WO2014028487A1 - Amine-containing lipidoids and uses thereof - Google Patents
Amine-containing lipidoids and uses thereof Download PDFInfo
- Publication number
- WO2014028487A1 WO2014028487A1 PCT/US2013/054726 US2013054726W WO2014028487A1 WO 2014028487 A1 WO2014028487 A1 WO 2014028487A1 US 2013054726 W US2013054726 W US 2013054726W WO 2014028487 A1 WO2014028487 A1 WO 2014028487A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- alkyl
- formula
- nanoparticle
- certain embodiments
- Prior art date
Links
- 0 C*C1C*=CC1 Chemical compound C*C1C*=CC1 0.000 description 34
- PPISNPNXEUZWFP-UHFFFAOYSA-N CC(CNCCC(OC)=O)N Chemical compound CC(CNCCC(OC)=O)N PPISNPNXEUZWFP-UHFFFAOYSA-N 0.000 description 1
- JHOTZVWVCRJDDA-UHFFFAOYSA-N CCCCCN(CCN)CCN(C)CCNCCC(OC)=O Chemical compound CCCCCN(CCN)CCN(C)CCNCCC(OC)=O JHOTZVWVCRJDDA-UHFFFAOYSA-N 0.000 description 1
- QPFUZDDDXJYPGF-UHFFFAOYSA-N CCN(CC)CCN(CCC(OC)=O)CCN Chemical compound CCN(CC)CCN(CCC(OC)=O)CCN QPFUZDDDXJYPGF-UHFFFAOYSA-N 0.000 description 1
- JSBJYPABFGUWPK-UHFFFAOYSA-N COC(CCN(CCC1CCN(CCC(OC)=O)CC1)CCC(OC)=O)=O Chemical compound COC(CCN(CCC1CCN(CCC(OC)=O)CC1)CCC(OC)=O)=O JSBJYPABFGUWPK-UHFFFAOYSA-N 0.000 description 1
- BXTVZCIAJDJWEY-UHFFFAOYSA-N COC(CCN(CCC1CCNCC1)CCC(OC)=O)=O Chemical compound COC(CCN(CCC1CCNCC1)CCC(OC)=O)=O BXTVZCIAJDJWEY-UHFFFAOYSA-N 0.000 description 1
- MBIUWAKJABFIQD-UHFFFAOYSA-N COC(CCNCCC1CCNCC1)=O Chemical compound COC(CCNCCC1CCNCC1)=O MBIUWAKJABFIQD-UHFFFAOYSA-N 0.000 description 1
- HWILTFDOWGRIRC-SFHVURJKSA-N C[C@@H]1N(CCNCCC(OC)=O)CCN(CCN(CCC(OC)=O)CCC(OC)=O)C1 Chemical compound C[C@@H]1N(CCNCCC(OC)=O)CCN(CCN(CCC(OC)=O)CCC(OC)=O)C1 HWILTFDOWGRIRC-SFHVURJKSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/5123—Organic compounds, e.g. fats, sugars
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/22—Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
- A61K31/225—Polycarboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/357—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having two or more oxygen atoms in the same ring, e.g. crown ethers, guanadrel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4985—Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
- A61K31/573—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/542—Carboxylic acids, e.g. a fatty acid or an amino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/543—Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6925—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a microcapsule, nanocapsule, microbubble or nanobubble
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
- A61K9/1272—Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C225/00—Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
- C07C225/02—Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton
- C07C225/04—Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being saturated
- C07C225/06—Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being saturated and acyclic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/06—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
- C07C229/10—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
- C07C229/12—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of acyclic carbon skeletons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/06—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
- C07C229/10—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
- C07C229/14—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of carbon skeletons containing rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/24—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one carboxyl group bound to the carbon skeleton, e.g. aspartic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/26—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one amino group bound to the carbon skeleton, e.g. lysine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/28—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and containing rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/34—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/04—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D207/08—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon radicals, substituted by hetero atoms, attached to ring carbon atoms
- C07D207/09—Radicals substituted by nitrogen atoms, not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/08—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
- C07D211/10—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with radicals containing only carbon and hydrogen atoms attached to ring carbon atoms
- C07D211/14—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with radicals containing only carbon and hydrogen atoms attached to ring carbon atoms with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/08—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
- C07D211/18—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D211/26—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/08—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
- C07D211/18—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D211/34—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D241/00—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
- C07D241/02—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
- C07D241/04—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/12—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms
- C07D295/125—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
- C07D295/13—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/14—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D295/145—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
- C07D295/15—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/16—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D319/00—Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D319/10—1,4-Dioxanes; Hydrogenated 1,4-dioxanes
- C07D319/14—1,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems
- C07D319/16—1,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems condensed with one six-membered ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D319/00—Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D319/10—1,4-Dioxanes; Hydrogenated 1,4-dioxanes
- C07D319/14—1,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems
- C07D319/16—1,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems condensed with one six-membered ring
- C07D319/18—Ethylenedioxybenzenes, not substituted on the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/88—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/16—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
- A61K47/18—Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/32—Special delivery means, e.g. tissue-specific
Definitions
- RNA interference RNA interference
- mammalian cells Fire, et al. Nature 391:806-811 (1998)
- siRNA short interfering RNA
- Elbashir, et al. Nature 411:494-8 (2001) RNA interference
- siRNA can be used to alter the expression of nearly any gene in the body through the silencing of complementary messenger RNA.
- Such precise genetic control offers a broad therapeutic potential that is typically not attainable using conventional small molecule drugs.
- siRNA delivery vehicles must negotiate a number of obstacles in vivo prior to delivering their payload to target cells.
- siRNA transport across the cellular membrane of the target cell As well as to facilitate endosomal escape prior to lysosomal digestion (Akinc, et al. J. Gene. Med. 7:657-63 (2005)). It is only once these barriers have been breached that siRNA can interact with the RNAi machinery within the cytoplasm and trigger the gene silencing process (Whitehead, et al. Nature Rev. Drug Discov. 8: 129-38 (2009)).
- a select number of delivery systems have previously been reported to deliver siRNA for the treatment of a variety of disease targets in vivo, including hypercholesterolemia (Frank-Kamenetsky, et al. Proc. Natl. Acad. Sci. USA 107: 1864-9 (2010); Love, et al. Proc. Natl. Acad. Sci. USA 26:431-42 (2008)), liver cirrhosis (Sato, et al. Nature Biotechnol.
- RNAi success in vivo has not consistently translated to success in the clinic. Because siRNA must be dosed repeatedly to achieve therapeutic effect, ideal delivery vehicles will offer a substantial therapeutic window in order to ensure the broadest clinical application. Although some materials have been identified that allow for potent gene silencing at siRNA doses as low as 0.01 mg/kg (Love, et al. Proc. Natl. Acad. Sci.
- the compounds described herein may be prepared by the addition of a primary or secondary amine to an acrylate via a Michael addition reaction.
- the lipidoids described herein may be used in the delivery of therapeutic agents to a subject.
- the inventive lipidoids are particularly useful in delivering negatively charged agents.
- lipidoids described herein may be used to deliver DNA, RNA, or other polynucleotides to a subject or to a cell.
- lipidoids of the present invention are used to deliver siRNA.
- lipidoids described herein are useful as reagents.
- the present invention provides a compound of the Formula (I):
- a provided compound is
- the present invention provides a compound of the Formula (II):
- a provided compound is of the Foraiula (Il-a), (Il-b), (II-c), (Il-d), (Il-e), or (Il-f):
- the present invention provides a compound of the Formula (HI):
- a provided compound is of the Formula Ill-a), (Ill-b), (III-c), (IH-d), or (Ill-e):
- the present invention provides a compound of Formula (IV)
- a provided compound is of the Formula (IV-a):
- the resent invention provides a compound of Formula (V): or a salt thereof, wherein L, R , g, and R are as defined herein.
- a provided compound is of the Formula V-a), (V-b), (V-c), or (V-d):
- the present invention provides a compound of formula
- a lipidoid of the present invention is prepared from an alkylamine starting material that has at least one tertiary amine.
- a lipidoid of the present invention has three or more lipid-like tails.
- the lipid-like tails on a lipidoid of the present invention are between C 12 -C 14 in length, e.g. , C 13 (e.g. , derived from the 0 13 acrylate shown in Figure 1).
- a provided lipidoid is prepared from an alkylamine starting material that has at least one tertiary amine and has three or more C 13 tails.
- inventive lipidoids are combined with an agent to form nanoparticles, microparticles, liposomes, or micelles.
- the agent to be delivered by the nanoparticles, microparticles, liposomes, or micelles may be in the form of a gas, liquid, or solid, and the agent may be, for example, a polynucleotide, protein, peptide, or small molecule.
- inventive lipidoids may be combined with other lipids, polymers, surfactants, cholesterol, carbohydrates, proteins, etc. to form the particles.
- the particles may be combined with an excipient to form pharmaceutical or cosmetic compositions.
- Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms.
- the present invention contemplates all such compounds, including cis- and iraws-isomers, R- and S-enantiomers, diastereomers, (D)-isomers, (L)-isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention.
- Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
- Isomeric mixtures containing any of a variety of isomer ratios may be utilized in accordance with the present invention. For example, where only two isomers are combined, mixtures containing 50:50, 60:40, 70:30, 80:20, 90: 10, 95:5, 96:4, 97:3, 98:2, 99: 1, or 100:0 isomer ratios are all contemplated by the present invention. Those of ordinary skill in the art will readily appreciate that analogous ratios are contemplated for more complex isomer mixtures.
- a particular enantiomer of a compound of the present invention may be prepared by asymmetric synthesis, or by derivation with a chiral auxiliary, where the resulting diastereomeric mixture is separated and the auxiliary group cleaved to provide the pure desired enantiomers.
- the molecule contains a basic functional group, such as amino, or an acidic functional group, such as carboxyl,
- diastereomeric salts are formed with an appropriate optically- active acid or base, followed by resolution of the diastereomers thus formed by fractional crystallization or chromatographic means well known in the art, and subsequent recovery of the pure enantiomers.
- structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms.
- compounds having the present structures except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13 C- or 14 C-enriched carbon are within the scope of this invention. Such compounds are useful, for example, as analytical tools or probes in biological assays.
- aliphatic includes both saturated and unsaturated, nonaromatic, straight chain (i.e., unbranched), branched, acyclic, and cyclic (i.e., carbocyclic) hydrocarbons.
- an aliphatic group is optionally substituted with one or more functional groups.
- "aliphatic” is intended herein to include alkyl, alkenyl, alkynyl, cycloalkyl, and cycloalkenyl moieties.
- alkyl refers to saturated, straight- or branched-chain hydrocarbon radicals derived from a hydrocarbon moiety containing between one and twenty carbon atoms by removal of a single hydrogen atom.
- alkyl radicals include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, n-decyl, n-undecyl, and dodecyl.
- the alkyl groups employed in the inventive lipidoids contain 1-20 aliphatic carbon atoms. In certain other embodiments, the alkyl groups employed in the inventive lipidoids contain 1-10 aliphatic carbon atoms. In yet other embodiments, the alkyl groups contain 1-8 aliphatic carbon atoms. In still other embodiments, the alkyl groups employed in the invention contain 1-6 aliphatic carbon atoms. In yet other embodiments, the alkyl groups contain 1-4 carbon atoms.
- Illustrative alkyl groups thus include, but are not limited to, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, sec-pentyl, isopentyl, tert-pentyl, n-hexyl, and sec-hexyl.
- alkenyl and alkynyl are given their ordinary meaning in the art and refer to unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double or triple bond respectively.
- cycloalkyl refers saturated, cyclic hydrocarbon radicals derived from a hydrocarbon moiety containing between three and seven carbon atoms by removal of a single hydrogen atom. Suitable cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl.
- cycloalkylalkyl refers to a cycloalkyl group attached via a straight chain or branched alkyl group.
- Suitable cycloalkylalkyl groups include, but are not limited to, -CH 2 (cyclopropyl), -CH 2 CH 2 (cyclopropyl), -CH 2 (cyclobutyl), -CH 2 CH 2 (cyclobutyl), -CH 2 (cyclopentyl), -CH 2 CH 2 (cyclopentyl), -CH 2 (cyclohexyl), -CH 2 CH 2 (cyclohexyl), -CH 2 (cycloheptyl), and -CH 2 CH 2 (cycloheptyl).
- alkylene refers to a bivalent alkyl group.
- An "alkylene” group is a polymethylene group, i.e., -(CH 2 ) k -, wherein k is a positive integer, e.g., from 1 to 20, from 1 to 10, from 1 to 6, from 1 to 4, from 1 to 3, from 1 to 2, or from 2 to 3.
- k is a positive integer, e.g., from 1 to 20, from 1 to 10, from 1 to 6, from 1 to 4, from 1 to 3, from 1 to 2, or from 2 to 3.
- one or more hydrogens on an alkylene group is replaced by a substituent (e.g., fluoro).
- Animal refers to humans as well as non-human animals, including, for example, mammals, birds, reptiles, amphibians, and fish.
- the non-human animal is a mammal (e.g., a rodent, a mouse, a rat, a rabbit, a monkey, a dog, a cat, a primate, or a pig).
- An animal may be a transgenic animal.
- association When two entities are “associated with” one another as described herein, they are linked by a direct or indirect covalent or non-covalent interaction. Preferably, the association is covalent. Desirable non-covalent interactions include hydrogen bonding, van der Waals interactions, hydrophobic interactions, magnetic interactions, electrostatic interactions, etc.
- Biocompatible The term “biocompatible”, as used herein is intended to describe compounds that are not toxic to cells. In certain embodiments, compounds are “biocompatible” if their addition to cells in vitro at a minimum therapeutically effective dose results in less than or equal to 20 % cell death, and their administration in vivo does not induce inflammation or other such adverse effects.
- Biodegradable As used herein, “biodegradable” compounds are those that, when introduced into cells, are broken down by the cellular machinery or by hydrolysis into components that the cells can either reuse or dispose of without significant long-term toxic effect on the cells. In certain embodiments, the components do not induce inflammation or other adverse effects in vivo. In certain embodiments, the chemical reactions relied upon to break down the biodegradable compounds are uncatalyzed.
- protein comprises a string of at least three amino acids linked together by peptide bonds.
- the terms “protein” and “peptide” may be used interchangeably.
- Peptide may refer to an individual peptide or a collection of peptides.
- Inventive peptides preferably contain only natural amino acids, although non-natural amino acids (i.e. , compounds that do not occur in nature but that can be incorporated into a polypeptide chain) and/or amino acid analogs as are known in the art may alternatively be employed.
- one or more of the amino acids in an inventive peptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a phosphate group, a farnesyl group, an isofamesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc.
- a chemical entity such as a carbohydrate group, a phosphate group, a farnesyl group, an isofamesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc.
- the modifications of the peptide lead to a more stable peptide (e.g., greater half-life in vivo). These modifications may include cyclization of the peptide, the incorporation of D-amino acids, etc. None of the modifications should substantially interfere with the desired biological activity of the peptide.
- Polynucleotide or oligonucleotide refers to a polymer of nucleotides. Typically, a polynucleotide comprises at least three nucleotides. The polymer may include natural nucleosides (i.e.
- Small molecule refers to organic compounds, whether naturally-occurring or artificially created (e.g., via chemical synthesis) that have relatively low molecular weight and that are not proteins, polypeptides, or nucleic acids. Typically, small molecules have a molecular weight of less than about 1500 g/mol. Also, small molecules typically have multiple carbon-carbon bonds. Known
- Naturally- occurring small molecules include, but are not limited to, penicillin, erythromycin, taxol, cyclosporin, and rapamycin.
- Known synthetic small molecules include, but are not limited to, ampicillin, methicillin, sulfamethoxazole, sulfonamides, dexamethasone, and doxorubicin.
- Figure 1 displays a subset of the large library of biodegradable lipidoids that were synthesized combinatorially through the conjugate addition of of alkylamines (in red) to alkyl-acrylate tails (in blue). The rest of the alkylamines used in lipidoid library synthesis are shown in Figure 2.
- Figure 2 shows additional alkylamines used in the lipidoid library.
- Figure 3 shows the evaluation of lipidoids for an ability to deliver siRNA to HeLa cells, (a) Relative lucif erase activity values (firefly lucifase activity normalized to control Renilla luciferase activity) are shown for 1400 lipidoids. -7% of the library induced >50% gene silencing (shown in red). The tail length (b), tail substitution number (c) and alkyl-amine composition (d) influenced in vitro activity.
- Figure 4 demonstrates that select lipidoids induced a high degree silencing of multiple targets in mice, (a) Of the -100 lipidoids tested in vivo, 15 induced complete Factor VII knockdown in mouse hepatocytes at a total siRNA dose of 5 mg/kg (data points in red), (b) The EC 50 values of these top 15 lipidoids ranged from 0.05 to 1.5 mg/kg under standard formulation conditions, (c) The amount of PEG in the lipid nanoparticle formulation had a dramatic effect on efficacy. Data is shown for the lipidoid 304O 14 , which produced the most efficacious formulation of the study when formulated with 0.75% PEG.
- Figure 5 shows biodistribution images for Cy5.5 - labeled siRNA delivered with the lipidoid 304O 13 .
- rVTS (a) and Odyssey (b) imaging show that, while naked siRNA is primarily cleared through the kidneys, 304O 13 mediates accumulation in the liver and spleen,
- Confocal microscopy of 304O 13 - treated liver shows siRNA (red) delivery into nearly all cells, including Kupffer cells and hepatocytes.
- naked siRNA had a limited penetration depth from the blood vessels into hepatocellular tissue
- Figure 6 shows a comparison of (a) cytokine profiles 4 hours post-injection and (b) liver histology sections 72 hours post-injection for degradable (304O 13 ) and
- FIG. 7 displays structure-function information of efficacious lipid nanoparticles.
- Figure 10 shows that pKa values significantly influence delivery efficacy to hepatocytes in vivo. All lipidoid nanoparticles capable of mediating complete Factor VII gene silencing had pKa values greater or equal to 5.5.
- Figures 11 A and 11B show degradation by hydrolysis of the lipidoid 304O 13 . Overlay of 1H NMR spectra of the starting material 304O 13 , the crude reaction mixture, and authentic 1-tridecanol demonstrated that the 304O 13 had been consumed and that tridecanol had been formed in significant quantity under both acidic and basic conditions.
- Figure 11 A shows acidic hydrolysis condition
- Figure 11B shows basic hydrolysis condition.
- Figure 12 shows that clinical chemistry parameters were evaluated for negative control (PBS, black), 304O 13 (blue), and C 12-200 (red) groups of C57BL/6 mice.
- the present invention provides lipidoids and lipidoid-based delivery systems.
- the systems described herein may be used in the pharmaceutical/drug delivery arts to delivery polynucleotides, proteins, small molecules, peptides, antigen, drugs, etc. to a patient, tissue, organ, cell, etc.
- the lipidoids of the present invention provide for several different uses in the drug delivery art.
- the lipidoids with their amine-containing hydrophilic portion may be used to complex polynucleotides and thereby enhance the delivery of polynucleotides and prevent their degradation.
- the lipidoids may also be used in the formation of nanoparticles, microparticles, liposomes, and micelles containing the agent to be delivered.
- the lipids are biocompatible and biodegradable, and particles formed therefrom are also biodegradable and biocompatible and may be used to provide controlled, sustained release of the agent.
- Provided lipidoids and their corresponding particles may also be responsive to pH changes given that these lipids are protonated at lower pH.
- the lipidoids of the present invention contain primary, secondary, or tertiary amines and salts thereof.
- the inventive lipidoids are biodegradable.
- inventive lipidoids are effective at delivering an agent ⁇ e.g., RNA) to a cell.
- a lipidoid of the present invention is prepared from an alkylamine starting material that has at least one tertiary amine. In some embodiments, a lipidoid of the present invention has three or more lipid-like tails. In some embodiments, the lipid-like tails on a lipidoid of the present invention are between C 10 -C 14 in length, e.g., C 12 -C14, e.g., C 13 . In certain embodiments, a provided lipidoid is prepared from an alkylamine starting material that has at least one tertiary amine and the lipidoid formed therefrom has three or more C 13 tails.
- a provided lipidoid is prepared from an alkylamine starting material that has at least one tertiary amine, provided that the amine is not amine 110, amine 113, or amine 115, and the m has three or more C 13 tails.
- a lipidoid of the present invention is of the Formula (I): (I)
- each L is, independently, branched or unbranched Ci_6 alkylene, wherein L is optionally substituted with one or more fluorine radicals;
- each R A is, independently, branched or unbranched Ci_6 alkyl, C 3 _ 7 cycloalkyl, or branched or unbranched C4_ 12 cycloalkylalkyl, wherein R A is optionally substituted with one or more fluorine radicals;
- R is, independently, Cio-i4 alkyl, where R is optionally substituted with one or more fluorine radicals;
- a lipidoid of formula (I) is not
- each L is, independently, branched or unbranched
- Ci_6 alkylene wherein L is optionally substituted with one or more fluorine radicals. In some embodiments, L is substituted with one or more fluorine radicals. In other embodiments, L is unsubstituted. In some embodiments, L is branched. In other embodiments, L is unbranched. In certain embodiments, L is C 1-4 alkylene. In certain embodiments, L is methylene, ethylene, or propylene.
- each R A is, independently, branched or unbranched
- R A is substituted with one or more fluorine radicals.
- R A when R A is methyl, it may be substituted with one, two, or three fluorine radicals to give -CH 2 F, -CHF 2 , or -CF 3 .
- R A is unsubstituted.
- all R A groups are the same. In other embodiments, the R A groups are different.
- R A is branched or unbranched Ci_6 alkyl.
- R A is branched C 1-6 alkyl. In certain embodiments, R A is unbranched C 1-6 alkyl. In certain embodiments, R A is C 1-3 alkyl. In certain embodiments, R A is methyl, ethyl, or propyl. In certain embodiments, R A is C3-7 cycloalkyl. In certain embodiments, R A is cyclohexyl. In certain embodiments, R A is cyclopropyl, cyclobutyl, or cyclopentyl. In certain embodiments, R A is cycloheptyl. In some embodiments, R A is branched or unbranched C 4 _ 12 cycloalkylalkyl.
- each R is, independently, hydrogen or
- each R B is, independently, C 10 - 14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
- R is substituted with one or more fluorine radicals.
- R may be substituted with one fluoro, or in other embodiments, may be perfluorinated.
- R B is unsubstituted.
- all R B groups are the same.
- R B is C 10 alkyl.
- R B is n-decyl.
- R is Cn alkyl.
- R is n-undecyl.
- R B is C 12 alkyl.
- R B is n-dodecyl.
- R B is C 13 alkyl. In some embodiments, R B is n-tridecyl. In certain
- R B is C 14 alkyl. In some embodiments, R B is n-tetradecyl.
- q is 1, 2, or 3. In some embodiments, q is 1. In some embodiments, q is 2. In some embodiments, q is 3.
- a lipidoid of the present invention is of the Formula (I-a): or a salt thereof,
- R and R A are as defined above and described herein;
- each n is, independently, 0, 1, or 2;
- n 0, 1, or 2.
- m is 0. In some embodiments, m is 1. In some embodiments, m is 2.
- n is 0. In some embodiments, n is 1. In some embodiments, n is 2.
- n is 0, and n is 0. In some embodiments, m is 1, and n is
- n 0. In some embodiments, m is 2, and n is 0. In some embodiments, m is 0, and n is 1. In some embodiments, m is 0, and n is 2. In some embodiments, m is 1, and n is 1.
- a lipidoid of the present invention is of the Formula (I-b):
- R and R A are as defined above and described herein.
- a lipidoid of the present invention is of the Formula (I-c):
- a lipidoid of the present invention is of the Formula (I-d)
- a lipidoid of the present invention is of the Formula (I-e):
- R and R A are as defined above and described herein.
