[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014039556A1 - Systems and methods to detect rare mutations and copy number variation - Google Patents

Systems and methods to detect rare mutations and copy number variation Download PDF

Info

Publication number
WO2014039556A1
WO2014039556A1 PCT/US2013/058061 US2013058061W WO2014039556A1 WO 2014039556 A1 WO2014039556 A1 WO 2014039556A1 US 2013058061 W US2013058061 W US 2013058061W WO 2014039556 A1 WO2014039556 A1 WO 2014039556A1
Authority
WO
WIPO (PCT)
Prior art keywords
polynucleotides
sequence
sequencing
reads
individual
Prior art date
Application number
PCT/US2013/058061
Other languages
French (fr)
Inventor
AmirAli TALASAZ
Helmy Eltoukhy
Original Assignee
Guardant Health, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50237580&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014039556(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Guardant Health, Inc. filed Critical Guardant Health, Inc.
Priority to GB1403810.3A priority Critical patent/GB2510725B/en
Priority to EP18207391.6A priority patent/EP3470533B2/en
Priority to EP22162429.9A priority patent/EP4036247B1/en
Priority to EP13834427.0A priority patent/EP2893040B1/en
Priority to ES13834427T priority patent/ES2711635T3/en
Priority to IL305303A priority patent/IL305303A/en
Priority to DK13834427.0T priority patent/DK2893040T5/en
Priority to US14/425,189 priority patent/US10041127B2/en
Priority to EP21155582.6A priority patent/EP3842551B1/en
Priority to CA2883901A priority patent/CA2883901C/en
Priority to KR1020217002539A priority patent/KR102393608B1/en
Priority to PL19192885T priority patent/PL3591073T3/en
Priority to JP2015530152A priority patent/JP6275145B2/en
Priority to CN201380057641.4A priority patent/CN104781421B/en
Priority to EP19192885.2A priority patent/EP3591073B1/en
Priority to IL269097A priority patent/IL269097B2/en
Priority to EP24168994.2A priority patent/EP4424826A2/en
Priority to BR112015004847-1A priority patent/BR112015004847B1/en
Priority to PL13834427T priority patent/PL2893040T3/en
Priority to KR1020227014245A priority patent/KR20220061271A/en
Priority to KR1020247000052A priority patent/KR20240007774A/en
Priority to KR1020197028255A priority patent/KR102210852B1/en
Priority to MX2015002769A priority patent/MX367963B/en
Priority to KR1020157008319A priority patent/KR102028375B1/en
Priority to SG11201501662TA priority patent/SG11201501662TA/en
Publication of WO2014039556A1 publication Critical patent/WO2014039556A1/en
Priority to CN202210198793.7A priority patent/CN114574581A/en
Priority to CN201480024935.1A priority patent/CN105408496A/en
Priority to EP24174621.3A priority patent/EP4439566A2/en
Priority to PCT/US2014/000048 priority patent/WO2014149134A2/en
Priority to ES21157571T priority patent/ES2980689T3/en
Priority to EP14771159.2A priority patent/EP2971168B1/en
Priority to GB1518080.5A priority patent/GB2528205B/en
Priority to EP21157571.7A priority patent/EP3882362B1/en
Priority to ES14771159T priority patent/ES2877088T3/en
Priority to HK15101583.4A priority patent/HK1201080A1/en
Priority to IL23748015A priority patent/IL237480B/en
Priority to US14/712,754 priority patent/US9598731B2/en
Priority to US14/855,301 priority patent/US20160040229A1/en
Priority to HK16100352.4A priority patent/HK1212396A1/en
Priority to US15/076,565 priority patent/US9902992B2/en
Priority to HK16110900.0A priority patent/HK1222684A1/en
Priority to US15/467,570 priority patent/US9840743B2/en
Priority to US15/492,659 priority patent/US9834822B2/en
Priority to US15/669,779 priority patent/US10894974B2/en
Priority to US15/828,099 priority patent/US10837063B2/en
Priority to US15/872,831 priority patent/US10457995B2/en
Priority to US15/978,848 priority patent/US10501808B2/en
Priority to US16/277,712 priority patent/US10683556B2/en
Priority to US16/277,724 priority patent/US10738364B2/en
Priority to US16/283,635 priority patent/US10494678B2/en
Priority to US16/283,629 priority patent/US10501810B2/en
Priority to US16/389,680 priority patent/US10876152B2/en
Priority to US16/575,128 priority patent/US10793916B2/en
Priority to US16/593,633 priority patent/US10822663B2/en
Priority to US16/709,437 priority patent/US10961592B2/en
Priority to US16/711,892 priority patent/US11913065B2/en
Priority to US16/885,079 priority patent/US10876171B2/en
Priority to US16/897,038 priority patent/US10876172B2/en
Priority to US16/913,965 priority patent/US11434523B2/en
Priority to US17/068,710 priority patent/US10947600B2/en
Priority to US17/146,359 priority patent/US10995376B1/en
Priority to US17/152,529 priority patent/US11001899B1/en
Priority to US17/210,191 priority patent/US12054783B2/en
Priority to US17/370,941 priority patent/US11319597B2/en
Priority to US17/386,338 priority patent/US11319598B2/en
Priority to US17/696,524 priority patent/US11879158B2/en
Priority to US18/157,249 priority patent/US11773453B2/en
Priority to US18/333,436 priority patent/US12049673B2/en
Priority to US18/535,812 priority patent/US12116624B2/en
Priority to US18/426,665 priority patent/US20240240258A1/en
Priority to US18/594,336 priority patent/US12110560B2/en
Priority to US18/677,090 priority patent/US20240318234A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1065Preparation or screening of tagged libraries, e.g. tagged microorganisms by STM-mutagenesis, tagged polynucleotides, gene tags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • G16B30/10Sequence alignment; Homology search
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/165Mathematical modelling, e.g. logarithm, ratio
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2545/00Reactions characterised by their quantitative nature
    • C12Q2545/10Reactions characterised by their quantitative nature the purpose being quantitative analysis
    • C12Q2545/114Reactions characterised by their quantitative nature the purpose being quantitative analysis involving a quantitation step
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the detection and quantification of polynucleotides is important for molecular biology and medical applications such as diagnostics. Genetic testing is particularly useful for a number of diagnostic methods. For example, disorders that are caused by rare genetic alterations (e.g., sequence variants) or changes in epigenetic markers, such as cancer and partial or complete aneuploidy, may be detected or more accurately characterized with DNA sequence information.
  • genetic testing is particularly useful for a number of diagnostic methods. For example, disorders that are caused by rare genetic alterations (e.g., sequence variants) or changes in epigenetic markers, such as cancer and partial or complete aneuploidy, may be detected or more accurately characterized with DNA sequence information.
  • cfDNA Cell free DNA
  • the disclosure provides for a method for detecting copy number variation comprising: a) sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular polynucleotide are optionally attached to unique barcodes; b) filtering out reads that fail to meet a set threshold; c) mapping sequence reads obtained from step (a) to a reference sequence; d) quantifying/counting mapped reads in two or more predefined regions of the reference sequence; e) determining a copy number variation in one or more of the predefined regions by (i) normalizing the number of reads in the predefined regions to each other and/or the number of unique barcodes in the predefined regions to each other; and (ii) comparing the normalized numbers obtained in step (i) to normalized numbers obtained from a control sample.
  • the disclosure also provides for a method for detecting a rare mutation in a cell-free or substantially cell free sample obtained from a subject comprising: a) sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular
  • polynucleotide generate a plurality of sequencing reads; b) sequencing extracellular
  • polynucleotides from a bodily sample from a subject, wherein each of the extracellular
  • polynucleotide generate a plurality of sequencing reads; sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular polynucleotide generate a plurality of sequencing reads; c) filtering out reads that fail to meet a set threshold; d) mapping sequence reads derived from the sequencing onto a reference sequence; e) identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position; f) for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position; g) normalizing the ratios or frequency of variance for each mappable base position and determining potential rare variant(s) or mutation(s); h) and comparing the resulting number for each of the regions with potential rare variant(s) or mutation(s) to similarly
  • the disclosure also provides for a method of characterizing the heterogeneity of an abnormal condition in a subject, the method comprising generating a genetic profile of extracellular polynucleotides in the subject, wherein the genetic profile comprises a plurality of data resulting from copy number variation and/or other rare mutation (e.g., genetic alteration) analyses.
  • the prevalence/concentration of each rare variant identified in the subject is reported and quantified simultaneously.
  • a confidence score regarding the prevalence/concentrations of rare variants in the subject, is reported.
  • extracellular polynucleotides comprise DNA.
  • extracellular polynucleotides comprise R A.
  • Polynucleotides may be fragments or fragmented after isolation. Additionally, the disclosure provides for a method for circulating nucleic acid isolation and extraction.
  • extracellular polynucleotides are isolated from a bodily sample that may be selected from a group consisting of blood, plasma, serum, urine, saliva, mucosal excretions, sputum, stool and tears.
  • the methods of the disclosure also comprise a step of determining the percent of sequences having copy number variation or other rare genetic alteration (e.g., sequence variants) in said bodily sample.
  • the percent of sequences having copy number variation in said bodily sample is determined by calculating the percentage of predefined regions with an amount of polynucleotides above or below a predetermined threshold.
  • bodily fluids are drawn from a subject suspected of having an abnormal condition which may be selected from the group consisting of, mutations, rare mutations, single nucleotide variants, indels, copy number variations, trans versions,
  • translocations inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection and cancer.
  • the subject may be a pregnant female in which the abnormal condition may be a fetal abnormality selected from the group consisting of, single nucleotide variants, indels, copy number variations, trans versions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection and cancer
  • the method may comprise comprising attaching one or more barcodes to the extracellular polynucleotides or fragments thereof prior to sequencing, in which the barcodes comprise are unique. In other embodiments barcodes attached to extracellular polynucleotides or fragments thereof prior to sequencing are not unique.
  • the methods of the disclosure may comprise selectively enriching regions from the subject's genome or transcriptome prior to sequencing. In other embodiments the methods of the disclosure comprise selectively enriching regions from the subject's genome or transcriptome prior to sequencing. In other embodiments the methods of the disclosure comprise non-selectively enriching regions from the subject's genome or transcriptome prior to sequencing.
  • the methods of the disclosure comprise attaching one or more barcodes to the extracellular polynucleotides or fragments thereof prior to any amplification or enrichment step.
  • the barcode is a polynucleotide, which may further comprise random sequence or a fixed or semi-random set of oligonucleotides that in combination with the diversity of molecules sequenced from a select region enables identification of unique molecules and be at least a 3, 5, 10, 15, 20 25, 30, 35, 40, 45, or 50mer base pairs in length.
  • extracellular polynucleotides or fragments thereof may be amplified.
  • amplification comprises global amplification or whole genome amplification.
  • sequence reads of unique identity may be detected based on sequence information at the beginning (start) and end (stop) regions of the sequence read and the length of the sequence read.
  • sequence molecules of unique identity are detected based on sequence information at the beginning (start) and end (stop) regions of the sequence read, the length of the sequence read and attachment of a barcode.
  • amplification comprises selective amplification, non-selective amplification, suppression amplification or subtractive enrichment.
  • the methods of the disclosure comprise removing a subset of the reads from further analysis prior to quantifying or enumerating reads.
  • the method may comprise filtering out reads with an accuracy or quality score of less than a threshold, e.g., 90%, 99%, 99.9%, or 99.99%) and/or mapping score less than a threshold, e.g., 90%, 99%, 99.9% or 99.99%.
  • methods of the disclosure comprise filtering reads with a quality score lower than a set threshold.
  • predefined regions are uniform or substantially uniform in size, about lOkb, 20kb, 30kb 40kb, 50kb, 60kb, 70kb, 80kb, 90kb, or lOOkb in size. In some embodiments, at least 50, 100, 200, 500, 1000, 2000, 5000, 10,000, 20,000, or 50,000 regions are analyzed.
  • a genetic variant, rare mutation or copy number variation occurs in a region of the genome selected from the group consisting of gene fusions, gene duplications, gene deletions, gene translocations, microsatellite regions, gene fragments or combination thereof.
  • a genetic variant, rare mutation, or copy number variation occurs in a region of the genome selected from the group consisting of genes, oncogenes, tumor suppressor genes, promoters, regulatory sequence elements, or combination thereof.
  • the variant is a nucleotide variant, single base substitution, or small indel, transversion, translocation, inversion, deletion, truncation or gene truncation about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nucleotides in length.
  • the method comprises correcting/normalizing/adjusting the quantity of mapped reads using the barcodes or unique properties of individual reads.
  • enumerating the reads is performed through enumeration of unique barcodes in each of the predefined regions and normalizing those numbers across at least a subset of predefined regions that were sequenced.
  • samples at succeeding time intervals from the same subject are analyzed and compared to previous sample results.
  • the method of the disclosure may further comprise determining partial copy number variation frequency, loss of heterozygosity, gene expression analysis, epigenetic analysis and
  • copy number variation and rare mutation analysis is determined in a cell-free or substantially cell free sample obtained from a subject using multiplex sequencing, comprising performing over 10,000 sequencing reactions; simultaneously sequencing at least 10,000 different reads; or performing data analysis on at least 10,000 different reads across the genome.
  • the method may comprise multiplex sequencing comprising performing data analysis on at least 10,000 different reads across the genome.
  • the method may further comprise enumerating sequenced reads that are uniquely identifiable.
  • the methods of the disclosure comprise normalizing and detection is performed using one or more of hidden markov, dynamic programming, support vector machine, Bayesian network, trellis decoding, Viterbi decoding, expectation maximization, Kalman filtering, or neural network methodologies.
  • the methods of the disclosure comprise monitoring disease progression, monitoring residual disease, monitoring therapy, diagnosing a condition, prognosing a condition, or selecting a therapy based on discovered variants.
  • a therapy is modified based on the most recent sample analysis.
  • the methods of the disclosure comprise inferring the genetic profile of a tumor, infection or other tissue abnormality. In some embodiments growth, remission or evolution of a tumor, infection or other tissue abnormality is monitored. In some embodiments the subject's immune system are analyzed and monitored at single instances or over time.
  • the methods of the disclosure comprise identification of a variant that is followed up through an imaging test (e.g., CT, PET-CT, MRI, X-ray, ultrasound) for localization of the tissue abnormality suspected of causing the identified variant.
  • an imaging test e.g., CT, PET-CT, MRI, X-ray, ultrasound
  • the methods of the disclosure comprise use of genetic data obtained from a tissue or tumor biopsy from the same patient. In some embodiments, whereby the phylogenetics of a tumor, infection or other tissue abnormality is inferred.
  • the methods of the disclosure comprise performing population- based no-calling and identification of low-confidence regions.
  • obtaining the measurement data for the sequence coverage comprises measuring sequence coverage depth at every position of the genome.
  • correcting the measurement data for the sequence coverage bias comprises calculating window-averaged coverage.
  • correcting the measurement data for the sequence coverage bias comprises performing
  • correcting the measurement data for the sequence coverage bias comprises performing adjustments based on additional weighting factor associated with individual mappings to compensate for bias.
  • the methods of the disclosure comprise extracellular polynucleotide derived from a diseased cell origin.
  • the extracellular polynucleotide is derived from a healthy cell origin.
  • the disclosure also provides for a system comprising a computer readable medium for performing the following steps: selecting predefined regions in a genome; enumerating number of sequence reads in the predefined regions; normalizing the number of sequence reads across the predefined regions; and determining percent of copy number variation in the predefined regions.
  • the entirety of the genome or at least 10%, 20%, 30%>, 40%>, 50%>, 60%>, 70%), 80%o, or 90%) of the genome is analyzed.
  • computer readable medium provides data on percent cancer DNA or RNA in plasma or serum to the end user.
  • the amount of genetic variation such as polymorphisms or causal variants is analyzed.
  • the presence or absence of genetic alterations is detected.
  • the disclosure also provides for a method for detecting a rare mutation in a cell-free or a substantially cell free sample obtained from a subject comprising: a) sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular polynucleotides generate a plurality of sequencing reads; b) filtering out reads that fail to meet a set threshold; c) mapping sequence reads derived from the sequencing onto a reference sequence; d) identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position; e) for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position; f) normalizing the ratios or frequency of variance for each mappable base position and determining potential rare variant(s) or other genetic alteration(s); and
  • This disclosure also provides for a method comprising: a. providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b. amplifying the tagged parent polynucleotides in the set to produce a corresponding set of amplified progeny polynucleotides; c. sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads; and d.
  • the method further comprises: e. analyzing the set of consensus sequences for each set of tagged parent molecules.
  • each polynucleotide in a set is mappable to a reference sequence.
  • the method comprises providing a plurality of sets of tagged parent polynucleotides, wherein each set is mappable to a different reference sequence.
  • the method further comprises converting initial starting genetic material into the tagged parent polynucleotides.
  • the initial starting genetic material comprises no more than 100 ng of polynucleotides.
  • the method comprises bottlenecking the initial starting genetic material prior to converting.
  • the method comprises converting the initial starting genetic material into tagged parent polynucleotides with a conversion efficiency of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 80% or at least 90%.
  • converting comprises any of blunt-end ligation, sticky end ligation, molecular inversion probes, PCR, ligation-based PCR, single strand ligation and single strand circularization.
  • the initial starting genetic material is cell-free nucleic acid.
  • a plurality of the reference sequences are from the same genome.
  • each tagged parent polynucleotide in the set is uniquely tagged.
  • the tags are non-unique.
  • the generation of consensus sequences is based on information from the tag and/or at least one of sequence information at the beginning (start) region of the sequence read, the end (stop) regions of the sequence read and the length of the sequence read.
  • the method comprises sequencing a subset of the set of amplified progeny polynucleotides sufficient to produce sequence reads for at least one progeny from of each of at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% at least 95%, at least 98%, at least 99%, at least 99.9% or at least 99.99% of unique polynucleotides in the set of tagged parent polynucleotides.
  • the at least one progeny is a plurality of progeny, e.g., at least 2, at least 5 or at least 10 progeny.
  • the number of sequence reads in the set of sequence reads is greater than the number of unique tagged parent polynucleotides in the set of tagged parent
  • the subset of the set of amplified progeny polynucleotides sequenced is of sufficient size so that any nucleotide sequence represented in the set of tagged parent polynucleotides at a percentage that is the same as the percentage per-base sequencing error rate of the sequencing platform used, has at least a 50%>, at least a 60%>, at least a 70%>, at least a 80%, at least a 90% at least a 95%, at least a 98%, at least a 99%, at least a 99.9% or at least a 99.99%> chance of being represented among the set of consensus sequences.
  • the method comprises enriching the set of amplified progeny polynucleotides for polynucleotides mapping to one or more selected reference sequences by: (i) selective amplification of sequences from initial starting genetic material converted to tagged parent polynucleotides; (ii) selective amplification of tagged parent polynucleotides; (iii) selective sequence capture of amplified progeny polynucleotides; or (iv) selective sequence capture of initial starting genetic material.
  • analyzing comprises normalizing a measure (e.g., number) taken from a set of consensus sequences against a measure taken from a set of consensus sequences from a control sample.
  • a measure e.g., number
  • analyzing comprises detecting mutations, rare mutations, single nucleotide variants, indels, copy number variations, trans versions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection or cancer.
  • the polynucleotides comprise DNA, RNA, a combination of the two or DNA plus RNA-derived cDNA.
  • a certain subset of polynucleotides is selected for or is enriched based on polynucleotide length in base-pairs from the initial set of polynucleotides or from the amplified polynucleotides.
  • analysis further comprises detection and monitoring of an abnormality or disease within an individual, such as, infection and/or cancer.
  • the method is performed in combination with immune repertoire profiling.
  • the polynucleotides are extract from the group consisting of blood, plasma, serum, urine, saliva, mucosal excretions, sputum, stool, and tears.
  • collapsing comprising detecting and/or correcting errors, nicks or lesions present in the sense or anti-sense strand of the tagged parent polynucleotides or amplified progeny polynucleotides.
  • This disclosure also provides for a method comprising detecting genetic variation in initial starting genetic material with a sensitivity of at least 5%, at least 1%, at least 0.5%, at least 0.1% or at least 0.05%.
  • the initial starting genetic material is provided in an amount less than 100 ng of nucleic acid
  • the genetic variation is copy number/heterozygosity variation and detecting is performed with sub-chromosomal resolution; e.g., at least 100 megabase resolution, at least 10 megabase resolution, at least 1 megabase resolution, at least 100 kilobase resolution, at least 10 kilobase resolution or at least 1 kilobase resolution.
  • the method comprises providing a plurality of sets of tagged parent polynucleotides, wherein each set is mappable to a different reference sequence.
  • the reference sequence is the locus of a tumor marker
  • analyzing comprises detecting the tumor marker in the set of consensus sequences.
  • the tumor marker is present in the set of consensus sequences at a frequency less than the error rate introduced at the amplifying step.
  • the at least one set is a plurality of sets, and the reference sequences comprise a plurality of reference sequences, each of which is the locus of a tumor marker.
  • analyzing comprises detecting copy number variation of consensus sequences between at least two sets of parent polynucleotides.
  • analyzing comprises detecting the presence of sequence variations compared with the reference sequences. In another embodiment analyzing comprises detecting the presence of sequence variations compared with the reference sequences and detecting copy number variation of consensus sequences between at least two sets of parent polynucleotides. In another embodiment collapsing comprises: i. grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide; and ii. determining a consensus sequence based on sequence reads in a family.
  • This disclosure also provides for a system comprising a computer readable medium for performing the following steps: a. providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b. amplifying the tagged parent polynucleotides in the set to produce a corresponding set of amplified progeny polynucleotides; c. sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads; and d.
  • each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides and, optionally, e. analyzing the set of consensus sequences for each set of tagged parent molecules.
  • This disclosure also provides a method comprising: a. providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b. amplifying the tagged parent polynucleotides in the set to produce a corresponding set of amplified progeny polynucleotides; c. sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads; d.
  • the quality threshold considers a number of sequence reads from amplified progeny polynucleotides collapsed into a consensus sequence. In another embodiment the quality threshold considers a number of sequence reads from amplified progeny polynucleotides collapsed into a consensus sequence.
  • This disclosure also provides a system comprising a computer readable medium for performing the aforesaid method.
  • This disclosure also provides a method comprising: a. providing at least one set of tagged parent polynucleotides, wherein each set maps to a different reference sequence in one or more genomes, and, for each set of tagged parent polynucleotides; i. amplifying the first
  • polynucleotides to produce a set of amplified polynucleotides ii. sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads; and iii. collapsing the sequence reads by: 1. grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide. In one embodiment collapsing further comprises: 2. determining a quantitative measure of sequence reads in each family. In another embodiment the method further comprises (including a) including a): b.
  • determining a quantitative measure of unique families and c. based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set. In another embodiment inferring is performed using statistical or probabilistic models.
  • the at least one set is a plurality of sets.
  • the method further comprises correcting for amplification or representational bias between the two sets.
  • the method further comprises using a control or set of control samples to correct for amplification or representational biases between the two sets.
  • the method further comprises determining copy number variation between the sets.
  • the method further comprises (including a, b, c): d. determining a quantitative measure of
  • polymorphic forms among the families; and e. based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides.
  • polymorphic forms include but are not limited to: substitutions, insertions, deletions, inversions, microsatellite changes, trans versions, translocations, fusions, methylation, hypermethylation,
  • the method further comprising: a. inferring copy number variation for the plurality of sets based on a comparison of the inferred number of tagged parent polynucleotides in each set mapping to each of a plurality of reference sequences. In another embodiment the original number of
  • polynucleotides in each set is further inferred.
  • This disclosure also provides a system comprising a computer readable medium for performing the aforesaid methods.
  • This disclosure also provides a method of determining copy number variation in a sample that includes polynucleotides, the method comprising: a. providing at least two sets of first polynucleotides, wherein each set maps to a different reference sequence in a genome, and, for each set of first polynucleotides; i. amplifying the polynucleotides to produce a set of amplified polynucleotides; ii. sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads; iii.
  • This disclosure also provides a method of inferring frequency of sequence calls in a sample of polynucleotides comprising: a. providing at least one set of first polynucleotides, wherein each set maps to a different reference sequence in one or more genomes, and, for each set of first polynucleotides; i. amplifying the first polynucleotides to produce a set of amplified polynucleotides; ii. sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads; iii.
  • each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide; b. inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises: i. assigning, for each family, confidence score for each of a plurality of calls, the confidence score taking into consideration a frequency of the call among members of the family; and ii. estimating a frequency of the one or more calls taking into consideration the confidence scores of the one or more calls assigned to each family.
  • This disclosure also provides a system comprising a computer readable medium for performing the aforesaid methods.
  • This disclosure also provides a method of communicating sequence information about at least one individual polynucleotide molecule comprising: a. providing at least one individual polynucleotide molecule; b. encoding sequence information in the at least one individual polynucleotide molecule to produce a signal; c. passing at least part of the signal through a channel to produce a received signal comprising nucleotide sequence information about the at least one individual polynucleotide molecule, wherein the received signal comprises noise and/or distortion; d. decoding the received signal to produce a message comprising sequence information about the at least one individual polynucleotide molecule, wherein decoding reduces noise and/or distortion in the message; and e.
  • the noise comprises incorrect nucleotide calls.
  • distortion comprises uneven amplification of the individual polynucleotide molecule compared with other individual polynucleotide molecules.
  • distortion results from amplification or sequencing bias.
  • the at least one individual polynucleotide molecule is a plurality of individual polynucleotide molecules, and decoding produces a message about each molecule in the plurality.
  • encoding comprises amplifying the at least individual polynucleotide molecule which has optionally been tagged, wherein the signal comprises a collection of amplified molecules.
  • the channel comprises a polynucleotide sequencer and the received signal comprises sequence reads of a plurality of polynucleotides amplified from the at least one individual polynucleotide molecule.
  • decoding comprises grouping sequence reads of amplified molecules amplified from each of the at least one individual polynucleotide molecules.
  • decoding consists of a probabilistic or statistical method of filtering the generated sequence signal.
  • the polynucleotides are derived from tumor genomic DNA or R A. In another embodiment the polynucleotides are derived from cell-free polynucleotides, exosomal polynucleotides, bacterial polynucleotides or viral polynucleotides. In another embodiment further comprising the detection and/or association of affected molecular pathways. In another embodiment further comprising serial monitoring of the health or disease state of an individual. In another embodiment whereby the phylogeny of a genome associated with a disease within an individual is inferred. In another embodiment further comprising diagnosis, monitoring or treatment of a disease. In another embodiment the treatment regimen is selected or modified based on detected polymorphic forms or CNVs or associated pathways. In another embodiment the treatment comprises of a combination therapy.
  • This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: selecting predefined regions in a genome; accessing sequence reads and enumerating number of sequence reads in the predefined regions; normalizing the number of sequence reads across the predefined regions; and determining percent of copy number variation in the predefined regions.
  • This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads; b. filtering out reads that fail to meet a set threshold; c. mapping sequence reads derived from the sequencing onto a reference sequence; d. identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position; e. for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position; f.
  • This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent
  • This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides; c. filtering out from among the consensus sequences those that fail to meet a quality threshold.
  • This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; and i. collapsing the sequence reads by: 1. grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide and, optionally, 2. determining a quantitative measure of sequence reads in each family.
  • the executable code further performs the steps of: b. determining a quantitative measure of unique families; c. based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set. In certain embodiments, the executable code further performs the steps of: d. determining a quantitative measure of polymorphic forms among the families; and e. based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides.
  • This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping sequences reads sequenced from amplified polynucleotides into families, each family amplified from the same first polynucleotide in the set; b. inferring a quantitative measure of families in the set; c. determining copy number variation by comparing the quantitative measure of families in each set.
  • This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide; b. inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises: c.
  • This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data accessing a data file comprising a received signal that comprises endoded sequence information from at least one individual polynucleotide molecule wherein the received signal comprises noise and/or distortion; b. decoding the received signal to produce a message comprising sequence information about the at least one individual polynucleotide molecule, wherein decoding reduces noise and/or distortion about each individual polynucleotide in the message; and c. writing the message comprising sequence information about the at least one individual polynucleotide molecule to a computer file.
  • This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent
  • polynucleotides c. filtering out from among the consensus sequences those that fail to meet a quality threshold.
  • This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; and b. collapsing the sequence reads by: i. grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide; and ii. optionally, determining a quantitative measure of sequence reads in each family.
  • the executable code further performs the steps of: c. determining a quantitative measure of unique families; d. based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set.
  • the executable code further performs the steps of: e. determining a quantitative measure of polymorphic forms among the families; and f. based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides.
  • the executable code further performs the steps of: e. inferring copy number variation for the plurality of sets based on a comparison of the inferred number of tagged parent polynucleotides in each set mapping to each of a plurality of reference sequences.
  • This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b. grouping sequences reads sequenced from amplified polynucleotides into families, each family amplified from the same first polynucleotide in the set; c. inferring a quantitative measure of families in the set; d. determining copy number variation by comparing the quantitative measure of families in each set.
  • This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide; and b. inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises: i.
  • This disclosure also provides a method comprising: a. providing a sample comprising between 100 and 100,000 haploid human genome equivalents of cell free DNA (cfDNA) polynucleotides; and b. tagging the polynucleotides with between 2 and 1,000,000 unique identifiers.
  • the number of unique identifiers is at least 3, at least 5, at least 10, at least 15 or at least 25 and at most 100, at most 1000 or at most 10,000.
  • the number of unique identifiers is at most 100, at most 1000, at most 10,000, at most 100,000.
  • This disclosure also provides a method comprising: a. providing a sample comprising a plurality of human haploid genome equivalents of fragmented polynucleotides; b. determining z, wherein z is a measure of central tendency (e.g., mean, median or mode) of expected number of duplicate polynucleotides starting at any position in the genome, wherein duplicate
  • polynucleotides have the same start and stop positions; and c. tagging polynucleotides in sample with n unique identifiers, wherein n is between 2 and 100,000*z, 2 and 10,000*z, 2 and l,000*z or 2 and 100*z.
  • This disclosure also provides a method comprising: a. providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b. producing a plurality of sequence reads for each tagged parent polynucleotide in the set to produce a set of sequencing reads; and c. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides.
  • the disclosure provides for a method for detecting copy number variation comprising: a) sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular polynucleotide generate a plurality of sequencing reads; b) filtering out reads that fail to meet a set threshold; c) mapping the sequence reads obtained from step (a), after reads are filtered out, to a reference sequence; d) quantifying or enumerating mapped reads in two or more predefined regions of the reference sequence; and e) determining copy number variation in one or more of the predefined regions by: (ii) normalizing number of reads in the predefined regions to each other and/or the number of unique sequence reads in the predefined regions to one another; (ii) comparing the normalized numbers obtained in step (i) to normalized numbers obtained from a control sample.
  • the disclosure also provides for a method for detecting a rare mutation in a cell-free or substantially cell free sample obtained from a subject comprising: a) sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular polynucleotide generate a plurality of sequencing reads; b) performing multiplex sequencing on regions or whole-genome sequencing if enrichment is not performed; c) filtering out reads that fail to meet a set threshold; d) mapping sequence reads derived from the sequencing onto a reference sequence; e) identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position; f) for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position; g) normalizing the ratios or frequency of variance for each mapp
  • the disclosure also provides for a method of characterizing the heterogeneity of an abnormal condition in a subject, the method comprising generating a genetic profile of extracellular polynucleotides in the subject, wherein the genetic profile comprises a plurality of data resulting from copy number variation and rare mutation analyses.
  • the prevalence/concentration of each rare variant identified in the subject is reported and quantified simultaneously.
  • a confidence score regarding the prevalence/concentrations of rare variants in the subject, is reported.
  • the extracellular polynucleotides comprise DNA. In some embodiments, the extracellular polynucleotides comprise R A.
  • the methods further comprise isolating extracellular
  • the isolating comprises a method for circulating nucleic acid isolation and extraction. In some embodiments, the methods further comprise fragmenting said isolated extracellular polynucleotides.
  • the bodily sample is selected from the group consisting of blood, plasma, serum, urine, saliva, mucosal excretions, sputum, stool and tears.
  • the methods further comprise the step of determining the percent of sequences having copy number variation or rare mutation or variant in said bodily sample. In some embodiments, the determining comprises calculating the percentage of predefined regions with an amount of polynucleotides above or below a predetermined threshold.
  • the subject is suspected of having an abnormal condition.
  • the abnormal condition is selected from the group consisting of mutations, rare mutations, indels, copy number variations, trans versions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection and cancer.
  • the subject is a pregnant female.
  • the copy number variation or rare mutation or genetic variant is indicative of a fetal abnormality.
  • the fetal abnormality is selected from the group consisting of mutations, rare mutations, indels, copy number variations, trans versions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection and cancer.
  • the methods further comprise attaching one or more barcodes to the extracellular polynucleotides or fragments thereof prior to sequencing.
  • each barcode attached to extracellular polynucleotides or fragments thereof prior to sequencing is unique.
  • each barcode attached to extracellular polynucleotides or fragments thereof prior to sequencing is not unique.
  • the methods further comprise selectively enriching regions from the subject's genome or transcriptome prior to sequencing. In some embodiments, the methods further comprise non-selectively enriching regions from the subject's genome or transcriptome prior to sequencing.
  • the methods further comprise attaching one or more barcodes to the extracellular polynucleotides or fragments thereof prior to any amplification or enrichment step.
  • the barcode is a polynucleotide.
  • the barcode comprises random sequence.
  • the barcode comprises a fixed or semi- random set of oligonucleotides that in combination with the diversity of molecules sequenced from a select region enables identification of unique molecules.
  • the barcodes comprise oligonucleotides is at least a 3, 5, 10, 15, 20 25, 30, 35, 40, 45, or 50mer base pairs in length.
  • the methods further comprise amplifying the extracellular polynucleotides or fragments thereof.
  • the amplification comprises global amplification or whole genome amplification.
  • the amplification comprises selective amplification.
  • the amplification comprises non-selective amplification.
  • suppression amplification or subtractive enrichment is performed.
  • sequence reads of unique identity are detected based on sequence information at the beginning (start) and end (stop) regions of the sequence read and the length of the sequence read.
  • sequence molecules of unique identity are detected based on sequence information at the beginning (start) and end (stop) regions of the sequence read, the length of the sequence read and attachment of a barcode.
  • the methods further comprise removing a subset of the reads from further analysis prior to quantifying or enumerating reads.
  • removing comprises filtering out reads with an accuracy or quality score of less than a threshold, e.g., 90%, 99%, 99.9%, or 99.99% and/or mapping score less than a threshold, e.g., 90%, 99%, 99.9% or 99.99%.
  • the methods further comprise filtering reads with a quality score lower than a set threshold.
  • the predefined regions are uniform or substantially uniform in size. In some embodiments, the predefined regions are at least about lOkb, 20kb, 30kb 40kb, 50kb, 60kb, 70kb, 80kb, 90kb, or lOOkb in size.
  • At least 50, 100, 200, 500, 1000, 2000, 5000, 10,000, 20,000, or 50,000 regions are analyzed.
  • the variant occurs in a region of the genome selected from the group consisting of gene fusions, gene duplications, gene deletions, gene translocations, microsatellite regions, gene fragments or combination thereof. In some embodiments, the variant occurs in a region of the genome selected from the group consisting of genes, oncogenes, tumor suppressor genes, promoters, regulatory sequence elements, or combination thereof. In some embodiments, the variant is a nucleotide variant, single base substitution, small indel,
  • transversion, translocation, inversion, deletion, truncation or gene truncation of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nucleotides in length 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nucleotides in length.
  • the methods further comprise
  • enumerating the reads is performed through enumeration of unique barcodes in each of the predefined regions and normalizing those numbers across at least a subset of predefined regions that were sequenced.
  • samples at succeeding time intervals from the same subject are analyzed and compared to previous sample results.
  • the method further comprises amplifying the barcode-attached extracellular polynucleotides.
  • the methods further comprise determining partial copy number variation frequency, determining loss of heterozygosity, performing gene expression analysis, performing epigenetic analysis and/or performing hypermethylation analysis.
  • the disclosure also provides for a method comprising determining copy number variation or performing rare mutation analysis in a cell-free or substantially cell free sample obtained from a subject using multiplex sequencing.
  • the multiplex sequencing comprises performing over
  • the multiplex sequencing comprises simultaneously sequencing at least 10,000 different reads. In some embodiments, the multiplex sequencing comprising performing data analysis on at least 10,000 different reads across the genome. In some embodiments, the normalizing and detection is performed using one or more of hidden markov, dynamic programming, support vector machine, Bayesian or probabilistic modeling, trellis decoding, Viterbi decoding, expectation maximization, Kalman filtering, or neural network methodologies. In some embodiments, the methods further comprise monitoring disease progression, monitoring residual disease, monitoring therapy, diagnosing a condition, prognosing a condition, or selecting a therapy based on discovered variants for the subject. In some embodiments, a therapy is modified based on the most recent sample analysis. In some embodiments, the genetic profile of a tumor, infection or other tissue abnormality is inferred.
  • the growth, remission or evolution of a tumor, infection or other tissue abnormality is monitored.
  • sequences related to the subject's immune system are analyzed and monitored at single instances or over time.
  • identification of a variant is followed up through an imaging test (e.g., CT, PET- CT, MRI, X-ray, ultrasound) for localization of the tissue abnormality suspected of causing the identified variant.
  • the analysis further comprises use of genetic data obtained from a tissue or tumor biopsy from the same patient.
  • the phylogenetics of a tumor, infection or other tissue abnormality is inferred.
  • the method further comprises performing population-based no-calling and identification of low- confidence regions.
  • obtaining the measurement data for the sequence coverage comprises measuring sequence coverage depth at every position of the genome.
  • correcting the measurement data for the sequence coverage bias comprises calculating window-averaged coverage.
  • correcting the measurement data for the sequence coverage bias comprises performing adjustments to account for GC bias in the library construction and sequencing process. In some embodiments, correcting the measurement data for the sequence coverage bias comprises performing adjustments based on additional weighting factor associated with individual mappings to compensate for bias.
  • extracellular polynucleotide is derived from a diseased cell origin. In some embodiments, extracellular polynucleotide is derived from a healthy cell origin.
  • the disclosure also provides for a system comprising a computer readable medium for performing the following steps: selecting predefined regions in a genome; enumerating number of sequence reads in the predefined regions; normalizing the number of sequence reads across the predefined regions; and determining percent of copy number variation in the predefined regions.
  • the entirety of the genome or at least 85% of the genome is analyzed.
  • the computer readable medium provides data on percent cancer DNA or RNA in plasma or serum to the end user.
  • the copy number variants identified are fractional (i.e., non-integer levels) due to heterogeneity in the sample.
  • enrichment of selected regions is performed.
  • copy number variation information is simultaneously extracted based on the methods described herein.
  • the methods comprise an initial step of polynucleotide bottlenecking to limit the number of starting initial copies or diversity of polynucleotides in the sample.
  • the disclosure also provides for a method for detecting a rare mutation in a cell- free or a substantially cell free sample obtained from a subject comprising: a) sequencing extracellular polynucleotides from a bodily sample of a subject, wherein each of the extracellular polynucleotides generate a plurality of sequencing reads; b) filtering out reads that fail to meet a set quality threshold; c) mapping sequence reads derived from the sequencing onto a reference sequence; d) identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position; e) for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position; f) normalizing the ratios or frequency of variance for each mappable base position and determining potential rare variant(s) or other genetic alteration(s);
  • the disclosure also provides for a method comprising: a) providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b) amplifying the tagged parent polynucleotides in the set to produce a corresponding set of amplified progeny polynucleotides; c) sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads; and d) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence
  • each polynucleotide in a set is mappable to a reference sequence.
  • the methods comprise providing a plurality of sets of tagged parent polynucleotides, wherein each set is mappable to a different mappable position in the reference sequence.
  • the method further comprises: e) analyzing the set of consensus sequences for each set of tagged parent molecules separately or in combination.
  • the method further comprises converting initial starting genetic material into the tagged parent polynucleotides.
  • the initial starting genetic material comprises no more than 100 ng of polynucleotides.
  • the method comprises bottlenecking the initial starting genetic material prior to converting.
  • the method comprises converting the initial starting genetic material into tagged parent
  • the converting comprises any of blunt-end ligation, sticky end ligation, molecular inversion probes, PCR, ligation-based PCR, single strand ligation and single strand circularization.
  • the initial starting genetic material is cell-free nucleic acid.
  • a plurality of the sets map to different mappable positions in a reference sequence from the same genome.
  • each tagged parent polynucleotide in the set is uniquely tagged.
  • each set of parent polynucleotides is mappable to a position in a reference sequence, and the polynucleotides in each set are not uniquely tagged.
  • the generation of consensus sequences is based on information from the tag and/or at least one of (i) sequence information at the beginning (start) region of the sequence read, (ii) the end (stop) regions of the sequence read and (iii) the length of the sequence read.
  • the method comprises sequencing a subset of the set of amplified progeny polynucleotides sufficient to produce sequence reads for at least one progeny from of each of at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% at least 95%, at least 98%, at least 99%, at least 99.9% or at least 99.99%) of unique polynucleotides in the set of tagged parent polynucleotides.
  • the at least one progeny is a plurality of progeny, e.g., at least 2, at least 5 or at least 10 progeny.
  • the number of sequence reads in the set of sequence reads is greater than the number of unique tagged parent polynucleotides in the set of tagged parent polynucleotides.
  • the subset of the set of amplified progeny polynucleotides sequenced is of sufficient size so that any nucleotide sequence represented in the set of tagged parent polynucleotides at a percentage that is the same as the percentage per-base sequencing error rate of the sequencing platform used, has at least a 50%>, at least a 60%>, at least a 70%, at least a 80%, at least a 90% at least a 95%, at least a 98%, at least a 99%, at least a 99.9% or at least a 99.99%> chance of being represented among the set of consensus sequences.
  • the method comprises enriching the set of amplified progeny polynucleotides for polynucleotides mapping to one or more selected mappable positions in a reference sequence by: (i) selective amplification of sequences from initial starting genetic material converted to tagged parent polynucleotides; (ii) selective amplification of tagged parent polynucleotides; (iii) selective sequence capture of amplified progeny polynucleotides; or (iv) selective sequence capture of initial starting genetic material.
  • analyzing comprises normalizing a measure (e.g., number) taken from a set of consensus sequences against a measure taken from a set of consensus sequences from a control sample.
  • analyzing comprises detecting mutations, rare mutations, indels, copy number variations, transversions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection or cancer.
  • the polynucleotides comprise DNA, RNA, a combination of the two, or DNA plus RNA-derived cDNA. In some embodiments, a certain subset of
  • polynucleotides is selected for, or is enriched based on, polynucleotide length in base-pairs from the initial set of polynucleotides or from the amplified polynucleotides.
  • analysis further comprises detection and monitoring of an abnormality or disease within an individual, such as, infection and/or cancer.
  • the method is performed in combination with immune repertoire profiling.
  • the polynucleotides are extracted from a sample selected from the group consisting of blood, plasma, serum, urine, saliva, mucosal excretions, sputum, stool, and tears.
  • collapsing comprises detecting and/or correcting errors, nicks or lesions present in the sense or anti-sense strand of the tagged parent polynucleotides or amplified progeny polynucleotides.
  • the disclosure also provides for a method comprising detecting genetic variation in non-uniquely tagged initial starting genetic material with a sensitivity of at least 5%, at least 1%, at least 0.5%, at least 0.1% or at least 0.05%.
  • the initial starting genetic material is provided in an amount less than 100 ng of nucleic acid
  • the genetic variation is copy number/heterozygosity variation and detecting is performed with sub-chromosomal resolution; e.g., at least 100 megabase resolution, at least 10 megabase resolution, at least 1 megabase resolution, at least 100 kilobase resolution, at least 10 kilobase resolution or at least 1 kilobase resolution.
  • the method comprises providing a plurality of sets of tagged parent polynucleotides, wherein each set is mappable to a different mappable position in a reference sequence.
  • the mappable position in the reference sequence is the locus of a tumor marker and analyzing comprises detecting the tumor marker in the set of consensus sequences.
  • the tumor marker is present in the set of consensus sequences at a frequency less than the error rate introduced at the amplifying step.
  • the at least one set is a plurality of sets, and the mappable position of the reference sequence comprise a plurality of mappable positions in the reference sequence, each of which mappable position is the locus of a tumor marker.
  • analyzing comprises detecting copy number variation of consensus sequences between at least two sets of parent polynucleotides. In some embodiments, analyzing comprises detecting the presence of sequence variations compared with the reference sequences.
  • analyzing comprises detecting the presence of sequence variations compared with the reference sequences and detecting copy number variation of consensus sequences between at least two sets of parent polynucleotides.
  • collapsing comprises: (i) grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide; and (ii) determining a consensus sequence based on sequence reads in a family.
  • the disclosure also provides for a system comprising a computer readable medium for performing the following steps: a) accepting at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b) amplifying the tagged parent polynucleotides in the set to produce a corresponding set of amplified progeny polynucleotides; c) sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads; d) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides and, optionally, e) analyzing the set of consensus sequences for each set of tagged parent molecules.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 10% of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 20% of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 30%> of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 40% of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 50%> of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 60% of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 70% of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 80%> of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 90%> of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 10%> of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 20%> of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 30%> of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 40%> of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 50% of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 60%> of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 70%> of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 80%> of the individual's genome is sequenced.
  • the disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 90%> of the individual's genome is sequenced.
  • the genetic alteration is copy number variation or one or more rare mutations.
  • the genetic variation comprises one or more causal variants and one or more polymorphisms.
  • the genetic alteration and/or amount of genetic variation in the individual may be compared to a genetic alteration and/or amount of genetic variation in one or more individuals with a known disease.
  • the genetic alteration and/or amount of genetic variation in the individual may be compared to a genetic alteration and/or amount of genetic variation in one or more individuals, without a disease.
  • the cell-free nucleic acid is DNA.
  • the cell-free nucleic acid is RNA.
  • the cell-free nucleic acid is DNA and RNA.
  • the disease is cancer or pre-cancer.
  • the method further comprising diagnosis or treatment of a disease.
  • the disclosure also provides for a method comprising: a) providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b) amplifying the tagged parent polynucleotides in the set to produce a corresponding set of amplified progeny polynucleotides; c) sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads; d) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides; and e) filtering out from among the consensus
  • the quality threshold considers a number of sequence reads from amplified progeny polynucleotides collapsed into a consensus sequence. In some embodiments, the quality threshold considers a number of sequence reads from amplified progeny polynucleotides collapsed into a consensus sequence.
  • the disclosure also provides for a system comprising a computer readable medium for performing the methods described herein.
  • the disclosure also provides for a method comprising: a) providing at least one set of tagged parent polynucleotides, wherein each set maps to a different mappable position in a reference sequence in one or more genomes, and, for each set of tagged parent polynucleotides; i) amplifying the first polynucleotides to produce a set of amplified polynucleotides; ii) sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads; and iii) collapsing the sequence reads by: (l)grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide.
  • collapsing further comprises determining a quantitative measure of sequence reads in each family.
  • the method further comprises: a) determining a quantitative measure of unique families; and b) based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set.
  • inferring is performed using statistical or probabilistic models.
  • the at least one set is a plurality of sets.
  • the method further comprises correcting for amplification or representational bias between the two sets.
  • the method further comprises using a control or set of control samples to correct for amplification or representational biases between the two sets. In some embodiments, the method further comprises determining copy number variation between the sets. [00150] In some embodiments, the method further comprises: d) determining a quantitative measure of polymorphic forms among the families; and e) based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides. In some embodiments, polymorphic forms include but are not limited to: substitutions, insertions, deletions, inversions, microsatellite changes, trans versions, translocations, fusions, methylation, hypermethylation,
  • hyrdroxymethylation acetylation, epigenetic variants, regulatory-associated variants or protein binding sites.
  • the sets derive from a common sample, and the method further comprises: d) inferring copy number variation for the plurality of sets based on a comparison of the inferred number of tagged parent polynucleotides in each set mapping to each of a plurality of mappable positions in a reference sequence.
  • the original number of polynucleotides in each set is further inferred.
  • at least a subset of the tagged parent polynucleotides in each set are non-uniquely tagged.
  • the disclosure also provides for a method of determining copy number variation in a sample that includes polynucleotides, the method comprising: a) providing at least two sets of first polynucleotides, wherein each set maps to a different mappable position in a reference sequence in a genome, and, for each set of first polynucleotides; (i) amplifying the
  • polynucleotides to produce a set of amplified polynucleotides (ii) sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads; (iii) grouping sequences reads sequenced from amplified polynucleotides into families, each family amplified from the same first polynucleotide in the set; (iv) inferring a quantitative measure of families in the set; and b) determining copy number variation by comparing the quantitative measure of families in each set.
  • the disclosure also provides for a method of inferring frequency of sequence calls in a sample of polynucleotides comprising: a) providing at least one set of first polynucleotides, wherein each set maps to a different mappable position in a reference sequence in one or more genomes, and, for each set of first polynucleotides; (i) amplifying the first polynucleotides to produce a set of amplified polynucleotides; (ii) sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads; (iii) grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide; b) inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises:
  • the disclosure also provides for a method of communicating sequence information about at least one individual polynucleotide molecule, comprising: a) providing at least one individual polynucleotide molecule; b) encoding sequence information in the at least one individual polynucleotide molecule to produce a signal; c) passing at least part of the signal through a channel to produce a received signal comprising nucleotide sequence information about the at least one individual polynucleotide molecule, wherein the received signal comprises noise and/or distortion; d) decoding the received signal to produce a message comprising sequence information about the at least one individual polynucleotide molecule, wherein decoding reduces noise and/or distortion about each individual polynucleotide in the message; and e) providing the message comprising sequence information about the at least one individual polynucleotide molecule to a recipient.
  • the noise comprises incorrect nucleotide calls.
  • distortion comprises uneven amplification of the individual polynucleotide molecule compared with other individual polynucleotide molecules.
  • distortion results from amplification or sequencing bias.
  • the at least one individual polynucleotide molecule is a plurality of individual polynucleotide molecules, and decoding produces a message about each molecule in the plurality.
  • encoding comprises amplifying the at least one individual polynucleotide molecule, which has optionally been tagged, wherein the signal comprises a collection of amplified molecules.
  • the channel comprises a polynucleotide sequencer and the received signal comprises sequence reads of a plurality of polynucleotides amplified from the at least one individual polynucleotide molecule.
  • decoding comprises grouping sequence reads of amplified molecules amplified from each of the at least one individual polynucleotide molecules.
  • the decoding consists of a probabilistic or statistical method of filtering the generated sequence signal.
  • the polynucleotides are derived from tumor genomic DNA or R A. In some embodiments, the polynucleotides are derived from cell-free polynucleotides, exosomal polynucleotides, bacterial polynucleotides or viral polynucleotides. In some embodiments of any of the methods herein, the method further comprises the detection and/or association of affected molecular pathways. In some embodiments of any of the methods herein, the method further comprises serial monitoring of the health or disease state of an individual. In some embodiments the phylogeny of a genome associated with a disease within an individual is inferred.
  • any of the methods described herein further comprise diagnosis, monitoring or treatment of a disease.
  • the treatment regimen is selected or modified based on detected polymorphic forms or CNVs or associated pathways.
  • the treatment comprises of a combination therapy.
  • the diagnosis further comprises localizing the disease using a radiographic technique, such as, a CT- Scan, PET-CT, MRI, Ultrasound, Ultraound with microbubbles, etc.
  • the disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: selecting predefined regions in a genome; accessing sequence reads and enumerating number of sequence reads in the predefined regions; normalizing the number of sequence reads across the predefined regions; and determining percent of copy number variation in the predefined regions.
  • the disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: accessing a data file comprising a plurality of sequencing reads; filtering out reads that fail to meet a set threshold; mapping sequence reads derived from the sequencing onto a reference sequence; identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position; for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position; normalizing the ratios or frequency of variance for each mappable base position and determining potential rare variant(s) or other genetic alteration(s); and comparing the resulting number for each of the regions with potential rare variant(s) or mutation(s) to similarly derived numbers from a reference sample.
  • the disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; and b) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides.
  • the disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides; and c) filtering out from among the consensus sequences those that fail to meet a quality threshold.
  • a computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; and i) collapsing the sequence reads by: (1) grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide and, optionally, (2) determining a quantitative measure of sequence reads in each family.
  • the executable code upon execution by a computer processor, further performs the steps of: b) determining a quantitative measure of unique families; and c) based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set.
  • the executable code upon execution by a computer processor, further performs the steps of: d) determining a quantitative measure of polymorphic forms among the families; and e) based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides.
  • the disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping sequences reads sequenced from amplified polynucleotides into families, each family amplified from the same first polynucleotide in the set; b) inferring a quantitative measure of families in the set; and c) determining copy number variation by comparing the quantitative measure of families in each set.
  • the disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide; b) inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises: c) assigning, for each family, confidence score for each of a plurality of calls, the confidence score taking into consideration a frequency of the call among members of the family; and d) estimating a frequency of the one or
  • the disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a received signal that comprises endoded sequence information from at least one individual polynucleotide molecule wherein the received signal comprises noise and/or distortion; b) decoding the received signal to produce a message comprising sequence information about the at least one individual
  • polynucleotide molecule wherein decoding reduces noise and/or distortion about each individual polynucleotide in the message; and c) writing the message comprising sequence information about the at least one individual polynucleotide molecule to a computer file.
  • the disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides; and c) filtering out from among the consensus sequences those that fail to meet a quality threshold.
  • the disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; and b) collapsing the sequence reads by: (i) grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide; and (ii) optionally, determining a quantitative measure of sequence reads in each family.
  • the executable code upon execution by a computer processor, further performs the steps of: d) determining a quantitative measure of unique families;e) based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set.
  • the executable code upon execution by a computer processor, further performs the steps of: e) determining a quantitative measure of polymorphic forms among the families; and f) based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides.
  • the executable code upon execution by a computer processor, further performs the steps of: e) inferring copy number variation for the plurality of sets based on a comparison of the inferred number of tagged parent polynucleotides in each set mapping to each of a plurality of reference sequences.
  • the disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b) grouping sequences reads sequenced from amplified polynucleotides into families, each family amplified from the same first polynucleotide in the set; c) inferring a quantitative measure of families in the set; d) determining copy number variation by comparing the quantitative measure of families in each set.
  • the disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide; and inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises: (i) assigning, for each family, confidence score for each of a plurality of calls, the confidence score taking into consideration a frequency of the call among members of the family; and (ii) estimating a frequency of the one or more calls taking into
  • composition also provides for a composition comprising between 100 and
  • polynucleotides are tagged with between 2 and 1,000,000 unique identifiers.
  • the composition comprises between 1000 and 50,000 haploid human genome equivalents of cfDNA polynucleotides, wherein the polynucleotides are tagged with between 2 and 1,000 unique identifiers.
  • the unique identifiers comprise nucleotide barcodes.
  • the disclosure also provides for a method comprising: a) providing a sample comprising between 100 and 100,000 haploid human genome equivalents of cfDNA polynucleotides; and b) tagging the polynucleotides with between 2 and 1,000,000 unique identifiers.
  • the disclosure also provides for a method comprising: a) providing a sample comprising a plurality of human haploid genome equivalents of fragmented polynucleotides; b) determining z, wherein z is a measure of central tendency (e.g., mean, median or mode) of expected number of duplicate polynucleotides starting at any position in the genome, wherein duplicate polynucleotides have the same start and stop positions; and c) tagging polynucleotides in sample with n unique identifiers, wherein n is between 2 and 100,000*z, 2 and 10,000*z, 2 and l,000*z or 2 and 100*z.
  • n is between 2 and 100,000*z, 2 and 10,000*z, 2 and l,000*z or 2 and 100*z.
  • the disclosure also provides for a method comprising: a) providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b) producing a plurality of sequence reads for each tagged parent polynucleotide in the set to produce a set of sequencing reads; and c) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides.
  • the disclosure also provides for a system comprising a computer readable medium comprising machine-executable code as described herein.
  • the disclosure also provides for a system comprising a computer readable medium comprising machine-executable code that, upon execution by a computer processor, implements a method as described herein.
  • FIG. 1 is a flow chart representation of a method of detection of copy number variation using a single sample.
  • FIG. 2 is a flow chart representation of a method of detection of copy number variation using paired samples.
  • FIG. 3 is a flow chart representation of a method of detection of rare mutations
  • FIG. 4 A is graphical copy number variation detection report generated from a normal, non cancerous subject.
  • FIG. 4B is a graphical copy number variation detection report generated from a subject with prostate cancer.
  • FIG. 4C is schematic representation of internet enabled access of reports generated from copy number variation analysis of a subject with prostate cancer.
  • FIG. 5 A is a graphical copy number variation detection report generated from a subject with prostate cancer remission.
  • FIG. 5B is a graphical copy number variation detection report generated from a subject with prostate recurrence cancer.
  • FIG. 6A is graphical detection report (e.g., for single nucleotide variants) generated from various mixing experiments using DNA samples containing both wildtype and mutant copies of MET and TP53.
  • FIG. 6B is logarithmic graphical representation of (e.g., single nucleotide variant) detection results. Observed vs. expected percent cancer measurements are shown for various mixing experiments using DNAs samples containing both wildtype and mutant copies of MET, HRAS and TP53.
  • FIG. 7A is graphical report of percentage of two (e.g., single nucleotide variants) in two genes, PIK3CA and TP53, in a subject with prostate cancer as compared to a reference (control).
  • FIG. 7B is schematic representation of internet enabled access of reports generated from (e.g., single nucleotide variant) analysis of a subject with prostate cancer.
  • FIG. 8 is a flow chart representation of a method of analyzing genetic material.
  • FIG. 9 is a flow chart representation of a method of decoding information in a set of sequence reads to produce, with reduced noise and/or distortion, a representation of information in a set of tagged parent polynucleotides.
  • FIG. 10 is a flow chart representation of a method of reducing distortion in the determination of CNV from a set of sequence reads.
  • FIG. 11 is a flow chart representation of a method of estimating frequency of a base or sequence of bases at a locus in a tagged parent polynucleotide population from a set of sequence reads.
  • FIG. 12 shows a method of communicating sequence information.
  • FIG. 13 shows detected minor allele frequencies across an entire 70kb panel in
  • FIG. 14 Shows titration of LNCap cfDNA.
  • FIG. 15 shows a computer system that is programmed or otherwise configured to implement various methods of the present disclosure.
  • the present disclosure provides a system and method for the detection of rare mutations (e.g., single or multiple nucleotide variations) and copy number variations in cell free polynucleotides.
  • the systems and methods comprise sample preparation, or the extraction and isolation of cell free polynucleotide sequences from a bodily fluid; subsequent sequencing of cell free polynucleotides by techniques known in the art; and application of bioinformatics tools to detect rare mutations and copy number variations as compared to a reference.
  • the systems and methods also may contain a database or collection of different rare mutations or copy number variation profiles of different diseases, to be used as additional references in aiding detection of rare mutations (e.g., single nucleotide variation profiling), copy number variation profiling or general genetic profiling of a disease.
  • rare mutations e.g., single nucleotide variation profiling
  • copy number variation profiling e.g., single nucleotide variation profiling
  • general genetic profiling of a disease e.g., single nucleotide variation profiling
  • cell free DNA are extracted and isolated from a readily accessible bodily fluid such as blood.
  • cell free DNA can be extracted using a variety of methods known in the art, including but not limited to isopropanol precipitation and/or silica based purification.
  • Cell free DNA may be extracted from any number of subjects, such as subjects without cancer, subjects at risk for cancer, or subjects known to have cancer (e.g. through other means).
  • any of a number of different sequencing operations may be performed on the cell free polynucleotide sample.
  • Samples may be processed before sequencing with one or more reagents (e.g., enzymes, unique identifiers (e.g., barcodes), probes, etc.).
  • reagents e.g., enzymes, unique identifiers (e.g., barcodes), probes, etc.
  • the samples or fragments of samples may be tagged individually or in subgroups with the unique identifier. The tagged sample may then be used in a downstream application such as a sequencing reaction by which individual molecules may be tracked to parent molecules.
  • sequence data may be: 1) aligned with a reference genome; 2) filtered and mapped; 3) partitioned into windows or bins of sequence; 4) coverage reads counted for each window; 5) coverage reads can then be normalized using a stochastic or statistical modeling algorithm; 6) and an output file can be generated reflecting discrete copy number states at various positions in the genome.
  • sequence data may be 1) aligned with a reference genome; 2) filtered and mapped; 3) frequency of variant bases calculated based on coverage reads for that specific base; 4) variant base frequency normalized using a stochastic, statistical or probabilistic modeling algorithm; 5) and an output file can be generated reflecting mutation states at various positions in the genome.
  • a variety of different reactions and/operations may occur within the systems and methods disclosed herein, including but not limited to: nucleic acid sequencing, nucleic acid quantification, sequencing optimization, detecting gene expression, quantifying gene expression, genomic profiling, cancer profiling, or analysis of expressed markers.
  • the systems and methods have numerous medical applications. For example, it may be used for the identification, detection, diagnosis, treatment, staging of, or risk prediction of various genetic and non-genetic diseases and disorders including cancer. It may be used to assess subject response to different treatments of said genetic and non-genetic diseases, or provide information regarding disease progression and prognosis.
  • Polynucleotide sequencing can be compared with a problem in communication theory.
  • An initial individual polynucleotide or ensemble of polynucleotides is thought of as an original message. Tagging and/or amplifying can be thought of as encoding the original message into a signal. Sequencing can be thought of as communication channel.
  • the output of a sequencer e.g., sequence reads, can be thought of as a received signal.
  • Bioinformatic processing can be thought of as a receiver that decodes the received signal to produce a transmitted message, e.g., a nucleotide sequence or sequences.
  • the received signal can include artifacts, such as noise and distortion. Noise can be thought of as an unwanted random addition to a signal. Distortion can be thought of as an alteration in the amplitude of a signal or portion of a signal.
  • Noise can be introduced through errors in copying and/or reading a polynucleotide.
  • a single polynucleotide in a sequencing process can first be subject to amplification.
  • Amplification can introduce errors, so that a subset of the amplified polynucleotides may contain, at a particular locus, a base that is not the same as the original base at that locus.
  • a base at any particular locus may be read incorrectly.
  • the collection of sequence reads can include a certain percentage of base calls at a locus that are not the same as the original base.
  • this error rate can be in the single digits, e.g., 2%-3%.
  • noise can be a significant problem. This can be the case, for example, when cell free DNA includes not only germline DNA, but DNA from another source, such as fetal DNA or DNA from a cancer cell. In this case, if the frequency of molecules with sequence variants is in the same range as the frequency of errors introduced by the sequencing process, then true sequence variants may not be distinguishable from noise. This could interfere, for example, with detecting sequence variants in a sample.
  • Distortion can be manifested in the sequencing process as a difference in signal strength, e.g., total number of sequence reads, produced by molecules in a parent population at the same frequency. Distortion can be introduced, for example, through amplification bias, GC bias, or sequencing bias. This could interfere with detecting copy number variation in a sample. GC bias results in the uneven representation of areas rich or poor in GC content in the sequence reading.
  • This invention provides methods of reducing sequencing artifacts, such as noise and/or distortion, in a polynucleotide sequencing process.
  • Grouping sequence reads into families derived from original individual molecules can reduce noise and/or distortion from a single individual molecule or from an ensemble of molecules. With respect to a single molecule, grouping reads into a family reduces distortion by, for example, indicating that many sequence reads actually represent a single molecule rather than many different molecules.
  • Collapsing sequence reads into a consensus sequence is one way to reduce noise in the received message from one molecule. Using probabilistic functions that convert received frequencies is another way.
  • grouping reads into families and determining a quantitative measure of the families reduces distortion, for example, in the quantity of molecules at each of a plurality of different loci.
  • collapsing sequence reads of different families into consensus sequences eliminate errors introduced by amplification and/or sequencing error.
