WO2014171165A1 - エアフィルタ用濾材、その製造方法及びそれを備えるエアフィルタ - Google Patents
エアフィルタ用濾材、その製造方法及びそれを備えるエアフィルタ Download PDFInfo
- Publication number
- WO2014171165A1 WO2014171165A1 PCT/JP2014/052092 JP2014052092W WO2014171165A1 WO 2014171165 A1 WO2014171165 A1 WO 2014171165A1 JP 2014052092 W JP2014052092 W JP 2014052092W WO 2014171165 A1 WO2014171165 A1 WO 2014171165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- air filter
- mass
- fluororesin
- filter medium
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2003—Glass or glassy material
- B01D39/2017—Glass or glassy material the material being filamentary or fibrous
- B01D39/2024—Glass or glassy material the material being filamentary or fibrous otherwise bonded, e.g. by resins
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4209—Inorganic fibres
- D04H1/4218—Glass fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/542—Adhesive fibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/10—Organic non-cellulose fibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/10—Organic non-cellulose fibres
- D21H13/20—Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H13/24—Polyesters
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/36—Inorganic fibres or flakes
- D21H13/38—Inorganic fibres or flakes siliceous
- D21H13/40—Inorganic fibres or flakes siliceous vitreous, e.g. mineral wool, glass fibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H15/00—Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
- D21H15/02—Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/03—Non-macromolecular organic compounds
- D21H17/05—Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
- D21H17/09—Sulfur-containing compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/53—Polyethers; Polyesters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F8/00—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
- F24F8/10—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
- F24F8/108—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using dry filter elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0414—Surface modifiers, e.g. comprising ion exchange groups
- B01D2239/0421—Rendering the filter material hydrophilic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/0645—Arrangement of the particles in the filtering material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/08—Special characteristics of binders
- B01D2239/086—Binders between particles or fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/12—Special parameters characterising the filtering material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/12—Special parameters characterising the filtering material
- B01D2239/1233—Fibre diameter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Definitions
- the present invention relates to a filter medium for an air filter. More specifically, the present invention relates to a clean room / clean bench used in the fields of semiconductors, liquid crystals, foods, pharmaceuticals, medicine, etc., air filters for building air conditioning, air filter media used for air purifiers, and the like, and an air filter including the same.
- Air filters are broadly classified into coarse dust filters, medium performance filters, high performance filters (HEPA filters, ULPA filters), etc., depending on the target particle size and collection efficiency.
- the main required characteristics of the filter medium for air filter include pressure loss indicating the ventilation resistance of the filter medium in addition to the collection efficiency.
- pressure loss In order to increase the collection efficiency of the filter medium, it is necessary to increase the blending of fine fibers having a large surface area, but at the same time, the pressure loss of the filter medium also increases.
- a high pressure loss increases the operating load of the intake fan and causes an increase in power consumption, which is undesirable from the viewpoints of both energy saving and running cost reduction. Therefore, a filter medium for air filter having both low pressure loss and high collection efficiency is required.
- As an index value of the level of the low pressure loss and the high collection efficiency of the air filter medium there is a PF value defined by the equation (1).
- the high PF value indicates that the filter medium for air filter has low pressure loss and high collection efficiency.
- the transmittance [%] 100 ⁇ the collection efficiency [%].
- a method for improving the PF value of a filter medium for air filter using glass fiber as a main fiber a method of adhering a fluorine-containing resin to the fiber surface (for example, refer to Patent Document 1), a binder and a fiber constituting the filter paper are used.
- a method of adhering a silicon resin for example, see Patent Document 2
- a method of adhering a binder, a fluororesin, and a silicon resin to fibers constituting the filter paper for example, see Patent Document 3 have been proposed.
- the subject of this invention is providing the filter medium for air filters which has a PF value higher than before, and an air filter provided with the same.
- the filter medium for an air filter according to the present invention comprises a wet nonwoven fabric containing glass fibers having an average fiber diameter of less than 1 ⁇ m and binder fibers, and the wet nonwoven fabric contains a fluororesin and a surfactant, and a binder. It is characterized by not containing a resin or containing 50% by mass or less of a binder resin with respect to the fluororesin.
- the wet nonwoven fabric further includes a main fiber. Stiffness can be imparted to the filter medium, and shrinkage of the binder fiber can be suppressed.
- the glass fibers having an average fiber diameter of less than 1 ⁇ m and the binder fibers are uniformly distributed.
- the phenomenon that glass fibers are aggregated can be suppressed, and the particle capturing action can be enhanced.
- the method for producing a filter medium for an air filter according to the present invention includes a dispersion step of obtaining an aqueous slurry containing glass fibers having an average fiber diameter of less than 1 ⁇ m and binder fibers, and papermaking to obtain a wet sheet by wet papermaking the aqueous slurry. And impregnating the wet sheet with an aqueous dispersion containing a fluororesin and a surfactant and not containing the binder resin or containing 50% by mass or less of the binder resin relative to the fluororesin.
- a main fiber In the method for producing a filter medium for an air filter according to the present invention, it is preferable to further include a main fiber. Stiffness can be imparted to the filter medium, and shrinkage of the binder fiber can be suppressed.
- the air filter according to the present invention includes the air filter medium according to the present invention.
- the filter material for an air filter of the present embodiment is composed of a wet nonwoven fabric and is manufactured using a wet papermaking process including the following processes. (1) Dispersing step of dispersing the fibers in water to obtain a slurry, (2) Paper making step of laminating the slurry on a net to form a sheet, (3) Infiltrating impregnating liquid containing processing material into the sheet and processing An impregnation step for adhering a material, (4) a drying step for drying the sheet
- the filter medium for an air filter of the present embodiment includes glass fibers having an average fiber diameter of less than 1 ⁇ m (hereinafter referred to as submicron glass fibers).
- Submicron glass fibers are dispersed in water together with other fibers in a dispersion process, and formed into a sheet in a papermaking process.
- the main reason for using glass fibers is that glass fibers can be easily obtained with small diameter (for example, average fiber diameter of less than 1 ⁇ m) having a large surface area that contributes to the collection efficiency, and glass fibers are moderate Since it has rigidity, it is two points that the space
- the calculation method of the average fiber diameter is obtained by calculation from the surface area measurement value.
- a wet nonwoven fabric containing submicron glass fibers contains a fluororesin and a surfactant.
- the fluororesin and the surfactant are applied as an aqueous dispersion to the sheet containing submicron glass fibers in the impregnation step.
- the PF value is not improved.
- the hydrophilic group of the surfactant adheres to the surface of the glass fiber and the hydrophobic group is directed outward, thereby exhibiting an effect of uniformly dispersing the glass fiber.
- the improvement of PF value is seen, the level is not enough.
- the hydrophilic group of the surfactant adheres to the glass fiber surface and the hydrophobic group is directed outward, thereby exhibiting the effect of uniformly dispersing the glass fiber.
- the surface state of the fluororesin colloidal particles changes, and a phenomenon occurs in which the amount of adsorption of the fluororesin colloidal particles on the glass fibers decreases. Then, although the reason is unknown, a higher PF value was obtained compared to the case where only the surfactant was added. Further, the fluororesin colloidal particles having the surfactant attached to the surface exhibit an effect of suppressing the phenomenon that the glass fibers are aggregated in a wet state. When the submicron glass fibers are uniformly dispersed in the filter medium due to the synergistic effect of the two components as described above, the action for collecting particles is increased, and a filter medium having a high PF value is obtained.