- a lipidoid of the present invention is of one
- lipidoid of the present invention is of the Formula (II):
- each L is, independently, branched or unbranched C 1-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals;
- each R A is, independently, branched or unbranched Ci_6 alkyl, C 3 _ 7 cycloalkyl, or branched or unbranched C 4-12 cycloalkylalkyl, wherein R A is optionally substituted with one or more fluorine radicals;
- each R C is, independently, -L-N(R D ) 2 or -R;
- each R D is, independently, -R A or -R;
- each R B is, independently, C 10 - 14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
- each L is, independently, branched or unbranched
- Ci_6 alkylene wherein L is optionally substituted with one or more fluorine radicals. In some embodiments, L is substituted with one or more fluorine radicals. In other embodiments, L is unsubstituted. In some embodiments, L is branched. In other embodiments, L is unbranched. In certain embodiments, L is C 1-4 alkylene. In certain embodiments, L is methylene, ethylene, or propylene.
- each R A is, independently, branched or unbranched C 1-6 alkyl, C 3 _ 7 cycloalkyl, or branched or unbranched C4_ 12 cycloalkylalkyl, wherein R A is optionally substituted with one or more fluorine radicals.
- R A is substituted with one or more fluorine radicals.
- R A when R A is methyl, it may be substituted with one, two, or three fluorine radicals to give -CH 2 F, -CHF 2 , or -CF 3 .
- R A is unsubstituted.
- all R A groups are the same. In other embodiments, the R A groups are different.
- R A is branched or unbranched C 1-6 alkyl. In certain embodiments, R A is branched C 1-6 alkyl. In certain embodiments, R A is unbranched C 1-6 alkyl. In certain embodiments, R A is C 1-3 alkyl. In certain embodiments, R A is methyl, ethyl, or propyl. In certain embodiments, R A is C 3 _ 7 cycloalkyl. In certain embodiments, R A is cyclohexyl. In certain embodiments, R A is cyclopropyl, cyclobutyl, or cyclopentyl. In certain embodiments, R A is cycloheptyl. In some embodiments, R A is branched or unbranched C 4-12 cycloalkylalkyl.
- each R c is, independently, -L-N(R D ) 2 or -R. In some embodiments, all R C groups are -R. In some embodiments, R C is -L-N(RD ) 2 .
- each R D is, independently, -R A or -R. In some embodiments, all R D groups are -R. In some embodiments, one R D on a nitrogen is -R, and the other is -R A .
- each R is, independently, hydrogen or
- each R B is, independently, C 10-14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
- R is substituted with one or more fluorine radicals.
- R may be substituted with one fluoro, or in other embodiments, may be perfluorinated.
- R B is unsubstituted.
- all R B groups are the same.
- R B is C 10 alkyl.
- R B is n-decyl.
- R is Cn alkyl.
- R is n-undecyl.
- R B is C 12 alkyl. In some embodiments, R B is n-dodecyl. In certain embodiments, R B is C 13 alkyl. In some embodiments, R B is n-tridecyl. In certain embodiments, R B is C 14 alkyl. In some embodiments, R B is n-tetradecyl.
- a lipidoid of the present invention is of the Formula
- each v is, independently, 1, 2, or 3.
- v is 1. In certain embodiments, v is 2. In certain embodiments, v is 3.
- a lipidoid of the present invention is of the Formula
- a lipidoid of the present invention is of the formula:
- a lipidoid of the present invention is of the Formula (II-c):
- a lipidoid of the present invention is of the Formula
- a lipidoid of the present invention is of the Formula
- a lipidoid of the present invention is of the Formula
- a lipidoid of the present invention is of the formula:
- a lipidoid of the present invention is of the Formula
- each L is, independently, branched or unbranched C 1-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals;
- each R B is, independently, C 10 - 14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals;
- each R 1 is, independently, fluoro or C 1-6 alkyl optionally substituted with one or more fluorine radicals; j is 0,1, 2, 3, or 4; and
- p 1 or 2.
- At least three R groups of formula (III) are
- each L is, independently, branched or unbranched C 1-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals. In some embodiments, L is substituted with one or more fluorine radicals. In other embodiments, L is unsubstituted. In some embodiments, L is branched. In other embodiments, L is unbranched. In certain embodiments, L is C 1-4 alkylene. In certain embodiments, L is methylene, ethylene, or propylene.
- each R is, independently, hydrogen or
- each R B is, independently, C 10-14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
- R is substituted with one or more fluorine radicals.
- R may be substituted with one fluoro, or in other embodiments, may be perfluorinated.
- R B is unsubstituted.
- all R B groups are the same.
- R B is C 10 alkyl.
- R B is n-decyl.
- R B is Cn alkyl.
- R B is n-undecyl.
- R B is C 12 alkyl. In some embodiments, R B is n-dodecyl. In certain
- R B is C 13 alkyl. In some embodiments, R B is n-tridecyl. In certain
- R B is C 14 alkyl. In some embodiments, R B is n-tetradecyl.
- p is 1. In certain embodiments, p is 2.
- each R 1 is, independently, fluoro or C 1-6 alkyl optionally substituted with one or more fluorine radicals. In some embodiments, R 1 is fluoro.
- R 1 is C 1-6 alkyl optionally substituted with one or more fluorine radicals.
- R 1 is unsubstituted C 1-6 alkyl. In some embodiments, R 1 is methyl or ethyl. In some embodiments, R 1 is -CF 3 .
- j is 0. In some embodiments, j is 1. In some
- j is 2. In some embodiments, j is 3. In some embodiments, j is 4. In certain embodiments, a lipidoid of the present invention is of the Formula
- each w is, independently, 1, 2, or 3.
- w is 1. In certain embodiments, w is 2. In certain embodiments, w is 3.
- a lipidoid of the present invention is of the Formula
- R 1 , j, w, and R are as defined above and described herein.
- a lipidoid of the present invention is of the Formula
- a lipidoid of the present invention is of the Formula
- a lipidoid of the present invention is of the Formula
- a lipidoid of the present invention is of the formula:
- lipidoid of the present invention is of the Formula
- each R is, independently, C 10 - 14 alkyl, wherein R is optionally substituted with one or more fluorine radicals;
- x is 1 or 2;
- y is 1 or 2.
- each R is, independently, hydrogen or
- each R B is, independently, C 10 - 14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
- R is substituted with one or more fluorine radicals.
- R may be substituted with one fluoro, or in other embodiments, may be perfluorinated.
- R is unsubstituted. In some embodiments, all R groups are the same. In
- R is C 10 alkyl. In some embodiments, R is n-decyl. In certain
- R is Cn alkyl. In some embodiments, R is n-undecyl. In certain
- R is C 12 alkyl. In some embodiments, R is n-dodecyl. In certain
- R is C 13 alkyl. In some embodiments, R is n-tridecyl. In certain
- R is C 14 alkyl. In some embodiments, R is n-tetradecyl.
- x is 1. In some embodiments, x is 2. In some embodiments, y is 1. In some embodiments, y is 2. In some embodiments, x is 1 and y is 1. In some embodiments, x is 2 and y is 2. [00102] In certain embodiments, a lipidoid of the present invention is of the Formula (IV-a):
- a lipidoid of the present invention is of the Formula (V): or a salt thereof, wherein
- each L is, independently, branched or unbranched C 1-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals;
- Z is O or N
- each R x is, independently, Ci_6 aliphatic
- each R y is, independently, hydrogen or Ci_6 aliphatic
- g 0, 1, 2, 3, or 4;
- each R B is independently C 10-14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
- each L is, independently, branched or unbranched Ci-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals. In some embodiments, L is substituted with one or more fluorine radicals. In other embodiments, L is unsubstituted. In some embodiments, L is branched. In other embodiments, L is unbranched. In certain embodiments, L is C 1-4 alkylene. In certain embodiments, L is methylene, ethylene, or propylene.
- each R is, independently, hydrogen or
- each R B is, independently, C 10 - 14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
- R is substituted with one or more fluorine radicals.
- R may be substituted with one fluoro, or in other embodiments, may be perfluorinated.
- R B is unsubstituted.
- all R B groups are the same.
- R B is C 10 alkyl.
- R B is n-decyl.
- R B is Cn alkyl.
- R B is n-undecyl.
- R B is C 12 alkyl. In some embodiments, R B is n-dodecyl. In certain
- R B is C 13 alkyl. In some embodiments, R B is n-tridecyl. In certain
- R B is C 14 alkyl. In some embodiments, R B is n-tetradecyl.
- R 2 is halo.
- R 2 is fluoro.
- R 2 is C 1-6 aliphatic optionally substituted with one or more fluorine radicals.
- R is C 1-6 alkyl.
- g is 0. In some embodiments, g is 1. In some embodiments, g is 2. In some embodiments, g is 3. In some embodiments, g is 4.
- lipidoid of the present invention is of Formula (V-a):
- a lipidoid of the present invention is of Formula (V-b):
- a lipidoid of the present invention is of Formula (V-c):
- a lipidoid of the present invention is of Formula (V-d):
- a lipidoid of the present invention is of the formula:
- each R is, independently, branched or unbranched Ci_6 alkyl, C 3 -7 cycloalkyl, or branched or unbranched C4_ 12 cycloalkylalkyl, wherein R A is optionally substituted with one or more fluorine radicals;
- each R B is, independently, C 10 -i 4 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
- each R is, independently, branched or unbranched
- R A is substituted with one or more fluorine radicals.
- R A when R A is methyl, it may be substituted with one, two, or three fluorine radicals to give -CH 2 F, -CHF 2 , or -CF 3 .
- R A is unsubstituted.
- all R A groups are the same. In other embodiments, the R A groups are different.
- R A is branched or unbranched C 1-6 alkyl.
- R is branched C 1-6 alkyl. In certain embodiments, R A is unbranched C 1-6 alkyl. In certain embodiments, R A is C 1-3 alkyl. In certain embodiments, R A is methyl, ethyl, or propyl. In certain embodiments, R A is C 3 _ 7 cycloalkyl. In certain embodiments, R A is cyclohexyl. In certain embodiments, R A is cyclopropyl, cyclobutyl, or cyclopentyl. In certain embodiments, R A is cycloheptyl. In some embodiments, R A is branched or unbranched C4_ 12 cycloalkylalkyl.
- each R is, independently, hydrogen or
- each R B is, independently, C 10 - 14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
- R is substituted with one or more fluorine radicals.
- R may be substituted with one fluoro, or in other embodiments, may be perfluorinated.
- R B is unsubstituted.
- all R B groups are the same.
- R B is C 10 alkyl.
- R B is n-decyl.
- R B is Cn alkyl.
- R B is n-undecyl.
- R B is C 12 alkyl. In some embodiments, R B is n-dodecyl. In certain
- R B is C 13 alkyl. In some embodiments, R B is n-tridecyl. In certain
- R B is C 14 alkyl. In some embodiments, R B is n-tetradecyl.
- a lipidoid of the present invention is of the formula:
- a lipidoid of the present invention is a compound resulting from a Michael addition between any one of the amines shown in Figure 1 or Figure 2 and an acrylate shown in Figure 1.
- the number of equivalents of acrylate can be controlled to obtain the desired number of lipid tails on the inventive lipidoid.
- an inventive lipidoid is prepared by reacting amine 1 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 113O 10 , 1130n, 1130 12 , 1130 1 , 1130 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more abo e lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 123 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 123O 10 , 1230n, 1230 12 , 1230 13 , or 1230 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 154 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 154 ⁇ 10 , 1540n, 1540 12 , 1540 13 , or 1540 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 191 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 191 ⁇ 10 , 1910n, 1910 12 , 1910 13 , or 1910 14.
- an inventive lipidoid is of one of the formulae below: H 3 C(CH 2 ) (CH 2 ) Z CH 3 ? wnere i n z S 10, 11, or 13.
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 192 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 192O 10 , 1920n, 1920 12 , 1920 13 , or 1920i 4.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 193 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 193O 10 , 1930n, 1930 12 , 1930 1 , or 1930 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 195 with acrylate O 10 , On, 0 12 , 0 13 , or 0 1 to form compound 195O 10 , 1950n, 1950 12 , 1950 13 , or 1950 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 196 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 196O 10 , 1960n, 1960 12 , 1960 13 , or 1960 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 200 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 200O 10 , 200On, 200O 12 , 200O 13 , or 200O 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more of the above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 205 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 205O 10 , 205On, 205O 12 , 205O 1 , or 205O 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more of the above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 217 with acrylate O 10 , On, 0 12 , O i3 , or 0 14 to form compound 217O 10 , 2170 n , 2170 12 , 2170 13 , or 2170 1 .
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 218 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 2180 ⁇ , 2180n, 2180 12 , 2180 13 , or 2180 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more of the above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 232 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 2320 ⁇ , 2320n, 2320 12 , 2320 13 , or 2320 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 235 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 235O 10 , 2350n, 2350 12 , 2350 1 , or 2350 1 is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 302 with acrylate O 10 , On, 0 12 , 0 13 , or 0 1 to form compound 302O 10 , 302On, 302O 12 , 302O 13 , or 302O 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula: r
- an inventive lipidoid is prepared by reacting amine 303 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 303O 10 , 303On, 303O 12 , 303O 1 , or 303O 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 304 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 304O 10 , 304On, 304O 12 , 304O 1 , or
- the present invention provides a composition of one or more of the above lipidoids.
- an inventive lipidoid is of the formula: (CH 2 )i 2 CH 3
- an inventive lipidoid is prepared by reacting amine 305 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 305O 10 , 305On, 305O 12 , 305O 1 , or 305O 14.
- an inventive lipidoid is of one of the formulae below:
- an inventive lipidoid is of the formula: [00137]
- an inventive lipidoid is prepared by reacting amine 306 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 306O 10 , 306On, 306O 12 , 306O 1 , or 306O 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more of the above lipidoids.
- an inventive lipidoid is of the formula: (CH 2 ) g CH 3
- an inventive lipidoid is prepared by reacting amine 313 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 313O 10 , 3130n, 3130 12 , 3130 13 , or 3130 14.
- an inventive lipidoid is of one of the formulae below: , wherein z is 9, 10, 11, or 12.
- the present invention provides a composition of one or more of above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 315 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 315O 10 , 3150n, 3150 12 , 3150 1 , or 3150 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 347 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 347O 10 , 3470n, 3470 12 , 3470 13 , or 470i 4.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more of the above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 366 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 366O 10 , 3660n, 3660 12 , 3660 1 , or 3660 14.
- an inventive li idoid is of one of the formulae below:
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 371 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 371O 10 , 3710n, 3710 12 , 3710 1 , or 3710 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 500 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 500O 10 , 500On, 500O 12 , 500O 1 , or 500O 14.
- an inventive lipidoid is of one of the formulae below:
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 501 with acrylate O 10 , On, 0 12 , 0 13 , or OH to form compound 501O 10 , 501On, 501O 12 , 501O 1 , or 501Oi 4.
- an inventive lipidoid is of one of the formulae below:
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 502 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 502O 10 , 502On, 502O 12 , 502O 13 , or 502Oi 4.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more of the above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 503 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 503O 10 , 503On, 503O 12 , 503O 1 , or 503O 1 .
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 504 with acrylate O 10 , On, On, 0 13 , or O u to form compound 504Oi 0 , 504On, 504Oi 2 , 504O 13 , or 504O 1
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more of the above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 505 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 505O 10 , 505On, 505O 12 , 505Oi , or 505Oi 4.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more of the above lipidoids.
- an inventive lipidoid is of the formula: WO 2014/028487
- an inventive lipidoid is prepared by reacting amine 506 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 506Oi 0 , 506On, 506O 12 , 506Oi 3 , or 506O 1
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more of the above li idoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 507 with acrylate O 10 , On, 0 12 , 0 13 , or ⁇ to form compound 507 ⁇ 10 , 507On, 507O 12 , 507O 13 , or 507Oi
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more of the above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 508 with acrylate O 10 , On, Oi 2 , 0 13 , or Oi 4 to form compound 508Oi 0 , 508O n , 508Oi 2 , 508Oi 3 , or 508O 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 509 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 509 ⁇ 10 , 509On, 509O 12 , 509O 13 , or 509O 14.
- an inventive lipidoid is of one of the formulae below:
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 510 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 510O 10 , 510On, 510O 12 , 510O 13 , or 510Oi 4.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more of the above
- an inventive lipidoid is prepared by reacting amine 511 with acrylate O 10 , On, O12, 0 13 , or O14 to form compound 511Oi 0 , 51 lOn, 5HOi 2 , 5110 13 , or 5110 14.
- an inventive lipidoid is of one of the formulae below: , wherein z is 9, 10 ,11, 12, or
- the present invention provides a composition of one or more of the above lipidoids.
- an inventive lipidoid is of the formula: WO 2014/028487
- an inventive lipidoid is prepared by reacting amine 51 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 512O 10 , 5120n, 5120 12 , 5120 13 , 5120 1 .
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 513 with acrylate O 10 , On, 0 12 , 0 13 , or 0 14 to form compound 513O 10 , 5130 n , 5130 12 , 5130 13 , or 5130 1 .
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more of the above lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 514 with acrylate do, On, 0 12 , 0 13 , or Oi 4 to form compound 514O 10 , 5140n, 5140 12 , 5140 13 , or 5140 14.
- an inventive lipidoid is of one of the formulae below:
- the present invention provides a composition of one or more of the abo e lipidoids.
- an inventive lipidoid is of the formula:
- an inventive lipidoid is prepared by reacting amine 515 with acrylate O 10 , On, 0 12 , 0 13 , or Ou to form compound 515O 10 , 5150n, 5150 12 , 5150 1 , or 5150i 4.
- an inventive lipidoid is of one of the formulae below:
- an inventive lipidoid is of the formula:
- Lipidoids described herein may be prepared by any method known in the art.
- inventive lipidoids are prepared via the conjugate addition of primary or secondary amines to acrylates. Such syntheses are described in detail in U.S. Publication No. 2011/0009641, incorporated herein by reference.
- inventive lipidoids are prepared from commercially available starting materials, such acrylates and amines.
- inventive lipidoids are prepared from easily and/or inexpensively prepared starting materials.
- the lipidoids described herein can be prepared by total synthesis starting from commercially available starting materials. A particular lipidoid may be the desired final product of the synthesis, or a mixture of lipidoids may be the desired final product.
- Cationic lipids such as Lipofectamine have been prepared and studied for their ability to complex and transfect polynucleotides. The interaction of the lipid with the polynucleotide is thought to at least partially prevent the degradation of the polynucleotide.
- the neutral or slightly-positively-charged complex is also able to more easily pass through the hydrophobic membranes (e.g., cytoplasmic, lysosomal, endosomal, nuclear) of the cell.
- the complex is slightly positively charged.
- the complex has a positive ⁇ -potential. In certain embodiments, the ⁇ -potential is between +1 and +30.
- lipidoids of the present invention possess tertiary amines. Although these amines are hindered, they are available to interact with a
- polynucleotide e.g., DNA, RNA, synthetic analogs of DNA and/or RNA, DNA/RNA hydrids, etc.
- polynucleotides or derivatives thereof are contacted with the inventive lipidoids under conditions suitable to form polynucleotide/lipidoid complexes.
- the lipidoid is at least partially protonated so as to form a complex with the negatively charged polynucleotide.
- the polynucleotide/lipidoid complexes form nanoparticles that are useful in the delivery of polynucleotides to cells.
- multiple lipidoid molecules may be associated with a polynucleotide molecule.
- the complex may include 1-100 lipidoid molecules, 1-1000 lipidoid molecules, 10-1000 lipidoid molecules, or 100-10,000 lipidoid molecules.
- the complex may form a nanoparticle.
- the diameter of the nanoparticles ranges from 10-500 nm, from 10-1200 nm, or from 50-150 nm.
- nanoparticles may be associated with a targeting agent as described below.
- a polynucleotide to be complexed, encapsulated by the inventive lipidoids, or included in a composition with the inventive lipidoids may be any nucleic acid including but not limited to RNA and DNA.
- the polynucleotide is DNA.
- the polynucleotide is RNA.
- the polynucleotide is an siRNA.
- the polynucleotide is an shRNA.
- the polynucleotide is an mRNA.
- the polynucleotide is a dsRNA.
- the polynucleotide is an miRNA.
- the polynucleotide is an antisense RNA.
- the polynucleotides may be of any size or sequence, and they may be single- or double- stranded. In certain embodiments, the polynucleotide is greater than 100 base pairs long. In certain other embodiments, the polynucleotide is greater than 1000 base pairs long and may be greater than 10,000 base pairs long. In certain embodiments, the polynucleotide is purified and substantially pure. In certain embodiments, the polynucleotide is greater than 50% pure, greater than 75% pure, or greater than 95% pure. The polynucleotide may be provided by any means known in the art.
- the polynucleotide has been engineered using recombinant techniques (for a more detailed description of these techniques, please see Ausubel et al. Current Protocols in Molecular Biology (John Wiley & Sons, Inc., New York, 1999); Molecular Cloning: A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch, and Maniatis (Cold Spring Harbor Laboratory Press: 1989); each of which is incorporated herein by reference).
- the polynucleotide may also be obtained from natural sources and purified from contaminating components found normally in nature.
- the polynucleotide may also be chemically synthesized in a laboratory. In certain embodiments, the polynucleotide is synthesized using standard solid phase chemistry.
- the polynucleotide may be modified by chemical or biological means. In certain embodiments, these modifications lead to increased stability of the polynucleotide.
- Modifications include methylation, phosphorylation, end-capping, etc.
- Derivatives of polynucleotides may also be used in the present invention. These derivatives include modifications in the bases, sugars, and/or phosphate linkages of the polynucleotide.
- Modified bases include, but are not limited to, those found in the following nucleoside analogs: 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 7-deazaadenosine,
- Modified sugars include, but are not limited to, 2'-fluororibose, ribose, 2'-deoxyribose, 3'-azido-2',3'-dideoxyribose, 2',3'-dideoxyribose, arabinose (the 2'-epimer of ribose), acyclic sugars, and hexoses.
- the nucleosides may be strung together by linkages other than the phosphodiester linkage found in naturally occurring DNA and RNA.
- Modified linkages include, but are not limited to, phosphorothioate and 5'-N-phosphoramidite linkages.
- modified polynucleotides may be provided by any means known in the art; however, as will be appreciated by those of skill in this art, the modified polynucleotides are preferably prepared using synthetic chemistry in vitro.
- the polynucleotides to be delivered may be in any form.
- the polynucleotide may be a circular plasmid, a linearized plasmid, a cosmid, a viral genome, a modified viral genome, an artificial chromosome, etc.
- the polynucleotide may be of any sequence.
- the polynucleotide encodes a protein or peptide.
- the encoded proteins may be enzymes, structural proteins, receptors, soluble receptors, ion channels, pharmaceutically active proteins, cytokines, interleukins, antibodies, antibody fragments, antigens, coagulation factors, albumin, growth factors, hormones, insulin, etc.
- the polynucleotide may also comprise regulatory regions to control the expression of a gene. These regulatory regions may include, but are not limited to, promoters, enhancer elements, repressor elements, TATA box, ribosomal binding sites, stop site for transcription, etc.
- the polynucleotide is not intended to encode a protein.
- the polynucleotide may be used to fix an error in the genome of the cell being transfected.
- the polynucleotide may also be provided as an antisense agent or RNA interference (RNAi) (Fire et al. Nature 391:806-811, 1998; incorporated herein by reference).
- Antisense therapy is meant to include, e.g., administration or in situ provision of single- or double- stranded oligonucleotides or their derivatives which specifically hybridize, e.g., bind, under cellular conditions, with cellular mRNA and/or genomic DNA, or mutants thereof, so as to inhibit expression of the encoded protein, e.g., by inhibiting transcription and/or translation (Crooke "Molecular mechanisms of action of antisense drugs" Biochim. Biophys.
- the binding may be by conventional base pair complementarity, or, for example, in the case of binding to DNA duplexes, through specific interactions in the major groove of the double helix (i.e., triple helix formation) (Chan et al. J. Mol. Med. 75(4):267-282, 1997; incorporated herein by reference).
- the polynucleotide to be delivered comprises a sequence encoding an antigenic peptide or protein.