  • determining frequencies of base calls based on probabilities derived from family information also reduces noise in the received message from an ensemble of molecules.
  • Such methods typically are performed on the collection of sequence reads that are the output of a sequencer, and can be performed sequence read-by-sequence read, without regard for family structure (sub-collections of sequences derived from a single original parent molecule).
  • Certain methods of this invention reduce noise and distortion by reducing noise and/or distortion within families of sequence reads, that is, operating on sequence reads grouped into families derived from a single parent polynucleotide molecule.
  • Signal artifact reduction at the family level can produce significantly less noise and distortion in the ultimate message that is provided than artifact reduction performed at a sequence read-by-sequence read level or on sequencer output as a whole.
  • the present disclosure further provides methods and systems for detecting with high sensitivity genetic variation in a sample of initial genetic material.
  • the methods involve using one or both of the following tools: First, the efficient conversion of individual
  • polynucleotides in a sample of initial genetic material into sequence-ready tagged parent polynucleotides so as to increase the probability that individual polynucleotides in a sample of initial genetic material will be represented in a sequence-ready sample.
  • This can produce sequence information about more polynucleotides in the initial sample.
  • Second, high yield generation of consensus sequences for tagged parent polynucleotides by high rate sampling of progeny polynucleotides amplified from the tagged parent polynucleotides, and collapsing of generated sequence reads into consensus sequences representing sequences of parent tagged polynucleotides. This can reduce noise introduced by amplification bias and/or sequencing errors, and can increase sensitivity of detection.
  • Sequencing methods typically involve sample preparation, sequencing of polynucleotides in the prepared sample to produce sequence reads and bioinformatic manipulation of the sequence reads to produce quantitative and/or qualitative genetic information about the sample.
  • Sample preparation typically involves converting polynucleotides in a sample into a form compatible with the sequencing platform used. This conversion can involve tagging
  • the tags comprise polynucleotide sequence tags. Conversion methodologies used in sequencing may not be 100% efficient. For example, it is not uncommon to convert polynucleotides in a sample with a conversion efficiency of about 1-5%, that is, about 1-5% of the polynucleotides in a sample are converted into tagged polynucleotides. Polynucleotides that are not converted into tagged molecules are not represented in a tagged library for sequencing. Accordingly, polynucleotides having genetic variants represented at low frequency in the initial genetic material may not be represented in the tagged library and, therefore may not be sequenced or detected.
  • This disclosure provides methods of converting initial polynucleotides into tagged polynucleotides with a conversion efficiency of at least 10%, at least 20%, at least 30%, at least 40%), at least 50%>, at least 60%>, at least 80%> or at least 90%>.
  • the methods involve, for example, using any of blunt-end ligation, sticky end ligation, molecular inversion probes, PCR, ligation- based PCR, multiplex PCR, single strand ligation and single strand circularization.
  • the methods can also involve limiting the amount of initial genetic material. For example, the amount of initial genetic material can be less than 1 ug, less than 100 ng or less than 10 ng. These methods are described in more detail herein.
  • polynucleotides in a tagged library are amplified and the resulting amplified molecules are sequenced.
  • the number of amplified molecules sampled for sequencing may be about only 50% of the unique polynucleotides in the tagged library.
  • amplification may be biased in favor of or against certain sequences or certain members of the tagged library. This may distort quantitative measurement of sequences in the tagged library.
  • sequencing platforms can introduce errors in sequencing.
  • sequences can have a per-base error rate of 0.5-1%.
  • Amplification bias and sequencing errors introduce noise into the final sequencing product. This noise can diminish sensitivity of detection.
  • sequence variants whose frequency in the tagged population is less than the sequencing error rate can be mistaken for noise.
  • amplification bias can distort measurements of copy number variation.
  • a plurality of sequence reads from a single polynucleotide can be produced without amplification. This can be done, for example, with nanopore methods.
  • This disclosure provides methods of accurately detecting and reading unique polynucleotides in a tagged pool.
  • this disclosure provides sequence- tagged polynucleotides that, when amplified and sequenced, or when sequenced a plurality of times to produce a plurality of sequence reads, provide information that allowed the tracing back, or collapsing, of progeny polynucleotides to the unique tag parent polynucleotide molecule. Collapsing families of amplified progeny polynucleotides reduces amplification bias by providing information about original unique parent molecules. Collapsing also reduces sequencing errors by eliminating from sequencing data mutant sequences of progeny molecules.
  • Detecting and reading unique polynucleotides in the tagged library can involve two strategies.
  • a sufficiently large subset of the amplified progeny polynucleotide pool is a sequenced such that, for a large percentage of unique tagged parent polynucleotides in the set of tagged parent polynucleotides, there is a sequence read that is produced for at least one amplified progeny polynucleotide in a family produced from a unique tagged parent
  • the amplified progeny polynucleotide set is sampled for sequencing at a level to produce sequence reads from multiple progeny members of a family derived from a unique parent polynucleotide.
  • Generation of sequence reads from multiple progeny members of a family allows collapsing of sequences into consensus parent sequences.
  • sampling a number of amplified progeny polynucleotides from the set of amplified progeny polynucleotides that is equal to the number of unique tagged parent polynucleotides in the set of tagged parent polynucleotides (particularly when the number is at least 10,000) will produce, statistically, a sequence read for at least one of progeny of about 68% of the tagged parent polynucleotides in the set, and about 40% of the unique tagged parent polynucleotides in the original set will be represented by at least two progeny sequence reads.
  • the amplified progeny polynucleotide set is sampled sufficiently so as to produce an average of five to ten sequence reads for each family. Sampling from the amplified progeny set of 10-times as many molecules as the number of unique tagged parent
  • polynucleotides will produce, statistically, sequence information about 99.995%) of the families, of which 99.95% of the total families will be covered by a plurality of sequence reads.
  • a consensus sequence can be built from the progeny polynucleotides in each family so as to dramatically reduce the error rate from the nominal per-base sequencing error rate to a rate possibly many orders of magnitude lower. For example, if the sequencer has a random per-base error rate of 1% and the chosen family has 10 reads, a consensus sequence built from these 10 reads would possess an error rate of below 0.0001%>.
  • the sampling size of the amplified progeny to be sequenced can be chosen so as to ensure a sequence having a frequency in the sample that is no greater than the nominal per-base sequencing error rate to a rate of the sequencing platform used, has at least 99% chance being represented by at least one read.
  • the set of amplified progeny polynucleotides is sampled to a level to produce a high probability e.g., at least 90%>, that a sequence represented in the set of tagged parent polynucleotides at a frequency that is about the same as the per base sequencing error rate of the sequencing platform used is covered by at least one sequence read and preferably a plurality of sequence reads. So, for example, if the sequencing platform has a per base error rate of 0.2%) in a sequence or set of sequences is represented in the set of tagged parent
  • the number of polynucleotides in the amplified progeny pool that are sequenced can be about X times the number of unique molecules in the set of tagged parent polynucleotides.
  • a measure e.g., a count
  • This measure can be compared with a measure of tagged parent molecules mapping to a different genomic region. That is, the amount of tagged parent molecules mapping to a first location or mappable position in a reference sequence, such as the human genome, can be compared with a measure of tagged parent molecules mapping to a second location or mappable position in a reference sequence. This comparison can reveal, for example, the relative amounts of parent molecules mapping to each region. This, in turn, provides an indication of copy number variation for molecules mapping to a particular region.
  • the measure of polynucleotides mapping to a first reference sequence is greater than the measure of polynucleotides mapping to a second reference sequence, this may indicate that the parent population, and by extension the original sample, included polynucleotides from cells exhibiting aneuploidy.
  • the measures can be normalized against a control sample to eliminate various biases.
  • Quantitative measures can include, for example, number, count, frequency (whether relative, inferred or absolute).
  • a reference genome can include the genome of any species of interest.
  • Human genome sequences useful as references can include the hgl9 assembly or any previous or available hg assembly. Such sequences can be interrogated using the genome brower available at genome.ucsc.edu/index.html.
  • Other species genomes include, for example PanTro2 (chimp) and mm9 (mouse).
  • sequences from a set of tagged polynucleotides mapping to a reference sequence can be analyzed for variant sequences and their frequency in the population of tagged parent polynucleotides can be measured.
  • the systems and methods of this disclosure may have a wide variety of uses in the manipulation, preparation, identification and/or quantification of cell free polynucleotides.
  • polynucleotides include but are not limited to: DNA, RNA, amplicons, cDNA, dsDNA, ssDNA, plasmid DNA, cosmid DNA, high Molecular Weight (MW) DNA, chromosomal DNA, genomic DNA, viral DNA, bacterial DNA, mtDNA (mitochondrial DNA), mRNA, rRNA, tRNA, nRNA, siRNA, snRNA, snoRNA, scaRNA, microRNA, dsRNA, ribozyme, riboswitch and viral RNA (e.g., retroviral RNA).
  • MW Molecular Weight
  • Cell free polynucleotides may be derived from a variety of sources including human, mammal, non-human mammal, ape, monkey, chimpanzee, reptilian, amphibian, or avian, sources. Further, samples may be extracted from variety of animal fluids containing cell free sequences, including but not limited to blood, serum, plasma, vitreous, sputum, urine, tears, perspiration, saliva, semen, mucosal excretions, mucus, spinal fluid, amniotic fluid, lymph fluid and the like. Cell free polynucleotides may be fetal in origin (via fluid taken from a pregnant subject), or may be derived from tissue of the subject itself.
  • Isolation and extraction of cell free polynucleotides may be performed through collection of bodily fluids using a variety of techniques.
  • collection may comprise aspiration of a bodily fluid from a subject using a syringe.
  • collection may comprise pipetting or direct collection of fluid into a collecting vessel.
  • cell free polynucleotides may be isolated and extracted using a variety of techniques known in the art.
  • cell free DNA may be isolated, extracted and prepared using commercially available kits such as the Qiagen Qiamp® Circulating Nucleic Acid Kit protocol.
  • Qiagen QubitTM dsDNA HS Assay kit protocol AgilentTM DNA 1000 kit, or TruSeqTM Sequencing Library Preparation; Low- Throughput (LT) protocol may be used.
  • cell free polynucleotides are extracted and isolated by from bodily fluids through a partitioning step in which cell free DNAs, as found in solution, are separated from cells and other non soluble components of the bodily fluid. Partitioning may include, but is not limited to, techniques such as centrifugation or filtration. In other cases, cells are not partitioned from cell free DNA first, but rather lysed. In this example, the genomic DNA of intact cells is partitioned through selective precipitation. Cell free polynucleotides, including DNA, may remain soluble and may be separated from insoluble genomic DNA and extracted.
  • DNA may be precipitated using isopropanol precipitation. Further clean up steps may be used such as silica based columns to remove contaminants or salts. General steps may be optimized for specific applications.
  • Non specific bulk carrier polynucleotides for example, may be added throughout the reaction to optimize certain aspects of the procedure such as yield.
  • Isolation and purification of cell free DNA may be accomplished using any means, including, but not limited to, the use of commercial kits and protocols provided by companies such as Sigma Aldrich, Life Technologies, Promega, Affymetrix, IBI or the like. Kits and protocols may also be non-commercially available. [00230] After isolation, in some cases, the cell free polynucleotides are pre -mixed with one or more additional materials, such as one or more reagents (e.g., ligase, protease, polymerase) prior to sequencing.
  • additional materials such as one or more reagents (e.g., ligase, protease, polymerase) prior to sequencing.
  • One method of increasing conversion efficiency involves using a ligase engineered for optimal reactivity on single-stranded DNA, such as a ThermoPhage ssDNA ligase derivative.
  • a ligase engineered for optimal reactivity on single-stranded DNA such as a ThermoPhage ssDNA ligase derivative.
  • Such ligases bypass traditional steps in library preparation of end-repair and A-tailing that can have poor efficiencies and/or accumulated losses due to intermediate cleanup steps, and allows for twice the probability that either the sense or anti-sense starting polynucleotide will be converted into an appropriately tagged polynucleotide. It also converts double-stranded polynucleotides that may possess overhangs that may not be sufficiently blunt-ended by the typical end-repair reaction.
  • Optimal reactions conditions for this ssDNA reaction are: 1 x reaction buffer (50 mM MOPS (pH 7.5), 1 mM DTT, 5 mM MgC12, 10 mM KC1). With 50 mM ATP, 25 mg/ml BSA, 2.5 mM
  • the systems and methods of this disclosure may also enable the cell free polynucleotides to be tagged or tracked in order to permit subsequent identification and origin of the particular polynucleotide. This feature is in contrast with other methods that use pooled or multiplex reactions and that only provide measurements or analyses as an average of multiple samples.
  • the assignment of an identifier to individual or subgroups of polynucleotides may allow for a unique identity to be assigned to individual sequences or fragments of sequences. This may allow acquisition of data from individual samples and is not limited to averages of samples.
  • nucleic acids or other molecules derived from a single strand may share a common tag or identifier and therefore may be later identified as being derived from that strand.
  • all of the fragments from a single strand of nucleic acid may be tagged with the same identifier or tag, thereby permitting subsequent identification of fragments from the parent strand.
  • gene expression products e.g., mRNA
  • the systems and methods can be used as a PCR amplification control. In such cases, multiple amplification products from a PCR reaction can be tagged with the same tag or identifier. If the products are later sequenced and demonstrate sequence differences, differences among products with the same identifier can then be attributed to PCR error.
  • individual sequences may be identified based upon characteristics of sequence data for the read themselves. For example, the detection of unique sequence data at the beginning (start) and end (stop) portions of individual sequencing reads may be used, alone or in combination, with the length, or number of base pairs of each sequence read unique sequence to assign unique identities to individual molecules. Fragments from a single strand of nucleic acid, having been assigned a unique identity, may thereby permit subsequent identification of fragments from the parent strand. This can be used in conjunction with bottlenecking the initial starting genetic material to limit diversity.
  • unique sequence data at the beginning (start) and end (stop) portions of individual sequencing reads and sequencing read length may be used, alone or combination, with the use of barcodes.
  • the barcodes may be unique as described herein. In other cases, the barcodes themselves may not be unique. In this case, the use of non unique barcodes, in combination with sequence data at the beginning (start) and end (stop) portions of individual sequencing reads and sequencing read length may allow for the assignment of a unique identity to individual sequences. Similarly, fragments from a single strand of nucleic acid having been assigned a unique identity, may thereby permit subsequent identification of fragments from the parent strand.
  • Sequencing methods may include, but are not limited to: high-throughput sequencing, pyrosequencing, sequencing -by-synthesis, single- molecule sequencing, nanopore sequencing, semiconductor sequencing, sequencing-by-ligation, sequencing-by-hybridization, RNA-Seq (Illumina), Digital Gene Expression (Helicos), Next generation sequencing, Single Molecule Sequencing by Synthesis (SMSS)(Helicos), massively- parallel sequencing, Clonal Single Molecule Array (Solexa), shotgun sequencing, Maxim-Gilbert sequencing, primer walking, and any other sequencing methods known in the art.
  • SMSS Single Molecule Sequencing by Synthesis
  • Solexa Single Molecule Array
  • the systems and methods disclosed herein may be used in applications that involve the assignment of unique or non-unique identifiers, or molecular barcodes, to cell free polynucleotides.
  • the identifier is a bar-code oligonucleotide that is used to tag the polynucleotide; but, in some cases, different unique identifiers are used.
  • the unique identifier is a hybridization probe.
  • the unique identifier is a dye, in which case the attachment may comprise intercalation of the dye into the analyte molecule (such as intercalation into DNA or RNA) or binding to a probe labeled with the dye.
  • the unique identifier may be a nucleic acid oligonucleotide, in which case the attachment to the polynucleotide sequences may comprise a ligation reaction between the oligonucleotide and the sequences or incorporation through PCR.
  • the reaction may comprise addition of a metal isotope, either directly to the analyte or by a probe labeled with the isotope.
  • assignment of unique or non-unique identifiers, or molecular barcodes in reactions of this disclosure may follow methods and systems described by, for example, US patent applications 20010053519, 20030152490, 20110160078 and US patent US 6,582,908.
  • the method comprises attaching oligonucleotide barcodes to nucleic acid analytes through an enzymatic reaction including but not limited to a ligation reaction.
  • the ligase enzyme may covalently attach a DNA barcode to fragmented DNA (e.g., high molecular-weight DNA).
  • the molecules may be subjected to a sequencing reaction.
  • oligonucleotide primers containing barcode sequences may be used in amplification reactions (e.g., PCR, qPCR, reverse-transcriptase PCR, digital PCR, etc.) of the DNA template analytes, thereby producing tagged analytes.
  • amplification reactions e.g., PCR, qPCR, reverse-transcriptase PCR, digital PCR, etc.
  • the pool of molecules may be sequenced.
  • PCR may be used for global amplification of cell free
  • polynucleotide sequences may comprise using adapter sequences that may be first ligated to different molecules followed by PCR amplification using universal primers.
  • PCR for sequencing may be performed using any means, including but not limited to use of commercial kits provided by Nugen (WGA kit), Life Technologies, Affymetrix, Promega, Qiagen and the like. In other cases, only certain target molecules within a population of cell free polynucleotide molecules may be amplified. Specific primers, may in conjunction with adapter ligation, may be used to selectively amplify certain targets for downstream sequencing.
  • the unique identifiers may be introduced to cell free polynucleotide sequences randomly or non-randomly. In some cases, they are introduced at an expected ratio of unique identifiers to microwells. For example, the unique identifiers may be loaded so that more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000, 5000, 10000, 50,000, 100,000, 500,000, 1,000,000, 10,000,000, 50,000,000 or 1,000,000,000 unique identifiers are loaded per genome sample.
  • the unique identifiers may be loaded so that less than about 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000, 5000, 10000, 50,000, 100,000, 500,000, 1,000,000, 10,000,000, 50,000,000 or 1,000,000,000 unique identifiers are loaded per genome sample. In some cases, the average number of unique identifiers loaded per sample genome is less than, or greater than, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000, 5000, 10000, 50,000, 100,000, 500,000, 1,000,000, 10,000,000,
  • the unique identifiers may be a variety of lengths such that each barcode is at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000 base pairs. In other cases, the barcodes may comprise less than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000 base pairs.
  • unique identifiers may be predetermined or random or semi-random sequence oligonucleotides.
  • a plurality of barcodes may be used such that barcodes are not necessarily unique to one another in the plurality.
  • barcodes may be ligated to individual molecules such that the combination of the bar code and the sequence it may be ligated to creates a unique sequence that may be individually tracked.
  • detection of non unique barcodes in combination with sequence data of beginning (start) and end (stop) portions of sequence reads may allow assignment of a unique identity to a particular molecule.
  • the length, or number of base pairs, of an individual sequence read may also be used to assign a unique identity to such a molecule.
  • fragments from a single strand of nucleic acid having been assigned a unique identity may thereby permit subsequent identification of fragments from the parent strand.
  • the polynucleotides in the sample can be uniquely or substantially uniquely tagged.
  • the unique identifiers may be used to tag a wide range of analytes, including but not limited to RNA or DNA molecules.
  • unique identifiers e.g., barcode oligonucleotides
  • the unique identifiers may also bind to gene expression products, genomic DNA, mitochondrial DNA, RNA, mRNA, and the like.
  • a reference sequences may be included with the population of cell free polynucleotide sequences to be analyzed.
  • the reference sequence may be, for example, a nucleic acid with a known sequence and a known quantity.
  • the tagged analytes may subsequently be sequenced and quantified. These methods may indicate if one or more fragments and/or analytes may have been assigned an identical barcode.
  • a method disclosed herein may comprise utilizing reagents necessary for the assignment of barcodes to the analytes.
  • reagents including, but not limited to, ligase enzyme, buffer, adapter oligonucleotides, a plurality of unique identifier DNA barcodes and the like may be loaded into the systems and methods.
  • reagents including but not limited to a plurality of PCR primers, oligonucleotides containing unique identifying sequence, or barcode sequence, DNA polymerase, DNTPs, and buffer and the like may be used in preparation for sequencing.
  • the method and system of this disclosure may utilize the methods of US patent US 7,537,897 in using molecular barcodes to count molecules or analytes.
  • a sample comprising fragmented genomic DNA e.g., cell-free DNA (cfDNA)
  • cfDNA cell-free DNA
  • the probable number of duplicates beginning at any position is a function of the number of haploid genome equivalents in a sample and the distribution of fragment sizes.
  • cfDNA has a peak of fragments at about 160 nucleotides, and most of the fragments in this peak range from about 140 nucleotides to 180 nucleotides.
  • cfDNA from a genome of about 3 billion bases may be comprised of almost 20 million (2xl0 7 ) polynucleotide fragments.
  • a sample of about 30 ng DNA can contain about 10,000 haploid human genome equivalents.
  • a sample of about 100 ng of DNA can contain about 30,000 haploid human genome equivalents.
  • a sample containing about 10,000 (10 4 ) haploid genome equivalents of such DNA can have about 200 billion (2xlO n ) individual polynucleotide molecules. It has been empirically determined that in a sample of about 10,000 haploid genome equivalents of human DNA, there are about 3 duplicate polynucleotides beginning at any given position.
  • such a collection can contain a diversity of about 6xl0 10 -8xl0 10 (about 60 billion- 80 billion e.g., about 70 billion (7xl0 10 )) differently sequenced polynucleotide molecules.
  • the probability of correctly identifying molecules is dependent on initial number of genome equivalents, the length distribution of sequenced molecules, sequence uniformity and number of tags. When the tag count is equal to one, that is, equivalent to having no unique tags or not tagging.
  • the table below lists the probability of correctly identifying a molecule as unique assuming a typical cell-free size distribution as above.
  • This method can be cumbersome and expensive.
  • This invention provides methods and compositions in which a population of polynucleotides in a sample of fragmented genomic DNA is tagged with n different unique identifiers, wherein n is at least 2 and no more than 100,000*z, wherein z is a measure of central tendency (e.g., mean, median, mode) of an expected number of duplicate molecules having the same start and stop positions.
  • n is at least any of 2*z, 3*z, 4*z, 5*z, 6*z, 7*z, 8*z, 9*z, 10*z, l l *z, 12*z, 13*z, 14*z, 15*z, 16*z, 17*z, 18*z, 19*z, or 20*z (e.g., lower limit).
  • n is no greater thanl00,000*z, 10,000*z, 1000*z or 100*z (e.g., upper limit).
  • n can range between any combination of these lower and upper limits.
  • n is between 5*z and 15*z, between 8*z and 12*z, or about 10*z.
  • a haploid human genome equivalent has about 3 picograms of DNA.
  • a sample of about 1 microgram of DNA contains about 300,000 haploid human genome equivalents.
  • the number n can be between 15 and 45, between 24 and 36 or about 30. Improvements in sequencing can be achieved as long as at least some of the duplicate or cognate polynucleotides bear unique identifiers, that is, bear different tags. However, in certain embodiments, the number of tags used is selected so that there is at least a 95% chance that all duplicate molecules starting at any one position bear unique identifiers.
  • a sample comprising about 10,000 haploid human genome equivalents of cfDNA can be tagged with about 36 unique identifiers.
  • the unique identifiers can comprise six unique DNA barcodes.
  • Samples tagged in such a way can be those with a range of about 10 ng to any of about 100 ng, about 1 ⁇ g, about 10 ⁇ g of fragmented polynucleotides, e.g., genomic DNA, e.g. cfDNA.
  • this invention also provides compositions of tagged polynucleotides.
  • the polynucleotides can comprise fragmented DNA, e.g. cfDNA.
  • a set of polynucleotides in the composition that map to a mappable base position in a genome can be non-uniquely tagged, that is, the number of different identifiers can be at least at least 2 and fewer than the number of polynucleotides that map to the mappable base position.
  • a composition of between about 10 ng to about 10 ⁇ g (e.g., any of about 10 ng-1 ⁇ g, about 10 ng-100 ng, about 100 ng-10 ⁇ g, about 100 ng-1 ⁇ g, about 1 ⁇ g-10 ⁇ g) can bear between any of 2, 5, 10, 50 or 100 to any of 100, 1000, 10,000 or 100,000 different identifiers. For example, between 5 and 100 different identifiers can be used to tag the polynucleotides in such a composition.
  • cell free sequences may be sequenced.
  • a sequencing method is classic Sanger sequencing. Sequencing methods may include, but are not limited to: high-throughput sequencing, pyrosequencing, sequencing-by-synthesis, single-molecule sequencing, nanopore sequencing, semiconductor sequencing, sequencing-by-ligation, sequencing-by-hybridization, RNA-Seq (Illumina), Digital Gene Expression (Helicos), Next generation sequencing, Single Molecule Sequencing by Synthesis (SMSS)(Helicos), massively-parallel sequencing, Clonal Single Molecule Array (Solexa), shotgun sequencing, Maxim-Gilbert sequencing, primer walking, sequencing using PacBio, SOLiD, Ion Torrent, or Nanopore platforms and any other sequencing methods known in the art.
  • sequencing reactions various types, as described herein, may comprise a variety of sample processing units.
  • Sample processing units may include but are not limited to multiple lanes, multiple channels, multiple wells, or other mean of processing multiple sample sets substantially simultaneously. Additionally, the sample processing unit may include multiple sample chambers to enable processing of multiple runs simultaneously.
  • simultaneous sequencing reactions may be performed using multiplex sequencing.
  • cell free polynucleotides may be sequenced with at least 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 50000, 100,000 sequencing reactions.
  • cell free poly nucleotides may be sequenced with less than 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 50000, 100,000 sequencing reactions.
  • Sequencing reactions may be performed sequentially or simultaneously. Subsequent data analysis may be performed on all or part of the sequencing reactions. In some cases, data analysis may be performed on at least 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 50000, 100,000 sequencing reactions. In other cases data analysis may be performed on less than 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 50000, 100,000 sequencing reactions.
  • sequence coverage of the genome may be at least 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 99.9% or 100%). In other cases, sequence coverage of the genome may be less than 5%, 10%>, 15%, 20%>, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 99.9% or 100%.
  • sequencing can be performed on cell free polynucleotides that may comprise a variety of different types of nucleic acids.
  • Nucleic acids may be polynucleotides or oligonucleotides. Nucleic acids included, but are not limited to DNA or RNA, single stranded or double stranded or a RNA/cDNA pair.
  • Fig 8. is a diagram, 800, showing a strategy for analyzing polynucleotides in a sample of initial genetic material.
  • a sample containing initial genetic material is provided.
  • the sample can include target nucleic acid in low abundance.
  • nucleic acid from a normal or wild-type genome e.g., a germline genome
  • the sample can include, for example, cell free nucleic acid or cells comprising nucleic acid.
  • the initial genetic material can constitute no more than 100 ng nucleic acid. This can contribute to proper oversampling of the original polynucleotides by the sequencing or genetic analysis process.
  • the sample can be artificially capped or bottlenecked to reduce the amount of nucleic acid to no more than 100 ng or selectively enriched to analyze only sequences of interest.
  • the sample can be modified to selectively produce sequence reads of molecules mapping to each of one or more selected locations in a reference sequence.
  • a sample of 100 ng of nucleic acid can contain about 30,000 human haploid genome equivalents, that is, molecules that, together, provide 30,000-fold coverage of a human genome.
  • step 804 the initial genetic material is converted into a set of tagged parent polynucleotides.
  • Tagging can include attaching sequenced tags to molecules in the initial genetic material. Sequenced tags can be selected so that all unique polynucleotides mapping to the same location in a reference sequence had a unique identifying tag. Conversion can be performed at high efficiency, for example at least 50%.
  • step 806 the set of tagged parent polynucleotides is amplified to produce a set of amplified progeny polynucleotides.
  • Amplification may be, for example, 1,000-fold.
  • step 808 the set of amplified progeny polynucleotides are sampled for sequencing.
  • the sampling rate is chosen so that the sequence reads produced both (1) cover a target number of unique molecules in the set of tagged parent polynucleotides and (2) cover unique molecules in the set of tagged parent polynucleotides at a target coverage fold (e.g., 5- to 10-fold coverage of parent polynucleotides.
  • step 810 the set of sequence reads is collapsed to produce a set of consensus sequences corresponding to unique tagged parent polynucleotides.
  • Sequence reads can be qualified for inclusion in the analysis. For example, sequence reads that fail to meet a quality control scores can be removed from the pool.
  • Sequence reads can be sorted into families representing reads of progeny molecules derived from a particular unique parent molecule. For example, a family of amplified progeny polynucleotides can constitute those amplified molecules derived from a single parent polynucleotide. By comparing sequences of progeny in a family, a consensus sequence of the original parent polynucleotide can be deduced. This produces a set of consensus sequences representing unique parent polynucleotides in the tagged pool.
  • step 812 the set of consensus sequences is analyzed using any of the analytical methods described herein. For example, consensus sequences mapping to a particular reference sequence location can be analyzed to detect instances of genetic variation. Consensus sequences mapping to particular reference sequences can be measured and normalized against control samples. Measures of molecules mapping to reference sequences can be compared across a genome to identify areas in the genome in which copy number varies, or heterozygosity is lost.
  • Fig. 9 is a diagram presenting a more generic method of extracting information from a signal represented by a collection of sequence reads.
  • the sequence reads are grouped into families of molecules amplified from a molecule of unique identity (910). This grouping can be a jumping off point for methods of interpreting the information in the sequence to determine the contents of the tagged parent polynucleotides with higher fidelity, e.g., less noise and/or distortion.
  • One such inference is the number of unique parent polynucleotides in the original pool. Such an inference can be made based on the number of unique families into which the sequence reads can be grouped and the number of sequence reads in each family. In this case, a family refers to a collection of sequence reads traceable back to an original parent polynucleotide. The inference can be made using well-known statistical methods. For example, if grouping produces many families, each represented by one or a few progeny, then one can infer that the original population included more unique parent polynucleotides that were not sequenced. On the other hand, if grouping produces only a few families, each family represented by many progeny, then one can infer that most of the unique polynucleotides in the parent population are represented by at least one sequence read group into that family.
  • Another such inference is the frequency of a base or sequence of bases at a particular locus in an original pool of polynucleotides. Such an inference can be made based on the number of unique families into which the sequence reads can be grouped and the number of sequence reads in each family. Analyzing the base calls at a locus in a family of sequence reads, a confidence score is assigned to each particular base call or sequence. Then, taking into consideration the confidence score for each base call in a plurality of the families, the frequency of each base or sequence at the locus is determined.
  • Fig 1. is a diagram, 100, showing a strategy for detection of copy number variation in a single subject. As shown herein, copy number variation detection methods can be
  • a single unique sample can be sequenced by a nucleic acid sequencing platform known in the art in step 104.
  • This step generates a plurality of genomic fragment sequence reads. In some cases, these sequences reads may contain barcode information. In other examples, barcodes are not utilized.
  • reads are assigned a quality score. A quality score may be a representation of reads that indicates whether those reads may be useful in subsequent analysis based on a threshold. In some cases, some reads are not of sufficient quality or length to perform the subsequent mapping step.
  • Sequencing reads with a quality score at least 90%, 95%, 99%, 99.9%), 99.99%) or 99.999%) may be filtered out of the data. In other cases, sequencing reads assigned a quality scored less than 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set.
  • the genomic fragment reads that meet a specified quality score threshold are mapped to a reference genome, or a template sequence that is known not to contain copy number variations. After mapping alignment, sequence reads are assigned a mapping score.
  • a mapping score may be a representation or reads mapped back to the reference sequence indicating whether each position is or is not uniquely mappable. In instances, reads may be sequences unrelated to copy number variation analysis.
  • sequence reads may originate from contaminant polynucleotides. Sequencing reads with a mapping score at least 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set. In other cases, sequencing reads assigned a mapping scored less than 90%>, 95%, 99%, 99.9%, 99.99%) or 99.999% may be filtered out of the data set.
  • the plurality of sequence reads After data filtering and mapping, the plurality of sequence reads generates a chromosomal region of coverage.
  • these chromosomal regions may be divided into variable length windows or bins.
  • a window or bin may be at least 5 kb, 10, kb, 25 kb, 30 kb, 35, kb, 40 kb, 50 kb, 60 kb, 75 kb, 100 kb, 150 kb, 200 kb, 500 kb, or 1000 kb.
  • a window or bin may also have bases up to 5 kb, 10, kb, 25 kb, 30 kb, 35, kb, 40 kb, 50 kb, 60 kb, 75 kb, 100 kb, 150 kb, 200 kb, 500 kb, or 1000 kb.
  • a window or bin may also be about 5 kb, 10, kb, 25 kb, 30 kb, 35, kb, 40 kb, 50 kb, 60 kb, 75 kb, 100 kb, 150 kb, 200 kb, 500 kb, or 1000 kb.
  • each window or bin is selected to contain about the same number of mappable bases.
  • each window or bin in a chromosomal region may contain the exact number of mappable bases.
  • each window or bin may contain a different number of mappable bases.
  • each window or bin may be non- overlapping with an adjacent window or bin. In other cases, a window or bin may overlap with another adjacent window or bin.
  • a window or bin may overlap by at least 1 bp, 2, bp, 3 bp, 4 bp, 5, bp, 10 bp, 20 bp, 25 bp, 50 bp, 100 bp, 200 bp, 250 bp, 500 bp, or 1000 bp.
  • a window or bin may overlap by up to 1 bp, 2, bp, 3 bp, 4 bp, 5, bp, 10 bp, 20 bp, 25 bp, 50 bp, 100 bp, 200 bp, 250 bp, 500 bp, or 1000 bp.
  • a window or bin may overlap by about 1 bp, 2, bp, 3 bp, 4 bp, 5, bp, 10 bp, 20 bp, 25 bp, 50 bp, 100 bp, 200 bp, 250 bp, 500 bp, or 1000 bp.
  • each of the window regions may be sized so they contain about the same number of uniquely mappable bases.
  • the mappability of each base that comprise a window region is determined and used to generate a mappability file which contains a representation of reads from the references that are mapped back to the reference for each file.
  • the mappability file contains one row per every position, indicating whether each position is or is not uniquely mappable.
  • predefined windows known throughout the genome to be hard to sequence, or contain a substantially high GC bias, may be filtered from the data set. For example, regions known to fall near the centromere of chromosomes (i.e., centromeric DNA) are known to contain highly repetitive sequences that may produce false positive results. These regions may be filtered out. Other regions of the genome, such as regions that contain an unusually high concentration of other highly repetitive sequences such as microsatellite DNA, may be filtered from the data set.
  • the number of windows analyzed may also vary. In some cases, at least 10, 20,
  • the number of widows analyzed is up to 10, 20, 30, 40, 50, 100, 200, 500, 1000, 2000, 5,000, 10,000, 20,000, 50,000 or 100,000 windows are analyzed. In other cases, the number of widows analyzed is up to 10, 20, 30, 40, 50, 100, 200, 500, 1000, 2000, 5,000, 10,000, 20,000, 50,000 or 100,000 windows are analyzed.
  • the next step comprises determining read coverage for each window region. This may be performed using either reads with barcodes, or without barcodes. In cases without barcodes, the previous mapping steps will provide coverage of different base positions. Sequence reads that have sufficient mapping and quality scores and fall within chromosome windows that are not filtered, may be counted. The number of coverage reads may be assigned a score per each mappable position. In cases involving barcodes, all sequences with the same barcode, physical properties or combination of the two may be collapsed into one read, as they are all derived from the sample parent molecule.
  • This step reduces biases which may have been introduced during any of the preceding steps, such as steps involving amplification. For example, if one molecule is amplified 10 times but another is amplified 1000 times, each molecule is only represented once after collapse thereby negating the effect of uneven amplification. Only reads with unique barcodes may be counted for each mappable position and influence the assigned score.
  • Consensus sequences can be generated from families of sequence reads by any method known in the art. Such methods include, for example, linear or non-linear methods of building consensus sequences (such as voting, averaging, statistical, maximum a posteriori or maximum likelihood detection, dynamic programming, Bayesian, hidden Markov or support vector machine methods, etc.) derived from digital communication theory, information theory, or bioinformatics.
  • linear or non-linear methods of building consensus sequences such as voting, averaging, statistical, maximum a posteriori or maximum likelihood detection, dynamic programming, Bayesian, hidden Markov or support vector machine methods, etc.
  • a stochastic modeling algorithm is applied to convert the normalized nucleic acid sequence read coverage for each window region to the discrete copy number states.
  • this algorithm may comprise one or more of the following: Hidden Markov Model, dynamic programming, support vector machine, Bayesian network, trellis decoding, Viterbi decoding, expectation maximization, Kalman filtering methodologies and neural networks.
  • the discrete copy number states of each window region can be utilized to identify copy number variation in the chromosomal regions.
  • all adjacent window regions with the same copy number can be merged into a segment to report the presence or absence of copy number variation state.
  • various windows can be filtered before they are merged with other segments.
  • the copy number variation may be reported as graph, indicating various positions in the genome and a corresponding increase or decrease or maintenance of copy number variation at each respective position. Additionally, copy number variation may be used to report a percentage score indicating how much disease material (or nucleic acids having a copy number variation) exists in the cell free polynucleotide sample.
  • Fig. 10 One method of determining copy number variation is shown in Fig. 10.
  • the families are quantified, for example, by determining the number of families mapping to each of a plurality of different reference sequence locations.
  • CNVs can be determined directly by comparing a quantitative measure of families at each of a plurality of different loci (1016b).
  • one can infer a quantitative measure of families in the population of tagged parent polynucleotides using both a quantitative measure of families and a quantitative measure of family members in each family, e.g., as discussed above.
  • CNV can be determined by comparing the inferred measure of quantity at the plurality of loci.
  • a hybrid approach can be taken whereby a similar inference of original quantity can be made following normalization for representational bias during the sequencing process, such as GC bias, etc
  • Paired sample copy number variation detection shares many of the steps and parameters as the single sample approach described herein. However, as depicted in 200 of Fig. 2 of copy number variation detection using paired samples requires comparison of sequence coverage to a control sample rather than comparing it the predicted mappability of the genome. This approach may aid in normalization across windows.
  • Fig 2. is a diagram, 200 showing a strategy for detection of copy number variation in paired subject. As shown herein, copy number variation detection methods can be
  • a single unique sample can be sequenced by a nucleic acid sequencing platform known in the art after extraction and isolation of the sample in step 202.
  • This step generates a plurality of genomic fragment sequence reads.
  • a sample or control sample is taken from another subject.
  • the control subject may be a subject not known to have disease, whereas the other subject may have or be at risk for a particular disease.
  • these sequences reads may contain barcode information. In other examples, barcodes are not utilized.
  • reads are assigned a quality score. In some cases, some reads are not of sufficient quality or length to perform the subsequent mapping step.
  • Sequencing reads with a quality score at least 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set. In other cases, sequencing reads assigned a quality scored less than 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set.
  • the genomic fragment reads that meet a specified quality score threshold are mapped to a reference genome, or a template sequence that is known not to contain copy number variations. After mapping alignment, sequence reads are assigned a mapping score. In instances, reads may be sequences unrelated to copy number variation analysis. For example, some sequence reads may originate from contaminant polynucleotides.
  • Sequencing reads with a mapping score at least 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set. In other cases, sequencing reads assigned a mapping scored less than 90%>, 95%, 99%, 99.9%, 99.99%) or 99.999% may be filtered out of the data set.
  • the plurality of sequence reads After data filtering and mapping, the plurality of sequence reads generates a chromosomal region of coverage for each of the test and control subjects. In step 208 these chromosomal regions may be divided into variable length windows or bins.
  • a window or bin may be at least 5 kb, 10, kb, 25 kb, 30 kb, 35, kb, 40 kb, 50 kb, 60 kb, 75 kb, 100 kb, 150 kb, 200 kb, 500 kb, or 1000 kb.
  • a window or bin may also be less than 5 kb, 10, kb, 25 kb, 30 kb, 35, kb, 40 kb, 50 kb, 60 kb, 75 kb, 100 kb, 150 kb, 200 kb, 500 kb, or 1000 kb.
  • each window or bin is selected to contain about the same number of mappable bases for each of the test and control subjects.
  • each window or bin in a chromosomal region may contain the exact number of mappable bases.
  • each window or bin may contain a different number of mappable bases.
  • each window or bin may be non-overlapping with an adjacent window or bin. In other cases, a window or bin may overlap with another adjacent window or bin.
  • a window or bin may overlap by at least 1 bp, 2, bp, 3 bp, 4 bp, 5, bp, 10 bp, 20 bp, 25 bp, 50 bp, 100 bp, 200 bp, 250 bp, 500 bp, or 1000 bp. In other cases, a window or bin may overlap by less than 1 bp, 2, bp, 3 bp, 4 bp, 5, bp, 10 bp, 20 bp, 25 bp, 50 bp, 100 bp, 200 bp, 250 bp, 500 bp, or 1000 bp.
  • each of the window regions is sized so they contain about the same number of uniquely mappable bases for each of the test and control subjects.
  • the mappability of each base that comprise a window region is determined and used to generate a mappability file which contains a representation of reads from the references that are mapped back to the reference for each file.
  • the mappability file contains one row per every position, indicating whether each position is or is not uniquely mappable.
  • predefined windows known throughout the genome to be hard to sequence, or contain a substantially high GC bias, are filtered from the data set. For example, regions known to fall near the centromere of chromosomes (i.e., centromeric DNA) are known to contain highly repetitive sequences that may produce false positive results. These regions may be filtered. Other regions of the genome, such as regions that contain an unusually high
  • concentration of other highly repetitive sequences such as microsatellite DNA, may be filtered from the data set.
  • the number of windows analyzed may also vary. In some cases, at least 10, 20,
  • 30, 40, 50, 100, 200, 500, 1000, 2000, 5,000, 10,000, 20,000, 50,000 or 100,000 windows are analyzed. In other cases, less than 10, 20, 30, 40, 50, 100, 200, 500, 1000, 2000, 5,000, 10,000, 20,000, 50,000 or 100,000 windows are analyzed.
  • the next step comprises determining read coverage for each window region for each of the test and control subjects. This may be performed using either reads with barcodes, or without barcodes. In cases without barcodes, the pervious mapping steps will provide coverage of different base positions. Sequence reads that have sufficient mapping and quality scores and fall within chromosome windows that are not filtered, may be counted. The number of coverage reads may be assigned a score per each mappable position. In cases involving barcodes, all sequences with the same barcode may be collapsed into one read, as they are all derived from the sample parent molecule.
  • This step reduces biases which may have been introduced during any of the preceding steps, such as steps involving amplification. Only reads with unique barcodes may be counted for each mappable position and influence the assigned score. For this reason, it is important that the barcode ligation step be performed in a manner optimized for producing the lowest amount of bias.
  • the coverage of each window can be normalized by the mean coverage of that sample. Using such an approach, it may be desirable to sequence both the test subject and the control under similar conditions. The read coverage for each window may be then expressed as a ratio across similar windows
  • Nucleic acid read coverage ratios for each window of the test subject can be determined by dividing the read coverage of each window region of the test sample with read coverage of a corresponding window region of the control ample.
  • a stochastic modeling algorithm is applied to convert the normalized ratios for each window region into discrete copy number states.
  • this algorithm may comprise a Hidden Markov Model.
  • the stochastic model may comprise dynamic programming, support vector machine, Bayesian modeling, probabilistic modeling, trellis decoding, Viterbi decoding, expectation maximization, Kalman filtering methodologies, or neural networks.
  • the discrete copy number states of each window region can be utilized to identify copy number variation in the chromosomal regions.
  • all adjacent window regions with the same copy number can be merged into a segment to report the presence or absence of copy number variation state.
  • various windows can be filtered before they are merged with other segments.
  • the copy number variation may be reported as graph, indicating various positions in the genome and a corresponding increase or decrease or maintenance of copy number variation at each respective position. Additionally, copy number variation may be used to report a percentage score indicating how much disease material exists in the cell free poly nucleotide sample.
  • rare mutation detection shares similar features as both copy number variation approaches. However, as depicted in Fig. 3, 300, rare mutation detection uses comparison of sequence coverage to a control sample or reference sequence rather than comparing it the relative mappability of the genome. This approach may aid in normalization across windows.
  • rare mutation detection may be performed on selectively enriched regions of the genome or transcriptome purified and isolated in step 302.
  • specific regions which may include but are not limited to genes, oncogenes, tumor suppressor genes, promoters, regulatory sequence elements, non-coding regions, miRNAs, snRNAs and the like may be selectively amplified from a total population of cell free polynucleotides. This may be performed as herein described.
  • multiplex sequencing may be used, with or without barcode labels for individual polynucleotide sequences.
  • sequencing may be performed using any nucleic acid sequencing platforms known in the art. This step generates a plurality of genomic fragment sequence reads as in step 304.
  • a reference sequence is obtained from a control sample, taken from another subject.
  • the control subject may be a subject known to not have known genetic aberrations or disease.
  • these sequence reads may contain barcode information. In other examples, barcodes are not utilized.
  • reads are assigned a quality score.
  • a quality score may be a representation of reads that indicates whether those reads may be useful in subsequent analysis based on a threshold. In some cases, some reads are not of sufficient quality or length to perform the subsequent mapping step. Sequencing reads with a quality score at least 90%, 95%, 99%, 99.9%), 99.99%) or 99.999%) may be filtered out of the data set.
  • sequencing reads assigned a quality scored at least 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set.
  • the genomic fragment reads that meet a specified quality score threshold are mapped to a reference genome, or a reference sequence that is known not to contain rare mutations.
  • sequence reads are assigned a mapping score.
  • a mapping score may be a representation or reads mapped back to the reference sequence indicating whether each position is or is not uniquely mappable.
  • reads may be sequences unrelated to rare mutation analysis. For example, some sequence reads may originate from contaminant polynucleotides.
  • Sequencing reads with a mapping score at least 90%, 95%, 99%, 99.9%), 99.99%) or 99.999%) may be filtered out of the data set.
  • sequencing reads assigned a mapping scored less than 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set.
  • bases that do not meet the minimum threshold for mappability, or low quality bases may be replaced by the corresponding bases as found in the reference sequence.
  • the next step comprises determining read coverage for each mappable base position. This may be performed using either reads with barcodes, or without barcodes. In cases without barcodes, the previous mapping steps will provide coverage of different base positions. Sequence reads that have sufficient mapping and quality scores may be counted. The number of coverage reads may be assigned a score per each mappable position. In cases involving barcodes, all sequences with the same barcode may be collapsed into one consensus read, as they are all derived from the sample parent molecule. The sequence for each base is aligned as the most dominant nucleotide read for that specific location. Further, the number of unique molecules can be counted at each position to derive simultaneous quantification at each position. This step reduces biases which may have been introduced during any of the preceding steps, such as steps involving
  • the frequency of variant bases may be calculated as the number of reads containing the variant divided by the total number of reads. This may be expressed as a ratio for each mappable position in the genome.
  • the frequencies of all four nucleotides, cytosine, guanine, thymine, adenine are analyzed in comparison to the reference sequence.
  • a stochastic or statistical modeling algorithm is applied to convert the normalized ratios for each mappable position to reflect frequency states for each base variant.
  • this algorithm may comprise one or more of the following: Hidden Markov Model, dynamic programming, support vector machine, Bayesian or probabilistic modeling, trellis decoding, Viterbi decoding, expectation maximization, Kalman filtering methodologies, and neural networks.
  • the discrete rare mutation states of each base position can be utilized to identify a base variant with high frequency of variance as compared to the baseline of the reference sequence.
  • the baseline might represent a frequency of at least 0.0001%
  • the baseline might represent a frequency of at least 0.0001%, 0.001%, 0.01%, 0.1%, 1.0%, 2.0%, 3.0%, 4.0% 5.0%. 10%, or 25%.
  • all adjacent base positions with the base variant or mutation can be merged into a segment to report the presence or absence of a rare mutation.
  • various positions can be filtered before they are merged with other segments.
  • the variant with largest deviation for a specific position in the sequence derived from the subject as compared to the reference sequence is identified as a rare mutation.
  • a rare mutation may be a cancer mutation.
  • a rare mutation might be correlated with a disease state.
  • a rare mutation or variant may comprise a genetic aberration that includes, but is not limited to a single base substitution, or small indels, transversions, translocations, inversion, deletions, truncations or gene truncations.
  • a rare mutation may be at most 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nucleotides in length. On other cases a rare mutation may be at least
  • step 314 the presence or absence of a mutation may be reflected in graphical form, indicating various positions in the genome and a corresponding increase or decrease or maintenance of a frequency of mutation at each respective position. Additionally, rare mutations may be used to report a percentage score indicating how much disease material exists in the cell free polynucleotide sample. A confidence score may accompany each detected mutation, given known statistics of typical variances at reported positions in non-disease reference sequences. Mutations may also be ranked in order of abundance in the subject or ranked by clinically actionable importance.
  • Fig. 11 shows a method of inferring the frequency of a base or sequence of bases at a particular locus in a population polynucleotides.
  • Sequence reads are grouped into families generated from an original tagged polynucleotide (1110). For each family, one or more bases at the locus is each assigned a confidence score.
  • the confidence score can be assigned by any of a number of known statistical methods is assigned and can be based, at least in part, on the frequency at which a base appears among the sequence reads belonging to the family (1112). For example, the confidence score can be the frequency at which the base appears among the sequence reads.
  • a hidden Markov model can be built, such that a maximum likelihood or maximum a posteriori decision can be made based on the frequency of occurrence of a particular base in a single family. As part of this model, the probability of error and resultant confidence score for a particular decision can be output as well.
  • a frequency of the base in the original population can then be assigned based on the confidence scores among the families (1114).
  • Cancers cells as most cells, can be characterized by a rate of turnover, in which old cells die and replaced by newer cells. Generally dead cells, in contact with vasculature in a given subject, may release DNA or fragments of DNA into the blood stream. This is also true of cancer cells during various stages of the disease. Cancer cells may also be characterized, dependent on the stage of the disease, by various genetic aberrations such as copy number variation as well as rare mutations. This phenomenon may be used to detect the presence or absence of cancers individuals using the methods and systems described herein.
  • blood from subjects at risk for cancer may be drawn and prepared as described herein to generate a population of cell free polynucleotides.
  • this might be cell free DNA.
  • the systems and methods of the disclosure may be employed to detect rare mutations or copy number variations that may exist in certain cancers present. The method may help detect the presence of cancerous cells in the body, despite the absence of symptoms or other hallmarks of disease.
  • the types and number of cancers that may be detected may include but are not limited to blood cancers, brain cancers, lung cancers, skin cancers, nose cancers, throat cancers, liver cancers, bone cancers, lymphomas, pancreatic cancers, skin cancers, bowel cancers, rectal cancers, thyroid cancers, bladder cancers, kidney cancers, mouth cancers, stomach cancers, solid state tumors, heterogeneous tumors, homogenous tumors and the like.
  • any of the systems or methods herein described including rare mutation detection or copy number variation detection may be utilized to detect cancers. These system and methods may be used to detect any number of genetic aberrations that may cause or result from cancers.
  • mutations rare mutations, indels, copy number variations, transversions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection and cancer.
  • the systems and methods described herein may also be used to help characterize certain cancers.
  • Genetic data produced from the system and methods of this disclosure may allow practitioners to help better characterize a specific form of cancer. Often times, cancers are heterogeneous in both composition and staging. Genetic profile data may allow characterization of specific sub-types of cancer that may be important in the diagnosis or treatment of that specific sub-type. This information may also provide a subject or practitioner clues regarding the prognosis of a specific type of cancer.
  • the systems and methods provided herein may be used to monitor already known cancers, or other diseases in a particular subject. This may allow either a subject or practitioner to adapt treatment options in accord with the progress of the disease.
  • the systems and methods described herein may be used to construct genetic profiles of a particular subject of the course of the disease.
  • cancers can progress, becoming more aggressive and genetically unstable.
  • cancers may remain benign, inactive, dormant or in remission.
  • the system and methods of this disclosure may be useful in determining disease progression, remission or recurrence.
  • the systems and methods described herein may be useful in determining the efficacy of a particular treatment option.
  • successful treatment options may actually increase the amount of copy number variation or rare mutations detected in subject's blood if the treatment is successful as more cancers may die and shed DNA. In other examples, this may not occur.
  • certain treatment options may be correlated with genetic profiles of cancers over time. This correlation may be useful in selecting a therapy.
  • the systems and methods described herein may be useful in monitoring residual disease or recurrence of disease.
  • mutations occurring within a range of frequency beginning at threshold level can be determined from DNA in a sample from a subject, e.g., a patient.
  • the mutations can be, e.g., cancer related mutations.
  • the frequency can range from, for example, at least 0.1%, at least 1%, or at least 5% to 100%.
  • the sample can be, e.g., cell free DNA or a tumor sample.
  • a course of treatment can be prescribed based on any or all of mutations occurring within the frequency range including, e.g., their frequencies.
  • a sample can be taken from the subject at any subsequent time. Mutations occurring within the original range of frequency or a different range of frequency can be determined. The course of treatment can be adjusted based on the subsequent measurements.
  • the methods and systems described herein may not be limited to detection of rare mutations and copy number variations associated with only cancers.
  • Various other diseases and infections may result in other types of conditions that may be suitable for early detection and monitoring.
  • genetic disorders or infectious diseases may cause a certain genetic mosaicism within a subject. This genetic mosaicism may cause copy number variation and rare mutations that could be observed.
  • the system and methods of the disclosure may also be used to monitor the genomes of immune cells within the body. Immune cells, such as B cells, may undergo rapid clonal expansion upon the presence certain diseases. Clonal expansions may be monitored using copy number variation detection and certain immune states may be monitored. In this example, copy number variation analysis may be performed over time to produce a profile of how a particular disease may be progressing.
  • the systems and methods of this disclosure may also be used to monitor systemic infections themselves, as may be caused by a pathogen such as a bacteria or virus. Copy number variation or even rare mutation detection may be used to determine how a population of pathogens are changing during the course of infection. This may be particularly important during chronic infections, such as HIV/AIDs or Hepatitis infections, whereby viruses may change life cycle state and/or mutate into more virulent forms during the course of infection.
  • a pathogen such as a bacteria or virus.
  • Copy number variation or even rare mutation detection may be used to determine how a population of pathogens are changing during the course of infection. This may be particularly important during chronic infections, such as HIV/AIDs or Hepatitis infections, whereby viruses may change life cycle state and/or mutate into more virulent forms during the course of infection.
  • Yet another example that the system and methods of this disclosure may be used for is the monitoring of transplant subjects. Generally, transplanted tissue undergoes a certain degree of rejection by the body upon transplantation. The methods
  • a disease may be heterogeneous. Disease cells may not be identical. In the example of cancer, some tumors are known to comprise different types of tumor cells, some cells in different stages of the cancer. In other examples, heterogeneity may comprise multiple foci of disease. Again, in the example of cancer, there may be multiple tumor foci, perhaps where one or more foci are the result of metastases that have spread from a primary site.
  • the methods of this disclosure may be used to generate or profile, fingerprint or set of data that is a summation of genetic information derived from different cells in a heterogeneous disease.
  • This set of data may comprise copy number variation and rare mutation analyses alone or in combination.
  • systems and methods of the disclosure may be used to diagnose, prognose, monitor or observe cancers or other diseases of fetal origin. That is, these
  • methodologies may be employed in a pregnant subject to diagnose, prognose, monitor or observe cancers or other diseases in a unborn subject whose DNA and other polynucleotides may co- circulate with maternal molecules.
  • Ranges can be expressed herein as from “about” one particular value, and/or to
  • FIG. 15 shows a computer system 1501 that is programmed or otherwise configured to implement the methods of the present disclosure.
  • the computer system 1501 can regulate various aspects sample preparation, sequencing and/or analysis.
  • the computer system 1501 is configured to perform sample preparation and sample analysis, including nucleic acid sequencing.
  • the computer system 1501 includes a central processing unit (CPU, also
  • the computer system 1501 also includes memory or memory location 1510 (e.g., random-access memory, read-only memory, flash memory), electronic storage unit 1515 (e.g., hard disk), communication interface 1520 (e.g., network adapter) for communicating with one or more other systems, and peripheral devices 1525, such as cache, other memory, data storage and/or electronic display adapters.
  • memory 1510, storage unit 1515, interface 1520 and peripheral devices 1525 are in communication with the CPU 1505 through a communication bus (solid lines), such as a motherboard.
  • the storage unit 1515 can be a data storage unit (or data repository) for storing data.
  • the computer system 1501 can be operatively coupled to a computer network ("network") 1530 with the aid of the communication interface 1520.
  • the network 1530 can be the Internet, an internet and/or extranet, or an intranet and/or extranet that is in communication with the Internet.
  • the network 1530 in some cases is a telecommunication and/or data network.
  • the network 1530 can include one or more computer servers, which can enable distributed computing, such as cloud computing.
  • the network 1530, in some cases with the aid of the computer system 1501, can implement a peer-to- peer network, which may enable devices coupled to the computer system 1501 to behave as a client or a server.
  • the CPU 1505 can execute a sequence of machine -readable instructions, which can be embodied in a program or software.
  • the instructions may be stored in a memory location, such as the memory 1510. Examples of operations performed by the CPU 1505 can include fetch, decode, execute, and writeback.
  • the storage unit 1515 can store files, such as drivers, libraries and saved programs.
  • the storage unit 1515 can store programs generated by users and recorded sessions, as well as output(s) associated with the programs.
  • the storage unit 1515 can store user data, e.g., user preferences and user programs.
  • the computer system 1501 in some cases can include one or more additional data storage units that are external to the computer system 1501, such as located on a remote server that is in communication with the computer system 1501 through an intranet or the Internet.
  • the computer system 1501 can communicate with one or more remote computer systems through the network 1530.
  • the computer system 1501 can communicate with a remote computer system of a user (e.g., operator).
  • remote computer systems include personal computers (e.g., portable PC), slate or tablet PC's (e.g., Apple® iPad, Samsung® Galaxy Tab), telephones, Smart phones (e.g., Apple® iPhone, Android-enabled device,
  • Methods as described herein can be implemented by way of machine (e.g., computer processor) executable code stored on an electronic storage location of the computer system 1501, such as, for example, on the memory 1510 or electronic storage unit 1515.
  • the machine executable or machine readable code can be provided in the form of software.
  • the code can be executed by the processor 1505.
  • the code can be retrieved from the storage unit 1515 and stored on the memory 1510 for ready access by the processor 1505.
  • the electronic storage unit 1515 can be precluded, and machine- executable instructions are stored on memory 1510.
  • the code can be pre-compiled and configured for use with a machine have a processer adapted to execute the code, or can be compiled during runtime.
  • the code can be supplied in a programming language that can be selected to enable the code to execute in a precompiled or as-compiled fashion.
  • Machine-executable code can be stored on an electronic storage unit, such memory (e.g., readonly memory, random-access memory, flash memory) or a hard disk.
  • Storage type media can include any or all of the tangible memory of the computers, processors or the like, or associated modules thereof, such as various semiconductor memories, tape drives, disk drives and the like, which may provide non-transitory storage at any time for the software programming.
  • All or portions of the software may at times be communicated through the Internet or various other telecommunication networks. Such communications, for example, may enable loading of the software from one computer or processor into another, for example, from a management server or host computer into the computer platform of an application server.
  • another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-links.
  • the physical elements that carry such waves, such as wired or wireless links, optical links or the like, also may be considered as media bearing the software.
  • terms such as computer or machine "readable medium” refer to any medium that participates in providing instructions to a processor for execution.
  • a machine readable medium such as computer-executable code
  • a tangible storage medium such as computer-executable code
  • Non-volatile storage media include, for example, optical or magnetic disks, such as any of the storage devices in any computer(s) or the like, such as may be used to implement the databases, etc. shown in the drawings.
  • Volatile storage media include dynamic memory, such as main memory of such a computer platform.
  • Tangible transmission media include coaxial cables; copper wire and fiber optics, including the wires that comprise a bus within a computer system.
  • Carrier- wave transmission media may take the form of electric or electromagnetic signals, or acoustic or light waves such as those generated during radio frequency (RF) and infrared (IR) data communications.
  • RF radio frequency
  • IR infrared
  • Common forms of computer-readable media therefore include for example: a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD or DVD-ROM, any other optical medium, punch cards paper tape, any other physical storage medium with patterns of holes, a RAM, a ROM, a PROM and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave transporting data or instructions, cables or links transporting such a carrier wave, or any other medium from which a computer may read programming code and/or data.
  • Many of these forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to a processor for execution.
  • the computer system 1501 can include or be in communication with an electronic display that comprises a user interface (UI) for providing, for example, one or more results of sample analysis.
  • UI user interface
  • Examples of UFs include, without limitation, a graphical user interface (GUI) and web-based user interface.
  • a blood sample is taken from a prostate cancer subject. Previously, an oncologist determines that the subject has stage II prostate cancer and recommends a treatment. Cell free DNA is extracted, isolated, sequenced and analyzed every 6 months after the initial diagnosis.
  • Cell free DNA is extracted and isolated from blood using the Qiagen Qubit kit protocol. A carrier DNA is added to increase yields. DNA is amplified using PCR and universal primers. 10 ng of DNA is sequenced using a massively parallel sequencing approach with an Illumina MiSeq personal sequencer. 90% of the subject's genome is covered through sequencing of cell free DNA.
  • Sequence data is assembled and analyzed for copy number variation. Sequence reads are mapped and compared to a healthy individual (control). Based on the number of sequence reads, chromosomal regions are divided into 50 kb non overlapping regions. Sequence reads are compared to one another and a ratio is determined for each mappable position.
  • a Hidden Markov Model is applied to convert copy numbers into discrete states for each window.
  • Analysis of sequence data occurs at a site other than the location of the subject.
  • the report is generated and transmitted to the subject's location.
  • the subject accesses the reports reflecting his tumor burden (Fig. 4C).
  • a blood sample is taken from a prostate cancer survivor.
  • the subject had previously undergone numerous rounds of chemotherapy and radiation.
  • the subject at the time of testing did not present symptoms or health issues related to the cancer. Standard scans and assays reveal the subject to be cancer free.
  • Cell free DNA is extracted and isolated from blood using the Qiagen TruSeq kit protocol. A carrier DNA is added to increase yields. DNA is amplified using PCR and universal primers. 10 ng of DNA is sequenced using a massively parallel sequencing approach with an Illumina MiSeq personal sequencer. 12mer barcodes are added to individual molecules using a ligation method.
  • Sequence data is assembled and analyzed for copy number variation. Sequence reads are mapped and compared to a healthy individual (control). Based on the number of sequence reads, chromosomal regions are divided into 40 kb non overlapping regions. Sequence reads are compared to one another and a ratio is determined for each mappable position.
  • Non unique barcoded sequences are collapsed into a single read to help normalize bias from amplification.
  • a Hidden Markov Model is applied to convert copy numbers into discrete states for each window.
  • Reports are generated, mapping genome positions and copy number variation shown in Fig. 5A, for a subject with cancer in remission and Fig. 5B for a subject with cancer in recurrence.
  • a subject is known to have Stage IV thyroid cancer and undergoes standard treatment, including radiation therapy with 1-131.
  • CT scans are inconclusive as to whether the radiation therapy is destroying cancerous masses.
  • Blood is drawn before and after the latest radiation session.
  • Cell free DNA is extracted and isolated from blood using the Qiagen Qubit kit protocol. A sample of non specific bulk DNA is added to the sample preparation reactions increase yields.
  • BRAF gene may be mutated at amino acid position 600 in this thyroid cancer. From population of cell free DNA, BRAF DNA is selectively amplified using primers specific to the gene. 20mer barcodes are added to the parent molecule as a control for counting reads.
  • Sequence reads are mapped and compared to a healthy individual (control). Based on the number of sequence reads, as determined by counting the barcode sequences, chromosomal regions are divided into 50 kb non overlapping regions. Sequence reads are compared to one another and a ratio is determined for each mappable position.
  • a Hidden Markov Model is applied to convert copy numbers into discrete states for each window.
  • a report is generated, mapping genome positions and copy number variation.
  • the reports generated before and after treatment are compared.
  • the tumor cell burden percentage jumps from 30% to 60% after the radiation session.
  • the jump in tumor burden is determined to be an increase in necrosis of cancer tissue versus normal tissue as a result of treatment.
  • Oncologists recommend the subject continue the prescribed treatment.
  • Sequence data is assembled and analyzed for rare mutation detection. Sequence reads are mapped and compared to a reference sequence (control). Based on the number of sequence reads, the frequency of variance for each mappable position is determined.
  • a Hidden Markov Model is applied to convert frequency of variance for each mappable position into discrete states for base position.
  • a report is generated, mapping genome base positions and percentage detection of the rare mutation over baseline as determined by the reference sequence (Fig. 6A).
  • a subject is thought to have early stage prostate cancer. Other clinical tests provide inconclusive results. Blood is drawn from the subject and cell free DNA is extracted, isolated, prepared and sequenced.
  • a panel of various oncogenes and tumor suppressor genes are selected for selective amplification using a TaqMan ⁇ PCR kit (Invitrogen) using gene specific primers.
  • DNA regions amplified include DNA containing PIK3CA and TP53 genes.
  • Sequence data is assembled and analyzed for rare mutation detection. Sequence reads are mapped and compared to a reference sequence (control). Based on the number of sequence reads, the frequency of variance for each mappable position was determined.
  • a Hidden Markov Model is applied to convert frequency of variance for each mappable position into discrete states for each base position.
  • a report is generated, mapping genomic base positions and percentage detection of the rare mutation over baseline as determined by the reference sequence (Fig. 7A). Rare mutations are found at an incidence of 5% in two genes, PIK3CA and TP53, respectively, indicating that the subject has an early stage cancer. Treatment is initiated.
  • Analysis of sequence data occurs at a site other than the location of the subject.
  • the report is generated and transmitted to the subject's location.
  • the subject accesses the reports reflecting his tumor burden (Fig. 7B).
  • a subject is thought to have mid-stage colorectal cancer. Other clinical tests provide inconclusive results. Blood is drawn from the subject and cell free DNA is extracted.
  • 10 ng of the cell-free genetic material that is extracted from a single tube of plasma is used.
  • the initial genetic material is converted into a set of tagged parent polynucleotides.
  • the tagging included attaching tags required for sequencing as well as non- unique identifiers for tracking progeny molecules to the parent nucleic acids.
  • the conversion is performed through an optimized ligation reaction as described above and conversion yield is confirmed by looking at the size profile of molecules post-ligation. Conversion yield is measured as the percentage of starting initial molecules that have both ends ligated with tags. Conversion using this approach is performed at high efficiency, for example, at least 50%.
  • the tagged library is PCR-amplified and enriched for genes most associated with colorectal cancer, (e.g., KRAS, APC, TP53, etc) and the resulting DNA is sequenced using a massively parallel sequencing approach with an Illumina MiSeq personal sequencer.
  • genes most associated with colorectal cancer e.g., KRAS, APC, TP53, etc.
  • Sequence data is assembled and analyzed for rare mutation detection. Sequence reads are collapsed into familial groups belonging to a parent molecule (as well as error-corrected upon collapse) and mapped using a reference sequence (control). Based on the number of sequence reads, the frequency of rare variations (substitutions, insertions, deletions, etc) and variations in copy number and heterozygosity (when appropriate) for each mappable position is determined.
  • a report is generated, mapping genomic base positions and percentage detection of the rare mutation over baseline as determined by the reference sequence. Rare mutations are found at an incidence of 0.3-0.4%> in two genes, KRAS and FBXW7, respectively, indicating that the subject has residual cancer. Treatment is initiated.
  • Analysis of sequence data occurs at a site other than the location of the subject.
  • the report is generated and transmitted to the subject's location. Via an internet enabled computer, the subject accesses the reports reflecting his tumor burden.
  • DST Digital Sequencing Technology
  • DST architecture is inspired by state-of-the-art digital communication systems that combat the high noise and distortion caused by modern communication channels and are able to transmit digital information flawlessly at exceedingly high data rates.
  • current next- gen workflows are plagued by extremely high noise and distortion (due to sample-prep, PCR- based amplification and sequencing).
  • Digital sequencing is able to eliminate the error and distortion created by these processes and produce near-perfect representation of all rare variants (including CNVs).
  • the workflow engineered around the DST platform is flexible and highly tunable as targeted regions can be as small as single exons or as broad as whole exomes (or even whole genomes).
  • a standard panel consists of all exonic bases of 15 actionable cancer-related genes and coverage of the "hot" exons of an additional 36 onco-/tumor-suppressor genes (e.g., exons containing at least one or more reported somatic mutations in COSMIC).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Pathology (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Indexing, Searching, Synchronizing, And The Amount Of Synchronization Travel Of Record Carriers (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Abstract

The present disclosure provides a system and method for the detection of rare mutations and copy number variations in cell free polynucleotides. Generally, the systems and methods comprise sample preparation, or the extraction and isolation of cell free polynucleotide sequences from a bodily fluid; subsequent sequencing of cell free polynucleotides by techniques known in the art; and application of bioinformatics tools to detect rare mutations and copy number variations as compared to a reference. The systems and methods also may contain a database or collection of different rare mutations or copy number variation profiles of different diseases, to be used as additional references in aiding detection of rare mutations, copy number variation profiling or general genetic profiling of a disease.

Description

SYSTEMS AND METHODS TO DETECT RARE MUTATIONS AND COPY NUMBER
VARIATION
CROSS-REFERENCE
[0001] This application claims priority to U.S. Provisional Patent Application No. 61/696,734, filed September 4, 2012, U.S. Provisional Patent Application No. 61/704,400, filed September 21, 2012, U.S. Provisional Patent Application No. 61/793,997, filed March 15, 2013, and U.S.
Provisional Patent Application No. 61/845,987, filed July 13, 2013, each of which is entirely incorporated herein by reference for all purposes.
BACKGROUND OF THE INVENTION
[0002] The detection and quantification of polynucleotides is important for molecular biology and medical applications such as diagnostics. Genetic testing is particularly useful for a number of diagnostic methods. For example, disorders that are caused by rare genetic alterations (e.g., sequence variants) or changes in epigenetic markers, such as cancer and partial or complete aneuploidy, may be detected or more accurately characterized with DNA sequence information.
[0003] Early detection and monitoring of genetic diseases, such as cancer is often useful and needed in the successful treatment or management of the disease. One approach may include the monitoring of a sample derived from cell free nucleic acids, a population of polynucleotides that can be found in different types of bodily fluids. In some cases, disease may be characterized or detected based on detection of genetic aberrations, such as a change in copy number variation and/or sequence variation of one or more nucleic acid sequences, or the development of other certain rare genetic alterations. Cell free DNA ("cfDNA") has been known in the art for decades, and may contain genetic aberrations associated with a particular disease. With improvements in sequencing and techniques to manipulate nucleic acids, there is a need in the art for improved methods and systems for using cell free DNA to detect and monitor disease.
SUMMARY OF THE INVENTION
[0004] The disclosure provides for a method for detecting copy number variation comprising: a) sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular polynucleotide are optionally attached to unique barcodes; b) filtering out reads that fail to meet a set threshold; c) mapping sequence reads obtained from step (a) to a reference sequence; d) quantifying/counting mapped reads in two or more predefined regions of the reference sequence; e) determining a copy number variation in one or more of the predefined regions by (i) normalizing the number of reads in the predefined regions to each other and/or the number of unique barcodes in the predefined regions to each other; and (ii) comparing the normalized numbers obtained in step (i) to normalized numbers obtained from a control sample.
[0005] The disclosure also provides for a method for detecting a rare mutation in a cell-free or substantially cell free sample obtained from a subject comprising: a) sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular
polynucleotide generate a plurality of sequencing reads; b) sequencing extracellular
polynucleotides from a bodily sample from a subject, wherein each of the extracellular
polynucleotide generate a plurality of sequencing reads; sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular polynucleotide generate a plurality of sequencing reads; c) filtering out reads that fail to meet a set threshold; d) mapping sequence reads derived from the sequencing onto a reference sequence; e) identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position; f) for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position; g) normalizing the ratios or frequency of variance for each mappable base position and determining potential rare variant(s) or mutation(s); h) and comparing the resulting number for each of the regions with potential rare variant(s) or mutation(s) to similarly derived numbers from a reference sample.
[0006] Additionally, the disclosure also provides for a method of characterizing the heterogeneity of an abnormal condition in a subject, the method comprising generating a genetic profile of extracellular polynucleotides in the subject, wherein the genetic profile comprises a plurality of data resulting from copy number variation and/or other rare mutation (e.g., genetic alteration) analyses.
[0007] In some embodiments, the prevalence/concentration of each rare variant identified in the subject is reported and quantified simultaneously. In other embodiments, a confidence score, regarding the prevalence/concentrations of rare variants in the subject, is reported.
[0008] In some embodiments, extracellular polynucleotides comprise DNA. In other
embodiments, extracellular polynucleotides comprise R A. Polynucleotides may be fragments or fragmented after isolation. Additionally, the disclosure provides for a method for circulating nucleic acid isolation and extraction.
[0009] In some embodiments, extracellular polynucleotides are isolated from a bodily sample that may be selected from a group consisting of blood, plasma, serum, urine, saliva, mucosal excretions, sputum, stool and tears.
[0010] In some embodiments, the methods of the disclosure also comprise a step of determining the percent of sequences having copy number variation or other rare genetic alteration (e.g., sequence variants) in said bodily sample.
[0011] In some embodiments, the percent of sequences having copy number variation in said bodily sample is determined by calculating the percentage of predefined regions with an amount of polynucleotides above or below a predetermined threshold.
[0012] In some embodiments, bodily fluids are drawn from a subject suspected of having an abnormal condition which may be selected from the group consisting of, mutations, rare mutations, single nucleotide variants, indels, copy number variations, trans versions,
translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection and cancer.
[0013] In some embodiments, the subject may be a pregnant female in which the abnormal condition may be a fetal abnormality selected from the group consisting of, single nucleotide variants, indels, copy number variations, trans versions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection and cancer
[0014] In some embodiments, the method may comprise comprising attaching one or more barcodes to the extracellular polynucleotides or fragments thereof prior to sequencing, in which the barcodes comprise are unique. In other embodiments barcodes attached to extracellular polynucleotides or fragments thereof prior to sequencing are not unique. [0015] In some embodiments, the methods of the disclosure may comprise selectively enriching regions from the subject's genome or transcriptome prior to sequencing. In other embodiments the methods of the disclosure comprise selectively enriching regions from the subject's genome or transcriptome prior to sequencing. In other embodiments the methods of the disclosure comprise non-selectively enriching regions from the subject's genome or transcriptome prior to sequencing.
[0016] Further, the methods of the disclosure comprise attaching one or more barcodes to the extracellular polynucleotides or fragments thereof prior to any amplification or enrichment step.
[0017] In some embodiments, the barcode is a polynucleotide, which may further comprise random sequence or a fixed or semi-random set of oligonucleotides that in combination with the diversity of molecules sequenced from a select region enables identification of unique molecules and be at least a 3, 5, 10, 15, 20 25, 30, 35, 40, 45, or 50mer base pairs in length.
[0018] In some embodiments, extracellular polynucleotides or fragments thereof may be amplified. In some embodiments amplification comprises global amplification or whole genome amplification.
[0019] In some embodiments, sequence reads of unique identity may be detected based on sequence information at the beginning (start) and end (stop) regions of the sequence read and the length of the sequence read. In other embodiments sequence molecules of unique identity are detected based on sequence information at the beginning (start) and end (stop) regions of the sequence read, the length of the sequence read and attachment of a barcode.
[0020] In some embodiments, amplification comprises selective amplification, non-selective amplification, suppression amplification or subtractive enrichment.
[0021] In some embodiments, the methods of the disclosure comprise removing a subset of the reads from further analysis prior to quantifying or enumerating reads.
[0022] In some embodiments, the method may comprise filtering out reads with an accuracy or quality score of less than a threshold, e.g., 90%, 99%, 99.9%, or 99.99%) and/or mapping score less than a threshold, e.g., 90%, 99%, 99.9% or 99.99%. In other embodiments, methods of the disclosure comprise filtering reads with a quality score lower than a set threshold.
[0023] In some embodiments, predefined regions are uniform or substantially uniform in size, about lOkb, 20kb, 30kb 40kb, 50kb, 60kb, 70kb, 80kb, 90kb, or lOOkb in size. In some embodiments, at least 50, 100, 200, 500, 1000, 2000, 5000, 10,000, 20,000, or 50,000 regions are analyzed. [0024] In some embodiments, a genetic variant, rare mutation or copy number variation occurs in a region of the genome selected from the group consisting of gene fusions, gene duplications, gene deletions, gene translocations, microsatellite regions, gene fragments or combination thereof. In other embodiments a genetic variant, rare mutation, or copy number variation occurs in a region of the genome selected from the group consisting of genes, oncogenes, tumor suppressor genes, promoters, regulatory sequence elements, or combination thereof. In some embodiments the variant is a nucleotide variant, single base substitution, or small indel, transversion, translocation, inversion, deletion, truncation or gene truncation about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nucleotides in length.
[0025] In some embodiments, the method comprises correcting/normalizing/adjusting the quantity of mapped reads using the barcodes or unique properties of individual reads.
[0026] In some embodiments, enumerating the reads is performed through enumeration of unique barcodes in each of the predefined regions and normalizing those numbers across at least a subset of predefined regions that were sequenced. In some embodiments, samples at succeeding time intervals from the same subject are analyzed and compared to previous sample results. The method of the disclosure may further comprise determining partial copy number variation frequency, loss of heterozygosity, gene expression analysis, epigenetic analysis and
hypermethylation analysis after amplifying the barcode-attached extracellular polynucleotides.
[0027] In some embodiments, copy number variation and rare mutation analysis is determined in a cell-free or substantially cell free sample obtained from a subject using multiplex sequencing, comprising performing over 10,000 sequencing reactions; simultaneously sequencing at least 10,000 different reads; or performing data analysis on at least 10,000 different reads across the genome. The method may comprise multiplex sequencing comprising performing data analysis on at least 10,000 different reads across the genome. The method may further comprise enumerating sequenced reads that are uniquely identifiable.
[0028] In some embodiments, the methods of the disclosure comprise normalizing and detection is performed using one or more of hidden markov, dynamic programming, support vector machine, Bayesian network, trellis decoding, Viterbi decoding, expectation maximization, Kalman filtering, or neural network methodologies.
[0029] In some embodiments the methods of the disclosure comprise monitoring disease progression, monitoring residual disease, monitoring therapy, diagnosing a condition, prognosing a condition, or selecting a therapy based on discovered variants. [0030] In some embodiments, a therapy is modified based on the most recent sample analysis. Further, the methods of the disclosure comprise inferring the genetic profile of a tumor, infection or other tissue abnormality. In some embodiments growth, remission or evolution of a tumor, infection or other tissue abnormality is monitored. In some embodiments the subject's immune system are analyzed and monitored at single instances or over time.
[0031] In some embodiments, the methods of the disclosure comprise identification of a variant that is followed up through an imaging test (e.g., CT, PET-CT, MRI, X-ray, ultrasound) for localization of the tissue abnormality suspected of causing the identified variant.
[0032] In some embodiments, the methods of the disclosure comprise use of genetic data obtained from a tissue or tumor biopsy from the same patient. In some embodiments, whereby the phylogenetics of a tumor, infection or other tissue abnormality is inferred.
[0033] In some embodiments, the methods of the disclosure comprise performing population- based no-calling and identification of low-confidence regions. In some embodiments, obtaining the measurement data for the sequence coverage comprises measuring sequence coverage depth at every position of the genome. In some embodiments correcting the measurement data for the sequence coverage bias comprises calculating window-averaged coverage. In some embodiments correcting the measurement data for the sequence coverage bias comprises performing
adjustments to account for GC bias in the library construction and sequencing process. In some embodiments correcting the measurement data for the sequence coverage bias comprises performing adjustments based on additional weighting factor associated with individual mappings to compensate for bias.
[0034] In some embodiments, the methods of the disclosure comprise extracellular polynucleotide derived from a diseased cell origin. In some embodiments, the extracellular polynucleotide is derived from a healthy cell origin.
[0035] The disclosure also provides for a system comprising a computer readable medium for performing the following steps: selecting predefined regions in a genome; enumerating number of sequence reads in the predefined regions; normalizing the number of sequence reads across the predefined regions; and determining percent of copy number variation in the predefined regions. In some embodiments, the entirety of the genome or at least 10%, 20%, 30%>, 40%>, 50%>, 60%>, 70%), 80%o, or 90%) of the genome is analyzed. In some embodiments, computer readable medium provides data on percent cancer DNA or RNA in plasma or serum to the end user. [0036] In some embodiments, the amount of genetic variation, such as polymorphisms or causal variants is analyzed. In some embodiments, the presence or absence of genetic alterations is detected.
[0037] The disclosure also provides for a method for detecting a rare mutation in a cell-free or a substantially cell free sample obtained from a subject comprising: a) sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular polynucleotides generate a plurality of sequencing reads; b) filtering out reads that fail to meet a set threshold; c) mapping sequence reads derived from the sequencing onto a reference sequence; d) identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position; e) for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position; f) normalizing the ratios or frequency of variance for each mappable base position and determining potential rare variant(s) or other genetic alteration(s); and g) comparing the resulting number for each of the regions
[0038] This disclosure also provides for a method comprising: a. providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b. amplifying the tagged parent polynucleotides in the set to produce a corresponding set of amplified progeny polynucleotides; c. sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads; and d. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides. In certain embodiments the method further comprises: e. analyzing the set of consensus sequences for each set of tagged parent molecules.
[0039] In some embodiments each polynucleotide in a set is mappable to a reference sequence.
[0040] In some embodiments the method comprises providing a plurality of sets of tagged parent polynucleotides, wherein each set is mappable to a different reference sequence.
[0041] In some embodiments the method further comprises converting initial starting genetic material into the tagged parent polynucleotides.
[0042] In some embodiments the initial starting genetic material comprises no more than 100 ng of polynucleotides. [0043] In some embodiments the method comprises bottlenecking the initial starting genetic material prior to converting.
[0044] In some embodiments the method comprises converting the initial starting genetic material into tagged parent polynucleotides with a conversion efficiency of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 80% or at least 90%.
[0045] In some embodiments converting comprises any of blunt-end ligation, sticky end ligation, molecular inversion probes, PCR, ligation-based PCR, single strand ligation and single strand circularization.
[0046] In some embodiments the initial starting genetic material is cell-free nucleic acid.
[0047] In some embodiments a plurality of the reference sequences are from the same genome.
[0048] In some embodiments each tagged parent polynucleotide in the set is uniquely tagged.
[0049] In some embodiments the tags are non-unique.
[0050] In some embodiments the generation of consensus sequences is based on information from the tag and/or at least one of sequence information at the beginning (start) region of the sequence read, the end (stop) regions of the sequence read and the length of the sequence read.
[0051] In some embodiments the method comprises sequencing a subset of the set of amplified progeny polynucleotides sufficient to produce sequence reads for at least one progeny from of each of at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% at least 95%, at least 98%, at least 99%, at least 99.9% or at least 99.99% of unique polynucleotides in the set of tagged parent polynucleotides.
[0052] In some embodiments the at least one progeny is a plurality of progeny, e.g., at least 2, at least 5 or at least 10 progeny.
[0053] In some embodiments the number of sequence reads in the set of sequence reads is greater than the number of unique tagged parent polynucleotides in the set of tagged parent
polynucleotides.
[0054] In some embodiments the subset of the set of amplified progeny polynucleotides sequenced is of sufficient size so that any nucleotide sequence represented in the set of tagged parent polynucleotides at a percentage that is the same as the percentage per-base sequencing error rate of the sequencing platform used, has at least a 50%>, at least a 60%>, at least a 70%>, at least a 80%, at least a 90% at least a 95%, at least a 98%, at least a 99%, at least a 99.9% or at least a 99.99%> chance of being represented among the set of consensus sequences. [0055] In some embodiments the method comprises enriching the set of amplified progeny polynucleotides for polynucleotides mapping to one or more selected reference sequences by: (i) selective amplification of sequences from initial starting genetic material converted to tagged parent polynucleotides; (ii) selective amplification of tagged parent polynucleotides; (iii) selective sequence capture of amplified progeny polynucleotides; or (iv) selective sequence capture of initial starting genetic material.
[0056] In some embodiments analyzing comprises normalizing a measure (e.g., number) taken from a set of consensus sequences against a measure taken from a set of consensus sequences from a control sample.
[0057] In some embodiments analyzing comprises detecting mutations, rare mutations, single nucleotide variants, indels, copy number variations, trans versions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection or cancer.
[0058] In some embodiments the polynucleotides comprise DNA, RNA, a combination of the two or DNA plus RNA-derived cDNA.
[0059] In some embodiments a certain subset of polynucleotides is selected for or is enriched based on polynucleotide length in base-pairs from the initial set of polynucleotides or from the amplified polynucleotides.
[0060] In some embodiments analysis further comprises detection and monitoring of an abnormality or disease within an individual, such as, infection and/or cancer.
[0061] In some embodiments the method is performed in combination with immune repertoire profiling.
[0062] In some embodiments the polynucleotides are extract from the group consisting of blood, plasma, serum, urine, saliva, mucosal excretions, sputum, stool, and tears.
[0063] In some embodiments collapsing comprising detecting and/or correcting errors, nicks or lesions present in the sense or anti-sense strand of the tagged parent polynucleotides or amplified progeny polynucleotides.
[0064] This disclosure also provides for a method comprising detecting genetic variation in initial starting genetic material with a sensitivity of at least 5%, at least 1%, at least 0.5%, at least 0.1% or at least 0.05%. In some embodiments the initial starting genetic material is provided in an amount less than 100 ng of nucleic acid, the genetic variation is copy number/heterozygosity variation and detecting is performed with sub-chromosomal resolution; e.g., at least 100 megabase resolution, at least 10 megabase resolution, at least 1 megabase resolution, at least 100 kilobase resolution, at least 10 kilobase resolution or at least 1 kilobase resolution. In another embodiment the method comprises providing a plurality of sets of tagged parent polynucleotides, wherein each set is mappable to a different reference sequence. In another embodiment the reference sequence is the locus of a tumor marker, and analyzing comprises detecting the tumor marker in the set of consensus sequences. In another embodiment the tumor marker is present in the set of consensus sequences at a frequency less than the error rate introduced at the amplifying step. In another embodiment the at least one set is a plurality of sets, and the reference sequences comprise a plurality of reference sequences, each of which is the locus of a tumor marker. In another embodiment analyzing comprises detecting copy number variation of consensus sequences between at least two sets of parent polynucleotides. In another embodiment analyzing comprises detecting the presence of sequence variations compared with the reference sequences. In another embodiment analyzing comprises detecting the presence of sequence variations compared with the reference sequences and detecting copy number variation of consensus sequences between at least two sets of parent polynucleotides. In another embodiment collapsing comprises: i. grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide; and ii. determining a consensus sequence based on sequence reads in a family.
[0065] This disclosure also provides for a system comprising a computer readable medium for performing the following steps: a. providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b. amplifying the tagged parent polynucleotides in the set to produce a corresponding set of amplified progeny polynucleotides; c. sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads; and d. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides and, optionally, e. analyzing the set of consensus sequences for each set of tagged parent molecules.
[0066] This disclosure also provides a method comprising: a. providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b. amplifying the tagged parent polynucleotides in the set to produce a corresponding set of amplified progeny polynucleotides; c. sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads; d. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides; and e. filtering out from among the consensus sequences those that fail to meet a quality threshold. In one embodiment the quality threshold considers a number of sequence reads from amplified progeny polynucleotides collapsed into a consensus sequence. In another embodiment the quality threshold considers a number of sequence reads from amplified progeny polynucleotides collapsed into a consensus sequence. This disclosure also provides a system comprising a computer readable medium for performing the aforesaid method.
[0067] This disclosure also provides a method comprising: a. providing at least one set of tagged parent polynucleotides, wherein each set maps to a different reference sequence in one or more genomes, and, for each set of tagged parent polynucleotides; i. amplifying the first
polynucleotides to produce a set of amplified polynucleotides; ii. sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads; and iii. collapsing the sequence reads by: 1. grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide. In one embodiment collapsing further comprises: 2. determining a quantitative measure of sequence reads in each family. In another embodiment the method further comprises (including a) including a): b.
determining a quantitative measure of unique families; and c. based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set. In another embodiment inferring is performed using statistical or probabilistic models. In another embodiment wherein the at least one set is a plurality of sets. In another embodiment the method further comprises correcting for amplification or representational bias between the two sets. In another embodiment the method further comprises using a control or set of control samples to correct for amplification or representational biases between the two sets. In another embodiment the method further comprises determining copy number variation between the sets. In another embodiment the method further comprises (including a, b, c): d. determining a quantitative measure of
polymorphic forms among the families; and e. based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides. In another embodiment wherein polymorphic forms include but are not limited to: substitutions, insertions, deletions, inversions, microsatellite changes, trans versions, translocations, fusions, methylation, hypermethylation,
hyrdroxymethylation, acetylation, epigenetic variants, regulatory-associated variants or protein binding sites. In another embodiment wherein the sets derive from a common sample, the method further comprising: a. inferring copy number variation for the plurality of sets based on a comparison of the inferred number of tagged parent polynucleotides in each set mapping to each of a plurality of reference sequences. In another embodiment the original number of
polynucleotides in each set is further inferred. This disclosure also provides a system comprising a computer readable medium for performing the aforesaid methods.
[0068] This disclosure also provides a method of determining copy number variation in a sample that includes polynucleotides, the method comprising: a. providing at least two sets of first polynucleotides, wherein each set maps to a different reference sequence in a genome, and, for each set of first polynucleotides; i. amplifying the polynucleotides to produce a set of amplified polynucleotides; ii. sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads; iii. grouping sequences reads sequenced from amplified polynucleotides into families, each family amplified from the same first polynucleotide in the set; iv. inferring a quantitative measure of families in the set; b. determining copy number variation by comparing the quantitative measure of families in each set. This disclosure also provides a system
comprising a computer readable medium for performing the aforesaid methods.
[0069] This disclosure also provides a method of inferring frequency of sequence calls in a sample of polynucleotides comprising: a. providing at least one set of first polynucleotides, wherein each set maps to a different reference sequence in one or more genomes, and, for each set of first polynucleotides; i. amplifying the first polynucleotides to produce a set of amplified polynucleotides; ii. sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads; iii. grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide; b. inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises: i. assigning, for each family, confidence score for each of a plurality of calls, the confidence score taking into consideration a frequency of the call among members of the family; and ii. estimating a frequency of the one or more calls taking into consideration the confidence scores of the one or more calls assigned to each family. This disclosure also provides a system comprising a computer readable medium for performing the aforesaid methods.
[0070] This disclosure also provides a method of communicating sequence information about at least one individual polynucleotide molecule comprising: a. providing at least one individual polynucleotide molecule; b. encoding sequence information in the at least one individual polynucleotide molecule to produce a signal; c. passing at least part of the signal through a channel to produce a received signal comprising nucleotide sequence information about the at least one individual polynucleotide molecule, wherein the received signal comprises noise and/or distortion; d. decoding the received signal to produce a message comprising sequence information about the at least one individual polynucleotide molecule, wherein decoding reduces noise and/or distortion in the message; and e. providing the message to a recipient. In one embodiment the noise comprises incorrect nucleotide calls. In another embodiment distortion comprises uneven amplification of the individual polynucleotide molecule compared with other individual polynucleotide molecules. In another embodiment distortion results from amplification or sequencing bias. In another embodiment the at least one individual polynucleotide molecule is a plurality of individual polynucleotide molecules, and decoding produces a message about each molecule in the plurality. In another embodiment encoding comprises amplifying the at least individual polynucleotide molecule which has optionally been tagged, wherein the signal comprises a collection of amplified molecules. In another embodiment the channel comprises a polynucleotide sequencer and the received signal comprises sequence reads of a plurality of polynucleotides amplified from the at least one individual polynucleotide molecule. In another embodiment decoding comprises grouping sequence reads of amplified molecules amplified from each of the at least one individual polynucleotide molecules. In another embodiment the decoding consists of a probabilistic or statistical method of filtering the generated sequence signal. This disclosure also provides a system comprising a computer readable medium for performing the aforesaid methods.
[0071] In another embodiment the polynucleotides are derived from tumor genomic DNA or R A. In another embodiment the polynucleotides are derived from cell-free polynucleotides, exosomal polynucleotides, bacterial polynucleotides or viral polynucleotides. In another embodiment further comprising the detection and/or association of affected molecular pathways. In another embodiment further comprising serial monitoring of the health or disease state of an individual. In another embodiment whereby the phylogeny of a genome associated with a disease within an individual is inferred. In another embodiment further comprising diagnosis, monitoring or treatment of a disease. In another embodiment the treatment regimen is selected or modified based on detected polymorphic forms or CNVs or associated pathways. In another embodiment the treatment comprises of a combination therapy.
[0072] This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: selecting predefined regions in a genome; accessing sequence reads and enumerating number of sequence reads in the predefined regions; normalizing the number of sequence reads across the predefined regions; and determining percent of copy number variation in the predefined regions.
[0073] This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads; b. filtering out reads that fail to meet a set threshold; c. mapping sequence reads derived from the sequencing onto a reference sequence; d. identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position; e. for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position; f. normalizing the ratios or frequency of variance for each mappable base position and determining potential rare variant(s) or other genetic alteration(s); and g. comparing the resulting number for each of the regions with potential rare variant(s) or mutation(s) to similarly derived numbers from a reference sample.
[0074] This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent
polynucleotides.
[0075] This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides; c. filtering out from among the consensus sequences those that fail to meet a quality threshold.
[0076] This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; and i. collapsing the sequence reads by: 1. grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide and, optionally, 2. determining a quantitative measure of sequence reads in each family. In certain embodiments, the executable code further performs the steps of: b. determining a quantitative measure of unique families; c. based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set. In certain embodiments, the executable code further performs the steps of: d. determining a quantitative measure of polymorphic forms among the families; and e. based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides.
[0077] This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping sequences reads sequenced from amplified polynucleotides into families, each family amplified from the same first polynucleotide in the set; b. inferring a quantitative measure of families in the set; c. determining copy number variation by comparing the quantitative measure of families in each set.
[0078] This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide; b. inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises: c. assigning, for each family, confidence score for each of a plurality of calls, the confidence score taking into consideration a frequency of the call among members of the family; and d. estimating a frequency of the one or more calls taking into consideration the confidence scores of the one or more calls assigned to each family.
[0079] This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data accessing a data file comprising a received signal that comprises endoded sequence information from at least one individual polynucleotide molecule wherein the received signal comprises noise and/or distortion; b. decoding the received signal to produce a message comprising sequence information about the at least one individual polynucleotide molecule, wherein decoding reduces noise and/or distortion about each individual polynucleotide in the message; and c. writing the message comprising sequence information about the at least one individual polynucleotide molecule to a computer file.
[0080] This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent
polynucleotides; c. filtering out from among the consensus sequences those that fail to meet a quality threshold.
[0081] This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; and b. collapsing the sequence reads by: i. grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide; and ii. optionally, determining a quantitative measure of sequence reads in each family. In certain embodiments, the executable code further performs the steps of: c. determining a quantitative measure of unique families; d. based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set. In certain embodiments, the executable code further performs the steps of: e. determining a quantitative measure of polymorphic forms among the families; and f. based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides. In certain embodiments, the executable code further performs the steps of: e. inferring copy number variation for the plurality of sets based on a comparison of the inferred number of tagged parent polynucleotides in each set mapping to each of a plurality of reference sequences.
[0082] This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b. grouping sequences reads sequenced from amplified polynucleotides into families, each family amplified from the same first polynucleotide in the set; c. inferring a quantitative measure of families in the set; d. determining copy number variation by comparing the quantitative measure of families in each set.
[0083] This disclosure also provides a computer readable medium in non-transitory, tangible form comprising executable code configured to perform the following steps: a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide; and b. inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises: i. assigning, for each family, confidence score for each of a plurality of calls, the confidence score taking into consideration a frequency of the call among members of the family; and ii. estimating a frequency of the one or more calls taking into consideration the confidence scores of the one or more calls assigned to each family.
[0084] This disclosure also provides a method comprising: a. providing a sample comprising between 100 and 100,000 haploid human genome equivalents of cell free DNA (cfDNA) polynucleotides; and b. tagging the polynucleotides with between 2 and 1,000,000 unique identifiers. In certain embodiments, the number of unique identifiers is at least 3, at least 5, at least 10, at least 15 or at least 25 and at most 100, at most 1000 or at most 10,000. In certain embodiments, the number of unique identifiers is at most 100, at most 1000, at most 10,000, at most 100,000.
[0085] This disclosure also provides a method comprising: a. providing a sample comprising a plurality of human haploid genome equivalents of fragmented polynucleotides; b. determining z, wherein z is a measure of central tendency (e.g., mean, median or mode) of expected number of duplicate polynucleotides starting at any position in the genome, wherein duplicate
polynucleotides have the same start and stop positions; and c. tagging polynucleotides in sample with n unique identifiers, wherein n is between 2 and 100,000*z, 2 and 10,000*z, 2 and l,000*z or 2 and 100*z.
[0086] This disclosure also provides a method comprising: a. providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b. producing a plurality of sequence reads for each tagged parent polynucleotide in the set to produce a set of sequencing reads; and c. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides.
[0087] The disclosure provides for a method for detecting copy number variation comprising: a) sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular polynucleotide generate a plurality of sequencing reads; b) filtering out reads that fail to meet a set threshold; c) mapping the sequence reads obtained from step (a), after reads are filtered out, to a reference sequence; d) quantifying or enumerating mapped reads in two or more predefined regions of the reference sequence; and e) determining copy number variation in one or more of the predefined regions by: (ii) normalizing number of reads in the predefined regions to each other and/or the number of unique sequence reads in the predefined regions to one another; (ii) comparing the normalized numbers obtained in step (i) to normalized numbers obtained from a control sample.
[0088] The disclosure also provides for a method for detecting a rare mutation in a cell-free or substantially cell free sample obtained from a subject comprising: a) sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular polynucleotide generate a plurality of sequencing reads; b) performing multiplex sequencing on regions or whole-genome sequencing if enrichment is not performed; c) filtering out reads that fail to meet a set threshold; d) mapping sequence reads derived from the sequencing onto a reference sequence; e) identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position; f) for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position; g) normalizing the ratios or frequency of variance for each mappable base position and determining potential rare variant(s) or mutation(s); and h)and comparing the resulting number for each of the regions with potential rare variant(s) or mutation(s) to similarly derived numbers from a reference sample.
[0089] The disclosure also provides for a method of characterizing the heterogeneity of an abnormal condition in a subject, the method comprising generating a genetic profile of extracellular polynucleotides in the subject, wherein the genetic profile comprises a plurality of data resulting from copy number variation and rare mutation analyses.
[0090] In some embodiments, the prevalence/concentration of each rare variant identified in the subject is reported and quantified simultaneously. In some embodiments, a confidence score, regarding the prevalence/concentrations of rare variants in the subject, is reported.
[0091] In some embodiments, the extracellular polynucleotides comprise DNA. In some embodiments, the extracellular polynucleotides comprise R A.
[0092] In some embodiments, the methods further comprise isolating extracellular
polynucleotides from the bodily sample. In some embodiments, the isolating comprises a method for circulating nucleic acid isolation and extraction. In some embodiments, the methods further comprise fragmenting said isolated extracellular polynucleotides. In some embodiments, the bodily sample is selected from the group consisting of blood, plasma, serum, urine, saliva, mucosal excretions, sputum, stool and tears.
[0093] In some embodiments, the methods further comprise the step of determining the percent of sequences having copy number variation or rare mutation or variant in said bodily sample. In some embodiments, the determining comprises calculating the percentage of predefined regions with an amount of polynucleotides above or below a predetermined threshold.
[0094] In some embodiments, the subject is suspected of having an abnormal condition. In some embodiments, the abnormal condition is selected from the group consisting of mutations, rare mutations, indels, copy number variations, trans versions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection and cancer.
[0095] In some embodiments, the subject is a pregnant female. In some embodiments, the copy number variation or rare mutation or genetic variant is indicative of a fetal abnormality. In some embodiments, the fetal abnormality is selected from the group consisting of mutations, rare mutations, indels, copy number variations, trans versions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection and cancer.
[0096] In some embodiments, the methods further comprise attaching one or more barcodes to the extracellular polynucleotides or fragments thereof prior to sequencing. In some embodiments, each barcode attached to extracellular polynucleotides or fragments thereof prior to sequencing is unique. In some embodiments, each barcode attached to extracellular polynucleotides or fragments thereof prior to sequencing is not unique.
[0097] In some embodiments, the methods further comprise selectively enriching regions from the subject's genome or transcriptome prior to sequencing. In some embodiments, the methods further comprise non-selectively enriching regions from the subject's genome or transcriptome prior to sequencing.
[0098] In some embodiments, the methods further comprise attaching one or more barcodes to the extracellular polynucleotides or fragments thereof prior to any amplification or enrichment step. In some embodiments, the barcode is a polynucleotide. In some embodiments, the barcode comprises random sequence. In some embodiments, the barcode comprises a fixed or semi- random set of oligonucleotides that in combination with the diversity of molecules sequenced from a select region enables identification of unique molecules. In some embodiments, the barcodes comprise oligonucleotides is at least a 3, 5, 10, 15, 20 25, 30, 35, 40, 45, or 50mer base pairs in length.
[0099] In some embodiments, the methods further comprise amplifying the extracellular polynucleotides or fragments thereof. In some embodiments, the amplification comprises global amplification or whole genome amplification. In some embodiments, the amplification comprises selective amplification. In some embodiments, the amplification comprises non-selective amplification. In some embodiments, suppression amplification or subtractive enrichment is performed.
[00100] In some embodiments, sequence reads of unique identity are detected based on sequence information at the beginning (start) and end (stop) regions of the sequence read and the length of the sequence read. In some embodiments, sequence molecules of unique identity are detected based on sequence information at the beginning (start) and end (stop) regions of the sequence read, the length of the sequence read and attachment of a barcode.
[00101] In some embodiments, the methods further comprise removing a subset of the reads from further analysis prior to quantifying or enumerating reads. In some embodiments, removing comprises filtering out reads with an accuracy or quality score of less than a threshold, e.g., 90%, 99%, 99.9%, or 99.99% and/or mapping score less than a threshold, e.g., 90%, 99%, 99.9% or 99.99%. In some embodiments, the methods further comprise filtering reads with a quality score lower than a set threshold.
[00102] In some embodiments, the predefined regions are uniform or substantially uniform in size. In some embodiments, the predefined regions are at least about lOkb, 20kb, 30kb 40kb, 50kb, 60kb, 70kb, 80kb, 90kb, or lOOkb in size.
[00103] In some embodiments, at least 50, 100, 200, 500, 1000, 2000, 5000, 10,000, 20,000, or 50,000 regions are analyzed.
[00104] In some embodiments, the variant occurs in a region of the genome selected from the group consisting of gene fusions, gene duplications, gene deletions, gene translocations, microsatellite regions, gene fragments or combination thereof. In some embodiments, the variant occurs in a region of the genome selected from the group consisting of genes, oncogenes, tumor suppressor genes, promoters, regulatory sequence elements, or combination thereof. In some embodiments, the variant is a nucleotide variant, single base substitution, small indel,
transversion, translocation, inversion, deletion, truncation or gene truncation of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nucleotides in length.
[00105] In some embodiments, the methods further comprise
correcting/normalizing/adjusting the quantity of mapped reads using the barcodes or unique properties of individual reads. In some embodiments, enumerating the reads is performed through enumeration of unique barcodes in each of the predefined regions and normalizing those numbers across at least a subset of predefined regions that were sequenced. [00106] In some embodiments, samples at succeeding time intervals from the same subject are analyzed and compared to previous sample results. In some embodiments, the method further comprises amplifying the barcode-attached extracellular polynucleotides. In some embodiments, the methods further comprise determining partial copy number variation frequency, determining loss of heterozygosity, performing gene expression analysis, performing epigenetic analysis and/or performing hypermethylation analysis.
[00107] The disclosure also provides for a method comprising determining copy number variation or performing rare mutation analysis in a cell-free or substantially cell free sample obtained from a subject using multiplex sequencing.
[00108] In some embodiments, the multiplex sequencing comprises performing over
10,000 sequencing reactions. In some embodiments, the multiplex sequencing comprises simultaneously sequencing at least 10,000 different reads. In some embodiments, the multiplex sequencing comprising performing data analysis on at least 10,000 different reads across the genome. In some embodiments, the normalizing and detection is performed using one or more of hidden markov, dynamic programming, support vector machine, Bayesian or probabilistic modeling, trellis decoding, Viterbi decoding, expectation maximization, Kalman filtering, or neural network methodologies. In some embodiments, the methods further comprise monitoring disease progression, monitoring residual disease, monitoring therapy, diagnosing a condition, prognosing a condition, or selecting a therapy based on discovered variants for the subject. In some embodiments, a therapy is modified based on the most recent sample analysis. In some embodiments, the genetic profile of a tumor, infection or other tissue abnormality is inferred.
[00109] In some embodiments, the growth, remission or evolution of a tumor, infection or other tissue abnormality is monitored. In some embodiments, sequences related to the subject's immune system are analyzed and monitored at single instances or over time. In some
embodiments, identification of a variant is followed up through an imaging test (e.g., CT, PET- CT, MRI, X-ray, ultrasound) for localization of the tissue abnormality suspected of causing the identified variant. In some embodiments, the analysis further comprises use of genetic data obtained from a tissue or tumor biopsy from the same patient. In some embodiments, the phylogenetics of a tumor, infection or other tissue abnormality is inferred. In some embodiments, the method further comprises performing population-based no-calling and identification of low- confidence regions. In some embodiments, obtaining the measurement data for the sequence coverage comprises measuring sequence coverage depth at every position of the genome. In some embodiments, correcting the measurement data for the sequence coverage bias comprises calculating window-averaged coverage. In some embodiments, correcting the measurement data for the sequence coverage bias comprises performing adjustments to account for GC bias in the library construction and sequencing process. In some embodiments, correcting the measurement data for the sequence coverage bias comprises performing adjustments based on additional weighting factor associated with individual mappings to compensate for bias.
[00110] In some embodiments, extracellular polynucleotide is derived from a diseased cell origin. In some embodiments, extracellular polynucleotide is derived from a healthy cell origin.
[00111] The disclosure also provides for a system comprising a computer readable medium for performing the following steps: selecting predefined regions in a genome; enumerating number of sequence reads in the predefined regions; normalizing the number of sequence reads across the predefined regions; and determining percent of copy number variation in the predefined regions.
[00112] In some embodiments, the entirety of the genome or at least 85% of the genome is analyzed. In some embodiments, the computer readable medium provides data on percent cancer DNA or RNA in plasma or serum to the end user. In some embodiments, the copy number variants identified are fractional (i.e., non-integer levels) due to heterogeneity in the sample. In some embodiments, enrichment of selected regions is performed. In some embodiments, copy number variation information is simultaneously extracted based on the methods described herein. In some embodiments, the methods comprise an initial step of polynucleotide bottlenecking to limit the number of starting initial copies or diversity of polynucleotides in the sample.
[00113] The disclosure also provides for a method for detecting a rare mutation in a cell- free or a substantially cell free sample obtained from a subject comprising: a) sequencing extracellular polynucleotides from a bodily sample of a subject, wherein each of the extracellular polynucleotides generate a plurality of sequencing reads; b) filtering out reads that fail to meet a set quality threshold; c) mapping sequence reads derived from the sequencing onto a reference sequence; d) identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position; e) for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position; f) normalizing the ratios or frequency of variance for each mappable base position and determining potential rare variant(s) or other genetic alteration(s); and g) comparing the resulting number for each of the regions with potential rare variant(s) or mutation(s) to similarly derived numbers from a reference sample.
[00114] The disclosure also provides for a method comprising: a) providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b) amplifying the tagged parent polynucleotides in the set to produce a corresponding set of amplified progeny polynucleotides; c) sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads; and d) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence
corresponding to a unique polynucleotide among the set of tagged parent polynucleotides.
[00115] In some embodiments, each polynucleotide in a set is mappable to a reference sequence. In some embodiments, the methods comprise providing a plurality of sets of tagged parent polynucleotides, wherein each set is mappable to a different mappable position in the reference sequence. In some embodiments, the method further comprises: e) analyzing the set of consensus sequences for each set of tagged parent molecules separately or in combination. In some embodiments, the method further comprises converting initial starting genetic material into the tagged parent polynucleotides. In some embodiments, the initial starting genetic material comprises no more than 100 ng of polynucleotides. In some embodiments, the method comprises bottlenecking the initial starting genetic material prior to converting. In some embodiments, the method comprises converting the initial starting genetic material into tagged parent
polynucleotides with a conversion efficiency of at least 10%, at least 20%, at least 30%>, at least 40%), at least 50%>, at least 60%>, at least 80%> or at least 90%>. In some embodiments, the converting comprises any of blunt-end ligation, sticky end ligation, molecular inversion probes, PCR, ligation-based PCR, single strand ligation and single strand circularization. In some embodiments, the initial starting genetic material is cell-free nucleic acid. In some embodiments, a plurality of the sets map to different mappable positions in a reference sequence from the same genome.
[00116] In some embodiments, each tagged parent polynucleotide in the set is uniquely tagged. In some embodiments, each set of parent polynucleotides is mappable to a position in a reference sequence, and the polynucleotides in each set are not uniquely tagged. In some embodiments, the generation of consensus sequences is based on information from the tag and/or at least one of (i) sequence information at the beginning (start) region of the sequence read, (ii) the end (stop) regions of the sequence read and (iii) the length of the sequence read. [00117] In some embodiments, the method comprises sequencing a subset of the set of amplified progeny polynucleotides sufficient to produce sequence reads for at least one progeny from of each of at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% at least 95%, at least 98%, at least 99%, at least 99.9% or at least 99.99%) of unique polynucleotides in the set of tagged parent polynucleotides. In some embodiments, the at least one progeny is a plurality of progeny, e.g., at least 2, at least 5 or at least 10 progeny. In some embodiments, the number of sequence reads in the set of sequence reads is greater than the number of unique tagged parent polynucleotides in the set of tagged parent polynucleotides. In some embodiments, the subset of the set of amplified progeny polynucleotides sequenced is of sufficient size so that any nucleotide sequence represented in the set of tagged parent polynucleotides at a percentage that is the same as the percentage per-base sequencing error rate of the sequencing platform used, has at least a 50%>, at least a 60%>, at least a 70%, at least a 80%, at least a 90% at least a 95%, at least a 98%, at least a 99%, at least a 99.9% or at least a 99.99%> chance of being represented among the set of consensus sequences.
[00118] In some embodiments, the method comprises enriching the set of amplified progeny polynucleotides for polynucleotides mapping to one or more selected mappable positions in a reference sequence by: (i) selective amplification of sequences from initial starting genetic material converted to tagged parent polynucleotides; (ii) selective amplification of tagged parent polynucleotides; (iii) selective sequence capture of amplified progeny polynucleotides; or (iv) selective sequence capture of initial starting genetic material.
[00119] In some embodiments, analyzing comprises normalizing a measure (e.g., number) taken from a set of consensus sequences against a measure taken from a set of consensus sequences from a control sample. In some embodiments, analyzing comprises detecting mutations, rare mutations, indels, copy number variations, transversions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection or cancer.
[00120] In some embodiments, the polynucleotides comprise DNA, RNA, a combination of the two, or DNA plus RNA-derived cDNA. In some embodiments, a certain subset of
polynucleotides is selected for, or is enriched based on, polynucleotide length in base-pairs from the initial set of polynucleotides or from the amplified polynucleotides. In some embodiments, analysis further comprises detection and monitoring of an abnormality or disease within an individual, such as, infection and/or cancer. In some embodiments, the method is performed in combination with immune repertoire profiling. In some embodiments, the polynucleotides are extracted from a sample selected from the group consisting of blood, plasma, serum, urine, saliva, mucosal excretions, sputum, stool, and tears. In some embodiments, collapsing comprises detecting and/or correcting errors, nicks or lesions present in the sense or anti-sense strand of the tagged parent polynucleotides or amplified progeny polynucleotides.
[00121] The disclosure also provides for a method comprising detecting genetic variation in non-uniquely tagged initial starting genetic material with a sensitivity of at least 5%, at least 1%, at least 0.5%, at least 0.1% or at least 0.05%.
[00122] In some embodiments, the initial starting genetic material is provided in an amount less than 100 ng of nucleic acid, the genetic variation is copy number/heterozygosity variation and detecting is performed with sub-chromosomal resolution; e.g., at least 100 megabase resolution, at least 10 megabase resolution, at least 1 megabase resolution, at least 100 kilobase resolution, at least 10 kilobase resolution or at least 1 kilobase resolution. In some embodiments, the method comprises providing a plurality of sets of tagged parent polynucleotides, wherein each set is mappable to a different mappable position in a reference sequence. In some embodiments, the mappable position in the reference sequence is the locus of a tumor marker and analyzing comprises detecting the tumor marker in the set of consensus sequences.
[00123] In some embodiments, the tumor marker is present in the set of consensus sequences at a frequency less than the error rate introduced at the amplifying step. In some embodiments, the at least one set is a plurality of sets, and the mappable position of the reference sequence comprise a plurality of mappable positions in the reference sequence, each of which mappable position is the locus of a tumor marker. In some embodiments, analyzing comprises detecting copy number variation of consensus sequences between at least two sets of parent polynucleotides. In some embodiments, analyzing comprises detecting the presence of sequence variations compared with the reference sequences.
[00124] In some embodiments, analyzing comprises detecting the presence of sequence variations compared with the reference sequences and detecting copy number variation of consensus sequences between at least two sets of parent polynucleotides. In some embodiments, collapsing comprises: (i) grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide; and (ii) determining a consensus sequence based on sequence reads in a family.
[00125] The disclosure also provides for a system comprising a computer readable medium for performing the following steps: a) accepting at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b) amplifying the tagged parent polynucleotides in the set to produce a corresponding set of amplified progeny polynucleotides; c) sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads; d) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides and, optionally, e) analyzing the set of consensus sequences for each set of tagged parent molecules.
[00126] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 10% of the individual's genome is sequenced.
[00127] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 20% of the individual's genome is sequenced.
[00128] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 30%> of the individual's genome is sequenced.
[00129] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 40% of the individual's genome is sequenced.
[00130] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 50%> of the individual's genome is sequenced. [00131] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 60% of the individual's genome is sequenced.
[00132] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 70% of the individual's genome is sequenced.
[00133] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 80%> of the individual's genome is sequenced.
[00134] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 90%> of the individual's genome is sequenced.
[00135] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 10%> of the individual's genome is sequenced.
[00136] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 20%> of the individual's genome is sequenced.
[00137] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 30%> of the individual's genome is sequenced.
[00138] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 40%> of the individual's genome is sequenced. [00139] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 50% of the individual's genome is sequenced.
[00140] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 60%> of the individual's genome is sequenced.
[00141] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 70%> of the individual's genome is sequenced.
[00142] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 80%> of the individual's genome is sequenced.
[00143] The disclosure also provides for a method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 90%> of the individual's genome is sequenced.
[00144] In some embodiments, the genetic alteration is copy number variation or one or more rare mutations. In some embodiments, the genetic variation comprises one or more causal variants and one or more polymorphisms. In some embodiments, the genetic alteration and/or amount of genetic variation in the individual may be compared to a genetic alteration and/or amount of genetic variation in one or more individuals with a known disease. In some embodiments, the genetic alteration and/or amount of genetic variation in the individual may be compared to a genetic alteration and/or amount of genetic variation in one or more individuals, without a disease. In some embodiments, the cell-free nucleic acid is DNA. In some embodiments, the cell-free nucleic acid is RNA. In some embodiments, the cell-free nucleic acid is DNA and RNA. In some embodiments, the disease is cancer or pre-cancer. In some embodiments, the method further comprising diagnosis or treatment of a disease. [00145] The disclosure also provides for a method comprising: a) providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b) amplifying the tagged parent polynucleotides in the set to produce a corresponding set of amplified progeny polynucleotides; c) sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads; d) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides; and e) filtering out from among the consensus sequences those that fail to meet a quality threshold.
[00146] In some embodiments, the quality threshold considers a number of sequence reads from amplified progeny polynucleotides collapsed into a consensus sequence. In some embodiments, the quality threshold considers a number of sequence reads from amplified progeny polynucleotides collapsed into a consensus sequence.
[00147] The disclosure also provides for a system comprising a computer readable medium for performing the methods described herein.
[00148] The disclosure also provides for a method comprising: a) providing at least one set of tagged parent polynucleotides, wherein each set maps to a different mappable position in a reference sequence in one or more genomes, and, for each set of tagged parent polynucleotides; i) amplifying the first polynucleotides to produce a set of amplified polynucleotides; ii) sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads; and iii) collapsing the sequence reads by: (l)grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide.
[00149] In some embodiments, collapsing further comprises determining a quantitative measure of sequence reads in each family. In some embodiments, the method further comprises: a) determining a quantitative measure of unique families; and b) based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set. In some embodiments, inferring is performed using statistical or probabilistic models. In some embodiments, the at least one set is a plurality of sets. In some embodiments, the method further comprises correcting for amplification or representational bias between the two sets. In some embodiments, the method further comprises using a control or set of control samples to correct for amplification or representational biases between the two sets. In some embodiments, the method further comprises determining copy number variation between the sets. [00150] In some embodiments, the method further comprises: d) determining a quantitative measure of polymorphic forms among the families; and e) based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides. In some embodiments, polymorphic forms include but are not limited to: substitutions, insertions, deletions, inversions, microsatellite changes, trans versions, translocations, fusions, methylation, hypermethylation,
hyrdroxymethylation, acetylation, epigenetic variants, regulatory-associated variants or protein binding sites.
[00151] In some embodiments, the sets derive from a common sample, and the method further comprises: d) inferring copy number variation for the plurality of sets based on a comparison of the inferred number of tagged parent polynucleotides in each set mapping to each of a plurality of mappable positions in a reference sequence. In some embodiments, the original number of polynucleotides in each set is further inferred. In some embodiments, at least a subset of the tagged parent polynucleotides in each set are non-uniquely tagged.
[00152] The disclosure also provides for a method of determining copy number variation in a sample that includes polynucleotides, the method comprising: a) providing at least two sets of first polynucleotides, wherein each set maps to a different mappable position in a reference sequence in a genome, and, for each set of first polynucleotides; (i) amplifying the
polynucleotides to produce a set of amplified polynucleotides; (ii) sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads; (iii) grouping sequences reads sequenced from amplified polynucleotides into families, each family amplified from the same first polynucleotide in the set; (iv) inferring a quantitative measure of families in the set; and b) determining copy number variation by comparing the quantitative measure of families in each set.
[00153] The disclosure also provides for a method of inferring frequency of sequence calls in a sample of polynucleotides comprising: a) providing at least one set of first polynucleotides, wherein each set maps to a different mappable position in a reference sequence in one or more genomes, and, for each set of first polynucleotides; (i) amplifying the first polynucleotides to produce a set of amplified polynucleotides; (ii) sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads; (iii) grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide; b) inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises: (i) assigning, for each family, confidence score for each of a plurality of calls, the confidence score taking into consideration a frequency of the call among members of the family; and (ii) estimating a frequency of the one or more calls taking into consideration the confidence scores of the one or more calls assigned to each family.
[00154] The disclosure also provides for a method of communicating sequence information about at least one individual polynucleotide molecule, comprising: a) providing at least one individual polynucleotide molecule; b) encoding sequence information in the at least one individual polynucleotide molecule to produce a signal; c) passing at least part of the signal through a channel to produce a received signal comprising nucleotide sequence information about the at least one individual polynucleotide molecule, wherein the received signal comprises noise and/or distortion; d) decoding the received signal to produce a message comprising sequence information about the at least one individual polynucleotide molecule, wherein decoding reduces noise and/or distortion about each individual polynucleotide in the message; and e) providing the message comprising sequence information about the at least one individual polynucleotide molecule to a recipient.
[00155] In some embodiments, the noise comprises incorrect nucleotide calls. In some embodiments, distortion comprises uneven amplification of the individual polynucleotide molecule compared with other individual polynucleotide molecules. In some embodiments, distortion results from amplification or sequencing bias. In some embodiments, the at least one individual polynucleotide molecule is a plurality of individual polynucleotide molecules, and decoding produces a message about each molecule in the plurality. In some embodiments, encoding comprises amplifying the at least one individual polynucleotide molecule, which has optionally been tagged, wherein the signal comprises a collection of amplified molecules. In some embodiments, the channel comprises a polynucleotide sequencer and the received signal comprises sequence reads of a plurality of polynucleotides amplified from the at least one individual polynucleotide molecule. In some embodiments, decoding comprises grouping sequence reads of amplified molecules amplified from each of the at least one individual polynucleotide molecules. In some embodiments, the decoding consists of a probabilistic or statistical method of filtering the generated sequence signal.
[00156] In some embodiments, the polynucleotides are derived from tumor genomic DNA or R A. In some embodiments, the polynucleotides are derived from cell-free polynucleotides, exosomal polynucleotides, bacterial polynucleotides or viral polynucleotides. In some embodiments of any of the methods herein, the method further comprises the detection and/or association of affected molecular pathways. In some embodiments of any of the methods herein, the method further comprises serial monitoring of the health or disease state of an individual. In some embodiments the phylogeny of a genome associated with a disease within an individual is inferred. In some embodiments, any of the methods described herein further comprise diagnosis, monitoring or treatment of a disease. In some embodiments, the treatment regimen is selected or modified based on detected polymorphic forms or CNVs or associated pathways. In some embodiments, the treatment comprises of a combination therapy. In some embodiments, the diagnosis further comprises localizing the disease using a radiographic technique, such as, a CT- Scan, PET-CT, MRI, Ultrasound, Ultraound with microbubbles, etc.
[00157] The disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: selecting predefined regions in a genome; accessing sequence reads and enumerating number of sequence reads in the predefined regions; normalizing the number of sequence reads across the predefined regions; and determining percent of copy number variation in the predefined regions.
[00158] The disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: accessing a data file comprising a plurality of sequencing reads; filtering out reads that fail to meet a set threshold; mapping sequence reads derived from the sequencing onto a reference sequence; identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position; for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position; normalizing the ratios or frequency of variance for each mappable base position and determining potential rare variant(s) or other genetic alteration(s); and comparing the resulting number for each of the regions with potential rare variant(s) or mutation(s) to similarly derived numbers from a reference sample.
[00159] The disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; and b) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides.
[00160] The disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides; and c) filtering out from among the consensus sequences those that fail to meet a quality threshold.
[00161] A computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; and i) collapsing the sequence reads by: (1) grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide and, optionally, (2) determining a quantitative measure of sequence reads in each family.
[00162] In some embodiments, the executable code, upon execution by a computer processor, further performs the steps of: b) determining a quantitative measure of unique families; and c) based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set.
[00163] In some embodiments, the executable code, upon execution by a computer processor, further performs the steps of: d) determining a quantitative measure of polymorphic forms among the families; and e) based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides.
[00164] The disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping sequences reads sequenced from amplified polynucleotides into families, each family amplified from the same first polynucleotide in the set; b) inferring a quantitative measure of families in the set; and c) determining copy number variation by comparing the quantitative measure of families in each set.
[00165] The disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide; b) inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises: c) assigning, for each family, confidence score for each of a plurality of calls, the confidence score taking into consideration a frequency of the call among members of the family; and d) estimating a frequency of the one or more calls taking into consideration the confidence scores of the one or more calls assigned to each family.
[00166] The disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a received signal that comprises endoded sequence information from at least one individual polynucleotide molecule wherein the received signal comprises noise and/or distortion; b) decoding the received signal to produce a message comprising sequence information about the at least one individual
polynucleotide molecule, wherein decoding reduces noise and/or distortion about each individual polynucleotide in the message; and c) writing the message comprising sequence information about the at least one individual polynucleotide molecule to a computer file.
[00167] The disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides; and c) filtering out from among the consensus sequences those that fail to meet a quality threshold.
[00168] The disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; and b) collapsing the sequence reads by: (i) grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide; and (ii) optionally, determining a quantitative measure of sequence reads in each family.
[00169] In some embodiments, the executable code, upon execution by a computer processor, further performs the steps of: d) determining a quantitative measure of unique families;e) based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set.
[00170] In some embodiments, the executable code, upon execution by a computer processor, further performs the steps of: e) determining a quantitative measure of polymorphic forms among the families; and f) based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides.
[00171] In some embodiments, the the executable code, upon execution by a computer processor, further performs the steps of: e) inferring copy number variation for the plurality of sets based on a comparison of the inferred number of tagged parent polynucleotides in each set mapping to each of a plurality of reference sequences.
[00172] The disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: a) accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b) grouping sequences reads sequenced from amplified polynucleotides into families, each family amplified from the same first polynucleotide in the set; c) inferring a quantitative measure of families in the set; d) determining copy number variation by comparing the quantitative measure of families in each set. [00173] The disclosure also provides for a computer readable medium comprising non- transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising: accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide; and inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises: (i) assigning, for each family, confidence score for each of a plurality of calls, the confidence score taking into consideration a frequency of the call among members of the family; and (ii) estimating a frequency of the one or more calls taking into consideration the confidence scores of the one or more calls assigned to each family.
[00174] The disclosure also provides for a composition comprising between 100 and
100,000 human haploid genome equivalents of cfDNA polynucleotides, wherein the
polynucleotides are tagged with between 2 and 1,000,000 unique identifiers.
[00175] In some embodiments, the composition comprises between 1000 and 50,000 haploid human genome equivalents of cfDNA polynucleotides, wherein the polynucleotides are tagged with between 2 and 1,000 unique identifiers. In some embodiments, the unique identifiers comprise nucleotide barcodes. The disclosure also provides for a method comprising: a) providing a sample comprising between 100 and 100,000 haploid human genome equivalents of cfDNA polynucleotides; and b) tagging the polynucleotides with between 2 and 1,000,000 unique identifiers.
[00176] The disclosure also provides for a method comprising: a) providing a sample comprising a plurality of human haploid genome equivalents of fragmented polynucleotides; b) determining z, wherein z is a measure of central tendency (e.g., mean, median or mode) of expected number of duplicate polynucleotides starting at any position in the genome, wherein duplicate polynucleotides have the same start and stop positions; and c) tagging polynucleotides in sample with n unique identifiers, wherein n is between 2 and 100,000*z, 2 and 10,000*z, 2 and l,000*z or 2 and 100*z. The disclosure also provides for a method comprising: a) providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides; b) producing a plurality of sequence reads for each tagged parent polynucleotide in the set to produce a set of sequencing reads; and c) collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides.
[00177] The disclosure also provides for a system comprising a computer readable medium comprising machine-executable code as described herein. The disclosure also provides for a system comprising a computer readable medium comprising machine-executable code that, upon execution by a computer processor, implements a method as described herein.
[00178] Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
INCORPORATION BY REFERENCE
[00179] All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
BRIEF DESCRIPTION OF THE DRAWINGS
[00180] The novel features of a system and methods of this disclosure are set forth with particularity in the appended claims. A better understanding of the features and advantages of this disclosure will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of a systems and methods of this disclosure are utilized, and the accompanying drawings of which:
[00181] FIG. 1 is a flow chart representation of a method of detection of copy number variation using a single sample.
[00182] FIG. 2 is a flow chart representation of a method of detection of copy number variation using paired samples.
[00183] FIG. 3 is a flow chart representation of a method of detection of rare mutations
(e.g., single nucleotide variants).
[00184] FIG. 4 A is graphical copy number variation detection report generated from a normal, non cancerous subject. [00185] FIG. 4B is a graphical copy number variation detection report generated from a subject with prostate cancer.
[00186] FIG. 4C is schematic representation of internet enabled access of reports generated from copy number variation analysis of a subject with prostate cancer.
[00187] FIG. 5 A is a graphical copy number variation detection report generated from a subject with prostate cancer remission.
[00188] FIG. 5B is a graphical copy number variation detection report generated from a subject with prostate recurrence cancer.
[00189] FIG. 6A is graphical detection report (e.g., for single nucleotide variants) generated from various mixing experiments using DNA samples containing both wildtype and mutant copies of MET and TP53.
[00190] FIG. 6B is logarithmic graphical representation of (e.g., single nucleotide variant) detection results. Observed vs. expected percent cancer measurements are shown for various mixing experiments using DNAs samples containing both wildtype and mutant copies of MET, HRAS and TP53.
[00191] FIG. 7A is graphical report of percentage of two (e.g., single nucleotide variants) in two genes, PIK3CA and TP53, in a subject with prostate cancer as compared to a reference (control).
[00192] FIG. 7B is schematic representation of internet enabled access of reports generated from (e.g., single nucleotide variant) analysis of a subject with prostate cancer.
[00193] FIG. 8 is a flow chart representation of a method of analyzing genetic material.
[00194] FIG. 9 is a flow chart representation of a method of decoding information in a set of sequence reads to produce, with reduced noise and/or distortion, a representation of information in a set of tagged parent polynucleotides.
[00195] FIG. 10 is a flow chart representation of a method of reducing distortion in the determination of CNV from a set of sequence reads.
[00196] FIG. 11 is a flow chart representation of a method of estimating frequency of a base or sequence of bases at a locus in a tagged parent polynucleotide population from a set of sequence reads.
[00197] FIG. 12 shows a method of communicating sequence information.
[00198] FIG. 13 shows detected minor allele frequencies across an entire 70kb panel in
0.3% LNCaP cfDNA titration using standard sequencing and Digital Sequencing workflows. Standard "analog" sequencing (Fig. 13 A) masks all true -positive rare variants in tremendous noise due to PCR and sequencing errors despite Q30 filtering. Digital Sequencing (Fig. 13B) eliminates all PCR and sequencing noise, revealing true mutations with no false positives: green circles are SNP points in normal cfDNA and red circles are detected LNCaP mutations.
[00199] FIG. 14: Shows titration of LNCap cfDNA.
[00200] FIG. 15 shows a computer system that is programmed or otherwise configured to implement various methods of the present disclosure.
DETAILED DESCRIPTION OF THE INVENTION
I. General Overview
[00201] The present disclosure provides a system and method for the detection of rare mutations (e.g., single or multiple nucleotide variations) and copy number variations in cell free polynucleotides. Generally, the systems and methods comprise sample preparation, or the extraction and isolation of cell free polynucleotide sequences from a bodily fluid; subsequent sequencing of cell free polynucleotides by techniques known in the art; and application of bioinformatics tools to detect rare mutations and copy number variations as compared to a reference. The systems and methods also may contain a database or collection of different rare mutations or copy number variation profiles of different diseases, to be used as additional references in aiding detection of rare mutations (e.g., single nucleotide variation profiling), copy number variation profiling or general genetic profiling of a disease.
[00202] The systems and methods may be particularly useful in the analysis of cell free
DNAs. In some cases, cell free DNA are extracted and isolated from a readily accessible bodily fluid such as blood. For example, cell free DNA can be extracted using a variety of methods known in the art, including but not limited to isopropanol precipitation and/or silica based purification. Cell free DNA may be extracted from any number of subjects, such as subjects without cancer, subjects at risk for cancer, or subjects known to have cancer (e.g. through other means).
[00203] Following the isolation/extraction step, any of a number of different sequencing operations may be performed on the cell free polynucleotide sample. Samples may be processed before sequencing with one or more reagents (e.g., enzymes, unique identifiers (e.g., barcodes), probes, etc.). In some cases if the sample is processed with a unique identifier such as a barcode, the samples or fragments of samples may be tagged individually or in subgroups with the unique identifier. The tagged sample may then be used in a downstream application such as a sequencing reaction by which individual molecules may be tracked to parent molecules.
[00204] After sequencing data of cell free polynucleotide sequences is collected, one or more bioinformatics processes may be applied to the sequence data to detect genetic features or aberrations such as copy number variation, rare mutations (e.g., single or multiple nucleotide variations) or changes in epigenetic markers, including but not limited to methylation profiles. In some cases, in which copy number variation analysis is desired, sequence data may be: 1) aligned with a reference genome; 2) filtered and mapped; 3) partitioned into windows or bins of sequence; 4) coverage reads counted for each window; 5) coverage reads can then be normalized using a stochastic or statistical modeling algorithm; 6) and an output file can be generated reflecting discrete copy number states at various positions in the genome. In other cases, in which rare mutation analysis is desired, sequence data may be 1) aligned with a reference genome; 2) filtered and mapped; 3) frequency of variant bases calculated based on coverage reads for that specific base; 4) variant base frequency normalized using a stochastic, statistical or probabilistic modeling algorithm; 5) and an output file can be generated reflecting mutation states at various positions in the genome.
[00205] A variety of different reactions and/operations may occur within the systems and methods disclosed herein, including but not limited to: nucleic acid sequencing, nucleic acid quantification, sequencing optimization, detecting gene expression, quantifying gene expression, genomic profiling, cancer profiling, or analysis of expressed markers. Moreover, the systems and methods have numerous medical applications. For example, it may be used for the identification, detection, diagnosis, treatment, staging of, or risk prediction of various genetic and non-genetic diseases and disorders including cancer. It may be used to assess subject response to different treatments of said genetic and non-genetic diseases, or provide information regarding disease progression and prognosis.
[00206] Polynucleotide sequencing can be compared with a problem in communication theory. An initial individual polynucleotide or ensemble of polynucleotides is thought of as an original message. Tagging and/or amplifying can be thought of as encoding the original message into a signal. Sequencing can be thought of as communication channel. The output of a sequencer, e.g., sequence reads, can be thought of as a received signal. Bioinformatic processing can be thought of as a receiver that decodes the received signal to produce a transmitted message, e.g., a nucleotide sequence or sequences. The received signal can include artifacts, such as noise and distortion. Noise can be thought of as an unwanted random addition to a signal. Distortion can be thought of as an alteration in the amplitude of a signal or portion of a signal.
[00207] Noise can be introduced through errors in copying and/or reading a polynucleotide.
For example, in a sequencing process a single polynucleotide can first be subject to amplification. Amplification can introduce errors, so that a subset of the amplified polynucleotides may contain, at a particular locus, a base that is not the same as the original base at that locus. Furthermore, in the reading process a base at any particular locus may be read incorrectly. As a consequence, the collection of sequence reads can include a certain percentage of base calls at a locus that are not the same as the original base. In typical sequencing technologies this error rate can be in the single digits, e.g., 2%-3%. When a collection of molecules that are all presumed to have the same sequence are sequenced, this noise is sufficiently small that one can identify the original base with high reliability.
[00208] However, if a collection of parent polynucleotides includes a subset of
polynucleotides having sequence variants at a particular locus, noise can be a significant problem. This can be the case, for example, when cell free DNA includes not only germline DNA, but DNA from another source, such as fetal DNA or DNA from a cancer cell. In this case, if the frequency of molecules with sequence variants is in the same range as the frequency of errors introduced by the sequencing process, then true sequence variants may not be distinguishable from noise. This could interfere, for example, with detecting sequence variants in a sample.
[00209] Distortion can be manifested in the sequencing process as a difference in signal strength, e.g., total number of sequence reads, produced by molecules in a parent population at the same frequency. Distortion can be introduced, for example, through amplification bias, GC bias, or sequencing bias. This could interfere with detecting copy number variation in a sample. GC bias results in the uneven representation of areas rich or poor in GC content in the sequence reading.
[00210] This invention provides methods of reducing sequencing artifacts, such as noise and/or distortion, in a polynucleotide sequencing process. Grouping sequence reads into families derived from original individual molecules can reduce noise and/or distortion from a single individual molecule or from an ensemble of molecules. With respect to a single molecule, grouping reads into a family reduces distortion by, for example, indicating that many sequence reads actually represent a single molecule rather than many different molecules. Collapsing sequence reads into a consensus sequence is one way to reduce noise in the received message from one molecule. Using probabilistic functions that convert received frequencies is another way. With respect to an ensemble of molecules, grouping reads into families and determining a quantitative measure of the families reduces distortion, for example, in the quantity of molecules at each of a plurality of different loci. Again, collapsing sequence reads of different families into consensus sequences eliminate errors introduced by amplification and/or sequencing error.
Furthermore, determining frequencies of base calls based on probabilities derived from family information also reduces noise in the received message from an ensemble of molecules.
[00211] Methods of reducing noise and/or distortion from a sequencing process are known.
These include, for example, filtering sequences, e.g., requiring them to meet a quality threshold, or reducing GC bias. Such methods typically are performed on the collection of sequence reads that are the output of a sequencer, and can be performed sequence read-by-sequence read, without regard for family structure (sub-collections of sequences derived from a single original parent molecule). Certain methods of this invention reduce noise and distortion by reducing noise and/or distortion within families of sequence reads, that is, operating on sequence reads grouped into families derived from a single parent polynucleotide molecule. Signal artifact reduction at the family level can produce significantly less noise and distortion in the ultimate message that is provided than artifact reduction performed at a sequence read-by-sequence read level or on sequencer output as a whole.
[00212] The present disclosure further provides methods and systems for detecting with high sensitivity genetic variation in a sample of initial genetic material. The methods involve using one or both of the following tools: First, the efficient conversion of individual
polynucleotides in a sample of initial genetic material into sequence-ready tagged parent polynucleotides, so as to increase the probability that individual polynucleotides in a sample of initial genetic material will be represented in a sequence-ready sample. This can produce sequence information about more polynucleotides in the initial sample. Second, high yield generation of consensus sequences for tagged parent polynucleotides by high rate sampling of progeny polynucleotides amplified from the tagged parent polynucleotides, and collapsing of generated sequence reads into consensus sequences representing sequences of parent tagged polynucleotides. This can reduce noise introduced by amplification bias and/or sequencing errors, and can increase sensitivity of detection. Collapsing is performed on a plurality of sequence reads, generated either from reads of amplified molecules, or multiple reads of a single molecule. [00213] Sequencing methods typically involve sample preparation, sequencing of polynucleotides in the prepared sample to produce sequence reads and bioinformatic manipulation of the sequence reads to produce quantitative and/or qualitative genetic information about the sample. Sample preparation typically involves converting polynucleotides in a sample into a form compatible with the sequencing platform used. This conversion can involve tagging
polynucleotides. In certain embodiments of this invention the tags comprise polynucleotide sequence tags. Conversion methodologies used in sequencing may not be 100% efficient. For example, it is not uncommon to convert polynucleotides in a sample with a conversion efficiency of about 1-5%, that is, about 1-5% of the polynucleotides in a sample are converted into tagged polynucleotides. Polynucleotides that are not converted into tagged molecules are not represented in a tagged library for sequencing. Accordingly, polynucleotides having genetic variants represented at low frequency in the initial genetic material may not be represented in the tagged library and, therefore may not be sequenced or detected. By increasing conversion efficiency, the probability that a rare polynucleotide in the initial genetic material will be represented in the tagged library and, consequently, detected by sequencing is increased. Furthermore, rather than directly address the low conversion efficiency issue of library preparation, most protocols to date call for greater than 1 microgram of DNA as input material. However, when input sample material is limited or detection of polynucleotides with low representation is desired, high conversion efficiency can efficiently sequence the sample and/or to adequately detect such polynucleotides.
[00214] This disclosure provides methods of converting initial polynucleotides into tagged polynucleotides with a conversion efficiency of at least 10%, at least 20%, at least 30%, at least 40%), at least 50%>, at least 60%>, at least 80%> or at least 90%>. The methods involve, for example, using any of blunt-end ligation, sticky end ligation, molecular inversion probes, PCR, ligation- based PCR, multiplex PCR, single strand ligation and single strand circularization. The methods can also involve limiting the amount of initial genetic material. For example, the amount of initial genetic material can be less than 1 ug, less than 100 ng or less than 10 ng. These methods are described in more detail herein.
[00215] Obtaining accurate quantitative and qualitative information about polynucleotides in a tagged library can result in a more sensitive characterization of the initial genetic material. Typically, polynucleotides in a tagged library are amplified and the resulting amplified molecules are sequenced. Depending on the throughput of the sequencing platform used, only a subset of the molecules in the amplified library produce sequence reads. So, for example, the number of amplified molecules sampled for sequencing may be about only 50% of the unique polynucleotides in the tagged library. Furthermore, amplification may be biased in favor of or against certain sequences or certain members of the tagged library. This may distort quantitative measurement of sequences in the tagged library. Also, sequencing platforms can introduce errors in sequencing. For example, sequences can have a per-base error rate of 0.5-1%. Amplification bias and sequencing errors introduce noise into the final sequencing product. This noise can diminish sensitivity of detection. For example, sequence variants whose frequency in the tagged population is less than the sequencing error rate can be mistaken for noise. Also, by providing reads of sequences in greater or less amounts than their actual number in a population, amplification bias can distort measurements of copy number variation. Alternatively, a plurality of sequence reads from a single polynucleotide can be produced without amplification. This can be done, for example, with nanopore methods.
[00216] This disclosure provides methods of accurately detecting and reading unique polynucleotides in a tagged pool. In certain embodiments this disclosure provides sequence- tagged polynucleotides that, when amplified and sequenced, or when sequenced a plurality of times to produce a plurality of sequence reads, provide information that allowed the tracing back, or collapsing, of progeny polynucleotides to the unique tag parent polynucleotide molecule. Collapsing families of amplified progeny polynucleotides reduces amplification bias by providing information about original unique parent molecules. Collapsing also reduces sequencing errors by eliminating from sequencing data mutant sequences of progeny molecules.
[00217] Detecting and reading unique polynucleotides in the tagged library can involve two strategies. In one strategy a sufficiently large subset of the amplified progeny polynucleotide pool is a sequenced such that, for a large percentage of unique tagged parent polynucleotides in the set of tagged parent polynucleotides, there is a sequence read that is produced for at least one amplified progeny polynucleotide in a family produced from a unique tagged parent
polynucleotide. In a second strategy, the amplified progeny polynucleotide set is sampled for sequencing at a level to produce sequence reads from multiple progeny members of a family derived from a unique parent polynucleotide. Generation of sequence reads from multiple progeny members of a family allows collapsing of sequences into consensus parent sequences.
[00218] So, for example, sampling a number of amplified progeny polynucleotides from the set of amplified progeny polynucleotides that is equal to the number of unique tagged parent polynucleotides in the set of tagged parent polynucleotides (particularly when the number is at least 10,000) will produce, statistically, a sequence read for at least one of progeny of about 68% of the tagged parent polynucleotides in the set, and about 40% of the unique tagged parent polynucleotides in the original set will be represented by at least two progeny sequence reads. In certain embodiments the amplified progeny polynucleotide set is sampled sufficiently so as to produce an average of five to ten sequence reads for each family. Sampling from the amplified progeny set of 10-times as many molecules as the number of unique tagged parent
polynucleotides will produce, statistically, sequence information about 99.995%) of the families, of which 99.95% of the total families will be covered by a plurality of sequence reads. A consensus sequence can be built from the progeny polynucleotides in each family so as to dramatically reduce the error rate from the nominal per-base sequencing error rate to a rate possibly many orders of magnitude lower. For example, if the sequencer has a random per-base error rate of 1% and the chosen family has 10 reads, a consensus sequence built from these 10 reads would possess an error rate of below 0.0001%>. Accordingly, the sampling size of the amplified progeny to be sequenced can be chosen so as to ensure a sequence having a frequency in the sample that is no greater than the nominal per-base sequencing error rate to a rate of the sequencing platform used, has at least 99% chance being represented by at least one read.
[00219] In another embodiment the set of amplified progeny polynucleotides is sampled to a level to produce a high probability e.g., at least 90%>, that a sequence represented in the set of tagged parent polynucleotides at a frequency that is about the same as the per base sequencing error rate of the sequencing platform used is covered by at least one sequence read and preferably a plurality of sequence reads. So, for example, if the sequencing platform has a per base error rate of 0.2%) in a sequence or set of sequences is represented in the set of tagged parent
polynucleotides at a frequency of about 0.2%>, then the number of polynucleotides in the amplified progeny pool that are sequenced can be about X times the number of unique molecules in the set of tagged parent polynucleotides.
[00220] These methods can be combined with any of the noise reduction methods described. Including, for example, qualifying sequence reads for inclusion in the pool of sequences used to generate consensus sequences.
[00221] This information can now be used for both qualitative and quantitative analysis.
For example, for quantitative analysis, a measure, e.g., a count, of the amount of tagged parent molecules mapping to a reference sequence is determined. This measure can be compared with a measure of tagged parent molecules mapping to a different genomic region. That is, the amount of tagged parent molecules mapping to a first location or mappable position in a reference sequence, such as the human genome, can be compared with a measure of tagged parent molecules mapping to a second location or mappable position in a reference sequence. This comparison can reveal, for example, the relative amounts of parent molecules mapping to each region. This, in turn, provides an indication of copy number variation for molecules mapping to a particular region. For example, if the measure of polynucleotides mapping to a first reference sequence is greater than the measure of polynucleotides mapping to a second reference sequence, this may indicate that the parent population, and by extension the original sample, included polynucleotides from cells exhibiting aneuploidy. The measures can be normalized against a control sample to eliminate various biases. Quantitative measures can include, for example, number, count, frequency (whether relative, inferred or absolute).
[00222] A reference genome can include the genome of any species of interest. Human genome sequences useful as references can include the hgl9 assembly or any previous or available hg assembly. Such sequences can be interrogated using the genome brower available at genome.ucsc.edu/index.html. Other species genomes include, for example PanTro2 (chimp) and mm9 (mouse).
[00223] For qualitative analysis, sequences from a set of tagged polynucleotides mapping to a reference sequence can be analyzed for variant sequences and their frequency in the population of tagged parent polynucleotides can be measured.
II. Sample Preparation
A. Polynucleotide Isolation and Extraction
[00224] The systems and methods of this disclosure may have a wide variety of uses in the manipulation, preparation, identification and/or quantification of cell free polynucleotides.
Examples of polynucleotides include but are not limited to: DNA, RNA, amplicons, cDNA, dsDNA, ssDNA, plasmid DNA, cosmid DNA, high Molecular Weight (MW) DNA, chromosomal DNA, genomic DNA, viral DNA, bacterial DNA, mtDNA (mitochondrial DNA), mRNA, rRNA, tRNA, nRNA, siRNA, snRNA, snoRNA, scaRNA, microRNA, dsRNA, ribozyme, riboswitch and viral RNA (e.g., retroviral RNA).
[00225] Cell free polynucleotides may be derived from a variety of sources including human, mammal, non-human mammal, ape, monkey, chimpanzee, reptilian, amphibian, or avian, sources. Further, samples may be extracted from variety of animal fluids containing cell free sequences, including but not limited to blood, serum, plasma, vitreous, sputum, urine, tears, perspiration, saliva, semen, mucosal excretions, mucus, spinal fluid, amniotic fluid, lymph fluid and the like. Cell free polynucleotides may be fetal in origin (via fluid taken from a pregnant subject), or may be derived from tissue of the subject itself.
[00226] Isolation and extraction of cell free polynucleotides may be performed through collection of bodily fluids using a variety of techniques. In some cases, collection may comprise aspiration of a bodily fluid from a subject using a syringe. In other cases collection may comprise pipetting or direct collection of fluid into a collecting vessel.
[00227] After collection of bodily fluid, cell free polynucleotides may be isolated and extracted using a variety of techniques known in the art. In some cases, cell free DNA may be isolated, extracted and prepared using commercially available kits such as the Qiagen Qiamp® Circulating Nucleic Acid Kit protocol. In other examples, Qiagen Qubit™ dsDNA HS Assay kit protocol, Agilent™ DNA 1000 kit, or TruSeq™ Sequencing Library Preparation; Low- Throughput (LT) protocol may be used.
[00228] Generally, cell free polynucleotides are extracted and isolated by from bodily fluids through a partitioning step in which cell free DNAs, as found in solution, are separated from cells and other non soluble components of the bodily fluid. Partitioning may include, but is not limited to, techniques such as centrifugation or filtration. In other cases, cells are not partitioned from cell free DNA first, but rather lysed. In this example, the genomic DNA of intact cells is partitioned through selective precipitation. Cell free polynucleotides, including DNA, may remain soluble and may be separated from insoluble genomic DNA and extracted.
Generally, after addition of buffers and other wash steps specific to different kits, DNA may be precipitated using isopropanol precipitation. Further clean up steps may be used such as silica based columns to remove contaminants or salts. General steps may be optimized for specific applications. Non specific bulk carrier polynucleotides, for example, may be added throughout the reaction to optimize certain aspects of the procedure such as yield.
[00229] Isolation and purification of cell free DNA may be accomplished using any means, including, but not limited to, the use of commercial kits and protocols provided by companies such as Sigma Aldrich, Life Technologies, Promega, Affymetrix, IBI or the like. Kits and protocols may also be non-commercially available. [00230] After isolation, in some cases, the cell free polynucleotides are pre -mixed with one or more additional materials, such as one or more reagents (e.g., ligase, protease, polymerase) prior to sequencing.
[00231] One method of increasing conversion efficiency involves using a ligase engineered for optimal reactivity on single-stranded DNA, such as a ThermoPhage ssDNA ligase derivative. Such ligases bypass traditional steps in library preparation of end-repair and A-tailing that can have poor efficiencies and/or accumulated losses due to intermediate cleanup steps, and allows for twice the probability that either the sense or anti-sense starting polynucleotide will be converted into an appropriately tagged polynucleotide. It also converts double-stranded polynucleotides that may possess overhangs that may not be sufficiently blunt-ended by the typical end-repair reaction. Optimal reactions conditions for this ssDNA reaction are: 1 x reaction buffer (50 mM MOPS (pH 7.5), 1 mM DTT, 5 mM MgC12, 10 mM KC1). With 50 mM ATP, 25 mg/ml BSA, 2.5 mM
MnC12 , 200 pmol 85 nt ssDNA oligomer and 5 U ssDNA ligase incubated at 65°C for 1 hour. Subsequent amplification using PCR can further convert the tagged single-stranded library to a double-stranded library and yield an overall conversion efficiency of well above 20%. Other methods of increasing conversion rate, e.g., to above 10%, include, for example, any of the following, alone or in combination: Annealing-optimized molecular-inversion probes, blunt-end ligation with a well-controlled polynucleotide size range, sticky-end ligation or an upfront multiplex amplification step with or without the use of fusion primers.
B. Molecular Bar Coding of Cell Free Polynucleotides
[00232] The systems and methods of this disclosure may also enable the cell free polynucleotides to be tagged or tracked in order to permit subsequent identification and origin of the particular polynucleotide. This feature is in contrast with other methods that use pooled or multiplex reactions and that only provide measurements or analyses as an average of multiple samples. Here, the assignment of an identifier to individual or subgroups of polynucleotides may allow for a unique identity to be assigned to individual sequences or fragments of sequences. This may allow acquisition of data from individual samples and is not limited to averages of samples.
[00233] In some examples, nucleic acids or other molecules derived from a single strand may share a common tag or identifier and therefore may be later identified as being derived from that strand. Similarly, all of the fragments from a single strand of nucleic acid may be tagged with the same identifier or tag, thereby permitting subsequent identification of fragments from the parent strand. In other cases, gene expression products (e.g., mRNA) may be tagged in order to quantify expression, by which the barcode, or the barcode in combination with sequence to which it is attached can be counted. In still other cases, the systems and methods can be used as a PCR amplification control. In such cases, multiple amplification products from a PCR reaction can be tagged with the same tag or identifier. If the products are later sequenced and demonstrate sequence differences, differences among products with the same identifier can then be attributed to PCR error.
[00234] Additionally, individual sequences may be identified based upon characteristics of sequence data for the read themselves. For example, the detection of unique sequence data at the beginning (start) and end (stop) portions of individual sequencing reads may be used, alone or in combination, with the length, or number of base pairs of each sequence read unique sequence to assign unique identities to individual molecules. Fragments from a single strand of nucleic acid, having been assigned a unique identity, may thereby permit subsequent identification of fragments from the parent strand. This can be used in conjunction with bottlenecking the initial starting genetic material to limit diversity.
[00235] Further, using unique sequence data at the beginning (start) and end (stop) portions of individual sequencing reads and sequencing read length may be used, alone or combination, with the use of barcodes. In some cases, the barcodes may be unique as described herein. In other cases, the barcodes themselves may not be unique. In this case, the use of non unique barcodes, in combination with sequence data at the beginning (start) and end (stop) portions of individual sequencing reads and sequencing read length may allow for the assignment of a unique identity to individual sequences. Similarly, fragments from a single strand of nucleic acid having been assigned a unique identity, may thereby permit subsequent identification of fragments from the parent strand.
[00236] Generally, the methods and systems provided herein are useful for preparation of cell free polynucleotide sequences to a down-stream application sequencing reaction. Often, a sequencing method is classic Sanger sequencing. Sequencing methods may include, but are not limited to: high-throughput sequencing, pyrosequencing, sequencing -by-synthesis, single- molecule sequencing, nanopore sequencing, semiconductor sequencing, sequencing-by-ligation, sequencing-by-hybridization, RNA-Seq (Illumina), Digital Gene Expression (Helicos), Next generation sequencing, Single Molecule Sequencing by Synthesis (SMSS)(Helicos), massively- parallel sequencing, Clonal Single Molecule Array (Solexa), shotgun sequencing, Maxim-Gilbert sequencing, primer walking, and any other sequencing methods known in the art. C. Assignment of Barcodes to Cell Free Polynucleotide Sequences
[00237] The systems and methods disclosed herein may be used in applications that involve the assignment of unique or non-unique identifiers, or molecular barcodes, to cell free polynucleotides. Often, the identifier is a bar-code oligonucleotide that is used to tag the polynucleotide; but, in some cases, different unique identifiers are used. For example, in some cases, the unique identifier is a hybridization probe. In other cases, the unique identifier is a dye, in which case the attachment may comprise intercalation of the dye into the analyte molecule (such as intercalation into DNA or RNA) or binding to a probe labeled with the dye. In still other cases, the unique identifier may be a nucleic acid oligonucleotide, in which case the attachment to the polynucleotide sequences may comprise a ligation reaction between the oligonucleotide and the sequences or incorporation through PCR. In other cases, the reaction may comprise addition of a metal isotope, either directly to the analyte or by a probe labeled with the isotope. Generally, assignment of unique or non-unique identifiers, or molecular barcodes in reactions of this disclosure may follow methods and systems described by, for example, US patent applications 20010053519, 20030152490, 20110160078 and US patent US 6,582,908.
[00238] Often, the method comprises attaching oligonucleotide barcodes to nucleic acid analytes through an enzymatic reaction including but not limited to a ligation reaction. For example, the ligase enzyme may covalently attach a DNA barcode to fragmented DNA (e.g., high molecular-weight DNA). Following the attachment of the barcodes, the molecules may be subjected to a sequencing reaction.
[00239] However, other reactions may be used as well. For example, oligonucleotide primers containing barcode sequences may be used in amplification reactions (e.g., PCR, qPCR, reverse-transcriptase PCR, digital PCR, etc.) of the DNA template analytes, thereby producing tagged analytes. After assignment of barcodes to individual cell free polynucleotide sequences, the pool of molecules may be sequenced.
[00240] In some cases, PCR may be used for global amplification of cell free
polynucleotide sequences. This may comprise using adapter sequences that may be first ligated to different molecules followed by PCR amplification using universal primers. PCR for sequencing may be performed using any means, including but not limited to use of commercial kits provided by Nugen (WGA kit), Life Technologies, Affymetrix, Promega, Qiagen and the like. In other cases, only certain target molecules within a population of cell free polynucleotide molecules may be amplified. Specific primers, may in conjunction with adapter ligation, may be used to selectively amplify certain targets for downstream sequencing.
[00241] The unique identifiers (e.g., oligonucleotide bar-codes, antibodies, probes, etc.) may be introduced to cell free polynucleotide sequences randomly or non-randomly. In some cases, they are introduced at an expected ratio of unique identifiers to microwells. For example, the unique identifiers may be loaded so that more than about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000, 5000, 10000, 50,000, 100,000, 500,000, 1,000,000, 10,000,000, 50,000,000 or 1,000,000,000 unique identifiers are loaded per genome sample. In some cases, the unique identifiers may be loaded so that less than about 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000, 5000, 10000, 50,000, 100,000, 500,000, 1,000,000, 10,000,000, 50,000,000 or 1,000,000,000 unique identifiers are loaded per genome sample. In some cases, the average number of unique identifiers loaded per sample genome is less than, or greater than, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000, 5000, 10000, 50,000, 100,000, 500,000, 1,000,000, 10,000,000,
50,000,000 or 1,000,000,000 unique identifiers per genome sample.
[00242] In some cases, the unique identifiers may be a variety of lengths such that each barcode is at least about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000 base pairs. In other cases, the barcodes may comprise less than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000 base pairs.
[00243] In some cases, unique identifiers may be predetermined or random or semi-random sequence oligonucleotides. In other cases, a plurality of barcodes may be used such that barcodes are not necessarily unique to one another in the plurality. In this example, barcodes may be ligated to individual molecules such that the combination of the bar code and the sequence it may be ligated to creates a unique sequence that may be individually tracked. As described herein, detection of non unique barcodes in combination with sequence data of beginning (start) and end (stop) portions of sequence reads may allow assignment of a unique identity to a particular molecule. The length, or number of base pairs, of an individual sequence read may also be used to assign a unique identity to such a molecule. As described herein, fragments from a single strand of nucleic acid having been assigned a unique identity, may thereby permit subsequent identification of fragments from the parent strand. In this way the polynucleotides in the sample can be uniquely or substantially uniquely tagged.
[00244] The unique identifiers may be used to tag a wide range of analytes, including but not limited to RNA or DNA molecules. For example, unique identifiers (e.g., barcode oligonucleotides) may be attached to whole strands of nucleic acids or to fragments of nucleic acids (e.g., fragmented genomic DNA, fragmented RNA). The unique identifiers (e.g., oligonucleotides) may also bind to gene expression products, genomic DNA, mitochondrial DNA, RNA, mRNA, and the like.
[00245] In many applications, it may be important to determine whether individual cell free polynucleotide sequences each receive a different unique identifier (e.g., oligonucleotide barcode). If the population of unique identifiers introduced into the systems and methods is not significantly diverse, different analytes may possibly be tagged with identical identifiers. The systems and methods disclosed herein may enable detection of cell free polynucleotide sequences tagged with the same identifier. In some cases, a reference sequences may be included with the population of cell free polynucleotide sequences to be analyzed. The reference sequence may be, for example, a nucleic acid with a known sequence and a known quantity. If the unique identifiers are oligonucleotide barcodes and the analytes are nucleic acids, the tagged analytes may subsequently be sequenced and quantified. These methods may indicate if one or more fragments and/or analytes may have been assigned an identical barcode.
[00246] A method disclosed herein may comprise utilizing reagents necessary for the assignment of barcodes to the analytes. In the case of ligation reactions, reagents including, but not limited to, ligase enzyme, buffer, adapter oligonucleotides, a plurality of unique identifier DNA barcodes and the like may be loaded into the systems and methods. In the case of enrichment, reagents including but not limited to a plurality of PCR primers, oligonucleotides containing unique identifying sequence, or barcode sequence, DNA polymerase, DNTPs, and buffer and the like may be used in preparation for sequencing.
[00247] Generally, the method and system of this disclosure may utilize the methods of US patent US 7,537,897 in using molecular barcodes to count molecules or analytes.
[00248] In a sample comprising fragmented genomic DNA, e.g., cell-free DNA (cfDNA), from a plurality of genomes, there is some likelihood that more than one polynucleotide from different genomes will have the same start and stop positions ("duplicates" or "cognates"). The probable number of duplicates beginning at any position is a function of the number of haploid genome equivalents in a sample and the distribution of fragment sizes. For example, cfDNA has a peak of fragments at about 160 nucleotides, and most of the fragments in this peak range from about 140 nucleotides to 180 nucleotides. Accordingly, cfDNA from a genome of about 3 billion bases (e.g., the human genome) may be comprised of almost 20 million (2xl07) polynucleotide fragments. A sample of about 30 ng DNA can contain about 10,000 haploid human genome equivalents. (Similarly, a sample of about 100 ng of DNA can contain about 30,000 haploid human genome equivalents.) A sample containing about 10,000 (104) haploid genome equivalents of such DNA can have about 200 billion (2xlOn) individual polynucleotide molecules. It has been empirically determined that in a sample of about 10,000 haploid genome equivalents of human DNA, there are about 3 duplicate polynucleotides beginning at any given position. Thus, such a collection can contain a diversity of about 6xl010-8xl010 (about 60 billion- 80 billion e.g., about 70 billion (7xl010)) differently sequenced polynucleotide molecules.
[00249] The probability of correctly identifying molecules is dependent on initial number of genome equivalents, the length distribution of sequenced molecules, sequence uniformity and number of tags. When the tag count is equal to one, that is, equivalent to having no unique tags or not tagging. The table below lists the probability of correctly identifying a molecule as unique assuming a typical cell-free size distribution as above.
Figure imgf000055_0001
25 99.6412
100 99.9107
[00250] In this case, upon sequencing the genomic DNA, it may not be possible to determine which sequence reads are derived from which parent molecules. This problem can be diminished by tagging parent molecules with a sufficient number of unique identifiers (e.g., the tag count) such that there is a likelihood that two duplicate molecules, i.e., molecules having the same start and stop positions, bear different unique identifiers so that sequence reads are traceable back to particular parent molecules. One approach to this problem is to uniquely tag every, or nearly every, different parent molecule in the sample. However, depending on the number of haploid gene equivalents and distribution of fragment sizes in the sample, this may require billions of different unique identifiers.
[00251] This method can be cumbersome and expensive. This invention provides methods and compositions in which a population of polynucleotides in a sample of fragmented genomic DNA is tagged with n different unique identifiers, wherein n is at least 2 and no more than 100,000*z, wherein z is a measure of central tendency (e.g., mean, median, mode) of an expected number of duplicate molecules having the same start and stop positions. In certain embodiments, n is at least any of 2*z, 3*z, 4*z, 5*z, 6*z, 7*z, 8*z, 9*z, 10*z, l l *z, 12*z, 13*z, 14*z, 15*z, 16*z, 17*z, 18*z, 19*z, or 20*z (e.g., lower limit). In other embodiments, n is no greater thanl00,000*z, 10,000*z, 1000*z or 100*z (e.g., upper limit). Thus, n can range between any combination of these lower and upper limits. In certain embodiments, n is between 5*z and 15*z, between 8*z and 12*z, or about 10*z. For example, a haploid human genome equivalent has about 3 picograms of DNA. A sample of about 1 microgram of DNA contains about 300,000 haploid human genome equivalents. The number n can be between 15 and 45, between 24 and 36 or about 30. Improvements in sequencing can be achieved as long as at least some of the duplicate or cognate polynucleotides bear unique identifiers, that is, bear different tags. However, in certain embodiments, the number of tags used is selected so that there is at least a 95% chance that all duplicate molecules starting at any one position bear unique identifiers. For example, a sample comprising about 10,000 haploid human genome equivalents of cfDNA can be tagged with about 36 unique identifiers. The unique identifiers can comprise six unique DNA barcodes. Attached to both ends of a polynucleotide, 36 possible unique identifiers are produced. Samples tagged in such a way can be those with a range of about 10 ng to any of about 100 ng, about 1 μg, about 10 μg of fragmented polynucleotides, e.g., genomic DNA, e.g. cfDNA.
[00252] Accordingly, this invention also provides compositions of tagged polynucleotides.
The polynucleotides can comprise fragmented DNA, e.g. cfDNA. A set of polynucleotides in the composition that map to a mappable base position in a genome can be non-uniquely tagged, that is, the number of different identifiers can be at least at least 2 and fewer than the number of polynucleotides that map to the mappable base position. A composition of between about 10 ng to about 10 μg (e.g., any of about 10 ng-1 μg, about 10 ng-100 ng, about 100 ng-10 μg, about 100 ng-1 μg, about 1 μg-10 μg) can bear between any of 2, 5, 10, 50 or 100 to any of 100, 1000, 10,000 or 100,000 different identifiers. For example, between 5 and 100 different identifiers can be used to tag the polynucleotides in such a composition.
III. Nucleic Acid Sequencing Platforms
[00253] After extraction and isolation of cell free polynucleotides from bodily fluids, cell free sequences may be sequenced. Often, a sequencing method is classic Sanger sequencing. Sequencing methods may include, but are not limited to: high-throughput sequencing, pyrosequencing, sequencing-by-synthesis, single-molecule sequencing, nanopore sequencing, semiconductor sequencing, sequencing-by-ligation, sequencing-by-hybridization, RNA-Seq (Illumina), Digital Gene Expression (Helicos), Next generation sequencing, Single Molecule Sequencing by Synthesis (SMSS)(Helicos), massively-parallel sequencing, Clonal Single Molecule Array (Solexa), shotgun sequencing, Maxim-Gilbert sequencing, primer walking, sequencing using PacBio, SOLiD, Ion Torrent, or Nanopore platforms and any other sequencing methods known in the art.
[00254] In some cases, sequencing reactions various types, as described herein, may comprise a variety of sample processing units. Sample processing units may include but are not limited to multiple lanes, multiple channels, multiple wells, or other mean of processing multiple sample sets substantially simultaneously. Additionally, the sample processing unit may include multiple sample chambers to enable processing of multiple runs simultaneously.
[00255] In some examples, simultaneous sequencing reactions may be performed using multiplex sequencing. In some cases, cell free polynucleotides may be sequenced with at least 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 50000, 100,000 sequencing reactions. In other cases cell free poly nucleotides may be sequenced with less than 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 50000, 100,000 sequencing reactions.
Sequencing reactions may be performed sequentially or simultaneously. Subsequent data analysis may be performed on all or part of the sequencing reactions. In some cases, data analysis may be performed on at least 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 50000, 100,000 sequencing reactions. In other cases data analysis may be performed on less than 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 50000, 100,000 sequencing reactions.
[00256] In other examples, the number of sequence reactions may provide coverage for different amounts of the genome. In some cases, sequence coverage of the genome may be at least 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 99.9% or 100%). In other cases, sequence coverage of the genome may be less than 5%, 10%>, 15%, 20%>, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 99.9% or 100%.
[00257] In some examples, sequencing can be performed on cell free polynucleotides that may comprise a variety of different types of nucleic acids. Nucleic acids may be polynucleotides or oligonucleotides. Nucleic acids included, but are not limited to DNA or RNA, single stranded or double stranded or a RNA/cDNA pair.
IV. Polynucleotide Analysis Strategy
[00258] Fig 8. is a diagram, 800, showing a strategy for analyzing polynucleotides in a sample of initial genetic material. In step 802, a sample containing initial genetic material is provided. The sample can include target nucleic acid in low abundance. For example, nucleic acid from a normal or wild-type genome (e.g., a germline genome) can predominate in a sample that also includes no more than 20%, no more than 10%, no more than 5%, no more than 1%, no more than 0.5% or no more than 0.1% nucleic acid from at least one other genome containing genetic variation, e.g., a cancer genome or a fetal genome, or a genome from another species. The sample can include, for example, cell free nucleic acid or cells comprising nucleic acid. The initial genetic material can constitute no more than 100 ng nucleic acid. This can contribute to proper oversampling of the original polynucleotides by the sequencing or genetic analysis process.
Alternatively, the sample can be artificially capped or bottlenecked to reduce the amount of nucleic acid to no more than 100 ng or selectively enriched to analyze only sequences of interest. The sample can be modified to selectively produce sequence reads of molecules mapping to each of one or more selected locations in a reference sequence. A sample of 100 ng of nucleic acid can contain about 30,000 human haploid genome equivalents, that is, molecules that, together, provide 30,000-fold coverage of a human genome.
[00259] In step 804 the initial genetic material is converted into a set of tagged parent polynucleotides. Tagging can include attaching sequenced tags to molecules in the initial genetic material. Sequenced tags can be selected so that all unique polynucleotides mapping to the same location in a reference sequence had a unique identifying tag. Conversion can be performed at high efficiency, for example at least 50%.
[00260] In step 806, the set of tagged parent polynucleotides is amplified to produce a set of amplified progeny polynucleotides. Amplification may be, for example, 1,000-fold.
[00261] In step 808, the set of amplified progeny polynucleotides are sampled for sequencing. The sampling rate is chosen so that the sequence reads produced both (1) cover a target number of unique molecules in the set of tagged parent polynucleotides and (2) cover unique molecules in the set of tagged parent polynucleotides at a target coverage fold (e.g., 5- to 10-fold coverage of parent polynucleotides.
[00262] In step 810, the set of sequence reads is collapsed to produce a set of consensus sequences corresponding to unique tagged parent polynucleotides. Sequence reads can be qualified for inclusion in the analysis. For example, sequence reads that fail to meet a quality control scores can be removed from the pool. Sequence reads can be sorted into families representing reads of progeny molecules derived from a particular unique parent molecule. For example, a family of amplified progeny polynucleotides can constitute those amplified molecules derived from a single parent polynucleotide. By comparing sequences of progeny in a family, a consensus sequence of the original parent polynucleotide can be deduced. This produces a set of consensus sequences representing unique parent polynucleotides in the tagged pool.
[00263] In step 812, the set of consensus sequences is analyzed using any of the analytical methods described herein. For example, consensus sequences mapping to a particular reference sequence location can be analyzed to detect instances of genetic variation. Consensus sequences mapping to particular reference sequences can be measured and normalized against control samples. Measures of molecules mapping to reference sequences can be compared across a genome to identify areas in the genome in which copy number varies, or heterozygosity is lost.
[00264] Fig. 9 is a diagram presenting a more generic method of extracting information from a signal represented by a collection of sequence reads. In this method, after sequencing amplified progeny polynucleotides, the sequence reads are grouped into families of molecules amplified from a molecule of unique identity (910). This grouping can be a jumping off point for methods of interpreting the information in the sequence to determine the contents of the tagged parent polynucleotides with higher fidelity, e.g., less noise and/or distortion.
[00265] Analysis of the collection of sequence reads allows one to make inferences about the parent polynucleotide population from which the sequence reads were generated. Such inferences may be useful because sequencing typically involves reading only a partial subset of the global total amplified polynucleotides. Therefore, one cannot be certain that every parent polynucleotide will be represented by at least one sequence read in the collection of sequence reads.
[00266] One such inference is the number of unique parent polynucleotides in the original pool. Such an inference can be made based on the number of unique families into which the sequence reads can be grouped and the number of sequence reads in each family. In this case, a family refers to a collection of sequence reads traceable back to an original parent polynucleotide. The inference can be made using well-known statistical methods. For example, if grouping produces many families, each represented by one or a few progeny, then one can infer that the original population included more unique parent polynucleotides that were not sequenced. On the other hand, if grouping produces only a few families, each family represented by many progeny, then one can infer that most of the unique polynucleotides in the parent population are represented by at least one sequence read group into that family.
[00267] Another such inference is the frequency of a base or sequence of bases at a particular locus in an original pool of polynucleotides. Such an inference can be made based on the number of unique families into which the sequence reads can be grouped and the number of sequence reads in each family. Analyzing the base calls at a locus in a family of sequence reads, a confidence score is assigned to each particular base call or sequence. Then, taking into consideration the confidence score for each base call in a plurality of the families, the frequency of each base or sequence at the locus is determined.
V. Copy Number Variation Detection
A. Copy Number Variation Detection Using Single Sample
[00268] Fig 1. is a diagram, 100, showing a strategy for detection of copy number variation in a single subject. As shown herein, copy number variation detection methods can be
implemented as follows. After extraction and isolation of cell free polynucleotides in step 102, a single unique sample can be sequenced by a nucleic acid sequencing platform known in the art in step 104. This step generates a plurality of genomic fragment sequence reads. In some cases, these sequences reads may contain barcode information. In other examples, barcodes are not utilized. After sequencing, reads are assigned a quality score. A quality score may be a representation of reads that indicates whether those reads may be useful in subsequent analysis based on a threshold. In some cases, some reads are not of sufficient quality or length to perform the subsequent mapping step. Sequencing reads with a quality score at least 90%, 95%, 99%, 99.9%), 99.99%) or 99.999%) may be filtered out of the data. In other cases, sequencing reads assigned a quality scored less than 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set. In step 106, the genomic fragment reads that meet a specified quality score threshold are mapped to a reference genome, or a template sequence that is known not to contain copy number variations. After mapping alignment, sequence reads are assigned a mapping score. A mapping score may be a representation or reads mapped back to the reference sequence indicating whether each position is or is not uniquely mappable. In instances, reads may be sequences unrelated to copy number variation analysis. For example, some sequence reads may originate from contaminant polynucleotides. Sequencing reads with a mapping score at least 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set. In other cases, sequencing reads assigned a mapping scored less than 90%>, 95%, 99%, 99.9%, 99.99%) or 99.999% may be filtered out of the data set.
[00269] After data filtering and mapping, the plurality of sequence reads generates a chromosomal region of coverage. In step 108 these chromosomal regions may be divided into variable length windows or bins. A window or bin may be at least 5 kb, 10, kb, 25 kb, 30 kb, 35, kb, 40 kb, 50 kb, 60 kb, 75 kb, 100 kb, 150 kb, 200 kb, 500 kb, or 1000 kb. A window or bin may also have bases up to 5 kb, 10, kb, 25 kb, 30 kb, 35, kb, 40 kb, 50 kb, 60 kb, 75 kb, 100 kb, 150 kb, 200 kb, 500 kb, or 1000 kb. A window or bin may also be about 5 kb, 10, kb, 25 kb, 30 kb, 35, kb, 40 kb, 50 kb, 60 kb, 75 kb, 100 kb, 150 kb, 200 kb, 500 kb, or 1000 kb.
[00270] For coverage normalization in step 110, each window or bin is selected to contain about the same number of mappable bases. In some cases, each window or bin in a chromosomal region may contain the exact number of mappable bases. In other cases, each window or bin may contain a different number of mappable bases. Additionally, each window or bin may be non- overlapping with an adjacent window or bin. In other cases, a window or bin may overlap with another adjacent window or bin. In some cases a window or bin may overlap by at least 1 bp, 2, bp, 3 bp, 4 bp, 5, bp, 10 bp, 20 bp, 25 bp, 50 bp, 100 bp, 200 bp, 250 bp, 500 bp, or 1000 bp. In other cases, a window or bin may overlap by up to 1 bp, 2, bp, 3 bp, 4 bp, 5, bp, 10 bp, 20 bp, 25 bp, 50 bp, 100 bp, 200 bp, 250 bp, 500 bp, or 1000 bp. In some cases a window or bin may overlap by about 1 bp, 2, bp, 3 bp, 4 bp, 5, bp, 10 bp, 20 bp, 25 bp, 50 bp, 100 bp, 200 bp, 250 bp, 500 bp, or 1000 bp.
[00271] In some cases, each of the window regions may be sized so they contain about the same number of uniquely mappable bases. The mappability of each base that comprise a window region is determined and used to generate a mappability file which contains a representation of reads from the references that are mapped back to the reference for each file. The mappability file contains one row per every position, indicating whether each position is or is not uniquely mappable.
[00272] Additionally, predefined windows, known throughout the genome to be hard to sequence, or contain a substantially high GC bias, may be filtered from the data set. For example, regions known to fall near the centromere of chromosomes (i.e., centromeric DNA) are known to contain highly repetitive sequences that may produce false positive results. These regions may be filtered out. Other regions of the genome, such as regions that contain an unusually high concentration of other highly repetitive sequences such as microsatellite DNA, may be filtered from the data set.
[00273] The number of windows analyzed may also vary. In some cases, at least 10, 20,
30, 40, 50, 100, 200, 500, 1000, 2000, 5,000, 10,000, 20,000, 50,000 or 100,000 windows are analyzed. In other cases, the number of widows analyzed is up to 10, 20, 30, 40, 50, 100, 200, 500, 1000, 2000, 5,000, 10,000, 20,000, 50,000 or 100,000 windows are analyzed.
[00274] For an exemplary genome derived from cell free polynucleotide sequences, the next step comprises determining read coverage for each window region. This may be performed using either reads with barcodes, or without barcodes. In cases without barcodes, the previous mapping steps will provide coverage of different base positions. Sequence reads that have sufficient mapping and quality scores and fall within chromosome windows that are not filtered, may be counted. The number of coverage reads may be assigned a score per each mappable position. In cases involving barcodes, all sequences with the same barcode, physical properties or combination of the two may be collapsed into one read, as they are all derived from the sample parent molecule. This step reduces biases which may have been introduced during any of the preceding steps, such as steps involving amplification. For example, if one molecule is amplified 10 times but another is amplified 1000 times, each molecule is only represented once after collapse thereby negating the effect of uneven amplification. Only reads with unique barcodes may be counted for each mappable position and influence the assigned score.
[00275] Consensus sequences can be generated from families of sequence reads by any method known in the art. Such methods include, for example, linear or non-linear methods of building consensus sequences (such as voting, averaging, statistical, maximum a posteriori or maximum likelihood detection, dynamic programming, Bayesian, hidden Markov or support vector machine methods, etc.) derived from digital communication theory, information theory, or bioinformatics.
[00276] After the sequence read coverage has been determined, a stochastic modeling algorithm is applied to convert the normalized nucleic acid sequence read coverage for each window region to the discrete copy number states. In some cases, this algorithm may comprise one or more of the following: Hidden Markov Model, dynamic programming, support vector machine, Bayesian network, trellis decoding, Viterbi decoding, expectation maximization, Kalman filtering methodologies and neural networks.
[00277] In step 112, the discrete copy number states of each window region can be utilized to identify copy number variation in the chromosomal regions. In some cases, all adjacent window regions with the same copy number can be merged into a segment to report the presence or absence of copy number variation state. In some cases, various windows can be filtered before they are merged with other segments.
[00278] In step 114, the copy number variation may be reported as graph, indicating various positions in the genome and a corresponding increase or decrease or maintenance of copy number variation at each respective position. Additionally, copy number variation may be used to report a percentage score indicating how much disease material (or nucleic acids having a copy number variation) exists in the cell free polynucleotide sample.
[00279] One method of determining copy number variation is shown in Fig. 10. In that method, after grouping sequence reads into families generated from a single parent polynucleotide (1010), the families are quantified, for example, by determining the number of families mapping to each of a plurality of different reference sequence locations. CNVs can be determined directly by comparing a quantitative measure of families at each of a plurality of different loci (1016b). Alternatively, one can infer a quantitative measure of families in the population of tagged parent polynucleotides using both a quantitative measure of families and a quantitative measure of family members in each family, e.g., as discussed above. Then, CNV can be determined by comparing the inferred measure of quantity at the plurality of loci. In other embodiments, a hybrid approach can be taken whereby a similar inference of original quantity can be made following normalization for representational bias during the sequencing process, such as GC bias, etc
B. Copy Number Variation Detection Using Paired Sample
[00280] Paired sample copy number variation detection shares many of the steps and parameters as the single sample approach described herein. However, as depicted in 200 of Fig. 2 of copy number variation detection using paired samples requires comparison of sequence coverage to a control sample rather than comparing it the predicted mappability of the genome. This approach may aid in normalization across windows.
[00281] Fig 2. is a diagram, 200 showing a strategy for detection of copy number variation in paired subject. As shown herein, copy number variation detection methods can be
implemented as follows. In step 204, a single unique sample can be sequenced by a nucleic acid sequencing platform known in the art after extraction and isolation of the sample in step 202. This step generates a plurality of genomic fragment sequence reads. Additionally, a sample or control sample is taken from another subject. In some cases, the control subject may be a subject not known to have disease, whereas the other subject may have or be at risk for a particular disease. In some cases, these sequences reads may contain barcode information. In other examples, barcodes are not utilized. After sequencing, reads are assigned a quality score. In some cases, some reads are not of sufficient quality or length to perform the subsequent mapping step. Sequencing reads with a quality score at least 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set. In other cases, sequencing reads assigned a quality scored less than 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set. In step 206, the genomic fragment reads that meet a specified quality score threshold are mapped to a reference genome, or a template sequence that is known not to contain copy number variations. After mapping alignment, sequence reads are assigned a mapping score. In instances, reads may be sequences unrelated to copy number variation analysis. For example, some sequence reads may originate from contaminant polynucleotides. Sequencing reads with a mapping score at least 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set. In other cases, sequencing reads assigned a mapping scored less than 90%>, 95%, 99%, 99.9%, 99.99%) or 99.999% may be filtered out of the data set. [00282] After data filtering and mapping, the plurality of sequence reads generates a chromosomal region of coverage for each of the test and control subjects. In step 208 these chromosomal regions may be divided into variable length windows or bins. A window or bin may be at least 5 kb, 10, kb, 25 kb, 30 kb, 35, kb, 40 kb, 50 kb, 60 kb, 75 kb, 100 kb, 150 kb, 200 kb, 500 kb, or 1000 kb. A window or bin may also be less than 5 kb, 10, kb, 25 kb, 30 kb, 35, kb, 40 kb, 50 kb, 60 kb, 75 kb, 100 kb, 150 kb, 200 kb, 500 kb, or 1000 kb.
[00283] For coverage normalization in step 210, each window or bin is selected to contain about the same number of mappable bases for each of the test and control subjects. In some cases, each window or bin in a chromosomal region may contain the exact number of mappable bases. In other cases, each window or bin may contain a different number of mappable bases. Additionally, each window or bin may be non-overlapping with an adjacent window or bin. In other cases, a window or bin may overlap with another adjacent window or bin. In some cases a window or bin may overlap by at least 1 bp, 2, bp, 3 bp, 4 bp, 5, bp, 10 bp, 20 bp, 25 bp, 50 bp, 100 bp, 200 bp, 250 bp, 500 bp, or 1000 bp. In other cases, a window or bin may overlap by less than 1 bp, 2, bp, 3 bp, 4 bp, 5, bp, 10 bp, 20 bp, 25 bp, 50 bp, 100 bp, 200 bp, 250 bp, 500 bp, or 1000 bp.
[00284] In some cases, each of the window regions is sized so they contain about the same number of uniquely mappable bases for each of the test and control subjects. The mappability of each base that comprise a window region is determined and used to generate a mappability file which contains a representation of reads from the references that are mapped back to the reference for each file. The mappability file contains one row per every position, indicating whether each position is or is not uniquely mappable.
[00285] Additionally, predefined windows, known throughout the genome to be hard to sequence, or contain a substantially high GC bias, are filtered from the data set. For example, regions known to fall near the centromere of chromosomes (i.e., centromeric DNA) are known to contain highly repetitive sequences that may produce false positive results. These regions may be filtered. Other regions of the genome, such as regions that contain an unusually high
concentration of other highly repetitive sequences such as microsatellite DNA, may be filtered from the data set.
[00286] The number of windows analyzed may also vary. In some cases, at least 10, 20,
30, 40, 50, 100, 200, 500, 1000, 2000, 5,000, 10,000, 20,000, 50,000 or 100,000 windows are analyzed. In other cases, less than 10, 20, 30, 40, 50, 100, 200, 500, 1000, 2000, 5,000, 10,000, 20,000, 50,000 or 100,000 windows are analyzed.
[00287] For an exemplary genome derived from cell free polynucleotide sequences, the next step comprises determining read coverage for each window region for each of the test and control subjects. This may be performed using either reads with barcodes, or without barcodes. In cases without barcodes, the pervious mapping steps will provide coverage of different base positions. Sequence reads that have sufficient mapping and quality scores and fall within chromosome windows that are not filtered, may be counted. The number of coverage reads may be assigned a score per each mappable position. In cases involving barcodes, all sequences with the same barcode may be collapsed into one read, as they are all derived from the sample parent molecule. This step reduces biases which may have been introduced during any of the preceding steps, such as steps involving amplification. Only reads with unique barcodes may be counted for each mappable position and influence the assigned score. For this reason, it is important that the barcode ligation step be performed in a manner optimized for producing the lowest amount of bias.
[00288] In determining the nucleic acid read coverage for each window, the coverage of each window can be normalized by the mean coverage of that sample. Using such an approach, it may be desirable to sequence both the test subject and the control under similar conditions. The read coverage for each window may be then expressed as a ratio across similar windows
[00289] Nucleic acid read coverage ratios for each window of the test subject can be determined by dividing the read coverage of each window region of the test sample with read coverage of a corresponding window region of the control ample.
[00290] After the sequence read coverage ratios have been determined, a stochastic modeling algorithm is applied to convert the normalized ratios for each window region into discrete copy number states. In some cases, this algorithm may comprise a Hidden Markov Model. In other cases, the stochastic model may comprise dynamic programming, support vector machine, Bayesian modeling, probabilistic modeling, trellis decoding, Viterbi decoding, expectation maximization, Kalman filtering methodologies, or neural networks.
[00291] In step 212, the discrete copy number states of each window region can be utilized to identify copy number variation in the chromosomal regions. In some cases, all adjacent window regions with the same copy number can be merged into a segment to report the presence or absence of copy number variation state. In some cases, various windows can be filtered before they are merged with other segments.
[00292] In step 214, the copy number variation may be reported as graph, indicating various positions in the genome and a corresponding increase or decrease or maintenance of copy number variation at each respective position. Additionally, copy number variation may be used to report a percentage score indicating how much disease material exists in the cell free poly nucleotide sample.
VI. Rare mutation Detection
[00293] Rare mutation detection shares similar features as both copy number variation approaches. However, as depicted in Fig. 3, 300, rare mutation detection uses comparison of sequence coverage to a control sample or reference sequence rather than comparing it the relative mappability of the genome. This approach may aid in normalization across windows.
[00294] Generally, rare mutation detection may be performed on selectively enriched regions of the genome or transcriptome purified and isolated in step 302. As described herein, specific regions, which may include but are not limited to genes, oncogenes, tumor suppressor genes, promoters, regulatory sequence elements, non-coding regions, miRNAs, snRNAs and the like may be selectively amplified from a total population of cell free polynucleotides. This may be performed as herein described. In one example, multiplex sequencing may be used, with or without barcode labels for individual polynucleotide sequences. In other examples, sequencing may be performed using any nucleic acid sequencing platforms known in the art. This step generates a plurality of genomic fragment sequence reads as in step 304. Additionally, a reference sequence is obtained from a control sample, taken from another subject. In some cases, the control subject may be a subject known to not have known genetic aberrations or disease. In some cases, these sequence reads may contain barcode information. In other examples, barcodes are not utilized. After sequencing, reads are assigned a quality score. A quality score may be a representation of reads that indicates whether those reads may be useful in subsequent analysis based on a threshold. In some cases, some reads are not of sufficient quality or length to perform the subsequent mapping step. Sequencing reads with a quality score at least 90%, 95%, 99%, 99.9%), 99.99%) or 99.999%) may be filtered out of the data set. In other cases, sequencing reads assigned a quality scored at least 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set. In step 306, the genomic fragment reads that meet a specified quality score threshold are mapped to a reference genome, or a reference sequence that is known not to contain rare mutations. After mapping alignment, sequence reads are assigned a mapping score. A mapping score may be a representation or reads mapped back to the reference sequence indicating whether each position is or is not uniquely mappable. In instances, reads may be sequences unrelated to rare mutation analysis. For example, some sequence reads may originate from contaminant polynucleotides. Sequencing reads with a mapping score at least 90%, 95%, 99%, 99.9%), 99.99%) or 99.999%) may be filtered out of the data set. In other cases, sequencing reads assigned a mapping scored less than 90%, 95%, 99%, 99.9%, 99.99% or 99.999% may be filtered out of the data set.
[00295] For each mappable base, bases that do not meet the minimum threshold for mappability, or low quality bases, may be replaced by the corresponding bases as found in the reference sequence.
[00296] After data filtering and mapping, variant bases found between the sequence reads obtained from the subject and the reference sequence are analyzed.
[00297] For an exemplary genome derived from cell free polynucleotide sequences, the next step comprises determining read coverage for each mappable base position. This may be performed using either reads with barcodes, or without barcodes. In cases without barcodes, the previous mapping steps will provide coverage of different base positions. Sequence reads that have sufficient mapping and quality scores may be counted. The number of coverage reads may be assigned a score per each mappable position. In cases involving barcodes, all sequences with the same barcode may be collapsed into one consensus read, as they are all derived from the sample parent molecule. The sequence for each base is aligned as the most dominant nucleotide read for that specific location. Further, the number of unique molecules can be counted at each position to derive simultaneous quantification at each position. This step reduces biases which may have been introduced during any of the preceding steps, such as steps involving
amplification. Only reads with unique barcodes may be counted for each mappable position and influence the assigned score.
[00298] Once read coverage may be ascertained and variant bases relative to the control sequence in each read are identified, the frequency of variant bases may be calculated as the number of reads containing the variant divided by the total number of reads. This may be expressed as a ratio for each mappable position in the genome. [00299] For each base position, the frequencies of all four nucleotides, cytosine, guanine, thymine, adenine are analyzed in comparison to the reference sequence. A stochastic or statistical modeling algorithm is applied to convert the normalized ratios for each mappable position to reflect frequency states for each base variant. In some cases, this algorithm may comprise one or more of the following: Hidden Markov Model, dynamic programming, support vector machine, Bayesian or probabilistic modeling, trellis decoding, Viterbi decoding, expectation maximization, Kalman filtering methodologies, and neural networks.
[00300] In step 312, the discrete rare mutation states of each base position can be utilized to identify a base variant with high frequency of variance as compared to the baseline of the reference sequence. In some cases, the baseline might represent a frequency of at least 0.0001%,
0.001%, 0.01%, 0.1%, 1.0%, 2.0%, 3.0%, 4.0% 5.0%, 10%, or 25%. In other cases the baseline might represent a frequency of at least 0.0001%, 0.001%, 0.01%, 0.1%, 1.0%, 2.0%, 3.0%, 4.0% 5.0%. 10%, or 25%. In some cases, all adjacent base positions with the base variant or mutation can be merged into a segment to report the presence or absence of a rare mutation. In some cases, various positions can be filtered before they are merged with other segments.
[00301] After calculation of frequencies of variance for each base position, the variant with largest deviation for a specific position in the sequence derived from the subject as compared to the reference sequence is identified as a rare mutation. In some cases, a rare mutation may be a cancer mutation. In other cases, a rare mutation might be correlated with a disease state.
[00302] A rare mutation or variant may comprise a genetic aberration that includes, but is not limited to a single base substitution, or small indels, transversions, translocations, inversion, deletions, truncations or gene truncations. In some cases, a rare mutation may be at most 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nucleotides in length. On other cases a rare mutation may be at least
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nucleotides in length.
[00303] In step 314, the presence or absence of a mutation may be reflected in graphical form, indicating various positions in the genome and a corresponding increase or decrease or maintenance of a frequency of mutation at each respective position. Additionally, rare mutations may be used to report a percentage score indicating how much disease material exists in the cell free polynucleotide sample. A confidence score may accompany each detected mutation, given known statistics of typical variances at reported positions in non-disease reference sequences. Mutations may also be ranked in order of abundance in the subject or ranked by clinically actionable importance. [00304] Fig. 11 shows a method of inferring the frequency of a base or sequence of bases at a particular locus in a population polynucleotides. Sequence reads are grouped into families generated from an original tagged polynucleotide (1110). For each family, one or more bases at the locus is each assigned a confidence score. The confidence score can be assigned by any of a number of known statistical methods is assigned and can be based, at least in part, on the frequency at which a base appears among the sequence reads belonging to the family (1112). For example, the confidence score can be the frequency at which the base appears among the sequence reads. As another example, for each family, a hidden Markov model can be built, such that a maximum likelihood or maximum a posteriori decision can be made based on the frequency of occurrence of a particular base in a single family. As part of this model, the probability of error and resultant confidence score for a particular decision can be output as well. A frequency of the base in the original population can then be assigned based on the confidence scores among the families (1114).
VII. Applications
A. Early Detection of Cancer
[00305] Numerous cancers may be detected using the methods and systems described herein. Cancers cells, as most cells, can be characterized by a rate of turnover, in which old cells die and replaced by newer cells. Generally dead cells, in contact with vasculature in a given subject, may release DNA or fragments of DNA into the blood stream. This is also true of cancer cells during various stages of the disease. Cancer cells may also be characterized, dependent on the stage of the disease, by various genetic aberrations such as copy number variation as well as rare mutations. This phenomenon may be used to detect the presence or absence of cancers individuals using the methods and systems described herein.
[00306] For example, blood from subjects at risk for cancer may be drawn and prepared as described herein to generate a population of cell free polynucleotides. In one example, this might be cell free DNA. The systems and methods of the disclosure may be employed to detect rare mutations or copy number variations that may exist in certain cancers present. The method may help detect the presence of cancerous cells in the body, despite the absence of symptoms or other hallmarks of disease.
[00307] The types and number of cancers that may be detected may include but are not limited to blood cancers, brain cancers, lung cancers, skin cancers, nose cancers, throat cancers, liver cancers, bone cancers, lymphomas, pancreatic cancers, skin cancers, bowel cancers, rectal cancers, thyroid cancers, bladder cancers, kidney cancers, mouth cancers, stomach cancers, solid state tumors, heterogeneous tumors, homogenous tumors and the like.
[00308] In the early detection of cancers, any of the systems or methods herein described, including rare mutation detection or copy number variation detection may be utilized to detect cancers. These system and methods may be used to detect any number of genetic aberrations that may cause or result from cancers. These may include but are not limited to mutations, rare mutations, indels, copy number variations, transversions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection and cancer..
[00309] Additionally, the systems and methods described herein may also be used to help characterize certain cancers. Genetic data produced from the system and methods of this disclosure may allow practitioners to help better characterize a specific form of cancer. Often times, cancers are heterogeneous in both composition and staging. Genetic profile data may allow characterization of specific sub-types of cancer that may be important in the diagnosis or treatment of that specific sub-type. This information may also provide a subject or practitioner clues regarding the prognosis of a specific type of cancer.
B. Cancer Monitoring and Prognosis
[00310] The systems and methods provided herein may be used to monitor already known cancers, or other diseases in a particular subject. This may allow either a subject or practitioner to adapt treatment options in accord with the progress of the disease. In this example, the systems and methods described herein may be used to construct genetic profiles of a particular subject of the course of the disease. In some instances, cancers can progress, becoming more aggressive and genetically unstable. In other examples, cancers may remain benign, inactive, dormant or in remission. The system and methods of this disclosure may be useful in determining disease progression, remission or recurrence.
[00311] Further, the systems and methods described herein may be useful in determining the efficacy of a particular treatment option. In one example, successful treatment options may actually increase the amount of copy number variation or rare mutations detected in subject's blood if the treatment is successful as more cancers may die and shed DNA. In other examples, this may not occur. In another example, perhaps certain treatment options may be correlated with genetic profiles of cancers over time. This correlation may be useful in selecting a therapy.
Additionally, if a cancer is observed to be in remission after treatment, the systems and methods described herein may be useful in monitoring residual disease or recurrence of disease.
[00312] For example, mutations occurring within a range of frequency beginning at threshold level can be determined from DNA in a sample from a subject, e.g., a patient. The mutations can be, e.g., cancer related mutations. The frequency can range from, for example, at least 0.1%, at least 1%, or at least 5% to 100%. The sample can be, e.g., cell free DNA or a tumor sample. A course of treatment can be prescribed based on any or all of mutations occurring within the frequency range including, e.g., their frequencies. A sample can be taken from the subject at any subsequent time. Mutations occurring within the original range of frequency or a different range of frequency can be determined. The course of treatment can be adjusted based on the subsequent measurements.
C. Early Detection and Monitoring of Other Diseases or Disease States
[00313] The methods and systems described herein may not be limited to detection of rare mutations and copy number variations associated with only cancers. Various other diseases and infections may result in other types of conditions that may be suitable for early detection and monitoring. For example, in certain cases, genetic disorders or infectious diseases may cause a certain genetic mosaicism within a subject. This genetic mosaicism may cause copy number variation and rare mutations that could be observed. In another example, the system and methods of the disclosure may also be used to monitor the genomes of immune cells within the body. Immune cells, such as B cells, may undergo rapid clonal expansion upon the presence certain diseases. Clonal expansions may be monitored using copy number variation detection and certain immune states may be monitored. In this example, copy number variation analysis may be performed over time to produce a profile of how a particular disease may be progressing.
[00314] Further, the systems and methods of this disclosure may also be used to monitor systemic infections themselves, as may be caused by a pathogen such as a bacteria or virus. Copy number variation or even rare mutation detection may be used to determine how a population of pathogens are changing during the course of infection. This may be particularly important during chronic infections, such as HIV/AIDs or Hepatitis infections, whereby viruses may change life cycle state and/or mutate into more virulent forms during the course of infection. [00315] Yet another example that the system and methods of this disclosure may be used for is the monitoring of transplant subjects. Generally, transplanted tissue undergoes a certain degree of rejection by the body upon transplantation. The methods of this disclosure may be used to determine or profile rejection activities of the host body, as immune cells attempt to destroy transplanted tissue. This may be useful in monitoring the status of transplanted tissue as well as altering the course of treatment or prevention of rejection.
[00316] Further, the methods of the disclosure may be used to characterize the
heterogeneity of an abnormal condition in a subject, the method comprising generating a genetic profile of extracellular polynucleotides in the subject, wherein the genetic profile comprises a plurality of data resulting from copy number variation and rare mutation analyses. In some cases, including but not limited to cancer, a disease may be heterogeneous. Disease cells may not be identical. In the example of cancer, some tumors are known to comprise different types of tumor cells, some cells in different stages of the cancer. In other examples, heterogeneity may comprise multiple foci of disease. Again, in the example of cancer, there may be multiple tumor foci, perhaps where one or more foci are the result of metastases that have spread from a primary site.
[00317] The methods of this disclosure may be used to generate or profile, fingerprint or set of data that is a summation of genetic information derived from different cells in a heterogeneous disease. This set of data may comprise copy number variation and rare mutation analyses alone or in combination.
D. Early Detection and Monitoring of Other Diseases or Disease States of Fetal Origin
[00318] Additionally, the systems and methods of the disclosure may be used to diagnose, prognose, monitor or observe cancers or other diseases of fetal origin. That is, these
methodologies may be employed in a pregnant subject to diagnose, prognose, monitor or observe cancers or other diseases in a unborn subject whose DNA and other polynucleotides may co- circulate with maternal molecules.
VIII. Terminology
[00319] The terminology used therein is for the purpose of describing particular
embodiments only and is not intended to be limiting of a systems and methods of this disclosure. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms "including", "includes", "having", "has", "with", or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term "comprising".
[00320] Several aspects of a systems and methods of this disclosure are described above with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of a systems and methods. One having ordinary skill in the relevant art, however, will readily recognize that a systems and methods can be practiced without one or more of the specific details or with other methods. This disclosure is not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events.
Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with this disclosure.
[00321] Ranges can be expressed herein as from "about" one particular value, and/or to
"about" another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. The term "about" as used herein refers to a range that is 15% plus or minus from a stated numerical value within the context of the particular usage. For example, about 10 would include a range from 8.5 to 11.5.
Computer systems
[00322] Methods of the present disclosure can be implemented using, or with the aid of, computer systems. FIG. 15 shows a computer system 1501 that is programmed or otherwise configured to implement the methods of the present disclosure. The computer system 1501 can regulate various aspects sample preparation, sequencing and/or analysis. In some examples, the computer system 1501 is configured to perform sample preparation and sample analysis, including nucleic acid sequencing.
[00323] The computer system 1501 includes a central processing unit (CPU, also
"processor" and "computer processor" herein) 1505, which can be a single core or multi core processor, or a plurality of processors for parallel processing. The computer system 1501 also includes memory or memory location 1510 (e.g., random-access memory, read-only memory, flash memory), electronic storage unit 1515 (e.g., hard disk), communication interface 1520 (e.g., network adapter) for communicating with one or more other systems, and peripheral devices 1525, such as cache, other memory, data storage and/or electronic display adapters. The memory 1510, storage unit 1515, interface 1520 and peripheral devices 1525 are in communication with the CPU 1505 through a communication bus (solid lines), such as a motherboard. The storage unit 1515 can be a data storage unit (or data repository) for storing data. The computer system 1501 can be operatively coupled to a computer network ("network") 1530 with the aid of the communication interface 1520. The network 1530 can be the Internet, an internet and/or extranet, or an intranet and/or extranet that is in communication with the Internet. The network 1530 in some cases is a telecommunication and/or data network. The network 1530 can include one or more computer servers, which can enable distributed computing, such as cloud computing. The network 1530, in some cases with the aid of the computer system 1501, can implement a peer-to- peer network, which may enable devices coupled to the computer system 1501 to behave as a client or a server.
[00324] The CPU 1505 can execute a sequence of machine -readable instructions, which can be embodied in a program or software. The instructions may be stored in a memory location, such as the memory 1510. Examples of operations performed by the CPU 1505 can include fetch, decode, execute, and writeback.
[00325] The storage unit 1515 can store files, such as drivers, libraries and saved programs.
The storage unit 1515 can store programs generated by users and recorded sessions, as well as output(s) associated with the programs. The storage unit 1515 can store user data, e.g., user preferences and user programs. The computer system 1501 in some cases can include one or more additional data storage units that are external to the computer system 1501, such as located on a remote server that is in communication with the computer system 1501 through an intranet or the Internet.
[00326] The computer system 1501 can communicate with one or more remote computer systems through the network 1530. For instance, the computer system 1501 can communicate with a remote computer system of a user (e.g., operator). Examples of remote computer systems include personal computers (e.g., portable PC), slate or tablet PC's (e.g., Apple® iPad, Samsung® Galaxy Tab), telephones, Smart phones (e.g., Apple® iPhone, Android-enabled device,
Blackberry®), or personal digital assistants. The user can access the computer system 1501 via the network 1530. [00327] Methods as described herein can be implemented by way of machine (e.g., computer processor) executable code stored on an electronic storage location of the computer system 1501, such as, for example, on the memory 1510 or electronic storage unit 1515. The machine executable or machine readable code can be provided in the form of software. During use, the code can be executed by the processor 1505. In some cases, the code can be retrieved from the storage unit 1515 and stored on the memory 1510 for ready access by the processor 1505. In some situations, the electronic storage unit 1515 can be precluded, and machine- executable instructions are stored on memory 1510.
[00328] The code can be pre-compiled and configured for use with a machine have a processer adapted to execute the code, or can be compiled during runtime. The code can be supplied in a programming language that can be selected to enable the code to execute in a precompiled or as-compiled fashion.
[00329] Aspects of the systems and methods provided herein, such as the computer system
1501, can be embodied in programming. Various aspects of the technology may be thought of as "products" or "articles of manufacture" typically in the form of machine (or processor) executable code and/or associated data that is carried on or embodied in a type of machine readable medium. Machine-executable code can be stored on an electronic storage unit, such memory (e.g., readonly memory, random-access memory, flash memory) or a hard disk. "Storage" type media can include any or all of the tangible memory of the computers, processors or the like, or associated modules thereof, such as various semiconductor memories, tape drives, disk drives and the like, which may provide non-transitory storage at any time for the software programming. All or portions of the software may at times be communicated through the Internet or various other telecommunication networks. Such communications, for example, may enable loading of the software from one computer or processor into another, for example, from a management server or host computer into the computer platform of an application server. Thus, another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-links. The physical elements that carry such waves, such as wired or wireless links, optical links or the like, also may be considered as media bearing the software. As used herein, unless restricted to non-transitory, tangible "storage" media, terms such as computer or machine "readable medium" refer to any medium that participates in providing instructions to a processor for execution. [00330] Hence, a machine readable medium, such as computer-executable code, may take many forms, including but not limited to, a tangible storage medium, a carrier wave medium or physical transmission medium. Non-volatile storage media include, for example, optical or magnetic disks, such as any of the storage devices in any computer(s) or the like, such as may be used to implement the databases, etc. shown in the drawings. Volatile storage media include dynamic memory, such as main memory of such a computer platform. Tangible transmission media include coaxial cables; copper wire and fiber optics, including the wires that comprise a bus within a computer system. Carrier- wave transmission media may take the form of electric or electromagnetic signals, or acoustic or light waves such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media therefore include for example: a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD or DVD-ROM, any other optical medium, punch cards paper tape, any other physical storage medium with patterns of holes, a RAM, a ROM, a PROM and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave transporting data or instructions, cables or links transporting such a carrier wave, or any other medium from which a computer may read programming code and/or data. Many of these forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to a processor for execution.
[00331] The computer system 1501 can include or be in communication with an electronic display that comprises a user interface (UI) for providing, for example, one or more results of sample analysis. Examples of UFs include, without limitation, a graphical user interface (GUI) and web-based user interface.
EXAMPLES
Example 1 - Prostate Cancer Prognosis and Treatment
[00332] A blood sample is taken from a prostate cancer subject. Previously, an oncologist determines that the subject has stage II prostate cancer and recommends a treatment. Cell free DNA is extracted, isolated, sequenced and analyzed every 6 months after the initial diagnosis.
[00333] Cell free DNA is extracted and isolated from blood using the Qiagen Qubit kit protocol. A carrier DNA is added to increase yields. DNA is amplified using PCR and universal primers. 10 ng of DNA is sequenced using a massively parallel sequencing approach with an Illumina MiSeq personal sequencer. 90% of the subject's genome is covered through sequencing of cell free DNA.
[00334] Sequence data is assembled and analyzed for copy number variation. Sequence reads are mapped and compared to a healthy individual (control). Based on the number of sequence reads, chromosomal regions are divided into 50 kb non overlapping regions. Sequence reads are compared to one another and a ratio is determined for each mappable position.
[00335] A Hidden Markov Model is applied to convert copy numbers into discrete states for each window.
[00336] Reports are generated, mapping genome positions and copy number variation show in Fig. 4A (for a healthy individual) and Fig. 4B for the subject with cancer.
[00337] These reports, in comparison to other profiles of subjects with known outcomes, indicate that this particular cancer is aggressive and resistant to treatment. The cell free tumor burden is 21%. The subject is monitored for 18 months. At month 18, the copy number variation profile begins to increase dramatically, from cell free tumor burden of 21% to 30%. A
comparison is done with genetic profiles of other prostate subjects. It is determined that this increase in copy number variation indicates that the prostate cancer is advancing from stage II to stage III. The original treatment regiment as prescribed is no longer treating the cancer. A new treatment is prescribed.
[00338] Further, these reports are submitted and accessed electronically via the internet.
Analysis of sequence data occurs at a site other than the location of the subject. The report is generated and transmitted to the subject's location. Via an internet enabled computer, the subject accesses the reports reflecting his tumor burden (Fig. 4C).
Example 2 - Prostate Cancer Remission and Recurrence.
[00339] A blood sample is taken from a prostate cancer survivor. The subject had previously undergone numerous rounds of chemotherapy and radiation. The subject at the time of testing did not present symptoms or health issues related to the cancer. Standard scans and assays reveal the subject to be cancer free.
[00340] Cell free DNA is extracted and isolated from blood using the Qiagen TruSeq kit protocol. A carrier DNA is added to increase yields. DNA is amplified using PCR and universal primers. 10 ng of DNA is sequenced using a massively parallel sequencing approach with an Illumina MiSeq personal sequencer. 12mer barcodes are added to individual molecules using a ligation method.
[00341] Sequence data is assembled and analyzed for copy number variation. Sequence reads are mapped and compared to a healthy individual (control). Based on the number of sequence reads, chromosomal regions are divided into 40 kb non overlapping regions. Sequence reads are compared to one another and a ratio is determined for each mappable position.
[00342] Non unique barcoded sequences are collapsed into a single read to help normalize bias from amplification.
[00343] A Hidden Markov Model is applied to convert copy numbers into discrete states for each window.
[00344] Reports are generated, mapping genome positions and copy number variation shown in Fig. 5A, for a subject with cancer in remission and Fig. 5B for a subject with cancer in recurrence.
[00345] This report in comparison to other profiles of subjects with known outcomes indicates that at month 18, rare mutation analysis for copy number variation is detected at cell free tumor burden of 5%. An oncologist prescribes treatment again.
Example 3 - Thyroid Cancer and Treatment
[00346] A subject is known to have Stage IV thyroid cancer and undergoes standard treatment, including radiation therapy with 1-131. CT scans are inconclusive as to whether the radiation therapy is destroying cancerous masses. Blood is drawn before and after the latest radiation session.
[00347] Cell free DNA is extracted and isolated from blood using the Qiagen Qubit kit protocol. A sample of non specific bulk DNA is added to the sample preparation reactions increase yields.
[00348] It is known that the BRAF gene may be mutated at amino acid position 600 in this thyroid cancer. From population of cell free DNA, BRAF DNA is selectively amplified using primers specific to the gene. 20mer barcodes are added to the parent molecule as a control for counting reads.
[00349] 10 ng of DNA is sequenced using massively parallel sequencing approach with an
Illumina MiSeq personal sequencer. [00350] Sequence data is assembled and analyzed for copy number variation detection.
Sequence reads are mapped and compared to a healthy individual (control). Based on the number of sequence reads, as determined by counting the barcode sequences, chromosomal regions are divided into 50 kb non overlapping regions. Sequence reads are compared to one another and a ratio is determined for each mappable position.
[00351] A Hidden Markov Model is applied to convert copy numbers into discrete states for each window.
[00352] A report is generated, mapping genome positions and copy number variation.
[00353] The reports generated before and after treatment are compared. The tumor cell burden percentage jumps from 30% to 60% after the radiation session. The jump in tumor burden is determined to be an increase in necrosis of cancer tissue versus normal tissue as a result of treatment. Oncologists recommend the subject continue the prescribed treatment.
Example 4 - Sensitivity of Rare mutation Detection
[00354] In order to determine the detection ranges of rare mutation present in a population of DNA, mixing experiments are performed. Sequences of DNA, some containing wildtype copies of the genes TP53, HRAS and MET and some containing copies with rare mutations in the same genes, are mixed together in distinct ratios. DNA mixtures are prepared such that ratios or percentages of mutant DNA to wildtype DNA range from 100% to 0.01%.
[00355] 10 ng of DNA is sequenced for each mixing experiment using a massively parallel sequencing approach with an Illumina MiSeq personal sequencer.
[00356] Sequence data is assembled and analyzed for rare mutation detection. Sequence reads are mapped and compared to a reference sequence (control). Based on the number of sequence reads, the frequency of variance for each mappable position is determined.
[00357] A Hidden Markov Model is applied to convert frequency of variance for each mappable position into discrete states for base position.
[00358] A report is generated, mapping genome base positions and percentage detection of the rare mutation over baseline as determined by the reference sequence (Fig. 6A).
[00359] The results of various mixing experiments ranging from 0.1% to 100% are represented in a logarithmic scale graph, with measured percentage of DNA with a rare mutation graphed as a function of the actual percentage of DNA with a rare mutation (Fig. 6B). The three genes, TP53, HRAS and MET are represented. A strong linear correlation is found between measured and expected rare mutation populations. Additionally, a lower sensitivity threshold of about 0.1% of DNA with a rare mutation in a population of non mutated DNA is found with these experiments (Fig. 6B).
Example 5 -Rare mutation Detection in Prostate Cancer Subject
[00360] A subject is thought to have early stage prostate cancer. Other clinical tests provide inconclusive results. Blood is drawn from the subject and cell free DNA is extracted, isolated, prepared and sequenced.
[00361] A panel of various oncogenes and tumor suppressor genes are selected for selective amplification using a TaqMan© PCR kit (Invitrogen) using gene specific primers. DNA regions amplified include DNA containing PIK3CA and TP53 genes.
[00362] 10 ng of DNA is sequenced using a massively parallel sequencing approach with an Illumina MiSeq personal sequencer.
[00363] Sequence data is assembled and analyzed for rare mutation detection. Sequence reads are mapped and compared to a reference sequence (control). Based on the number of sequence reads, the frequency of variance for each mappable position was determined.
[00364] A Hidden Markov Model is applied to convert frequency of variance for each mappable position into discrete states for each base position.
[00365] A report is generated, mapping genomic base positions and percentage detection of the rare mutation over baseline as determined by the reference sequence (Fig. 7A). Rare mutations are found at an incidence of 5% in two genes, PIK3CA and TP53, respectively, indicating that the subject has an early stage cancer. Treatment is initiated.
[00366] Further, these reports are submitted and accessed electronically via the internet.
Analysis of sequence data occurs at a site other than the location of the subject. The report is generated and transmitted to the subject's location. Via an internet enabled computer, the subject accesses the reports reflecting his tumor burden (Fig. 7B).
Example 6 -Rare mutation Detection in Colorectal Cancer Subjects
[00367] A subject is thought to have mid-stage colorectal cancer. Other clinical tests provide inconclusive results. Blood is drawn from the subject and cell free DNA is extracted.
[00368] 10 ng of the cell-free genetic material that is extracted from a single tube of plasma is used. The initial genetic material is converted into a set of tagged parent polynucleotides. The tagging included attaching tags required for sequencing as well as non- unique identifiers for tracking progeny molecules to the parent nucleic acids. The conversion is performed through an optimized ligation reaction as described above and conversion yield is confirmed by looking at the size profile of molecules post-ligation. Conversion yield is measured as the percentage of starting initial molecules that have both ends ligated with tags. Conversion using this approach is performed at high efficiency, for example, at least 50%.
[00369] The tagged library is PCR-amplified and enriched for genes most associated with colorectal cancer, (e.g., KRAS, APC, TP53, etc) and the resulting DNA is sequenced using a massively parallel sequencing approach with an Illumina MiSeq personal sequencer.
[00370] Sequence data is assembled and analyzed for rare mutation detection. Sequence reads are collapsed into familial groups belonging to a parent molecule (as well as error-corrected upon collapse) and mapped using a reference sequence (control). Based on the number of sequence reads, the frequency of rare variations (substitutions, insertions, deletions, etc) and variations in copy number and heterozygosity (when appropriate) for each mappable position is determined.
[00371] A report is generated, mapping genomic base positions and percentage detection of the rare mutation over baseline as determined by the reference sequence. Rare mutations are found at an incidence of 0.3-0.4%> in two genes, KRAS and FBXW7, respectively, indicating that the subject has residual cancer. Treatment is initiated.
[00372] Further, these reports are submitted and accessed electronically via the internet.
Analysis of sequence data occurs at a site other than the location of the subject. The report is generated and transmitted to the subject's location. Via an internet enabled computer, the subject accesses the reports reflecting his tumor burden.
[00373] Example 7 - Digital Sequencing Technology
[00374] The concentrations of tumor-shed nucleic acids are typically so low that current next-generation sequencing technologies can only detect such signals sporadically or in patients with terminally high tumor burden. The main reason being that such technologies are plagued by error rates and bias that can be orders of magnitude higher than what is required to reliably detect de novo genetic alterations associated with cancer in circulating DNA. Shown here is a new sequencing methodology, Digital Sequencing Technology (DST), which increases the sensitivity and specificity of detecting and quantifying rare tumor-derived nucleic acids among germline fragments by at least 1-2 orders of magnitude. [00375] DST architecture is inspired by state-of-the-art digital communication systems that combat the high noise and distortion caused by modern communication channels and are able to transmit digital information flawlessly at exceedingly high data rates. Similarly, current next- gen workflows are plagued by extremely high noise and distortion (due to sample-prep, PCR- based amplification and sequencing). Digital sequencing is able to eliminate the error and distortion created by these processes and produce near-perfect representation of all rare variants (including CNVs).
[00376] High-Diversity Library preparation
[00377] Unlike conventional sequencing library preparation protocols, whereby the majority of extracted circulating DNA fragments are lost due to inefficient library conversion, our Digital Sequencing Technology workflow enables the vast majority of starting molecules to be converted and sequenced. This is critically important for detection of rare variants as there may only be a handful of somatically mutated molecules in an entire lOmL tube of blood. The efficient molecular biology conversion process developed enables the highest possible sensitivity for detection of rare variants.
[00378] Comprehensive Actionable Oncogene Panel
[00379] The workflow engineered around the DST platform is flexible and highly tunable as targeted regions can be as small as single exons or as broad as whole exomes (or even whole genomes). A standard panel consists of all exonic bases of 15 actionable cancer-related genes and coverage of the "hot" exons of an additional 36 onco-/tumor-suppressor genes (e.g., exons containing at least one or more reported somatic mutations in COSMIC).
[00380] Example 8: Analytical Studies
[00381] To study the performance of our technology, its sensitivity in analytical samples was evaluated. We spiked varying amounts of LNCaP cancer cell line DNA into a background of normal cfDNA and were able to successfully detect somatic mutations down to 0.1% sensitivity (see Figure 13).
[00382] Preclinical Studies
[00383] The concordance of circulating DNA with tumor gDNA in human xenograft models in mice was investigated. In seven CTC-negative mice, each with one of two different human breast cancer tumors, all somatic mutations detected in tumor gDNA were also detected in mouse blood cfDNA using DST further validating the utility of cfDNA for non-invasive tumor genetic profiling. [00384] Pilot Clinical Studies
[00385] Correlation of tumor biopsy vs. circulating DNA somatic mutations
[00386] A pilot study was initiated on human samples across different cancer types. The concordance of tumor mutation profiles derived from circulating cell-free DNA with those derived from matched tumor biopsy samples was investigated. Higher than 93% concordance between tumor and cfDNA somatic mutation profiles in both colorectal and melanoma cancers across 14 patients was found (Table 1).
Table 1
Figure imgf000084_0001
TP53 0.4%
KRAS 0.0%
CRC #9 IV APC 47.3%
APC 40.2%
KRAS 37.7%
PTEN 0.0%
TP53 12.9%
CRC #10 IV TP53 0.9%
Melanoma #1 IV BRAF 0.2%
Melanoma #2 IV APC 0.3%
EGFR 0.9%
MYC 10.5%
Melanoma #3 IV BRAF 3.3%
Melanoma #4 IV BRAF 0.7%
[00387] It should be understood from the foregoing that, while particular implementations have been illustrated and described, various modifications can be made thereto and are contemplated herein. It is also not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the aforementioned specification, the descriptions and illustrations of the preferable embodiments herein are not meant to be construed in a limiting sense. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. Various modifications in form and detail of the embodiments of the invention will be apparent to a person skilled in the art. It is therefore contemplated that the invention shall also cover any such modifications, variations and equivalents.

Claims

CLAIMS WHAT IS CLAIMED IS:
1. A method for detecting copy number variation comprising:
a. sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular polynucleotide generate a plurality of sequencing reads;
b. filtering out reads that fail to meet a set threshold;
c. mapping the sequence reads obtained from step (a), after reads are filtered out, to a reference sequence;
d. quantifying or enumerating mapped reads in two or more predefined regions of the reference sequence; and
e. determining copy number variation in one or more of the predefined regions by:
i. normalizing number of reads in the predefined regions to each other and/or the number of unique sequence reads in the predefined regions to one another;
ii. comparing the normalized numbers obtained in step (i) to normalized numbers obtained from a control sample.
2. A method for detecting a rare mutation in a cell-free or substantially cell free sample obtained from a subject comprising:
a. sequencing extracellular polynucleotides from a bodily sample from a subject, wherein each of the extracellular polynucleotide generate a plurality of sequencing reads;
b. performing multiplex sequencing on regions or whole-genome sequencing if enrichment is not performed;
c. filtering out reads that fail to meet a set threshold;
d. mapping sequence reads derived from the sequencing onto a reference
sequence;
e. identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position; f. for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position;
g. normalizing the ratios or frequency of variance for each mappable base
position and determining potential rare variant(s) or mutation(s); and h. and comparing the resulting number for each of the regions with potential rare variant(s) or mutation(s) to similarly derived numbers from a reference sample.
3. A method of characterizing the heterogeneity of an abnormal condition in a subject, the method comprising generating a genetic profile of extracellular polynucleotides in the subject, wherein the genetic profile comprises a plurality of data resulting from copy number variation and rare mutation analyses.
4. The method of claim 1, 2, or 3 wherein the prevalence/concentration of each rare variant identified in the subject is reported and quantified simultaneously.
5. The method of claim 1, 2, or 3 wherein a confidence score, regarding the prevalence/concentrations of rare variants in the subject, is reported.
6. The method of claim 1, 2, or 3 wherein the extracellular polynucleotides comprise
DNA.
7. The method of claim 1, 2, or 3 wherein the extracellular polynucleotides comprise
RNA.
8. The method of claim 1, 2, or 3 further comprising isolating extracellular polynucleotides from the bodily sample.
9. The method claim 1, 2, or 3 wherein the isolating comprises a method for circulating nucleic acid isolation and extraction.
10. The method of claim 1, 2, or 3 further comprising fragmenting said isolated extracellular polynucleotides.
11. The method of claim 8 wherein the bodily sample is selected from the group consisting of blood, plasma, serum, urine, saliva, mucosal excretions, sputum, stool and tears.
12. The method of claim 1, 2, or 3, further comprising the step of determining the percent of sequences having copy number variation or rare mutation or variant in said bodily sample.
13. The method of claim 12 wherein the determining comprises calculating the percentage of predefined regions with an amount of polynucleotides above or below a predetermined threshold.
14. The method of claim 1, 2, or 3 wherein the subject is suspected of having an abnormal condition.
15. The method of claim 14 wherein the abnormal condition is selected from the group consisting of, mutations, rare mutations, indels, copy number variations, trans versions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection and cancer.
16. The method of claim 1, 2, or 3 wherein the subject is a pregnant female.
17. The method of claim 1 or 2 wherein the copy number variation or rare mutation or genetic variant is indicative of a fetal abnormality.
18. The method of claim 17 wherein the fetal abnormality is selected from the group consisting of, mutations, rare mutations, indels, copy number variations, transversions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection and cancer.
19. The method of claim 1, 2, or 3 further comprising attaching one or more barcodes to the extracellular polynucleotides or fragments thereof prior to sequencing.
20. The method of claim 19 wherein each barcode attached to extracellular polynucleotides or fragments thereof prior to sequencing is unique.
21. The method of claim 19 wherein each barcode attached to extracellular
polynucleotides or fragments thereof prior to sequencing is not unique.
22. The method of claim 1, 2, or 3 further comprising selectively enriching regions from the subject's genome or transcriptome prior to sequencing.
23. The method of claim 1, 2, or 3 further comprising non-selectively enriching regions from the subject's genome or transcriptome prior to sequencing.
24. The method of claim 1, 2, or 3 further comprising attaching one or more barcodes to the extracellular polynucleotides or fragments thereof prior to any amplification or enrichment step.
25. The method of claim 19 wherein the barcode is a polynucleotide.
26. The method of claim 19 wherein the barcode comprises random sequence.
27. The method of claim 19 wherein the barcode comprises a fixed or semi -random set of oligonucleotides that in combination with the diversity of molecules sequenced from a select region enables identification of unique molecules.
28. The method of claim 19 wherein the barcodes comprise oligonucleotides is at least a 3, 5, 10, 15, 20 25, 30, 35, 40, 45, or 50mer base pairs in length.
29. The method of claim 1, 2, or 3 further comprises amplifying the extracellular polynucleotides or fragments thereof.
30. The method of claim 29 wherein the amplification comprises global amplification or whole genome amplification.
31. The method of claim 1 , 2, or 3, wherein sequence reads of unique identity are detected based on sequence information at the beginning (start) and end (stop) regions of the sequence read and the length of the sequence read.
32. The method of claim 31 , wherein sequence molecules of unique identity are detected based on sequence information at the beginning (start) and end (stop) regions of the sequence read, the length of the sequence read and attachment of a barcode.
33. The method of claim 30 wherein the amplification comprises selective
amplification.
34. The method of claim 33 wherein the amplification comprises non-selective amplification.
35. The method of claims 1, 2, or 3 wherein suppression amplification or subtractive enrichment is performed.
36. The method of claim 1, 2, or 3 further comprising removing a subset of the reads from further analysis prior to quantifying or enumerating reads.
37. The method of claim 36 wherein removing comprises filtering out reads with an accuracy or quality score of less than a threshold, e.g., 90%, 99%, 99.9%, or 99.99%) and/or mapping score less than a threshold, e.g., 90%, 99%, 99.9% or 99.99%.
38. The method of claim 1, 2, or 3 further comprising filtering reads with a quality score lower than a set threshold.
39. The method of claim 1 wherein the predefined regions are uniform or substantially uniform in size.
40. The method of claim 39 wherein the predefined regions are at least about lOkb, 20kb, 30kb 40kb, 50kb, 60kb, 70kb, 80kb, 90kb, or lOOkb in size.
41. The method of claim 1, 2, or 3 wherein at least 50, 100, 200, 500, 1000, 2000, 5000, 10,000, 20,000, or 50,000 regions are analyzed.
42. The method of claim 1 , 2, or 3 wherein the variant occurs in a region of the genome selected from the group consisting of gene fusions, gene duplications, gene deletions, gene translocations, microsatellite regions, gene fragments or combination thereof.
43. The method of claim 1, 2, or 3 wherein the variant occurs in a region of the genome selected from the group consisting of genes, oncogenes, tumor suppressor genes, promoters, regulatory sequence elements, or combination thereof.
44. The method of claim 2 wherein the variant is a nucleotide variant, single base substitution, small indel, transversion, translocation, inversion, deletion, truncation or gene truncation of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nucleotides in length.
45. The method of claim 1, 2, or 3 further comprising correcting/normalizing/adjusting the quantity of mapped reads using the barcodes or unique properties of individual reads.
46. The method of claim 1 or 2 wherein enumerating the reads is performed through enumeration of unique barcodes in each of the predefined regions and normalizing those numbers across at least a subset of predefined regions that were sequenced.
47. The method of claim 1, 2, or 3 wherein samples at succeeding time intervals from the same subject are analyzed and compared to previous sample results.
48. The method of claim 45 wherein the method further comprises amplifying the barcode-attached extracellular polynucleotides.
49. The method of claim 1, 2, or 3 further comprising determining partial copy number variation frequency, determining loss of heterozygosity, performing gene expression analysis, performing epigenetic analysis and/or performing hypermethylation analysis.
50. A method comprising: determining copy number variation or performing rare mutation analysis in a cell-free or substantially cell free sample obtained from a subject using multiplex sequencing.
51. The method of claim 50 wherein the multiplex sequencing comprises performing over 10,000 sequencing reactions.
52. The method of claim 50 wherein the multiplex sequencing comprises
simultaneously sequencing at least 10,000 different reads.
53. The method of claim 50 wherein the multiplex sequencing comprising performing data analysis on at least 10,000 different reads across the genome.
54. The method of claim 1 or 2 wherein the normalizing and detection is performed using one or more of hidden markov, dynamic programming, support vector machine, Bayesian or probabilistic modeling, trellis decoding, Viterbi decoding, expectation maximization, Kalman filtering, or neural network methodologies.
55. The method of claim 1, 2, or 3 further comprising monitoring disease progression, monitoring residual disease, monitoring therapy, diagnosing a condition, prognosing a condition, or selecting a therapy based on discovered variants for the subject.
56. The method of claim 55 wherein a therapy is modified based on the most recent sample analysis.
57. The method of claim 1, 2, or 3 wherein the genetic profile of a tumor, infection or other tissue abnormality is inferred.
58. The method of claim 1, 2, or 3 wherein the growth, remission or evolution of a tumor, infection or other tissue abnormality is monitored.
59. The method of claim 1, 2, or 3 wherein sequences related to the subject's immune system are analyzed and monitored at single instances or over time.
60. The method of claim 1, 2, or 3 wherein identification of a variant is followed up through an imaging test (e.g., CT, PET-CT, MRI, X-ray, ultrasound) for localization of the tissue abnormality suspected of causing the identified variant.
61. The method of claim 1, 2, or 3 wherein the analysis further comprises use of genetic data obtained from a tissue or tumor biopsy from the same patient.
62. The method of claim 1, 2, or 3 wherein the phylogenetics of a tumor, infection or other tissue abnormality is inferred.
63. The method of claim 1 or 2, wherein the method further comprises performing population-based no-calling and identification of low-confidence regions.
64. The method of claim 1 or 2 wherein obtaining the measurement data for the sequence coverage comprises measuring sequence coverage depth at every position of the genome.
65. The method of claim 64 wherein correcting the measurement data for the sequence coverage bias comprises calculating window-averaged coverage.
66. The method of claim 64 wherein correcting the measurement data for the sequence coverage bias comprises performing adjustments to account for GC bias in the library
construction and sequencing process.
67. The method of claim 64 wherein correcting the measurement data for the sequence coverage bias comprises performing adjustments based on additional weighting factor associated with individual mappings to compensate for bias.
68. The method of claim 1, 2, or 3 wherein extracellular polynucleotide is derived from a diseased cell origin.
69. The method of claim 1, 2, or 3 wherein extracellular polynucleotide is derived from a healthy cell origin.
70. A system comprising a computer readable medium for performing the following steps: selecting predefined regions in a genome; enumerating number of sequence reads in the predefined regions; normalizing the number of sequence reads across the predefined regions; and determining percent of copy number variation in the predefined regions.
71. The system of claim 70 wherein the entirety of the genome or at least 85% of the genome is analyzed.
72. The system of claim 70 wherein the computer readable medium provides data on percent cancer DNA or R A in plasma or serum to the end user.
73. The method of claim 1 whereby the copy number variants identified are fractional (i.e., non-integer levels) due to heterogeneity in the sample.
The method of claim 1 whereby enrichment of selected regions is performed.
75. The method of claim 1 whereby copy number variation information is simultaneously extracted based on the methods described in claims 1, 64, 65, 66 and 67.
76. The method of claim 1 or 2, used with an initial step of polynucleotide
bottlenecking to limit the number of starting initial copies or diversity of polynucleotides in the sample.
77. A method for detecting a rare mutation in a cell-free or a substantially cell free sample obtained from a subject comprising:
a. sequencing extracellular polynucleotides from a bodily sample of a subject, wherein each of the extracellular polynucleotides generate a plurality of sequencing reads;
b. filtering out reads that fail to meet a set quality threshold;
c. mapping sequence reads derived from the sequencing onto a reference
sequence;
d. identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position;
e. for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position;
f. normalizing the ratios or frequency of variance for each mappable base
position and determining potential rare variant(s) or other genetic alteration(s); and
g. comparing the resulting number for each of the regions with potential rare variant(s) or mutation(s) to similarly derived numbers from a reference sample.
78. A method comprising:
a. providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides;
b. amplifying the tagged parent polynucleotides in the set to produce a
corresponding set of amplified progeny polynucleotides;
c. sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads; and d. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides.
79. The method of claim 78 wherein each polynucleotide in a set is mappable to a reference sequence.
80. The method of claim 78 comprising providing a plurality of sets of tagged parent polynucleotides, wherein each set is mappable to a different mappable position in the reference sequence.
81. The method of claim 78 further comprising: e. analyzing the set of consensus sequences for each set of tagged parent molecules separately or in combination.
82. The method of claim 78 further comprising converting initial starting genetic material into the tagged parent polynucleotides.
83. The method of claim 82 wherein the initial starting genetic material comprises no more than 100 ng of polynucleotides.
84. The method of claim 82 comprising bottlenecking the initial starting genetic material prior to converting.
85. The method of claim 82 comprising converting the initial starting genetic material into tagged parent polynucleotides with a conversion efficiency of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 80% or at least 90%.
86. The method of claim 82 wherein converting comprises any of blunt-end ligation, sticky end ligation, molecular inversion probes, PCR, ligation-based PCR, single strand ligation and single strand circularization.
87. The method of claim 82 wherein the initial starting genetic material is cell-free nucleic acid.
88. The method of claim 79 wherein a plurality of the sets map to different mappable positions in a reference sequence from the same genome.
89. The method of claim 78 wherein each tagged parent polynucleotide in the set is uniquely tagged.
90. The method of claim 78 wherein each set of parent polynucleotides is mappable to a position in a reference sequence, and the polynucleotides in each set are not uniquely tagged.
91. The method of claim 78 wherein the generation of consensus sequences is based on information from the tag and/or at least one of (i) sequence information at the beginning (start) region of the sequence read, (ii) the end (stop) regions of the sequence read and (iii) the length of the sequence read.
92. The method of claim 78 comprising sequencing a subset of the set of amplified progeny polynucleotides sufficient to produce sequence reads for at least one progeny from of each of at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% at least 95%, at least 98%, at least 99%, at least 99.9% or at least 99.99% of unique polynucleotides in the set of tagged parent polynucleotides.
93. The method of claim 92 wherein the at least one progeny is a plurality of progeny, e.g., at least 2, at least 5 or at least 10 progeny.
94. The method of claim 78 wherein the number of sequence reads in the set of sequence reads is greater than the number of unique tagged parent polynucleotides in the set of tagged parent polynucleotides.
95. The method of claim 78 wherein the subset of the set of amplified progeny polynucleotides sequenced is of sufficient size so that any nucleotide sequence represented in the set of tagged parent polynucleotides at a percentage that is the same as the percentage per-base sequencing error rate of the sequencing platform used, has at least a 50%>, at least a 60%>, at least a 70%, at least a 80%, at least a 90% at least a 95%, at least a 98%, at least a 99%, at least a 99.9% or at least a 99.99%> chance of being represented among the set of consensus sequences.
96. The method of claim 78 comprising enriching the set of amplified progeny polynucleotides for polynucleotides mapping to one or more selected mappable positions in a reference sequence by: (i) selective amplification of sequences from initial starting genetic material converted to tagged parent polynucleotides; (ii) selective amplification of tagged parent polynucleotides; (iii) selective sequence capture of amplified progeny polynucleotides; or (iv) selective sequence capture of initial starting genetic material.
97. The method of claim 81 wherein analyzing comprises normalizing a measure (e.g., number) taken from a set of consensus sequences against a measure taken from a set of consensus sequences from a control sample.
98. The method of claim 81 wherein analyzing comprises detecting mutations, rare mutations, indels, copy number variations, trans versions, translocations, inversion, deletions, aneuploidy, partial aneuploidy, polyploidy, chromosomal instability, chromosomal structure alterations, gene fusions, chromosome fusions, gene truncations, gene amplification, gene duplications, chromosomal lesions, DNA lesions, abnormal changes in nucleic acid chemical modifications, abnormal changes in epigenetic patterns, abnormal changes in nucleic acid methylation infection or cancer.
99. The method of claim 78 wherein the polynucleotides comprise DNA, RNA, a combination of the two, or DNA plus RNA-derived cDNA.
100. The method of claim 82 wherein a certain subset of polynucleotides is selected for, or is enriched based on, polynucleotide length in base-pairs from the initial set of polynucleotides or from the amplified polynucleotides.
101. The method of claim 82 wherein analysis further comprises detection and monitoring of an abnormality or disease within an individual, such as, infection and/or cancer.
102. The method of claim 101 performed in combination with immune repertoire profiling.
103. The method of claim 78 wherein the polynucleotides are extracted from a sample selected from the group consisting of blood, plasma, serum, urine, saliva, mucosal excretions, sputum, stool, and tears.
104. The method of claim 78 wherein collapsing comprises detecting and/or correcting errors, nicks or lesions present in the sense or anti-sense strand of the tagged parent
polynucleotides or amplified progeny polynucleotides.
105. A method comprising detecting genetic variation in non-uniquely tagged initial starting genetic material with a sensitivity of at least 5%, at least 1%, at least 0.5%, at least 0.1% or at least 0.05%.
106. The method of claim 105 wherein the initial starting genetic material is provided in an amount less than 100 ng of nucleic acid, the genetic variation is copy number/heterozygosity variation and detecting is performed with sub-chromosomal resolution; e.g., at least 100 megabase resolution, at least 10 megabase resolution, at least 1 megabase resolution, at least 100 kilobase resolution, at least 10 kilobase resolution or at least 1 kilobase resolution.
107. The method of claim 81 comprising providing a plurality of sets of tagged parent polynucleotides, wherein each set is mappable to a different mappable position in a reference sequence.
108. The method of claim 107 wherein the mappable position in the reference sequence is the locus of a tumor marker and analyzing comprises detecting the tumor marker in the set of consensus sequences.
109. The method of claim 108 wherein the tumor marker is present in the set of consensus sequences at a frequency less than the error rate introduced at the amplifying step.
110. The method of claim 107 wherein the at least one set is a plurality of sets, and the mappable position of the reference sequence comprise a plurality of mappable positions in the reference sequence, each of which mappable position is the locus of a tumor marker.
111. The method of claim 107 wherein analyzing comprises detecting copy number variation of consensus sequences between at least two sets of parent polynucleotides.
112. The method of claim 107 wherein analyzing comprises detecting the presence of sequence variations compared with the reference sequences.
113. The method of claim 107 wherein analyzing comprises detecting the presence of sequence variations compared with the reference sequences and detecting copy number variation of consensus sequences between at least two sets of parent polynucleotides.
114. The method of claim 78 wherein collapsing comprises: i. grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide; and ii. determining a consensus sequence based on sequence reads in a family.
115. A system comprising a computer readable medium for performing the following steps:
a. accepting at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides;
b. amplifying the tagged parent polynucleotides in the set to produce a
corresponding set of amplified progeny polynucleotides;
c. sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads;
d. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides and, optionally,
e. analyzing the set of consensus sequences for each set of tagged parent
molecules.
116. A method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 10% of the individual's genome is sequenced.
117. A method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 20% of the individual's genome is sequenced.
118. A method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 30%> of the individual's genome is sequenced.
119. A method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 40% of the individual's genome is sequenced.
120. A method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 50% of the individual's genome is sequenced.
121. A method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 60%> of the individual's genome is sequenced.
122. A method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 70%> of the individual's genome is sequenced.
123. A method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 80%> of the individual's genome is sequenced.
124. A method comprising detecting the presence or absence of genetic alteration or amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 90%> of the individual's genome is sequenced.
125. A method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 10%> of the individual's genome is sequenced.
126. A method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 20% of the individual's genome is sequenced.
127. A method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 30% of the individual's genome is sequenced.
128. A method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 40%> of the individual's genome is sequenced.
129. A method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 50%> of the individual's genome is sequenced.
130. A method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 60%> of the individual's genome is sequenced.
131. A method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 70%> of the individual's genome is sequenced.
132. A method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 80%> of the individual's genome is sequenced.
133. A method comprising detecting the presence or absence of genetic alteration and amount of genetic variation in an individual, wherein the detecting is performed with the aid of sequencing of cell-free nucleic acid, wherein at least 90% of the individual's genome is sequenced.
134. The method of claims 116-133, wherein the genetic alteration is copy number variation or one or more rare mutations.
135. The method of claims 116-133, wherein the genetic variation comprises one or more causal variants and one or more polymorphisms.
136. The method of claims 116-133, wherein the genetic alteration and/or amount of genetic variation in the individual may be compared to a genetic alteration and/or amount of genetic variation in one or more individuals with a known disease.
137. The method of claims 116-133, wherein the genetic alteration and/or amount of genetic variation in the individual may be compared to a genetic alteration and/or amount of genetic variation in one or more individuals, without a disease.
138. The method of claim 116-133, wherein the cell-free nucleic acid is DNA.
139. The method of claim 116-133, wherein the cell-free nucleic acid is RNA.
140. The method of claim 116-133, wherein the cell-free nucleic acid is DNA and RNA.
141. The method of claim 136, wherein the disease is cancer or pre-cancer.
142. The method of claims 116-133, the method further comprising diagnosis or treatment of a disease.
143. A method comprising :
a. providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides;
b. amplifying the tagged parent polynucleotides in the set to produce a
corresponding set of amplified progeny polynucleotides; c. sequencing a subset (including a proper subset) of the set of amplified progeny polynucleotides, to produce a set of sequencing reads;
d. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides; and
e. filtering out from among the consensus sequences those that fail to meet a quality threshold.
144. The method of claim 143 wherein the quality threshold considers a number of sequence reads from amplified progeny polynucleotides collapsed into a consensus sequence.
145. The method of claim 143 wherein the quality threshold considers a number of sequence reads from amplified progeny polynucleotides collapsed into a consensus sequence.
146. A system comprising a computer readable medium for performing the method of any of claims 143-145.
147. A method comprising :
a. providing at least one set of tagged parent polynucleotides, wherein each set maps to a different mappable position in a reference sequence in one or more genomes, and, for each set of tagged parent polynucleotides;
i. amplifying the first polynucleotides to produce a set of amplified
polynucleotides;
ii. sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads; and
iii. collapsing the sequence reads by:
1. grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide.
148. The method of claim 147 wherein collapsing further comprises:
2. determining a quantitative measure of sequence reads in each family.
149. The method of claim 148 further comprising:
b. determining a quantitative measure of unique families; and
c. based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set.
150. The method of claim 149 wherein inferring is performed using statistical or probabilistic models.
151. The method of claim 149 wherein the at least one set is a plurality of sets.
152. The method of claim 151 further comprising correcting for amplification or representational bias between the two sets.
153. The method of claim 152 further comprising using a control or set of control samples to correct for amplification or representational biases between the two sets.
154. The method of claim 151 further comprising determining copy number variation between the sets.
155. The method of claim 149 further comprising:
d. determining a quantitative measure of polymorphic forms among the families; and
e. based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides.
156. The method of claim 155 wherein polymorphic forms include but are not limited to: substitutions, insertions, deletions, inversions, microsatellite changes, trans versions, translocations, fusions, methylation, hypermethylation, hydroxymethylation, acetylation, epigenetic variants, regulatory-associated variants or protein binding sites.
157. The method claim 149 wherein the sets derive from a common sample, and the method further comprises: d. inferring copy number variation for the plurality of sets based on a comparison of the inferred number of tagged parent polynucleotides in each set mapping to each of a plurality of mappable positions in a reference sequence.
158. The method of claim 157 wherein the original number of polynucleotides in each set is further inferred.
159. The method of claim 147, wherein at least a subset of the tagged parent
polynucleotides in each set are non-uniquely tagged.
160. A system comprising a computer readable medium comprising machine-executable code that, upon execution by a computer processor, implements a method as in any one of claims 147-158.
161. A method of determining copy number variation in a sample that includes polynucleotides, the method comprising:
a. providing at least two sets of first polynucleotides, wherein each set maps to a different mappable position in a reference sequence in a genome, and, for each set of first polynucleotides;
i. amplifying the polynucleotides to produce a set of amplified
polynucleotides;
ii. sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads;
iii. grouping sequences reads sequenced from amplified polynucleotides into families, each family amplified from the same first polynucleotide in the set;
iv. inferring a quantitative measure of families in the set; and
b. determining copy number variation by comparing the quantitative measure of families in each set.
162. A system comprising a computer readable medium comprising machine-executable code that, upon execution by a computer processor, implements the method of claim 161.
163. A method of inferring frequency of sequence calls in a sample of polynucleotides comprising:
a. providing at least one set of first polynucleotides, wherein each set maps to a different mappable position in a reference sequence in one or more genomes, and, for each set of first polynucleotides;
i. amplifying the first polynucleotides to produce a set of amplified
polynucleotides;
ii. sequencing a subset of the set of amplified polynucleotides, to produce a set of sequencing reads;
iii. grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide;
b. inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises:
i. assigning, for each family, confidence score for each of a plurality of calls, the confidence score taking into consideration a frequency of the call among members of the family; and
ii. estimating a frequency of the one or more calls taking into
consideration the confidence scores of the one or more calls assigned to each family.
164. A system comprising a computer readable medium comprising machine-executable code that, upon execution by a computer processor, implements the method of claim 163.
165. A method of communicating sequence information about at least one individual polynucleotide molecule, comprising:
a. providing at least one individual polynucleotide molecule;
b. encoding sequence information in the at least one individual polynucleotide molecule to produce a signal;
c. passing at least part of the signal through a channel to produce a received
signal comprising nucleotide sequence information about the at least one individual polynucleotide molecule, wherein the received signal comprises noise and/or distortion; d. decoding the received signal to produce a message comprising sequence
information about the at least one individual polynucleotide molecule, wherein decoding reduces noise and/or distortion about each individual polynucleotide in the message; and
e. providing the message comprising sequence information about the at least one individual polynucleotide molecule to a recipient.
166. The method of claim 165 wherein the noise comprises incorrect nucleotide calls.
167. The method of claim 165 wherein distortion comprises uneven amplification of the individual polynucleotide molecule compared with other individual polynucleotide molecules.
168. The method of claim 167 wherein distortion results from amplification or sequencing bias.
169. The method of claim 165 wherein the at least one individual polynucleotide molecule is a plurality of individual polynucleotide molecules, and decoding produces a message about each molecule in the plurality.
170. The method of claim 165 wherein encoding comprises amplifying the at least one individual polynucleotide molecule, which has optionally been tagged, wherein the signal comprises a collection of amplified molecules.
171. The method of claim 165 wherein the channel comprises a polynucleotide sequencer and the received signal comprises sequence reads of a plurality of polynucleotides amplified from the at least one individual polynucleotide molecule.
172. The method of claim 165 wherein decoding comprises grouping sequence reads of amplified molecules amplified from each of the at least one individual polynucleotide molecules.
173. The method of claim 169 wherein the decoding consists of a probabilistic or statistical method of filtering the generated sequence signal.
174. A system comprising a computer readable medium comprising machine-executable code that, upon execution by a computer processor, implements a method of any of claims 165- 173.
175. The method of any of claims 143-145, 147-159 and 161, wherein the polynucleotides are derived from tumor genomic DNA or RNA.
176. The method of any of claims of 143-175 wherein the polynucleotides are derived from cell-free polynucleotides, exosomal polynucleotides, bacterial polynucleotides or viral polynucleotides.
177. The method of any of claims of 1-3 or 143-175 further comprising the detection and/or association of affected molecular pathways.
178. The method of any of claims of 1-3 or 143-175 further comprising serial monitoring of the health or disease state of an individual.
179. The method of any of claims of 1-3 or 143-175 whereby the phylogeny of a genome associated with a disease within an individual is inferred.
180. The method of any of claims of 1-3 or 143-175 wherein further comprising diagnosis, monitoring or treatment of a disease.
181. The claims of 180 where the treatment regimen is selected or modified based on detected polymorphic forms or CNVs or associated pathways.
182. The claims of 180 or 181 where the treatment comprises of a combination therapy.
183. The claim of 179 where the diagnosis further comprises localizing the disease using a radiographic technique, such as, a CT-Scan, PET-CT, MRI, Ultrasound, Ultraound with microbubbles, etc.
184. A computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising:
selecting predefined regions in a genome;
accessing sequence reads and enumerating number of sequence reads in the predefined regions;
normalizing the number of sequence reads across the predefined regions; and determining percent of copy number variation in the predefined regions.
185. A computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising:
a. accessing a data file comprising a plurality of sequencing reads; b. filtering out reads that fail to meet a set threshold;
c. mapping sequence reads derived from the sequencing onto a reference
sequence;
d. identifying a subset of mapped sequence reads that align with a variant of the reference sequence at each mappable base position;
e. for each mappable base position, calculating a ratio of (a) a number of mapped sequence reads that include a variant as compared to the reference sequence, to (b) a number of total sequence reads for each mappable base position;
f. normalizing the ratios or frequency of variance for each mappable base
position and determining potential rare variant(s) or other genetic alteration(s); and
g. comparing the resulting number for each of the regions with potential rare variant(s) or mutation(s) to similarly derived numbers from a reference sample.
186. A computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising:
a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; and
b. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides.
187. A computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising:
a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; b. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides; and
c. filtering out from among the consensus sequences those that fail to meet a quality threshold.
188. A computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising:
a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; and
i. collapsing the sequence reads by:
1. grouping sequences reads sequenced from amplified progeny polynucleotides into families, each family amplified from the same tagged parent polynucleotide and, optionally,.
2. determining a quantitative measure of sequence reads in each family.
189. The computer readable medium of claim 188 wherein the executable code, upon execution by a computer processor, further performs the steps of:
b. determining a quantitative measure of unique families;
c. based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set.
190. The computer readable medium of claim 189 wherein the executable code, upon execution by a computer processor, further performs the steps of:
d. determining a quantitative measure of polymorphic forms among the families; and
e. based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides.
191. A computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising:
a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping sequences reads sequenced from amplified polynucleotides into families, each family amplified from the same first polynucleotide in the set;
b. inferring a quantitative measure of families in the set;
c. determining copy number variation by comparing the quantitative measure of families in each set.
192. A computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising:
a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide;
b. inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises:
c. assigning, for each family, confidence score for each of a plurality of calls, the confidence score taking into consideration a frequency of the call among members of the family; and
d. estimating a frequency of the one or more calls taking into consideration the confidence scores of the one or more calls assigned to each family.
193. A computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising:
a. accessing a data file comprising a received signal that comprises endoded sequence information from at least one individual polynucleotide molecule wherein the received signal comprises noise and/or distortion; b. decoding the received signal to produce a message comprising sequence
information about the at least one individual polynucleotide molecule, wherein decoding reduces noise and/or distortion about each individual polynucleotide in the message; and
c. writing the message comprising sequence information about the at least one individual polynucleotide molecule to a computer file.
194. A computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising:
a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides;
b. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides; and
c. filtering out from among the consensus sequences those that fail to meet a quality threshold.
195. A computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising:
a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides; and
b. collapsing the sequence reads by:
i. grouping sequences reads sequenced from amplified progeny
polynucleotides into families, each family amplified from the same tagged parent polynucleotide; and
ii. optionally, determining a quantitative measure of sequence reads in each family.
196. The computer readable medium of claim 195 wherein the executable code, upon execution by a computer processor, further performs the steps of:
c. determining a quantitative measure of unique families; d. based on (1) the quantitative measure of unique families and (2) the quantitative measure of sequence reads in each group, inferring a measure of unique tagged parent polynucleotides in the set.
197. The computer readable medium of claim 196 wherein the executable code, upon execution by a computer processor, further performs the steps of:
e. determining a quantitative measure of polymorphic forms among the families; and
f. based on the determined quantitative measure of polymorphic forms, inferring a quantitative measure of polymorphic forms in the number of inferred unique tagged parent polynucleotides.
198. The computer readable medium of claim 196 wherein the executable code, upon execution by a computer processor, further performs the steps of:
e. inferring copy number variation for the plurality of sets based on a comparison of the inferred number of tagged parent polynucleotides in each set mapping to each of a plurality of reference sequences.
199. A computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising:
a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides;
b. grouping sequences reads sequenced from amplified polynucleotides into
families, each family amplified from the same first polynucleotide in the set; c. inferring a quantitative measure of families in the set; and
d. determining copy number variation by comparing the quantitative measure of families in each set.
200. A computer readable medium comprising non-transitory machine-executable code that, upon execution by a computer processor, implements a method, the method comprising:
a. accessing a data file comprising a plurality of sequencing reads, wherein the sequence reads derive from a set of progeny polynucleotides amplified from at least one set of tagged parent polynucleotides grouping the sequence reads into families, each family comprising sequence reads of amplified polynucleotides amplified from the same first polynucleotide; and
b. inferring, for each set of first polynucleotides, a call frequency for one or more bases in the set of first polynucleotides, wherein inferring comprises:
i. assigning, for each family, confidence score for each of a plurality of calls, the confidence score taking into consideration a frequency of the call among members of the family; and
ii. estimating a frequency of the one or more calls taking into
consideration the confidence scores of the one or more calls assigned to each family.
201. A composition comprising between 100 and 100,000 human haploid genome equivalents of cfDNA polynucleotides, wherein the polynucleotides are tagged with between 2 and 1,000,000 unique identifiers.
202. The composition of claim 201 comprising between 1000 and 50,000 haploid human genome equivalents of cfDNA polynucleotides, wherein the polynucleotides are tagged with between 2 and 1,000 unique identifiers.
203. The composition of claim 201 wherein the unique identifiers comprise nucleotide barcodes.
204. A method comprising:
a. providing a sample comprising between 100 and 100,000 haploid human
genome equivalents of cfDNA polynucleotides; and
b. tagging the polynucleotides with between 2 and 1,000,000 unique identifiers.
205. A method comprising:
a. providing a sample comprising a plurality of human haploid genome
equivalents of fragmented polynucleotides;
b. determining z, wherein z is a measure of central tendency (e.g., mean, median or mode) of expected number of duplicate polynucleotides starting at any position in the genome, wherein duplicate polynucleotides have the same start and stop positions; and c. tagging polynucleotides in sample with n unique identifiers, wherein n is between 2 and 100,000*z, 2 and 10,000*z, 2 and l,000*z or 2 and 100*z. A method comprising:
a. providing at least one set of tagged parent polynucleotides, and for each set of tagged parent polynucleotides;
b. producing a plurality of sequence reads for each tagged parent polynucleotide in the set to produce a set of sequencing reads; and
c. collapsing the set of sequencing reads to generate a set of consensus sequences, each consensus sequence corresponding to a unique polynucleotide among the set of tagged parent polynucleotides.
PCT/US2013/058061 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation WO2014039556A1 (en)

Priority Applications (72)

Application Number Priority Date Filing Date Title
GB1403810.3A GB2510725B (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation
EP18207391.6A EP3470533B2 (en) 2012-09-04 2013-09-04 Systems and methods to detect copy number variation
EP22162429.9A EP4036247B1 (en) 2012-09-04 2013-09-04 Methods to detect rare mutations and copy number variation
EP13834427.0A EP2893040B1 (en) 2012-09-04 2013-09-04 Methods to detect rare mutations and copy number variation
ES13834427T ES2711635T3 (en) 2012-09-04 2013-09-04 Methods to detect rare mutations and variation in the number of copies
IL305303A IL305303A (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation
DK13834427.0T DK2893040T5 (en) 2012-09-04 2013-09-04 METHODS TO DETECT RARE MUTATIONS AND CAPITAL VARIATION
US14/425,189 US10041127B2 (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation
EP21155582.6A EP3842551B1 (en) 2012-09-04 2013-09-04 Methods of analysing cell free polynucleotides
CA2883901A CA2883901C (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation
KR1020217002539A KR102393608B1 (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation
PL19192885T PL3591073T3 (en) 2012-09-04 2013-09-04 Methods to detect rare mutations and copy number variation
JP2015530152A JP6275145B2 (en) 2012-09-04 2013-09-04 Systems and methods for detecting rare mutations and copy number polymorphisms
CN201380057641.4A CN104781421B (en) 2012-09-04 2013-09-04 System and method for detecting rare mutations and copy number variations
EP19192885.2A EP3591073B1 (en) 2012-09-04 2013-09-04 Methods to detect rare mutations and copy number variation
IL269097A IL269097B2 (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation
EP24168994.2A EP4424826A2 (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation
BR112015004847-1A BR112015004847B1 (en) 2012-09-04 2013-09-04 METHOD FOR DETECTING AND QUANTIFYING POLYNUCLEOTIDES
PL13834427T PL2893040T3 (en) 2012-09-04 2013-09-04 Methods to detect rare mutations and copy number variation
KR1020227014245A KR20220061271A (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation
KR1020247000052A KR20240007774A (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation
KR1020197028255A KR102210852B1 (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation
MX2015002769A MX367963B (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation.
KR1020157008319A KR102028375B1 (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation
SG11201501662TA SG11201501662TA (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation
CN202210198793.7A CN114574581A (en) 2013-03-15 2014-03-15 System and method for detecting rare mutations and copy number variations
CN201480024935.1A CN105408496A (en) 2013-03-15 2014-03-15 Systems and methods to detect rare mutations and copy number variation
EP24174621.3A EP4439566A2 (en) 2013-03-15 2014-03-15 Systems and methods to detect rare mutations and copy number variation
PCT/US2014/000048 WO2014149134A2 (en) 2013-03-15 2014-03-15 Systems and methods to detect rare mutations and copy number variation
ES21157571T ES2980689T3 (en) 2013-03-15 2014-03-15 Methods for cell-free polynucleotide sequencing
EP14771159.2A EP2971168B1 (en) 2013-03-15 2014-03-15 Method of detecting cancer
GB1518080.5A GB2528205B (en) 2013-03-15 2014-03-15 Systems and methods to detect rare mutations and copy number variation
EP21157571.7A EP3882362B1 (en) 2013-03-15 2014-03-15 Methods for sequencing of cell free polynucleotides
ES14771159T ES2877088T3 (en) 2013-03-15 2014-03-15 Procedure to detect cancer
HK15101583.4A HK1201080A1 (en) 2012-09-04 2015-02-12 Systems and methods to detect rare mutations and copy number variation
IL23748015A IL237480B (en) 2012-09-04 2015-03-01 Methods for detecting genetic variations
US14/712,754 US9598731B2 (en) 2012-09-04 2015-05-14 Systems and methods to detect rare mutations and copy number variation
US14/855,301 US20160040229A1 (en) 2013-08-16 2015-09-15 Systems and methods to detect rare mutations and copy number variation
HK16100352.4A HK1212396A1 (en) 2012-09-04 2016-01-13 Systems and methods to detect rare mutations and copy number variation
US15/076,565 US9902992B2 (en) 2012-09-04 2016-03-21 Systems and methods to detect rare mutations and copy number variation
HK16110900.0A HK1222684A1 (en) 2013-03-15 2016-09-14 Systems and methods to detect rare mutations and copy number variation
US15/467,570 US9840743B2 (en) 2012-09-04 2017-03-23 Systems and methods to detect rare mutations and copy number variation
US15/492,659 US9834822B2 (en) 2012-09-04 2017-04-20 Systems and methods to detect rare mutations and copy number variation
US15/669,779 US10894974B2 (en) 2012-09-04 2017-08-04 Systems and methods to detect rare mutations and copy number variation
US15/828,099 US10837063B2 (en) 2012-09-04 2017-11-30 Systems and methods to detect rare mutations and copy number variation
US15/872,831 US10457995B2 (en) 2012-09-04 2018-01-16 Systems and methods to detect rare mutations and copy number variation
US15/978,848 US10501808B2 (en) 2012-09-04 2018-05-14 Systems and methods to detect rare mutations and copy number variation
US16/277,712 US10683556B2 (en) 2012-09-04 2019-02-15 Systems and methods to detect rare mutations and copy number variation
US16/277,724 US10738364B2 (en) 2012-09-04 2019-02-15 Systems and methods to detect rare mutations and copy number variation
US16/283,635 US10494678B2 (en) 2012-09-04 2019-02-22 Systems and methods to detect rare mutations and copy number variation
US16/283,629 US10501810B2 (en) 2012-09-04 2019-02-22 Systems and methods to detect rare mutations and copy number variation
US16/389,680 US10876152B2 (en) 2012-09-04 2019-04-19 Systems and methods to detect rare mutations and copy number variation
US16/575,128 US10793916B2 (en) 2012-09-04 2019-09-18 Systems and methods to detect rare mutations and copy number variation
US16/593,633 US10822663B2 (en) 2012-09-04 2019-10-04 Systems and methods to detect rare mutations and copy number variation
US16/709,437 US10961592B2 (en) 2012-09-04 2019-12-10 Systems and methods to detect rare mutations and copy number variation
US16/711,892 US11913065B2 (en) 2012-09-04 2019-12-12 Systems and methods to detect rare mutations and copy number variation
US16/885,079 US10876171B2 (en) 2012-09-04 2020-05-27 Systems and methods to detect rare mutations and copy number variation
US16/897,038 US10876172B2 (en) 2012-09-04 2020-06-09 Systems and methods to detect rare mutations and copy number variation
US16/913,965 US11434523B2 (en) 2012-09-04 2020-06-26 Systems and methods to detect rare mutations and copy number variation
US17/068,710 US10947600B2 (en) 2012-09-04 2020-10-12 Systems and methods to detect rare mutations and copy number variation
US17/146,359 US10995376B1 (en) 2012-09-04 2021-01-11 Systems and methods to detect rare mutations and copy number variation
US17/152,529 US11001899B1 (en) 2012-09-04 2021-01-19 Systems and methods to detect rare mutations and copy number variation
US17/210,191 US12054783B2 (en) 2012-09-04 2021-03-23 Systems and methods to detect rare mutations and copy number variation
US17/370,941 US11319597B2 (en) 2012-09-04 2021-07-08 Systems and methods to detect rare mutations and copy number variation
US17/386,338 US11319598B2 (en) 2012-09-04 2021-07-27 Systems and methods to detect rare mutations and copy number variation
US17/696,524 US11879158B2 (en) 2012-09-04 2022-03-16 Systems and methods to detect rare mutations and copy number variation
US18/157,249 US11773453B2 (en) 2012-09-04 2023-01-20 Systems and methods to detect rare mutations and copy number variation
US18/333,436 US12049673B2 (en) 2012-09-04 2023-06-12 Systems and methods to detect rare mutations and copy number variation
US18/535,812 US12116624B2 (en) 2012-09-04 2023-12-11 Systems and methods to detect rare mutations and copy number variation
US18/426,665 US20240240258A1 (en) 2012-09-04 2024-01-30 Systems and methods to detect rare mutations and copy number variation
US18/594,336 US12110560B2 (en) 2012-09-04 2024-03-04 Methods for monitoring residual disease
US18/677,090 US20240318234A1 (en) 2012-09-04 2024-05-29 Systems and methods to detect rare mutations and copy number variation

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201261696734P 2012-09-04 2012-09-04
US61/696,734 2012-09-04
US201261704400P 2012-09-21 2012-09-21
US61/704,400 2012-09-21
US201361793997P 2013-03-15 2013-03-15
US61/793,997 2013-03-15
US201361845987P 2013-07-13 2013-07-13
US61/845,987 2013-07-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/969,260 Continuation-In-Part US20140066317A1 (en) 2012-09-04 2013-08-16 Systems and methods to detect rare mutations and copy number variation

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US14/425,189 A-371-Of-International US10041127B2 (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation
PCT/US2014/000048 Continuation-In-Part WO2014149134A2 (en) 2012-09-04 2014-03-15 Systems and methods to detect rare mutations and copy number variation
US14/712,754 Continuation US9598731B2 (en) 2012-09-04 2015-05-14 Systems and methods to detect rare mutations and copy number variation
US15/467,570 Continuation US9840743B2 (en) 2012-09-04 2017-03-23 Systems and methods to detect rare mutations and copy number variation
US15/492,659 Continuation US9834822B2 (en) 2012-09-04 2017-04-20 Systems and methods to detect rare mutations and copy number variation

Publications (1)

Publication Number Publication Date
WO2014039556A1 true WO2014039556A1 (en) 2014-03-13

Family

ID=50237580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/058061 WO2014039556A1 (en) 2012-09-04 2013-09-04 Systems and methods to detect rare mutations and copy number variation

Country Status (17)

Country Link
US (27) US10041127B2 (en)
EP (6) EP3591073B1 (en)
JP (5) JP6275145B2 (en)
KR (5) KR20240007774A (en)
CN (2) CN110872617A (en)
CA (2) CA2883901C (en)
DE (1) DE202013012824U1 (en)
DK (1) DK2893040T5 (en)
ES (5) ES2711635T3 (en)
GB (1) GB2533006B (en)
HK (3) HK1201080A1 (en)
IL (3) IL269097B2 (en)
MX (1) MX367963B (en)
PL (2) PL2893040T3 (en)
PT (1) PT2893040T (en)
SG (2) SG10202000486VA (en)
WO (1) WO2014039556A1 (en)

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015175705A1 (en) 2014-05-13 2015-11-19 Board Of Regents, The University Of Texas System Gene mutations and copy number alterations of egfr, kras and met
EP2844771A4 (en) * 2012-05-04 2015-12-02 Complete Genomics Inc Methods for determining absolute genome-wide copy number variations of complex tumors
WO2015184404A1 (en) * 2014-05-30 2015-12-03 Verinata Health, Inc. Detecting fetal sub-chromosomal aneuploidies and copy number variations
WO2015181718A1 (en) * 2014-05-26 2015-12-03 Ebios Futura S.R.L. Method of prenatal diagnosis
WO2015183872A1 (en) * 2014-05-30 2015-12-03 Sequenom, Inc. Chromosome representation determinations
US9367663B2 (en) 2011-10-06 2016-06-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
WO2016090584A1 (en) * 2014-12-10 2016-06-16 深圳华大基因研究院 Method and device for determining concentration of tumor nucleic acid
WO2016094853A1 (en) * 2014-12-12 2016-06-16 Verinata Health, Inc. Using cell-free dna fragment size to determine copy number variations
WO2016095093A1 (en) * 2014-12-15 2016-06-23 天津华大基因科技有限公司 Method for screening tumor, method and device for detecting variation of target region
WO2016109452A1 (en) * 2014-12-31 2016-07-07 Guardant Health , Inc. Detection and treatment of disease exhibiting disease cell heterogeneity and systems and methods for communicating test results
WO2016112850A1 (en) * 2015-01-13 2016-07-21 The Chinese University Of Hong Kong Using size and number aberrations in plasma dna for detecting cancer
WO2016127944A1 (en) * 2015-02-10 2016-08-18 The Chinese University Of Hong Kong Detecting mutations for cancer screening and fetal analysis
WO2016179049A1 (en) 2015-05-01 2016-11-10 Guardant Health, Inc Diagnostic methods
WO2016201142A1 (en) * 2015-06-09 2016-12-15 Life Technologies Corporation Methods, systems, compositions, kits, apparatus and computer-readable media for molecular tagging
WO2017007903A1 (en) * 2015-07-07 2017-01-12 Farsight Genome Systems, Inc. Methods and systems for sequencing-based variant detection
WO2017027473A1 (en) * 2015-08-07 2017-02-16 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Methods for predicting prostate cancer relapse
WO2017020024A3 (en) * 2015-07-29 2017-03-09 Progenity, Inc. Systems and methods for genetic analysis
US9598731B2 (en) 2012-09-04 2017-03-21 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US9618474B2 (en) 2014-12-18 2017-04-11 Edico Genome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
CN106566877A (en) * 2016-10-31 2017-04-19 天津诺禾致源生物信息科技有限公司 Gene mutation detection method and apparatus
CN106701956A (en) * 2017-01-11 2017-05-24 上海思路迪生物医学科技有限公司 Technology for digitized deep sequencing of ctDNA
WO2017106768A1 (en) 2015-12-17 2017-06-22 Guardant Health, Inc. Methods to determine tumor gene copy number by analysis of cell-free dna
JP2017521078A (en) * 2014-07-18 2017-08-03 キャンサー・リサーチ・テクノロジー・リミテッドCancer Research Technology Limited Methods for detecting genetic variants
CN107075581A (en) * 2014-08-06 2017-08-18 纽亘技术公司 Digital measurement is carried out by targeting sequencing
ITUA20162640A1 (en) * 2016-04-15 2017-10-15 Menarini Silicon Biosystems Spa METHOD AND KIT FOR THE GENERATION OF DNA LIBRARIES FOR PARALLEL MAXIMUM SEQUENCING
WO2017181146A1 (en) 2016-04-14 2017-10-19 Guardant Health, Inc. Methods for early detection of cancer
CN107408163A (en) * 2015-06-24 2017-11-28 社会福祉法人三星生命公益财团 For analyzing the method and device of gene
US9850523B1 (en) 2016-09-30 2017-12-26 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
US9859394B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US9857328B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Chemically-sensitive field effect transistors, systems and methods for manufacturing and using the same
CN107577917A (en) * 2016-07-05 2018-01-12 魏霖静 A kind of bioinformatics high performance information management system and data processing method
EP3087204B1 (en) 2013-12-28 2018-02-14 Guardant Health, Inc. Methods and systems for detecting genetic variants
US9902992B2 (en) 2012-09-04 2018-02-27 Guardant Helath, Inc. Systems and methods to detect rare mutations and copy number variation
US9920361B2 (en) 2012-05-21 2018-03-20 Sequenom, Inc. Methods and compositions for analyzing nucleic acid
US9932641B2 (en) 2013-12-30 2018-04-03 University of Pittsburgh—of the Commonwealth System of Higher Education Fusion genes associated with progressive prostate cancer
WO2018071595A1 (en) 2016-10-12 2018-04-19 Bellwether Bio, Inc. Determining cell type origin of circulating cell-free dna with molecular counting
US9976181B2 (en) 2016-03-25 2018-05-22 Karius, Inc. Synthetic nucleic acid spike-ins
US9984198B2 (en) 2011-10-06 2018-05-29 Sequenom, Inc. Reducing sequence read count error in assessment of complex genetic variations
US10006910B2 (en) 2014-12-18 2018-06-26 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US10020300B2 (en) 2014-12-18 2018-07-10 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
EP3289502A4 (en) * 2014-12-29 2018-09-12 Counsyl, Inc. Method for determining genotypes in regions of high homology
US10095831B2 (en) 2016-02-03 2018-10-09 Verinata Health, Inc. Using cell-free DNA fragment size to determine copy number variations
EP3377655A4 (en) * 2015-11-16 2018-11-21 Mayo Foundation for Medical Education and Research Detecting copy number variations
WO2018210877A1 (en) * 2017-05-15 2018-11-22 Katholieke Universiteit Leuven Method for analysing cell-free nucleic acids
CN109072309A (en) * 2016-02-02 2018-12-21 夸登特健康公司 Cancer evolution detection and diagnosis
EP3325664A4 (en) * 2015-07-23 2019-01-02 The Chinese University Of Hong Kong Analysis of fragmentation patterns of cell-free dna
EP3431611A1 (en) * 2017-07-21 2019-01-23 Menarini Silicon Biosystems S.p.A. Improved method and kit for the generation of dna libraries for massively parallel sequencing
US10196681B2 (en) 2011-10-06 2019-02-05 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10287630B2 (en) 2011-03-24 2019-05-14 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
US10308960B2 (en) 2014-07-17 2019-06-04 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Methods for treating cells containing fusion genes
CN109971852A (en) * 2014-04-21 2019-07-05 纳特拉公司 Detect the mutation and ploidy in chromosome segment
JP2019521673A (en) * 2016-06-07 2019-08-08 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア Cell-free DNA methylation patterns for disease and condition analysis
US10424394B2 (en) 2011-10-06 2019-09-24 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10429342B2 (en) 2014-12-18 2019-10-01 Edico Genome Corporation Chemically-sensitive field effect transistor
US10450620B2 (en) 2013-11-07 2019-10-22 The Board Of Trustees Of The Leland Stanford Junior University Cell-free nucleic acids for the analysis of the human microbiome and components thereof
WO2019204588A1 (en) 2018-04-20 2019-10-24 Biofire Diagnostics, Llc Methods for normalization and quantification of sequencing data
US10482994B2 (en) 2012-10-04 2019-11-19 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
EP3430170A4 (en) * 2016-03-16 2019-11-27 Dana-Farber Cancer Institute, Inc. Methods for genome characterization
US10497461B2 (en) 2012-06-22 2019-12-03 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10497462B2 (en) 2013-01-25 2019-12-03 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10504613B2 (en) 2012-12-20 2019-12-10 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
CN110578002A (en) * 2019-10-10 2019-12-17 广州燃石医学检验所有限公司 Quality control product for detecting circulating tumor DNA mutation and preparation method thereof
WO2020021119A1 (en) * 2018-07-27 2020-01-30 F. Hoffmann-La Roche Ag Method of monitoring effectiveness of immunotherapy of cancer patients
US10570448B2 (en) 2013-11-13 2020-02-25 Tecan Genomics Compositions and methods for identification of a duplicate sequencing read
US10622094B2 (en) 2013-06-21 2020-04-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10619206B2 (en) 2013-03-15 2020-04-14 Tecan Genomics Sequential sequencing
EP3636777A1 (en) * 2015-07-13 2020-04-15 Agilent Technologies Belgium NV System and methodology for the analysis of genomic data obtained from a subject
US10633713B2 (en) 2017-01-25 2020-04-28 The Chinese University Of Hong Kong Diagnostic applications using nucleic acid fragments
US10699800B2 (en) 2013-05-24 2020-06-30 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10697008B2 (en) 2017-04-12 2020-06-30 Karius, Inc. Sample preparation methods, systems and compositions
US10704086B2 (en) 2014-03-05 2020-07-07 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10741269B2 (en) 2013-10-21 2020-08-11 Verinata Health, Inc. Method for improving the sensitivity of detection in determining copy number variations
US10741270B2 (en) 2012-03-08 2020-08-11 The Chinese University Of Hong Kong Size-based analysis of cell-free tumor DNA for classifying level of cancer
US10760132B2 (en) 2011-09-15 2020-09-01 University of Pittsburgh—of the Commonwealth System of Higher Education Methods for diagnosing prostate cancer and predicting prostate cancer relapse
JP2020529644A (en) * 2018-07-11 2020-10-08 イルミナ インコーポレイテッド A deep learning-based framework for identifying sequence patterns that cause sequence-specific errors (SSEs)
US10811539B2 (en) 2016-05-16 2020-10-20 Nanomedical Diagnostics, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
EP3478856B1 (en) 2016-06-30 2021-01-27 Grail, Inc. Differential tagging of rna for preparation of a cell-free dna/rna sequencing library
US10930368B2 (en) 2013-04-03 2021-02-23 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10947595B2 (en) 2015-07-29 2021-03-16 Progenity, Inc. Nucleic acids and methods for detecting chromosomal abnormalities
US10964409B2 (en) 2013-10-04 2021-03-30 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
EP2971168B1 (en) 2013-03-15 2021-05-05 Guardant Health, Inc. Method of detecting cancer
US11001884B2 (en) 2011-10-06 2021-05-11 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US11004537B2 (en) 2011-06-24 2021-05-11 Sequenom, Inc. Methods and processes for non invasive assessment of a genetic variation
EP3828292A1 (en) 2015-07-21 2021-06-02 Guardant Health, Inc. Locked nucleic acids for capturing fusion genes
US11062791B2 (en) 2016-09-30 2021-07-13 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
US11062789B2 (en) 2014-07-18 2021-07-13 The Chinese University Of Hong Kong Methylation pattern analysis of tissues in a DNA mixture
US11099202B2 (en) 2017-10-20 2021-08-24 Tecan Genomics, Inc. Reagent delivery system
US11111520B2 (en) 2015-05-18 2021-09-07 Karius, Inc. Compositions and methods for enriching populations of nucleic acids
US11118234B2 (en) 2018-07-23 2021-09-14 Guardant Health, Inc. Methods and systems for adjusting tumor mutational burden by tumor fraction and coverage
US11193175B2 (en) 2017-11-03 2021-12-07 Guardant Health, Inc. Normalizing tumor mutation burden
US11200963B2 (en) 2016-07-27 2021-12-14 Sequenom, Inc. Genetic copy number alteration classifications
US11261494B2 (en) 2012-06-21 2022-03-01 The Chinese University Of Hong Kong Method of measuring a fractional concentration of tumor DNA
US11299766B2 (en) 2015-10-30 2022-04-12 Exact Sciences Corporation Multiplex amplification detection assay
US11342047B2 (en) 2017-04-21 2022-05-24 Illumina, Inc. Using cell-free DNA fragment size to detect tumor-associated variant
US11352670B2 (en) 2014-07-25 2022-06-07 University Of Washington Methods of determining tissues and/or cell types giving rise to cell-free DNA, and methods of identifying a disease or disorder using same
US11384382B2 (en) 2016-04-14 2022-07-12 Guardant Health, Inc. Methods of attaching adapters to sample nucleic acids
US11430543B2 (en) 2017-08-04 2022-08-30 Billiontoone, Inc. Sequencing output determination and analysis with target-associated molecules in quantification associated with biological targets
US11435339B2 (en) 2016-11-30 2022-09-06 The Chinese University Of Hong Kong Analysis of cell-free DNA in urine
US11459616B2 (en) 2016-10-24 2022-10-04 The Chinese University Of Hong Kong Methods and systems for tumor detection
US11519024B2 (en) 2017-08-04 2022-12-06 Billiontoone, Inc. Homologous genomic regions for characterization associated with biological targets
US11527305B2 (en) 2015-09-02 2022-12-13 Guardant Health, Inc. Machine learning for somatic single nucleotide variant detection in cell-free tumor nucleic acid sequencing applications
EP3458586B1 (en) 2016-05-16 2022-12-28 Accuragen Holdings Limited Method of improved sequencing by strand identification
CN115798580A (en) * 2023-02-10 2023-03-14 北京中仪康卫医疗器械有限公司 Integrated genome analysis method based on genotype filling and low-depth sequencing
US11629381B2 (en) 2018-01-05 2023-04-18 Billiontoone, Inc. Quality control templates ensuring validity of sequencing-based assays
US11643693B2 (en) 2019-01-31 2023-05-09 Guardant Health, Inc. Compositions and methods for isolating cell-free DNA
US11646100B2 (en) 2017-08-04 2023-05-09 Billiontoone, Inc. Target-associated molecules for characterization associated with biological targets
US11694768B2 (en) 2017-01-24 2023-07-04 Sequenom, Inc. Methods and processes for assessment of genetic variations
US11697843B2 (en) 2012-07-09 2023-07-11 Tecan Genomics, Inc. Methods for creating directional bisulfite-converted nucleic acid libraries for next generation sequencing
US11697849B2 (en) 2012-01-20 2023-07-11 Sequenom, Inc. Methods for non-invasive assessment of fetal genetic variations that factor experimental conditions
US11746376B2 (en) 2010-05-18 2023-09-05 Natera, Inc. Methods for amplification of cell-free DNA using ligated adaptors and universal and inner target-specific primers for multiplexed nested PCR
US11756655B2 (en) 2015-10-09 2023-09-12 Guardant Health, Inc. Population based treatment recommender using cell free DNA
US11783911B2 (en) 2014-07-30 2023-10-10 Sequenom, Inc Methods and processes for non-invasive assessment of genetic variations
US11913065B2 (en) 2012-09-04 2024-02-27 Guardent Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11929146B2 (en) 2013-10-07 2024-03-12 Sequenom, Inc. Systems for non-invasive assessment of chromosome alterations using changes in subsequence mappability
US11929145B2 (en) 2017-01-20 2024-03-12 Sequenom, Inc Methods for non-invasive assessment of genetic alterations
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
US11939636B2 (en) 2019-05-31 2024-03-26 Guardant Health, Inc. Methods and systems for improving patient monitoring after surgery
US11946101B2 (en) 2015-05-11 2024-04-02 Natera, Inc. Methods and compositions for determining ploidy
US11959129B2 (en) 2019-04-02 2024-04-16 Enumera Molecular, Inc. Methods, systems, and compositions for counting nucleic acid molecules
US12020778B2 (en) 2010-05-18 2024-06-25 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US12024738B2 (en) 2018-04-14 2024-07-02 Natera, Inc. Methods for cancer detection and monitoring
US12031186B2 (en) 2020-05-14 2024-07-09 Guardant Health, Inc. Homologous recombination repair deficiency detection
WO2024151825A1 (en) 2023-01-11 2024-07-18 Guardant Health, Inc. Joint modeling of longitudinal and time-to-event data to predict patient survival
US12043873B2 (en) 2022-03-21 2024-07-23 Billiontoone, Inc. Molecule counting of methylated cell-free DNA for treatment monitoring
US12043867B2 (en) 2018-03-29 2024-07-23 Accuragen Holdings Limited Compositions and methods comprising asymmetric barcoding
US12049671B2 (en) 2017-01-27 2024-07-30 Exact Sciences Corporation Detection of colon neoplasia by analysis of methylated DNA
US12059674B2 (en) 2020-02-03 2024-08-13 Tecan Genomics, Inc. Reagent storage system
US12073922B2 (en) 2018-07-11 2024-08-27 Illumina, Inc. Deep learning-based framework for identifying sequence patterns that cause sequence-specific errors (SSEs)
US12071651B2 (en) 2018-08-06 2024-08-27 Billiontoone, Inc. Dilution tagging for quantification of biological targets
US12084720B2 (en) 2017-12-14 2024-09-10 Natera, Inc. Assessing graft suitability for transplantation
US12100478B2 (en) 2012-08-17 2024-09-24 Natera, Inc. Method for non-invasive prenatal testing using parental mosaicism data
US12110552B2 (en) 2010-05-18 2024-10-08 Natera, Inc. Methods for simultaneous amplification of target loci
WO2024216112A1 (en) 2023-04-12 2024-10-17 Guardant Health, Inc. Promoter methylation detection
US12146195B2 (en) 2017-04-17 2024-11-19 Natera, Inc. Methods for lung cancer detection

Families Citing this family (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10083273B2 (en) 2005-07-29 2018-09-25 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10081839B2 (en) 2005-07-29 2018-09-25 Natera, Inc System and method for cleaning noisy genetic data and determining chromosome copy number
US11111544B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11111543B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US9424392B2 (en) 2005-11-26 2016-08-23 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
EP2473638B1 (en) 2009-09-30 2017-08-09 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US9677118B2 (en) 2014-04-21 2017-06-13 Natera, Inc. Methods for simultaneous amplification of target loci
US10316362B2 (en) 2010-05-18 2019-06-11 Natera, Inc. Methods for simultaneous amplification of target loci
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
US11322224B2 (en) 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
CA3037126C (en) 2010-05-18 2023-09-12 Natera, Inc. Methods for non-invasive prenatal ploidy calling
JP6328934B2 (en) 2010-12-22 2018-05-23 ナテラ, インコーポレイテッド Noninvasive prenatal testing
CA2823621C (en) 2010-12-30 2023-04-25 Foundation Medicine, Inc. Optimization of multigene analysis of tumor samples
EP2697397B1 (en) 2011-04-15 2017-04-05 The Johns Hopkins University Safe sequencing system
PT2814959T (en) 2012-02-17 2018-04-12 Hutchinson Fred Cancer Res Compositions and methods for accurately identifying mutations
ES2828661T3 (en) 2012-03-20 2021-05-27 Univ Washington Through Its Center For Commercialization Methods to Reduce the Error Rate of Parallel Massive DNA Sequencing Using Double-stranded Consensus Sequence Sequencing
AU2013338393C1 (en) 2012-10-29 2024-07-25 The Johns Hopkins University Papanicolaou test for ovarian and endometrial cancers
US9218450B2 (en) * 2012-11-29 2015-12-22 Roche Molecular Systems, Inc. Accurate and fast mapping of reads to genome
CN105531375B (en) 2012-12-10 2020-03-03 分析生物科学有限公司 Method for targeted genomic analysis
US10262755B2 (en) 2014-04-21 2019-04-16 Natera, Inc. Detecting cancer mutations and aneuploidy in chromosomal segments
US10577655B2 (en) 2013-09-27 2020-03-03 Natera, Inc. Cell free DNA diagnostic testing standards
EP4112738B1 (en) 2014-12-05 2024-07-24 Foundation Medicine, Inc. Multigene analysis of tumor samples
US10395759B2 (en) * 2015-05-18 2019-08-27 Regeneron Pharmaceuticals, Inc. Methods and systems for copy number variant detection
US11286531B2 (en) 2015-08-11 2022-03-29 The Johns Hopkins University Assaying ovarian cyst fluid
EP3347466B9 (en) * 2015-09-08 2024-06-26 Cold Spring Harbor Laboratory Genetic copy number determination using high throughput multiplex sequencing of smashed nucleotides
KR101848438B1 (en) 2015-10-29 2018-04-13 바이오코아 주식회사 A method for prenatal diagnosis using digital PCR
WO2017083562A1 (en) 2015-11-11 2017-05-18 Resolution Bioscience, Inc. High efficiency construction of dna libraries
AU2016366231B2 (en) 2015-12-08 2022-12-15 Twinstrand Biosciences, Inc. Improved adapters, methods, and compositions for duplex sequencing
WO2017127741A1 (en) * 2016-01-22 2017-07-27 Grail, Inc. Methods and systems for high fidelity sequencing
AU2017292854B2 (en) 2016-07-06 2023-08-17 Guardant Health, Inc. Methods for fragmentome profiling of cell-free nucleic acids
WO2018013837A1 (en) 2016-07-15 2018-01-18 The Regents Of The University Of California Methods of producing nucleic acid libraries
IL312894A (en) 2016-08-25 2024-07-01 Resolution Bioscience Inc Methods for the detection of genomic copy changes in dna samples
CA3037917C (en) * 2016-09-22 2024-05-28 Illumina, Inc. Somatic copy number variation detection
US11485996B2 (en) 2016-10-04 2022-11-01 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
WO2018081465A1 (en) * 2016-10-26 2018-05-03 Pathway Genomics Corporation Systems and methods for characterizing nucleic acid in a biological sample
US10011870B2 (en) 2016-12-07 2018-07-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
EP3552128A1 (en) * 2016-12-08 2019-10-16 Life Technologies Corporation Methods for detecting mutation load from a tumor sample
US20180166170A1 (en) * 2016-12-12 2018-06-14 Konstantinos Theofilatos Generalized computational framework and system for integrative prediction of biomarkers
JP7300989B2 (en) 2016-12-22 2023-06-30 ガーダント ヘルス, インコーポレイテッド Methods and systems for analyzing nucleic acid molecules
WO2018156418A1 (en) 2017-02-21 2018-08-30 Natera, Inc. Compositions, methods, and kits for isolating nucleic acids
CN106755547A (en) * 2017-03-15 2017-05-31 上海亿康医学检验所有限公司 The Non-invasive detection and its recurrence monitoring method of a kind of carcinoma of urinary bladder
WO2018183942A1 (en) 2017-03-31 2018-10-04 Grail, Inc. Improved library preparation and use thereof for sequencing-based error correction and/or variant identification
CN110914450B (en) * 2017-05-16 2024-07-02 夸登特健康公司 Identification of somatic or germ line sources of cell-free DNA
US10892037B2 (en) 2017-05-16 2021-01-12 Life Technologies Corporation Methods for compression of molecular tagged nucleic acid sequence data
KR102145417B1 (en) * 2017-05-24 2020-08-19 지니너스 주식회사 Method for generating distribution of background allele frequency for sequencing data obtained from cell-free nucleic acid and method for detecting mutation from cell-free nucleic acid using the same
EP3635133A4 (en) * 2017-06-09 2021-03-03 Bellwether Bio, Inc. Determination of cancer type in a subject by probabilistic modeling of circulating nucleic acid fragment endpoints
SG11201911538YA (en) * 2017-06-20 2020-01-30 Illumina Inc Methods and systems for decomposition and quantification of dna mixtures from multiple contributors of known or unknown genotypes
WO2019014656A1 (en) 2017-07-14 2019-01-17 Han Si Ping Meta-stable oligonucleotides junctions for delivery of therapeutics
WO2019020057A1 (en) 2017-07-26 2019-01-31 The Chinese University Of Hong Kong Enhancement of cancer screening using cell-free viral nucleic acids
AU2018335405A1 (en) 2017-09-20 2020-04-09 Guardant Health, Inc. Methods and systems for differentiating somatic and germline variants
CN107688726B (en) * 2017-09-21 2021-09-07 深圳市易基因科技有限公司 Method for judging single-gene-disease-related copy number deficiency based on liquid phase capture technology
JP7304852B2 (en) 2017-11-03 2023-07-07 ガーダント ヘルス, インコーポレイテッド Correction of sequence errors induced by deamination
WO2019094651A1 (en) 2017-11-08 2019-05-16 Twinstrand Biosciences, Inc. Reagents and adapters for nucleic acid sequencing and methods for making such reagents and adapters
JP7054133B2 (en) * 2017-11-09 2022-04-13 国立研究開発法人国立がん研究センター Sequence analysis method, sequence analysis device, reference sequence generation method, reference sequence generator, program, and recording medium
WO2019108555A1 (en) 2017-11-28 2019-06-06 Crail, Inc. Models for targeted sequencing
AU2018375008B2 (en) * 2017-12-01 2024-06-27 Illumina, Inc. Methods and systems for determining somatic mutation clonality
CN108197428B (en) * 2017-12-25 2020-06-19 西安交通大学 Copy number variation detection method for next generation sequencing technology based on parallel dynamic programming
CN112365927B (en) * 2017-12-28 2023-08-25 安诺优达基因科技(北京)有限公司 CNV detection device
AU2019207900A1 (en) 2018-01-12 2020-07-09 Claret Bioscience, Llc Methods and compositions for analyzing nucleic acid
WO2019140402A1 (en) * 2018-01-15 2019-07-18 Illumina, Inc. Deep learning-based variant classifier
CN108268752B (en) * 2018-01-18 2019-02-01 东莞博奥木华基因科技有限公司 A kind of chromosome abnormality detection device
KR102036609B1 (en) * 2018-02-12 2019-10-28 바이오코아 주식회사 A method for prenatal diagnosis using digital PCR
GB2587939B (en) 2018-04-02 2023-06-14 Grail Llc Methylation markers and targeted methylation probe panels
WO2019204208A1 (en) * 2018-04-16 2019-10-24 Memorial Sloan Kettering Cancer Center SYSTEMS AND METHODS FOR DETECTING CANCER VIA cfDNA SCREENING
TW202012639A (en) * 2018-04-24 2020-04-01 美商格瑞爾公司 Systems and methods for using pathogen nucleic acid load to determine whether a subject has a cancer condition
AU2019277698A1 (en) 2018-06-01 2020-11-19 Grail, Llc Convolutional neural network systems and methods for data classification
JP2021526791A (en) 2018-06-04 2021-10-11 ガーダント ヘルス, インコーポレイテッド Methods and systems for determining the cellular origin of cell-free nucleic acids
KR20210016560A (en) 2018-06-06 2021-02-16 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 A method for producing a nucleic acid library and a composition and kit for executing the same
CN109192246B (en) * 2018-06-22 2020-10-16 深圳市达仁基因科技有限公司 Method, apparatus and storage medium for detecting chromosomal copy number abnormalities
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA
JP7521812B2 (en) 2018-07-12 2024-07-24 ツインストランド・バイオサイエンシズ・インコーポレイテッド Methods and Reagents for Characterizing Genome Editing, Clonal Expansion, and Related Applications
CN113166750A (en) 2018-08-10 2021-07-23 希望之城 Programmable conditional SIRNA and uses thereof
WO2020041611A1 (en) * 2018-08-22 2020-02-27 The Regents Of The University Of California Sensitively detecting copy number variations (cnvs) from circulating cell-free nucleic acid
EP3844759A1 (en) 2018-08-30 2021-07-07 Guardant Health, Inc. Methods and systems for detecting contamination between samples
AU2019328344A1 (en) 2018-08-31 2021-04-08 Guardant Health, Inc. Microsatellite instability detection in cell-free DNA
WO2020047553A1 (en) 2018-08-31 2020-03-05 Guardant Health, Inc. Genetic variant detection based on merged and unmerged reads
EP3847276A2 (en) 2018-09-04 2021-07-14 Guardant Health, Inc. Methods and systems for detecting allelic imbalance in cell-free nucleic acid samples
EP3850631A1 (en) * 2018-09-14 2021-07-21 The Jackson Laboratory Method and apparatus for detecting copy number variations in a genome
CN113286881A (en) 2018-09-27 2021-08-20 格里尔公司 Methylation signatures and target methylation probe plates
WO2020076772A1 (en) * 2018-10-08 2020-04-16 Freenome Holdings, Inc. Transcription factor profiling
CN109523520B (en) * 2018-10-25 2020-12-18 北京大学第三医院 Chromosome automatic counting method based on deep learning
WO2020092807A1 (en) 2018-10-31 2020-05-07 Guardant Health, Inc. Methods, compositions and systems for calibrating epigenetic partitioning assays
CN109584961A (en) * 2018-12-03 2019-04-05 元码基因科技(北京)股份有限公司 Method based on two generation sequencing technologies detection blood microsatellite instability
US11581062B2 (en) 2018-12-10 2023-02-14 Grail, Llc Systems and methods for classifying patients with respect to multiple cancer classes
US20200202975A1 (en) * 2018-12-19 2020-06-25 AiOnco, Inc. Genetic information processing system with mutation analysis mechanism and method of operation thereof
CN109712671B (en) * 2018-12-20 2020-06-26 北京优迅医学检验实验室有限公司 Gene detection device based on ctDNA, storage medium and computer system
US20200232010A1 (en) 2018-12-20 2020-07-23 Guardant Health, Inc. Methods, compositions, and systems for improving recovery of nucleic acid molecules
CN111383714B (en) * 2018-12-29 2023-07-28 安诺优达基因科技(北京)有限公司 Method for simulating target disease simulation sequencing library and application thereof
CN109841265B (en) * 2019-02-22 2021-09-21 清华大学 Method and system for determining tissue source of plasma free nucleic acid molecules by using fragmentation mode and application
WO2020176775A1 (en) 2019-02-27 2020-09-03 Guardant Health, Inc. Computational modeling of loss of function based on allelic frequency
WO2020176659A1 (en) 2019-02-27 2020-09-03 Guardant Health, Inc. Methods and systems for determining the cellular origin of cell-free dna
CN111755075B (en) * 2019-03-28 2023-09-29 深圳华大生命科学研究院 Method for filtering sequence pollution among high-throughput sequencing samples of immune repertoire
CN110299185B (en) * 2019-05-08 2023-07-04 西安电子科技大学 Insertion variation detection method and system based on new generation sequencing data
EP3983558A4 (en) * 2019-06-12 2023-06-28 Ultima Genomics, Inc. Methods for accurate base calling using molecular barcodes
JP2022550131A (en) 2019-09-30 2022-11-30 ガーダント ヘルス, インコーポレイテッド Compositions and methods for analyzing cell-free DNA in methylation partitioning assays
IL292003A (en) * 2019-10-10 2022-06-01 Carlsberg As Methods for preparing mutant plants
WO2021077411A1 (en) * 2019-10-25 2021-04-29 苏州宏元生物科技有限公司 Chromosome instability detection method, system and test kit
US11447819B2 (en) 2019-10-25 2022-09-20 Guardant Health, Inc. Methods for 3′ overhang repair
EP4055187A4 (en) 2019-11-06 2023-11-01 The Board of Trustees of the Leland Stanford Junior University Methods and systems for analyzing nucleic acid molecules
US20210214800A1 (en) 2019-11-26 2021-07-15 Guardant Health, Inc. Methods, compositions and systems for improving the binding of methylated polynucleotides
KR102184277B1 (en) * 2020-01-16 2020-11-30 성균관대학교산학협력단 All-in-one ai self health care apparatus for ultrasound diagnosis and dna check-up, and remote medical-diagnosis method using the same
WO2021155241A1 (en) 2020-01-31 2021-08-05 Guardant Health, Inc. Significance modeling of clonal-level absence of target variants
US11211147B2 (en) 2020-02-18 2021-12-28 Tempus Labs, Inc. Estimation of circulating tumor fraction using off-target reads of targeted-panel sequencing
US11475981B2 (en) 2020-02-18 2022-10-18 Tempus Labs, Inc. Methods and systems for dynamic variant thresholding in a liquid biopsy assay
US11211144B2 (en) 2020-02-18 2021-12-28 Tempus Labs, Inc. Methods and systems for refining copy number variation in a liquid biopsy assay
EP4447055A2 (en) 2020-03-11 2024-10-16 Guardant Health, Inc. Methods for classifying genetic mutations detected in cell-free nucleic acids as tumor or non-tumor origin
CN111445950B (en) * 2020-03-19 2022-10-25 西安交通大学 High-fault-tolerance genome complex structure variation detection method based on filtering strategy
CN113436679B (en) * 2020-03-23 2024-05-10 北京合生基因科技有限公司 Method and system for determining mutation rate of nucleic acid sample to be tested
CA3177127A1 (en) 2020-04-30 2021-11-04 Guardant Health, Inc. Methods for sequence determination using partitioned nucleic acids
WO2021231862A1 (en) * 2020-05-14 2021-11-18 Georgia Tech Research Corporation Methods of detecting the efficacy of anticancer agents
EP4407042A3 (en) 2020-07-10 2024-09-18 Guardant Health, Inc. Methods of detecting genomic rearrangements using cell free nucleic acids
WO2023282916A1 (en) 2021-07-09 2023-01-12 Guardant Health, Inc. Methods of detecting genomic rearrangements using cell free nucleic acids
EP4189111A1 (en) 2020-07-30 2023-06-07 Guardant Health, Inc. Methods for isolating cell-free dna
JP2023540221A (en) 2020-08-25 2023-09-22 ガーダント ヘルス, インコーポレイテッド Methods and systems for predicting variant origin
CA3190719A1 (en) 2020-08-25 2022-03-03 Daniel Hornburg Compositions and methods for assaying proteins and nucleic acids
US20220068433A1 (en) 2020-08-27 2022-03-03 Guardant Health, Inc. Computational detection of copy number variation at a locus in the absence of direct measurement of the locus
JP7532157B2 (en) 2020-09-10 2024-08-13 株式会社東芝 Method for connecting superconducting wires and superconducting magnet device
JP2023544721A (en) 2020-09-30 2023-10-25 ガーダント ヘルス, インコーポレイテッド Compositions and methods for analyzing DNA using partitioning and methylation-dependent nucleases
US20220154286A1 (en) 2020-10-23 2022-05-19 Guardant Health, Inc. Compositions and methods for analyzing dna using partitioning and base conversion
JP2023551292A (en) 2020-11-30 2023-12-07 ガーダント ヘルス, インコーポレイテッド Compositions and methods for enriching methylated polynucleotides
WO2022140629A1 (en) 2020-12-23 2022-06-30 Guardant Health, Inc. Methods and systems for analyzing methylated polynucleotides
CN112735516A (en) * 2020-12-29 2021-04-30 上海派森诺生物科技股份有限公司 Group variation detection analysis method without reference genome
CN112908411B (en) * 2021-01-12 2024-05-14 广州市金域转化医学研究院有限公司 Mitochondrial variation site database and establishment method and application thereof
EP4291679A1 (en) 2021-02-12 2023-12-20 Guardant Health, Inc. Methods and compositions for detecting nucleic acid variants
EP4302301A1 (en) 2021-03-05 2024-01-10 Guardant Health, Inc. Methods and related aspects for analyzing molecular response
EP4305200A1 (en) 2021-03-09 2024-01-17 Guardant Health, Inc. Detecting the presence of a tumor based on off-target polynucleotide sequencing data
EP4314329A1 (en) 2021-03-25 2024-02-07 Guardant Health, Inc. Methods and compositions for quantifying immune cell dna
CN113130005B (en) * 2021-04-12 2022-11-22 中国科学院东北地理与农业生态研究所 M2 group-based candidate causal mutation site gene positioning method
US11783912B2 (en) 2021-05-05 2023-10-10 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for analyzing nucleic acid molecules
EP4348249A1 (en) 2021-05-28 2024-04-10 Guardant Health, Inc. Compositions and methods for assaying circulating molecules
CN113284555B (en) * 2021-06-11 2023-08-22 中山大学 Construction method, device, equipment and storage medium of gene mutation network
JP2024523401A (en) 2021-06-21 2024-06-28 ガーダント ヘルス, インコーポレイテッド Methods and compositions for copy number information-based tissue origin analysis
CN118202417A (en) * 2021-07-06 2024-06-14 斯威齐治疗公司 Method for activating small interference RNA sensor by design condition
EP4385021A1 (en) * 2021-08-10 2024-06-19 Cornell University Ultra-sensitive liquid biopsy through deep learning empowered whole genome sequencing of plasma
WO2023056065A1 (en) 2021-09-30 2023-04-06 Guardant Health, Inc. Compositions and methods for synthesis and use of probes targeting nucleic acid rearrangements
AU2022359420A1 (en) * 2021-10-04 2024-05-02 Grail, Llc Sequencing of viral dna for predicting disease relapse
WO2023081722A2 (en) 2021-11-02 2023-05-11 Guardant Health, Inc. Quality control method
WO2023097325A2 (en) * 2021-11-29 2023-06-01 Mammoth Biosciences, Inc. Systems and methods for identifying genetic phenotypes using programmable nucleases
CN114703263B (en) * 2021-12-20 2023-09-22 北京科迅生物技术有限公司 Group chromosome copy number variation detection method and device
EP4453241A1 (en) 2021-12-21 2024-10-30 Guardant Health, Inc. Methods and systems for combinatorial chromatin-ip sequencing
EP4453240A1 (en) 2021-12-23 2024-10-30 Guardant Health, Inc. Compositions and methods for detection of metastasis
WO2023197004A1 (en) 2022-04-07 2023-10-12 Guardant Health, Inc. Detecting the presence of a tumor based on methylation status of cell-free nucleic acid molecules
CN114724628B (en) * 2022-04-24 2022-11-08 华中农业大学 Method for identifying and annotating polynucleotide variation of multiple species
US20230360725A1 (en) 2022-05-09 2023-11-09 Guardant Health, Inc. Detecting degradation based on strand bias
WO2024006908A1 (en) 2022-06-30 2024-01-04 Guardant Health, Inc. Enrichment of aberrantly methylated dna
US20240191290A1 (en) 2022-07-21 2024-06-13 Guardant Health, Inc. Methods for detection and reduction of sample preparation-induced methylation artifacts
WO2024059840A1 (en) 2022-09-16 2024-03-21 Guardant Health, Inc. Compositions and methods for analyzing soluble proteins
WO2024073508A2 (en) 2022-09-27 2024-04-04 Guardant Health, Inc. Methods and compositions for quantifying immune cell dna
WO2024107599A1 (en) 2022-11-15 2024-05-23 Guardant Health, Inc. Method of predicting non-small cell lung cancer (nsclc) patient drug response or time until death or cancer progression from circulating tumor dna (ctdna) utilizing signals from both baseline ctdna level and longitudinal change of ctdna level over time
WO2024107941A1 (en) 2022-11-17 2024-05-23 Guardant Health, Inc. Validation of a bioinformatic model for classifying non-tumor variants in a cell-free dna liquid biopsy assay
WO2024137682A1 (en) 2022-12-21 2024-06-27 Guardant Health, Inc. Detecting homologous recombination deficiences based on methylation status of cell-free nucleic acid molecules
WO2024137880A2 (en) 2022-12-22 2024-06-27 Guardant Health, Inc. Methods involving methylation preserving amplification with error correction
WO2024138180A2 (en) 2022-12-22 2024-06-27 Guardant Health, Inc. Integrated targeted and whole genome somatic and dna methylation sequencing workflows
WO2024159053A1 (en) 2023-01-25 2024-08-02 Guardant Health, Inc. Nucleic acid methylation profiling method
WO2024211717A1 (en) 2023-04-07 2024-10-10 Guardant Health, Inc. Detecting the presence of a tumor based on methylation status of cell-free nucleic acid molecules

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120046877A1 (en) * 2010-07-06 2012-02-23 Life Technologies Corporation Systems and methods to detect copy number variation
US20120100548A1 (en) * 2010-10-26 2012-04-26 Verinata Health, Inc. Method for determining copy number variations
US8209130B1 (en) 2012-04-04 2012-06-26 Good Start Genetics, Inc. Sequence assembly
WO2012106559A1 (en) * 2011-02-02 2012-08-09 Translational Genomics Research Institute Biomarkers and methods of use thereof
US20120214678A1 (en) * 2010-01-19 2012-08-23 Verinata Health, Inc. Methods for determining fraction of fetal nucleic acids in maternal samples

Family Cites Families (271)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US604804A (en) * 1898-05-31 Shuttle for looms
US4725536A (en) 1985-09-19 1988-02-16 Genetics Institute, Inc. Reagent polynucleotide complex with multiple target binding regions, and kit and methods
US6150517A (en) 1986-11-24 2000-11-21 Gen-Probe Methods for making oligonucleotide probes for the detection and/or quantitation of non-viral organisms
US5149625A (en) 1987-08-11 1992-09-22 President And Fellows Of Harvard College Multiplex analysis of DNA
US4942124A (en) 1987-08-11 1990-07-17 President And Fellows Of Harvard College Multiplex sequencing
US5124246A (en) 1987-10-15 1992-06-23 Chiron Corporation Nucleic acid multimers and amplified nucleic acid hybridization assays using same
US5656731A (en) 1987-10-15 1997-08-12 Chiron Corporation Nucleic acid-amplified immunoassay probes
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US6309822B1 (en) 1989-06-07 2001-10-30 Affymetrix, Inc. Method for comparing copy number of nucleic acid sequences
US6551784B2 (en) 1989-06-07 2003-04-22 Affymetrix Inc Method of comparing nucleic acid sequences
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5800992A (en) 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5424186A (en) 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US6040138A (en) 1995-09-15 2000-03-21 Affymetrix, Inc. Expression monitoring by hybridization to high density oligonucleotide arrays
US5925525A (en) 1989-06-07 1999-07-20 Affymetrix, Inc. Method of identifying nucleotide differences
US5871928A (en) 1989-06-07 1999-02-16 Fodor; Stephen P. A. Methods for nucleic acid analysis
US5200314A (en) 1990-03-23 1993-04-06 Chiron Corporation Polynucleotide capture assay employing in vitro amplification
US6582908B2 (en) 1990-12-06 2003-06-24 Affymetrix, Inc. Oligonucleotides
DK0834575T3 (en) 1990-12-06 2002-04-02 Affymetrix Inc A Delaware Corp Identification of nucleic acids in samples
US5981179A (en) 1991-11-14 1999-11-09 Digene Diagnostics, Inc. Continuous amplification reaction
US5424413A (en) 1992-01-22 1995-06-13 Gen-Probe Incorporated Branched nucleic acid probes
US5573905A (en) 1992-03-30 1996-11-12 The Scripps Research Institute Encoded combinatorial chemical libraries
US6020124A (en) 1992-04-27 2000-02-01 Trustees Of Dartmouth College Detection of soluble gene sequences in biological fluids
US5981176A (en) 1992-06-17 1999-11-09 City Of Hope Method of detecting and discriminating between nucleic acid sequences
WO1995000530A1 (en) 1993-06-25 1995-01-05 Affymax Technologies N.V. Hybridization and sequencing of nucleic acids
US5500356A (en) 1993-08-10 1996-03-19 Life Technologies, Inc. Method of nucleic acid sequence selection
US6309823B1 (en) 1993-10-26 2001-10-30 Affymetrix, Inc. Arrays of nucleic acid probes for analyzing biotransformation genes and methods of using the same
US5681697A (en) 1993-12-08 1997-10-28 Chiron Corporation Solution phase nucleic acid sandwich assays having reduced background noise and kits therefor
CH686982A5 (en) 1993-12-16 1996-08-15 Maurice Stroun Method for diagnosis of cancers.
US20030017081A1 (en) 1994-02-10 2003-01-23 Affymetrix, Inc. Method and apparatus for imaging a sample on a device
US5714330A (en) 1994-04-04 1998-02-03 Lynx Therapeutics, Inc. DNA sequencing by stepwise ligation and cleavage
US5604097A (en) 1994-10-13 1997-02-18 Spectragen, Inc. Methods for sorting polynucleotides using oligonucleotide tags
US5846719A (en) 1994-10-13 1998-12-08 Lynx Therapeutics, Inc. Oligonucleotide tags for sorting and identification
US5695934A (en) 1994-10-13 1997-12-09 Lynx Therapeutics, Inc. Massively parallel sequencing of sorted polynucleotides
US6013445A (en) 1996-06-06 2000-01-11 Lynx Therapeutics, Inc. Massively parallel signature sequencing by ligation of encoded adaptors
US6600996B2 (en) 1994-10-21 2003-07-29 Affymetrix, Inc. Computer-aided techniques for analyzing biological sequences
DE69535240T2 (en) 1994-10-28 2007-06-06 Gen-Probe Inc., San Diego Compositions and methods for the simultaneous detection and quantification of a majority of specific nucleic acid sequences
US5648245A (en) 1995-05-09 1997-07-15 Carnegie Institution Of Washington Method for constructing an oligonucleotide concatamer library by rolling circle replication
US5968740A (en) 1995-07-24 1999-10-19 Affymetrix, Inc. Method of Identifying a Base in a Nucleic Acid
GB9516636D0 (en) 1995-08-14 1995-10-18 Univ London In-situ nucleic acid amplification and detection
US5763175A (en) 1995-11-17 1998-06-09 Lynx Therapeutics, Inc. Simultaneous sequencing of tagged polynucleotides
US5854033A (en) 1995-11-21 1998-12-29 Yale University Rolling circle replication reporter systems
WO1997034015A1 (en) 1996-03-15 1997-09-18 The Penn State Research Foundation Detection of extracellular tumor-associated nucleic acid in blood plasma or serum using nucleic acid amplification assays
PT938320E (en) 1996-03-26 2010-09-22 Michael S Kopreski Method enabling use of extracellular rna extracted from plasma or serum to detect, monitor or evaluate cancer
US6458530B1 (en) 1996-04-04 2002-10-01 Affymetrix Inc. Selecting tag nucleic acids
US6300077B1 (en) 1996-08-14 2001-10-09 Exact Sciences Corporation Methods for the detection of nucleic acids
US5935793A (en) 1996-09-27 1999-08-10 The Chinese University Of Hong Kong Parallel polynucleotide sequencing method using tagged primers
US6124092A (en) 1996-10-04 2000-09-26 The Perkin-Elmer Corporation Multiplex polynucleotide capture methods and compositions
US6117631A (en) 1996-10-29 2000-09-12 Polyprobe, Inc. Detection of antigens via oligonucleotide antibody conjugates
US6046005A (en) 1997-01-15 2000-04-04 Incyte Pharmaceuticals, Inc. Nucleic acid sequencing with solid phase capturable terminators comprising a cleavable linking group
JP4294740B2 (en) 1997-05-23 2009-07-15 ソレクサ・インコーポレイテッド System and apparatus for serial processing of analytes
WO1999028505A1 (en) 1997-12-03 1999-06-10 Curagen Corporation Methods and devices for measuring differential gene expression
AU5584999A (en) 1998-08-28 2000-03-21 Invitrogen Corporation System for the rapid manipulation of nucleic acid sequences
US6653077B1 (en) 1998-09-04 2003-11-25 Lynx Therapeutics, Inc. Method of screening for genetic polymorphism
US6503718B2 (en) 1999-01-10 2003-01-07 Exact Sciences Corporation Methods for detecting mutations using primer extension for detecting disease
CA2360929A1 (en) 1999-02-05 2000-08-10 Amersham Pharmacia Biotech Uk Limited Genomic analysis method
US6629040B1 (en) 1999-03-19 2003-09-30 University Of Washington Isotope distribution encoded tags for protein identification
JP2002539849A (en) 1999-03-26 2002-11-26 ホワイトヘッド インスチチュート フォアー バイオメディカル リサーチ Universal array
JP4794052B2 (en) 1999-04-09 2011-10-12 ジェンザイム・コーポレーション Method for detecting a nucleic acid that is an indicator of cancer
US6355431B1 (en) 1999-04-20 2002-03-12 Illumina, Inc. Detection of nucleic acid amplification reactions using bead arrays
EP1046717B1 (en) 1999-04-20 2010-10-06 National Institute of Advanced Industrial Science and Technology Method and probes for determining a concentration of target nucleic acid molecules and method for analyzing data obtained by the method
US6242186B1 (en) 1999-06-01 2001-06-05 Oy Jurilab Ltd. Method for detecting a risk of cancer and coronary heart disease and kit therefor
US6326148B1 (en) 1999-07-12 2001-12-04 The Regents Of The University Of California Detection of copy number changes in colon cancer
US6440706B1 (en) 1999-08-02 2002-08-27 Johns Hopkins University Digital amplification
US6849403B1 (en) 1999-09-08 2005-02-01 Exact Sciences Corporation Apparatus and method for drug screening
US6586177B1 (en) 1999-09-08 2003-07-01 Exact Sciences Corporation Methods for disease detection
WO2001042781A2 (en) 1999-12-07 2001-06-14 Exact Sciences Corporation Supracolonic aerodigestive neoplasm detection
US6489114B2 (en) 1999-12-17 2002-12-03 Bio Merieux Process for labeling a ribonucleic acid, and labeled RNA fragments which are obtained thereby
EP1259643B1 (en) 2000-02-07 2008-10-15 Illumina, Inc. Nucleic acid detection methods using universal priming
US20020072058A1 (en) 2000-03-24 2002-06-13 Voelker Leroy L. Method for amplifying quinolone-resistance-determining-regions and identifying polymorphic variants thereof
US20030207300A1 (en) 2000-04-28 2003-11-06 Matray Tracy J. Multiplex analytical platform using molecular tags
EP1158055A1 (en) 2000-05-26 2001-11-28 Xu Qi University of Teaxs Laboratoire de Leucémie Chen Method for diagnosing cancers
JP4287652B2 (en) 2000-10-24 2009-07-01 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ Characterization of genomic DNA by direct multiple processing
US20020142345A1 (en) 2000-12-22 2002-10-03 Nelsen Anita J. Methods for encoding and decoding complex mixtures in arrayed assays
US20030049616A1 (en) 2001-01-08 2003-03-13 Sydney Brenner Enzymatic synthesis of oligonucleotide tags
CA2344599C (en) 2001-05-07 2011-07-12 Bioneer Corporation Selective polymerase chain reaction of dna of which base sequence is completely unknown
US7406385B2 (en) 2001-10-25 2008-07-29 Applera Corporation System and method for consensus-calling with per-base quality values for sample assemblies
ATE312946T1 (en) 2002-03-05 2005-12-15 Epigenomics Ag METHOD AND DEVICE FOR DETERMINING THE TISSUE SPECIFICITY OF FREE DNA IN BODY FLUID
US20030186251A1 (en) 2002-04-01 2003-10-02 Brookhaven Science Associates, Llc Genome sequence tags
US7727720B2 (en) 2002-05-08 2010-06-01 Ravgen, Inc. Methods for detection of genetic disorders
US7424368B2 (en) 2002-11-11 2008-09-09 Affymetix, Inc. Methods for identifying DNA copy number changes
US7822555B2 (en) 2002-11-11 2010-10-26 Affymetrix, Inc. Methods for identifying DNA copy number changes
US10229244B2 (en) 2002-11-11 2019-03-12 Affymetrix, Inc. Methods for identifying DNA copy number changes using hidden markov model based estimations
US7704687B2 (en) 2002-11-15 2010-04-27 The Johns Hopkins University Digital karyotyping
WO2004081183A2 (en) 2003-03-07 2004-09-23 Rubicon Genomics, Inc. In vitro dna immortalization and whole genome amplification using libraries generated from randomly fragmented dna
US20040259118A1 (en) 2003-06-23 2004-12-23 Macevicz Stephen C. Methods and compositions for nucleic acid sequence analysis
US8048627B2 (en) 2003-07-05 2011-11-01 The Johns Hopkins University Method and compositions for detection and enumeration of genetic variations
DE60328193D1 (en) 2003-10-16 2009-08-13 Sequenom Inc Non-invasive detection of fetal genetic traits
DE10348407A1 (en) 2003-10-17 2005-05-19 Widschwendter, Martin, Prof. Prognostic and diagnostic markers for cell proliferative disorders of breast tissues
US20070111233A1 (en) 2003-10-30 2007-05-17 Bianchi Diana W Prenatal diagnosis using cell-free fetal DNA in amniotic fluid
EP1709203A2 (en) 2004-01-23 2006-10-11 Lingvitae AS Improving polynucleotide ligation reactions
EP1713936B1 (en) 2004-02-12 2009-12-09 Population Genetics Technologies Ltd Corporation of Great Britain Genetic analysis by sequence-specific sorting
US20060046258A1 (en) 2004-02-27 2006-03-02 Lapidus Stanley N Applications of single molecule sequencing
US20100216153A1 (en) 2004-02-27 2010-08-26 Helicos Biosciences Corporation Methods for detecting fetal nucleic acids and diagnosing fetal abnormalities
US20050250147A1 (en) 2004-05-10 2005-11-10 Macevicz Stephen C Digital profiling of polynucleotide populations
US7276720B2 (en) 2004-07-19 2007-10-02 Helicos Biosciences Corporation Apparatus and methods for analyzing samples
US20060035258A1 (en) 2004-08-06 2006-02-16 Affymetrix, Inc. Methods for identifying DNA copy number changes
US7937225B2 (en) 2004-09-03 2011-05-03 New York University Systems, methods and software arrangements for detection of genome copy number variation
EP1647600A3 (en) 2004-09-17 2006-06-28 Affymetrix, Inc. (A US Entity) Methods for identifying biological samples by addition of nucleic acid bar-code tags
US9109256B2 (en) 2004-10-27 2015-08-18 Esoterix Genetic Laboratories, Llc Method for monitoring disease progression or recurrence
US7424371B2 (en) 2004-12-21 2008-09-09 Helicos Biosciences Corporation Nucleic acid analysis
US7393665B2 (en) 2005-02-10 2008-07-01 Population Genetics Technologies Ltd Methods and compositions for tagging and identifying polynucleotides
ITRM20050068A1 (en) 2005-02-17 2006-08-18 Istituto Naz Per Le Malattie I METHOD FOR THE DETECTION OF NUCLEIC ACIDS OF BACTERIAL OR PATENT PATOGEN AGENTS IN URINE.
WO2006099604A2 (en) 2005-03-16 2006-09-21 Compass Genetics, Llc Methods and compositions for assay readouts on multiple analytical platforms
EP2518161A1 (en) 2005-03-18 2012-10-31 Fluidigm Corporation Method for detection of mutant alleles
PL1712639T3 (en) 2005-04-06 2009-02-27 Maurice Stroun Method for the diagnosis of cancer by detecting circulating DNA and RNA
US20070020640A1 (en) 2005-07-21 2007-01-25 Mccloskey Megan L Molecular encoding of nucleic acid templates for PCR and other forms of sequence analysis
US7666593B2 (en) 2005-08-26 2010-02-23 Helicos Biosciences Corporation Single molecule sequencing of captured nucleic acids
ATE453728T1 (en) 2005-09-29 2010-01-15 Keygene Nv HIGH-THROUGHPUT SCREENING OF MUTAGENIZED POPULATIONS
US7537897B2 (en) 2006-01-23 2009-05-26 Population Genetics Technologies, Ltd. Molecular counting
US20070172839A1 (en) 2006-01-24 2007-07-26 Smith Douglas R Asymmetrical adapters and methods of use thereof
US8383338B2 (en) 2006-04-24 2013-02-26 Roche Nimblegen, Inc. Methods and systems for uniform enrichment of genomic regions
US7702468B2 (en) 2006-05-03 2010-04-20 Population Diagnostics, Inc. Evaluating genetic disorders
CA2651995C (en) 2006-05-18 2017-04-25 Molecular Profiling Institute, Inc. System and method for determining individualized medical intervention for a disease state
US20080090239A1 (en) 2006-06-14 2008-04-17 Daniel Shoemaker Rare cell analysis using sample splitting and dna tags
FR2904833A1 (en) 2006-08-11 2008-02-15 Bioquanta Sarl Determining the quantity of nucleic acid, particularly DNA or RNA in a sample comprises adding a fluorophore to the sample, measuring fluorescence intensities in response to luminous stimulations and removing the nucleic acids
CA2958994C (en) 2006-11-15 2019-05-07 Biospherex Llc Kit for multiplex sequencing and ecogenomics analysis
US20110014607A1 (en) 2006-12-06 2011-01-20 Jirtle Randy L Imprinted genes and disease
ES2609094T3 (en) 2007-01-25 2017-04-18 Dana-Farber Cancer Institute, Inc. Use of anti-EGFR antibodies in the treatment of diseases mediated by a mutant EGFR
PE20081880A1 (en) 2007-03-13 2008-12-31 Amgen Inc K-RAS MUTATIONS AND ANTI-EGFR ANTIBODY THERAPY
WO2008148072A2 (en) 2007-05-24 2008-12-04 The Brigham And Women's Hospital, Inc. Disease-associated genetic variations and methods for obtaining and using same
US20090105959A1 (en) 2007-06-01 2009-04-23 Braverman Michael S System and method for identification of individual samples from a multiplex mixture
EP2155855B1 (en) * 2007-06-06 2016-10-12 Pacific Biosciences of California, Inc. Methods and processes for calling bases in sequence by incorporation methods
US20100112590A1 (en) 2007-07-23 2010-05-06 The Chinese University Of Hong Kong Diagnosing Fetal Chromosomal Aneuploidy Using Genomic Sequencing With Enrichment
EA202192446A1 (en) 2007-07-23 2022-01-31 Те Чайниз Юниверсити Ов Гонгконг DIAGNOSTICS OF FETAL CHROMOSOMAL ANEUPLOIDY USING GENOM SEQUENCING
US20090053719A1 (en) 2007-08-03 2009-02-26 The Chinese University Of Hong Kong Analysis of nucleic acids by digital pcr
EP2198293B1 (en) 2007-09-07 2012-01-18 Fluidigm Corporation Copy number variation determination, methods and systems
US20100173294A1 (en) 2007-09-11 2010-07-08 Roche Molecular Systems, Inc. Diagnostic test for susceptibility to b-raf kinase inhibitors
US8775092B2 (en) 2007-11-21 2014-07-08 Cosmosid, Inc. Method and system for genome identification
JP2011511644A (en) 2008-02-12 2011-04-14 ノバルティス アーゲー Methods for isolating cell-free apoptotic or fetal nucleic acids
US8216789B2 (en) 2008-02-27 2012-07-10 University Of Washington Diagnostic panel of cancer antibodies and methods for use
US20110003701A1 (en) * 2008-02-27 2011-01-06 454 Life Sciences Corporation System and method for improved processing of nucleic acids for production of sequencable libraries
CA2718137A1 (en) 2008-03-26 2009-10-01 Sequenom, Inc. Restriction endonuclease enhanced polymorphic sequence detection
US8153375B2 (en) 2008-03-28 2012-04-10 Pacific Biosciences Of California, Inc. Compositions and methods for nucleic acid sequencing
US20110160290A1 (en) 2008-05-21 2011-06-30 Muneesh Tewari Use of extracellular rna to measure disease
DE102008025656B4 (en) 2008-05-28 2016-07-28 Genxpro Gmbh Method for the quantitative analysis of nucleic acids, markers therefor and their use
US20090298709A1 (en) 2008-05-28 2009-12-03 Affymetrix, Inc. Assays for determining telomere length and repeated sequence copy number
CN102165073A (en) 2008-07-10 2011-08-24 骆树恩 Methods for nucleic acid mapping and identification of fine-structural-variations in nucleic acids
US20100041048A1 (en) 2008-07-31 2010-02-18 The Johns Hopkins University Circulating Mutant DNA to Assess Tumor Dynamics
US20100062494A1 (en) 2008-08-08 2010-03-11 President And Fellows Of Harvard College Enzymatic oligonucleotide pre-adenylation
US20100069250A1 (en) 2008-08-16 2010-03-18 The Board Of Trustees Of The Leland Stanford Junior University Digital PCR Calibration for High Throughput Sequencing
US8583380B2 (en) 2008-09-05 2013-11-12 Aueon, Inc. Methods for stratifying and annotating cancer drug treatment options
US8383345B2 (en) 2008-09-12 2013-02-26 University Of Washington Sequence tag directed subassembly of short sequencing reads into long sequencing reads
PT2334812T (en) 2008-09-20 2017-03-29 Univ Leland Stanford Junior Noninvasive diagnosis of fetal aneuploidy by sequencing
WO2010075188A2 (en) 2008-12-23 2010-07-01 Illumina Inc. Multibase delivery for long reads in sequencing by synthesis protocols
JP2012514977A (en) * 2009-01-13 2012-07-05 キージーン・エン・フェー New genome sequencing strategy
US20100323348A1 (en) 2009-01-31 2010-12-23 The Regents Of The University Of Colorado, A Body Corporate Methods and Compositions for Using Error-Detecting and/or Error-Correcting Barcodes in Nucleic Acid Amplification Process
US20120165202A1 (en) 2009-04-30 2012-06-28 Good Start Genetics, Inc. Methods and compositions for evaluating genetic markers
US9085798B2 (en) * 2009-04-30 2015-07-21 Prognosys Biosciences, Inc. Nucleic acid constructs and methods of use
US20130143747A1 (en) 2011-12-05 2013-06-06 Myriad Genetics, Incorporated Methods of detecting cancer
US9524369B2 (en) 2009-06-15 2016-12-20 Complete Genomics, Inc. Processing and analysis of complex nucleic acid sequence data
KR20120044941A (en) 2009-06-25 2012-05-08 프레드 헛친슨 켄서 리서치 센터 Method of measuring adaptive immunity
US10017812B2 (en) 2010-05-18 2018-07-10 Natera, Inc. Methods for non-invasive prenatal ploidy calling
WO2011011426A2 (en) 2009-07-20 2011-01-27 Bar Harbor Biotechnology, Inc. Methods for assessing disease risk
EP2824191A3 (en) 2009-10-26 2015-02-18 Lifecodexx AG Means and methods for non-invasive diagnosis of chromosomal aneuploidy
CA2777549A1 (en) 2009-11-12 2011-05-19 Esoterix Genetic Laboratories, Llc Copy number analysis of genetic locus
US20110237444A1 (en) 2009-11-20 2011-09-29 Life Technologies Corporation Methods of mapping genomic methylation patterns
US9023769B2 (en) 2009-11-30 2015-05-05 Complete Genomics, Inc. cDNA library for nucleic acid sequencing
US9752187B2 (en) 2009-12-11 2017-09-05 Nucleix Categorization of DNA samples
US9315857B2 (en) 2009-12-15 2016-04-19 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse label-tags
US8835358B2 (en) 2009-12-15 2014-09-16 Cellular Research, Inc. Digital counting of individual molecules by stochastic attachment of diverse labels
EP3088532B1 (en) 2009-12-22 2019-10-30 Sequenom, Inc. Processes and kits for identifying aneuploidy
US9260745B2 (en) 2010-01-19 2016-02-16 Verinata Health, Inc. Detecting and classifying copy number variation
PL3492601T3 (en) 2010-01-19 2022-05-23 Verinata Health, Inc. Novel protocol for preparing sequencing libraries
US20110177512A1 (en) 2010-01-19 2011-07-21 Predictive Biosciences, Inc. Method for assuring amplification of an abnormal nucleic acid in a sample
US10388403B2 (en) 2010-01-19 2019-08-20 Verinata Health, Inc. Analyzing copy number variation in the detection of cancer
CA2786564A1 (en) 2010-01-19 2011-07-28 Verinata Health, Inc. Identification of polymorphic sequences in mixtures of genomic dna by whole genome sequencing
WO2012135730A2 (en) 2011-03-30 2012-10-04 Verinata Health, Inc. Method for verifying bioassay samples
EP2536854B1 (en) 2010-02-18 2017-07-19 The Johns Hopkins University Personalized tumor biomarkers
WO2011115937A1 (en) 2010-03-14 2011-09-22 The Translational Genomics Research Institute Methods of determining susceptibility of tumors to tyrosine kinase inhibitors
CN101967517B (en) 2010-03-19 2012-11-07 黄乐群 Polymerase chain reaction (PCR)-free gene detection method
US10047397B2 (en) 2010-04-16 2018-08-14 Chronix Biomedical Breast cancer associated circulating nucleic acid biomarkers
US9255291B2 (en) 2010-05-06 2016-02-09 Bioo Scientific Corporation Oligonucleotide ligation methods for improving data quality and throughput using massively parallel sequencing
US20140186827A1 (en) * 2010-05-14 2014-07-03 Fluidigm, Inc. Assays for the detection of genotype, mutations, and/or aneuploidy
US10179937B2 (en) 2014-04-21 2019-01-15 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US20190010543A1 (en) 2010-05-18 2019-01-10 Natera, Inc. Methods for simultaneous amplification of target loci
CA2801468C (en) 2010-06-04 2018-09-04 Chronix Biomedical Prostate cancer associated circulating nucleic acid biomarkers
DK3425062T3 (en) 2010-06-09 2023-09-04 Keygene Nv Barcodes with combinatorial sequence for high throughput screening
EP2400035A1 (en) 2010-06-28 2011-12-28 Technische Universität München Methods and compositions for diagnosing gastrointestinal stromal tumors
EP4303584A3 (en) 2010-07-23 2024-04-03 President and Fellows of Harvard College Methods for detecting signatures of disease or conditions in bodily fluids
US9079155B2 (en) 2010-07-29 2015-07-14 Toto Ltd. Photocatalyst coated body and photocatalyst coating liquid
WO2012018387A2 (en) 2010-08-02 2012-02-09 Population Diagnotics, Inc. Compositions and methods for discovery of causative mutations in genetic disorders
US20120034603A1 (en) 2010-08-06 2012-02-09 Tandem Diagnostics, Inc. Ligation-based detection of genetic variants
US11031095B2 (en) * 2010-08-06 2021-06-08 Ariosa Diagnostics, Inc. Assay systems for determination of fetal copy number variation
EP2426217A1 (en) 2010-09-03 2012-03-07 Centre National de la Recherche Scientifique (CNRS) Analytical methods for cell free nucleic acids and applications
EP3211421A1 (en) 2010-09-09 2017-08-30 Traxxsson, LLC Combination methods of diagnosing cancer in a patient
EP2619327B1 (en) 2010-09-21 2014-10-22 Population Genetics Technologies LTD. Increasing confidence of allele calls with molecular counting
EP3572528A1 (en) * 2010-09-24 2019-11-27 The Board of Trustees of the Leland Stanford Junior University Direct capture, amplification and sequencing of target dna using immobilized primers
WO2012042374A2 (en) 2010-10-01 2012-04-05 Anssi Jussi Nikolai Taipale Method of determining number or concentration of molecules
EP2625320B1 (en) 2010-10-08 2019-03-27 President and Fellows of Harvard College High-throughput single cell barcoding
US8725422B2 (en) 2010-10-13 2014-05-13 Complete Genomics, Inc. Methods for estimating genome-wide copy number variations
EP2630263B2 (en) 2010-10-22 2021-11-10 Cold Spring Harbor Laboratory Varietal counting of nucleic acids for obtaining genomic copy number information
WO2012066451A1 (en) 2010-11-15 2012-05-24 Pfizer Inc. Prognostic and predictive gene signature for colon cancer
CN105243295B (en) 2010-11-30 2018-08-17 香港中文大学 With the relevant heredity of cancer or the detection of molecular distortion
JP6328934B2 (en) 2010-12-22 2018-05-23 ナテラ, インコーポレイテッド Noninvasive prenatal testing
US9163281B2 (en) 2010-12-23 2015-10-20 Good Start Genetics, Inc. Methods for maintaining the integrity and identification of a nucleic acid template in a multiplex sequencing reaction
CA2822439A1 (en) 2010-12-23 2012-06-28 Sequenom, Inc. Fetal genetic variation detection
CA2823621C (en) 2010-12-30 2023-04-25 Foundation Medicine, Inc. Optimization of multigene analysis of tumor samples
WO2012097053A1 (en) 2011-01-11 2012-07-19 Via Genomes, Inc. Methods, systems, databases, kits and arrays for screening for and predicting the risk of and identifying the presence of tumors and cancers
US20120190020A1 (en) 2011-01-25 2012-07-26 Aria Diagnostics, Inc. Detection of genetic abnormalities
US20120238464A1 (en) 2011-03-18 2012-09-20 Baylor Research Institute Biomarkers for Predicting the Recurrence of Colorectal Cancer Metastasis
US9260753B2 (en) 2011-03-24 2016-02-16 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
EP2697397B1 (en) 2011-04-15 2017-04-05 The Johns Hopkins University Safe sequencing system
US9411937B2 (en) 2011-04-15 2016-08-09 Verinata Health, Inc. Detecting and classifying copy number variation
AU2012249759A1 (en) 2011-04-25 2013-11-07 Bio-Rad Laboratories, Inc. Methods and compositions for nucleic acid analysis
JP6669430B2 (en) 2011-05-06 2020-03-18 ニユー・イングランド・バイオレイブス・インコーポレイテツド Promote ligation
CN103890245B (en) 2011-05-20 2020-11-17 富鲁达公司 Nucleic acid encoding reactions
US9752176B2 (en) 2011-06-15 2017-09-05 Ginkgo Bioworks, Inc. Methods for preparative in vitro cloning
KR101454886B1 (en) 2011-08-01 2014-11-03 주식회사 셀레믹스 Method for synthesizing nucleic acid molecules
US10704164B2 (en) 2011-08-31 2020-07-07 Life Technologies Corporation Methods, systems, computer readable media, and kits for sample identification
US9834766B2 (en) 2011-09-02 2017-12-05 Atreca, Inc. DNA barcodes for multiplexed sequencing
US8712697B2 (en) 2011-09-07 2014-04-29 Ariosa Diagnostics, Inc. Determination of copy number variations using binomial probability calculations
US20130079241A1 (en) 2011-09-15 2013-03-28 Jianhua Luo Methods for Diagnosing Prostate Cancer and Predicting Prostate Cancer Relapse
WO2013052907A2 (en) 2011-10-06 2013-04-11 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10424394B2 (en) 2011-10-06 2019-09-24 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US9367663B2 (en) 2011-10-06 2016-06-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10196681B2 (en) 2011-10-06 2019-02-05 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US20130102485A1 (en) 2011-10-19 2013-04-25 Inhan Lee Method of Determining a Diseased State in a Subject
NO3051026T3 (en) 2011-10-21 2018-07-28
WO2013066641A1 (en) 2011-10-21 2013-05-10 Chronix Biomedical Colorectal cancer associated circulating nucleic acid biomarkers
US20130122499A1 (en) 2011-11-14 2013-05-16 Viomics, Inc. System and method of detecting local copy number variation in dna samples
WO2013086352A1 (en) 2011-12-07 2013-06-13 Chronix Biomedical Prostate cancer associated circulating nucleic acid biomarkers
KR101768652B1 (en) 2011-12-08 2017-08-16 파이브3 제노믹스, 엘엘씨 MDM2-containing double minute chromosomes and methods therefore
WO2013106737A1 (en) 2012-01-13 2013-07-18 Data2Bio Genotyping by next-generation sequencing
PT2814959T (en) 2012-02-17 2018-04-12 Hutchinson Fred Cancer Res Compositions and methods for accurately identifying mutations
ES2776673T3 (en) 2012-02-27 2020-07-31 Univ North Carolina Chapel Hill Methods and uses for molecular tags
EP2820158B1 (en) 2012-02-27 2018-01-10 Cellular Research, Inc. Compositions and kits for molecular counting
EP3287531B1 (en) 2012-02-28 2019-06-19 Agilent Technologies, Inc. Method for attaching a counter sequence to a nucleic acid sample
WO2013130791A1 (en) 2012-02-29 2013-09-06 Dana-Farber Cancer Institute, Inc. Compositions, kits, and methods for the identification, assessment, prevention, and therapy of cancer
US9892230B2 (en) 2012-03-08 2018-02-13 The Chinese University Of Hong Kong Size-based analysis of fetal or tumor DNA fraction in plasma
CA2867293C (en) 2012-03-13 2020-09-01 Abhijit Ajit PATEL Measurement of nucleic acid variants using highly-multiplexed error-suppressed deep sequencing
ES2828661T3 (en) 2012-03-20 2021-05-27 Univ Washington Through Its Center For Commercialization Methods to Reduce the Error Rate of Parallel Massive DNA Sequencing Using Double-stranded Consensus Sequence Sequencing
WO2013142213A1 (en) 2012-03-20 2013-09-26 Wake Forest University Health Sciences Methods, systems, and computer readable media for tracking and verifying receipt of contents of a delivery within an organization
EP4239081A3 (en) 2012-03-26 2023-11-08 The Johns Hopkins University Rapid aneuploidy detection
CA3209140A1 (en) 2012-04-19 2013-10-24 The Medical College Of Wisconsin, Inc. Highly sensitive surveillance using detection of cell free dna
PT2850211T (en) * 2012-05-14 2021-11-29 Irepertoire Inc Method for increasing accuracy in quantitative detection of polynucleotides
CA2872141C (en) 2012-05-31 2016-01-19 Board Of Regents, The University Of Texas System Method for accurate sequencing of dna
WO2013188471A2 (en) 2012-06-11 2013-12-19 Sequenta, Inc. Method of sequence determination using sequence tags
US11261494B2 (en) 2012-06-21 2022-03-01 The Chinese University Of Hong Kong Method of measuring a fractional concentration of tumor DNA
WO2014004726A1 (en) 2012-06-26 2014-01-03 Caifu Chen Methods, compositions and kits for the diagnosis, prognosis and monitoring of cancer
CA2878246C (en) 2012-07-20 2022-01-11 Verinata Health, Inc. Detecting and classifying copy number variation in a cancer genome
US20140066317A1 (en) 2012-09-04 2014-03-06 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10876152B2 (en) 2012-09-04 2020-12-29 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US20160040229A1 (en) 2013-08-16 2016-02-11 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
PL2893040T3 (en) 2012-09-04 2019-05-31 Guardant Health Inc Methods to detect rare mutations and copy number variation
CN105531375B (en) 2012-12-10 2020-03-03 分析生物科学有限公司 Method for targeted genomic analysis
EP2941753A4 (en) 2013-01-05 2016-08-17 Foundation Medicine Inc System and method for outcome tracking and analysis
EP3939614A1 (en) 2013-01-18 2022-01-19 Foundation Medicine, Inc. Methods of treating cholangiocarcinoma
WO2014152990A1 (en) 2013-03-14 2014-09-25 University Of Rochester System and method for detecting population variation from nucleic acid sequencing data
ES2980689T3 (en) * 2013-03-15 2024-10-02 Guardant Health Inc Methods for cell-free polynucleotide sequencing
EP3421613B1 (en) 2013-03-15 2020-08-19 The Board of Trustees of the Leland Stanford Junior University Identification and use of circulating nucleic acid tumor markers
CA2905410A1 (en) 2013-03-15 2014-09-25 Abbott Molecular Inc. Systems and methods for detection of genomic copy number changes
WO2014144495A1 (en) * 2013-03-15 2014-09-18 Abvitro, Inc. Single cell bar-coding for antibody discovery
AU2014233373B2 (en) 2013-03-15 2019-10-24 Verinata Health, Inc. Generating cell-free DNA libraries directly from blood
JP6520705B2 (en) 2013-03-19 2019-05-29 凸版印刷株式会社 EGFR inhibitor sensitivity prediction method
AU2014268710B2 (en) 2013-05-23 2018-10-18 The Board Of Trustees Of The Leland Stanford Junior University Transposition into native chromatin for personal epigenomics
EP3068883B1 (en) 2013-11-13 2020-04-29 Nugen Technologies, Inc. Compositions and methods for identification of a duplicate sequencing read
JP2015096049A (en) 2013-11-15 2015-05-21 凸版印刷株式会社 Method for predicting long-term success of vegf inhibitor
ES2822125T3 (en) 2013-12-28 2021-04-29 Guardant Health Inc Methods and systems to detect genetic variants
SI4026917T1 (en) 2014-04-14 2024-05-31 Yissum Research And Development Company Of The Hebrew University Of Jerusalem Ltd. A method and kit for determining the death of cells or tissue or the tissue or cell origin of dna by dna methylation analysis
WO2015175705A1 (en) 2014-05-13 2015-11-19 Board Of Regents, The University Of Texas System Gene mutations and copy number alterations of egfr, kras and met
JP2017522908A (en) 2014-07-25 2017-08-17 ユニヴァーシティ オブ ワシントン Method for determining tissue and / or cell type producing cell-free DNA, and method for identifying disease or abnormality using the same
PL3178941T3 (en) 2014-07-25 2022-02-14 Bgi Genomics Co., Limited Method for determining the fraction of cell-free fetal nucleic acids in a peripheral blood sample from a pregnant woman and use thereof
US20160053301A1 (en) 2014-08-22 2016-02-25 Clearfork Bioscience, Inc. Methods for quantitative genetic analysis of cell free dna
US10733903B2 (en) 2014-09-10 2020-08-04 Pathway Genomics Corporation Health and wellness management methods and systems useful for the practice thereof
WO2016040901A1 (en) 2014-09-12 2016-03-17 The Board Of Trustees Of The Leland Stanford Junior University Identification and use of circulating nucleic acids
CA2976303A1 (en) 2015-02-10 2016-08-18 The Chinese University Of Hong Kong Detecting mutations for cancer screening and fetal analysis
US10844428B2 (en) 2015-04-28 2020-11-24 Illumina, Inc. Error suppression in sequenced DNA fragments using redundant reads with unique molecular indices (UMIS)
AU2016366231B2 (en) 2015-12-08 2022-12-15 Twinstrand Biosciences, Inc. Improved adapters, methods, and compositions for duplex sequencing
EP4071250A1 (en) 2016-03-22 2022-10-12 Myriad Women's Health, Inc. Combinatorial dna screening
WO2017181146A1 (en) 2016-04-14 2017-10-19 Guardant Health, Inc. Methods for early detection of cancer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120214678A1 (en) * 2010-01-19 2012-08-23 Verinata Health, Inc. Methods for determining fraction of fetal nucleic acids in maternal samples
US20120046877A1 (en) * 2010-07-06 2012-02-23 Life Technologies Corporation Systems and methods to detect copy number variation
US20120100548A1 (en) * 2010-10-26 2012-04-26 Verinata Health, Inc. Method for determining copy number variations
WO2012106559A1 (en) * 2011-02-02 2012-08-09 Translational Genomics Research Institute Biomarkers and methods of use thereof
US8209130B1 (en) 2012-04-04 2012-06-26 Good Start Genetics, Inc. Sequence assembly

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SCHMITT ET AL.: "Detection of ultra-rare mutations by next- generation sequencing", PNAS, vol. 109, no. 36, 1 August 2012 (2012-08-01), pages 14508 - 14513, XP055161683 *
SCHMITT, MW ET AL., PNAS, vol. 109, no. 36, 2012, pages l4508 - 14513
TSAI ET AL.: "Discovery of rare mutations in populations: TILLING by sequencing", PLANT PHYSIOLOGY, vol. 156, no. 3, 29 April 2011 (2011-04-29), pages 1257 - 1268, XP055051938 *

Cited By (322)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11746376B2 (en) 2010-05-18 2023-09-05 Natera, Inc. Methods for amplification of cell-free DNA using ligated adaptors and universal and inner target-specific primers for multiplexed nested PCR
US12020778B2 (en) 2010-05-18 2024-06-25 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US12110552B2 (en) 2010-05-18 2024-10-08 Natera, Inc. Methods for simultaneous amplification of target loci
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
US11078533B2 (en) 2011-03-24 2021-08-03 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
US11866781B2 (en) 2011-03-24 2024-01-09 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
US11352669B2 (en) 2011-03-24 2022-06-07 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
US11286523B2 (en) 2011-03-24 2022-03-29 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
US11035001B2 (en) 2011-03-24 2021-06-15 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
US10584382B2 (en) 2011-03-24 2020-03-10 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
US11629379B2 (en) 2011-03-24 2023-04-18 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
US11608527B2 (en) 2011-03-24 2023-03-21 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
US11834712B2 (en) 2011-03-24 2023-12-05 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
US10287630B2 (en) 2011-03-24 2019-05-14 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
US11004537B2 (en) 2011-06-24 2021-05-11 Sequenom, Inc. Methods and processes for non invasive assessment of a genetic variation
US10760132B2 (en) 2011-09-15 2020-09-01 University of Pittsburgh—of the Commonwealth System of Higher Education Methods for diagnosing prostate cancer and predicting prostate cancer relapse
US11492659B2 (en) 2011-10-06 2022-11-08 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US9984198B2 (en) 2011-10-06 2018-05-29 Sequenom, Inc. Reducing sequence read count error in assessment of complex genetic variations
US10196681B2 (en) 2011-10-06 2019-02-05 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10424394B2 (en) 2011-10-06 2019-09-24 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US11001884B2 (en) 2011-10-06 2021-05-11 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US11560586B2 (en) 2011-10-06 2023-01-24 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US9367663B2 (en) 2011-10-06 2016-06-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10323268B2 (en) 2011-10-06 2019-06-18 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US11437121B2 (en) 2011-10-06 2022-09-06 Sequenom, Inc. Methods and processes for non-invasive detection of a microduplication or a microdeletion with reduced sequence read count error
US11697849B2 (en) 2012-01-20 2023-07-11 Sequenom, Inc. Methods for non-invasive assessment of fetal genetic variations that factor experimental conditions
US11217330B2 (en) 2012-03-08 2022-01-04 The Chinese University Of Hong Kong Size-based analysis of fetal DNA fraction in plasma
US11031100B2 (en) 2012-03-08 2021-06-08 The Chinese University Of Hong Kong Size-based sequencing analysis of cell-free tumor DNA for classifying level of cancer
US10741270B2 (en) 2012-03-08 2020-08-11 The Chinese University Of Hong Kong Size-based analysis of cell-free tumor DNA for classifying level of cancer
EP2844771A4 (en) * 2012-05-04 2015-12-02 Complete Genomics Inc Methods for determining absolute genome-wide copy number variations of complex tumors
US9920361B2 (en) 2012-05-21 2018-03-20 Sequenom, Inc. Methods and compositions for analyzing nucleic acid
US11306354B2 (en) 2012-05-21 2022-04-19 Sequenom, Inc. Methods and compositions for analyzing nucleic acid
US11261494B2 (en) 2012-06-21 2022-03-01 The Chinese University Of Hong Kong Method of measuring a fractional concentration of tumor DNA
US10497461B2 (en) 2012-06-22 2019-12-03 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US11697843B2 (en) 2012-07-09 2023-07-11 Tecan Genomics, Inc. Methods for creating directional bisulfite-converted nucleic acid libraries for next generation sequencing
US12100478B2 (en) 2012-08-17 2024-09-24 Natera, Inc. Method for non-invasive prenatal testing using parental mosaicism data
US10876152B2 (en) 2012-09-04 2020-12-29 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10041127B2 (en) 2012-09-04 2018-08-07 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10494678B2 (en) 2012-09-04 2019-12-03 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10995376B1 (en) 2012-09-04 2021-05-04 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US9902992B2 (en) 2012-09-04 2018-02-27 Guardant Helath, Inc. Systems and methods to detect rare mutations and copy number variation
US10793916B2 (en) 2012-09-04 2020-10-06 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10738364B2 (en) 2012-09-04 2020-08-11 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US9840743B2 (en) 2012-09-04 2017-12-12 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US9834822B2 (en) 2012-09-04 2017-12-05 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US12054783B2 (en) 2012-09-04 2024-08-06 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11879158B2 (en) 2012-09-04 2024-01-23 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11913065B2 (en) 2012-09-04 2024-02-27 Guardent Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10961592B2 (en) 2012-09-04 2021-03-30 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11319597B2 (en) 2012-09-04 2022-05-03 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10822663B2 (en) 2012-09-04 2020-11-03 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11773453B2 (en) 2012-09-04 2023-10-03 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10683556B2 (en) 2012-09-04 2020-06-16 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10837063B2 (en) 2012-09-04 2020-11-17 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US12110560B2 (en) 2012-09-04 2024-10-08 Guardant Health, Inc. Methods for monitoring residual disease
US11001899B1 (en) 2012-09-04 2021-05-11 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11319598B2 (en) 2012-09-04 2022-05-03 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10947600B2 (en) 2012-09-04 2021-03-16 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10876171B2 (en) 2012-09-04 2020-12-29 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10876172B2 (en) 2012-09-04 2020-12-29 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US12116624B2 (en) 2012-09-04 2024-10-15 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10894974B2 (en) 2012-09-04 2021-01-19 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10457995B2 (en) 2012-09-04 2019-10-29 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US12049673B2 (en) 2012-09-04 2024-07-30 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11434523B2 (en) 2012-09-04 2022-09-06 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10501810B2 (en) 2012-09-04 2019-12-10 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10501808B2 (en) 2012-09-04 2019-12-10 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
EP2893040B1 (en) 2012-09-04 2019-01-02 Guardant Health, Inc. Methods to detect rare mutations and copy number variation
US9598731B2 (en) 2012-09-04 2017-03-21 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10482994B2 (en) 2012-10-04 2019-11-19 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US12112832B2 (en) 2012-10-04 2024-10-08 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10504613B2 (en) 2012-12-20 2019-12-10 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10497462B2 (en) 2013-01-25 2019-12-03 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10619206B2 (en) 2013-03-15 2020-04-14 Tecan Genomics Sequential sequencing
EP2971168B1 (en) 2013-03-15 2021-05-05 Guardant Health, Inc. Method of detecting cancer
US10760123B2 (en) 2013-03-15 2020-09-01 Nugen Technologies, Inc. Sequential sequencing
US10930368B2 (en) 2013-04-03 2021-02-23 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10699800B2 (en) 2013-05-24 2020-06-30 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US11462298B2 (en) 2013-05-24 2022-10-04 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10622094B2 (en) 2013-06-21 2020-04-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10964409B2 (en) 2013-10-04 2021-03-30 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US11929146B2 (en) 2013-10-07 2024-03-12 Sequenom, Inc. Systems for non-invasive assessment of chromosome alterations using changes in subsequence mappability
US10741269B2 (en) 2013-10-21 2020-08-11 Verinata Health, Inc. Method for improving the sensitivity of detection in determining copy number variations
US11365453B2 (en) 2013-11-07 2022-06-21 The Board Of Trustees Of The Leland Stanford Junior University Cell-free nucleic acids for the analysis of the human microbiome associated with respiratory infection
US11401562B2 (en) 2013-11-07 2022-08-02 The Board Of Trustees Of The Leland Stanford Junior University Cell-free nucleic acids for the analysis of the human microbiome and components thereof
US11427876B2 (en) 2013-11-07 2022-08-30 The Board Of Trustees Of The Leland Stanford Junior University Cell-free nucleic acids for the analysis of the human microbiome and components thereof
US10450620B2 (en) 2013-11-07 2019-10-22 The Board Of Trustees Of The Leland Stanford Junior University Cell-free nucleic acids for the analysis of the human microbiome and components thereof
US10570448B2 (en) 2013-11-13 2020-02-25 Tecan Genomics Compositions and methods for identification of a duplicate sequencing read
US11098357B2 (en) 2013-11-13 2021-08-24 Tecan Genomics, Inc. Compositions and methods for identification of a duplicate sequencing read
US11725241B2 (en) 2013-11-13 2023-08-15 Tecan Genomics, Inc. Compositions and methods for identification of a duplicate sequencing read
EP3087204B1 (en) 2013-12-28 2018-02-14 Guardant Health, Inc. Methods and systems for detecting genetic variants
US11667967B2 (en) 2013-12-28 2023-06-06 Guardant Health, Inc. Methods and systems for detecting genetic variants
US12098422B2 (en) 2013-12-28 2024-09-24 Guardant Health, Inc. Methods and systems for detecting genetic variants
US12098421B2 (en) 2013-12-28 2024-09-24 Guardant Health, Inc. Methods and systems for detecting genetic variants
US12054774B2 (en) 2013-12-28 2024-08-06 Guardant Health, Inc. Methods and systems for detecting genetic variants
US12024745B2 (en) 2013-12-28 2024-07-02 Guardant Health, Inc. Methods and systems for detecting genetic variants
EP3771745A1 (en) * 2013-12-28 2021-02-03 Guardant Health, Inc. Methods and systems for detecting genetic variants
US12024746B2 (en) 2013-12-28 2024-07-02 Guardant Health, Inc. Methods and systems for detecting genetic variants
US10889858B2 (en) 2013-12-28 2021-01-12 Guardant Health, Inc. Methods and systems for detecting genetic variants
US10883139B2 (en) 2013-12-28 2021-01-05 Guardant Health, Inc. Methods and systems for detecting genetic variants
US11434531B2 (en) 2013-12-28 2022-09-06 Guardant Health, Inc. Methods and systems for detecting genetic variants
US11959139B2 (en) 2013-12-28 2024-04-16 Guardant Health, Inc. Methods and systems for detecting genetic variants
US10801063B2 (en) 2013-12-28 2020-10-13 Guardant Health, Inc. Methods and systems for detecting genetic variants
US11149306B2 (en) 2013-12-28 2021-10-19 Guardant Health, Inc. Methods and systems for detecting genetic variants
US11767556B2 (en) 2013-12-28 2023-09-26 Guardant Health, Inc. Methods and systems for detecting genetic variants
US11149307B2 (en) 2013-12-28 2021-10-19 Guardant Health, Inc. Methods and systems for detecting genetic variants
EP3378952B1 (en) 2013-12-28 2020-02-05 Guardant Health, Inc. Methods and systems for detecting genetic variants
US9920366B2 (en) 2013-12-28 2018-03-20 Guardant Health, Inc. Methods and systems for detecting genetic variants
US11767555B2 (en) 2013-12-28 2023-09-26 Guardant Health, Inc. Methods and systems for detecting genetic variants
US11639526B2 (en) 2013-12-28 2023-05-02 Guardant Health, Inc. Methods and systems for detecting genetic variants
US11118221B2 (en) 2013-12-28 2021-09-14 Guardant Health, Inc. Methods and systems for detecting genetic variants
US11639525B2 (en) 2013-12-28 2023-05-02 Guardant Health, Inc. Methods and systems for detecting genetic variants
US11649491B2 (en) 2013-12-28 2023-05-16 Guardant Health, Inc. Methods and systems for detecting genetic variants
EP3524694A1 (en) * 2013-12-28 2019-08-14 Guardant Health, Inc. Methods and systems for detecting genetic variants
EP3524694B1 (en) 2013-12-28 2020-07-15 Guardant Health, Inc. Methods and systems for detecting genetic variants
US9932641B2 (en) 2013-12-30 2018-04-03 University of Pittsburgh—of the Commonwealth System of Higher Education Fusion genes associated with progressive prostate cancer
US10344338B2 (en) 2013-12-30 2019-07-09 University of Pittsburgh—of the Commonwealth System of Higher Education Fusion genes associated with progressive prostate cancer
US10167519B2 (en) 2013-12-30 2019-01-01 University of Pittsburgh—of the Commonwealth System of Higher Education Fusion genes associated with progressive prostate cancer
US10988812B2 (en) 2013-12-30 2021-04-27 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Fusion genes associated with progressive prostate cancer
US10570460B2 (en) 2013-12-30 2020-02-25 University of Pittsburgh—of the Commonwealth System of Higher Education Fusion genes associated with progressive prostate cancer
US11091797B2 (en) 2014-03-05 2021-08-17 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11091796B2 (en) 2014-03-05 2021-08-17 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11667959B2 (en) 2014-03-05 2023-06-06 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11447813B2 (en) 2014-03-05 2022-09-20 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10704086B2 (en) 2014-03-05 2020-07-07 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10704085B2 (en) 2014-03-05 2020-07-07 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10982265B2 (en) 2014-03-05 2021-04-20 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10870880B2 (en) 2014-03-05 2020-12-22 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
CN109971852A (en) * 2014-04-21 2019-07-05 纳特拉公司 Detect the mutation and ploidy in chromosome segment
JP2022028950A (en) * 2014-04-21 2022-02-16 ナテラ, インコーポレイテッド Detecting mutations and ploidy in chromosomal segments
WO2015175705A1 (en) 2014-05-13 2015-11-19 Board Of Regents, The University Of Texas System Gene mutations and copy number alterations of egfr, kras and met
EP3805404A1 (en) 2014-05-13 2021-04-14 Board of Regents, The University of Texas System Gene mutations and copy number alterations of egfr, kras and met
US11085086B2 (en) 2014-05-13 2021-08-10 Guardant Health, Inc. Gene mutations and copy number alterations of EGFR, KRAS and MET
WO2015181718A1 (en) * 2014-05-26 2015-12-03 Ebios Futura S.R.L. Method of prenatal diagnosis
IL249095B2 (en) * 2014-05-30 2023-10-01 Verinata Health Inc Detecting fetal sub-chromosomal aneuploidies and copy number variations
JP2017527257A (en) * 2014-05-30 2017-09-21 セクエノム, インコーポレイテッド Determination of chromosome presentation
US10318704B2 (en) 2014-05-30 2019-06-11 Verinata Health, Inc. Detecting fetal sub-chromosomal aneuploidies
WO2015183872A1 (en) * 2014-05-30 2015-12-03 Sequenom, Inc. Chromosome representation determinations
WO2015184404A1 (en) * 2014-05-30 2015-12-03 Verinata Health, Inc. Detecting fetal sub-chromosomal aneuploidies and copy number variations
EP3598452A1 (en) * 2014-05-30 2020-01-22 Sequenom, Inc. Chromosome representation determinations
EP3690061A1 (en) * 2014-05-30 2020-08-05 Verinata Health, Inc. Detecting, optionally fetal, sub-chromosomal aneuploidies and copy number variations
IL249095B1 (en) * 2014-05-30 2023-06-01 Verinata Health Inc Detecting fetal sub-chromosomal aneuploidies and copy number variations
AU2015266665B2 (en) * 2014-05-30 2021-08-19 Verinata Health, Inc. Detecting fetal sub-chromosomal aneuploidies and copy number variations
AU2015266665C1 (en) * 2014-05-30 2021-12-23 Verinata Health, Inc. Detecting fetal sub-chromosomal aneuploidies and copy number variations
US10822622B2 (en) 2014-07-17 2020-11-03 University of Pittsburgh—of the Commonwealth System of Higher Education Methods for treating cells containing fusion genes
US10308960B2 (en) 2014-07-17 2019-06-04 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Methods for treating cells containing fusion genes
US10640819B2 (en) 2014-07-18 2020-05-05 Cancer Research Technology Limited Method for detecting a genetic variant
JP2017521078A (en) * 2014-07-18 2017-08-03 キャンサー・リサーチ・テクノロジー・リミテッドCancer Research Technology Limited Methods for detecting genetic variants
US11984195B2 (en) 2014-07-18 2024-05-14 The Chinese University Of Hong Kong Methylation pattern analysis of tissues in a DNA mixture
US11062789B2 (en) 2014-07-18 2021-07-13 The Chinese University Of Hong Kong Methylation pattern analysis of tissues in a DNA mixture
US11352670B2 (en) 2014-07-25 2022-06-07 University Of Washington Methods of determining tissues and/or cell types giving rise to cell-free DNA, and methods of identifying a disease or disorder using same
US11783911B2 (en) 2014-07-30 2023-10-10 Sequenom, Inc Methods and processes for non-invasive assessment of genetic variations
JP2017526353A (en) * 2014-08-06 2017-09-14 ニューゲン テクノロジーズ, インコーポレイテッド Digital measurements from targeted sequencing
CN107075581A (en) * 2014-08-06 2017-08-18 纽亘技术公司 Digital measurement is carried out by targeting sequencing
EP3177740A4 (en) * 2014-08-06 2018-02-28 Nugen Technologies, Inc. Digital measurements from targeted sequencing
US10102337B2 (en) 2014-08-06 2018-10-16 Nugen Technologies, Inc. Digital measurements from targeted sequencing
WO2016090584A1 (en) * 2014-12-10 2016-06-16 深圳华大基因研究院 Method and device for determining concentration of tumor nucleic acid
CN107075564A (en) * 2014-12-10 2017-08-18 深圳华大基因研究院 The method and apparatus for determining tumour nucleic acid concentration
EP3502273A1 (en) * 2014-12-12 2019-06-26 Verinata Health, Inc. Cell-free dna fragment
US11072814B2 (en) 2014-12-12 2021-07-27 Verinata Health, Inc. Using cell-free DNA fragment size to determine copy number variations
WO2016094853A1 (en) * 2014-12-12 2016-06-16 Verinata Health, Inc. Using cell-free dna fragment size to determine copy number variations
EP3567120A1 (en) * 2014-12-12 2019-11-13 Verinata Health, Inc. Using cell-free dna fragment size to determine copy number variations
CN107750277A (en) * 2014-12-12 2018-03-02 维里纳塔健康股份有限公司 Determine that copy number changes using Cell-free DNA clip size
WO2016095093A1 (en) * 2014-12-15 2016-06-23 天津华大基因科技有限公司 Method for screening tumor, method and device for detecting variation of target region
US9859394B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US10429342B2 (en) 2014-12-18 2019-10-01 Edico Genome Corporation Chemically-sensitive field effect transistor
US10429381B2 (en) 2014-12-18 2019-10-01 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US10020300B2 (en) 2014-12-18 2018-07-10 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US9857328B2 (en) 2014-12-18 2018-01-02 Agilome, Inc. Chemically-sensitive field effect transistors, systems and methods for manufacturing and using the same
US10006910B2 (en) 2014-12-18 2018-06-26 Agilome, Inc. Chemically-sensitive field effect transistors, systems, and methods for manufacturing and using the same
US9618474B2 (en) 2014-12-18 2017-04-11 Edico Genome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US10607989B2 (en) 2014-12-18 2020-03-31 Nanomedical Diagnostics, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
US10494670B2 (en) 2014-12-18 2019-12-03 Agilome, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
EP3289502A4 (en) * 2014-12-29 2018-09-12 Counsyl, Inc. Method for determining genotypes in regions of high homology
JP2022024040A (en) * 2014-12-31 2022-02-08 ガーダント ヘルス, インコーポレイテッド Detection and treatment of disease exhibiting disease cell heterogeneity, and systems and methods for communicating test results
WO2016109452A1 (en) * 2014-12-31 2016-07-07 Guardant Health , Inc. Detection and treatment of disease exhibiting disease cell heterogeneity and systems and methods for communicating test results
CN113930507A (en) * 2014-12-31 2022-01-14 夸登特健康公司 Detection and treatment of disease and system and method for communicating test results
GB2552267B (en) * 2014-12-31 2020-06-10 Guardant Health Inc Detection and treatment of disease exhibiting disease cell heterogeneity and systems and methods for communicating test results
JP7458360B2 (en) 2014-12-31 2024-03-29 ガーダント ヘルス, インコーポレイテッド Systems and methods for detection and treatment of diseases exhibiting disease cell heterogeneity and communicating test results
CN107406876A (en) * 2014-12-31 2017-11-28 夸登特健康公司 Show detection and treatment and the system and method for transmitting test result of the heterogeneous disease of sick cell
GB2552267A (en) * 2014-12-31 2018-01-17 Guardant Health Inc Detection and treatment of disease exhibiting disease cell heterogeneity and systems and methods for communicating test results
CN107406876B (en) * 2014-12-31 2021-09-07 夸登特健康公司 Detection and treatment of diseases exhibiting pathological cell heterogeneity and systems and methods for communicating test results
JP2018507682A (en) * 2014-12-31 2018-03-22 ガーダント ヘルス, インコーポレイテッド System and method for detection and treatment of disease exhibiting disease cell heterogeneity, and communication test results
JP2018512042A (en) * 2015-01-13 2018-05-10 ザ チャイニーズ ユニバーシティ オブ ホンコン Use of size and number abnormalities in plasma DNA for cancer detection
WO2016112850A1 (en) * 2015-01-13 2016-07-21 The Chinese University Of Hong Kong Using size and number aberrations in plasma dna for detecting cancer
US10364467B2 (en) 2015-01-13 2019-07-30 The Chinese University Of Hong Kong Using size and number aberrations in plasma DNA for detecting cancer
JP2022185149A (en) * 2015-02-10 2022-12-13 ザ チャイニーズ ユニバーシティ オブ ホンコン Detecting mutations for cancer screening and fetal analysis
US11168370B2 (en) 2015-02-10 2021-11-09 The Chinese University Of Hong Kong Detecting mutations for cancer screening
WO2016127944A1 (en) * 2015-02-10 2016-08-18 The Chinese University Of Hong Kong Detecting mutations for cancer screening and fetal analysis
JP2018512048A (en) * 2015-02-10 2018-05-10 ザ チャイニーズ ユニバーシティ オブ ホンコン Mutation detection for cancer screening and fetal analysis
JP7168247B2 (en) 2015-02-10 2022-11-09 ザ チャイニーズ ユニバーシティ オブ ホンコン Mutation detection for cancer screening and fetal analysis
CN113957124A (en) * 2015-02-10 2022-01-21 香港中文大学 Mutation detection for cancer screening and fetal analysis
JP2021061861A (en) * 2015-02-10 2021-04-22 ザ チャイニーズ ユニバーシティ オブ ホンコン Detecting mutations for cancer screening and fetal analysis
US10240209B2 (en) 2015-02-10 2019-03-26 The Chinese University Of Hong Kong Detecting mutations for cancer screening
EP4343788A2 (en) 2015-05-01 2024-03-27 Guardant Health, Inc. Diagnostic methods
WO2016179049A1 (en) 2015-05-01 2016-11-10 Guardant Health, Inc Diagnostic methods
US11946101B2 (en) 2015-05-11 2024-04-02 Natera, Inc. Methods and compositions for determining ploidy
US11111520B2 (en) 2015-05-18 2021-09-07 Karius, Inc. Compositions and methods for enriching populations of nucleic acids
US10344336B2 (en) 2015-06-09 2019-07-09 Life Technologies Corporation Methods, systems, compositions, kits, apparatus and computer-readable media for molecular tagging
US11124842B2 (en) 2015-06-09 2021-09-21 Life Technologies Corporation Methods, systems, compositions, kits, apparatus and computer-readable media for molecular tagging
WO2016201142A1 (en) * 2015-06-09 2016-12-15 Life Technologies Corporation Methods, systems, compositions, kits, apparatus and computer-readable media for molecular tagging
JP2018522543A (en) * 2015-06-09 2018-08-16 ライフ テクノロジーズ コーポレーション Methods, systems, compositions, kits, devices, and computer readable media for molecular tagging
CN107408163A (en) * 2015-06-24 2017-11-28 社会福祉法人三星生命公益财团 For analyzing the method and device of gene
CN107408163B (en) * 2015-06-24 2021-03-05 吉尼努斯公司 Method and apparatus for analyzing gene
CN107922973B (en) * 2015-07-07 2019-06-14 远见基因组系统公司 Method and system for the modification detection based on sequencing
GB2555551A (en) * 2015-07-07 2018-05-02 Farsight Genome Systems Inc Methods and systems for sequencing-based variant detection
CN107922973A (en) * 2015-07-07 2018-04-17 远见基因组系统公司 Method and system for the modification detection based on sequencing
WO2017007903A1 (en) * 2015-07-07 2017-01-12 Farsight Genome Systems, Inc. Methods and systems for sequencing-based variant detection
EP3636777A1 (en) * 2015-07-13 2020-04-15 Agilent Technologies Belgium NV System and methodology for the analysis of genomic data obtained from a subject
EP3828292A1 (en) 2015-07-21 2021-06-02 Guardant Health, Inc. Locked nucleic acids for capturing fusion genes
EP4279612A3 (en) * 2015-07-23 2024-02-28 The Chinese University of Hong Kong Analysis of fragmentation patterns of cell-free dna
EP3967775A1 (en) * 2015-07-23 2022-03-16 The Chinese University Of Hong Kong Analysis of fragmentation patterns of cell-free dna
US11615865B2 (en) 2015-07-23 2023-03-28 The Chinese University Of Hong Kong Analysis of fragmentation patterns of cell-free DNA
US11605445B2 (en) 2015-07-23 2023-03-14 The Chinese University Of Hong Kong Analysis of fragmentation patterns of cell-free DNA
US11581063B2 (en) 2015-07-23 2023-02-14 The Chinese University Of Hong Kong Analysis of fragmentation patterns of cell-free DNA
EP3325664A4 (en) * 2015-07-23 2019-01-02 The Chinese University Of Hong Kong Analysis of fragmentation patterns of cell-free dna
CN108138220A (en) * 2015-07-29 2018-06-08 普罗格尼迪公司 The system and method for genetic analysis
US10947595B2 (en) 2015-07-29 2021-03-16 Progenity, Inc. Nucleic acids and methods for detecting chromosomal abnormalities
WO2017020024A3 (en) * 2015-07-29 2017-03-09 Progenity, Inc. Systems and methods for genetic analysis
WO2017027473A1 (en) * 2015-08-07 2017-02-16 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Methods for predicting prostate cancer relapse
US11008624B2 (en) 2015-08-07 2021-05-18 University of Pittsburgh—of the Commonwealth System of Higher Education Methods for predicting prostate cancer relapse
US11527305B2 (en) 2015-09-02 2022-12-13 Guardant Health, Inc. Machine learning for somatic single nucleotide variant detection in cell-free tumor nucleic acid sequencing applications
US11756655B2 (en) 2015-10-09 2023-09-12 Guardant Health, Inc. Population based treatment recommender using cell free DNA
US11299766B2 (en) 2015-10-30 2022-04-12 Exact Sciences Corporation Multiplex amplification detection assay
US11674168B2 (en) 2015-10-30 2023-06-13 Exact Sciences Corporation Isolation and detection of DNA from plasma
EP3377655A4 (en) * 2015-11-16 2018-11-21 Mayo Foundation for Medical Education and Research Detecting copy number variations
JP2021101732A (en) * 2015-12-17 2021-07-15 ガーダント ヘルス, インコーポレイテッド Method for determining tumor gene copy number by analysis of cell-free dna
US11242569B2 (en) 2015-12-17 2022-02-08 Guardant Health, Inc. Methods to determine tumor gene copy number by analysis of cell-free DNA
EP3390668A4 (en) * 2015-12-17 2020-04-01 Guardant Health, Inc. Methods to determine tumor gene copy number by analysis of cell-free dna
WO2017106768A1 (en) 2015-12-17 2017-06-22 Guardant Health, Inc. Methods to determine tumor gene copy number by analysis of cell-free dna
JP2019507585A (en) * 2015-12-17 2019-03-22 ガーダント ヘルス, インコーポレイテッド Method for determining oncogene copy number by analysis of cell free DNA
CN108603228B (en) * 2015-12-17 2023-09-01 夸登特健康公司 Method for determining tumor gene copy number by analyzing cell-free DNA
CN108603228A (en) * 2015-12-17 2018-09-28 夸登特健康公司 The method for determining oncogene copy number by analyzing Cell-free DNA
US11335463B2 (en) 2016-02-02 2022-05-17 Guardant Health, Inc. Cancer evolution detection and diagnostic
US11282610B2 (en) 2016-02-02 2022-03-22 Guardant Health, Inc. Cancer evolution detection and diagnostic
US11996202B2 (en) 2016-02-02 2024-05-28 Guardant Health, Inc. Cancer evolution detection and diagnostic
US11621083B2 (en) 2016-02-02 2023-04-04 Guardant Health, Inc. Cancer evolution detection and diagnostic
CN109072309A (en) * 2016-02-02 2018-12-21 夸登特健康公司 Cancer evolution detection and diagnosis
US11430541B2 (en) 2016-02-03 2022-08-30 Verinata Health, Inc. Using cell-free DNA fragment size to determine copy number variations
US10095831B2 (en) 2016-02-03 2018-10-09 Verinata Health, Inc. Using cell-free DNA fragment size to determine copy number variations
EP3430170A4 (en) * 2016-03-16 2019-11-27 Dana-Farber Cancer Institute, Inc. Methods for genome characterization
US11479878B2 (en) 2016-03-16 2022-10-25 Dana-Farber Cancer Institute, Inc. Methods for genome characterization
US9976181B2 (en) 2016-03-25 2018-05-22 Karius, Inc. Synthetic nucleic acid spike-ins
US11078532B2 (en) 2016-03-25 2021-08-03 Karius, Inc. Synthetic nucleic acid spike-ins
US11692224B2 (en) 2016-03-25 2023-07-04 Karius, Inc. Synthetic nucleic acid spike-ins
WO2017181146A1 (en) 2016-04-14 2017-10-19 Guardant Health, Inc. Methods for early detection of cancer
US11359248B2 (en) 2016-04-14 2022-06-14 Guardant Health, Inc. Methods for detecting single nucleotide variants or indels by deep sequencing
US11643694B2 (en) 2016-04-14 2023-05-09 Guardant Health, Inc. Methods for early detection of cancer
US11827942B2 (en) 2016-04-14 2023-11-28 Guardant Health, Inc. Methods for early detection of cancer
US12116640B2 (en) 2016-04-14 2024-10-15 Guardant Health, Inc. Methods for early detection of cancer
US11384382B2 (en) 2016-04-14 2022-07-12 Guardant Health, Inc. Methods of attaching adapters to sample nucleic acids
US11519039B2 (en) 2016-04-14 2022-12-06 Guardant Health, Inc. Methods for computer processing sequence reads to detect molecular residual disease
US11788153B2 (en) 2016-04-14 2023-10-17 Guardant Health, Inc. Methods for early detection of cancer
US11345968B2 (en) 2016-04-14 2022-05-31 Guardant Health, Inc. Methods for computer processing sequence reads to detect molecular residual disease
ITUA20162640A1 (en) * 2016-04-15 2017-10-15 Menarini Silicon Biosystems Spa METHOD AND KIT FOR THE GENERATION OF DNA LIBRARIES FOR PARALLEL MAXIMUM SEQUENCING
WO2017178655A1 (en) * 2016-04-15 2017-10-19 Menarini Silicon Biosystems S.P.A. Method and kit for the generation of dna libraries for massively parallel sequencing
EP3458586B1 (en) 2016-05-16 2022-12-28 Accuragen Holdings Limited Method of improved sequencing by strand identification
US10811539B2 (en) 2016-05-16 2020-10-20 Nanomedical Diagnostics, Inc. Graphene FET devices, systems, and methods of using the same for sequencing nucleic acids
CN110168099B (en) * 2016-06-07 2024-06-07 加利福尼亚大学董事会 Cell-free DNA methylation patterns for disease and condition analysis
US11499196B2 (en) 2016-06-07 2022-11-15 The Regents Of The University Of California Cell-free DNA methylation patterns for disease and condition analysis
EP3464644A4 (en) * 2016-06-07 2020-07-15 The Regents of The University of California Cell-free dna methylation patterns for disease and condition analysis
CN110168099A (en) * 2016-06-07 2019-08-23 加利福尼亚大学董事会 The Cell-free DNA methylation patterns analyzed for disease and illness
JP2019521673A (en) * 2016-06-07 2019-08-08 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア Cell-free DNA methylation patterns for disease and condition analysis
EP3478856B1 (en) 2016-06-30 2021-01-27 Grail, Inc. Differential tagging of rna for preparation of a cell-free dna/rna sequencing library
CN107577917A (en) * 2016-07-05 2018-01-12 魏霖静 A kind of bioinformatics high performance information management system and data processing method
US11200963B2 (en) 2016-07-27 2021-12-14 Sequenom, Inc. Genetic copy number alteration classifications
US12100482B2 (en) 2016-09-30 2024-09-24 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
US11062791B2 (en) 2016-09-30 2021-07-13 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
US12094573B2 (en) 2016-09-30 2024-09-17 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
US11817179B2 (en) 2016-09-30 2023-11-14 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
US11817177B2 (en) 2016-09-30 2023-11-14 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
US9850523B1 (en) 2016-09-30 2017-12-26 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
WO2018071595A1 (en) 2016-10-12 2018-04-19 Bellwether Bio, Inc. Determining cell type origin of circulating cell-free dna with molecular counting
US11459616B2 (en) 2016-10-24 2022-10-04 The Chinese University Of Hong Kong Methods and systems for tumor detection
CN106566877A (en) * 2016-10-31 2017-04-19 天津诺禾致源生物信息科技有限公司 Gene mutation detection method and apparatus
US11435339B2 (en) 2016-11-30 2022-09-06 The Chinese University Of Hong Kong Analysis of cell-free DNA in urine
CN106701956A (en) * 2017-01-11 2017-05-24 上海思路迪生物医学科技有限公司 Technology for digitized deep sequencing of ctDNA
US11929145B2 (en) 2017-01-20 2024-03-12 Sequenom, Inc Methods for non-invasive assessment of genetic alterations
US11694768B2 (en) 2017-01-24 2023-07-04 Sequenom, Inc. Methods and processes for assessment of genetic variations
US10633713B2 (en) 2017-01-25 2020-04-28 The Chinese University Of Hong Kong Diagnostic applications using nucleic acid fragments
US11479825B2 (en) 2017-01-25 2022-10-25 The Chinese University Of Hong Kong Diagnostic applications using nucleic acid fragments
US12049671B2 (en) 2017-01-27 2024-07-30 Exact Sciences Corporation Detection of colon neoplasia by analysis of methylated DNA
US11180800B2 (en) 2017-04-12 2021-11-23 Karius, Inc. Sample preparation methods, systems and compositions
US11834711B2 (en) 2017-04-12 2023-12-05 Karius, Inc. Sample preparation methods, systems and compositions
US10697008B2 (en) 2017-04-12 2020-06-30 Karius, Inc. Sample preparation methods, systems and compositions
US12146195B2 (en) 2017-04-17 2024-11-19 Natera, Inc. Methods for lung cancer detection
US11342047B2 (en) 2017-04-21 2022-05-24 Illumina, Inc. Using cell-free DNA fragment size to detect tumor-associated variant
US12087401B2 (en) 2017-04-21 2024-09-10 Illumina, Inc. Using cell-free DNA fragment size to detect tumor-associated variant
WO2018210877A1 (en) * 2017-05-15 2018-11-22 Katholieke Universiteit Leuven Method for analysing cell-free nucleic acids
US11859249B2 (en) 2017-07-21 2024-01-02 Menarini Silicon Biosystems S.P.A. Method and kit for the generation of DNA libraries for massively parallel sequencing
IL272039B2 (en) * 2017-07-21 2024-03-01 Menarini Silicon Biosystems Spa Improved method and kit for the generation of dna libraries for massively parallel sequencing
IL272039B1 (en) * 2017-07-21 2023-11-01 Menarini Silicon Biosystems Spa Improved method and kit for the generation of dna libraries for massively parallel sequencing
WO2019016401A1 (en) * 2017-07-21 2019-01-24 Menarini Silicon Biosystems S.P.A. Improved method and kit for the generation of dna libraries for massively parallel sequencing
EP3431611A1 (en) * 2017-07-21 2019-01-23 Menarini Silicon Biosystems S.p.A. Improved method and kit for the generation of dna libraries for massively parallel sequencing
US11519024B2 (en) 2017-08-04 2022-12-06 Billiontoone, Inc. Homologous genomic regions for characterization associated with biological targets
US11430543B2 (en) 2017-08-04 2022-08-30 Billiontoone, Inc. Sequencing output determination and analysis with target-associated molecules in quantification associated with biological targets
US11646100B2 (en) 2017-08-04 2023-05-09 Billiontoone, Inc. Target-associated molecules for characterization associated with biological targets
US11099202B2 (en) 2017-10-20 2021-08-24 Tecan Genomics, Inc. Reagent delivery system
US11193175B2 (en) 2017-11-03 2021-12-07 Guardant Health, Inc. Normalizing tumor mutation burden
US12084720B2 (en) 2017-12-14 2024-09-10 Natera, Inc. Assessing graft suitability for transplantation
US11629381B2 (en) 2018-01-05 2023-04-18 Billiontoone, Inc. Quality control templates ensuring validity of sequencing-based assays
US12043867B2 (en) 2018-03-29 2024-07-23 Accuragen Holdings Limited Compositions and methods comprising asymmetric barcoding
US12024738B2 (en) 2018-04-14 2024-07-02 Natera, Inc. Methods for cancer detection and monitoring
WO2019204588A1 (en) 2018-04-20 2019-10-24 Biofire Diagnostics, Llc Methods for normalization and quantification of sequencing data
JP2021521885A (en) * 2018-04-20 2021-08-30 バイオファイア・ダイアグノスティクス,リミテッド・ライアビリティ・カンパニー Methods for normalization and quantification of sequencing data
CN112492883A (en) * 2018-04-20 2021-03-12 拜奥法尔诊断有限责任公司 Methods for normalization and quantification of sequencing data
US12073922B2 (en) 2018-07-11 2024-08-27 Illumina, Inc. Deep learning-based framework for identifying sequence patterns that cause sequence-specific errors (SSEs)
JP2020529644A (en) * 2018-07-11 2020-10-08 イルミナ インコーポレイテッド A deep learning-based framework for identifying sequence patterns that cause sequence-specific errors (SSEs)
US11118234B2 (en) 2018-07-23 2021-09-14 Guardant Health, Inc. Methods and systems for adjusting tumor mutational burden by tumor fraction and coverage
WO2020021119A1 (en) * 2018-07-27 2020-01-30 F. Hoffmann-La Roche Ag Method of monitoring effectiveness of immunotherapy of cancer patients
US12071651B2 (en) 2018-08-06 2024-08-27 Billiontoone, Inc. Dilution tagging for quantification of biological targets
US11643693B2 (en) 2019-01-31 2023-05-09 Guardant Health, Inc. Compositions and methods for isolating cell-free DNA
US11959129B2 (en) 2019-04-02 2024-04-16 Enumera Molecular, Inc. Methods, systems, and compositions for counting nucleic acid molecules
US11939636B2 (en) 2019-05-31 2024-03-26 Guardant Health, Inc. Methods and systems for improving patient monitoring after surgery
CN110578002A (en) * 2019-10-10 2019-12-17 广州燃石医学检验所有限公司 Quality control product for detecting circulating tumor DNA mutation and preparation method thereof
US12059674B2 (en) 2020-02-03 2024-08-13 Tecan Genomics, Inc. Reagent storage system
US12031186B2 (en) 2020-05-14 2024-07-09 Guardant Health, Inc. Homologous recombination repair deficiency detection
US12043873B2 (en) 2022-03-21 2024-07-23 Billiontoone, Inc. Molecule counting of methylated cell-free DNA for treatment monitoring
WO2024151825A1 (en) 2023-01-11 2024-07-18 Guardant Health, Inc. Joint modeling of longitudinal and time-to-event data to predict patient survival
CN115798580B (en) * 2023-02-10 2023-11-07 北京中仪康卫医疗器械有限公司 Genotype filling and low-depth sequencing-based integrated genome analysis method
CN115798580A (en) * 2023-02-10 2023-03-14 北京中仪康卫医疗器械有限公司 Integrated genome analysis method based on genotype filling and low-depth sequencing
WO2024216112A1 (en) 2023-04-12 2024-10-17 Guardant Health, Inc. Promoter methylation detection

Also Published As

Publication number Publication date
JP2018027096A (en) 2018-02-22
US10947600B2 (en) 2021-03-16
US20200299785A1 (en) 2020-09-24
ES2968333T3 (en) 2024-05-09
US20200087735A1 (en) 2020-03-19
US10457995B2 (en) 2019-10-29
ES2906714T3 (en) 2022-04-20
CN104781421A (en) 2015-07-15
US11001899B1 (en) 2021-05-11
IL269097A (en) 2019-11-28
EP2893040A1 (en) 2015-07-15
DK2893040T5 (en) 2019-03-18
KR20210013317A (en) 2021-02-03
IL269097B2 (en) 2024-01-01
ES2984550T3 (en) 2024-10-29
JP7119014B2 (en) 2022-08-16
JP6275145B2 (en) 2018-02-07
ES2769241T5 (en) 2023-05-30
EP3842551A1 (en) 2021-06-30
JP2015535681A (en) 2015-12-17
US20190177803A1 (en) 2019-06-13
IL237480B (en) 2019-10-31
EP3842551C0 (en) 2023-11-01
US10494678B2 (en) 2019-12-03
US10738364B2 (en) 2020-08-11
SG10202000486VA (en) 2020-03-30
US20180223374A1 (en) 2018-08-09
EP3470533B1 (en) 2019-11-06
US20190185940A1 (en) 2019-06-20
US12110560B2 (en) 2024-10-08
EP2893040A4 (en) 2016-04-27
US10683556B2 (en) 2020-06-16
IL237480A0 (en) 2015-04-30
US20210355549A1 (en) 2021-11-18
US20200248270A1 (en) 2020-08-06
US12049673B2 (en) 2024-07-30
ES2769241T3 (en) 2020-06-25
US10995376B1 (en) 2021-05-04
US20210139998A1 (en) 2021-05-13
US20210130912A1 (en) 2021-05-06
KR20150067161A (en) 2015-06-17
JP2022169566A (en) 2022-11-09
US20230151435A1 (en) 2023-05-18
EP4424826A2 (en) 2024-09-04
CA3190199A1 (en) 2014-03-13
EP3470533B2 (en) 2023-01-18
US20200087736A1 (en) 2020-03-19
EP3591073B1 (en) 2021-12-01
US12054783B2 (en) 2024-08-06
JP2020000237A (en) 2020-01-09
EP3842551B1 (en) 2023-11-01
EP4036247A1 (en) 2022-08-03
US20210032707A1 (en) 2021-02-04
US11879158B2 (en) 2024-01-23
GB2533006B (en) 2017-06-07
US9834822B2 (en) 2017-12-05
US20170218459A1 (en) 2017-08-03
US10501810B2 (en) 2019-12-10
US20190185941A1 (en) 2019-06-20
KR20240007774A (en) 2024-01-16
DK2893040T3 (en) 2019-03-11
MX2015002769A (en) 2015-08-14
HK1225416B (en) 2017-09-08
US20190177802A1 (en) 2019-06-13
JP6664025B2 (en) 2020-03-13
BR112015004847A2 (en) 2020-04-22
CA2883901A1 (en) 2014-03-13
US9840743B2 (en) 2017-12-12
EP2893040B1 (en) 2019-01-02
US10793916B2 (en) 2020-10-06
US10837063B2 (en) 2020-11-17
CN110872617A (en) 2020-03-10
EP3470533A1 (en) 2019-04-17
US20150299812A1 (en) 2015-10-22
US20150368708A1 (en) 2015-12-24
GB201509071D0 (en) 2015-07-08
CN104781421B (en) 2020-06-05
IL305303A (en) 2023-10-01
IL269097B1 (en) 2023-09-01
US20240240258A1 (en) 2024-07-18
US10822663B2 (en) 2020-11-03
US20240200150A1 (en) 2024-06-20
US11319597B2 (en) 2022-05-03
US20210340632A1 (en) 2021-11-04
KR20190112843A (en) 2019-10-07
US20230323477A1 (en) 2023-10-12
US10501808B2 (en) 2019-12-10
PT2893040T (en) 2019-04-01
DE202013012824U1 (en) 2020-03-10
MX367963B (en) 2019-09-11
US10876172B2 (en) 2020-12-29
US20220205051A1 (en) 2022-06-30
HK1201080A1 (en) 2015-08-21
US20180327862A1 (en) 2018-11-15
CA2883901C (en) 2023-04-11
EP3591073A1 (en) 2020-01-08
US10041127B2 (en) 2018-08-07
PL3591073T3 (en) 2022-03-28
JP2020103298A (en) 2020-07-09
US9598731B2 (en) 2017-03-21
US10961592B2 (en) 2021-03-30
US11773453B2 (en) 2023-10-03
US11319598B2 (en) 2022-05-03
SG11201501662TA (en) 2015-05-28
KR102393608B1 (en) 2022-05-03
EP4036247B1 (en) 2024-04-10
GB2533006A (en) 2016-06-08
US20180171415A1 (en) 2018-06-21
KR20220061271A (en) 2022-05-12
US20200291487A1 (en) 2020-09-17
PL2893040T3 (en) 2019-05-31
US10876171B2 (en) 2020-12-29
US20170218460A1 (en) 2017-08-03
ES2711635T3 (en) 2019-05-06
US20220042104A1 (en) 2022-02-10
KR102028375B1 (en) 2019-10-04
HK1212396A1 (en) 2016-06-10
KR102210852B1 (en) 2021-02-01

Similar Documents

Publication Publication Date Title
US12110560B2 (en) Methods for monitoring residual disease
US11434523B2 (en) Systems and methods to detect rare mutations and copy number variation
US10894974B2 (en) Systems and methods to detect rare mutations and copy number variation
US11913065B2 (en) Systems and methods to detect rare mutations and copy number variation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1403810.3

Country of ref document: GB

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834427

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 237480

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 14425189

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2883901

Country of ref document: CA

Ref document number: 2015530152

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/002769

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157008319

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015004847

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015004847

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150304

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015004847

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTE DOCUMENTO DE CESSAO PARA A PRIORIDADE US 61/696,734 E US 61/704,400, UMA VEZ QUE O DOCUMENTO DE CESSAO APRESENTADO NA PETICAO NO 860150082692 E REFERENTE A SOMENTE AO PEDIDO US 61/845,987 E O DIREITO DE PRIORIDADE NAO PODE SER EXTRAPOLADO DE UM PEDIDO PARA OUTRO. A CESSAO DEVE CONTER, NO MINIMO, NUMERO DA PRIORIDADE A SER CEDIDA, DATA DE DEPOSITO DA PRIORIDADE E ASSINATURA DE TODOS OS INVENTORES.

ENP Entry into the national phase

Ref document number: 112015004847

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150304