- the filter medium for an air filter includes a binder fiber.
- the binder fiber is dispersed in water together with the submicron glass fiber in the dispersion process, and is formed into a sheet in the paper making process, thereby imparting strength to the air filter medium.
- the binder resin is widely applied in the impregnation step.
- the binder resin made of other than the fluororesin in the impregnation step. If present, the effects of the fluororesin and the surfactant described above are greatly hindered.
- a binder resin other than a fluororesin is not used in the impregnation step, or a small amount of a binder resin (for example, 50% by mass or less with respect to the fluororesin) is supplementary.
- a method is used in which the binder fiber is formed into a sheet together with the sub-micro glass fiber in the dispersion papermaking process. For this reason, the binder fiber is formed into a sheet in a uniformly distributed state with respect to the submicron glass fiber.
- Submicron glass fiber is a woolen glass fiber manufactured by a flame spraying method in which glass is blown away while being melted with a high-pressure burner flame, and has various fiber diameters depending on the required filtration performance. Is appropriately selected.
- low boron glass fiber, silica glass fiber, or the like can be used for the purpose of preventing contamination of the semiconductor process.
- the mixing ratio of the submicron glass fibers is appropriately selected according to the required filtration performance, but is preferably 1 to 90% by mass with respect to the total fiber mass of the fibers contained in the sheet. More preferably, it is 60 mass%. If the submicron glass fiber is less than 1% by mass, the required filtration performance may not be obtained. If the submicron glass fiber is more than 90% by mass, the blending ratio of the binder fiber is less than 10% by mass, so that sufficient strength may not be obtained.
- the fluororesin is appropriately selected from resins containing fluorine atoms in the molecule.
- PFOA perfluorooctane acid
- PFOS perfluorooctane sulfonic acid
- the surfactant is appropriately selected from surfactants having various ionic properties (anionic, cationic, etc.) and compositions (hydrocarbon, fluorine, etc.), with anionic surfactants being preferred.
- anionic surfactants composed of a sulfate ester salt or a sulfonate salt is particularly preferable.
- these surfactants include alkyl sulfates, alkylphenyl sulfates, styrenated phenyl sulfates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, polyoxyethylene styrenated phenyl ether sulfates. Salts, alkyl sulfonates, alpha olefin sulfonates, alkyl benzene sulfonates, sulfosuccinates and the like.
- the solid content mass ratio between the fluororesin and the surfactant is preferably 0.5 to 20 parts by mass, more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the fluororesin, More preferably, it is 2 to 12 parts by mass.
- the surfactant amount ratio with respect to 100 parts by mass of the fluororesin is smaller than 0.5 parts by mass, a sufficient PF value improving effect cannot be obtained.
- the surfactant amount ratio is larger than 20 parts by mass, the effect of increasing the PF value due to the increase in the surfactant is reduced, the product cost is unnecessarily increased, and the strength and water resistance of the filter medium are decreased.
- the solid content adhesion amount of the fluororesin and the surfactant relative to the total mass of the filter medium is preferably 0.01 to 5% by mass, and 0.05 to 3% by mass in terms of the total amount of the fluororesin and the surfactant. Is more preferably 0.1 to 2% by mass. If the total solid content of the fluororesin and the surfactant is less than 0.01% by mass, a sufficient PF value improving effect cannot be obtained. If the solid content is more than 5% by mass, the effect of improving the PF value due to the increase in the amount of adhesion is reduced, and the product cost is unnecessarily increased.
- the total filter medium mass is the dry mass of the filter medium containing fibers, fluororesin, and surfactant.
- the binder fiber can be used in a wet papermaking process and is appropriately selected from fibers that can impart sufficient strength to the air filter medium.
- the main binder fibers include fibrillated fibers that give strength by entanglement of fine fibers, and heat-melt fibers that give strength by hot-melting or hot-water melting and bonding the fibers together. May clog the filter medium and increase the pressure loss significantly, so it is preferable to use a hot-melt fiber.
- the heat-melt fiber in addition to all the melted fibers in which the entire fiber melts, side-by-side type fibers in which one side of the fiber cross section is a non-melt component and one side is a melt component, There is a core-sheath type fiber whose part is made of a molten component.
- the core-sheath type fiber in which the binder fiber has a large strength imparting effect and has a relatively small influence on the PF value.
- the core component of the core-sheath fiber is insoluble, strong and heat-resistant so that it can maintain the form of the fiber with almost no dissolution or melting in the filter medium produced through a wet papermaking process consisting of dispersion, papermaking, impregnation and drying.
- the core component include polyester, polyolefin, polyamide, polyurethane, polyacrylonitrile, and cellulose-based polymer.
- the sheath component is selected from polymers that are dissolved or melted by heating and adhere to glass fibers in the wet papermaking process. Examples of the sheath component include polyester, polyolefin, poly (ethylene-vinyl acetate) , Polyvinyl alcohol, poly (ethylene-vinyl alcohol) and the like.
- the fiber diameter of the binder fiber is preferably 5 to 50 ⁇ m, and more preferably 7 to 30 ⁇ m. When the fiber diameter is smaller than 5 ⁇ m, the pressure loss may be increased to decrease the PF value. When the fiber diameter is larger than 50 ⁇ m, a sufficient strength imparting effect may not be obtained. Further, the fiber length of the binder fiber is preferably 2 to 20 mm, and more preferably 5 to 10 mm. If the fiber length is less than 2 mm, sufficient strength may not be obtained. When the fiber length is larger than 20 mm, the fiber is liable to be distorted in the dispersion step, which may be a defect of the filter medium.
- the blending ratio of the binder fiber is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, and further preferably 20 to 60% by mass with respect to the total fiber mass of the fibers contained in the sheet. If the blending ratio of the binder fiber is less than 5% by mass, sufficient strength may not be obtained. When the blending ratio of the binder fiber exceeds 90% by mass, the shrinkage when the binder fiber is melted by heat may increase.
- various main fibers can be appropriately used depending on the required physical properties.
- These main fibers can be appropriately selected from fibers that can be used in the wet papermaking process and do not significantly reduce the PF value of the filter medium for the air filter.
- a main fiber having rigidity is preferable in order to impart rigidity to the filter medium and to suppress shrinkage of the binder fiber.
- Examples of such main fibers include glass wool fibers, chopped glass fibers, polyvinyl alcohol main fibers, aramid fibers, and carbon fibers having an average fiber diameter of 1 ⁇ m or more.
- the mixing ratio of such main fibers is preferably 2 to 94% by mass, more preferably 5 to 70% by mass, and still more preferably 10 to 50% by mass with respect to the total fiber mass of the fibers contained in the sheet.
- the first form of the air filter according to the present embodiment is a pleating process in which the air filter medium according to the present embodiment is folded in a zigzag shape, and a paper or aluminum plate separator is sandwiched between the filter medium pleats.
- the unit is assembled in an aluminum frame or wooden frame.
- the 2nd form is a form made into the mini pleat structure which uses the beat-like adhesive agent which consists of hot-melt resin etc. instead of the said separator as a space
- Submicron glass wool fiber (B-00-F, average fiber diameter 0.33 ⁇ m, manufactured by Lauscha Fiber International Co.) 25 parts by mass, polyester core-sheath binder fiber (ester 4080, fineness 1.7 dtx (fiber diameter 13 ⁇ m), fiber 40 parts by mass of 5 mm long, manufactured by Unitika Ltd.), 35 parts by mass of chopped glass fibers (CS06JAGP024, fiber diameter 10 ⁇ m, fiber length 6 mm, manufactured by Owens Corning Japan Ltd.) in water adjusted to pH 3.0 with sulfuric acid Dispersed and disaggregated with a pulper to obtain a fiber slurry having a solid content concentration of 0.5%.
- polyester core-sheath binder fiber (ester 4080, fineness 1.7 dtx (fiber diameter 13 ⁇ m), fiber 40 parts by mass of 5 mm long, manufactured by Unitika Ltd.)
- 35 parts by mass of chopped glass fibers (CS06JAGP024, fiber diameter 10 ⁇ m, fiber length 6 mm, manufactured by Owen
- the obtained slurry was made using a hand-making cylinder to obtain a wet paper.
- 100 parts of a fluororesin (NK Guard S-09, manufactured by Nikka Chemical Co., Ltd.) and 2 parts of a sodium alkyl sulfate surfactant (Emar 10G, manufactured by Kao Corporation) are added to water and solidified.
- the wet paper was dried using a rotary dryer at 130 ° C., and the basis weight was 80 g / m 2 .
- a filter medium for an air filter was obtained.
- the impregnation amount of the impregnation liquid was 0.8 g / m 2 in terms of solid content.
- Example 2 100 parts of fluororesin (NK Guard S-09, manufactured by Nikka Chemical Co., Ltd.) and 8 parts of alkyl sulfate sodium salt surfactant (Emar 10G, manufactured by Kao Co., Ltd.) are added to water to obtain a solid content concentration
- a filter medium for an air filter having a basis weight of 80 g / m 2 was obtained in the same manner as in Example 1 except that the impregnating liquid adjusted to 0.216% by mass was used.
- the impregnation amount of the impregnation liquid was 0.8 g / m 2 in terms of solid content.
- Example 3 100 parts of fluororesin (NK Guard S-09, manufactured by Nikka Chemical Co., Ltd.) and 12 parts of alkyl sulfate sodium salt surfactant (Emar 10G, manufactured by Kao Co., Ltd.) are added to water to adjust the solid content concentration.
- a filter medium for an air filter having a basis weight of 80 g / m 2 was obtained in the same manner as in Example 1 except that the impregnation liquid adjusted to 0.224% by mass was used.
- the impregnation amount of the impregnation liquid was 0.8 g / m 2 in terms of solid content.
- Example 4 100 parts of fluororesin (NK Guard S-09, manufactured by Nikka Chemical Co., Ltd.) and 8 parts of alkylbenzene sulfonic acid sodium salt surfactant (Neopelex GS, manufactured by Kao Corporation) are added to water to obtain a solid content.
- a filter medium for an air filter having a basis weight of 80 g / m 2 was obtained in the same manner as in Example 1 except that the impregnation liquid having a concentration adjusted to 0.216% by mass was used.
- the impregnation amount of the impregnation liquid was 0.8 g / m 2 in terms of solid content.
- Example 5 100 parts of a fluororesin (NK Guard S-09, manufactured by Nikka Chemical Co., Ltd.) and 8 parts of a fluorine-based anionic surfactant (Factent 150, manufactured by Neos Co., Ltd.) are added to water to obtain a solid content concentration.
- a filter medium for an air filter having a basis weight of 80 g / m 2 was obtained in the same manner as in Example 1 except that the impregnating liquid adjusted to 0.216% by mass was used.
- the impregnation amount of the impregnation liquid was 0.8 g / m 2 in terms of solid content.
- Example 6 Submicron glass wool fiber (B-00-F, average fiber diameter 0.33 ⁇ m, manufactured by Lauscha Fiber International Co.) 25 parts by mass, polyester core-sheath binder fiber (ester 4080, fineness 4.4 dtx (fiber diameter 20 ⁇ m), fiber Length 5 mm, Unitika Ltd.
- polyvinyl alcohol binder fiber SPG 056-11, fineness 0.8 dtx (fiber diameter 7 ⁇ m), fiber length 3 mm, Kuraray Co., Ltd.) 1 part by mass, chopped glass fiber ( 35 parts by mass of CS06JAGP024, fiber diameter 10 ⁇ m, fiber length 6 mm, manufactured by Owens Corning Japan Co., Ltd.) was dispersed in water adjusted to pH 3.0 with sulfuric acid and disaggregated using a pulper to give a solid content concentration of 0. A fiber slurry of 5% by mass was obtained. Next, the obtained slurry was made using a hand-making cylinder to obtain a wet paper.
- SPG 056-11 fineness 0.8 dtx (fiber diameter 7 ⁇ m), fiber length 3 mm, Kuraray Co., Ltd.
- chopped glass fiber 35 parts by mass of CS06JAGP024, fiber diameter 10 ⁇ m, fiber length 6 mm, manufactured by Owens Corning Japan Co., Ltd.
- Example 7 Submicron glass wool fiber (B-00-F, average fiber diameter 0.33 ⁇ m, manufactured by Lauscha Fiber International Co.) 25 parts by mass, polyester core-sheath binder fiber (ester 4080, fineness 1.7 dtx (fiber diameter 13 ⁇ m), fiber 40 parts by mass of length 5 mm, manufactured by Unitika Ltd., 35 parts by mass of polyvinyl alcohol-based fibers (RM702, fineness 7 dtx (fiber diameter 26 ⁇ m), fiber length 5 mm, manufactured by Kuraray Co., Ltd.) were adjusted to pH 3.0 with sulfuric acid. It disperse
- the obtained slurry was made using a hand-making cylinder to obtain a wet paper.
- 100 parts of a fluororesin (NK Guard S-09, manufactured by Nikka Chemical Co., Ltd.) and 8 parts of an alkyl sulfate sodium salt surfactant (Emar 10G, manufactured by Kao Corporation) are added to water to form a solid.
- the excess impregnating liquid was removed by suction, and then dried using a rotary dryer at 130 ° C., and the basis weight was 80 g / m 2 .
- a filter medium for an air filter was obtained.
- the impregnation amount of the impregnation liquid was 0.8 g / m 2 in terms of solid content.
- Submicron glass wool fiber (B-06-F, average fiber diameter 0.65 ⁇ m, manufactured by Lauscha Fiber International Co.) 15 parts by mass, polyester core-sheath binder fiber (ester 4080, fineness 1.7 dtx (fiber diameter 13 ⁇ m), fiber 50 parts by mass of 5 mm long, manufactured by Unitika Ltd.), 35 parts by mass of chopped glass fibers (CS06JAGP024, fiber diameter 10 ⁇ m, fiber length 6 mm, manufactured by Owens Corning Japan) were adjusted to pH 3.0 with sulfuric acid. It disperse
- the obtained slurry was made using a hand-making cylinder to obtain a wet paper.
- 100 parts of a fluororesin (NK Guard S-09, manufactured by Nikka Chemical Co., Ltd.) and 8 parts of an alkyl sulfate sodium salt surfactant (Emar 10G, manufactured by Kao Corporation) are added to water to form a solid.
- the excess impregnating liquid was removed by suction, and then dried using a rotary dryer at 130 ° C., and the basis weight was 80 g / m 2 .
- a filter medium for an air filter was obtained.
- the impregnation amount of the impregnation liquid was 0.8 g / m 2 in terms of solid content.
- Example 9 100 parts of fluororesin (NK Guard S-09, manufactured by Nikka Chemical Co., Ltd.), 8 parts of sodium alkyl sulfate surfactant (Emar 10G, manufactured by Kao Corporation), and acrylic binder resin (Mobile LDM7222, Nippon Synthetic Co., Ltd.)
- the basic weight was 80 g / m 2 in the same manner as in Example 1 except that an impregnating solution prepared by adding 50 parts of Chemical Industries Co., Ltd.) to water and adjusting the solid content concentration to 0.316% by mass was used.
- a filter medium for air filter was obtained.
- the impregnation amount of the impregnation liquid was 1.2 g / m 2 in terms of solid content.
- Example 4 Example except that only 100 parts of a fluorine-based anionic surfactant (Furgent 150, manufactured by Neos Co., Ltd.) was added to water, and an impregnation liquid having a solid content concentration adjusted to 0.016% by mass was used. In the same manner as in Example 1, an air filter medium having a basis weight of 80 g / m 2 was obtained. The impregnation amount of the impregnation liquid was 0.1 g / m 2 in terms of solid content.
- a fluorine-based anionic surfactant Flugent 150, manufactured by Neos Co., Ltd.
- the pressure loss was measured using a manometer (manostar gauge WO81, manufactured by Yamamoto Electric Co., Ltd.) as a differential pressure when air passes through a filter medium having an effective area of 100 cm 2 at a surface wind speed of 5.3 cm / sec. .
- the transmittance (also referred to as particle transmittance) is obtained when air containing polydispersed dioctyl phthalate (DOP) particles generated by a Ruskin nozzle passes through a filter medium having an effective area of 100 cm 2 at a surface wind speed of 5.3 cm / sec.
- DOP polydispersed dioctyl phthalate
- the number of upstream and downstream DOP particles was measured using a laser particle counter (KC-18, manufactured by Rion Co., Ltd.) and calculated from the number value.
- the target particle diameter was 0.30 to 0.40 ⁇ m.
- PF value was calculated from the value of pressure loss and particle transmittance using the formula shown in Equation 1.
- the target particle diameter was 0.30 to 0.40 ⁇ m.
- the water repellency was measured using a self-made water repellency tester according to MIL-STD-282.
- the neutralization treatment of the filter media conforms to the 2) IPA saturated vapor exposure method of 5.2.2.3 d) of JIS B 9908: 2011 “Performance test method of air filter unit for ventilation / electric dust collector for ventilation”. I went.
- Table 1 and Table 2 show the evaluation results of air filter media obtained in Examples and Comparative Examples.
- Comparative Example 1 was impregnated with only the fluororesin without being impregnated with the surfactant, so that the particle transmittance was high and the PF value was low. Since the comparative example 2 did not mix
- Table 2 shows the results of the effect of the charge removal process on the filtration performance of the filter medium of Example 8.
- the filter medium for an air filter of the present invention has a filtration mechanism based on mechanical collection of submicron glass fibers that does not depend on the charge on the fiber surface, so that the filtration performance hardly changes before and after the charge removal treatment. That is, it has the characteristic that the big filtration performance fall at the time of use does not occur like an electret filter medium.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filtering Materials (AREA)
- Paper (AREA)
Abstract
Description
サブミクロンガラスウール繊維(B-00-F、平均繊維径0.33μm、Lauscha Fiber International Co.製)25質量部、ポリエステル芯鞘バインダー繊維(エステル4080、繊度1.7dtx(繊維径13μm)、繊維長5mm、ユニチカ(株)製)40質量部、チョップドガラス繊維(CS06JAGP024、繊維径10μm、繊維長6mm、オーウェンスコーニングジャパン(株)製)35質量部を、硫酸でpH3.0とした水中に分散し、パルパーを用いて離解して固形分濃度が0.5%である繊維スラリーを得た。次に、得られたスラリーを、手抄筒を用いて抄紙して湿紙を得た。次に、フッ素樹脂(NKガードS-09、日華化学(株)製)100部とアルキル硫酸ナトリウム塩界面活性剤(エマール10G、花王(株)製)2部とを水中に添加して固形分濃度を0.204質量%に調整した含浸液を湿紙に含浸付与し、余分な含浸液を吸引除去した後、130℃のロータリードライヤーを用いて乾燥して、坪量80g/m2のエアフィルタ用濾材を得た。尚、含浸液の含浸付着量は固形分換算で0.8g/m2であった。
フッ素樹脂(NKガードS-09、日華化学(株)製))100部とアルキル硫酸ナトリウム塩界面活性剤(エマール10G、花王(株)製)8部とを水中に添加して固形分濃度を0.216質量%に調整した含浸液を用いた以外は、実施例1と同様にして、坪量80g/m2のエアフィルタ用濾材を得た。尚、含浸液の含浸付着量は固形分換算で0.8g/m2であった。
フッ素樹脂(NKガードS-09、日華化学(株)製)100部とアルキル硫酸ナトリウム塩界面活性剤(エマール10G、花王(株)製)12部とを水中に添加して固形分濃度を0.224質量%に調整した含浸液を用いた以外は、実施例1と同様にして、坪量80g/m2のエアフィルタ用濾材を得た。尚、含浸液の含浸付着量は固形分換算で0.8g/m2であった。
フッ素樹脂(NKガードS-09、日華化学(株)製)100部とアルキルベンゼンスルホン酸ナトリウム塩界面活性剤(ネオペレックスGS、花王(株)製)8部とを水中に添加して固形分濃度を0.216質量%に調整した含浸液を用いた以外は、実施例1と同様にして、坪量80g/m2のエアフィルタ用濾材を得た。尚、含浸液の含浸付着量は固形分換算で0.8g/m2であった。
フッ素樹脂(NKガードS-09、日華化学(株)製)100部とフッ素系アニオン性界面活性剤(フタージェント150、ネオス(株)製)8部とを水中に添加して固形分濃度を0.216質量%に調整した含浸液を用いた以外は、実施例1と同様にして、坪量80g/m2のエアフィルタ用濾材を得た。尚、含浸液の含浸付着量は固形分換算で0.8g/m2であった。
サブミクロンガラスウール繊維(B-00-F、平均繊維径0.33μm、Lauscha Fiber International Co.製)25質量部、ポリエステル芯鞘バインダー繊維(エステル4080、繊度4.4dtx(繊維径20μm)、繊維長5mm、ユニチカ(株)製)39質量部、ポリビニルアルコールバインダー繊維(SPG056-11、繊度0.8dtx(繊維径7μm)、繊維長3mm、(株)クラレ製)1質量部、チョップドガラス繊維(CS06JAGP024、繊維径10μm、繊維長6mm、オーウェンスコーニングジャパン(株)製)35質量部を、硫酸でpH3.0とした水中に分散し、パルパーを用いて離解して、固形分濃度が0.5質量%である繊維スラリーを得た。次に、得られたスラリーを、手抄筒を用いて抄紙して湿紙を得た。次に、フッ素樹脂(NKガードS-09、日華化学(株)製)100部とアルキル硫酸ナトリウム塩界面活性剤(エマール10G、花王(株)製)8部とを水中に添加して固形分濃度を0.216質量%に調整した含浸液を湿紙に含浸付与し、余分な含浸液を吸引除去した後、130℃のロータリードライヤーを用いて乾燥して、坪量80g/m2のエアフィルタ用濾材を得た。尚、含浸液の含浸付着量は固形分換算で0.8g/m2であった。
サブミクロンガラスウール繊維(B-00-F、平均繊維径0.33μm、Lauscha Fiber International Co.製)25質量部、ポリエステル芯鞘バインダー繊維(エステル4080、繊度1.7dtx(繊維径13μm)、繊維長5mm、ユニチカ(株)製)40質量部、ポリビニルアルコール主体繊維(RM702、繊度7dtx(繊維径26μm)、繊維長5mm、(株)クラレ製)35質量部を、硫酸でpH3.0とした水中に分散し、パルパーを用いて離解して固形分濃度が0.5質量%である繊維スラリーを得た。次に、得られたスラリーを、手抄筒を用いて抄紙して湿紙を得た。次に、フッ素樹脂(NKガードS-09、日華化学(株)製)100部とアルキル硫酸ナトリウム塩界面活性剤(エマール10G、花王(株)製)8部とを水中に添加して固形分濃度を0.216質量%に調製した含浸液を湿紙に含浸付与し、余分な含浸液を吸引除去した後、130℃のロータリードライヤーを用いて乾燥して、坪量80g/m2のエアフィルタ用濾材を得た。尚、含浸液の含浸付着量は固形分換算で0.8g/m2であった。
サブミクロンガラスウール繊維(B-06-F、平均繊維径0.65μm、Lauscha Fiber International Co.製)15質量部、ポリエステル芯鞘バインダー繊維(エステル4080、繊度1.7dtx(繊維径13μm)、繊維長5mm、ユニチカ(株)製)50質量部、チョップドガラス繊維(CS06JAGP024、繊維径10μm、繊維長6mm、オーウェンスコーニングジャパン(株)製)35質量部を、硫酸でpH3.0とした水中に分散し、パルパーを用いて離解して固形分濃度が0.5質量%である繊維スラリーを得た。次に、得られたスラリーを、手抄筒を用いて抄紙して湿紙を得た。次に、フッ素樹脂(NKガードS-09、日華化学(株)製)100部とアルキル硫酸ナトリウム塩界面活性剤(エマール10G、花王(株)製)8部とを水中に添加して固形分濃度を0.216質量%に調製した含浸液を湿紙に含浸付与し、余分な含浸液を吸引除去した後、130℃のロータリードライヤーを用いて乾燥して、坪量80g/m2のエアフィルタ用濾材を得た。尚、含浸液の含浸付着量は固形分換算で0.8g/m2であった。
フッ素樹脂(NKガードS-09、日華化学(株)製)100部とアルキル硫酸ナトリウム塩界面活性剤(エマール10G、花王(株)製)8部とアクリル系バインダー樹脂(モビニールLDM7222、日本合成化学工業(株)製)50部とを水中に添加して固形分濃度を0.316質量%に調製した含浸液を用いた以外は、実施例1と同様にして、坪量80g/m2のエアフィルタ用濾材を得た。尚、含浸液の含浸付着量は固形分換算で1.2g/m2であった。
フッ素樹脂(NKガードS-09、日華化学(株)製)100部のみを水中に添加して固形分濃度を0.200質量%に調製した含浸液を用いた以外は、実施例1と同様にして、坪量80g/m2エアフィルタ用濾材を得た。尚、含浸液の含浸付着量は固形分換算で1.0g/m2であった。
サブミクロンガラスウール繊維(B-00-F、平均繊維径0.33μm、Lauscha Fiber International Co.製)25質量部、ミクロンガラスウール繊維(B-26-R、平均繊維径2.4μm、Lauscha Fiber International Co.製)40質量部、チョップドガラス繊維(CS06JAGP024、繊維径10μm、繊維長6mm、オーウェンスコーニングジャパン(株)製)35質量部を、硫酸でpH3.0とした水中に分散し、パルパーを用いて離解して固形分濃度が0.5質量%である繊維スラリーを得た。次に、得られたスラリーを、手抄筒を用いて抄紙して湿紙を得た。次に、フッ素樹脂(NKガードS-09、日華化学(株)製)100部とアルキル硫酸ナトリウム塩界面活性剤(エマール10G、花王(株)製)8部とを水中に添加して固形分濃度を0.216質量%に調製した含浸液を湿紙に含浸付与し、余分な含浸液を吸引除去した後、130℃のロータリードライヤーを用いて乾燥して、坪量80g/m2のエアフィルタ用濾材を得た。尚、含浸液の含浸付着量は固形分換算で0.8g/m2であった。
フッ素樹脂(NKガードS-09、日華化学(株)製)100部とアルキル硫酸ナトリウム塩界面活性剤(エマール10G、花王(株)製)8部とアクリル系バインダー樹脂(モビニールLDM7222、日本合成化学工業(株)製)100部とを水中に添加して固形分濃度を0.416質量%に調製した含浸液を用いた以外は、実施例1と同様にして、坪量80g/m2のエアフィルタ用濾材を得た。尚、含浸液の含浸付着量は固形分換算で1.5g/m2であった。
フッ素系アニオン性界面活性剤(フタージェント150、ネオス(株)製)100部のみを水中に添加して、固形分濃度を0.016質量%に調整した含浸液を用いた以外は、実施例1と同様にして、坪量80g/m2のエアフィルタ用濾材を得た。尚、含浸液の含浸付着量は固形分換算で0.1g/m2であった。
Claims (6)
- 平均繊維径1μm未満のガラス繊維とバインダー繊維とを含む湿式不織布からなり、
該湿式不織布は、フッ素樹脂と界面活性剤とを含有し、かつ、バインダー樹脂を含有しないか又は前記フッ素樹脂に対して50質量%以下のバインダー樹脂を含有することを特徴とするエアフィルタ用濾材。 - 前記湿式不織布が、主体繊維を更に含むことを特徴とする請求項1に記載のエアフィルタ用濾材。
- 前記平均繊維径1μm未満のガラス繊維と前記バインダー繊維とは、相互に均一に分布していることを特徴とする請求項1又は2に記載のエアフィルタ用濾材。
- 平均繊維径1μm未満のガラス繊維とバインダー繊維とを含む水性スラリーを得る分散工程と、
該水性スラリーを湿式抄紙して湿潤状態のシートを得る抄紙工程と、
該湿潤状態のシートに、フッ素樹脂と界面活性剤とを含み、かつ、バインダー樹脂を含まないか又は前記フッ素樹脂に対して50質量%以下のバインダー樹脂を含む水性分散液を含浸させて、前記平均繊維径1μm未満のガラス繊維と前記バインダー繊維の表面に前記フッ素樹脂と前記界面活性剤とを付着させる含浸工程と、
前記水性分散液を含浸させた湿潤状態のシートを乾燥する乾燥工程と、を有することを特徴とするエアフィルタ用濾材の製造方法。 - 前記水性スラリーが、主体繊維を更に含むことを特徴とする請求項4に記載のエアフィルタ用濾材の製造方法。
- 請求項1~3のいずれか一つに記載のエアフィルタ用濾材を備えることを特徴とするエアフィルタ。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480021183.3A CN105163828B (zh) | 2013-04-15 | 2014-01-30 | 空气过滤器用滤材、其制造方法及具备其的空气过滤器 |
JP2015512328A JP6045687B2 (ja) | 2013-04-15 | 2014-01-30 | エアフィルタ用濾材の製造方法 |
KR1020177027297A KR101898836B1 (ko) | 2013-04-15 | 2014-01-30 | 에어 필터용 여재, 그 제조 방법 및 그것을 구비하는 에어 필터 |
EP14785326.1A EP2987544B1 (en) | 2013-04-15 | 2014-01-30 | Filter material for air filter, method for manufacturing same, and air filter provided with same |
KR1020157030960A KR101795201B1 (ko) | 2013-04-15 | 2014-01-30 | 에어 필터용 여재, 그 제조 방법 및 그것을 구비하는 에어 필터 |
US14/781,275 US9656196B2 (en) | 2013-04-15 | 2014-01-30 | Filter material for air filter, method for manufacturing same, and air filter provided with same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013085030 | 2013-04-15 | ||
JP2013-085030 | 2013-04-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014171165A1 true WO2014171165A1 (ja) | 2014-10-23 |
Family
ID=51731126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/052092 WO2014171165A1 (ja) | 2013-04-15 | 2014-01-30 | エアフィルタ用濾材、その製造方法及びそれを備えるエアフィルタ |
Country Status (6)
Country | Link |
---|---|
US (1) | US9656196B2 (ja) |
EP (1) | EP2987544B1 (ja) |
JP (2) | JP6045687B2 (ja) |
KR (2) | KR101795201B1 (ja) |
CN (2) | CN105163828B (ja) |
WO (1) | WO2014171165A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105735030A (zh) * | 2016-02-25 | 2016-07-06 | 杭州特种纸业有限公司 | 擦镜纸及其制备方法 |
CN105735036A (zh) * | 2016-02-25 | 2016-07-06 | 杭州特种纸业有限公司 | 绢花纸及其制备方法 |
CN105780595A (zh) * | 2016-04-26 | 2016-07-20 | 杭州特种纸业有限公司 | 纳米空气滤纸及其制备方法 |
CN105926344A (zh) * | 2016-04-26 | 2016-09-07 | 杭州特种纸业有限公司 | 纳米定量滤纸及其制备方法 |
CN105937193A (zh) * | 2016-04-26 | 2016-09-14 | 杭州特种纸业有限公司 | 纳米机空滤纸及其制备方法 |
CN105951524A (zh) * | 2016-04-26 | 2016-09-21 | 杭州特种纸业有限公司 | 纳米机油滤纸及其制备方法 |
CN106032648A (zh) * | 2015-03-17 | 2016-10-19 | 中国科学院过程工程研究所 | 粗糙化处理无纺布的方法、处理得到的无纺布及其用途 |
JP2018038983A (ja) * | 2016-09-09 | 2018-03-15 | 北越紀州製紙株式会社 | エアフィルタ用濾材の製造方法 |
JP2019188377A (ja) * | 2018-04-27 | 2019-10-31 | 北越コーポレーション株式会社 | フィルタ用濾材の製造方法 |
CN110792002A (zh) * | 2019-08-26 | 2020-02-14 | 上海飞特亚空气过滤有限公司 | 一种高强度空气过滤纸及其制备方法 |
JP2020065956A (ja) * | 2018-10-22 | 2020-04-30 | 北越コーポレーション株式会社 | エアフィルタ用濾材及びその製造方法 |
WO2022003965A1 (ja) * | 2020-07-03 | 2022-01-06 | 北越コーポレーション株式会社 | エアフィルタ用濾材及びその製造方法 |
JP2022022750A (ja) * | 2020-07-03 | 2022-02-07 | 北越コーポレーション株式会社 | エアフィルタ用濾材及びその製造方法 |
JP2022537390A (ja) * | 2019-06-20 | 2022-08-25 | ユニフラックス アイ エルエルシー | 軽量不織マット |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105163828B (zh) * | 2013-04-15 | 2018-05-18 | 北越纪州制纸株式会社 | 空气过滤器用滤材、其制造方法及具备其的空气过滤器 |
CN105714597A (zh) * | 2016-02-25 | 2016-06-29 | 杭州特种纸业有限公司 | 机油滤纸及其制备方法 |
CN105735037A (zh) * | 2016-02-25 | 2016-07-06 | 杭州特种纸业有限公司 | 热固性空气滤纸及其制备方法 |
CN105568769A (zh) * | 2016-02-25 | 2016-05-11 | 杭州特种纸业有限公司 | 柴油滤纸及其制备方法 |
CN106283839B (zh) * | 2016-08-12 | 2019-06-07 | 杭州诺邦无纺股份有限公司 | 聚酯木浆湿法水刺材料 |
US10898838B2 (en) * | 2016-12-15 | 2021-01-26 | Hollingsworth & Vose Company | Filter media including adhesives |
US10543441B2 (en) | 2016-12-15 | 2020-01-28 | Hollingsworth & Vose Company | Filter media including adhesives and/or oleophobic properties |
JP6941462B2 (ja) * | 2017-03-31 | 2021-09-29 | 日本無機株式会社 | エアフィルタ用濾材並びにエアフィルタ |
FI127543B (en) * | 2017-04-13 | 2018-08-31 | Munksjoe Ahlstrom Oyj | Filtration material and its use |
JP6858678B2 (ja) * | 2017-09-15 | 2021-04-14 | 北越コーポレーション株式会社 | エアフィルタ用濾材及びその製造方法 |
JP7112228B2 (ja) * | 2018-03-30 | 2022-08-03 | 日本無機株式会社 | エアフィルタ用濾材、及びエアフィルタ |
US20210016213A1 (en) * | 2018-03-30 | 2021-01-21 | Toyobo Co., Ltd. | Wet non-woven fabric for filter, filter medium for filter, and filter |
US20220219104A1 (en) * | 2019-05-13 | 2022-07-14 | Toyobo Co., Ltd. | Filter medium for filter and filter |
FI20205988A1 (en) * | 2020-10-08 | 2022-04-09 | Munksjoe Ahlstrom Oyj | FILTER PLATE MATERIAL AND METHOD FOR MANUFACTURING FILTER PLATE MATERIAL |
CN112370865B (zh) * | 2020-10-28 | 2022-04-29 | 重庆再升科技股份有限公司 | 含芳纶纤维的玻璃纤维过滤材料及其制备方法 |
CN115364579B (zh) * | 2022-08-05 | 2024-01-19 | 东风商用车有限公司 | 一种空气过滤材料及其制备方法和应用 |
CN116446218B (zh) * | 2023-04-19 | 2024-07-16 | 华南理工大学 | 一种高效空气过滤纸及其制备方法和应用 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6019016A (ja) * | 1983-07-12 | 1985-01-31 | Toyo Roshi Kk | 濾紙 |
JPH0241499A (ja) | 1988-08-01 | 1990-02-09 | Nippon Sheet Glass Co Ltd | 濾紙及びその製造方法 |
JPH02175997A (ja) | 1988-12-26 | 1990-07-09 | Nippon Sheet Glass Co Ltd | 濾紙及びその製造方法 |
JPH0615126A (ja) | 1985-06-24 | 1994-01-25 | Nitta Ind Corp | 空気濾紙 |
JPH1080612A (ja) * | 1995-08-30 | 1998-03-31 | Mitsubishi Paper Mills Ltd | 濾材およびエアフィルター |
JPH10156116A (ja) | 1996-11-29 | 1998-06-16 | Hokuetsu Paper Mills Ltd | エアフィルタ用濾材およびその製造方法 |
JP2003071219A (ja) | 2001-09-06 | 2003-03-11 | Hokuetsu Paper Mills Ltd | エアフィルタ用濾材及びその製造方法 |