- Nanoparticles containing these polynucleotides can be delivered to an individual to induce an immunologic response sufficient to decrease the chance of a subsequent infection and/or lessen the symptoms associated with such an infection.
- the polynucleotide of these vaccines may be combined with interleukins, interferon, cytokines, and adjuvants such as cholera toxin, alum, Freund's adjuvant, etc.
- adjuvants such as cholera toxin, alum, Freund's adjuvant, etc.
- a large number of adjuvant compounds are known; a useful compendium of many such compounds is prepared by the National Institutes of Health and can be found on the internet
- An antigenic protein or peptides encoded by a polynucleotide may be derived from such bacterial organisms as Streptococccus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Streptococcus pyrogenes, Corynebacterium diphtheriae, Listeria monocytogenes, Bacillus anthracis, Clostridium tetani, Clostridium botulinum, Clostridium perfringens, Neisseria meningitidis, Neisseria gonorrhoeae, Streptococcus mutans,
- Chlamydial psittaci Chlamydial trachomatis, Plasmodium falciparum, Trypanosoma brucei, Entamoeba histolytica, Toxoplasma gondii, Trichomonas vaginalis, Schistosoma mansoni, and the like.
- the lipidoids of the present invention may also be used to form drug delivery devices.
- Inventive lipidoids may be used to encapsulate agents including polynucleotides, small molecules, proteins, peptides, metals, organometallic compounds, etc.
- Lipidoids described herein have several properties that make them particularly suitable in the preparation of drug delivery devices. These include 1) the ability of the lipid to complex and "protect” labile agents; 2) the ability to buffer the pH in the endosome; 3) the ability to act as a "proton sponge” and cause endosomolysis; and 4) the ability to neutralize the charge on negatively charged agents.
- the diameter of the particles range from between 1 micrometer to 1,000 micrometers. In certain embodiments, the diameter of the particles range from between from 1 micrometer to 100 micrometers. In certain embodiments, the diameter of the particles range from between from 1 micrometer to 10 micrometers. In certain embodiments, the diameter of the particles range from between from 10 micrometer to 100 micrometers. In certain embodiments, the diameter of the particles range from between from 100 micrometer to 1,000 micrometers. In certain embodiments, the particles range from 1-5 micrometers. In certain embodiments, the diameter of the particles range from between 1 nm to 1,000 nm. In certain embodiments, the diameter of the particles range from between from 1 nm to 100 nm.
- the diameter of the particles range from between from 1 nm to 10 nm. In certain embodiments, the diameter of the particles range from between from 10 nm to 100 nm. In certain embodiments, the diameter of the particles range from between from 100 nm to 1,000 nm. In certain embodiments, the diameter of the particles range from between from 20 nm to 2,000 nm. In certain embodiments, the particles range from 1-5 nm. In certain embodiments, the diameter of the particles range from between 1 pm to 1,000 pm. In certain embodiments, the diameter of the particles range from between from 1 pm to 100 pm. In certain embodiments, the diameter of the particles range from between from 1 pm to 10 pm. In certain embodiments, the diameter of the particles range from between from 10 pm to 100 pm. In certain embodiments, the diameter of the particles range from between from 100 pm to 1,000 pm. In certain embodiments, the particles range from 1-5 pm.
- the inventive particles may be prepared using any method known in this art. These include, but are not limited to, spray drying, single and double emulsion solvent evaporation, solvent extraction, phase separation, simple and complex coacervation, and other methods well known to those of ordinary skill in the art.
- methods of preparing the particles are the double emulsion process and spray drying.
- the conditions used in preparing the particles may be altered to yield particles of a desired size or property (e.g., hydrophobicity, hydrophilicity, external morphology, "stickiness", shape, etc.).
- the method of preparing the particle and the conditions e.g., solvent, temperature, concentration, air flow rate, etc.
- the conditions e.g., solvent, temperature, concentration, air flow rate, etc.
- the composition of the matrix may also depend on the agent being encapsulated and/or the composition of the matrix.
- the particles prepared by any of the above methods have a size range outside of the desired range, the particles can be sized, for example, using a sieve.
- the particle may also be coated.
- the particles are coated with a targeting agent.
- the particles are coated to achieve desirable surface properties (e.g., a particular charge).
- the present invention provides a nanoparticle comprising an inventive lipidoid and one or more agents to be delivered.
- the agent is a polynucleotide, drug, protein or peptide, small molecule, or gas.
- the agent is RNA (e.g. mRNA, RNAi, dsRNA, siRNA, shRNA, miRNA, or antisense RNA).
- the nanoparticle further comprises cholesterol or a derivative thereof, such as 3B-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-cholesterol).
- the nanoparticle further comprises a PEG-based material.
- the PEG-based material is PEG-ceramide, PEG-DMG, PEG-PE, poloxamer, or DSPE carboxy PEG.
- the PEG-based material is C14 PEG2000 DMG, C15 PEG2000 DMG, C16 PEG2000 DMG, C18 PEG2000 DMG, C14 PEG 2000 ceramide, C15 PEG2000 ceramide, C16 PEG2000 ceramide, C18 PEG2000 ceramide, C14 PEG2000 PE, C15 PEG2000 PE, C16 PEG2000 PE, C18 PEG2000 PE, C14 PEG350 PE, C14 PEG5000 PE, poloxamer F-127, poloxamer F-68, poloxamer L-64, or DSPE carboxy PEG.
- the nanoparticle further comprises a lipid.
- the nanoparticle further comprises DSPC, DOPC, or DOPE.
- the nanoparticle comprises a lipidoid, an agent (e.g., RNA), a lipid, cholesterol or a derivative thereof, and a PEG-based material.
- Lipidoids described herein may also be used to prepare micelles or liposomes.
- any agent may be included in a micelle or liposome.
- Micelles and liposomes are particularly useful in delivering hydrophobic agents such as hydrophobic small molecules.
- hydrophobic agents such as hydrophobic small molecules.
- lipoplex polynucleotide it is referred to as a "lipoplex.”
- Many techniques for preparing micelles, liposomes, and lipoplexes are known in the art, and any method may be used with the inventive lipidoids to make micelles and liposomes.
- liposomes are formed through spontaneous assembly.
- liposomes are formed when thin lipid films or lipid cakes are hydrated and stacks of lipid crystalline bilayers become fluid and swell. The hydrated lipid sheets detach during agitation and self-close to form large, multilamellar vesicles (LMV). This prevents interaction of water with the hydrocarbon core of the bilayers at the edges. Once these particles have formed, reducing the size of the particle can be modified through input of sonic energy (sonication) or mechanical energy (extrusion). See Walde, P.
- Lipids are first dissolved in an organic solvent to assure a homogeneous mixture of lipids. The solvent is then removed to form a lipid film. This film is thoroughly dried to remove residual organic solvent by placing the vial or flask on a vaccuum pump overnight. Hydration of the lipid film/cake is accomplished by adding an aqueous medium to the container of dry lipid and agitating the mixture. Disruption of LMV suspensions using sonic energy typically produces small unilamellar vesicles (SUV) with diameters in the range of 15-50 nm.
- SUV small unilamellar vesicles
- Lipid extrusion is a technique in which a lipid suspension is forced through a polycarbonate filter with a defined pore size to yield particles having a diameter near the pore size of the filter used. Extrusion through filters with 100 nm pores typically yields large, unilamellar vesicles (LUV) with a mean diameter of 120-140 nm.
- LUV unilamellar vesicles
- liposomes are formed comprising an inventive lipid, a PEG-based material, cholesterol or a derivative thereof, and a polynucleotide.
- the polynucleotide is an RNA molecule (e.g., an siRNA).
- the polynucleotide is a DNA molecule.
- the amount of lipidoid in the liposome ranges from 30-80 mol , 40-70 mol , or 60-70 mol .
- the liposome comprises a PEG-based material.
- the amount of PEG-based material in the liposomes ranges from 5-20 mol , 10-15 mol , or 10 mol .
- the liposome comprises cholesterol or a derivative thereof.
- the amount of cholesterol in the liposome ranges from 5-25 mol , 10-20 mol , or 15 mol .
- the amount of cholesterol in the liposome is approximately 20 mol .
- These liposomes may be prepared using any method known in the art. In certain embodiments (e.g., liposomes containing RNAi molecules), the liposomes are prepared by lipid extrusion.
- Certain lipidoids can spontaneously self assemble around certain molecules, such as DNA and RNA, to form liposomes.
- the application is the delivery of polynucleotides. Use of these lipidoids allows for simple assembly of liposomes without the need for additional steps or devices such as an extruder.
- the agents to be delivered by the system of the present invention may be therapeutic, diagnostic, or prophylactic agents. Any chemical compound to be administered to an individual may be delivered using the inventive inventive complexes, picoparticles, nanoparticles, microparticles, micelles, or liposomes.
- the agent may be a small molecule, organometallic compound, nucleic acid, protein, peptide, polynucleotide, targeting agent, an isotopically labeled chemical compound, drug, vaccine, immunological agent, etc.
- the agents are organic compounds with pharmaceutical activity.
- the agent is a clinically used drug.
- the drug is an antibiotic, chemotherapeutic, anti-viral agent, anesthetic, steroidal agent, anti-inflammatory agent, anti-neoplastic agent, antigen, vaccine, antibody, decongestant, antihypertensive, sedative, birth control agent, progestational agent,
- anti-cholinergic analgesic, anti-depressant, anti-psychotic, ⁇ -adrenergic blocking agent, diuretic, cardiovascular active agent, vasoactive agent, non-steroidal anti-inflammatory agent, nutritional agent, etc.
- the agent to be delivered may be a mixture of agents.
- Diagnostic agents include gases; metals; commercially available imaging agents used in positron emissions tomography (PET), computer assisted tomography (CAT), single photon emission computerized tomography, x-ray, fluoroscopy, and magnetic resonance imaging (MRI); and contrast agents.
- PET positron emissions tomography
- CAT computer assisted tomography
- MRI magnetic resonance imaging
- suitable materials for use as contrast agents in MRI include gadolinium chelates, as well as iron, magnesium, manganese, copper, and chromium.
- Examples of materials useful for CAT and x-ray imaging include iodine-based materials.
- Prophylactic agents include, but are not limited to, antibiotics, nutritional supplements, and vaccines.
- Vaccines may comprise isolated proteins or peptides, inactivated organisms and viruses, dead organisms and viruses, genetically altered organisms or viruses, and cell extracts.
- Prophylactic agents may be combined with interleukins, interferon, cytokines, and adjuvants such as cholera toxin, alum, Freund's adjuvant, etc.
- Prophylactic agents include antigens of such bacterial organisms as Streptococccus pneumoniae, Haemophilus influenzae,
- Staphylococcus aureus Streptococcus pyrogenes, Corynebacterium diphtheriae, Listeria monocytogenes, Bacillus anthracis, Clostridium tetani, Clostridium botulinum, Clostridium perfringens, Neisseria meningitidis, Neisseria gonorrhoeae, Streptococcus mutans,
- Chlamydial psittaci Chlamydial trachomatis, Plasmodium falciparum, Trypanosoma brucei, Entamoeba histolytica, Toxoplasma gondii, Trichomonas vaginalis, Schistosoma mansoni, and the like.
- These antigens may be in the form of whole killed organisms, peptides, proteins, glycoproteins, carbohydrates, or combinations thereof.
- the inventive lipidoids, and the complexes, liposomes, micelles, microparticles, picoparticles and nanoparticles prepared therefrom, may be modified to include targeting agents since it is often desirable to target a particular cell, collection of cells, or tissue.
- targeting agents A variety of targeting agents that direct pharmaceutical compositions to particular cells are known in the art (see, for example, Cotten et al. Methods Enzym. 217:618, 1993; incorporated herein by reference).
- the targeting agents may be included throughout the particle or may be only on the surface.
- the targeting agent may be a protein, peptide, carbohydrate, glycoprotein, lipid, small molecule, etc.
- the targeting agent may be used to target specific cells or tissues or may be used to promote endocytosis or phagocytosis of the particle.
- targeting agents include, but are not limited to, antibodies, fragments of antibodies, low-density lipoproteins (LDLs), transferrin, asialycoproteins, gpl20 envelope protein of the human immunodeficiency virus (HIV), carbohydrates, receptor ligands, sialic acid, etc.
- LDLs low-density lipoproteins
- transferrin asialycoproteins
- carbohydrates receptor ligands, sialic acid, etc.
- the targeting agent may be included in the mixture that is used to form the particles.
- the targeting agent may be associated with (i.e., by covalent, hydrophobic, hydrogen bonding, van der Waals, or other interactions) the formed particles using standard chemical techniques.
- an inventive lipidoid is a component of a composition which may be useful in a variety of medical and non-medical applications.
- pharmaceutical compositions comprising an inventive lipidoid may be useful in the delivery of an effective amount of an agent to a subject in need thereof.
- Nutraceutical compositions comprising an inventive lipidoid may be useful in the delivery of an effective amount of a nutraceutical, e.g., a dietary supplement, to a subject in need thereof.
- Cosmetic compositions comprising an inventive lipidoid may be formulated as a cream, ointment, balm, paste, film, or liquid, etc., and may be useful in the application of make-up, hair products, and materials useful for personal hygiene, etc.
- the composition comprises one or more lipidoids of the present invention.
- “One or more lipidoids” refers to one or more different types of lipidoids included in the composition, and encompasses 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more different types of lipidoids.
- inventive lipidoids are useful in compositions, either for delivery of an effective amount of an agent to a subject in need thereof ⁇ e.g., a
- compositions may further use the inventive lipidoids as excipients rather than as a delivery system encapsulating an agent to be delivered.
- the composition is a pharmaceutical composition.
- the composition is a cosmetic composition.
- the composition further comprises an agent, as described herein.
- the agent is a small molecule, organometallic compound, nucleic acid, protein, peptide, polynucleotide, metal, targeting agent, an isotopically labeled chemical compound, drug, vaccine, or immunological agent.
- the agent is a polynucleotide.
- the polynucleotide is DNA or RNA.
- the RNA is mRNA, RNAi, dsRNA, siRNA, shRNA, miRNA, or antisense RNA.
- the polynucleotide and the one or more lipidoids are not covalently attached.
- the one or more lipidoids are in the form of a particle.
- the particle is a nanoparticle or microparticle.
- the one or more conjugated lipidoids are in the form of liposomes or micelles. It is understood that, in certain embodiments, these lipidoids self-assemble to provide a particle, micelle or liposome.
- the particle, liposome, or micelle encapsulates an agent.
- the agent to be delivered by the particles, liposomes, or micelles may be in the form of a gas, liquid, or solid.
- the inventive lipidoids may be combined with polymers (synthetic or natural), surfactants, cholesterol, carbohydrates, proteins, lipids etc. to form the particles. These particles may be combined with an excipient to form pharmaceutical and cosmetic
- the complexes, micelles, liposomes, or particles may be combined with one or more excipients to form a composition that is suitable to administer to animals including humans.
- the excipients may be chosen based on the route of administration as described below, the agent being delivered, time course of delivery of the agent, etc.
- composition comprising an inventive lipidoids and an excipient.
- excipient means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
- materials which can serve as excipients include, but are not limited to, sugars such as lactose, glucose, and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose, and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil; sesame oil; olive oil; corn oil and soybean oil; glycols such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; detergents such as Tween 80; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol; and phosphate buffer solutions, as well as other non-
- compositions of this invention can be administered to humans and/or to animals, orally, rectally, parenterally, intracisternally, intravaginally, intranasally, intraperitoneally, topically (as by powders, creams, ointments, or drops), bucally, or as an oral or nasal spray.
- Liquid dosage forms for oral administration include emulsions, microemulsions, solutions, suspensions, syrups, and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbidiluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, is
- Injectable preparations for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation may also be a sterile injectable solution, suspension, or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
- acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil can be employed including synthetic mono- or diglycerides.
- fatty acids such as oleic acid are used in the preparation of injectables.
- the particles are suspended in a carrier fluid comprising 1% (w/v) sodium carboxymethyl cellulose and 0.1% (v/v) Tween 80.
- the injectable formulations can be sterilized, for example, by filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
- compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the particles with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol, or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the particles.
- suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol, or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the particles.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
- the particles are mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and
- compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
- the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes.
- compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
- Dosage forms for topical or transdermal administration of an inventive pharmaceutical composition include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, or patches.
- the particles are admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required.
- Ophthalmic formulation, ear drops, and eye drops are also contemplated as being within the scope of this invention.
- the ointments, pastes, creams, and gels may contain, in addition to the particles of this invention, excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc, and zinc oxide, or mixtures thereof.
- excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc, and zinc oxide, or mixtures thereof.
- Powders and sprays can contain, in addition to the particles of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates, and polyamide powder, or mixtures of these substances.
- Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.
- Transdermal patches have the added advantage of providing controlled delivery of a compound to the body.
- dosage forms can be made by dissolving or dispensing the microparticles or nanoparticles in a proper medium.
- Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the particles in a polymer matrix or gel.
- inventive lipidoids e.g., for the treatment of a disease, disorder or condition from which a subject suffers. It is
- inventive lipidoids will be useful in the treatment of a variety of diseases, disorders or conditions, especially as a system for delivering agents useful in the treatment of that particular disease, disorder or condition.
- a method of treating cancer comprising administering to a subject in need thereof an effective amount of a lipidoid of the present invention, or salt thereof, or a composition thereof.
- the method further comprises administering an anti-cancer agent.
- the lipidoid encapsulates the anti-cancer agent.
- the lipidoid and the anti-cancer agent form a particle (e.g., a nanoparticle, a microparticle, a micelle, a liposome, a lipoplex).
- a "subject" to which administration is contemplated includes, but is not limited to, humans (i.e., a male or female of any age group, e.g., a pediatric subject (e.g, infant, child, adolescent) or adult subject (e.g., young adult, middle-aged adult or senior adult)) and/or other non-human animals, for example mammals (e.g., primates (e.g., cynomolgus monkeys, rhesus monkeys); commercially relevant mammals such as cattle, pigs, horses, sheep, goats, cats, and/or dogs), birds (e.g.
- humans i.e., a male or female of any age group, e.g., a pediatric subject (e.g, infant, child, adolescent) or adult subject (e.g., young adult, middle-aged adult or senior adult)
- non-human animals for example mammals (e.g., primates (e.g., cyno
- the non-human animal is a mammal.
- the non-human animal may be a male or female and at any stage of development.
- a non-human animal may be a transgenic animal.
- the terms “treat,” “treating” and “treatment” contemplate an action that occurs while a subject is suffering from the specified disease, disorder or condition, which reduces the severity of the disease, disorder or condition, or retards or slows the progression of the disease, disorder or condition ("therapeutic treatment”), and also contemplates an action that occurs before a subject begins to suffer from the specified disease, disorder or condition ("prophylactic treatment").
- the "effective amount" of a compound refers to an amount sufficient to elicit the desired biological response.
- the effective amount of a compound of the invention may vary depending on such factors as the desired biological endpoint, the pharmacokinetics of the compound, the disease being treated, the mode of administration, and the age, health, and condition of the subject.
- An effective amount encompasses therapeutic and prophylactic treatment.
- a "therapeutically effective amount" of a compound is an amount sufficient to provide a therapeutic benefit in the treatment of a disease, disorder or condition, or to delay or minimize one or more symptoms associated with the disease, disorder or condition.
- a therapeutically effective amount of a compound means an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment of the disease, disorder or condition.
- the term "therapeutically effective amount” can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of disease or condition, or enhances the therapeutic efficacy of another therapeutic agent.
- a prophylactically effective amount of a compound is an amount sufficient to prevent a disease, disorder or condition, or one or more symptoms associated with the disease, disorder or condition, or prevent its recurrence.
- a prophylactically effective amount of a compound means an amount of a therapeutic agent, alone or in combination with other agents, which provides a prophylactic benefit in the prevention of the disease, disorder or condition.
- the term “prophylactically effective amount” can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of another prophylactic agent.
- Exemplary cancers include, but are not limited to, acoustic neuroma, adenocarcinoma, adrenal gland cancer, anal cancer, angiosarcoma (e.g., lymphangiosarcoma, lymphangioendotheliosarcoma, hemangiosarcoma), appendix cancer, benign monoclonal gammopathy, biliary cancer (e.g., cholangiocarcinoma), bladder cancer, breast cancer (e.g., adenocarcinoma of the breast, papillary carcinoma of the breast, mammary cancer, medullary carcinoma of the breast), brain cancer (e.g., meningioma; glioma, e.g., astrocytoma, oligodendroglioma; medulloblastoma), bronchus cancer, carcinoid tumor, cervical cancer (e.g., cervical adenocarcinoma), choriocarcinoma
- HCC hepatocellular cancer
- lung cancer e.g., bronchogenic carcinoma, small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), adenocarcinoma of the lung
- myelofibrosis MF
- chronic idiopathic myelofibrosis chronic myelocytic leukemia (CML), chronic neutrophilic leukemia (CNL), hypereosinophilic syndrome (HES)
- neuroblastoma e.g., neurofibromatosis (NF) type 1 or type 2, schwannomatosis
- neuroendocrine cancer e.g., gastroenteropancreatic neuroendoctrine tumor (GEP-NET), carcinoid tumor
- osteosarcoma ovarian cancer (e.g., cystadenocarcinoma, ovarian embryonal carcinoma, ovarian adenocarcinoma), papillary adenocarcinoma, pancreatic cancer (e.g., pancreatic andenocarcinoma, intraductal papillary mucinous neoplasm (IPMN), Islet cell tumors), penile cancer (e.g., Paget' s disease of the
- adenocarcinoma rectal cancer, rhabdomyosarcoma, salivary gland cancer, skin cancer (e.g., squamous cell carcinoma (SCC), keratoacanthoma (KA), melanoma, basal cell carcinoma (BCC)), small bowel cancer (e.g., appendix cancer), soft tissue sarcoma (e.g., malignant fibrous histiocytoma (MFH), liposarcoma, malignant peripheral nerve sheath tumor (MPNST), chondrosarcoma, fibrosarcoma, myxosarcoma), sebaceous gland carcinoma, sweat gland carcinoma, synovioma, testicular cancer (e.g., seminoma, testicular embryonal carcinoma), thyroid cancer (e.g., papillary carcinoma of the thyroid, papillary thyroid carcinoma (PTC), medullary thyroid cancer), urethral cancer, vaginal cancer and vulvar cancer (e.g., Paget
- Anti-cancer agents encompass biotherapeutic anti-cancer agents as well as chemotherapeutic agents.
- biotherapeutic anti-cancer agents include, but are not limited to, interferons, cytokines (e.g., tumor necrosis factor, interferon a, interferon ⁇ ), vaccines, hematopoietic growth factors, monoclonal serotherapy, immuno stimulants and/or
- immunodulatory agents e.g., IL- 1, 2, 4, 6, or 12
- immune cell growth factors e.g., GM-CSF
- antibodies e.g. HERCEPTIN (trastuzumab), T-DM1, AVASTIN (bevacizumab), ERBITUX (cetuximab), VECTIBIX (panitumumab), RITUXAN (rituximab), BEXXAR (tositumomab)).
- chemotherapeutic agents include, but are not limited to, anti-estrogens (e.g.
- tamoxifen e.g. goscrclin and leuprolide
- anti-androgens e.g. flutamide and bicalutamide
- photodynamic therapies e.g. vertoporfin (BPD-MA), phthalocyanine, photosensitizer Pc4, and demethoxy-hypocrellin A
- nitrogen mustards e.g. cyclophosphamide, ifosfamide, trofosfamide, chlorambucil, estramustine, and melphalan
- nitrosoureas e.g. carmustine (BCNU) and lomustine (CCNU)
- alkylsulphonates e.g. busulfan and treosulfan
- triazenes e.g.
- Taxoprexin polyglutamate bound-paclitaxel (PG-paclitaxel, paclitaxel poliglumex,
- etoposide etoposide phosphate, teniposide, topotecan, 9-aminocamptothecin, camptoirinotecan, irinotecan, crisnatol, mytomycin C
- anti-metabolites DHFR inhibitors (e.g. methotrexate, dichloromethotrexate, trimetrexate, edatrexate), IMP dehydrogenase inhibitors (e.g. mycophenolic acid, tiazofurin, ribavirin, and EICAR), ribonuclotide reductase inhibitors (e.g. hydroxyurea and deferoxamine), uracil analogs (e.g.
- 5-fluorouracil 5-fluorouracil
- floxuridine doxifluridine, ratitrexed, tegafur-uracil, capecitabine
- cytosine analogs e.g. cytarabine (ara C), cytosine arabinoside, and fludarabine
- purine analogs e.g. mercaptopurine and Thioguanine
- Vitamin D3 analogs e.g. EB 1089, CB 1093, and KH 1060
- isoprenylation inhibitors e.g. lovastatin
- dopaminergic neurotoxins e.g. l-methyl-4-phenylpyridinium ion
- cell cycle inhibitors e.g.
- actinomycin e.g. actinomycin D, dactinomycin
- bleomycin e.g. bleomycin A2, bleomycin B2, peplomycin
- anthracycline e.g. daunorubicin, doxorubicin, pegylated liposomal doxorubicin, idarubicin, epirubicin, pirarubicin, zorubicin, mitoxantrone
- MDR inhibitors e.g. verapamil
- Ca 2+ ATPase inhibitors e.g.
- thapsigargin imatinib, thalidomide, lenalidomide, tyrosine kinase inhibitors (e.g., axitinib (AG013736), bosutinib (SKI-606), cediranib (RECENTINTM, AZD2171), dasatinib (SPRYCEL®, BMS-354825), erlotinib (TARCEVA®), gefitinib (IRESSA®), imatinib (Gleevec®, CGP57148B, STI-571), lapatinib (TYKERB®,
- TYVERB® lestaurtinib (CEP-701), neratinib (HKI-272), nilotinib (TASIGNA®), semaxanib (semaxinib, SU5416), sunitinib (SUTENT®, SU11248), toceranib
- PALLADIA® vandetanib
- ZACTEVIA® vandetanib
- ZD6474 vatalanib
- PTK787 PTK/ZK
- trastuzumab HERCEPTIN®
- bevacizumab AVASTIN®
- rituximab RITUXAN®
- cetuximab ERBITUX®
- panitumumab VECTIBIX®
- ranibizumab (Lucentis®
- nilotinib TASIGNA®
- sorafenib NEXAVAR®
- everolimus AFINITOR®
- CAMPATH® gemtuzumab ozogamicin
- MYLOTARG® gemtuzumab ozogamicin
- TORISEL® temsirolimus
- ENMD-2076 PCI-32765, AC220, dovitinib lactate (TKI258, CHIR-258), BIBW 2992 (TOVOKTM), SGX523, PF-04217903, PF-02341066, PF-299804, BMS-777607, ABT-869, MP470, BIBF 1120 (V ARGATEF® ) , AP24534, JNJ-26483327, MGCD265, DCC-2036, BMS-690154, CEP-11981, tivozanib (AV-951), OSI-930, MM-121, XL- 184, XL-647, and/or XL228), proteasome inhibitors (e.g., bortezomib (VELCADE)),
- Lipidoids were synthesized through the conjugate addition of alkyl- acrylates to amines.
- Amines were purchased from Sigma Aldrich (St. Louis, MO), Alfa Aesar, Acros Organics, and CHESS Organics.
- Acrylates were purchased from Scientific Polymer Products (Ontario, NY) and Hampford Research, Inc. (Stratford, CT). Amines were combined with acrylates stoichiometrically in a glass scintillation vial and were stirred at 90°C for either for 3 days. In vitro experiments were conducted with crude materials, and in vivo experiments were performed with lipidoids purified via a Teledyne Isco Chromatography system (Lincoln, NE).
- Lipidoids were formulated into nanoparticles for all studies described in the Examples. Nanoparticles were formed by mixing lipidoids, cholesterol (Sigma Aldrich), DSPC (Avanti Polar Lipids, Alabaster, AL) and mPEG2000-DMG (MW 2660, gift from Alnylam Pharamceuticals, Cambridge, MA) at a molar ratio of 38.5 : 50 : (11.5 - X) : X in a solution of 90% ethanol and 10% 10 mM sodium citrate (by volume).
- siRNA solution was prepared by diluting siRNA in 10 mM sodium citrate such that the final weight ratio of total lipid (lipidoid + cholesterol + DSPC + PEG) : siRNA was 10 : 1.
- Equal volumes of lipid solution and siRNA solution were rapidly mixed together using either a microfluidic device (Chen, D. et al. J. Am. Chem. Soc. 134, 120410134818007 (2012)) or by pipet to form nanoparticles. Particles were diluted in phosphate buffered saline (PBS, Invitrogen) and then dialyzed against PBS for 90 minutes in 3500 MWCO cassettes (Pierce/Thermo Scientific, Rockford, IL).
- PBS phosphate buffered saline
- HeLa cells stably modified to express both firefly and Renilla luciferase were maintained at 37 °C in high glucose Dulbecco's Modified Eagles Medium without phenol red (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, Invitrogen). 12 - 16 hours prior to transfection, cells were seeded in white 96- well plates at a density of 15,000 cells per well. Cells were transfected with a 40 nM concentration of anti-firefly luciferase siRNA (Dharmacon, Lafayette, CO) that had been formulated with lipidoids into nanoparticles.
- FBS fetal bovine serum
- mice Female C57BL/6 mice (Charles River Laboratories, Wilmington, MA) received injections through the lateral tail vein injections of PBS (negative control), or lipidoid nanoparticles containing either non-targeting siRNA (negative control) or anti-Factor VII siRNA diluted in PBS at a volume of 0.01 ml/g.
- PBS negative control
- lipidoid nanoparticles containing either non-targeting siRNA negative control
- anti-Factor VII siRNA diluted in PBS at a volume of 0.01 ml/g.
- mice Female C57BL/6 mice received tail vein injections of lipid nanoparticles containing siRNA that had been labeled with Cy5.5 on the 5' end of the sense strand (provided by Alnylam Pharmaceuticals). Animals were dosed at 1 mg/kg of siRNA and volume of 0.01 ml/g. At one hour post-injection, mice were euthanized and organs were removed. Body- wide biodistribution was assessed by imaging whole organs with an IVIS ® Spectrum system (Caliper Life Sciences, Hopkinton, MA) at excitation and emission wavelengths of 675 nm and 720 nm, respectively. Cell-specific distribution within hepatocytes was assessed by embedding, sectioning, and staining the whole liver with antibodies.
- IVIS ® Spectrum system Caliper Life Sciences, Hopkinton, MA
- Imaging was conducted on a LSM 700 confocal microscope (Carl Zeiss, Inc., Peabody, MA).
- LSM 700 confocal microscope Carl Zeiss, Inc., Peabody, MA.
- OCT optimal cutting temperature compound
- Cryostat sections were cut and collected on superfrost plus treated slides. Prepared frozen sections where kept at -20 °C until needed.
- Odyssey imaging was conducted on 20 ⁇ thick cryosections of tissue at a resolution of 21 ⁇ (Lee, M. J.-E. et ah, Rapid Pharmacokinetic and Biodistribution Studies Using
- liver tissue was cryosectioned (12 ⁇ ) and fixed using 4 % paraformaldehyde at room temperature for 30 min. All solutions were prepared in PBS.
- Sections were washed 2x with PBS, permeabilized for 30 min with 0.1% Triton X100, and blocked for 1 hour with 5% normal goat serum. Sections then incubated for 1 hour in an immunostaining cocktail solution consisting of DAPI (3 ⁇ ), Alexa Fluor 488 conjugated anti-mouse F4/80 (1:200 dilution, BioLegend, San Diego, CA), Alexa Fluor® 555 Phalloidin (1:200 dilution, Life Technologies), and 5 % normal goat serum. Slides were washed 3x with 0.1% Tween 20 and mounted using ProLong® Gold Antifade (Life Technologies). Sections were imaged using an LSM 700 point scanning confocal microscope (Carl Zeiss, Inc, Jena Germany) equipped with a 40X oil immersion objective. Blood Clearance
- Organs were harvested from animals that had received various doses of either 304O 13 or C12-200 lipid nanoparticles (C12-200 is a control non-degradable lipidoid shown below). Organs were fixed overnight in 4% paraformaldehyde and transferred to 70% ethanol prior to paraffin embedding, sectioning, and H & E staining.
- Cytokine analysis was done by injecting either 304O 13 or C 12-200 nanoparticles at an siRNA dose of 3 mg/kg. Four hours post-injection, blood was harvested via cardiac stick and serum was isolated. Cytokine levels were quantified using an ELISA assay. Nanoparticle Characterization
- Lipid nanoparticles were diluted to an siRNA concentration of ⁇ 5 ug/ml in 0.1 x PBS, pH 7.3.
- siRNA entrapment efficiency was determined using the Quant-iTTM RiboGreen ® RNA assay (Invitrogen). Particle sizes were measured with a ZETAPals analyzer (Brookhaven Instruments, Holtsville, NY). Sizes reported are the average effective diameter of each LNP. Zeta potential measurements were acquired on a Zetasizer Nano ZS (Malvern, Westborough, MA), and reported values were the average of 10 - 25 runs.
- alkyl-acrylate tails of intermediate length (10 - 14 carbon chain length)
- shorter tails often lack efficacy while longer tails may cause insolubility during the nanoparticle formulation process (Akinc, A. et al. Nature Biotechnology 26, 561-569 (2008); Love, K. T. et al. Proc. Natl. Acad. Sci. USA 107, 1864-1869 (2010)).
- the acrylate-based lipidoids provided herein also contain hydrolysable ester moieties, functional groups which are commonly incorporated into delivery vehicles to promote physiological degradation (Staubli, A., Ron, E. & Langer, R. J. Am. Chem. Soc. 112, 4419-4424 (1990); van Dijkhuizen-Radersma, et al. Biomaterials 23, 4719-4729 (2002); Geng, Y. & Discher, D. E. J. Am. Chem. Soc. 127, 12780-12781 (2005)).
- lipid nanoparticles lipid nanoparticles containing siRNA, cholesterol and the helper lipids, DSPC and PEG(MW2000)-DMG.
- LNPs lipid nanoparticles
- the delivery potential of lipidoids was assessed by applying LNPs to HeLa cells that had been genetically modified to stably express two reporter luciferase proteins: firefly and Renilla.
- Firefly luciferase served as the target gene while Renilla luciferase served as a built-in control for toxicity and off-targeting effects.
- Relative luciferase activity which is the ratio of firefly to Renilla activity, is shown in Figure 3a after treatment with each LNP at an siRNA concentration of 40 nM.
- -7% mediated target gene silencing of >50% shown in red circles).
- RNA interference therapy In addition to examining hepatocellular delivery, we also explored the ability of biodegradable lipidoid materials to deliver siRNA to leukocyte populations in vivo. Immune cells are attractive targets for RNA interference therapy, as they have been implicated in various aspects of disease initiation and progression, including inflammation and autoimmune responses (Geissmann, F. et al. Science 327, 656-661 (2010); Grivennikov, et al. Cell 140, 883-899 (2010)). Although moderate levels of gene silencing have been achieved recently in leukocytes (Leuschner, F. et al. Nature Biotechnology 29, 1005-1010 (2011); Novobrantseva, T. I. et al.
- LNPs were formulated with siRNA specific against CD45, which is a tyrosine phosphatase protein found on the surface of all white blood cells.
- CD45 is a tyrosine phosphatase protein found on the surface of all white blood cells.
- 304O 13 and 306O 13 mediated the most robust CD45 silencing in immune cells isolated from both the peritoneal cavity and the spleen (Fig. 4e and f).
- CD1 lb+ and CD1 lc+ populations were subject to high levels of knockdown within the peritoneal cavity (up to 90%) and to a lesser degree within the spleen (up to 40%).
- the lipidoids 306O 12 , 306O 14 , and 3150 12 also offered modest CD45 silencing in several immune cell subpopulations (Figure 9).
- Nanoparticle characterization parameters for three of the top LNP candidates were similar (Table 1).
- Entrapment of siRNA refers to the percentage of siRNA in solution that is incorporated into the nanoparticle during formulation, as measured by an RNA dye-binding assay (Nolan, T., Hands, R. E. & Bustin, S. A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc 1, 1559-1582 (2006)). These results are in keeping with a previous finding that efficacious lipidoid nanoparticles often have entrapment values of approximately 75% 17. Zeta potential measurements were conducted under neutral pH conditions.
- pKa values which were obtained using a toluene nitrosulphonic acid (TNS) assay, evaluated the pKa of the nanoparticle surface (Heyes, J., Palmer, L., Bremner, K. & MacLachlan, I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release 107, 276-287 (2005)).
- the pKa values of top LNP candidates corroborate the results of another study in which surface pKa values in the 6 - 7 range conveyed efficacy in vivo (Jayaraman, M. M. et ah, Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo. Angew. Chem. Int. Ed. 51, 8529-8533 (2012)).
- C12-200 is a 5-tailed, lipidoid that has the same EC 50 as 304O 13 (0.01 mg/kg). It was chosen for comparison purposes because it does not contain any functional groups that are overtly sensitive to hydrolysis. We chose to examine the effect of doses that were at least 100-fold higher than the EC 50 .
- Serum cytokine levels for both materials were assessed in mice four hours after a 3 mg/kg IV bolus injection (total siRNA).
- IL-6, IP- 10, KC, and MCP-1 were elevated in the C 12-200 group compared to both PBS negative control and 304O 13 groups under these conditions (Figure 6).
- Clinical chemistry parameters were evaluated for both materials 72 hours after a single dose of 3 mg/kg and after four once weekly doses of 3 mg/kg each. There were no toxicologically significant increases in albumin, ALT, AST, ALP, total bilirubin, or GGT for either 304O 13 or C12-200 after single or multiple doses (Figure 12).
- liver necrosis was observed in mice administered ⁇ 7.5 mg/kg of C12-200 and at 10 mg/kg of 304O 13 .
- Pancreatic inflammation and islet cell enlargement were detected at C12-200 doses ⁇ 2 mg/kg.
- a small amount of apoptosis in splenic red pulp was observed at 10 mg/kg for 304O 13 .
- Multi-dose studies were also conducted in which mice received four injections of 0.3, 1, 2, 3, or 5 mg/kg, once per week for four weeks.
- Figure 7a shows The data from the 108 materials tested in vivo at a total siRNA dose of 5 mg/kg.
- 25 of them contained an 0 13 tail
- 66 of them had three or more tails
- 42 of them had been synthesized from an alkyl-amine that contained at least one tertiary amine.
- Figure 7b shows a second generation library of lipidoids from certain amines conjugated to an 0 13 tail.
- 10 out of 12 of these materials mediated 100% Factor VII silencing at a dose of 5 mg/kg ⁇ Figure 7c).
- Formulation optimization of the best second generation material, 503O 13 markedly decreased the EC 50 value to 0.01 mg/kg ⁇ Figure 7e).
- Several second generation materials also facilitated significant CD45 knockdown in monocyte, macrophage, dendritic cell, and B cell populations ⁇ Figure 13).
- the means are not intended to be limited to the means disclosed herein for performing the recited function, but are intended to cover in scope any means, known now or later developed, for performing the recited function.
- Use of terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Nanotechnology (AREA)
- Emergency Medicine (AREA)
- Dispersion Chemistry (AREA)
- Optics & Photonics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Virology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Medicinal Preparation (AREA)
Abstract
Provided herein are lipidoids that may be prepared from the conjugate addition of alkylamines to acrylates. In some embodiments, provided lipidoids are biodegradable and may be used in a variety of drug delivery systems. Given the amino moiety of the lipidoids, they are well-suited for the delivery of polynucleotides, in addition to other agents. Nanoparticles containing the inventive lipidoids and polynucleotides have been prepared and have been shown to be effective in delivering siRNA.
Description
AMINE-CONTAINING LIPIDOIDS AND USES THEREOF
Related References
[0001] The present application claims priority under 35 U.S.C. § 119(e) to U.S.
provisional application, U.S. S.N. 61/682,468, filed August 13, 2012, which is incorporated herein by reference.
Government Support
[0002] This invention was made with government support under Grant Nos.
F32-EB009623, EB000244, R01CA115527, and R01CA132091 awarded by the National Institutes of Health. The government has certain rights in this invention.
Background of the Invention
[0003] The discovery of RNA interference (RNAi) in mammalian cells (Fire, et al. Nature 391:806-811 (1998)) has allowed for the development of short interfering RNA (siRNA) therapeutics (Elbashir, et al. Nature 411:494-8 (2001)), which have the potential to treat a wide variety of human diseases, including viral infections and cancer, through genetic modulation. Theoretically, siRNA can be used to alter the expression of nearly any gene in the body through the silencing of complementary messenger RNA. Such precise genetic control offers a broad therapeutic potential that is typically not attainable using conventional small molecule drugs. siRNA delivery vehicles must negotiate a number of obstacles in vivo prior to delivering their payload to target cells. In addition to escorting therapeutic cargo through the bloodstream and extracellular matrix, delivery vehicles must mediate siRNA transport across the cellular membrane of the target cell as well as to facilitate endosomal escape prior to lysosomal digestion (Akinc, et al. J. Gene. Med. 7:657-63 (2005)). It is only once these barriers have been breached that siRNA can interact with the RNAi machinery within the cytoplasm and trigger the gene silencing process (Whitehead, et al. Nature Rev. Drug Discov. 8: 129-38 (2009)).
[0004] A select number of delivery systems have previously been reported to deliver siRNA for the treatment of a variety of disease targets in vivo, including hypercholesterolemia (Frank-Kamenetsky, et al. Proc. Natl. Acad. Sci. USA 107: 1864-9 (2010); Love, et al. Proc. Natl. Acad. Sci. USA 26:431-42 (2008)), liver cirrhosis (Sato, et al. Nature Biotechnol.
26:431-42 (2008)), Ebola virus (Geisbert, et al. Lancet 375: 1896-1905 (2010)), and cancer
(Huang, et al. Proc. Natl. Acad. Sci. USA 106:3426-30 (2009)). Unfortunately, RNAi success in vivo has not consistently translated to success in the clinic. Because siRNA must be dosed repeatedly to achieve therapeutic effect, ideal delivery vehicles will offer a substantial therapeutic window in order to ensure the broadest clinical application. Although some materials have been identified that allow for potent gene silencing at siRNA doses as low as 0.01 mg/kg (Love, et al. Proc. Natl. Acad. Sci. USA 107: 1864-9 (2010)), their clinical potential has been limited due to a lack of delivery vehicle degradability. There exists a continuing need for non-toxic, biodegradable, biocompatible lipids that can be used to transfect nucleic acids and other therapeutic agents. Such lipids would have several uses, including the delivery of siRNA.
Summary of the Invention
[0005] The compounds described herein, known as lipidoids for their lipid-like tails, may be prepared by the addition of a primary or secondary amine to an acrylate via a Michael addition reaction. The lipidoids described herein may be used in the delivery of therapeutic agents to a subject. The inventive lipidoids are particularly useful in delivering negatively charged agents. For example, lipidoids described herein may be used to deliver DNA, RNA, or other polynucleotides to a subject or to a cell. In certain embodiments, lipidoids of the present invention are used to deliver siRNA. In certain embodiments, lipidoids described herein are useful as reagents.
I
or a salt thereof, wherein L, R, RA, and q are as defined herein. In certain embodiments, a provided compound is
I-a
R* R
R .
"R
I
RA
RA RA
R , ,R
I
RA
I-e
or a salt thereof, wherein m, n, R, and RA are as defined herein.
[0007] In another aspect, the present invention provides a compound of the Formula (II):
R R*
R RL
N'
I
L
I
N .
II
or a salt thereof, wherein L, Rc, and RA are as defined herein. In certain embodiments, a provided compound is of the Foraiula (Il-a), (Il-b), (II-c), (Il-d), (Il-e), or (Il-f):
Il-f
or a salt thereof, wherein v, L, R, RD, and RA are as defined herein.
[0008] In another aspect, the present invention provides a compound of the Formula (HI):
(R1 )j
N— L— N N— L— N
P
III
or a salt thereof, wherein p, R1, j, and R are as defined herein. In certain embodiments, a provided compound is of the Formula Ill-a), (Ill-b), (III-c), (IH-d), or (Ill-e):
Ill-a
Ill-b
III-c
Ill-e
or a salt thereof, wherein w, p, R1, j, and R are as defined herein.
[0009] In another aspect, the present invention provides a compound of Formula (IV)
IV
or a salt thereof, wherein R, x, and y are as defined herein. In certain embodiments, a provided compound is of the Formula (IV-a):
R R
I I
I I R R
IV-a
or a salt thereof, wherein R is as defined herein.
[0010] In another aspect, the resent invention provides a compound of Formula (V):
or a salt thereof, wherein L, R , g, and R are as defined herein. In certain embodiments, a provided compound is of the Formula V-a), (V-b), (V-c), or (V-d):
V-d
or a salt thereof, wherein L, R , g, and R are as defined herein.
[0011] In another aspect, the present invention provides a compound of formula
or a salt thereof, wherein R and R are as defined herein.
[0012] In another aspect, the present invention provides lipidoids having certain features. In some embodiments, a lipidoid of the present invention is prepared from an alkylamine starting material that has at least one tertiary amine. In some embodiments, a lipidoid of the present invention has three or more lipid-like tails. In some embodiments, the lipid-like tails on a lipidoid of the present invention are between C12-C14 in length, e.g. , C13 (e.g. , derived from the 013 acrylate shown in Figure 1). In certain embodiments, a provided lipidoid is prepared from an alkylamine starting material that has at least one tertiary amine and has three or more C13 tails.
[0013] In another aspect, the inventive lipidoids are combined with an agent to form nanoparticles, microparticles, liposomes, or micelles. The agent to be delivered by the nanoparticles, microparticles, liposomes, or micelles may be in the form of a gas, liquid, or solid, and the agent may be, for example, a polynucleotide, protein, peptide, or small molecule. In certain embodiments, inventive lipidoids may be combined with other lipids, polymers,
surfactants, cholesterol, carbohydrates, proteins, etc. to form the particles. In certain embodiments, the particles may be combined with an excipient to form pharmaceutical or cosmetic compositions.
Definitions
[0014] Definitions of specific functional groups and chemical terms are described in more detail below. For purposes of this invention, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed., inside cover, and specific functional groups are generally defined as described therein. Additionally, general principles of organic chemistry, as well as specific functional moieties and reactivity, are described in "Organic Chemistry", Thomas Sorrell, University Science Books, Sausalito: 1999, the entire contents of which are incorporated herein by reference.
[0015] Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms. The present invention contemplates all such compounds, including cis- and iraws-isomers, R- and S-enantiomers, diastereomers, (D)-isomers, (L)-isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention. Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
[0016] Isomeric mixtures containing any of a variety of isomer ratios may be utilized in accordance with the present invention. For example, where only two isomers are combined, mixtures containing 50:50, 60:40, 70:30, 80:20, 90: 10, 95:5, 96:4, 97:3, 98:2, 99: 1, or 100:0 isomer ratios are all contemplated by the present invention. Those of ordinary skill in the art will readily appreciate that analogous ratios are contemplated for more complex isomer mixtures.
[0017] If, for instance, a particular enantiomer of a compound of the present invention is desired, it may be prepared by asymmetric synthesis, or by derivation with a chiral auxiliary, where the resulting diastereomeric mixture is separated and the auxiliary group cleaved to provide the pure desired enantiomers. Alternatively, where the molecule contains a basic functional group, such as amino, or an acidic functional group, such as carboxyl,
diastereomeric salts are formed with an appropriate optically- active acid or base, followed by resolution of the diastereomers thus formed by fractional crystallization or chromatographic means well known in the art, and subsequent recovery of the pure enantiomers.
[0018] Unless otherwise stated, structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of hydrogen by deuterium or tritium, or the replacement of a carbon by a 13C- or 14C-enriched carbon are within the scope of this invention. Such compounds are useful, for example, as analytical tools or probes in biological assays.
[0019] The term "aliphatic," as used herein, includes both saturated and unsaturated, nonaromatic, straight chain (i.e., unbranched), branched, acyclic, and cyclic (i.e., carbocyclic) hydrocarbons. In some embodiments, an aliphatic group is optionally substituted with one or more functional groups. As will be appreciated by one of ordinary skill in the art, "aliphatic" is intended herein to include alkyl, alkenyl, alkynyl, cycloalkyl, and cycloalkenyl moieties.
[0020] The term "alkyl" as used herein refers to saturated, straight- or branched-chain hydrocarbon radicals derived from a hydrocarbon moiety containing between one and twenty carbon atoms by removal of a single hydrogen atom. Examples of alkyl radicals include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, n-decyl, n-undecyl, and dodecyl.
[0021] In certain embodiments, the alkyl groups employed in the inventive lipidoids contain 1-20 aliphatic carbon atoms. In certain other embodiments, the alkyl groups employed in the inventive lipidoids contain 1-10 aliphatic carbon atoms. In yet other embodiments, the alkyl groups contain 1-8 aliphatic carbon atoms. In still other embodiments, the alkyl groups employed in the invention contain 1-6 aliphatic carbon atoms. In yet other embodiments, the alkyl groups contain 1-4 carbon atoms. Illustrative alkyl groups thus include, but are not limited to, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, sec-pentyl, isopentyl, tert-pentyl, n-hexyl, and sec-hexyl.
[0022] The terms "alkenyl" and "alkynyl" are given their ordinary meaning in the art and refer to unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double or triple bond respectively.
[0023] The term "cycloalkyl", as used herein, refers saturated, cyclic hydrocarbon radicals derived from a hydrocarbon moiety containing between three and seven carbon atoms by removal of a single hydrogen atom. Suitable cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl.
[0024] The term "cycloalkylalkyl," as used herein, refers to a cycloalkyl group attached via a straight chain or branched alkyl group. Suitable cycloalkylalkyl groups include, but are
not limited to, -CH2(cyclopropyl), -CH2CH2(cyclopropyl), -CH2(cyclobutyl), -CH2CH2(cyclobutyl), -CH2(cyclopentyl), -CH2CH2(cyclopentyl), -CH2(cyclohexyl), -CH2CH2(cyclohexyl), -CH2(cycloheptyl), and -CH2CH2(cycloheptyl).
[0025] The term "alkylene" as used herein refers to a bivalent alkyl group. An "alkylene" group is a polymethylene group, i.e., -(CH2)k-, wherein k is a positive integer, e.g., from 1 to 20, from 1 to 10, from 1 to 6, from 1 to 4, from 1 to 3, from 1 to 2, or from 2 to 3. In some embodiments, one or more hydrogens on an alkylene group is replaced by a substituent (e.g., fluoro).
[0026] The following are more general terms used throughout the present application:
[0027] "Animal": The term animal, as used herein, refers to humans as well as non-human animals, including, for example, mammals, birds, reptiles, amphibians, and fish. Preferably, the non-human animal is a mammal (e.g., a rodent, a mouse, a rat, a rabbit, a monkey, a dog, a cat, a primate, or a pig). An animal may be a transgenic animal.
[0028] "Associated with": When two entities are "associated with" one another as described herein, they are linked by a direct or indirect covalent or non-covalent interaction. Preferably, the association is covalent. Desirable non-covalent interactions include hydrogen bonding, van der Waals interactions, hydrophobic interactions, magnetic interactions, electrostatic interactions, etc.
[0029] "Biocompatible": The term "biocompatible", as used herein is intended to describe compounds that are not toxic to cells. In certain embodiments, compounds are "biocompatible" if their addition to cells in vitro at a minimum therapeutically effective dose results in less than or equal to 20 % cell death, and their administration in vivo does not induce inflammation or other such adverse effects.
[0030] "Biodegradable": As used herein, "biodegradable" compounds are those that, when introduced into cells, are broken down by the cellular machinery or by hydrolysis into components that the cells can either reuse or dispose of without significant long-term toxic effect on the cells. In certain embodiments, the components do not induce inflammation or other adverse effects in vivo. In certain embodiments, the chemical reactions relied upon to break down the biodegradable compounds are uncatalyzed.
[0031] "Peptide" or "protein": According to the present invention, a "peptide" or
"protein" comprises a string of at least three amino acids linked together by peptide bonds. The terms "protein" and "peptide" may be used interchangeably. Peptide may refer to an individual peptide or a collection of peptides. Inventive peptides preferably contain only natural amino
acids, although non-natural amino acids (i.e. , compounds that do not occur in nature but that can be incorporated into a polypeptide chain) and/or amino acid analogs as are known in the art may alternatively be employed. Also, one or more of the amino acids in an inventive peptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a phosphate group, a farnesyl group, an isofamesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. In a preferred embodiment, the modifications of the peptide lead to a more stable peptide (e.g., greater half-life in vivo). These modifications may include cyclization of the peptide, the incorporation of D-amino acids, etc. None of the modifications should substantially interfere with the desired biological activity of the peptide.
[0032] "Polynucleotide" or "oligonucleotide": Polynucleotide or oligonucleotide refers to a polymer of nucleotides. Typically, a polynucleotide comprises at least three nucleotides. The polymer may include natural nucleosides (i.e. , adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine), nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, C5-propynylcytidine, C5-propynyluridine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-methylcytidine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, 0(6)-methylguanine, and 2-thiocytidine), chemically modified bases, biologically modified bases (e.g., methylated bases), intercalated bases, modified sugars (e.g., 2'-fluororibose, ribose, 2'-deoxyribose, arabinose, and hexose), or modified phosphate groups (e.g., phosphorothioates and 5 ' -N-phosphoramidite linkages).
[0033] "Small molecule": As used herein, the term "small molecule" refers to organic compounds, whether naturally-occurring or artificially created (e.g., via chemical synthesis) that have relatively low molecular weight and that are not proteins, polypeptides, or nucleic acids. Typically, small molecules have a molecular weight of less than about 1500 g/mol. Also, small molecules typically have multiple carbon-carbon bonds. Known
naturally- occurring small molecules include, but are not limited to, penicillin, erythromycin, taxol, cyclosporin, and rapamycin. Known synthetic small molecules include, but are not limited to, ampicillin, methicillin, sulfamethoxazole, sulfonamides, dexamethasone, and doxorubicin.
Brief Description of the Drawings
[0034] Figure 1 displays a subset of the large library of biodegradable lipidoids that were synthesized combinatorially through the conjugate addition of of alkylamines (in red) to alkyl-acrylate tails (in blue). The rest of the alkylamines used in lipidoid library synthesis are shown in Figure 2.
[0035] Figure 2 shows additional alkylamines used in the lipidoid library.
[0036] Figure 3 shows the evaluation of lipidoids for an ability to deliver siRNA to HeLa cells, (a) Relative lucif erase activity values (firefly lucifase activity normalized to control Renilla luciferase activity) are shown for 1400 lipidoids. -7% of the library induced >50% gene silencing (shown in red). The tail length (b), tail substitution number (c) and alkyl-amine composition (d) influenced in vitro activity.
[0037] Figure 4 demonstrates that select lipidoids induced a high degree silencing of multiple targets in mice, (a) Of the -100 lipidoids tested in vivo, 15 induced complete Factor VII knockdown in mouse hepatocytes at a total siRNA dose of 5 mg/kg (data points in red), (b) The EC50 values of these top 15 lipidoids ranged from 0.05 to 1.5 mg/kg under standard formulation conditions, (c) The amount of PEG in the lipid nanoparticle formulation had a dramatic effect on efficacy. Data is shown for the lipidoid 304O14, which produced the most efficacious formulation of the study when formulated with 0.75% PEG. (d) Dose response and Factor VII activity recovery data for the optimized 304O13 lipid nanoparticle formulation. 304O13 also induced CD45 silencing in monocyte and macrophage (CDl lb+) populations in the peritoneal cavity (e) as well as in dendritic cells (CD1 lc+) in the spleen 3 days post- injection. In all panels, error bars represent standard deviation (n = 3).
[0038] Figure 5 shows biodistribution images for Cy5.5 - labeled siRNA delivered with the lipidoid 304O13. rVTS (a) and Odyssey (b) imaging show that, while naked siRNA is primarily cleared through the kidneys, 304O13 mediates accumulation in the liver and spleen, (c) Confocal microscopy of 304O13 - treated liver shows siRNA (red) delivery into nearly all cells, including Kupffer cells and hepatocytes. In contrast, naked siRNA had a limited penetration depth from the blood vessels into hepatocellular tissue, (d) 304O13 lipid nanoparticles were rapidly eliminated from the bloodstream after tail vein injection. Error bars represent standard deviation (n = 3).
[0039] Figure 6 shows a comparison of (a) cytokine profiles 4 hours post-injection and (b) liver histology sections 72 hours post-injection for degradable (304O13) and
non-degradable (C 12-200) lipid nanoparticles.
[0040] Figure 7 displays structure-function information of efficacious lipid nanoparticles. (a) Of the 108 lipid nanoparticles tested for siRNA delivery to hepatocytes in mice, 66 had 3 or more tails, 42 had a tertiary amine present in the orginial alkyl-amine, and 25 had an 013 tail length. 88% of the lipid nanoparticles exhibiting all three "efficacy criteria" achieved complete FVII knockdown. The percentage of efficacious lipid nanoparticles decreased precipitously when any criterion were not met. (b) Twelve second generation lipid nanoparticles were made to meet all efficacy criteria by first synthesizing custom alkyl-amines and reacting them with 013 tails, (c) 83% of second generation LNPs achieved complete FVII silencing in vivo, and (d) EC50S under non-optimized LNP formulating conditions ranged from 0.05 to 1 mg/kg total siRNA. (e) 503O13 was the most efficacious LNP upon formulation, with an EC50 of 0.01 mg/kg. 503O13 encapsulating control siRNA did not result in FVII knockdown. Error bars represent standard deviation (n = 3)..
[0041] Figure 8 shows that lipid nanoparticles that induced complete FVII silencing at 5 mg/kg behaved in a dose-dependent manner. Each lipid nanoparticle was evaluated at three additional doses (2, 0.5, and 0.1 mg/kg) shown from left to right. Error bars represent standard deviation (n = 3).
[0042] Figure 9 shows that the lipid nanoparticles 306O12, 306O14 and 315012 facilitated modest silencing of the surface receptor CD45 in various white blood cell populations harvested from the peritoneal cavity (left) and spleen (right) of B6 mice three days post-injection (dose = 2.5 mg/kg total siRNA). Error bars represent standard deviation (n = 3).
[0043] Figure 10 shows that pKa values significantly influence delivery efficacy to hepatocytes in vivo. All lipidoid nanoparticles capable of mediating complete Factor VII gene silencing had pKa values greater or equal to 5.5.
[0044] Figures 11 A and 11B show degradation by hydrolysis of the lipidoid 304O13. Overlay of 1H NMR spectra of the starting material 304O13, the crude reaction mixture, and authentic 1-tridecanol demonstrated that the 304O13 had been consumed and that tridecanol had been formed in significant quantity under both acidic and basic conditions. Figure 11 A shows acidic hydrolysis condition, and Figure 11B shows basic hydrolysis condition.
[0045] Figure 12 shows that clinical chemistry parameters were evaluated for negative control (PBS, black), 304O13 (blue), and C 12-200 (red) groups of C57BL/6 mice. The mice had been injected with either a single 3 mg/kg dose of total siRNA or four 3 mg/kg doses (lx per week for four weeks). Blood was drawn for analysis 72 hours post-final injection. There were no statistically significant changes in any of the clinical chemistry parameters for any of the
treated groups compared to controls (as evaluated by a student t-test). Error bars represent standard deviation (n = 3 - 5).
[0046] Figure 13 shows that the second generation lipid nanoparticles (LNPs) facilitated silencing of the surface receptor CD45 in various white blood cell populations harvested from the peritoneal cavity (left) and spleen (right) of B6 mice three days post-injection (dose = 2.5 mg/kg total siRNA). Percent silencing was calculated by comparing to an identically defined cell population from animals injected with a non-targeting siRNA formulated with the same LNP. Error bars represent standard deviation (n = 3).
Detailed Description of Certain Embodiments
[0047] The present invention provides lipidoids and lipidoid-based delivery systems. The systems described herein may be used in the pharmaceutical/drug delivery arts to delivery polynucleotides, proteins, small molecules, peptides, antigen, drugs, etc. to a patient, tissue, organ, cell, etc.
[0048] The lipidoids of the present invention provide for several different uses in the drug delivery art. The lipidoids with their amine-containing hydrophilic portion may be used to complex polynucleotides and thereby enhance the delivery of polynucleotides and prevent their degradation. The lipidoids may also be used in the formation of nanoparticles, microparticles, liposomes, and micelles containing the agent to be delivered. In certain embodiments, the lipids are biocompatible and biodegradable, and particles formed therefrom are also biodegradable and biocompatible and may be used to provide controlled, sustained release of the agent. Provided lipidoids and their corresponding particles may also be responsive to pH changes given that these lipids are protonated at lower pH.
Lipidoids
[0049] The lipidoids of the present invention contain primary, secondary, or tertiary amines and salts thereof. In certain embodiments, the inventive lipidoids are biodegradable. In certain embodiments, inventive lipidoids are effective at delivering an agent {e.g., RNA) to a cell.
[0050] In certain embodiments, a lipidoid of the present invention is prepared from an alkylamine starting material that has at least one tertiary amine. In some embodiments, a lipidoid of the present invention has three or more lipid-like tails. In some embodiments, the lipid-like tails on a lipidoid of the present invention are between C10-C14 in length, e.g.,
C12-C14, e.g., C13. In certain embodiments, a provided lipidoid is prepared from an alkylamine starting material that has at least one tertiary amine and the lipidoid formed therefrom has three or more C13 tails. In certain embodiments, a provided lipidoid is prepared from an alkylamine starting material that has at least one tertiary amine, provided that the amine is not amine 110, amine 113, or amine 115, and the m has three or more C13 tails.
110
113 115
or a salt thereof, wherein
each L is, independently, branched or unbranched Ci_6 alkylene, wherein L is optionally substituted with one or more fluorine radicals;
each RA is, independently, branched or unbranched Ci_6 alkyl, C3_7 cycloalkyl, or branched or unbranched C4_12 cycloalkylalkyl, wherein RA is optionally substituted with one or more fluorine radicals;
each R is, independently, hydrogen or -CH2CH2C(=0)OR ;
each B in B
R is, independently, Cio-i4 alkyl, where R is optionally substituted with one or more fluorine radicals; and
[0053] As defined generally above, each L is, independently, branched or unbranched
Ci_6 alkylene, wherein L is optionally substituted with one or more fluorine radicals. In some embodiments, L is substituted with one or more fluorine radicals. In other embodiments, L is unsubstituted. In some embodiments, L is branched. In other embodiments, L is unbranched. In certain embodiments, L is C1-4 alkylene. In certain embodiments, L is methylene, ethylene, or propylene.
[0054] As defined generally above, each RA is, independently, branched or unbranched
Ci-6 alkyl, C3-7 cycloalkyl, or branched or unbranched C4-12 cycloalkylalkyl, wherein RA is optionally substituted with one or more fluorine radicals. In some embodiments, RA is substituted with one or more fluorine radicals. For example, when RA is methyl, it may be substituted with one, two, or three fluorine radicals to give -CH2F, -CHF2, or -CF3. In other embodiments, RA is unsubstituted. In some embodiments, all RA groups are the same. In other embodiments, the RA groups are different. In some embodiments, RA is branched or unbranched Ci_6 alkyl. In certain embodiments, RA is branched C1-6 alkyl. In certain embodiments, RA is unbranched C1-6 alkyl. In certain embodiments, RA is C1-3 alkyl. In certain embodiments, RA is methyl, ethyl, or propyl. In certain embodiments, RA is C3-7 cycloalkyl. In certain embodiments, RA is cyclohexyl. In certain embodiments, RA is cyclopropyl, cyclobutyl, or cyclopentyl. In certain embodiments, RA is cycloheptyl. In some embodiments, RA is branched or unbranched C4_12 cycloalkylalkyl.
[0055] As defined generally above, each R is, independently, hydrogen or
-CH2CH2C(=0)ORB. In some embodiments, at least three R groups are -CH2CH2C(=0)ORB. In some embodiments, at least four R groups are -CH2CH2C(=0)OR . In some embodiments, all R groups are -CH2CH2C(=0)ORB.
[0056] As defined generally above, each RB is, independently, C10-14 alkyl, wherein RB is optionally substituted with one or more fluorine radicals. In some embodiments, R is substituted with one or more fluorine radicals. For example, in some embodiments, R may be substituted with one fluoro, or in other embodiments, may be perfluorinated. In other embodiments, R B is unsubstituted. In some embodiments, all R B groups are the same. In certain embodiments, R B is C10 alkyl. In some embodiments, R B is n-decyl. In certain
embodiments, R is Cn alkyl. In some embodiments, R is n-undecyl. In certain embodiments, R B is C12 alkyl. In some embodiments, R B is n-dodecyl. In certain
embodiments, R B is C13 alkyl. In some embodiments, R B is n-tridecyl. In certain
embodiments, R B is C14 alkyl. In some embodiments, R B is n-tetradecyl.
[0057] As defined generally above, q is 1, 2, or 3. In some embodiments, q is 1. In some embodiments, q is 2. In some embodiments, q is 3.
[0058] In some embodiments, a lipidoid of the present invention is of the Formula (I-a):
or a salt thereof,
wherein R and RA are as defined above and described herein;
each n is, independently, 0, 1, or 2; and
m is 0, 1, or 2.
[0059] In some embodiments, m is 0. In some embodiments, m is 1. In some embodiments, m is 2.
[0060] In some embodiments, n is 0. In some embodiments, n is 1. In some embodiments, n is 2.
[0061] In some embodiments, m is 0, and n is 0. In some embodiments, m is 1, and n is
0. In some embodiments, m is 2, and n is 0. In some embodiments, m is 0, and n is 1. In some embodiments, m is 0, and n is 2. In some embodiments, m is 1, and n is 1.
I-b
or a salt thereof, wherein R and RA are as defined above and described herein.
I-c
or a salt thereof, wherein R and RA are as defined above and described herein.
[0064] some embodiments, a lipidoid of the present invention is of the Formula (I-d)
RA RA
R, -N. ,R
I
R*
I-d
or a salt thereof, wherein R and R are as defined above and described herein.
I-e
or a salt thereof, wherein R and RA are as defined above and described herein.
[0066] In some embodiments, a lipidoid of the present invention is of one
following formulae:
[0067] In certain embodiments a lipidoid of the present invention is of the Formula (II):
II
or a salt thereof,
wherein
each L is, independently, branched or unbranched C1-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals;
each RA is, independently, branched or unbranched Ci_6 alkyl, C3_7 cycloalkyl, or branched or unbranched C4-12 cycloalkylalkyl, wherein RA is optionally substituted with one or more fluorine radicals;
each R C is, independently, -L-N(R D )2 or -R;
each R is, independently, hydrogen or -CH2CH2C(=0)OR ;
each RD is, independently, -RA or -R; and
each R B is, independently, C10-14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
[0068] As defined generally above, each L is, independently, branched or unbranched
Ci_6 alkylene, wherein L is optionally substituted with one or more fluorine radicals. In some
embodiments, L is substituted with one or more fluorine radicals. In other embodiments, L is unsubstituted. In some embodiments, L is branched. In other embodiments, L is unbranched. In certain embodiments, L is C1-4 alkylene. In certain embodiments, L is methylene, ethylene, or propylene.
[0069] As defined generally above, each RA is, independently, branched or unbranched C1-6 alkyl, C3_7 cycloalkyl, or branched or unbranched C4_12 cycloalkylalkyl, wherein RA is optionally substituted with one or more fluorine radicals. In some embodiments, RA is substituted with one or more fluorine radicals. For example, when RA is methyl, it may be substituted with one, two, or three fluorine radicals to give -CH2F, -CHF2, or -CF3. In other embodiments, RA is unsubstituted. In some embodiments, all RA groups are the same. In other embodiments, the RA groups are different. In some embodiments, RA is branched or unbranched C1-6 alkyl. In certain embodiments, RA is branched C1-6 alkyl. In certain embodiments, RA is unbranched C1-6 alkyl. In certain embodiments, RA is C1-3 alkyl. In certain embodiments, RA is methyl, ethyl, or propyl. In certain embodiments, RA is C3_7 cycloalkyl. In certain embodiments, RA is cyclohexyl. In certain embodiments, RA is cyclopropyl, cyclobutyl, or cyclopentyl. In certain embodiments, RA is cycloheptyl. In some embodiments, RA is branched or unbranched C4-12 cycloalkylalkyl.
[0070] As defined generally above, each Rc is, independently, -L-N(RD)2 or -R. In some embodiments, all R C groups are -R. In some embodiments, R C is -L-N(RD )2.
[0071] As defined generally above, each RD is, independently, -RA or -R. In some embodiments, all RD groups are -R. In some embodiments, one RD on a nitrogen is -R, and the other is -RA.
[0072] As defined generally above, each R is, independently, hydrogen or
-CH2CH2C(=0)ORB. In some embodiments, at least one R group is -CH2CH2C(=0)ORB. In some embodiments, at least two R groups are -CH2CH2C(=0)OR . In some embodiments, at least three R groups are -CH2CH2C(=0)OR . In some embodiments, at least four R groups are -CH2CH2C(=0)ORB. In some embodiments, all R groups are -CH2CH2C(=0)ORB.
[0073] As defined generally above, each RB is, independently, C10-14 alkyl, wherein RB is optionally substituted with one or more fluorine radicals. In some embodiments, R is substituted with one or more fluorine radicals. For example, in some embodiments, R may be substituted with one fluoro, or in other embodiments, may be perfluorinated. In other embodiments, R B is unsubstituted. In some embodiments, all R B groups are the same. In certain embodiments, R B is C10 alkyl. In some embodiments, R B is n-decyl. In certain
embodiments, R is Cn alkyl. In some embodiments, R is n-undecyl. In certain embodiments, R B is C12 alkyl. In some embodiments, R B is n-dodecyl. In certain embodiments, R B is C13 alkyl. In some embodiments, R B is n-tridecyl. In certain embodiments, R B is C14 alkyl. In some embodiments, R B is n-tetradecyl.
[0074] In certain embodiments, a lipidoid of the present invention is of the Formula
(II-a):
II-a
or a salt thereof,
wherein
each v is, independently, 1, 2, or 3.
[0075] In certain embodiments, v is 1. In certain embodiments, v is 2. In certain embodiments, v is 3.
[0076] In certain embodiments, a lipidoid of the present invention is of the Formula
(II-b):
RA RA I I
FT ^ 'N' ^ ""R
II-b
or a salt thereof, wherein R and R are as defined above and described herein.
[0077] In certain embodiments, a lipidoid of the present invention is of the formula:
or a salt thereof, wherein R is as defined above and described herein.
[0078] In certain embodiments, a lipidoid of the present invention is of the Formula (II-c):
RD RA RA RD
I I I I N
RD L
II-c
or a salt thereof, wherein L, RA, and RD are as defined above and described herein.
[0079] In certain embodiments, a lipidoid of the present invention is of the Formula
(II-d):
RA RA RA RA
R LT L . LT R
N
I
R L
I I
R^ ^L^ R
II-d
or a salt thereof, wherein L, RA, and R are as defined above and described herein.
[0080] In certain embodiments, a lipidoid of the present invention is of the Formula
(II-e):
R RA RA R
I I I I
R . LT LT R
N
I
R L
I I
R^ ^ "RA
li e
or a salt thereof, wherein L, RA, and R are as defined above and described herein.
[0081] In certain embodiments, a lipidoid of the present invention is of the Formula
(Π-f):
Il-f
or a salt thereof, wherein R and R are as defined above and described herein.
[0082] In certain embodiments, a lipidoid of the present invention is of the formula:
R . - N , . R
ΊΜ' ΊΜ'
R .
N or a salt thereof, wherein R is as defined above and described herein.
[0083] In certain embodiments, a lipidoid of the present invention is of the Formula
(HI):
(R1 )j
N— L— N N— L— N
III
or a salt thereof,
wherein
each L is, independently, branched or unbranched C1-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals;
each R is, independently, hydrogen or -CH2CH2C(=0)OR ;
each R B is, independently, C10-14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals;
each R1 is, independently, fluoro or C1-6 alkyl optionally substituted with one or more fluorine radicals;
j is 0,1, 2, 3, or 4; and
p is 1 or 2.
[0084] In certain embodiments, at least three R groups of formula (III) are
-CH2CH2C(=0)ORB.
[0085] As defined generally above, each L is, independently, branched or unbranched C1-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals. In some embodiments, L is substituted with one or more fluorine radicals. In other embodiments, L is unsubstituted. In some embodiments, L is branched. In other embodiments, L is unbranched. In certain embodiments, L is C1-4 alkylene. In certain embodiments, L is methylene, ethylene, or propylene.
[0086] As defined generally above, each R is, independently, hydrogen or
-CH2CH2C(=0)ORB. In some embodiments, at least three R groups are -CH2CH2C(=0)ORB. In some embodiments, at least four R groups are -CH2CH2C(=0)OR . In some embodiments, all R groups are -CH2CH2C(=0)ORB.
[0087] As defined generally above, each RB is, independently, C10-14 alkyl, wherein RB is optionally substituted with one or more fluorine radicals. In some embodiments, R is substituted with one or more fluorine radicals. For example, in some embodiments, R may be substituted with one fluoro, or in other embodiments, may be perfluorinated. In other embodiments, R B is unsubstituted. In some embodiments, all R B groups are the same. In certain embodiments, R B is C10 alkyl. In some embodiments, R B is n-decyl. In certain embodiments, R B is Cn alkyl. In some embodiments, R B is n-undecyl. In certain
embodiments, R B is C12 alkyl. In some embodiments, R B is n-dodecyl. In certain
embodiments, R B is C13 alkyl. In some embodiments, R B is n-tridecyl. In certain
embodiments, R B is C14 alkyl. In some embodiments, R B is n-tetradecyl.
[0088] In certain embodiments, p is 1. In certain embodiments, p is 2.
[0089] As defined generally above, each R1 is, independently, fluoro or C1-6 alkyl optionally substituted with one or more fluorine radicals. In some embodiments, R1 is fluoro.
In some embodiments, R1 is C1-6 alkyl optionally substituted with one or more fluorine radicals.
In some embodiments, R1 is unsubstituted C1-6 alkyl. In some embodiments, R1 is methyl or ethyl. In some embodiments, R1 is -CF3.
[0090] In some embodiments, j is 0. In some embodiments, j is 1. In some
embodiments, j is 2. In some embodiments, j is 3. In some embodiments, j is 4.
In certain embodiments, a lipidoid of the present invention is of the Formula
Ili a
or a salt thereof,
wherein p, R1, j, and R are as defined above and described herein, and
each w is, independently, 1, 2, or 3.
[0092] In certain embodiments, w is 1. In certain embodiments, w is 2. In certain embodiments, w is 3.
[0093] In certain embodiments, a lipidoid of the present invention is of the Formula
(Ill-b):
Ill-b
or a salt thereof, wherein R1, j, w, and R are as defined above and described herein.
[0094] In certain embodiments, a lipidoid of the present invention is of the Formula
(III-c):
III-c
wherein w and R are as defined above and described herein.
In certain embodiments, a lipidoid of the present invention is of the Formula
Ill-d
wherein w, R1, and R are as defined above and described herein.
[0096] In certain embodiments, a lipidoid of the present invention is of the Formula
(Ill-e):
Ill-e
wherein w, R , and R are as defined above and described herein.
[0097] In certain embodiments, a lipidoid of the present invention is of the formula:
wherein R is as defined above and described herein.
In certain embodiments, a lipidoid of the present invention is of the Formula
IV
or a salt thereof,
wherein
each R is, independently, hydrogen or -CH2CH2C(=0)OR ;
B B
each R is, independently, C10-14 alkyl, wherein R is optionally substituted with one or more fluorine radicals;
x is 1 or 2; and
y is 1 or 2.
[0099] As defined generally above, each R is, independently, hydrogen or
-CH2CH2C(=0)ORB In some embodiments, at least one R group is -CH2CH2C(=0)ORB In some embodiments, at least two R groups are -CH2CH2C(=0)OR . In some embodiments, at least three R groups are -CH2CH2C(=0)OR . In some embodiments, at least four R groups are -CH2CH2C(=0)ORB In some embodiments, all R groups are -CH2CH2C(=0)ORB.
[00100] As defined generally above, each RB is, independently, C10-14 alkyl, wherein RB is optionally substituted with one or more fluorine radicals. In some embodiments, R is substituted with one or more fluorine radicals. For example, in some embodiments, R may be substituted with one fluoro, or in other embodiments, may be perfluorinated. In other
B B
embodiments, R is unsubstituted. In some embodiments, all R groups are the same. In
B B
certain embodiments, R is C10 alkyl. In some embodiments, R is n-decyl. In certain
B B
embodiments, R is Cn alkyl. In some embodiments, R is n-undecyl. In certain
B B
embodiments, R is C12 alkyl. In some embodiments, R is n-dodecyl. In certain
B B
embodiments, R is C13 alkyl. In some embodiments, R is n-tridecyl. In certain
B B
embodiments, R is C14 alkyl. In some embodiments, R is n-tetradecyl.
[00101] In some embodiments, x is 1. In some embodiments, x is 2. In some embodiments, y is 1. In some embodiments, y is 2. In some embodiments, x is 1 and y is 1. In some embodiments, x is 2 and y is 2.
[00102] In certain embodiments, a lipidoid of the present invention is of the Formula (IV-a):
IV-a
or a salt thereof, wherein R is as defined above and described herein.
[00103] In certain embodiments a lipidoid of the present invention is of the Formula (V):
or a salt thereof, wherein
each L is, independently, branched or unbranched C1-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals;
each R is, independently, halo, Ci_6 aliphatic optionally substituted with one or more fluorine radicals, -ORx, -N(Ry)2, -SRX, -CN, -C(=Z)Ry, -C(=Z)ZRy, or -ZC(=Z)ZRy;
Z is O or N;
each Rx is, independently, Ci_6 aliphatic;
each Ry is, independently, hydrogen or Ci_6 aliphatic;
g is 0, 1, 2, 3, or 4;
each R is independently hydrogen or -CH2CH2C(=0)OR ; and
each R B is independently C10-14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
[00104] As defined generally above, each L is, independently, branched or unbranched Ci-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals. In some embodiments, L is substituted with one or more fluorine radicals. In other embodiments, L is unsubstituted. In some embodiments, L is branched. In other embodiments, L is unbranched. In certain embodiments, L is C1-4 alkylene. In certain embodiments, L is methylene, ethylene, or propylene.
[00105] As defined generally above, each R is, independently, hydrogen or
-CH2CH2C(=0)ORB. In some embodiments, at least one R group is -CH2CH2C(=0)ORB. In
some embodiments, at least two R groups are -CH2CH2C(=0)ORB. In some embodiments, at least three R groups are -CH2CH2C(=0)OR . In some embodiments, at least four R groups are -CH2CH2C(=0)ORB. In some embodiments, all R groups are -CH2CH2C(=0)ORB
[00106] As defined generally above, each RB is, independently, C10-14 alkyl, wherein RB is optionally substituted with one or more fluorine radicals. In some embodiments, R is substituted with one or more fluorine radicals. For example, in some embodiments, R may be substituted with one fluoro, or in other embodiments, may be perfluorinated. In other embodiments, R B is unsubstituted. In some embodiments, all R B groups are the same. In certain embodiments, R B is C10 alkyl. In some embodiments, R B is n-decyl. In certain embodiments, R B is Cn alkyl. In some embodiments, R B is n-undecyl. In certain
embodiments, R B is C12 alkyl. In some embodiments, R B is n-dodecyl. In certain
embodiments, R B is C13 alkyl. In some embodiments, R B is n-tridecyl. In certain
embodiments, R B is C14 alkyl. In some embodiments, R B is n-tetradecyl.
[00107] As defined generally above, each R2 is, independently, halo, C1-6 aliphatic optionally substituted with one or more fluorine radicals, -ORx, -N(Ry)2, -SRX, -CN, -C(=Z)Ry, -C(=Z)ZRy, -ZC(=Z)ZRy; wherein Z is O or N; each Rx is, independently, C1-6 aliphatic; and each Ry is, independently, hydrogen or C1-6 aliphatic. In some embodiments, R2 is halo. In some embodiments, R 2 is fluoro. In some embodiments, R 2 is C1-6 aliphatic optionally substituted with one or more fluorine radicals. In some embodiments, R is C1-6 alkyl.
[00108] In some embodiments, g is 0. In some embodiments, g is 1. In some embodiments, g is 2. In some embodiments, g is 3. In some embodiments, g is 4.
V-a
or a salt thereof, wherein L, R , g, and R are as defined above and described herein.
V-b
or a salt thereof, wherein L and R are as defined above and described herein.
[00111] In certain embodiments, a lipidoid of the present invention is of Formula (V-c):
V-c
or a salt thereof, wherein L and R are as defined above and described herein.
V-d
or a salt thereof, wherein R is as defined above and described herein.
[00113] In certain embodiments, a lipidoid of the present invention is of the formula:
or a salt thereof, wherein
each R is, independently, branched or unbranched Ci_6 alkyl, C3-7 cycloalkyl, or branched or unbranched C4_12 cycloalkylalkyl, wherein RA is optionally substituted with one or more fluorine radicals;
each R is, independently, hydrogen or -CH2CH2C(=0)OR ; and
each R B is, independently, C10-i4 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
[00114] As defined generally above, each R is, independently, branched or unbranched
Ci-6 alkyl, C3-7 cycloalkyl, or branched or unbranched C4_12 cycloalkylalkyl, wherein R is optionally substituted with one or more fluorine radicals. In some embodiments, RA is substituted with one or more fluorine radicals. For example, when RA is methyl, it may be substituted with one, two, or three fluorine radicals to give -CH2F, -CHF2, or -CF3. In other embodiments, RA is unsubstituted. In some embodiments, all RA groups are the same. In other embodiments, the RA groups are different. In some embodiments, RA is branched or
unbranched C1-6 alkyl. In certain embodiments, R is branched C1-6 alkyl. In certain embodiments, RA is unbranched C1-6 alkyl. In certain embodiments, RA is C1-3 alkyl. In certain embodiments, RA is methyl, ethyl, or propyl. In certain embodiments, RA is C3_7 cycloalkyl. In certain embodiments, RA is cyclohexyl. In certain embodiments, RA is cyclopropyl, cyclobutyl, or cyclopentyl. In certain embodiments, RA is cycloheptyl. In some embodiments, RA is branched or unbranched C4_12 cycloalkylalkyl.
[00115] As defined generally above, each R is, independently, hydrogen or
-CH2CH2C(=0)ORB. In some embodiments, at least one R group is -CH2CH2C(=0)ORB. In some embodiments, at least two R groups are -CH2CH2C(=0)OR . In some embodiments, at least three R groups are -CH2CH2C(=0)OR . In some embodiments, at least four R groups are -CH2CH2C(=0)ORB. In some embodiments, all R groups are -CH2CH2C(=0)ORB.
[00116] As defined generally above, each RB is, independently, C10-14 alkyl, wherein RB is optionally substituted with one or more fluorine radicals. In some embodiments, R is substituted with one or more fluorine radicals. For example, in some embodiments, R may be substituted with one fluoro, or in other embodiments, may be perfluorinated. In other embodiments, R B is unsubstituted. In some embodiments, all R B groups are the same. In certain embodiments, R B is C10 alkyl. In some embodiments, R B is n-decyl. In certain embodiments, R B is Cn alkyl. In some embodiments, R B is n-undecyl. In certain
embodiments, R B is C12 alkyl. In some embodiments, R B is n-dodecyl. In certain
embodiments, R B is C13 alkyl. In some embodiments, R B is n-tridecyl. In certain
embodiments, R B is C14 alkyl. In some embodiments, R B is n-tetradecyl.
[00117] In certain embodiments, a lipidoid of the present invention is of the formula:
or a salt thereof, wherein R is as defined above and described herein.
[00118] In some embodiments, a lipidoid of the present invention is a compound resulting from a Michael addition between any one of the amines shown in Figure 1 or Figure 2 and an acrylate shown in Figure 1. In certain embodiments, the number of equivalents of acrylate can
be controlled to obtain the desired number of lipid tails on the inventive lipidoid.
[00119] In certain embodiments, an inventive lipidoid is prepared by reacting amine 1 with acrylate O10, On, 012, 013, or 014 to form compound 113O10, 1130n, 113012, 11301 , 113014. In certain embodiments, an inventive lipidoid is of one of the formulae below:
,0
H3C(CH 2)z ^(CH2)ZCH3
In some embodiments, the present invention provides a composition of one or more abo e lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00120] In certain embodiments, an inventive lipidoid is prepared by reacting amine 123 with acrylate O10, On, 012, 013, or 014 to form compound 123O10, 1230n, 123012, 123013, or
123014. In certain embodiments an inventive lipidoid is of one of the formulae below:
H3C(CH2)i2''
o
/ (CH2)i2CH3
.0
H3C(CH2)i2'' N
H
O
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00121] In certain embodiments, an inventive lipidoid is prepared by reacting amine 154 with acrylate O10, On, 012, 013, or 014 to form compound 154Ο10, 1540n, 154012, 154013, or 154014. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00122] In certain embodiments, an inventive lipidoid is prepared by reacting amine 191 with acrylate O10, On, 012, 013, or 014 to form compound 191Ο10, 1910n, 191012, 191013, or 191014. In certain embodiments, an inventive lipidoid is of one of the formulae below:
H3C(CH2) (CH2)ZCH3
? wnerein z S 10, 11, or 13.
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00123] In certain embodiments, an inventive lipidoid is prepared by reacting amine 192 with acrylate O10, On, 012, 013, or 014 to form compound 192O10, 1920n, 192012, 192013, or 1920i4. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00124] In certain embodiments, an inventive lipidoid is prepared by reacting amine 193 with acrylate O10, On, 012, 013, or 014 to form compound 193O10, 1930n, 193012, 19301 , or 193014. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00125] In certain embodiments, an inventive lipidoid is prepared by reacting amine 195 with acrylate O10, On, 012, 013, or 01 to form compound 195O10, 1950n, 195012, 195013, or 195014. In certain embodiments, an inventive lipidoid is of one of the formulae below:
some embodiments, the present invention provides a composition of one or more
above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00126] In certain embodiments, an inventive lipidoid is prepared by reacting amine 196 with acrylate O10, On, 012, 013, or 014 to form compound 196O10, 1960n, 196012, 196013, or 196014. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00127] In certain embodiments, an inventive lipidoid is prepared by reacting amine 200 with acrylate O10, On, 012, 013, or 014 to form compound 200O10, 200On, 200O12, 200O13, or 200O14. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00128] In certain embodiments, an inventive lipidoid is prepared by reacting amine 205 with acrylate O10, On, 012, 013, or 014 to form compound 205O10, 205On, 205O12, 205O1 , or 205O14. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00129] In certain embodiments, an inventive lipidoid is prepared by reacting amine 217 with acrylate O10, On, 012, Oi3, or 014 to form compound 217O10, 2170n, 217012, 217013, or 21701 . In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
r
[00130] In certain embodiments, an inventive lipidoid is prepared by reacting amine 218 with acrylate O10, On, 012, 013, or 014 to form compound 2180^, 2180n, 218012, 218013, or 218014. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00131] In certain embodiments, an inventive lipidoid is prepared by reacting amine 232 with acrylate O10, On, 012, 013, or 014 to form compound 2320^, 2320n, 232012, 232013, or 232014. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00132] In certain embodiments, an inventive lipidoid is prepared by reacting amine 235 with acrylate O10, On, 012, 013, or 014 to form compound 235O10, 2350n, 235012, 23501 , or 23501 is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00133] In certain embodiments, an inventive lipidoid is prepared by reacting amine 302 with acrylate O10, On, 012, 013, or 01 to form compound 302O10, 302On, 302O12, 302O13, or 302O14. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
r
[00134] In certain embodiments, an inventive lipidoid is prepared by reacting amine 303 with acrylate O10, On, 012, 013, or 014 to form compound 303O10, 303On, 303O12, 303O1 , or 303O14. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00135] In certain embodiments, an inventive lipidoid is prepared by reacting amine 304 with acrylate O10, On, 012, 013, or 014 to form compound 304O10, 304On, 304O12, 304O1 , or
:
In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
(CH2)i2CH3
[00136] In certain embodiments, an inventive lipidoid is prepared by reacting amine 305 with acrylate O10, On, 012, 013, or 014 to form compound 305O10, 305On, 305O12, 305O1 , or 305O14. In certain embodiments, an inventive lipidoid is of one of the formulae below:
wherein z is 9, 10, 11, 12, or 13.
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00137] In certain embodiments, an inventive lipidoid is prepared by reacting amine 306 with acrylate O10, On, 012, 013, or 014 to form compound 306O10, 306On, 306O12, 306O1 , or 306O14. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
(CH2)gCH3
I
(CH2)gCH3
(CH2)gCH3
I
,0 N, -N O
H3C(H2C)9''
O o
(CH2)1 CH3
(CH2)iiCH3
(CH2)i-|CH3
I
,0 ,N O
H3C(H2C) 1'
O O
(CH2)i2CH3
I
(CH2) 2CH3
(CH2)12CH3
I
,0 N. ,N O
H3C(H2C)i2''
O o , or
[00138] In certain embodiments, an inventive lipidoid is prepared by reacting amine 313 with acrylate O10, On, 012, 013, or 014 to form compound 313O10, 3130n, 313012, 313013, or 313014. In certain embodiments, an inventive lipidoid is of one of the formulae below:
, wherein z is 9, 10, 11, or 12. In some embodiments, the present invention provides a composition of one or more of above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00139] In certain embodiments, an inventive lipidoid is prepared by reacting amine 315 with acrylate O10, On, 012, 013, or 014 to form compound 315O10, 3150n, 315012, 31501 , or 315014. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00140] In certain embodiments, an inventive lipidoid is prepared by reacting amine 347 with acrylate O10, On, 012, 013, or 014 to form compound 347O10, 3470n, 347012, 347013, or
470i4. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00141] In certain embodiments, an inventive lipidoid is prepared by reacting amine 366 with acrylate O10, On, 012, 013, or 014 to form compound 366O10, 3660n, 366012, 36601 , or 366014. In certain embodiments, an inventive li idoid is of one of the formulae below:
wherein z is 10 or 11.
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00142] In certain embodiments, an inventive lipidoid is prepared by reacting amine 371 with acrylate O10, On, 012, 013, or 014 to form compound 371O10, 3710n, 371012, 37101 , or 371014. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00143] In certain embodiments, an inventive lipidoid is prepared by reacting amine 500 with acrylate O10, On, 012, 013, or 014 to form compound 500O10, 500On, 500O12, 500O1 , or 500O14. In certain embodiments, an inventive lipidoid is of one of the formulae below:
, wherein z is 9, 10 ,11, 12, or 13. In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00144] In certain embodiments, an inventive lipidoid is prepared by reacting amine 501 with acrylate O10, On, 012, 013, or OH to form compound 501O10, 501On, 501O12, 501O1 , or 501Oi4. In certain embodiments, an inventive lipidoid is of one of the formulae below:
, wherein z is 9, 10 ,11, 12, or 13. In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00145] In certain embodiments, an inventive lipidoid is prepared by reacting amine 502 with acrylate O10, On, 012, 013, or 014 to form compound 502O10, 502On, 502O12, 502O13, or 502Oi4. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
6] In certain embodiments, an inventive lipidoid is prepared by reacting amine 503
with acrylate O10, On, 012, 013, or 014 to form compound 503O10, 503On, 503O12, 503O1 , or 503O1 . In certain embodiments, an inventive lipidoid is of one of the formulae below:
13.
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00147] In certain embodiments, an inventive lipidoid is prepared by reacting amine 504 with acrylate O10, On, On, 013 , or Ou to form compound 504Oi0, 504On, 504Oi2, 504O13, or 504O1 In certain embodiments, an inventive lipidoid is of one of the formulae below:
O
H3C(H2C)Z - N . - NH;
0
, wherein z is 9, 10 ,11, 12, or
In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00148] In certain embodiments, an inventive lipidoid is prepared by reacting amine 505 with acrylate O10, On, 012, 013, or 014 to form compound 505O10, 505On, 505O12, 505Oi , or 505Oi4. In certain embodiments, an inventive lipidoid is of one of the formulae below:
O
H3C(H2C)Z . N . - NH;
I , wherein z is 9, 10 ,11, 12, or 13.
In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
WO 2014/028487
[00149] In certain embodiments, an inventive lipidoid is prepared by reacting amine 506 with acrylate O10, On, 012, 013, or 014 to form compound 506Oi0, 506On, 506O12, 506Oi3, or 506O1 In certain embodiments, an inventive lipidoid is of one of the formulae below:
, wherein z is 9, 10 ,11, 12, or
In some embodiments, the present invention provides a composition of one or more of the above li idoids. In certain embodiments, an inventive lipidoid is of the formula:
[00150] In certain embodiments, an inventive lipidoid is prepared by reacting amine 507 with acrylate O10, On, 012, 013, or Ομ to form compound 507Ο10, 507On, 507O12, 507O13, or 507Oi In certain embodiments, an inventive lipidoid is of one of the formulae below:
, wherein z is 9, 10 ,11, 12, or
In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00151] In certain embodiments, an inventive lipidoid is prepared by reacting amine 508 with acrylate O10, On, Oi2, 013, or Oi4 to form compound 508Oi0, 508On, 508Oi2, 508Oi3, or 508O14. In certain embodiments, an inventive lipidoid is of one of the formulae below:
12, or 13.
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00152] In certain embodiments, an inventive lipidoid is prepared by reacting amine 509 with acrylate O10, On, 012, 013, or 014 to form compound 509Ο10, 509On, 509O12, 509O13, or 509O14. In certain embodiments, an inventive lipidoid is of one of the formulae below:
, wherein z is 9, 10 ,11, 12, or In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00153] In certain embodiments, an inventive lipidoid is prepared by reacting amine 510 with acrylate O10, On, 012, 013, or 014 to form compound 510O10, 510On, 510O12, 510O13, or 510Oi4. In certain embodiments, an inventive lipidoid is of one of the formulae below:
, wherein z is 9, 10 ,11, 12, or In some embodiments, the present invention provides a composition of one or more of the above
[00154] In certain embodiments, an inventive lipidoid is prepared by reacting amine 511 with acrylate O10, On, O12, 013, or O14 to form compound 511Oi0, 51 lOn, 5HOi2, 511013, or 511014. In certain embodiments, an inventive lipidoid is of one of the formulae below:
, wherein z is 9, 10 ,11, 12, or In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
WO 2014/028487
[00155] In certain embodiments, an inventive lipidoid is prepared by reacting amine 51 with acrylate O10, On, 012, 013, or 014 to form compound 512O10, 5120n, 512012, 512013, 51201 . In certain embodiments, an inventive lipidoid is of one of the formulae below:
13.
In some embodiments, the present invention provides a composition of one or more above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00156] In certain embodiments, an inventive lipidoid is prepared by reacting amine 513 with acrylate O10, On, 012, 013, or 014 to form compound 513O10, 5130n, 513012, 513013, or 51301 . In certain embodiments, an inventive lipidoid is of one of the formulae below:
12, or 13.
In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00157] In certain embodiments, an inventive lipidoid is prepared by reacting amine 514 with acrylate do, On, 012, 013, or Oi4 to form compound 514O10, 5140n, 514012, 514013, or 514014. In certain embodiments, an inventive lipidoid is of one of the formulae below:
In some embodiments, the present invention provides a composition of one or more of the
abo e lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
[00158] In certain embodiments, an inventive lipidoid is prepared by reacting amine 515 with acrylate O10, On, 012, 013, or Ou to form compound 515O10, 5150n, 515012, 51501 , or 5150i4. In certain embodiments, an inventive lipidoid is of one of the formulae below:
, wherein z is 9, 10, 11, 12, or 13. In some embodiments, the present invention provides a composition of one or more of the above lipidoids. In certain embodiments, an inventive lipidoid is of the formula:
Synthesis of Lipids
[00159] Lipidoids described herein may be prepared by any method known in the art. In certain embodiments, inventive lipidoids are prepared via the conjugate addition of primary or secondary amines to acrylates. Such syntheses are described in detail in U.S. Publication No. 2011/0009641, incorporated herein by reference. In certain embodiments, inventive lipidoids are prepared from commercially available starting materials, such acrylates and amines. In other embodiments, inventive lipidoids are prepared from easily and/or inexpensively prepared starting materials. As would be appreciated by one of skill in the art, the lipidoids described
herein can be prepared by total synthesis starting from commercially available starting materials. A particular lipidoid may be the desired final product of the synthesis, or a mixture of lipidoids may be the desired final product.
Polynucleotide Complexes
[00160] The ability of cationic compounds to interact with negatively charged polynucleotides through electrostatic interactions is well known. Cationic lipids such as Lipofectamine have been prepared and studied for their ability to complex and transfect polynucleotides. The interaction of the lipid with the polynucleotide is thought to at least partially prevent the degradation of the polynucleotide. By neutralizing the charge on the backbone of the polynucleotide, the neutral or slightly-positively-charged complex is also able to more easily pass through the hydrophobic membranes (e.g., cytoplasmic, lysosomal, endosomal, nuclear) of the cell. In certain embodiments, the complex is slightly positively charged. In certain embodiments, the complex has a positive ζ-potential. In certain embodiments, the ζ-potential is between +1 and +30.
[00161] In certain embodiments, lipidoids of the present invention possess tertiary amines. Although these amines are hindered, they are available to interact with a
polynucleotide (e.g., DNA, RNA, synthetic analogs of DNA and/or RNA, DNA/RNA hydrids, etc.). In certain embodiments, polynucleotides or derivatives thereof are contacted with the inventive lipidoids under conditions suitable to form polynucleotide/lipidoid complexes. In certain embodiments, the lipidoid is at least partially protonated so as to form a complex with the negatively charged polynucleotide. In certain embodiments, the polynucleotide/lipidoid complexes form nanoparticles that are useful in the delivery of polynucleotides to cells. In certain embodiments, multiple lipidoid molecules may be associated with a polynucleotide molecule. The complex may include 1-100 lipidoid molecules, 1-1000 lipidoid molecules, 10-1000 lipidoid molecules, or 100-10,000 lipidoid molecules. In certain embodiments, the complex may form a nanoparticle. In certain embodiments, the diameter of the nanoparticles ranges from 10-500 nm, from 10-1200 nm, or from 50-150 nm. In certain embodiments, nanoparticles may be associated with a targeting agent as described below.
Polynucleotide
[00162] A polynucleotide to be complexed, encapsulated by the inventive lipidoids, or included in a composition with the inventive lipidoids may be any nucleic acid including but not limited to RNA and DNA. In certain embodiments, the polynucleotide is DNA. In other
embodiments, the polynucleotide is RNA. In certain embodiments, the polynucleotide is an siRNA. In certain embodiments, the polynucleotide is an shRNA. In certain embodiments, the polynucleotide is an mRNA. In certain embodiments, the polynucleotide is a dsRNA. In certain embodiments, the polynucleotide is an miRNA. In certain embodiments, the polynucleotide is an antisense RNA. The polynucleotides may be of any size or sequence, and they may be single- or double- stranded. In certain embodiments, the polynucleotide is greater than 100 base pairs long. In certain other embodiments, the polynucleotide is greater than 1000 base pairs long and may be greater than 10,000 base pairs long. In certain embodiments, the polynucleotide is purified and substantially pure. In certain embodiments, the polynucleotide is greater than 50% pure, greater than 75% pure, or greater than 95% pure. The polynucleotide may be provided by any means known in the art. In certain preferred embodiments, the polynucleotide has been engineered using recombinant techniques (for a more detailed description of these techniques, please see Ausubel et al. Current Protocols in Molecular Biology (John Wiley & Sons, Inc., New York, 1999); Molecular Cloning: A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch, and Maniatis (Cold Spring Harbor Laboratory Press: 1989); each of which is incorporated herein by reference). The polynucleotide may also be obtained from natural sources and purified from contaminating components found normally in nature. The polynucleotide may also be chemically synthesized in a laboratory. In certain embodiments, the polynucleotide is synthesized using standard solid phase chemistry.
[00163] The polynucleotide may be modified by chemical or biological means. In certain embodiments, these modifications lead to increased stability of the polynucleotide.
Modifications include methylation, phosphorylation, end-capping, etc.
[00164] Derivatives of polynucleotides may also be used in the present invention. These derivatives include modifications in the bases, sugars, and/or phosphate linkages of the polynucleotide. Modified bases include, but are not limited to, those found in the following nucleoside analogs: 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 7-deazaadenosine,
7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, 0(6)-methylguanine, and 2-thiocytidine. Modified sugars include, but are not limited to, 2'-fluororibose, ribose, 2'-deoxyribose, 3'-azido-2',3'-dideoxyribose, 2',3'-dideoxyribose, arabinose (the 2'-epimer of ribose), acyclic sugars, and hexoses. The nucleosides may be strung together by linkages other than the phosphodiester linkage found in naturally occurring DNA and RNA. Modified linkages
include, but are not limited to, phosphorothioate and 5'-N-phosphoramidite linkages.
Combinations of the various modifications may be used in a single polynucleotide. These modified polynucleotides may be provided by any means known in the art; however, as will be appreciated by those of skill in this art, the modified polynucleotides are preferably prepared using synthetic chemistry in vitro.
The polynucleotides to be delivered may be in any form. For example, the polynucleotide may be a circular plasmid, a linearized plasmid, a cosmid, a viral genome, a modified viral genome, an artificial chromosome, etc.
[00165] The polynucleotide may be of any sequence. In certain preferred embodiments, the polynucleotide encodes a protein or peptide. The encoded proteins may be enzymes, structural proteins, receptors, soluble receptors, ion channels, pharmaceutically active proteins, cytokines, interleukins, antibodies, antibody fragments, antigens, coagulation factors, albumin, growth factors, hormones, insulin, etc. The polynucleotide may also comprise regulatory regions to control the expression of a gene. These regulatory regions may include, but are not limited to, promoters, enhancer elements, repressor elements, TATA box, ribosomal binding sites, stop site for transcription, etc. In other particularly preferred embodiments, the polynucleotide is not intended to encode a protein. For example, the polynucleotide may be used to fix an error in the genome of the cell being transfected.
[00166] The polynucleotide may also be provided as an antisense agent or RNA interference (RNAi) (Fire et al. Nature 391:806-811, 1998; incorporated herein by reference). Antisense therapy is meant to include, e.g., administration or in situ provision of single- or double- stranded oligonucleotides or their derivatives which specifically hybridize, e.g., bind, under cellular conditions, with cellular mRNA and/or genomic DNA, or mutants thereof, so as to inhibit expression of the encoded protein, e.g., by inhibiting transcription and/or translation (Crooke "Molecular mechanisms of action of antisense drugs" Biochim. Biophys. Acta 1489(l):31-44, 1999; Crooke "Evaluating the mechanism of action of antiproliferative antisense drugs" Antisense Nucleic Acid Drug Dev. 10(2): 123- 126, discussion 127, 2000; Methods in Enzymology volumes 313-314, 1999; each of which is incorporated herein by reference). The binding may be by conventional base pair complementarity, or, for example, in the case of binding to DNA duplexes, through specific interactions in the major groove of the double helix (i.e., triple helix formation) (Chan et al. J. Mol. Med. 75(4):267-282, 1997; incorporated herein by reference).
[00167] In certain embodiments, the polynucleotide to be delivered comprises a sequence
encoding an antigenic peptide or protein. Nanoparticles containing these polynucleotides can be delivered to an individual to induce an immunologic response sufficient to decrease the chance of a subsequent infection and/or lessen the symptoms associated with such an infection. The polynucleotide of these vaccines may be combined with interleukins, interferon, cytokines, and adjuvants such as cholera toxin, alum, Freund's adjuvant, etc. A large number of adjuvant compounds are known; a useful compendium of many such compounds is prepared by the National Institutes of Health and can be found on the internet
(http:/www. niaid.nih.gov/daids/vaccine/pdf/compendium.pdf, incorporated herein by reference; see also Allison Dev. Biol. Stand. 92:3-11, 1998; Unkeless et al. Annu. Rev.
Immunol. 6:251-281, 1998; and Phillips et al. Vaccine 10: 151-158,1992, each of which is incorporated herein by reference).
[00168] An antigenic protein or peptides encoded by a polynucleotide may be derived from such bacterial organisms as Streptococccus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Streptococcus pyrogenes, Corynebacterium diphtheriae, Listeria monocytogenes, Bacillus anthracis, Clostridium tetani, Clostridium botulinum, Clostridium perfringens, Neisseria meningitidis, Neisseria gonorrhoeae, Streptococcus mutans,
Pseudomonas aeruginosa, Salmonella typhi, Haemophilus parainfluenzae, Bordetella pertussis, Francisella tularensis, Yersinia pestis, Vibrio cholerae, Legionella pneumophila, Mycobacterium tuberculosis, Mycobacterium leprae, Treponema pallidum, Leptospirosis interrogans, Borrelia burgdorferi, Camphylobacter jejuni, and the like; from such viruses as smallpox, influenza A and B, respiratory syncytial virus, parainfluenza, measles, HIV, varicella-zoster, herpes simplex 1 and 2, cytomegalovirus, Epstein-Barr virus, rotavirus, rhinovirus, adenovirus, papillomavirus, poliovirus, mumps, rabies, rubella, coxsackieviruses, equine encephalitis, Japanese encephalitis, yellow fever, Rift Valley fever, hepatitis A, B, C, D, and E virus, and the like; and from such fungal, protozoan, and parasitic organisms such as Cryptococcus neoformans, Histoplasma capsulatum, Candida albicans, Candida tropicalis, Nocardia asteroides, Rickettsia ricketsii, Rickettsia typhi, Mycoplasma pneumoniae,
Chlamydial psittaci, Chlamydial trachomatis, Plasmodium falciparum, Trypanosoma brucei, Entamoeba histolytica, Toxoplasma gondii, Trichomonas vaginalis, Schistosoma mansoni, and the like.
Microparticles and Nanoparticles
[00169] The lipidoids of the present invention may also be used to form drug delivery
devices. Inventive lipidoids may be used to encapsulate agents including polynucleotides, small molecules, proteins, peptides, metals, organometallic compounds, etc. Lipidoids described herein have several properties that make them particularly suitable in the preparation of drug delivery devices. These include 1) the ability of the lipid to complex and "protect" labile agents; 2) the ability to buffer the pH in the endosome; 3) the ability to act as a "proton sponge" and cause endosomolysis; and 4) the ability to neutralize the charge on negatively charged agents.
In certain embodiments, the diameter of the particles range from between 1 micrometer to 1,000 micrometers. In certain embodiments, the diameter of the particles range from between from 1 micrometer to 100 micrometers. In certain embodiments, the diameter of the particles range from between from 1 micrometer to 10 micrometers. In certain embodiments, the diameter of the particles range from between from 10 micrometer to 100 micrometers. In certain embodiments, the diameter of the particles range from between from 100 micrometer to 1,000 micrometers. In certain embodiments, the particles range from 1-5 micrometers. In certain embodiments, the diameter of the particles range from between 1 nm to 1,000 nm. In certain embodiments, the diameter of the particles range from between from 1 nm to 100 nm. In certain embodiments, the diameter of the particles range from between from 1 nm to 10 nm. In certain embodiments, the diameter of the particles range from between from 10 nm to 100 nm. In certain embodiments, the diameter of the particles range from between from 100 nm to 1,000 nm. In certain embodiments, the diameter of the particles range from between from 20 nm to 2,000 nm. In certain embodiments, the particles range from 1-5 nm. In certain embodiments, the diameter of the particles range from between 1 pm to 1,000 pm. In certain embodiments, the diameter of the particles range from between from 1 pm to 100 pm. In certain embodiments, the diameter of the particles range from between from 1 pm to 10 pm. In certain embodiments, the diameter of the particles range from between from 10 pm to 100 pm. In certain embodiments, the diameter of the particles range from between from 100 pm to 1,000 pm. In certain embodiments, the particles range from 1-5 pm.
[00170] The inventive particles may be prepared using any method known in this art. These include, but are not limited to, spray drying, single and double emulsion solvent evaporation, solvent extraction, phase separation, simple and complex coacervation, and other methods well known to those of ordinary skill in the art. In certain embodiments, methods of preparing the particles are the double emulsion process and spray drying. The conditions used in preparing the particles may be altered to yield particles of a desired size or property (e.g.,
hydrophobicity, hydrophilicity, external morphology, "stickiness", shape, etc.). The method of preparing the particle and the conditions (e.g., solvent, temperature, concentration, air flow rate, etc.) used may also depend on the agent being encapsulated and/or the composition of the matrix.
Methods developed for making particles for delivery of encapsulated agents are described in the literature (for example, please see Doubrow, M., Ed., "Microcapsules and Nanoparticles in Medicine and Pharmacy," CRC Press, Boca Raton, 1992; Mathiowitz and Langer, J.
Controlled Release 5: 13-22, 1987; Mathiowitz et al, Reactive Polymers 6:275-283, 1987; Mathiowitz et al., J. Appl. Polymer Sci. 35:755-774, 1988; each of which is incorporated herein by reference).
[00171] If the particles prepared by any of the above methods have a size range outside of the desired range, the particles can be sized, for example, using a sieve. The particle may also be coated. In certain embodiments, the particles are coated with a targeting agent. In other embodiments, the particles are coated to achieve desirable surface properties (e.g., a particular charge).
[00172] In certain embodiments, the present invention provides a nanoparticle comprising an inventive lipidoid and one or more agents to be delivered. In certain embodiments, the agent is a polynucleotide, drug, protein or peptide, small molecule, or gas. In certain embodiments, the agent is RNA (e.g. mRNA, RNAi, dsRNA, siRNA, shRNA, miRNA, or antisense RNA). In certain embodiments, the nanoparticle further comprises cholesterol or a derivative thereof, such as 3B-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-cholesterol). In certain embodiments, the nanoparticle further comprises a PEG-based material. In certain embodiments, the PEG-based material is PEG-ceramide, PEG-DMG, PEG-PE, poloxamer, or DSPE carboxy PEG. For instance, in certain embodiments, the PEG-based material is C14 PEG2000 DMG, C15 PEG2000 DMG, C16 PEG2000 DMG, C18 PEG2000 DMG, C14 PEG 2000 ceramide, C15 PEG2000 ceramide, C16 PEG2000 ceramide, C18 PEG2000 ceramide, C14 PEG2000 PE, C15 PEG2000 PE, C16 PEG2000 PE, C18 PEG2000 PE, C14 PEG350 PE, C14 PEG5000 PE, poloxamer F-127, poloxamer F-68, poloxamer L-64, or DSPE carboxy PEG. In certain embodiments, the nanoparticle further comprises a lipid. For example, in certain embodiments, the nanoparticle further comprises DSPC, DOPC, or DOPE. In certain embodiments, the nanoparticle comprises a lipidoid, an agent (e.g., RNA), a lipid, cholesterol or a derivative thereof, and a PEG-based material.
Micelles, Liposomes, and Lipoplexes
[00173] Lipidoids described herein may also be used to prepare micelles or liposomes. In addition, any agent may be included in a micelle or liposome. Micelles and liposomes are particularly useful in delivering hydrophobic agents such as hydrophobic small molecules. When the micelle or liposome is complexed with {e.g., encapsulates or covers) a
polynucleotide it is referred to as a "lipoplex." Many techniques for preparing micelles, liposomes, and lipoplexes are known in the art, and any method may be used with the inventive lipidoids to make micelles and liposomes.
[00174] In certain embodiments, liposomes (lipid vesicles) are formed through spontaneous assembly. In other embodiments, liposomes are formed when thin lipid films or lipid cakes are hydrated and stacks of lipid crystalline bilayers become fluid and swell. The hydrated lipid sheets detach during agitation and self-close to form large, multilamellar vesicles (LMV). This prevents interaction of water with the hydrocarbon core of the bilayers at the edges. Once these particles have formed, reducing the size of the particle can be modified through input of sonic energy (sonication) or mechanical energy (extrusion). See Walde, P. "Preparation of Vesicles (Liposomes)" In Encylopedia of Nanoscience and Nanotechnology; Nalwa, H. S. Ed. American Scientific Publishers: Los Angeles, 2004; Vol. 9, pp. 43-79; Szoka et al. "Comparative Properties and Methods of Preparation of Lipid Vesicles (Liposomes)" Ann. Rev. Biophys. Bioeng. 9:467-508, 1980; each of which is incorporated herein. The preparation of lipsomes involves preparing the lipid for hydration, hydrating the lipid with agitation, and sizing the vesicles to achieve a homogenous distribution of liposomes. Lipids are first dissolved in an organic solvent to assure a homogeneous mixture of lipids. The solvent is then removed to form a lipid film. This film is thoroughly dried to remove residual organic solvent by placing the vial or flask on a vaccuum pump overnight. Hydration of the lipid film/cake is accomplished by adding an aqueous medium to the container of dry lipid and agitating the mixture. Disruption of LMV suspensions using sonic energy typically produces small unilamellar vesicles (SUV) with diameters in the range of 15-50 nm. Lipid extrusion is a technique in which a lipid suspension is forced through a polycarbonate filter with a defined pore size to yield particles having a diameter near the pore size of the filter used. Extrusion through filters with 100 nm pores typically yields large, unilamellar vesicles (LUV) with a mean diameter of 120-140 nm.
[00175] In certain embodiments, liposomes are formed comprising an inventive lipid, a PEG-based material, cholesterol or a derivative thereof, and a polynucleotide. In certain
embodiments, the polynucleotide is an RNA molecule (e.g., an siRNA). In other embodiments, the polynucleotide is a DNA molecule. In certain embodiments, the amount of lipidoid in the liposome ranges from 30-80 mol , 40-70 mol , or 60-70 mol . In certain embodiments, the liposome comprises a PEG-based material. In certain embodiments, the amount of PEG-based material in the liposomes ranges from 5-20 mol , 10-15 mol , or 10 mol . In certain embodiments, the liposome comprises cholesterol or a derivative thereof. In certain embodiments, the amount of cholesterol in the liposome ranges from 5-25 mol , 10-20 mol , or 15 mol . In certain embodiments, the amount of cholesterol in the liposome is approximately 20 mol . These liposomes may be prepared using any method known in the art. In certain embodiments (e.g., liposomes containing RNAi molecules), the liposomes are prepared by lipid extrusion.
[00176] Certain lipidoids can spontaneously self assemble around certain molecules, such as DNA and RNA, to form liposomes. In some embodiments, the application is the delivery of polynucleotides. Use of these lipidoids allows for simple assembly of liposomes without the need for additional steps or devices such as an extruder.
The following scientific papers described other methods for preparing liposomes and micelles: Narang et al. "Cationic Lipids with Increased DNA Binding Affinity for Nonviral Gene Transfer in Dividing and Nondividing Cells" Bioconjugate Chem. 16: 156-68, 2005; Hofland et al. "Formation of stable cationic lipid/DNA complexes for gene transfer" Proc. Natl. Acad. Sci. USA 93:7305-7309, July 1996; Byk et al. "Synthesis, Activity, and Structure— Activity Relationship Studies of Novel Cationic Lipids for DNA Transfer" /. Med. Chem.
41(2):224-235, 1998; Wu et al. "Cationic Lipid Polymerization as a Novel Approach for Constructing New DNA Delivery Agents" Bioconjugate Chem. 12:251-57, 2001; Lukyanov et al. "Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs" Advanced Drug Delivery Reviews 56: 1273-1289, 2004; Tranchant et al.
"Physicochemical optimisation of plasmid delivery by cationic lipids" /. Gene Med.
6:S24-S35, 2004; van Balen et al. "Liposome/Water Lipophilicity: Methods, Information Content, and Pharmaceutical Applications" Medicinal Research Rev. 24(3):299-324, 2004; each of which is incorporated herein by reference.
Agent
[00177] The agents to be delivered by the system of the present invention may be therapeutic, diagnostic, or prophylactic agents. Any chemical compound to be administered to
an individual may be delivered using the inventive inventive complexes, picoparticles, nanoparticles, microparticles, micelles, or liposomes. The agent may be a small molecule, organometallic compound, nucleic acid, protein, peptide, polynucleotide, targeting agent, an isotopically labeled chemical compound, drug, vaccine, immunological agent, etc.
In certain embodiments, the agents are organic compounds with pharmaceutical activity. In another embodiment of the invention, the agent is a clinically used drug. In a particularly preferred embodiment, the drug is an antibiotic, chemotherapeutic, anti-viral agent, anesthetic, steroidal agent, anti-inflammatory agent, anti-neoplastic agent, antigen, vaccine, antibody, decongestant, antihypertensive, sedative, birth control agent, progestational agent,
anti-cholinergic, analgesic, anti-depressant, anti-psychotic, β-adrenergic blocking agent, diuretic, cardiovascular active agent, vasoactive agent, non-steroidal anti-inflammatory agent, nutritional agent, etc.
[00178] In certain embodiments, the agent to be delivered may be a mixture of agents.
[00179] Diagnostic agents include gases; metals; commercially available imaging agents used in positron emissions tomography (PET), computer assisted tomography (CAT), single photon emission computerized tomography, x-ray, fluoroscopy, and magnetic resonance imaging (MRI); and contrast agents. Examples of suitable materials for use as contrast agents in MRI include gadolinium chelates, as well as iron, magnesium, manganese, copper, and chromium. Examples of materials useful for CAT and x-ray imaging include iodine-based materials.
Prophylactic agents include, but are not limited to, antibiotics, nutritional supplements, and vaccines. Vaccines may comprise isolated proteins or peptides, inactivated organisms and viruses, dead organisms and viruses, genetically altered organisms or viruses, and cell extracts. Prophylactic agents may be combined with interleukins, interferon, cytokines, and adjuvants such as cholera toxin, alum, Freund's adjuvant, etc. Prophylactic agents include antigens of such bacterial organisms as Streptococccus pneumoniae, Haemophilus influenzae,
Staphylococcus aureus, Streptococcus pyrogenes, Corynebacterium diphtheriae, Listeria monocytogenes, Bacillus anthracis, Clostridium tetani, Clostridium botulinum, Clostridium perfringens, Neisseria meningitidis, Neisseria gonorrhoeae, Streptococcus mutans,
Pseudomonas aeruginosa, Salmonella typhi, Haemophilus parainfluenzae, Bordetella pertussis, Francisella tularensis, Yersinia pestis, Vibrio cholerae, Legionella pneumophila, Mycobacterium tuberculosis, Mycobacterium leprae, Treponema pallidum, Leptospirosis interrogans, Borrelia burgdorferi, Camphylobacter jejuni, and the like; antigens of such
viruses as smallpox, influenza A and B, respiratory syncytial virus, parainfluenza, measles, HIV, varicella-zoster, herpes simplex 1 and 2, cytomegalovirus, Epstein-Barr virus, rotavirus, rhinovirus, adenovirus, papillomavirus, poliovirus, mumps, rabies, rubella, coxsackieviruses, equine encephalitis, Japanese encephalitis, yellow fever, Rift Valley fever, hepatitis A, B, C, D, and E virus, and the like; antigens of fungal, protozoan, and parasitic organisms such as Cryptococcus neoformans, Histoplasma capsulatum, Candida albicans, Candida tropicalis, Nocardia asteroides, Rickettsia ricketsii, Rickettsia typhi, Mycoplasma pneumoniae,
Chlamydial psittaci, Chlamydial trachomatis, Plasmodium falciparum, Trypanosoma brucei, Entamoeba histolytica, Toxoplasma gondii, Trichomonas vaginalis, Schistosoma mansoni, and the like. These antigens may be in the form of whole killed organisms, peptides, proteins, glycoproteins, carbohydrates, or combinations thereof.
