2003-07-09 | Fuji Photo Film Co Ltd | ポジ型レジスト組成物 |
CN102159560B (zh) * | 2008-10-14 | 2014-08-27 | 日产化学工业株式会社 | 聚合性液晶化合物及聚合性液晶组合物以及取向膜 |
-
2013
- 2013-12-19 JP JP2013262358A patent/JP6017407B2/ja active Active
-
2014
- 2014-05-09 CN CN201480026811.7A patent/CN105377912B/zh not_active Expired - Fee Related
- 2014-05-09 WO PCT/JP2014/062479 patent/WO2014185355A1/ja active Application Filing
- 2014-05-09 EP EP14797767.2A patent/EP2998330B1/en not_active Not-in-force
-
2015
- 2015-11-12 US US14/939,160 patent/US9796812B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08231648A (ja) * | 1995-01-17 | 1996-09-10 | Degussa Ag | キャスティングガラスの製造のため又は熱形状安定性の成形体の製造のための成形材料用のコポリマーの製造方法 |
EP0960897A1 (de) * | 1998-05-26 | 1999-12-01 | Forschungszentrum Karlsruhe GmbH | Verfahren zur Herstellung von Polymeren mit 2-Ethyliden-6-hepten-5-olid |
JP2005002531A (ja) | 2003-06-16 | 2005-01-06 | Kurabe Ind Co Ltd | チューブの製造方法 |
WO2008044536A1 (fr) * | 2006-10-05 | 2008-04-17 | Nissan Chemical Industries, Ltd. | Composé polymérisable bifonctionnel, composition de cristaux liquides polymérisable et film orienté |
WO2012002512A1 (ja) * | 2010-06-30 | 2012-01-05 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法並びに重合性化合物 |
Non-Patent Citations (10)
Title |
---|
CHIANG, W-Y., PROC. NATL. SCI. COUNCIL. R. 0. C., vol. 2, 1978, pages 170 - 176 |
HAACK, V.; DINJUS, E.; PITTER, S., DIE ANGEW. MAKROMOL. CHEM., vol. 257, 1998, pages 19 - 22 |
J. ORGANOMET. CHEM., vol. 255, 1983, pages 263 - 268 |
RYO NAKANO ET AL.: "Copolymerization of carbon dioxide and butadiene via a lactone intermediate", NATURE CHEMISTRY, vol. 6, no. ISSUE, April 2014 (2014-04-01), pages 325 - 331 * |
See also references of EP2998330A4 |
SOGA, K.; HOSODA, S.; IKEDA, S., DIE MACROMOL. CHEM., vol. 176, 1975, pages 1907 - 1911 |
SOGA, K.; HOSODA, S.; TASUKA, Y.; IKEDA, S., J. POLYM. SCI., POLYM. LETT., vol. 13, 1975, pages 265 - 268 |
SOGA, K.; SATO, M.; HOSODA, S.; IKEDA, S., J. POLYM. SCI., POLYM. LETT., vol. 13, 1975, pages 543 - 548 |
SUGIMOTO, H.; INOUE, S., J. POLYM. SCI. , PART A: POLYM. CHEM., vol. 42, 2004, pages 5561 - 5573 |
VERA HAACK ET AL.: "Synthesis of Polymers with an intact lactone ring structure in the main chain", DIE ANGEWANDTE MAKROMOLEKULARE CHEMIE, vol. 257, no. ISSUE, 1998, pages 19 - 22, XP055249738, DOI: doi:10.1002/(SICI)1522-9505(19980601)257:1<19::AID-APMC19>3.0.CO;2-T * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017179066A (ja) * | 2016-03-29 | 2017-10-05 | 株式会社日本触媒 | ラクトン環含有重合体とそれを含む樹脂組成物および樹脂成形体 |
Also Published As
Publication number | Publication date |
---|---|
EP2998330A4 (en) | 2016-03-23 |
US20160090442A1 (en) | 2016-03-31 |
EP2998330B1 (en) | 2018-02-28 |
CN105377912B (zh) | 2017-05-10 |
JP6017407B2 (ja) | 2016-11-02 |
EP2998330A1 (en) | 2016-03-23 |
CN105377912A (zh) | 2016-03-02 |
JP2014240476A (ja) | 2014-12-25 |
US9796812B2 (en) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6017407B2 (ja) | 重合体及び重合体の製造方法 | |
Mosnácek et al. | Atom transfer radical polymerization of tulipalin A: A naturally renewable monomer | |
ES2797701T3 (es) | Estabilizador de dispersión para la polimerización en suspensión y método de fabricación de resina de vinilo | |
KR102046359B1 (ko) | 친유성 고분지 폴리머 및 이것을 포함하는 광중합성 조성물 | |
KR102023226B1 (ko) | 스티렌 플루오로중합체의 제조 방법 | |
JP5571787B2 (ja) | 架橋フルオロポリマー網目構造 | |
TW201835119A (zh) | 聚乙烯醇系樹脂、分散劑及懸浮聚合用分散劑 | |
JP6601714B2 (ja) | 改良されたヒドロキシ基含有ビニルエーテル重合体の製造方法 | |
Nonque et al. | Study on polymerization of bio-based isosorbide monomethacrylate for the formation of low-Tg and high-Tg sustainable polymers | |
JP5226373B2 (ja) | 硬化性樹脂組成物およびその硬化物 | |
Kiehl et al. | Synthesis of graft copolymers of poly (methacrylic acid)-g-poly (ɛ-caprolactone) by coupling ROP and RAFT polymerizations | |
JP5872484B2 (ja) | 含フッ素ハイパーブランチポリマー及びその製造方法 | |
Chen et al. | Preparation and characterisation of novel cross-linked poly (IBOMA-BA-DFMA) latex | |
WO2011122661A1 (ja) | 2,3,3,3-テトラフルオロプロペンの単独重合体 | |
JP5835723B2 (ja) | ジビニルエーテルホモポリマー、その製造方法およびその用途 | |
Zhou et al. | Synthesis of fluorinated polyacrylate surfactant‐free core–shell latex by RAFT‐mediated polymerization‐induced self‐assembly: Effects of the concentration of hexafluorobutyl acrylate | |
KR101998654B1 (ko) | 아크릴 시럽의 제조방법 및 아크릴 시럽 | |
Yamada et al. | Stereochemistry of radical polymerization of vinyl esters in the presence of Lewis acid | |
JP2019065068A (ja) | ポリビニルアルコール | |
JP2001019770A (ja) | ポリビニルアルコール系グラフトポリマー、ポリビニルアルコール系ブロックポリマー及びそれらの製造方法 | |
CN114402001B (zh) | 含氟化合物的制造方法和共聚物的制造方法 | |
KR102690293B1 (ko) | 함불소 중합체를 유효성분으로 하는 유연성 발수발유제 | |
KR101208251B1 (ko) | 폴리피발산비닐을 제조하는 방법 및 그로부터 제조된 폴리비닐알콜 | |
JP2007297526A (ja) | 重合体の製造方法 | |
KR100843602B1 (ko) | 유리 전이 온도가 높은 폴리알킬(메타)아크릴레이트의 제조방법 및 제조된 중합체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14797767 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014797767 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |