[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014177103A1 - 数据传输调度方法、装置和系统 - Google Patents

数据传输调度方法、装置和系统 Download PDF

Info

Publication number
WO2014177103A1
WO2014177103A1 PCT/CN2014/079050 CN2014079050W WO2014177103A1 WO 2014177103 A1 WO2014177103 A1 WO 2014177103A1 CN 2014079050 W CN2014079050 W CN 2014079050W WO 2014177103 A1 WO2014177103 A1 WO 2014177103A1
Authority
WO
WIPO (PCT)
Prior art keywords
client
interference
measurement report
data
data transmission
Prior art date
Application number
PCT/CN2014/079050
Other languages
English (en)
French (fr)
Inventor
汪波
黄河
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14792213.2A priority Critical patent/EP3041307A4/en
Priority to US15/021,004 priority patent/US10009893B2/en
Publication of WO2014177103A1 publication Critical patent/WO2014177103A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements

Definitions

  • the present invention relates to the field of data transmission scheduling, and in particular, to a data transmission scheduling method, apparatus and system.
  • WLAN wireless local area network
  • the WLAN system follows a series of technical standards such as 802.11a/b/g/n as defined by the Institute of Electrical and Electronics Engineers (IEEE) 802.11 Working Group.
  • the Media Access Control Protocol uses Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) to enable multiple sites to share wireless channels.
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • a wireless device detects the idle state of the channel before transmitting the data, and does not send the data if the other device concerned transmits the data, and waits until the channel is idle, and then randomly rolls back for a period of time. The channel is still idle before sending data.
  • this channel competition method is simple, flexible, and can avoid conflicts to some extent, it also has the following disadvantages:
  • the problem of "hidden terminal” cannot be effectively solved, that is, when two terminals cannot perceive each other's signals, if one of the terminals transmits data, the other terminal will mistakenly believe that the current channel is idle because of the inability to perceive the signal, and thus sends data. , causing collision of wireless signals and data retransmission.
  • the 802.11 protocol proposes a request to send/allow to send (RTS/CTS) exchange protocol to solve this problem, it can only solve the hidden transmitting terminal, and cannot solve the hidden receiving terminal (that is, the hidden terminal still receives errors when receiving) and the RTS/CTS information.
  • the package itself collides and increases network overhead.
  • the channel utilization is low. After a device occupies a channel, other devices can only wait, even if they are within the coverage of the device and outside the coverage of the receiving node, it will not affect the device communication ("exposure terminal"). 3.
  • Network capacity is limited by the number of devices. When the number of devices is larger and the distribution is more dense, the wireless interference between devices becomes more serious. Therefore, the network cannot accommodate too many users, and the network size is limited.
  • the related scheduling method has a low network usage rate.
  • the embodiment of the invention provides a data transmission scheduling method, device and system, which solves the problem that the network usage rate of the related scheduling mode is low.
  • a data transmission scheduling method includes:
  • the measurement report carries a transmission power of an AP that sends the measurement report, a signal reception level and a power of a device of the AP, and an evaluation according to the measurement report.
  • the interference relationship between the AP and the surrounding devices of the AP is evaluated;
  • a scheduling decision is made based on the evaluation result.
  • the step of evaluating the interference relationship between the AP and the surrounding device of the AP according to the measurement report includes:
  • the communication pair is composed of communication between the AP and a client accessed by the AP.
  • the first AP and the first client form a communication pair
  • the second AP and the second client form another communication pair, according to the path between the APs
  • the path loss data between the AP and the client accessed by the AP includes:
  • the interference value of the first AP to the second AP is calculated according to the following expression: RSSI_aal2:
  • RSSI_aal2 TxPower AP - PathLoss AP AP , where TxPower AP is the first AP Transmit power, PathLoss AP path loss data between AP AP and second AP; Calculate the interference value RSSI_asl2 of the first AP to the second client according to the following expression:
  • RS SI_as 12 TxPower APl - PathLoss APlSTA2, wherein, PathLoss AP] STA2 data path loss between the first AP and the second client is; calculated according to the expression value of the interference that a first client RSSI_sal2 second AP:
  • RSSI_sal2 J J Power >S ' 74 l ⁇ PathLoss A p 2STA l , where TxPowcr STA ] ⁇ transmit power of the first client, PathLoss A p lSTAl is the path loss between the second AP and the first client; – aal2, RSSI_asl2, RSSI_sal2 are compared with the disturbed threshold values preset for the second AP and the second client;
  • RSSI_alal2 and/or RSSI-sal2 exceed the disturbed threshold, it is determined that there is interference.
  • the first AP and the first client form a first communication pair
  • the path loss data and the AP and the AP are used according to the AP
  • the path loss data between the clients accessing the access, the steps of evaluating the interference relationship between all the devices in one communication pair and all the devices in the other communication pair include:
  • the step of performing a scheduling decision according to the evaluation result includes:
  • the second AP and the second client cannot interfere with the first client.
  • the interference is Stopting before the first client sends the downlink data ACK;
  • the interference stops before the second client sends an ACK.
  • the step of performing a scheduling decision according to the evaluation result includes:
  • the interference of any communication pair to other communication pairs is less than the set threshold
  • the interference experienced by any communication pair is less than the set threshold.
  • the step of performing a scheduling decision according to the evaluation result includes:
  • Each AP is assigned a different time slice according to the order of the interference of each AP to other APs and the interference of other APs.
  • the APs that have interference with each other do not allocate the same time slice, and multiple mutual APs that do not have interference are allocated at the same time slice.
  • priority is given to an AP with a higher priority.
  • the method further includes:
  • the method further includes: outputting scheduling decision information, where the scheduling decision information includes time slice bitmap information of each AP, indicating that each AP is allocated time
  • the scheduling decision information includes time slice bitmap information of each AP, indicating that each AP is allocated time
  • the scheduling decision information includes time slice bitmap information of each AP, indicating that each AP is allocated time
  • the physical layer buffer is filled with the downlink data.
  • the step of performing a scheduling decision according to the evaluation result includes:
  • the method further includes: outputting scheduling decision information, where the scheduling decision information includes time slice bitmap information of each home client under each AP, indicating the AP Competing for physical channels;
  • the AP After the AP contends to the physical channel, it fills the physical layer with the downlink data whose destination address is the corresponding client of the time slice.
  • the step of receiving the measurement report sent by the AP includes:
  • the wireless controller AC receives the measurement report of the AP sent by each AP.
  • the step of receiving the measurement report sent by the AP includes:
  • the AP receives measurement reports of the other APs broadcast by each AP except the AP.
  • the method further includes:
  • the AP records the received packet signal level of each client and/or neighbor AP.
  • the method further includes:
  • the AP broadcasts its own measurement report, and the measurement report carries the transmission power of the first AP that sends the measurement report, and the signal reception level and power of the device around the AP.
  • the embodiment of the present invention further provides a data scheduling apparatus, including: a measurement report collection module, an interference assessment module, and a scheduling decision module, where
  • the measurement report collection module is configured to: receive a measurement report sent by an access point (AP), where the measurement report carries a transmission power of an AP that sends the measurement report, and a signal reception power of a device of the AP Peace power
  • AP access point
  • the interference assessment module is configured to: according to the measurement report, evaluate an interference relationship between the AP and a surrounding device of the AP, and obtain an evaluation result;
  • the scheduling decision module is configured to: perform a scheduling decision according to the evaluation result.
  • the interference assessment module includes:
  • a first path loss calculation unit configured to calculate path loss data between the APs
  • a second path loss calculation unit configured to establish path loss data between the AP and a client accessed by the AP
  • An interference assessment unit configured to evaluate all devices in one communication pair and another communication according to path loss data between the AP and path loss data between the AP and a client accessed by the AP Interference relationship between all devices;
  • the communication pair is composed of communication between the AP and a client accessed by the AP.
  • the device further includes:
  • a result output module configured to output scheduling decision information, where the scheduling decision information includes time slice bitmap information of each AP, indicating that each AP competes for a channel on the allocated time slice, and after competing to the channel,
  • the physical layer cache fills in the downstream data.
  • the embodiment of the invention further provides a data transmission scheduling system, comprising a data transmission scheduling device and at least one access point (AP);
  • a data transmission scheduling system comprising a data transmission scheduling device and at least one access point (AP);
  • the data transmission scheduling device is configured to: receive a measurement report sent by the AP, where the measurement report carries a transmission power of an AP that sends the measurement report, and a signal reception level and power of a device of the AP And evaluating, according to the measurement report, an interference relationship between the AP and a surrounding device of the AP, obtaining an evaluation result, and performing a scheduling decision according to the evaluation result.
  • the data transmission scheduling device is further configured to: output scheduling decision information, where the scheduling decision information includes time slice bitmap information of each AP, indicating that each AP competes for a channel on the allocated time slice, and After competing for the channel, the downlink data is filled into the physical layer cache.
  • the scheduling decision information includes time slice bitmap information of each AP, indicating that each AP competes for a channel on the allocated time slice, and After competing for the channel, the downlink data is filled into the physical layer cache.
  • the AP is configured to: send a measurement report of the AP to the data transmission scheduling apparatus, or
  • the AP is further configured to: record the number of received clients and/or neighbor APs According to the packet signal level.
  • the embodiment of the present invention provides a data transmission scheduling method, apparatus, and system.
  • the data transmission scheduling apparatus receives a measurement report sent by an AP, where the measurement report carries the transmission power of the AP that sends the measurement report, and the AP.
  • the signal receiving level and power of the surrounding equipment are then evaluated according to the measurement report, and the interference relationship between the devices is evaluated, and then the scheduling judgment is performed according to the evaluation result of the interference relationship, and parallel communication of multiple low-interference terminals is realized, and the relevant scheduling manner is solved.
  • FIG. 1 is a schematic diagram of a centralized centralized scheduling network structure
  • FIG. 2 is a schematic diagram of a distributed centralized scheduling network structure
  • FIG. 3 is a flowchart of processing of an AC in the first embodiment of the present invention.
  • FIG. 5 is a flowchart of centralized centralized scheduling signaling interaction in Embodiment 1 of the present invention.
  • Embodiment 6 is a flow chart of distributed centralized scheduling signaling interaction in Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of a network structure including two AP-STA communication pairs
  • FIG. 8 is a schematic diagram of a network structure including multiple AP-STA communication pairs
  • Figure 9 is a schematic diagram of time slice resources
  • FIG. 10 is a schematic diagram of time slice bitmap information divided by AP
  • 11 is a schematic diagram of time slice bitmap information divided by STA
  • FIG. 12 is a schematic structural diagram of a data transmission scheduling apparatus according to Embodiment 5 of the present invention.
  • FIG. 13 is a schematic structural diagram of the interference evaluation module 1202 of FIG. Preferred embodiment of the invention
  • the embodiment of the present invention provides a data transmission scheduling method, apparatus, and system. Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments in the present application may be arbitrarily combined with each other.
  • the embodiment of the invention provides a data transmission scheduling method, which aims to solve the problems of low channel use efficiency and bandwidth loss caused by competing channels between devices in a wireless local area network.
  • the multiple senders actively initiate communication by coordinating to achieve the purpose of parallel communication.
  • each AP records the signal levels of other network devices (including neighbor access points, home clients, and non-home clients) received, and periodically notifies other access points or central control nodes to record themselves.
  • the other network device signal receiving level, and its own power information; if the deployed WLAN system supports 802.11k, then the client (Station, STA) also needs to record the signal level value of other network devices and report it to the associated AP, It notifies other APs or the central control node (AC).
  • the interference relationship between the AP and the surrounding devices of the AP is evaluated according to the measurement report, and an evaluation result is obtained;
  • the AP or AC evaluates the interference level between each communication pair (AP-STA) according to the collected signal level and power information reported by other APs.
  • the system is distributed (or the central node is centralized) to schedule the transmission of the entire network data packet, and in principle, there is no interference or less interference between the communication pairs transmitted simultaneously.
  • the entire network AP needs to be synchronized in some way, such as based on GPS, or Ethernet protocol (NTP, IEEE 1588, etc.).
  • FIG. 1 and FIG. 2 are structural diagrams of a wireless local area network centralized scheduling network according to an embodiment of the present invention.
  • Figure 1 uses a centralized architecture
  • Figure 2 uses a distributed architecture.
  • the former includes six clients (STA1 6 ) and three access points AP1 ⁇ 3 configured to communicate with them, and a wireless controller that manages the configuration of the AP (Access). Controller, AC).
  • the AC is responsible for scheduling the network; in the distributed architecture, each AP independently selects the transmission opportunity.
  • the client includes a computing device such as a desktop, portable or handheld device.
  • the AC can be a software entity in the AP, or it can be part of a separate physical device, switch, or router, or be part of a miniaturized AC.
  • the AP can be one of a fat AP, a thin AP, or a super thin AP.
  • the access point and the client communicate according to any of the IEEE 802.11 protocol families and follow the 802.11 Medium Access Control (MAC) layer specification.
  • MAC Medium Access Control
  • the principles of embodiments of the present invention are not limited to the 802.11 standard, but can be applied to almost any type of WLAN, including HiPerLAN, Bluetooth, and HISWAN-based systems.
  • FIG. 3 is a flowchart of the process of the AC in the centralized centralized scheduling according to the embodiment of the present invention. The specific steps are as follows: Step 301: The AC receives the measurement report of the AP itself sent by each AP.
  • the AC receives the measurement report sent by the AP according to the measurement reporting period, and the AP may send the measurement report actively, or may send the measurement report after the AC sends the measurement report, and the measurement report includes its own transmission power, the signal receiving level and power of the surrounding device. , can be sent through the wired network or through the air interface;
  • Step 302 The AC calculates the path loss between the devices according to the received AP measurement report, and evaluates the interference relationship between the communication pairs, where the communication pair is composed of communication between the AP and the client accessed by the AP;
  • Step 303 The AC performs a scheduling decision according to the interference relationship between the communication pairs.
  • Step 304 The AC distributes the scheduling decision information to the AP, and may pass through the air interface or the wired network.
  • FIG. 4 illustrates a processing flow of an AP according to an embodiment of the present invention, and the steps are as follows:
  • Each AP broadcasts its own measurement report, which has the transmission power of the first AP itself transmitting the measurement report, and the signal reception level and power of the equipment surrounding the AP.
  • each AP sends a measurement report by periodically transmitting a related broadcast frame of the centralized scheduling AP with power information, where the broadcast frame is used to measure the path loss of the AP to the broadcast frame receiver, and the broadcast frame can be related to the 802.11 standard.
  • Management frames such as Beacon, Probe Request frames, etc., can also use non-standard vendor custom frame formats.
  • the AP records the received packet signal level of each client and/or neighbor AP.
  • the AP records the data packet receiving level and the transmitting power of the surrounding equipment.
  • the transmitting power of the AP is directly in the centralized scheduling AP measurement related broadcast frame reading.
  • the STA transmitting power is estimated according to the client type, the general mobile phone is 17dBm, and the portable computer is 20dBm.
  • the measurement report contains its own transmit power, the signal reception level and power of the surrounding equipment, and can be sent over the wired network or through the air interface.
  • the AP In the centralized architecture, receive the scheduling decision information of the AC; in the distributed architecture, the AP first calculates the path loss between the devices according to the received other AP measurement reports, evaluates the interference relationship between the communication pairs, and then performs scheduling decision on the data packet transmission. , finally broadcast its own scheduling decision information;
  • the AP schedules the data packet according to the scheduling decision result.
  • FIG. 5 illustrates a centralized centralized scheduling signaling interaction process according to an embodiment of the present invention, and corresponding steps include:
  • Step 501 The API periodically transmits the centralized scheduling measurement broadcast frame with the maximum power, and carries the current transmit power information.
  • the broadcast frame can use the 802.11 standard related management frames, such as Beacon and Probe Request frames, and can also use non-standard vendors. Define the frame format;
  • Step 502 AP2 records the received API centralized scheduling measurement broadcast frame signal level and its package Power information contained;
  • Step 503 correspondingly, the AP2 also periodically sends a centralized scheduling measurement broadcast frame with its own transmit power.
  • Step 504 The API records the AP2 signal level and power information.
  • Step 505 STA1 sends a data frame after completing association and authentication according to the 802.11 protocol.
  • Step 507 AP2 records the received STA1 packet signal level.
  • Step 508 STA2 sends a data frame after completing association and authentication according to the 802.11 protocol.
  • Step 510 AP2 records the received STA2 packet signal level.
  • Step 511 The API sends its own measurement report to the AC, which can be sent through the wired network or through the wireless air interface.
  • Step 512 AP2 sends its own measurement to the AC.
  • Step 513 The AC evaluates the relationship between the devices according to the measurement report of the AP.
  • Step 514 The AC sends scheduling decision information to the API.
  • Step 515 The AC sends scheduling decision information to the AP2.
  • FIG. 6 is a distributed centralized scheduling signaling interaction process according to an embodiment of the present invention, and corresponding steps include:
  • Steps 601 ⁇ 610 The same as steps 501 ⁇ 510 are not repeated here;
  • Step 611 The API broadcasts its own measurement report.
  • the measurement report includes its own transmit power, and the signal receiving level and power of the surrounding device can be sent through the wired network or through the air interface.
  • Step 613 The API evaluates the interference relationship between the devices in the network according to the measurement report.
  • Step 614 The AP2 evaluates the interference relationship between the devices in the network according to the measurement report.
  • Step 615 The API determines that the priority is higher than the AP2, according to the device interference. The relationship is scheduled and the AP's priority can be configured through the network or based on the size of the AP interference.
  • Step 616 After the end of the API scheduling decision, send the scheduling decision related information (such as the data packet sending time, etc.) to the AP2;
  • Step 617 The AP2 performs a scheduling decision according to the interference relationship and the scheduling information of the API.
  • the data transmission scheduling proposed by the embodiment of the present invention is based on the interference evaluation between devices, and the interference evaluation mechanism of the present invention is further explained below in conjunction with specific embodiments.
  • the embodiment of the present invention provides a data transmission scheduling method.
  • the measurement report sent by the AP is first received, where the measurement report carries the sending power of the AP that sends the measurement report, and the AP
  • the signal receiving level and power of the surrounding device are then evaluated according to the measurement report, the interference relationship between the AP and the surrounding devices of the AP is obtained, the evaluation result is obtained, and the scheduling decision is performed according to the evaluation result of the interference relationship.
  • Embodiment 1 of the present invention refer to Embodiment 1 of the present invention.
  • the path loss data between the APs is first calculated, and then the path loss data between the AP and the client accessed by the AP is established, and finally the channel loss data and the AP are connected according to the AP.
  • the path loss data between the clients evaluates the interference relationship between all devices in one communication pair and all devices in another communication pair.
  • the evaluation method is different depending on the number of communication pairs to be considered, as described below.
  • the API (as the first AP), AP2 (as the second AP), STA1 (as the first client), and STA2 (as the second client) are four devices, which constitute AP1-STA1 and AP2-STA2. Communication pairs, in order to determine whether they can be sent at the same time, need to determine the interference relationship between them.
  • the system first collects path loss data between devices, including:
  • the AP needs to record the centralized scheduling broadcast frame sent by the neighbor AP.
  • the AP2 to API path loss is equal to the AP2 transmit power minus.
  • the AP monitors the air interface data packet, records the ⁇ RSSI value, the sender MAC address, the STA home AP address of each successfully demodulated STA data packet, and calculates the path loss of each STA and its path loss (here, the uplink and downlink path loss is assumed) Is symmetrical).
  • the path loss data it is necessary to estimate the STA uplink transmit power (calculated as the maximum transmit power, the average mobile phone is 17dBm, and the laptop is 20dBm).
  • the system can obtain the interference relationship between the communication pairs.
  • both the API and the STA1 are sent at the maximum power, according to:
  • RSSI_aal2 1) Calculate the interference value of the first AP to the second AP according to the following expression:
  • RSSI_aal2 TxPower APl - PathLoss APlA p 2, where TxPower APl first AP transmit power, PathLoss APlA p 2 between the first AP and the second AP path loss data; TxPower APl - PathLoss APlA p 2 ;
  • RSS1_a.sl2 TxPower APl - PathLoss A p lSTAl , where PathLoss AP1STA2 is the first
  • RSSI_sal2 J J Power >S ' 74 l ⁇ PathLoss A p 2STA l , where TxPowcr STA ] ⁇ transmit power of the first client PathLoss AP STA is a path loss between the second AP and the first client; TxPower STA l - PathLoss A p 2STA l in TxPower APl, PowersT ⁇ the other points ll to API and STAl transmit power, PathLoss A p lSTAl, PathLoss APlA p 2, PathLoss AP2STAl ⁇ is API H STA2, API H AP2, and AP2 H STAl ⁇ each loss.
  • RSSI_aal2, RSSI_asl2, RSSI-sal2 Comparing RSSI_aal2, RSSI_asl2, RSSI-sal2 with the threshold value for which AP2 and STA2 are set to be interfered, and when RSSI_alal2 and/or RSSI-sal2 exceed the disturbed threshold, it is determined that there is interference.
  • RSSI_aal2 or RSSI_sal2 exceeds the threshold, it is considered that the API or STA1 will cause interference to AP2. If RSSI-asl2 exceeds the threshold, the API is considered to interfere with STA2.
  • the path loss between STA1 and STA2 cannot be obtained yet, but the interference relationship between STA1 and STA2 can be indirectly evaluated by the response of STA1 to the RTS and CTS signals of STA2. For example, when STA1 sends uplink data, the AC can decide that STA2 starts to accept data and let AP2 send RTS to STA2. If STA2 does not reply to CTS, it indicates that STA1 has caused interference to STA2, so that it does not correctly receive the RTS sent by AP2. .
  • the interference matrix between the different communication pairs shown in Table 1 is obtained, where the row indicates the receiver of the signal and the column indicates the sender of the signal.
  • the embodiment of the present invention provides a data transmission scheduling method.
  • the measurement report sent by the AP is first received, where the measurement report carries the sending power of the AP that sends the measurement report, and the AP
  • the signal receiving level and power of the surrounding device are then evaluated according to the measurement report, and the interference relationship between the AP and the AP is evaluated, the evaluation result is obtained, and the scheduling decision is performed according to the evaluation result of the interference relationship.
  • the measurement report sent by the AP is first received, where the measurement report carries the sending power of the AP that sends the measurement report, and the AP