JP2006167491A (ja) | 2004-11-17 | 2006-06-29 | Hokuetsu Paper Mills Ltd | エアフィルタ用濾材及びその製造方法 |
JP2008246321A (ja) * | 2007-03-29 | 2008-10-16 | Hokuetsu Paper Mills Ltd | 除塵エアフィルタ用濾材及びその製造方法 |
JP2010094580A (ja) | 2008-10-14 | 2010-04-30 | Hokuetsu Kishu Paper Co Ltd | エアフィルタ用濾材及びその製造方法 |
JP2011240311A (ja) * | 2010-05-21 | 2011-12-01 | Hokuetsu Kishu Paper Co Ltd | エアフィルタ用濾材 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6290395A (ja) * | 1985-06-24 | 1987-04-24 | ニッタ株式会社 | 濾紙とその製造方法 |
JPH08206421A (ja) * | 1995-02-08 | 1996-08-13 | Mitsubishi Paper Mills Ltd | 濾材およびその製造方法 |
WO2001043850A1 (en) * | 1999-12-15 | 2001-06-21 | Hollingsworth & Vose Company | Low boron containing microfiberglass filtration media |
JP2002041499A (ja) | 2000-07-21 | 2002-02-08 | Bittoran Kk | パンフレット作成システム |
JP4895463B2 (ja) * | 2000-08-21 | 2012-03-14 | 北越紀州製紙株式会社 | エアフィルタ用濾材およびその製造方法 |
JP4267810B2 (ja) | 2000-12-06 | 2009-05-27 | 日産自動車株式会社 | 炭化珪素半導体装置の製造方法 |
DE60229305D1 (de) * | 2002-10-16 | 2008-11-20 | Hokuetsu Paper Mills | Luftreinigungsfilter und verfahren zur herstellung desselben |
DE602004026035D1 (de) * | 2003-01-23 | 2010-04-29 | Daiwa Spinning Co Ltd | Verfahren zur herstellung eines separators für eine alkali-sekundärbatterie |
JP4496130B2 (ja) | 2004-06-01 | 2010-07-07 | 合資会社ヴォルフィジャパン | 折り畳みスタンドおよびその製造方法 |
CN101098741B (zh) * | 2004-11-05 | 2012-10-10 | 唐纳森公司 | 过滤介质和结构 |
US8057567B2 (en) * | 2004-11-05 | 2011-11-15 | Donaldson Company, Inc. | Filter medium and breather filter structure |
AU2005304879B2 (en) | 2004-11-05 | 2010-02-04 | Donaldson Company, Inc. | Filter medium and structure |
KR101421317B1 (ko) * | 2007-04-17 | 2014-07-18 | 데이진 화이바 가부시키가이샤 | 습식 부직포 및 필터 |
WO2009119054A1 (ja) * | 2008-03-25 | 2009-10-01 | 北越製紙株式会社 | エアフィルタ用濾材 |
JP2010080612A (ja) | 2008-09-25 | 2010-04-08 | Toppan Printing Co Ltd | ビルドアップ基板絶縁層の表面粗化装置 |
JP4703716B2 (ja) | 2008-12-26 | 2011-06-15 | Ihi運搬機械株式会社 | 駐車装置 |
US20100212272A1 (en) * | 2009-02-24 | 2010-08-26 | Hollingsworth & Vose Company | Filter media suitable for ashrae applications |
JP5319380B2 (ja) | 2009-04-24 | 2013-10-16 | 北越紀州製紙株式会社 | 低坪量エアフィルタ用濾材 |
JP5173969B2 (ja) * | 2009-09-17 | 2013-04-03 | 北越紀州製紙株式会社 | エアフィルタ用濾材 |
US8114197B2 (en) * | 2009-12-22 | 2012-02-14 | Hollingsworth & Vose Company | Filter media and articles including dendrimers and/or other components |
JP5635922B2 (ja) * | 2011-02-03 | 2014-12-03 | 北越紀州製紙株式会社 | エアフィルタ用濾材及びその製造方法 |
US20120248034A1 (en) * | 2011-04-01 | 2012-10-04 | Lydall, Inc. | Methods of making and using liquid filter media |
US8882876B2 (en) * | 2012-06-20 | 2014-11-11 | Hollingsworth & Vose Company | Fiber webs including synthetic fibers |
US9352267B2 (en) * | 2012-06-20 | 2016-05-31 | Hollingsworth & Vose Company | Absorbent and/or adsorptive filter media |
EP2881421B1 (en) * | 2012-07-30 | 2018-06-06 | Kuraray Co., Ltd. | Heat-resistant resin composite, method for producing same, and non-woven fabric for heat-resistant resin composite |
CN105163828B (zh) * | 2013-04-15 | 2018-05-18 | 北越纪州制纸株式会社 | 空气过滤器用滤材、其制造方法及具备其的空气过滤器 |
US20150157969A1 (en) * | 2013-12-05 | 2015-06-11 | Hollingsworth & Vose Company | Fine glass filter media |
US20160136553A1 (en) * | 2014-11-19 | 2016-05-19 | Hollingsworth & Vose Company | Resin impregnated fiber webs |
-
2014
- 2014-01-30 CN CN201480021183.3A patent/CN105163828B/zh active Active
- 2014-01-30 KR KR1020157030960A patent/KR101795201B1/ko active IP Right Grant
- 2014-01-30 CN CN201610906903.5A patent/CN106345182B/zh active Active
- 2014-01-30 KR KR1020177027297A patent/KR101898836B1/ko active IP Right Grant
- 2014-01-30 JP JP2015512328A patent/JP6045687B2/ja active Active
- 2014-01-30 US US14/781,275 patent/US9656196B2/en active Active
- 2014-01-30 EP EP14785326.1A patent/EP2987544B1/en active Active
- 2014-01-30 WO PCT/JP2014/052092 patent/WO2014171165A1/ja active Application Filing
-
2016
- 2016-10-11 JP JP2016199900A patent/JP6212619B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6019016A (ja) * | 1983-07-12 | 1985-01-31 | Toyo Roshi Kk | 濾紙 |
JPH0615126A (ja) | 1985-06-24 | 1994-01-25 | Nitta Ind Corp | 空気濾紙 |
JPH0241499A (ja) | 1988-08-01 | 1990-02-09 | Nippon Sheet Glass Co Ltd | 濾紙及びその製造方法 |
JPH02175997A (ja) | 1988-12-26 | 1990-07-09 | Nippon Sheet Glass Co Ltd | 濾紙及びその製造方法 |
JPH1080612A (ja) * | 1995-08-30 | 1998-03-31 | Mitsubishi Paper Mills Ltd | 濾材およびエアフィルター |
JPH10156116A (ja) | 1996-11-29 | 1998-06-16 | Hokuetsu Paper Mills Ltd | エアフィルタ用濾材およびその製造方法 |