  • the signal receiving level and power of the surrounding device are then evaluated according to the measurement report, and the interference relationship between the AP and the AP is evaluated, the evaluation result is obtained, and the scheduling decision is performed according to the evaluation result of the interference relationship.
  • the embodiment of the present invention refer to the embodiment of the present invention.
  • the scheduling mode is different from the two communication pairs. Firstly, the interference relationship between each communication pair of the neighboring APs of the first AP and the first communication pair is separately evaluated, and then the interference relationship between the communication pairs including the APs and the first communication pair is performed. By accumulating, the total interference of the communication pair with all the neighbors to the first communication pair can be obtained.
  • the data transmission scheduling method provided by the embodiment of the present invention is introduced by using the system shown in FIG. 8 , which includes nine devices AP1 ⁇ 3 and STA1-6, and constitutes AP1-STA1 ⁇ 2, AP2-STA3-4, and AP3-. STA5-6 six communication pairs.
  • the API is used as the first AP, and STA1 is used as the first client as an example.
  • the system first needs to obtain the path loss between the devices, and the method is the same as the second embodiment of the present invention, and details are not described herein again.
  • the interference relationship between the two pairs can be evaluated.
  • the interference between AP1-STA1 and AP2-STA3 is taken as an example.
  • the calculation process is as follows: First based on:
  • the interference degree of AP1-STA1 to AP2-STA3 can be calculated as follows:
  • indicates the probability of simultaneous transmission of data packets, representing the opportunity for API and AP2 downlink packet collision; 3. ⁇ ⁇ TM, which indicates the influence of API on AP2 ⁇ STA3 communication on the received signal-to-noise ratio.
  • represents the effect of the API on the received signal-to-noise ratio of the STA3 ⁇ AP2 communication pair (downlink data ACK). The values are shown in Table 4.
  • the U AP indicates the service STA set of the API, and the U AP indicates that the service STA set t of the AP2 can also obtain the total interference of the API to the neighbor AP:
  • Neigh APi represents an AP neighbor set of API (i.e., API is a set of reports the measurement report AP).
  • FIG. 8 is only a specific implementation of multiple communication pairs. In the actual application process, there are multiple different communication pairs.
  • the implementation principle is the same as that of the embodiment of the present invention, that is, the sum of the communication pairs of the other communication pairs is added. .
  • the system needs to perform scheduling decision on the data packet transmission in the network.
  • the embodiment of the present invention proposes three scheduling decision schemes: one-by-k packet scheduling, per AP.
  • the allocation of time slice scheduling and scheduling of time slices by STA are described as follows.
  • the embodiment of the present invention provides a data transmission scheduling method.
  • the measurement report sent by the AP is first received, where the measurement report carries the sending power of the AP that sends the measurement report, and the AP
  • the signal receiving level and power of the surrounding device are then evaluated according to the measurement report, and the interference relationship between the AP and the AP is evaluated, the evaluation result is obtained, and the scheduling decision is performed according to the evaluation result of the interference relationship.
  • the process of using the packet-by-packet scheduling method for scheduling decision is as follows:
  • the system monitors all downlink data packets.
  • the centralized network is responsible for the centralized network, and the AP is responsible for the distributed network.
  • the second AP and the second client cannot interfere with the first client.
  • the interference stops before the first client sends an ACK.
  • the first AP and the first client cannot interfere with the second client.
  • the interference stops before the second client sends an ACK.
  • AP1-STA1 and AP2-STA2 can work simultaneously when the following conditions are met: 1) When the API sends data to STA1, AP2 and STA2 cannot interfere with STA1, but AP2 and STA2 can interfere with the API, but the interference must be stopped before STA1 sends an ACK.
  • API and STA1 cannot interfere with STA2, but API and STA1 can interfere with AP2, but the interference must stop before STA2 sends ACK.
  • the interference of any communication pair to other communication pairs is less than the set threshold.
  • the interference experienced by any communication pair is less than the set threshold.
  • these communication pairs can simultaneously send data when the following conditions are met:
  • the process of determining the time slice according to the AP is as follows:
  • each AP divides the time interval of its own Beacon frame into "time slices" (the time resources of multiple Beacon frame intervals can also be combined and divided);
  • Each AP is assigned a different time slice according to the order of the interference of each AP to other APs and the interference of other APs.
  • the APs that interfere with each other do not allocate the same time slice, multiple APs that do not interfere with each other are allocated at the same time slice.
  • the system allocates different time slices to the AP according to the order of the interference between the interference of others and the interference received by the user, and the AP with interference does not allocate the same time slice in principle.
  • priority can be configured for each AP in the network. When time slices are allocated to APs that have interference with each other, priority is given to APs with higher priority.
  • the AC or the AP responsible for the decision After allocating the time slice, the AC or the AP responsible for the decision outputs the scheduling decision information to each The AP, the scheduling decision information includes time slice bitmap information of each AP, and indicates that each AP competes for a channel on the allocated time slice, and after competing to the channel, fills the physical layer buffer with the downlink data. Each AP then outputs its own time slice bitmap information, as shown in FIG. If the bitmap corresponds to the time slice of the location 1, the AP fills the physical layer buffer Buffer with the downlink data (specifically, which STA is sent according to any scheduling method, such as polling, proportional fairness, etc.). Thereby, the multiplexing of downlink data in the time domain is realized.
  • the scheduling decision information includes time slice bitmap information of each AP, and indicates that each AP competes for a channel on the allocated time slice, and after competing to the channel, fills the physical layer buffer with the downlink data.
  • Each AP then outputs its own time slice bitmap
  • the process of determining the time slice according to the STA is as follows:
  • each AP divides the time interval of its own Beacon frame into "time slices (the time resources of multiple Beacon frame intervals can also be combined and divided);
  • Each AP allocates n/M time slots for each of the following home clients.
  • the principle of allocating time slices includes: The client is the client with the smallest interference to other clients and interference from other clients at this time slice. End, where M represents the number of home clients of the AP, and n represents the number of time slices. Correspondingly, the AP allocates n/M time slots for each home STA, and M indicates the number of home STAs of the AP.
  • the principle of allocating time slices includes: The STA is the interference to others on this time slice and the others are doing the same for themselves. The smallest belonging STA.
  • the AC or the AP responsible for the decision After the time slice is allocated to all the home STAs, the AC or the AP responsible for the decision outputs the scheduling decision information to each AP, where the scheduling decision information includes time slice bitmap information of each home client under each AP, and the competition is performed. Physical channel. Each AP then outputs time slice bitmap information of each home STA, as shown in FIG. The bitmap corresponds to a time slice of position 1, and after competing for the physical channel, the AP fills the physical layer Buffer with the destination address as the downlink data of the STA, thereby implementing multiplexing of the downlink data in the time domain.
  • the embodiment of the present invention provides a data transmission scheduling device, which has the structure shown in FIG. 12, and includes: a measurement report collection module 1201, an interference evaluation module 1202, and a scheduling decision module 1203.
  • the measurement report collection module 1201 is configured to: receive Measurement report sent by the AP, in the measurement
  • the report carries the transmission power of the AP that sends the measurement report, the signal reception level and power of the peripheral device of the AP;
  • the interference assessment module 1202 is configured to: according to the measurement report, evaluate an interference relationship between the AP and a surrounding device of the AP, and obtain an evaluation result;
  • the scheduling decision module 1203 is configured to: perform a scheduling decision based on the evaluation result.
  • the structure of the interference assessment module 1202 is as shown in FIG. 13, and includes:
  • the first path loss calculation unit 12021 is configured to calculate path loss data between the APs; the second path loss calculation unit 12022 is configured to establish path loss data between the AP and the client accessed by the AP;
  • the interference evaluation unit 12023 is configured to: evaluate, according to the path loss data between the APs and the path loss data between the AP and the client accessed by the AP, all the devices in one communication pair and another communication The interference relationship between all the devices in the pair, wherein the communication pair is composed of communication between the AP and the client accessed under the AP.
  • the device further includes:
  • the result output module 1204 is configured to output scheduling decision information, where the scheduling decision information includes time slice bitmap information of each AP, indicating that each AP competes for a channel on the allocated time slice, and after competing to the channel, Fill the physical layer cache with the downstream data.
  • the above data transmission scheduling system can be integrated into an AC or an AP, and the corresponding function is performed by an AC or an AP.
  • each AP sends a measurement report to the AC; when integrated in the AP, the AP collects measurements from other AP broadcasts.
  • the embodiment of the present invention further provides a data transmission scheduling system, including the foregoing data transmission scheduling device and at least one AP;
  • the data transmission scheduling device is configured to receive a measurement report sent by the AP, where the measurement report carries a transmission power of an AP that sends the measurement report, and a signal reception level and power of a peripheral device of the AP, Evaluating the AP and the AP according to the measurement report The interference relationship between the surrounding devices is obtained, and the evaluation result is obtained, and then the scheduling judgment is performed according to the evaluation result.
  • the data transmission scheduling device is further configured to output scheduling decision information, where the scheduling decision information includes time slice bitmap information of each AP, indicating that each AP competes for a channel on the allocated time slice, and After competing for the channel, the downlink data is filled into the physical layer cache.
  • the scheduling decision information includes time slice bitmap information of each AP, indicating that each AP competes for a channel on the allocated time slice, and After competing for the channel, the downlink data is filled into the physical layer cache.
  • the AP is configured to send a measurement report of the AP to the data transmission scheduling device, or
  • the AP is further configured to record the received packet signal level of each client and/or neighbor AP.
  • An embodiment of the present invention provides a data transmission scheduling method, apparatus, and system.
  • the data transmission scheduling apparatus receives a measurement report sent by an AP, where the measurement report carries a transmission power of the AP that sends the measurement report, and the AP.
  • the signal receiving level and power of the surrounding device are then evaluated according to the measurement report, the interference relationship between the AP and the surrounding devices of the AP is evaluated, the evaluation result is obtained, and the scheduling judgment is performed according to the evaluation result, thereby realizing Parallel communication of multiple low-interference terminals solves the problem of low network usage rate of related scheduling modes.
  • all or part of the steps of the foregoing embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the invention is not limited to any particular combination of hardware and software.
  • the devices/function modules/functional units in the above embodiments may be implemented by using a general-purpose computing device, which may be concentrated on a single computing device or distributed among multiple computing devices. On the network.
  • Each device/function module/functional unit in the above embodiments can be stored in a computer readable storage medium when implemented in the form of a software function module and sold or used as a standalone product.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the invention realizes parallel communication of a plurality of low-interference terminals, and solves the problem that the network usage rate of the related scheduling mode is low. Therefore, it has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输调度方法、装置和系统。涉及无线通信领域;解决了相关调度方式网络使用率低的问题。所述方法包括:接收接入点(AP)发送的测量报告,在所述测量报告中携带有发送所述测量报告的AP的发送功率、所述AP的周围设备的信号接收电平和功率;根据所述测量报告,评估所述AP与所述AP的周围设备之间的干扰关系,得到评估结果;根据所述评估结果进行调度判决。本发明实施例提供的技术方案适用于WLAN中,实现了多个低干扰终端并行通信。

Description

数据传输调度方法、 装置和系统
技术领域
本发明涉及数据传输调度领域, 尤其涉及一种数据传输调度方法、 装置 和系统。
背景技术
近年来随着无线网络技术的日益发展, 能够提供局域网无线连接服务的 无线局域网 (WLAN, Wireless Local Area Network )技术越来越受到业界的 关注。 无线局域网具有成本低, 组网灵活, 速率高等优点, 在企业、 教育等 不同领域得到广泛应用, 并被电信业务运营商在 "热点" 地区用于提供公共 无线接入服务。
WLAN系统遵循美国电气和电子工程师协会 ( IEEE ) 802.11工作组定义 的 802.11a/b/g/n等一系列技术标准。 在 802.11规范中, 媒体访问控制协议釆 用带冲突避免的载波侦听多路访问机制 (Carrier SenseMultiple Access with Collision Avoidance, CSMA/CA ) ,使多个站点共享无线信道。依据 CSMA/CA 机制, 一个无线设备在发送数据之前, 会对信道的空闲状态进行检测, 如果 发相关其他的设备在传送数据则不发送, 一直等到信道空闲时再随机回退一 段时间, 如果此时信道依然空闲才发送数据。 虽然这种信道竟争方式实现简 单、灵活性高并且能在一定程度上避免冲突的发生,但是也存在着如下缺点:
1.不能有效解决 "隐藏终端" 问题, 即当两终端相互之间无法感知对方 信号时, 如其中一个终端发送数据, 另一个终端因为无法感知其信号会误认 为当前信道空闲, 因而也发送数据, 造成无线信号的碰撞及数据重传。 虽然 802.11协议提出了请求发送 /允许发送(RTS/CTS )交换协议来解决这个问题, 但是它只能解决隐藏发送终端, 无法解决隐藏接收终端 (即隐藏终端接收时 仍然出错) 以及 RTS/CTS信息包自身碰撞的情形, 而且增加了网络开销。
2.信道利用率低。 一个设备占用信道后, 其他设备只能处于等待状态, 即使它们位于该设备的覆盖范围内而在接收节点的覆盖范围外, 不会对该设 备通信造成影响 ( "暴露终端" ) 。 3.网络容量受设备数量限制。 当设备的数量越多、 分布越密集时, 设备 间的无线干扰就越严重,因此网络不能容纳过多的用户,组网规模受到限制。
综上, 相关的调度方式网络使用率低。 发明内容
本发明实施例提供了一种数据传输调度方法、 装置和系统, 解决了相关 调度方式网络使用率低的问题。
一种数据传输调度方法, 包括:
接收接入点(AP )发送的测量报告, 所述测量报告中携带有发送所述测 量报告的 AP的发送功率、 所述 AP的周围设备的信号接收电平和功率; 根据所述测量报告, 评估所述 AP与所述 AP的周围设备之间的干扰关 系, 得到评估结果; 以及
根据所述评估结果进行调度判决。
可选的, 所述根据所述测量报告, 评估所述 AP与所述 AP的周围设备 之间的干扰关系的步骤包括:
根据所述测量报告, 计算所述 AP之间的路损数据;
建立 AP与与所述 AP下接入的客户端之间的路损数据; 以及
根据所述 AP之间的路损数据和 AP与与所述 AP下接入的客户端之间的 路损数据, 评估一通讯对中的所有设备与另一通讯对中的所有设备之间的干 扰关系;
其中, 所述通讯对由 AP与所述 AP下接入的客户端之间的通讯构成。 可选的, 在仅存在两个通讯对时, 第一 AP与第一客户端构成一个通讯 对, 第二 AP与第二客户端构成另一个通讯对, 所述根据所述 AP之间的路 损数据和 AP与所述 AP下接入的客户端之间的路损数据, 评估一通讯对中 的所有设备与另一通讯对中的所有设备之间的干扰关系的步骤包括:
根据以下表达式计算第一 AP到达第二 AP的干扰值 RSSI_aal2:
RSSI_aal2 =TxPowerAP — PathLossAP AP , 其中, TxPowerAP、为第一 AP 的发射功率, PathLossAP AP 一 AP与第二 AP间的路损数据; 根据以下表达式计算第一 AP到达第二客户端的干扰值 RSSI_asl2:
RS SI_as 12=TxPowerAPl― PathLossAPlSTA2 , 其中, PathLossAP] STA2为第一 AP与第二客户端之间的路损数据; 根据以下表达式计算第一客户端到达第二 AP的干扰值 RSSI_sal2:
RSSI_sal2= J JPower>S'74 l― PathLossAp2STA l , 其中 TxPowcrSTA ] ^第一客户 端的发射功率, PathLossAplSTAl为第二 AP与第一客户端之间的路损; 将 RSSI— aal2、 RSSI— asl2、 RSSI_sal2与为第二 AP和第二客户端预设 的被干扰的门限值比较; 以及
在 RSSI— aal2和 /或 RSSI— sal2超过所述被干扰的门限值时,判定存在干 扰。
可选的, 在存在三个及三个以上的通讯对时, 第一 AP与第一客户端构 成第一通讯对,所述根据所述 AP之间的路损数据和 AP与与所述 AP下接入 的客户端之间的路损数据, 评估一通讯对中的所有设备与另一通讯对中的所 有设备之间的干扰关系的步骤包括:
分别评估包含第一 AP的邻居 AP的各通讯对与所述第一通讯对之间的 干扰关系; 以及
将所述包含部居 AP的各通讯对对所述第一通讯对的干扰关系进行累加, 得到全部包含部居 AP的通讯对对所述第一通讯对的总干扰。
可选的, 所述根据所述评估结果进行调度判决的步骤包括:
当有两个通讯对请求同时进行下行数据包的发送时, 判断是否满足以下 四个条件, 在同时满足以下四个条件时, 判定所述两个通讯对能够同时进行 下行数据包的发送:
所述第一 AP向所述第一客户端发送数据时, 所述第二 AP和所述第二 客户端不能对所述第一客户端有干扰;
所述第二 AP和所述第二客户端对所述第一 AP有干扰时, 所述干扰在 所述第一客户端发送下行数据 ACK之前停止;
所述第二 AP向所述第二客户端发送数据时, 所述第一 AP和所述第一 客户端不能对所述第二客户端有干扰; 以及
所述第一 AP和所述第一客户端在对所述第二 AP有干扰时, 所述干扰 在所述第二客户端发送 ACK之前停止。
可选的, 所述根据所述评估结果进行调度判决的步骤包括:
当有三个或三个以上的通讯对请求同时进行下行数据包的发送时, 判断 是否满足以下两个条件, 在同时满足以下两个条件时, 判定所述三个或三个 以上的通讯对能够同时进行下行数据包的发送:
任一通讯对对其他通讯对的干扰小于设定门限; 以及
任一通讯对受到的干扰小于设定门限。
可选的, 所述根据所述评估结果进行调度判决的步骤包括:
将至少一个 AP的管理帧 Beacon帧时间间隔的时间资源划分为多个时间 片;
根据各 AP对其他 AP的干扰和受到其他 AP的干扰之和的从大到小的顺 序依次为各 AP分配不同的时间片, 相互之间存在干扰的 AP不分配同一时 间片, 多个相互之间不存在干扰的 AP分配在同一时间片。
可选的, 在为相互之间存在干扰的 AP分配时间片时, 优先为优先级较 高的 AP分配。
可选的, 该方法还包括:
为网络中的各 AP配置优先级。
可选的, 所述根据所述评估结果进行调度判决的步骤之后, 还包括: 输出调度判决信息,所述调度判决信息中包含各 AP的时间片位图信息, 指示各 AP在分配到的时间片上竟争信道, 并在竟争到信道后, 向物理层緩 存填充下行数据。
可选的, 所述根据所述评估结果进行调度判决的步骤包括:
将至少一个 AP的 Beacon帧时间间隔的时间资源划分为多个时间片; 各 AP为所述 AP下的各个归属客户端分配 n/M个时间片,分配时间片的 原则包括: 所述客户端是所述时间片上对其他客户端干扰和受到其他客户端 干扰之和最小的客户端, 其中, M表示 AP的归属客户端数量, n表示时间 片的数量, 其中, M、 n为正整数。
可选的, 所述根据所述评估结果进行调度判决的步骤之后, 还包括: 输出调度判决信息, 所述调度判决信息中包含各 AP下各归属客户端的 时间片位图信息, 指示所述 AP竟争物理信道; 以及
所述 AP在竟争到物理信道后, 向物理层緩存填充目的地址为时间片相 应客户端的下行数据。
可选的, 所述接收 AP发送的测量报告的步骤包括:
无线控制器 AC接收各 AP发送的所述 AP的测量报告。
可选的, 所述接收 AP发送的测量报告的步骤包括:
AP接收除 AP之外的其他各 AP广播的所述其他各 AP的测量报告。 可选的, 该方法还包括:
所述 AP记录接收到的各客户端和 /或邻居 AP的数据包信号电平。
可选的, 该方法还包括:
所述 AP广播自己的测量报告, 所述测量报告携带有发送所述测量报告 的第一 AP的发送功率、 所述 AP周围设备的信号接收电平和功率。
本发明实施例还提供了一种数据调度装置, 包括: 测量报告收集模块、 干扰评估模块以及调度判决模块, 其中,
所述测量报告收集模块设置成: 接收接入点(AP )发送的测量报告, 在 所述测量报告中携带有发送所述测量报告的 AP的发送功率、 所述 AP的周 围设备的信号接收电平和功率;
所述干扰评估模块设置成: 根据所述测量报告, 评估所述 AP与所述 AP 的周围设备之间的干扰关系, 得到评估结果; 以及
所述调度判决模块设置成: 根据所述评估结果进行调度判决。 可选的, 所述干扰评估模块包括:
第一路损计算单元, 其设置成计算所述 AP之间的路损数据;
第二路损计算单元, 其设置成建立 AP与所述 AP下接入的客户端之间 的路损数据; 以及
干扰评估单元, 其设置成根据所述 AP之间的路损数据和 AP与所述 AP 下接入的客户端之间的路损数据, 评估一通讯对中的所有设备与另一通讯对 中的所有设备之间的干扰关系;
其中, 所述通讯对由 AP与所述 AP下接入的客户端之间的通讯构成。 可选的, 该装置还包括:
结果输出模块, 其设置成输出调度判决信息, 所述调度判决信息中包含 各 AP的时间片位图信息, 指示各 AP在分配到的时间片上竟争信道, 并在 竟争到信道后, 向物理层緩存填充下行数据。
本发明实施例还提供了一种数据传输调度系统, 包括数据传输调度装置 和至少一个接入点 (AP ) ;
所述数据传输调度装置设置成: 接收所述 AP发送的测量报告, 在所述 测量报告中携带有发送所述测量报告的 AP 自身的发送功率、 所述 AP的周 围设备的信号接收电平和功率, 根据所述测量报告, 评估所述 AP与所述 AP 的周围设备之间的干扰关系, 得到评估结果, 再根据所述评估结果进行调度 判决。
可选的, 所述数据传输调度装置还设置成: 输出调度判决信息, 所述调 度判决信息中包含各 AP的时间片位图信息, 指示各 AP在分配到的时间片 上竟争信道, 并在竟争到信道后, 向物理层緩存填充下行数据。
可选的, 所述 AP设置成: 向所述数据传输调度装置发送所述 AP的测 量报告, 或,
广播所述 AP的测量报告。
可选的, 所述 AP还设置成: 记录接收到的各客户端和 /或邻居 AP的数 据包信号电平。
本发明实施例提供了一种数据传输调度方法、 装置和系统, 数据传输调 度装置接收 AP发送的测量报告, 在所述测量报告中携带有发送所述测量报 告的 AP 自身的发送功率、 该 AP周围设备的信号接收电平和功率, 然后根 据所述测量报告, 评估设备之间的干扰关系, 再根据干扰关系的评估结果进 行调度判决, 实现了多个低干扰终端并行通信, 解决了相关调度方式网络使 用率低的问题。 附图概述
图 1是集中式集中调度网络结构示意图;
图 2 是分布式集中调度网络结构示意图;
图 3 是本发明的实施例一中 AC的处理流程图;
图 4 是本发明的实施例一中 AP的处理流程图;
图 5 是本发明的实施例一中集中式集中调度信令交互流程图;
图 6 是本发明的实施例一中分布式集中调度信令交互流程图;
图 7是包含两个 AP-STA通讯对的网络结构示意图;
图 8是包含多个 AP-STA通讯对的网络结构示意图;
图 9是时间片资源示意图;
图 10是按 AP划分时间片位图信息示意图;
图 11是按 STA划分时间片位图信息示意图;
图 12是本发明的实施例五提供的一种数据传输调度装置的结构示意图; 图 13是图 12中干扰评估模块 1202的结构示意图。 本发明的较佳实施方式
为了解决相关调度方式网络使用率低的问题, 本发明的实施例提供了一 种数据传输调度方法、 装置和系统。 下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意组合。
首先结合附图, 对本发明的实施例一进行说明。
本发明实施例提供了一种数据传输调度方法, 旨在解决无线局域网中设 备之间竟争信道时引起的信道使用效率低和带宽损失等问题。 在设备相互之 间的干扰处于可以忍受的程度时, 通过协调使多个发送端主动发起通信, 达 到并行通信的目的。
Figure imgf000010_0001
以下三方面的内容:
1、接收 AP发送的测量报告, 在所述测量报告中携带有发送所述测量报 告的 AP的发送功率、 该 AP的周围设备的信号接收电平和功率;
本发明实施例中, 各 AP记录收到的其他网络设备(包括邻居接入点、 归属客户端和非归属客户端) 的信号电平, 并周期性通知其他接入点或中心 控制节点自己记录的其他网络设备信号接收电平, 及自己的功率信息; 如果 部署的 WLAN系统支持 802.11k, 那么客户端 (Station, STA )也需记录其 他网络设备的信号电平值并上报给关联 AP,由其通知其他 AP或中心控制节 点 ( AC ) 。
2、 根据所述测量报告, 评估所述 AP与所述 AP的周围设备之间的干扰 关系, 得到评估结果;
本步骤中, AP或 AC根据收集的其他 AP上报的信号电平及功率信息, 并根据这些信息评估各通讯对(AP-STA )之间的干扰关系。
3、 根据干扰关系的评估结果进行调度判决;
本步骤中, 根据评估的通讯对干扰关系, 系统分布式(或者中心节点集 中式)地对整网数据包发送进行调度, 原则上同时发送的通讯对之间没有干 扰或者干扰较小。 为了调度成功, 整网 AP需按照某种方式实现同步, 如基 于 GPS、 或以太网协议(NTP、 IEEE 1588等) 。 为了便于本领域一般技术人员实施与理解本发明, 下面结合附图通过实 施例对本发明做详细说明, 下述说明仅仅是示例性的, 而不是为了限制本发 明的范围及其应用。
图 1和图 2是本发明实施例所涉及的无线局域网集中调度网络结构图。 其中图 1釆用集中式架构, 图 2釆用分布式架构。 前者除了和后者一样包括 6个客户端 (STA1 6 )及 3 个被配置与它们进行数据通信的接入点 AP1~3 之夕卜,还有一个对 AP进行管理配置的无线控制器(Access Controller, AC )。 集中式架构下, AC负责对网络进行调度; 而分布式架构下, 每个 AP自主选 择发送时机。典型情况下,客户端包括计算设备,如桌面、便携或手持设备。 AC可以是 AP中的软件实体,也可以是单独的物理设备、 交换机或者路由器 的一部分, 或者小型化 AC的一部分。 AP则可以是胖 AP、 瘦 AP或者超瘦 AP中的一种。接入点和客户端之间根据 IEEE 802.11协议族中的任一种标准 进行通信并且遵循 802.11 媒介访问控制 (MAC )层规范。 但是, 本发明实 施例的原理不限于 802.11 标准, 也可应用于几乎任何类型的 WLAN, 包括 HiPerLAN, 蓝牙和基于 HISWAN的系统。
图 3说明的是本发明实施例中提出的集中式集中调度下 AC的处理流程, 具体步骤如下: 步骤 301、 AC接收各 AP发送的该 AP自身的测量报告;
本步骤中, AC按测量报告周期接收 AP发送的测量报告, AP可以主动 发送测量报告, 也可在 AC发送测量报告请求之后发送, 测量报告包含自己 的发送功率, 周围设备的信号接收电平和功率, 可以通过有线网发送也可通 过空口发送;
步骤 302、 AC根据接收的 AP测量报告计算设备间路损并评估通讯对之 间的干扰关系, 其中, 所述通讯对由 AP与所述 AP下接入的客户端之间的 通讯构成;
步骤 303、 AC根据通讯对之间的干扰关系进行调度判决; 步骤 304、 AC将调度判决信息分发给 AP, 可以通过空口也可通过有线 网。
图 4说明的是本发明实施例提出的 AP的处理流程, 步骤如下:
1、 各 AP广播自己的测量报告, 所述测量报告有发送所述测量报告的第 ― AP 自身的发送功率、 该 AP周围设备的信号接收电平和功率。 相应的, 各 AP通过周期性发送含功率信息的集中调度 AP测量相关广播帧来发送测 量报告, 该广播帧用于测量该 AP到广播帧接收者的路损, 广播帧可以使用 802.11标准相关的管理帧如 Beacon、 Probe Request帧等, 也可使用非标准厂 商自定义帧格式。 AP记录接收到的各客户端和 /或邻居 AP的数据包信号电 平。
2、 AP记录周围设备的数据包接收电平和发射功率, AP 的发射功率直 接在集中调度 AP测量相关广播帧读取, STA发射功率根据客户端类型估计, 一般手机为 17dBm, 手提电脑为 20dBm。
3、 集中式架构下, 在测量报告周期到后向 AC发送自己的测量报告; 分 布式架构下, 在测量报告周期到后, 广播自己的测量报告。 测量报告包含自 己的发送功率, 周围设备的信号接收电平和功率, 可以通过有线网发送也可 通过空口发送。
4、 集中式架构下, 接收 AC的调度判决信息; 分布式架构下 AP首先根 据接收的其他 AP测量报告计算设备间路损, 评估通讯对之间的干扰关系, 然后对数据包发送进行调度判决, 最后广播自己的调度判决信息;
5、 AP根据调度判决结果调度数据包。
图 5说明的是本发明实施例提出的集中式集中调度信令交互流程, 相应 步骤包括:
步骤 501 : API周期性以最大功率发送集中调度测量广播帧, 其中载有 其当前发射功率信息, 广播帧可以使用 802.11标准相关的管理帧如 Beacon、 Probe Request帧等, 也可使用非标准厂商自定义帧格式;
步骤 502: AP2记录接收到的 API集中调度测量广播帧信号电平及其包 含的功率信息;
步骤 503: 相应地 AP2也周期性发送含自己发射功率的集中调度测量广 播帧;
步骤 504: API记录 AP2信号电平及功率信息;
步骤 505: STA1按照 802.11协议在完成关联、 认证后发送数据帧; 步骤 506: API记录接收到的 STA1数据包信号电平;
步骤 507: AP2记录接收到的 STA1数据包信号电平;
步骤 508: STA2按照 802.11协议在完成关联、 认证后发送数据帧; 步骤 509: API记录接收到的 STA2数据包信号电平;
步骤 510: AP2记录接收到的 STA2数据包信号电平;
步骤 511 : API向 AC发送自己的测量报告, 可以通过有线网也可通过 无线空口发送;
步骤 512: AP2向 AC发送自己的测量 4艮告;
步骤 513: AC根据 AP的测量报告评估设备之间的干 4尤关系; 步骤 514: AC向 API发送调度判决信息;
步骤 515: AC向 AP2发送调度判决信息。
图 6是本发明实施例提出的分布式集中调度信令交互流程, 相应步骤包 括:
步骤 601~610: 与步骤 501~510相同不再赘述;
步骤 611 : API广播自己的测量报告, 测量报告包含自己的发送功率, 周围设备的信号接收电平和功率, 可以通过有线网发送也可通过空口发送; 步骤 612: AP2广播自己的测量 ^艮告;
步骤 613: API根据测量报告评估网络中各设备之间的干扰关系; 步骤 614: AP2根据测量报告评估网络中各设备之间的干扰关系; 步骤 615: API判断优先级高于 AP2,根据设备干扰关系进行调度判决, AP的优先级可以通过网络配置, 也可根据 AP干扰的大小判定; 步骤 616: API调度判决结束之后, 将其调度判决相关信息 (如数据包 发送时间等 )发送给 AP2;
步骤 617: AP2根据干扰关系及 API的调度信息进行调度判决; 步骤 618: AP2将自己的调度判决信息发送给 API。
本发明实施例提出的数据传输调度谅建立在设备之间的干扰评估基础之 上, 下面结合具体的实施例进一步阐述本发明的干扰评估机制。
下面结合附图, 对本发明的实施例二进行说明。
本发明实施例提供了一种数据传输调度方法, 使用该方法完成数据调度 时, 首先接收 AP发送的测量报告, 在所述测量报告中携带有发送所述测量 报告的 AP的发送功率、 该 AP的周围设备的信号接收电平和功率, 然后根 据所述测量报告, 评估该 AP与该 AP的周围设备之间的干扰关系, 得到评 估结果, 再根据干扰关系的评估结果进行调度判决。 具体可参见本发明的实 施例一。
在进行干扰评估时, 首先计算 AP之间的路损数据, 然后建立 AP与其 下接入的客户端之间的路损数据, 最后根据所述 AP之间的路损数据和 AP 与其下接入的客户端之间的路损数据, 评估一通讯对中的所有设备与另一通 讯对中的所有设备之间的干扰关系。 根据需要考虑的通讯对数量的不同, 评 估方式也不同, 具体说明如下。
本发明实施例中, 着重对两通讯对干扰评估的方式进行说明。
在仅存在两个通讯对时, 第一 AP与第一客户端构成一个通讯对, 第二 AP与第二客户端构成另一个通讯对。 如图 7 , API (作为第一 AP ) 、 AP2 (作为第二 AP ) 、 STA1 (作为第一客户端)和 STA2 (作为第二客户端) 四个设备, 构成 AP1-STA1和 AP2-STA2两个通讯对, 为了判断它们能否同 时发送,需确定它们之间的干扰关系。系统首先收集各设备之间的路损数据, 这包括:
LAP间路损数据建立:
AP需记录邻居 AP发送的集中调度广播帧 RSSK Received Signal Strength Indication )值及其包含的邻居 AP发送功率, 然后再对它们之间的路损进行 估算(集中式架构下由 AC计算), 如本发明实施例中 AP2到 API的路损等 于 AP2发射功率减去 API记录的 AP2 数据包接收电平。
2.AP与 STA之间路损数据建立:
AP监听空口的数据包, 记录每个成功解调 STA数据包的 {RSSI值, 发 送方 MAC地址,该 STA归属 AP地址 } ,并计算每一个 STA与其的路损(这 里假定上下行的路损是对称的 )。计算路损数据时需要估计 STA上行发射功 率(按最大发射功率计算, 一般手机为 17dBm, 手提电脑为 20dBm ) 。
借助 AP间和 AP-STA间路损数据, 系统可以获取通讯对之间的干扰关 系。 本发明实施例中, 假设 API和 STA1均以最大功率发送, 根据:
1 ) API与 AP2间的路损;
2 ) API与 STA2间的路损;
3 ) AP2与 STA1之间的路损数据;
计算:
1 )根据以下表达式计算第一 AP到达第二 AP的干扰值 RSSI_aal2:
RSSI_aal2 =TxPowerAPl - PathLossAPlAp2 , 其中 TxPowerAPl为第一 AP的 发射功率, PathLossAPlAp2为第一 AP与第二 AP间的路损数据; TxPowerAPl― PathLossAPlAp2
2 )根据以下表达式计算第一 AP到达第二客户端的干扰值 RSSI_asl2: RSSl_a.sl2=TxPowerAPl― PathLossAplSTAl , 其中, PathLossAPlSTA2为第一
AP与第二客户端之间的路损数据;
TxPowerAPl― PathLossAPlSTA2
3 )根据以下表达式计算第一客户端到达第二 AP的干扰值 RSSI— sal2: RSSI_sal2= J JPower>S'74 l― PathLossAp2STA l , 其中 TxPowcrSTA ] ^第一客户 端的发射功率, PathLossAP STA、为第二 AP与第一客户端之间的路损; TxPowerSTA l― PathLossAp2STA l 中 TxPowerAPl、 PowersT^分另 ll为 API 和 STAl的发射功率, PathLossAplSTAl , PathLossAPlAp2 , PathLossAP2STAl ^ 为 API H STA2、 API H AP2和 AP2 H STAl 々各损。
4 )将 RSSI— aal2、 RSSI— asl2、 RSSI— sal2与为第二 AP和第二客户端预 设的被干扰的门限值比较;
将 RSSI— aal2、 RSSI— asl2、 RSSI— sal2与为 AP2和 STA2设定被干扰的 门限值比较, 在 RSSI— aal2和 /或 RSSI— sal2超过所述被干扰的门限值时, 判 定存在干扰。
相应的, 如果 RSSI— aal2或者 RSSI— sal2超过了该门限, 则认为 API或 者 STA1会对 AP2造成干扰,如果 RSSI— asl2超过门限,则认为 API对 STA2 造成干扰。
同样的, 当 AP2和 STA2需要进行通讯时, 可以按照同样的方法衡量, 步骤如下:
计算:
1 ) AP2的信号到达 API的 RSSI— aa21;
2 ) AP2的信号到达 STA1的 RSSI— as21 ;
3 ) STA2的信号到达 API的 RSSI— sa21 ;
并判断 AP2或者 STA2是否会对 API造成干扰,以及 AP2是否会对 STA1 造成干扰。
根据 802.11协议, 目前尚不能获取 STA1和 STA2之间的路损, 但可以 借助 STA1对 STA2的 RTS和 CTS信号的反应来间接评估 STA1和 STA2的 干扰关系。 例如, AC可以在 STA1发送上行数据时, 决策 STA2开始接受数 据,并让 AP2向 STA2发送 RTS ,如果 STA2没有回复 CTS ,那么表明 STA1 对 STA2造成了干扰, 使之没有正确接收到 AP2发送的 RTS。
评估完各设备之间的干扰关系之后, 就得到表 1所示的不同通讯对间的 干扰矩阵, 其中行表示信号的接收方, 列表示信号的发送方。
表 1
Figure imgf000017_0001
下面结合附图, 对本发明的实施例三进行说明。
本发明实施例提供了一种数据传输调度方法, 使用该方法完成数据调度 时, 首先接收 AP发送的测量报告, 在所述测量报告中携带有发送所述测量 报告的 AP的发送功率、 该 AP的周围设备的信号接收电平和功率, 然后根 据所述测量报告, 评估所述 AP与所述 AP的周围的干扰关系, 得到评估结 果, 再根据干扰关系的评估结果进行调度判决。 具体可参见本发明的实施例
本发明实施例中, 着重对多通讯对(三个或三个以上的通讯对)情景下 干扰评估的方式进行说明。
当系统存在多个通讯对时, 因为多个通讯对的干扰可以累加, 所以调度 的方式与两个通讯对不同。 首先分别评估包含第一 AP的邻居 AP的各通讯 对与所述第一通讯对之间的干扰关系, 再将所述包含部居 AP的各通讯对对 所述第一通讯对的干扰关系进行累加, 即可得到全部包含部居的通讯对对所 述第一通讯对的总干扰。
以如图 8所示的系统为例介绍本发明实施例提供的数据传输调度方法, 其中包含 AP1~3、 STA1-6九个设备, 构成 AP1-STA1~2、 AP2-STA3-4和 AP3-STA5-6六个通讯对。 以 API作为第一 AP, STA1作为第一客户端为例 进行说明。
系统首先需要获得各设备之间的路损, 方法同本发明的实施例二, 不再 赘述。 根据设备间的路损可以评估各通讯对两两之间的干扰关系, 以 AP1-STA1对 AP2-STA3的干扰为例, 计算过程如下: 首先根据:
1 ) API与 STA1间的路损;
2) API与 AP2间的路损;
3) API与 STA3间的路损;
4 ) AP2与 STA1之间的路损;
5 ) AP2与 STA3之间的路损; 可以计算:
1 ) API的信号到达 STA1的电平 RSSI— asll;
2) API的信号到达 AP2的电平 RSSI— aal2;
3 ) API的信号到达 STA3的电平 RSSI— asl3;
4) STA1的信号到达 AP2的电平 RSSI— sal2;
5) STA1的信号到达 API的电平 RSSI— sail;
6 ) AP2的信号到达 STA3的电平 RSSI— as23;
7 ) AP2的信号到达 API的电平 RSSI— aa21;
8 ) AP2的信号到达 STA1的电平 RSSI— as21;
9) STA3的信号到达 API的电平 RSSI— sa31;
10 ) STA3的信号到达 AP2的电平 RSSI— sa32。
接着 AP1-STA1对 AP2-STA3的干扰程度可按如下表达式计算:
^AP2→STA3 _ pAP2 .AP2→STA3 .STA3→AP2\ , (Λ _ ρΑΡ2
(pAP1→STA1 ― ^APi . tt . ^APi 十 ^STA 十 丄 — ^Pl
.AP2→STA3 STA3→AP2 .STA3→AP2^
. APi 卞 STAi 卞 APi ) 其中:
1、 如果 RSSI— aal2≥CCAThreshlod (表示 AP2能感知 API 的信号) , 否则 {^^(Κ表示 ΑΡ2不能感知 API的信号, 当 STA3能感知 API
Figure imgf000018_0001
信号) 。
2、 α表示数据包同时发送概率,代表 API和 AP2下行数据包碰撞机会; 3、 Δ^™,表示 API对 AP2→STA3通讯对接收信噪比的影响,取值如表
2所示,
表 2
Figure imgf000019_0001
STA3→AP2
4、 Δ STA, 表示 STA1对 STA3→AP2通讯对(下行数据 ACK )接收 信噪比的影响, 取值如表 3所示,
表 3
Figure imgf000019_0002
STA3→AP2
:、 Δ 表示 API对 STA3→AP2通讯对(下行数据 ACK )接收信 噪比的影响, 取值如表 4所示,
STA3→AP:
表 4Δ: 15 < RSSI_sa32 - RSSI_aal2 0
10 < RSSI_sa32 - RSSI_aal2<15 0.5
5 < RSSI_sa32 - RSSI_aal2<10 1
0 < RSSI_sa32 - RSSI_aal2<5 2
RSSI_sa32 - RSSI_aal2<0 4
AP2→STA: STA3→AP2 STA3→AP
上述表达式中的 Δ' 、 Δ STA, 和 Δ' 任意一个因子如果因 为没有相关设备的路损数据而无法计算, 则忽略该因子。 以上计算的是 AP1→STA1对 AP2→STA2的干扰, API对 AP2的总干 扰可以用如下表达式计算:
AP ^ AP2→STA,-
Φ Φ
STAi6UAPl STA -6UAp2
其中 UAP表示 API的服务 STA集合, UAP表示 AP2的服务 STA集合 t 还可以得到 API对邻居 AP的总干扰为:
Figure imgf000020_0001
其中 NeighAPi表示 API的邻居 AP集合(即 API有上报测量报告的 AP 集合) 。
同样, 还可以得到包含邻居 AP的通讯对对 AP1→STA1通讯对的总干 扰为:
- AP ,→STAFE
Figure imgf000020_0002
需要说明的是, 图 8只是多个通讯对的情景的一种具体实现, 实际应用 过程中, 存在多种不同的多通讯对情景。 对于任何的多通讯对情景, 对任一 通讯对所受到的干扰进行评估时, 其实现原理与本发明实施例都是相同的, 即对各其他通讯对对该通讯对的干 4尤进行累加。 在根据收集的测量报告完成各通讯对之间的干扰关系评估之后, 系统需 对网络中的数据包发送进行调度判决, 本发明实施例提出了三种调度判决方 案: 逐 k包调度、 按 AP分配时间片调度和按 STA分配时间片调度, 分述如 下。
下面对本发明的实施例四进行说明。
本发明实施例提供了一种数据传输调度方法, 使用该方法完成数据调度 时, 首先接收 AP发送的测量报告, 在所述测量报告中携带有发送所述测量 报告的 AP的发送功率、 该 AP的周围设备的信号接收电平和功率, 然后根 据所述测量报告, 评估所述 AP与所述 AP的周围的干扰关系, 得到评估结 果, 再根据干扰关系的评估结果进行调度判决。
在基于本发明的实施例二和实施例三进行干扰关系评估的基础上, 使用 逐包调度的方式进行调度判决的流程如下:
1.首先系统对所有的下行数据包进行监控, 集中式网络由 AC 负责, 分 布式网络下由 AP负责;
2.当有下行数据包发送时, 则进行如下判决:
当有两个通讯对请求同时进行下行数据包的发送时, 判断是否满足以下 四个条件, 在同时满足以下四个条件时, 判定所述两个通讯对能够同时进行 下行数据包的发送:
所述第一 AP向所述第一客户端发送数据时, 所述第二 AP和所述第二 客户端不能对所述第一客户端有干扰,
所述第二 AP和所述第二客户端对所述第一 AP有干扰时, 该干扰在所 述第一客户端发送 ACK之前停止,
所述第二 AP向所述第二客户端发送数据时, 所述第一 AP和所述第一 客户端不能对所述第二客户端有干扰,
所述第一 AP和所述第一客户端在对所述第二 AP有干扰时, 该干扰在 所述第二客户端发送 ACK之前停止。
相应的, 如果有 AP1-STA1和 AP2-STA2两个通讯对, 则同时满足下面 的条件时, 它们可以同时工作: 1 ) API向 STA1发送数据时, AP2和 STA2不能对 STA1有干扰, 但 AP2和 STA2可以对 API有干扰,但干扰必须在 STA1发送 ACK之前停止;
2 ) AP2向 STA2发送数据时, API和 STA1不能对 STA2有干扰, 但 API和 STA1可以对 AP2有干扰,但干扰必须在 STA2发送 ACK之前停止;
当有三个或三个以上的通讯对请求同时进行下行数据包的发送时, 判断 是否满足以下两个条件, 在同时满足以下两个条件时, 判定所述三个或三个 以上的通讯对能够同时进行下行数据包的发送:
任一通讯对对其他通讯对的干扰小于设定门限,
任一通讯对受到的干扰小于设定门限。
相应的, 同时满足如下条件时这些通讯对可以同时发送数据:
1 )任一通讯对对其他通讯对的干扰小于设定门限;
2 )任一通讯对受到的干扰小于设定门限。
在基于本发明的实施例二和实施例三进行干扰关系评估的基础上,按 AP 分配时间片进行判决的流程如下:
1. 将至少一个 AP的 Beacon帧时间间隔的时间资源划分为多个时间片。 如图 9所示 , 每个 AP将自己 Beacon帧的时间间隔划分为《个时间片 (也可 将多个 Beacon帧间隔的时间资源合并划分) ;
2. 根据各 AP对其他 AP的干扰和受到其他 AP的干扰之和的从大到小 的顺序依次为各 AP分配不同的时间片, 相互之间存在干扰的 AP不分配同 一时间片, 多个相互之间不存在干扰的 AP分配在同一时间片。 相应的, 系 统根据对别人干扰和自己受到的干扰之和的从大到小的顺序依次为 AP分配 不同的时间片, 存在干扰的 AP原则上不分配同一时间片。 可选的, 可为网 络中的各 AP配置优先级, 在为相互之间存在干扰的 AP分配时间片时, 优 先为优先级较高的 AP分配。
3.在分配完时间片之后, AC 或负责判决的 AP输出调度判决信息给各 AP, 所述调度判决信息中包含各 AP的时间片位图信息, 指示各 AP在分配 到的时间片上竟争信道, 并在竟争到信道后, 向物理层緩存填充下行数据。 各 AP再输出自己的时间片位图信息, 如图 10所示。 其中位图对应位置为 1 的时间片上, 如果竟争到信道, 则 AP向物理层緩存器 Buffer填充下行数据 (具体向哪个 STA发送按照相关任一调度方式, 如轮询, 比例公平等), 从 而实现下行数据在时间域上的复用。
在基于本发明的实施例二和实施例三进行干扰关系评估的基础上, 按 STA分配时间片进行判决的流程如下:
1.同按 AP分配时间片方案一样, 每个 AP将自己 Beacon帧的时间间隔 划分为《个时间片 (也可将多个 Beacon帧间隔的时间资源合并划分) ;
2. 各 AP为其下的各个归属客户端分配 n/M个时间片, 分配时间片的原 则包括: 该客户端是此时间片上对其他客户端干扰和受到其他客户端干扰之 和最小的客户端, 其中, M表示 AP的归属客户端数量, n表示时间片的数 量。相应的, AP为每个归属 STA分配 n/M个时间片, M表示 AP的归属 STA 数, 分配时间片的原则包括: 该 STA是此时间片上对别人干扰和别人对自己 干 4尤之和最小的归属 STA。
3.在给所有的归属 STA分配完时间片之后, AC或负责判决的 AP向各 AP输出调度判决信息,所述调度判决信息中包含各 AP下各归属客户端的时 间片位图信息,竟争物理信道。各 AP再输出各归属 STA的时间片位图信息, 如图 11所示。 其中位图对应位置为 1的时间片上, 并在竟争到物理信道后, 则 AP向物理层 Buffer填充目的地址为该 STA的下行数据,从而实现下行数 据在时间域上的复用。
下面结合附图, 对本发明的实施例五进行说明。
本发明实施例提供了一种数据传输调度装置,其结构如图 12所示,包括: 测量报告收集模块 1201、干扰评估模块 1202以及调度判决模块 1203 ,其中, 测量报告收集模块 1201设置成: 接收 AP发送的测量报告, 在所述测量 报告中携带有发送所述测量报告的 AP的发送功率、 该 AP的周围设备的信 号接收电平和功率;
干扰评估模块 1202设置成: 根据所述测量报告, 评估所述 AP与所述 AP的周围设备之间的干扰关系, 得到评估结果; 以及
所述调度判决模块 1203设置成: 根据所述评估结果进行调度判决。 可选的, 所述干扰评估模块 1202的结构如图 13所示, 包括:
第一路损计算单元 12021 , 其设置成计算 AP之间的路损数据; 第二路损计算单元 12022,其设置成建立 AP与所述 AP下接入的客户端 之间的路损数据;
干扰评估单元 12023 , 其设置成: 根据所述 AP之间的路损数据和 AP与 所述 AP下接入的客户端之间的路损数据, 评估一通讯对中的所有设备与另 一通讯对中的所有设备之间的干扰关系, 其中, 所述通讯对由 AP与所述 AP 下接入的客户端之间的通讯构成。
可选的, 该装置还包括:
结果输出模块 1204, 其设置成输出调度判决信息, 所述调度判决信息中 包含各 AP的时间片位图信息, 指示各 AP在分配到的时间片上竟争信道, 并在竟争到信道后, 向物理层緩存填充下行数据。
上述数据传输调度系统可集成于 AC或 AP中,由 AC或 AP完成相应功 能。 在集成于 AC时, 各 AP向该 AC发送测量报告; 在集成于 AP时, 该 AP收集其他 AP广播的测量 4艮告。
本发明实施例还提供了一种数据传输调度系统, 包括上述数据传输调度 装置和至少一个 AP;
所述数据传输调度装置, 其设置成接收所述 AP发送的测量报告, 在所 述测量报告中携带有发送所述测量报告的 AP的发送功率、 该 AP的周围设 备的信号接收电平和功率, 根据所述测量报告, 评估所述 AP与所述 AP的 周围设备之间的干扰关系, 得到评估结果, 再根据所述评估结果进行调度判 决。
可选的, 所述数据传输调度装置, 还设置成输出调度判决信息, 所述调 度判决信息中包含各 AP的时间片位图信息, 指示各 AP在分配到的时间片 上竟争信道, 并在竟争到信道后, 向物理层緩存填充下行数据。
可选的, 所述 AP, 其设置成向所述数据传输调度装置发送该 AP的测量 报告, 或,
广播该 AP的测量报告。
可选的, 所述 AP, 还设置成记录接收到的各客户端和 /或邻居 AP的数 据包信号电平。
本发明的实施例提供了一种数据传输调度方法、 装置和系统, 数据传输 调度装置接收 AP发送的测量报告, 在所述测量报告中携带有发送所述测量 报告的 AP的发送功率、 该 AP的周围设备的信号接收电平和功率, 然后根 据所述测量报告, 评估所述 AP与所述 AP的周围设备之间的干扰关系, 得 到评估结果, 再根据所述评估结果进行调度判决, 实现了多个低干扰终端并 行通信, 解决了相关调度方式网络使用率低的问题。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计 算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中, 所述计算机程序在相应的硬件平台上(如系统、设备、装置、 器件等)执行, 在执行时, 包括方法实施例的步骤之一或其组合。
可选地, 上述实施例的全部或部分步骤也可以使用集成电路来实现, 这 些步骤可以被分别制作成一个个集成电路模块, 或者将它们中的多个模块或 步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬 件和软件结合。
上述实施例中的各装置 /功能模块 /功能单元可以釆用通用的计算装置来 实现, 它们可以集中在单个的计算装置上, 也可以分布在多个计算装置所组 成的网络上。
上述实施例中的各装置 /功能模块 /功能单元以软件功能模块的形式实现 并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。 上述提到的计算机可读取存储介质可以是只读存储器, 磁盘或光盘等。
任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想 到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范 围应以权利要求所述的保护范围为准。
工业实用性
本发明实施例实现了多个低干扰终端并行通信, 解决了相关调度方式网 络使用率低的问题。 因此具有很强的工业实用性。