JP2003071219A (ja) | 2001-09-06 | 2003-03-11 | Hokuetsu Paper Mills Ltd | エアフィルタ用濾材及びその製造方法 |
JP2006167491A (ja) | 2004-11-17 | 2006-06-29 | Hokuetsu Paper Mills Ltd | エアフィルタ用濾材及びその製造方法 |
JP2008246321A (ja) * | 2007-03-29 | 2008-10-16 | Hokuetsu Paper Mills Ltd | 除塵エアフィルタ用濾材及びその製造方法 |
JP2010094580A (ja) | 2008-10-14 | 2010-04-30 | Hokuetsu Kishu Paper Co Ltd | エアフィルタ用濾材及びその製造方法 |
JP2011240311A (ja) * | 2010-05-21 | 2011-12-01 | Hokuetsu Kishu Paper Co Ltd | エアフィルタ用濾材 |
Non-Patent Citations (3)
Title |
---|
"Paper and board-Determination of tensile properties-Part 2: Constant rate of elongation method", JIS P 8113, 2006 |
"Test method of air filter units for ventilation and electric air cleaners for ventilation", JIS B 9908, 2011 |
See also references of EP2987544A4 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106032648A (zh) * | 2015-03-17 | 2016-10-19 | 中国科学院过程工程研究所 | 粗糙化处理无纺布的方法、处理得到的无纺布及其用途 |
CN106032648B (zh) * | 2015-03-17 | 2018-09-04 | 中国科学院过程工程研究所 | 粗糙化处理无纺布的方法、处理得到的无纺布及其用途 |
CN105735036A (zh) * | 2016-02-25 | 2016-07-06 | 杭州特种纸业有限公司 | 绢花纸及其制备方法 |
CN105735030A (zh) * | 2016-02-25 | 2016-07-06 | 杭州特种纸业有限公司 | 擦镜纸及其制备方法 |
CN105926344A (zh) * | 2016-04-26 | 2016-09-07 | 杭州特种纸业有限公司 | 纳米定量滤纸及其制备方法 |
CN105951524A (zh) * | 2016-04-26 | 2016-09-21 | 杭州特种纸业有限公司 | 纳米机油滤纸及其制备方法 |
CN105937193A (zh) * | 2016-04-26 | 2016-09-14 | 杭州特种纸业有限公司 | 纳米机空滤纸及其制备方法 |
CN105780595A (zh) * | 2016-04-26 | 2016-07-20 | 杭州特种纸业有限公司 | 纳米空气滤纸及其制备方法 |
JP2018038983A (ja) * | 2016-09-09 | 2018-03-15 | 北越紀州製紙株式会社 | エアフィルタ用濾材の製造方法 |
JP2019188377A (ja) * | 2018-04-27 | 2019-10-31 | 北越コーポレーション株式会社 | フィルタ用濾材の製造方法 |
JP7015614B2 (ja) | 2018-04-27 | 2022-02-03 | 北越コーポレーション株式会社 | フィルタ用濾材の製造方法 |
JP2020065956A (ja) * | 2018-10-22 | 2020-04-30 | 北越コーポレーション株式会社 | エアフィルタ用濾材及びその製造方法 |
JP7215871B2 (ja) | 2018-10-22 | 2023-01-31 | 北越コーポレーション株式会社 | エアフィルタ用濾材及びその製造方法 |
JP2022537390A (ja) * | 2019-06-20 | 2022-08-25 | ユニフラックス アイ エルエルシー | 軽量不織マット |
JP7471327B2 (ja) | 2019-06-20 | 2024-04-19 | ユニフラックス アイ エルエルシー | 軽量不織マット |
CN110792002A (zh) * | 2019-08-26 | 2020-02-14 | 上海飞特亚空气过滤有限公司 | 一种高强度空气过滤纸及其制备方法 |
JP2022022750A (ja) * | 2020-07-03 | 2022-02-07 | 北越コーポレーション株式会社 | エアフィルタ用濾材及びその製造方法 |
JPWO2022003965A1 (ja) * | 2020-07-03 | 2022-01-06 | ||
JP7349414B2 (ja) | 2020-07-03 | 2023-09-22 | 北越コーポレーション株式会社 | エアフィルタ用濾材及びその製造方法 |
EP4176956A4 (en) * | 2020-07-03 | 2024-03-13 | Hokuetsu Corporation | FILTER MEDIUM FOR AIR FILTER AND METHOD FOR PRODUCING SAME |
JP7453375B2 (ja) | 2020-07-03 | 2024-03-19 | 北越コーポレーション株式会社 | エアフィルタ用濾材及びその製造方法 |
WO2022003965A1 (ja) * | 2020-07-03 | 2022-01-06 | 北越コーポレーション株式会社 | エアフィルタ用濾材及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2987544A1 (en) | 2016-02-24 |
EP2987544A4 (en) | 2016-11-30 |
KR101898836B1 (ko) | 2018-09-13 |
JP6212619B2 (ja) | 2017-10-11 |
CN106345182A (zh) | 2017-01-25 |
EP2987544B1 (en) | 2017-12-27 |
JP6045687B2 (ja) | 2016-12-14 |
US9656196B2 (en) | 2017-05-23 |
JP2017013068A (ja) | 2017-01-19 |
JPWO2014171165A1 (ja) | 2017-02-16 |
US20160051920A1 (en) | 2016-02-25 |
KR20170116190A (ko) | 2017-10-18 |
CN105163828B (zh) | 2018-05-18 |
KR101795201B1 (ko) | 2017-11-07 |
KR20150134425A (ko) | 2015-12-01 |
CN106345182B (zh) | 2019-01-22 |
CN105163828A (zh) | 2015-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6212619B2 (ja) | エアフィルタ用濾材及びそれを備えるエアフィルタ | |
JP5319380B2 (ja) | 低坪量エアフィルタ用濾材 | |
JP2018038983A (ja) | エアフィルタ用濾材の製造方法 | |
JP6087207B2 (ja) | エアフィルタ用濾材及びその製造方法 | |
JP6527800B2 (ja) | フィルタ用濾紙及びその製造方法 | |
JP6270971B2 (ja) | エアフィルタ用濾材及びその製造方法 | |
JP5536537B2 (ja) | エアフィルタ用濾材 | |
JP5797175B2 (ja) | エアフィルタ用濾材 | |
JP2011062643A (ja) | エアフィルタ用濾材 | |
JP6964033B2 (ja) | エアフィルタ用濾材 | |
JP7117174B2 (ja) | ガラスフィルタ | |
JP6858678B2 (ja) | エアフィルタ用濾材及びその製造方法 | |
JP2015085250A (ja) | エアフィルタ用濾材及びその製造方法 | |
JP7453375B2 (ja) | エアフィルタ用濾材及びその製造方法 | |
JP7349414B2 (ja) | エアフィルタ用濾材及びその製造方法 | |
JP7281419B2 (ja) | フィルタ用濾材及びその製造方法 | |
KR20240151823A (ko) | 에어 필터용 여과재 및 그 제조 방법 | |
KR20240038047A (ko) | 고성능 에어 필터용 여과재 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480021183.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14785326 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015512328 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14781275 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157030960 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014785326 Country of ref document: EP |