Claims

权利要求书
1、 一种数据传输调度方法, 包括:
接收接入点(AP )发送的测量报告, 所述测量报告中携带有发送所述测 量报告的 AP的发送功率、 所述 AP的周围设备的信号接收电平和功率; 根据所述测量报告, 评估所述 AP与所述 AP的周围设备之间的干扰关 系, 得到评估结果; 以及
根据所述评估结果进行调度判决。
2、根据权利要求 1所述的数据传输调度方法, 其中, 所述根据所述测量 报告, 评估所述 AP与所述 AP的周围设备之间的干扰关系的步骤包括: 根据所述测量报告, 计算所述 AP之间的路损数据;
建立 AP与所述 AP下接入的客户端之间的路损数据; 以及
根据所述 AP之间的路损数据和 AP与所述 AP下接入的客户端之间的路 损数据, 评估一通讯对中的所有设备与另一通讯对中的所有设备之间的干扰 关系;
其中, 所述通讯对由 AP与所述 AP下接入的客户端之间的通讯构成。
3、根据权利要求 2所述的数据传输调度方法, 其中, 在仅存在两个通讯 对时, 第一 AP与第一客户端构成一个通讯对, 第二 AP与第二客户端构成 另一个通讯对,所述根据所述 AP之间的路损数据和 AP与所述 AP下接入的 客户端之间的路损数据, 评估一通讯对中的所有设备与另一通讯对中的所有 设备之间的干扰关系的步骤包括:
根据以下表达式计算第一 AP到达第二 AP的干扰值 RSSI_aal2:
RSSI_aal2 =TxPowerAPl— PathLossAPlAp2 , 其中, !T Power^为第一 AP 的发射功率, PathL。ssAplAP ^— AP与第二 AP间的路损数据; 根据以下表达式计算第一 AP到达第二客户端的干扰值 RSSI_asl2:
Figure imgf000027_0001
PathLossAPlSTA2 , 其中, PathLossAPlSTA2为第一
AP与第二客户端之间的路损数据; 根据以下表达式计算第一客户端到达第二 AP的干扰值 RSSI_sal2:
RSSI_sal2= J JPower>S'74 l― PathLossAp2STA l , 其中 TxPowcrSTA ] ^第一客户 端的发射功率, PathLossAplSTAl为第二 AP与第一客户端之间的路损; 将 RSSI— aal2、 RSSI— asl2、 RSSI_sal2与为第二 AP和第二客户端预设 的被干扰的门限值比较; 以及
在 RSSI— aal2和 /或 RSSI— sal2超过所述被干扰的门限值时,判定存在干 扰。
4、根据权利要求 2所述的数据传输调度方法, 其中, 在存在三个及三个 以上的通讯对时, 第一 AP与第一客户端构成第一通讯对, 所述根据所述 AP 之间的路损数据和 AP与所述 AP下接入的客户端之间的路损数据, 评估一 通讯对中的所有设备与另一通讯对中的所有设备之间的干扰关系的步骤包括: 分别评估包含第一 AP的邻居 AP的各通讯对与所述第一通讯对之间的 干扰关系; 以及
将所述包含部居 AP的各通讯对对所述第一通讯对的干扰关系进行累加, 得到全部包含部居 AP的通讯对对所述第一通讯对的总干扰。
5、根据权利要求 3所述的数据传输调度方法, 其中, 所述根据所述评估 结果进行调度判决的步骤包括:
当有两个通讯对请求同时进行下行数据包的发送时, 判断是否满足以下 四个条件, 在同时满足以下四个条件时, 判定所述两个通讯对能够同时进行 下行数据包的发送:
所述第一 AP向所述第一客户端发送数据时, 所述第二 AP和所述第二 客户端不能对所述第一客户端有干扰;
所述第二 AP和所述第二客户端对所述第一 AP有干扰时, 所述干扰在 所述第一客户端发送下行数据 ACK之前停止;
所述第二 AP向所述第二客户端发送数据时, 所述第一 AP和所述第一 客户端不能对所述第二客户端有干扰; 以及
所述第一 AP和所述第一客户端在对所述第二 AP有干扰时, 所述干扰 在所述第二客户端发送 ACK之前停止。
6、根据权利要求 4所述的数据传输调度方法, 其中, 所述根据所述评估 结果进行调度判决的步骤包括:
当有三个或三个以上的通讯对请求同时进行下行数据包的发送时, 判断 是否满足以下两个条件, 在同时满足以下两个条件时, 判定所述三个或三个 以上的通讯对能够同时进行下行数据包的发送:
任一通讯对对其他通讯对的干扰小于设定门限; 以及
任一通讯对受到的干扰小于设定门限。
7、根据权利要求 1所述的数据传输调度方法, 其中, 所述根据所述评估 结果进行调度判决的步骤包括:
将至少一个 AP的管理帧 Beacon帧时间间隔的时间资源划分为多个时间 片;
根据各 AP对其他 AP的干扰和受到其他 AP的干扰之和的从大到小的顺 序依次为各 AP分配不同的时间片, 相互之间存在干扰的 AP不分配同一时 间片, 多个相互之间不存在干扰的 AP分配在同一时间片。
8、根据权利要求 7所述的数据传输调度方法, 其中, 在为相互之间存在 干扰的 AP分配时间片时, 优先为优先级较高的 AP分配。
9、 根据权利要求 8所述的数据传输调度方法, 所述方法还包括: 为网络中的各 AP配置优先级。
10、 根据权利要求 7所述的数据传输调度方法, 其中, 所述根据所述评 估结果进行调度判决的步骤之后, 还包括:
输出调度判决信息,所述调度判决信息中包含各 AP的时间片位图信息, 指示各 AP在分配到的时间片上竟争信道, 并在竟争到信道后, 向物理层緩 存填充下行数据。
11、 根据权利要求 1所述的数据传输调度方法, 其中, 所述根据所述评 估结果进行调度判决的步骤包括:
将至少一个 AP的 Beacon帧时间间隔的时间资源划分为多个时间片; 各 AP为所述 AP下的各个归属客户端分配 n/M个时间片,分配时间片的 原则包括: 所述客户端是所述时间片上对其他客户端干扰和受到其他客户端 干扰之和最小的客户端, 其中, M表示 AP的归属客户端数量, n表示时间 片的数量, 其中, M、 n为正整数。
12、根据权利要求 11所述的数据传输调度方法, 其中, 所述根据所述评 估结果进行调度判决的步骤之后, 还包括:
输出调度判决信息, 所述调度判决信息中包含各 AP下各归属客户端的 时间片位图信息, 指示所述 AP竟争物理信道; 以及
所述 AP在竟争到物理信道后, 向物理层緩存填充目的地址为时间片相 应客户端的下行数据。
13、 根据权利要求 1所述的数据传输方法, 其中, 所述接收 AP发送的 测量报告的步骤包括:
无线控制器 AC接收各 AP发送的所述 AP的测量报告。
14、 根据权利要求 1所述的数据传输调度方法, 其中, 所述接收 AP发 送的测量 ^艮告的步骤包括:
AP接收除 AP之外的其他 AP广播的所述其他 AP的测量艮告。
15、 根据权利要求 4所述的数据传输调度方法, 所述方法还包括: 所述 AP记录接收到的各客户端和 /或邻居 AP的数据包信号电平。
16、 根据权利要求 14所述的数据传输调度方法, 所述方法还包括: 所述 AP广播自己的测量报告, 所述测量报告携带有发送所述测量报告 的第一 AP的发送功率、 所述 AP周围设备的信号接收电平和功率。
17、 一种数据调度装置, 包括: 测量报告收集模块、 干扰评估模块以及 调度判决模块, 其中,
所述测量报告收集模块设置成: 接收接入点(AP )发送的测量报告, 在 所述测量报告中携带有发送所述测量报告的 AP的发送功率、 所述 AP的周 围设备的信号接收电平和功率;
所述干扰评估模块设置成: 根据所述测量报告, 评估所述 AP与所述 AP 的周围设备之间的干扰关系, 得到评估结果; 以及
所述调度判决模块设置成: 根据所述评估结果进行调度判决。
18、根据权利要求 17所述的数据传输调度装置, 其中, 所述干扰评估模 块包括:
第一路损计算单元, 其设置成计算所述 AP之间的路损数据;
第二路损计算单元, 其设置成建立 AP与所述 AP下接入的客户端之间 的路损数据; 以及
干扰评估单元, 其设置成根据所述 AP之间的路损数据和 AP与所述 AP 下接入的客户端之间的路损数据, 评估一通讯对中的所有设备与另一通讯对 中的所有设备之间的干扰关系;
其中, 所述通讯对由 AP与所述 AP下接入的客户端之间的通讯构成。
19、 根据权利要求 17所述的数据传输调度装置, 所述装置还包括: 结果输出模块, 其设置成输出调度判决信息, 所述调度判决信息中包含 各 AP的时间片位图信息, 指示各 AP在分配到的时间片上竟争信道, 并在 竟争到信道后, 向物理层緩存填充下行数据。
20、 一种数据传输调度系统, 包括: 数据传输调度装置和至少一个接入 点 ( AP ) ;
所述数据传输调度装置设置成: 接收所述 AP发送的测量报告, 在所述 测量报告中携带有发送所述测量报告的 AP的发送功率、 所述 AP的周围设 备的信号接收电平和功率, 根据所述测量报告, 评估所述 AP与所述 AP的 周围设备之间的干扰关系,得到评估结果,根据所述评估结果进行调度判决。
21、 根据权利要求 20所述的数据传输调度系统, 其中,
所述数据传输调度装置还设置成: 输出调度判决信息, 所述调度判决信 息中包含各 AP的时间片位图信息, 指示各 AP在分配到的时间片上竟争信 道, 并在竟争到信道后, 向物理层緩存填充下行数据。
22、 根据权利要求 20所述的数据传输调度系统, 其中,
所述 AP设置成: 向所述数据传输调度装置发送所述 AP的测量报告, 广播所述 AP的测量报告。
23、 根据权利要求 20所述的数据传输调度系统, 其中,
所述 AP还设置成: 记录接收到的各客户端和 /或邻居 AP的数据包信号 电平。
PCT/CN2014/079050 2013-09-11 2014-06-03 数据传输调度方法、装置和系统 WO2014177103A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14792213.2A EP3041307A4 (en) 2013-09-11 2014-06-03 METHOD, DEVICE AND SYSTEM FOR PLANNING DATA TRANSMISSION
US15/021,004 US10009893B2 (en) 2013-09-11 2014-06-03 Data transmission scheduling method, a data scheduling device and a data transmission scheduling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310413868.XA CN104427632B (zh) 2013-09-11 2013-09-11 数据传输调度方法、装置和系统
CN201310413868.X 2013-09-11

Publications (1)

Publication Number Publication Date
WO2014177103A1 true WO2014177103A1 (zh) 2014-11-06

Family

ID=51843177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079050 WO2014177103A1 (zh) 2013-09-11 2014-06-03 数据传输调度方法、装置和系统

Country Status (4)

Country Link
US (1) US10009893B2 (zh)
EP (1) EP3041307A4 (zh)
CN (1) CN104427632B (zh)
WO (1) WO2014177103A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105050127A (zh) * 2015-06-30 2015-11-11 深圳市信锐网科技术有限公司 灾备启动控制方法及系统
WO2017044237A1 (en) * 2015-09-10 2017-03-16 Qualcomm Incorporated Communication resource allocation

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10206166B2 (en) 2014-06-23 2019-02-12 Airties Kablosuz Iletism San. Ve Dis Tic. A.S. Systems and methods for selecting an optimum communication route in a wireless network
US10212636B2 (en) * 2014-12-12 2019-02-19 Qualcomm Incorporated Techniques for managing handovers in an unlicensed radio frequency spectrum band
CN106550400B (zh) * 2015-09-23 2020-08-11 上海无线通信研究中心 干扰管理方法及使用该方法的流量卸载方法和装置
US10805819B2 (en) * 2017-05-09 2020-10-13 Mediatek Inc. Wi-Fi measurement report enhancement techniques
CN107666719A (zh) * 2017-10-17 2018-02-06 北京算云联科科技有限公司 一种wlan设备发送数据帧的时间分配方法及装置
US11277850B2 (en) 2018-07-26 2022-03-15 Hewlett Packard Enterprise Development Lp Systems and methods of client device grouping for uplink transmission in a WLAN
US10716022B2 (en) 2018-07-26 2020-07-14 Hewlett Packard Enterprise Development Lp Systems and methods for calculating uplink pathloss in a WLAN
WO2020128142A1 (en) 2018-12-21 2020-06-25 Nokia Technologies Oy Wireless access establishment
US12075362B2 (en) 2019-04-02 2024-08-27 Huawei Technologies Co., Ltd. System and method for uplink power control in multi-AP coordination
CN113133024B (zh) * 2019-12-31 2022-09-02 北京华为数字技术有限公司 一种网络资源的配置方法及装置
TWI730760B (zh) * 2020-05-12 2021-06-11 和碩聯合科技股份有限公司 電子裝置及其傳輸排程方法
US11540199B2 (en) * 2020-06-30 2022-12-27 Arris Enterprises Llc Discovery of a network topology from a client perspective
CN115209440A (zh) * 2021-04-09 2022-10-18 华为技术有限公司 网络拓扑的识别方法、装置及无线通信系统
CN113613285B (zh) * 2021-09-02 2023-10-10 深圳市吉祥腾达科技有限公司 一种在干扰环境下测试无线ap性能的方法
EP4277416A1 (en) * 2022-05-11 2023-11-15 Huawei Technologies Co., Ltd. Resource allocation method and apparatus, device, storage medium, and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768546A (zh) * 2004-01-30 2006-05-03 三菱电机株式会社 无线信道分配方法
CN102308652A (zh) * 2009-02-10 2012-01-04 高通股份有限公司 基于无线接口的接入点资源协商以及分配
CN103139821A (zh) * 2013-03-18 2013-06-05 京信通信系统(中国)有限公司 Wlan网络中干扰源的判断方法及装置
CN103262607A (zh) * 2010-12-22 2013-08-21 富士通株式会社 用于对接入点之间的通信接口进行监视的无线通信方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050190731A1 (en) 2004-03-01 2005-09-01 Yigal Bejerano Methods and devices for providing a relative level of fairness and QoS guarantees to wireless local area networks
US8064413B2 (en) * 2006-05-12 2011-11-22 At&T Intellectual Property I, L.P. Adaptive rate and reach optimization for wireless access networks
US20090080499A1 (en) 2007-09-21 2009-03-26 Qualcomm Incorporated Interference management employing fractional code reuse
US8599705B2 (en) * 2008-02-01 2013-12-03 Qualcomm Incorporated Interference management based on enhanced pilot measurement reports
US20100100936A1 (en) 2008-09-08 2010-04-22 Vladimir Alexander Brik Secure Wireless Network Using Radiometric Signatures
US8165597B2 (en) * 2009-03-25 2012-04-24 Motorola Mobility, Inc. Method and apparatus to facilitate partitioning use of wireless communication resources amongst base stations
CN101909321B (zh) * 2009-06-02 2013-04-24 中国移动通信集团公司 小区资源调度的方法、协作功能实体及系统
EP2464187A3 (en) * 2009-08-14 2013-11-06 BlackBerry Limited Frame structure and control signaling for downlink coordinated multi-point (COMP) transmission
EP2540120B1 (en) * 2010-02-22 2015-03-25 1/6 Qualcomm Incorporated Controlling access point transmit power based on access terminal ranking
JP5340995B2 (ja) 2010-02-26 2013-11-13 株式会社日立製作所 基地局、無線通信システム及び干渉基準のハンドオーバ制御方法
JP5897788B2 (ja) * 2010-06-18 2016-03-30 京セラ株式会社 無線通信システム、無線基地局、及び通信制御方法
US9002397B2 (en) * 2010-06-29 2015-04-07 Qualcomm Incorporated Method and apparatus for device transmit power capping in wireless communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768546A (zh) * 2004-01-30 2006-05-03 三菱电机株式会社 无线信道分配方法
CN102308652A (zh) * 2009-02-10 2012-01-04 高通股份有限公司 基于无线接口的接入点资源协商以及分配
CN103262607A (zh) * 2010-12-22 2013-08-21 富士通株式会社 用于对接入点之间的通信接口进行监视的无线通信方法
CN103139821A (zh) * 2013-03-18 2013-06-05 京信通信系统(中国)有限公司 Wlan网络中干扰源的判断方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3041307A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105050127A (zh) * 2015-06-30 2015-11-11 深圳市信锐网科技术有限公司 灾备启动控制方法及系统
CN105050127B (zh) * 2015-06-30 2019-04-26 深圳市信锐网科技术有限公司 灾备启动控制方法及系统
WO2017044237A1 (en) * 2015-09-10 2017-03-16 Qualcomm Incorporated Communication resource allocation

Also Published As

Publication number Publication date
EP3041307A4 (en) 2016-08-31
US10009893B2 (en) 2018-06-26
US20160249351A1 (en) 2016-08-25
CN104427632B (zh) 2019-11-26
CN104427632A (zh) 2015-03-18
EP3041307A1 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
WO2014177103A1 (zh) 数据传输调度方法、装置和系统
KR101617321B1 (ko) 와이파이 네트워크에서 차별화된 연결 서비스 제공을 위한 시스템 및 방법
JP6884805B2 (ja) サイクリック・プレフィックスの長さを設定するためのシステムおよび方法
KR101889515B1 (ko) 전력 제어를 위한 시스템 및 방법
CN105210407B (zh) 将通信从蜂窝网络卸载到无线局域网
US20150078215A1 (en) Systems and methods for full duplex communication over a wireless network
US9913209B2 (en) System and method for basic service set association
JP2017531383A (ja) 拡張rts/ctsのイネーブル化および検出
US9736702B2 (en) System and method for quality of service control
JP2004530349A (ja) 集中無線lanにおける同時送信を通じたリンク容量の増加
JP6591550B2 (ja) Wi−Fiとの共存のためのリッスンビフォアトーク負荷ベースチャネルアクセス
US9723623B2 (en) Access point managed concurrent transmissions
TW201628432A (zh) Wi-fi相容通道存取(二)
Qureshi Energy efficient cognitive radio MAC protocol for adhoc networks
WO2020179533A1 (ja) 無線通信システム及び無線通信方法
JP2023504335A (ja) マルチユーザ直交周波数分割多元接続をオプトインおよびオプトアウトするためのスイッチングスキーム
Yoo et al. Joint uplink/downlink opportunistic scheduling for Wi-Fi WLANs
KR20200127698A (ko) 무선랜 시스템에서 패킷을 송수신하는 방법 및 장치
TWI831085B (zh) 多鏈路裝置及其切換操作模式的方法
TW202418863A (zh) 用於超高可靠性(uhr)的協調空間重用(c-sr)框架
Vashishtha et al. A Smart Utilization MAC (SU-MAC) protocol with power control for ad-hoc wireless networks
Nakano et al. Power Consumption Analysis of Data Transmission over IEEE 802.11 Multi-hop Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14792213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15021004

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014792213

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014792213

Country of ref document: EP