Targeting Agents
[00180] The inventive lipidoids, and the complexes, liposomes, micelles, microparticles, picoparticles and nanoparticles prepared therefrom, may be modified to include targeting agents since it is often desirable to target a particular cell, collection of cells, or tissue. A variety of targeting agents that direct pharmaceutical compositions to particular cells are known in the art (see, for example, Cotten et al. Methods Enzym. 217:618, 1993; incorporated herein by reference). The targeting agents may be included throughout the particle or may be only on the surface. The targeting agent may be a protein, peptide, carbohydrate, glycoprotein, lipid, small molecule, etc. The targeting agent may be used to target specific cells or tissues or may be used to promote endocytosis or phagocytosis of the particle. Examples of targeting agents include, but are not limited to, antibodies, fragments of antibodies, low-density lipoproteins (LDLs), transferrin, asialycoproteins, gpl20 envelope protein of the human immunodeficiency virus (HIV), carbohydrates, receptor ligands, sialic acid, etc. If the targeting agent is included throughout the particle, the targeting agent may be included in the mixture that is used to form the particles. If the targeting agent is only on the surface, the targeting agent may be associated with (i.e., by covalent, hydrophobic, hydrogen bonding, van der Waals, or other interactions) the formed particles using standard chemical techniques.
Compositions
[00181] In certain embodiments, an inventive lipidoid is a component of a composition which may be useful in a variety of medical and non-medical applications. For example,
pharmaceutical compositions comprising an inventive lipidoid may be useful in the delivery of an effective amount of an agent to a subject in need thereof. Nutraceutical compositions comprising an inventive lipidoid may be useful in the delivery of an effective amount of a nutraceutical, e.g., a dietary supplement, to a subject in need thereof. Cosmetic compositions comprising an inventive lipidoid may be formulated as a cream, ointment, balm, paste, film, or liquid, etc., and may be useful in the application of make-up, hair products, and materials useful for personal hygiene, etc.
[00182] In certain embodiments, the composition comprises one or more lipidoids of the present invention. "One or more lipidoids" refers to one or more different types of lipidoids included in the composition, and encompasses 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more different types of lipidoids.
[00183] In certain embodiments, the inventive lipidoids are useful in compositions, either for delivery of an effective amount of an agent to a subject in need thereof {e.g., a
pharmaceutical composition, a cosmetic composition) or for use as an excipient. For example, cosmetic compositions may further use the inventive lipidoids as excipients rather than as a delivery system encapsulating an agent to be delivered. In certain embodiments, the composition is a pharmaceutical composition. In certain embodiments, the composition is a cosmetic composition.
[00184] In certain embodiments, the composition further comprises an agent, as described herein. For example, in certain embodiments, the agent is a small molecule, organometallic compound, nucleic acid, protein, peptide, polynucleotide, metal, targeting agent, an isotopically labeled chemical compound, drug, vaccine, or immunological agent. In certain embodiments, the agent is a polynucleotide. In certain embodiments, the polynucleotide is DNA or RNA. In certain embodiments, the RNA is mRNA, RNAi, dsRNA, siRNA, shRNA, miRNA, or antisense RNA.
[00185] In certain embodiments, the polynucleotide and the one or more lipidoids are not covalently attached.
[00186] In certain embodiments, the one or more lipidoids are in the form of a particle. In certain embodiments, the particle is a nanoparticle or microparticle. In certain embodiments, the one or more conjugated lipidoids are in the form of liposomes or micelles. It is understood that, in certain embodiments, these lipidoids self-assemble to provide a particle, micelle or liposome. In certain embodiments, the particle, liposome, or micelle encapsulates an agent. The agent to be delivered by the particles, liposomes, or micelles may be in the form of a gas,
liquid, or solid. The inventive lipidoids may be combined with polymers (synthetic or natural), surfactants, cholesterol, carbohydrates, proteins, lipids etc. to form the particles. These particles may be combined with an excipient to form pharmaceutical and cosmetic
compositions.
Once the complexes, micelles, liposomes, or particles have been prepared, they may be combined with one or more excipients to form a composition that is suitable to administer to animals including humans.
[00187] As would be appreciated by one of skill in this art, the excipients may be chosen based on the route of administration as described below, the agent being delivered, time course of delivery of the agent, etc.
[00188] In certain embodiments, provided is a composition comprising an inventive lipidoids and an excipient. As used herein, the term "excipient" means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. Some examples of materials which can serve as excipients include, but are not limited to, sugars such as lactose, glucose, and sucrose; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose, and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil; sesame oil; olive oil; corn oil and soybean oil; glycols such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; detergents such as Tween 80; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol; and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator. The compositions of this invention can be administered to humans and/or to animals, orally, rectally, parenterally, intracisternally, intravaginally, intranasally, intraperitoneally, topically (as by powders, creams, ointments, or drops), bucally, or as an oral or nasal spray.
[00189] Liquid dosage forms for oral administration include emulsions, microemulsions, solutions, suspensions, syrups, and elixirs. In addition to the active ingredients {i.e., microparticles, nanoparticles, liposomes, micelles, polynucleotide/lipid complexes), the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol,
ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
[00190] Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension, or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables. In certain embodiments, the particles are suspended in a carrier fluid comprising 1% (w/v) sodium carboxymethyl cellulose and 0.1% (v/v) Tween 80.
[00191] The injectable formulations can be sterilized, for example, by filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
[00192] Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the particles with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol, or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the particles.
[00193] Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the particles are mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain
silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets, and pills, the dosage form may also comprise buffering agents.
[00194] Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
[00195] The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes.
[00196] Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
[00197] Dosage forms for topical or transdermal administration of an inventive pharmaceutical composition include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants, or patches. The particles are admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, ear drops, and eye drops are also contemplated as being within the scope of this invention.
[00198] The ointments, pastes, creams, and gels may contain, in addition to the particles of this invention, excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc, and zinc oxide, or mixtures thereof.
[00199] Powders and sprays can contain, in addition to the particles of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates, and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.
[00200] Transdermal patches have the added advantage of providing controlled delivery
of a compound to the body. Such dosage forms can be made by dissolving or dispensing the microparticles or nanoparticles in a proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the particles in a polymer matrix or gel.
Methods of Use
[00201] In another aspect, provided are methods of using the inventive lipidoids, e.g., for the treatment of a disease, disorder or condition from which a subject suffers. It is
contemplated that the inventive lipidoids will be useful in the treatment of a variety of diseases, disorders or conditions, especially as a system for delivering agents useful in the treatment of that particular disease, disorder or condition.
[00202] For example, in one aspect, provided is a method of treating cancer comprising administering to a subject in need thereof an effective amount of a lipidoid of the present invention, or salt thereof, or a composition thereof. In certain embodiments, the method further comprises administering an anti-cancer agent. In certain embodiments, the lipidoid encapsulates the anti-cancer agent. In certain embodiments, the lipidoid and the anti-cancer agent form a particle (e.g., a nanoparticle, a microparticle, a micelle, a liposome, a lipoplex).
[00203] A "subject" to which administration is contemplated includes, but is not limited to, humans (i.e., a male or female of any age group, e.g., a pediatric subject (e.g, infant, child, adolescent) or adult subject (e.g., young adult, middle-aged adult or senior adult)) and/or other non-human animals, for example mammals (e.g., primates (e.g., cynomolgus monkeys, rhesus monkeys); commercially relevant mammals such as cattle, pigs, horses, sheep, goats, cats, and/or dogs), birds (e.g. , commercially relevant birds such as chickens, ducks, geese, and/or turkeys), reptiles, amphibians, and fish. In certain embodiments, the non-human animal is a mammal. The non-human animal may be a male or female and at any stage of development. A non-human animal may be a transgenic animal.
[00204] As used herein, and unless otherwise specified, the terms "treat," "treating" and "treatment" contemplate an action that occurs while a subject is suffering from the specified disease, disorder or condition, which reduces the severity of the disease, disorder or condition, or retards or slows the progression of the disease, disorder or condition ("therapeutic treatment"), and also contemplates an action that occurs before a subject begins to suffer from the specified disease, disorder or condition ("prophylactic treatment").
[00205] In general, the "effective amount" of a compound refers to an amount sufficient
to elicit the desired biological response. As will be appreciated by those of ordinary skill in this art, the effective amount of a compound of the invention may vary depending on such factors as the desired biological endpoint, the pharmacokinetics of the compound, the disease being treated, the mode of administration, and the age, health, and condition of the subject. An effective amount encompasses therapeutic and prophylactic treatment.
[00206] As used herein, and unless otherwise specified, a "therapeutically effective amount" of a compound is an amount sufficient to provide a therapeutic benefit in the treatment of a disease, disorder or condition, or to delay or minimize one or more symptoms associated with the disease, disorder or condition. A therapeutically effective amount of a compound means an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment of the disease, disorder or condition. The term "therapeutically effective amount" can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of disease or condition, or enhances the therapeutic efficacy of another therapeutic agent.
[00207] As used herein, and unless otherwise specified, a "prophylactically effective amount" of a compound is an amount sufficient to prevent a disease, disorder or condition, or one or more symptoms associated with the disease, disorder or condition, or prevent its recurrence. A prophylactically effective amount of a compound means an amount of a therapeutic agent, alone or in combination with other agents, which provides a prophylactic benefit in the prevention of the disease, disorder or condition. The term "prophylactically effective amount" can encompass an amount that improves overall prophylaxis or enhances the prophylactic efficacy of another prophylactic agent.
[00208] Exemplary cancers include, but are not limited to, acoustic neuroma, adenocarcinoma, adrenal gland cancer, anal cancer, angiosarcoma (e.g., lymphangiosarcoma, lymphangioendotheliosarcoma, hemangiosarcoma), appendix cancer, benign monoclonal gammopathy, biliary cancer (e.g., cholangiocarcinoma), bladder cancer, breast cancer (e.g., adenocarcinoma of the breast, papillary carcinoma of the breast, mammary cancer, medullary carcinoma of the breast), brain cancer (e.g., meningioma; glioma, e.g., astrocytoma, oligodendroglioma; medulloblastoma), bronchus cancer, carcinoid tumor, cervical cancer (e.g., cervical adenocarcinoma), choriocarcinoma, chordoma, craniopharyngioma, colorectal cancer (e.g., colon cancer, rectal cancer, colorectal adenocarcinoma), epithelial carcinoma, ependymoma, endotheliosarcoma (e.g., Kaposi's sarcoma, multiple idiopathic hemorrhagic sarcoma), endometrial cancer (e.g., uterine cancer, uterine sarcoma), esophageal cancer (e.g.,
adenocarcinoma of the esophagus, Barrett' s adenocarinoma), Ewing sarcoma, eye cancer (e.g., intraocular melanoma, retinoblastoma), familiar hypereosinophilia, gall bladder cancer, gastric cancer (e.g., stomach adenocarcinoma), gastrointestinal stromal tumor (GIST), head and neck cancer (e.g., head and neck squamous cell carcinoma, oral cancer (e.g., oral squamous cell carcinoma (OSCC), throat cancer (e.g., laryngeal cancer, pharyngeal cancer, nasopharyngeal cancer, oropharyngeal cancer)), hematopoietic cancers (e.g., leukemia such as acute lymphocytic leukemia (ALL) (e.g., B-cell ALL, T-cell ALL), acute myelocytic leukemia (AML) (e.g., B-cell AML, T-cell AML), chronic myelocytic leukemia (CML) (e.g., B-cell CML, T-cell CML), and chronic lymphocytic leukemia (CLL) (e.g., B-cell CLL, T-cell CLL); lymphoma such as Hodgkin lymphoma (HL) (e.g., B-cell HL, T-cell HL) and non-Hodgkin lymphoma (NHL) (e.g., B-cell NHL such as diffuse large cell lymphoma (DLCL) (e.g., diffuse large B-cell lymphoma (DLBCL)), follicular lymphoma, chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), mantle cell lymphoma (MCL), marginal zone B-cell lymphomas (e.g., mucosa-associated lymphoid tissue (MALT) lymphomas, nodal marginal zone B-cell lymphoma, splenic marginal zone B-cell lymphoma), primary mediastinal B-cell lymphoma, Burkitt lymphoma, lymphoplasmacytic lymphoma (i.e., "Waldenstrom's macro globulinemia"), hairy cell leukemia (HCL), immunoblastic large cell lymphoma, precursor B-lymphoblastic lymphoma and primary central nervous system (CNS) lymphoma; and T-cell NHL such as precursor T-lymphoblastic lymphoma/leukemia, peripheral T-cell lymphoma (PTCL) (e.g., cutaneous T-cell lymphoma (CTCL) (e.g., mycosis fungiodes, Sezary syndrome), angioimmunoblastic T-cell lymphoma, extranodal natural killer T-cell lymphoma, enteropathy type T-cell lymphoma, subcutaneous panniculitis-like T-cell lymphoma, anaplastic large cell lymphoma); a mixture of one or more leukemia/lymphoma as described above; and multiple myeloma (MM)), heavy chain disease (e.g., alpha chain disease, gamma chain disease, mu chain disease), hemangioblastoma, inflammatory myofibroblastic tumors, immunocytic amyloidosis, kidney cancer (e.g., nephroblastoma a.k.a. Wilms' tumor, renal cell carcinoma), liver cancer (e.g., hepatocellular cancer (HCC), malignant hepatoma), lung cancer (e.g., bronchogenic carcinoma, small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), adenocarcinoma of the lung), leiomyosarcoma (LMS), mastocytosis (e.g., systemic mastocytosis), myelodysplasia syndrome (MDS), mesothelioma, myeloproliferative disorder (MPD) (e.g., polycythemia Vera (PV), essential thrombocytosis (ET), agnogenic myeloid metaplasia (AMM) a.k.a. myelofibrosis (MF), chronic idiopathic myelofibrosis, chronic myelocytic leukemia (CML), chronic neutrophilic leukemia (CNL), hypereosinophilic
syndrome (HES)), neuroblastoma, neurofibroma (e.g., neurofibromatosis (NF) type 1 or type 2, schwannomatosis), neuroendocrine cancer (e.g., gastroenteropancreatic neuroendoctrine tumor (GEP-NET), carcinoid tumor), osteosarcoma, ovarian cancer (e.g., cystadenocarcinoma, ovarian embryonal carcinoma, ovarian adenocarcinoma), papillary adenocarcinoma, pancreatic cancer (e.g., pancreatic andenocarcinoma, intraductal papillary mucinous neoplasm (IPMN), Islet cell tumors), penile cancer (e.g., Paget' s disease of the penis and scrotum), pinealoma, primitive neuroectodermal tumor (PNT), prostate cancer (e.g., prostate
adenocarcinoma), rectal cancer, rhabdomyosarcoma, salivary gland cancer, skin cancer (e.g., squamous cell carcinoma (SCC), keratoacanthoma (KA), melanoma, basal cell carcinoma (BCC)), small bowel cancer (e.g., appendix cancer), soft tissue sarcoma (e.g., malignant fibrous histiocytoma (MFH), liposarcoma, malignant peripheral nerve sheath tumor (MPNST), chondrosarcoma, fibrosarcoma, myxosarcoma), sebaceous gland carcinoma, sweat gland carcinoma, synovioma, testicular cancer (e.g., seminoma, testicular embryonal carcinoma), thyroid cancer (e.g., papillary carcinoma of the thyroid, papillary thyroid carcinoma (PTC), medullary thyroid cancer), urethral cancer, vaginal cancer and vulvar cancer (e.g., Paget' s disease of the vulva).
[00209] Anti-cancer agents encompass biotherapeutic anti-cancer agents as well as chemotherapeutic agents.
[00210] Exemplary biotherapeutic anti-cancer agents include, but are not limited to, interferons, cytokines (e.g., tumor necrosis factor, interferon a, interferon γ), vaccines, hematopoietic growth factors, monoclonal serotherapy, immuno stimulants and/or
immunodulatory agents (e.g., IL- 1, 2, 4, 6, or 12), immune cell growth factors (e.g., GM-CSF) and antibodies (e.g. HERCEPTIN (trastuzumab), T-DM1, AVASTIN (bevacizumab), ERBITUX (cetuximab), VECTIBIX (panitumumab), RITUXAN (rituximab), BEXXAR (tositumomab)).
Exemplary chemotherapeutic agents include, but are not limited to, anti-estrogens (e.g.
tamoxifen, raloxifene, and megestrol), LHRH agonists (e.g. goscrclin and leuprolide), anti-androgens (e.g. flutamide and bicalutamide), photodynamic therapies (e.g. vertoporfin (BPD-MA), phthalocyanine, photosensitizer Pc4, and demethoxy-hypocrellin A
(2BA-2-DMHA)), nitrogen mustards (e.g. cyclophosphamide, ifosfamide, trofosfamide, chlorambucil, estramustine, and melphalan), nitrosoureas (e.g. carmustine (BCNU) and lomustine (CCNU)), alkylsulphonates (e.g. busulfan and treosulfan), triazenes (e.g.
dacarbazine, temozolomide), platinum containing compounds (e.g. cisplatin, carboplatin,
oxaliplatin), vinca alkaloids (e.g. vincristine, vinblastine, vindesine, and vinorelbine), taxoids (e.g. paclitaxel or a paclitaxel equivalent such as nanoparticle albumin-bound paclitaxel (ABRAXANE), docosahexaenoic acid bound-paclitaxel (DHA-paclitaxel,
Taxoprexin), polyglutamate bound-paclitaxel (PG-paclitaxel, paclitaxel poliglumex,
CT-2103, XYOTAX), the tumor-activated prodrug (TAP) ANG1005 (Angiopep-2 bound to three molecules of paclitaxel), paclitaxel-EC-1 (paclitaxel bound to the erbB2-recognizing peptide EC- 1), and glucose-conjugated paclitaxel, e.g., 2'-paclitaxel methyl 2-glucopyranosyl succinate; docetaxel, taxol), epipodophyllins (e.g. etoposide, etoposide phosphate, teniposide, topotecan, 9-aminocamptothecin, camptoirinotecan, irinotecan, crisnatol, mytomycin C), anti-metabolites, DHFR inhibitors (e.g. methotrexate, dichloromethotrexate, trimetrexate, edatrexate), IMP dehydrogenase inhibitors (e.g. mycophenolic acid, tiazofurin, ribavirin, and EICAR), ribonuclotide reductase inhibitors (e.g. hydroxyurea and deferoxamine), uracil analogs (e.g. 5-fluorouracil (5-FU), floxuridine, doxifluridine, ratitrexed, tegafur-uracil, capecitabine), cytosine analogs (e.g. cytarabine (ara C), cytosine arabinoside, and fludarabine), purine analogs (e.g. mercaptopurine and Thioguanine), Vitamin D3 analogs (e.g. EB 1089, CB 1093, and KH 1060), isoprenylation inhibitors (e.g. lovastatin), dopaminergic neurotoxins (e.g. l-methyl-4-phenylpyridinium ion), cell cycle inhibitors (e.g. staurosporine), actinomycin (e.g. actinomycin D, dactinomycin), bleomycin (e.g. bleomycin A2, bleomycin B2, peplomycin), anthracycline (e.g. daunorubicin, doxorubicin, pegylated liposomal doxorubicin, idarubicin, epirubicin, pirarubicin, zorubicin, mitoxantrone), MDR inhibitors (e.g. verapamil), Ca2+ ATPase inhibitors (e.g. thapsigargin), imatinib, thalidomide, lenalidomide, tyrosine kinase inhibitors (e.g., axitinib (AG013736), bosutinib (SKI-606), cediranib (RECENTIN™, AZD2171), dasatinib (SPRYCEL®, BMS-354825), erlotinib (TARCEVA®), gefitinib (IRESSA®), imatinib (Gleevec®, CGP57148B, STI-571), lapatinib (TYKERB®,
TYVERB®), lestaurtinib (CEP-701), neratinib (HKI-272), nilotinib (TASIGNA®), semaxanib (semaxinib, SU5416), sunitinib (SUTENT®, SU11248), toceranib
(PALLADIA®), vandetanib (ZACTEVIA®, ZD6474), vatalanib (PTK787, PTK/ZK), trastuzumab (HERCEPTIN®), bevacizumab (AVASTIN®), rituximab (RITUXAN®), cetuximab (ERBITUX®), panitumumab (VECTIBIX®), ranibizumab (Lucentis®), nilotinib (TASIGNA®), sorafenib (NEXAVAR®), everolimus (AFINITOR®), alemtuzumab
(CAMPATH®), gemtuzumab ozogamicin (MYLOTARG®), temsirolimus (TORISEL®), ENMD-2076, PCI-32765, AC220, dovitinib lactate (TKI258, CHIR-258), BIBW 2992 (TOVOK™), SGX523, PF-04217903, PF-02341066, PF-299804, BMS-777607, ABT-869,
MP470, BIBF 1120 (V ARGATEF® ) , AP24534, JNJ-26483327, MGCD265, DCC-2036, BMS-690154, CEP-11981, tivozanib (AV-951), OSI-930, MM-121, XL- 184, XL-647, and/or XL228), proteasome inhibitors (e.g., bortezomib (VELCADE)), mTOR inhibitors (e.g., rapamycin, temsirolimus (CCI-779), everolimus (RAD-001), ridaforolimus, AP23573 (Ariad), AZD8055 (AstraZeneca), BEZ235 (Novartis), BGT226 (Norvartis), XL765 (Sanofi Aventis), PF-4691502 (Pfizer), GDC0980 (Genetech), SF1126 (Semafoe) and OSI-027 (OSI)), oblimersen, gemcitabine, carminomycin, leucovorin, pemetrexed, cyclophosphamide, dacarbazine, procarbizine, prednisolone, dexamethasone, campathecin, plicamycin, asparaginase, aminopterin, methopterin, porfiromycin, melphalan, leurosidine, leurosine, chlorambucil, trabectedin, procarbazine, discodermolide, carminomycin,, aminopterin, and hexamethyl melamine.
Examples
[00211] In order that the invention described herein may be more fully understood, the following examples are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.
Lipidoid Synthesis
[00212] Lipidoids were synthesized through the conjugate addition of alkyl- acrylates to amines. Amines were purchased from Sigma Aldrich (St. Louis, MO), Alfa Aesar, Acros Organics, and CHESS Organics. Acrylates were purchased from Scientific Polymer Products (Ontario, NY) and Hampford Research, Inc. (Stratford, CT). Amines were combined with acrylates stoichiometrically in a glass scintillation vial and were stirred at 90°C for either for 3 days. In vitro experiments were conducted with crude materials, and in vivo experiments were performed with lipidoids purified via a Teledyne Isco Chromatography system (Lincoln, NE).
Lipidoid Hydrolysis
[00213] To a 25 ml round bottom flask was added 304O13 (0.250 g, 0.263 mmol, 1 equiv). For acidic hydrolysis, 10 ml of a solution of 6 N HC1 was added to the flask to afford a cloudy heterogeneous solution. The reaction was heated to reflux to afford a clear, homogeneous solution and was stirred at reflux for 24 hours. For basic hydrolysis, 10 ml of a solution of KOH in EtOH/H20 (solution = 5.61 g KOH in 47.5 ml EtOH w/ 2.5 ml distilled H20) was added to the flask to afford a clear colorless solution. The reaction was heated to reflux and stirred for 41
h. Both acidic and basic reactions were cooled to room temperature and TLC analysis showed the presence of tridecanol (17.5% EtOAC/Hexanes) and the consumption of 304O13. Reactions were concentrated to dryness under reduced pressure and diluted with CDC13. The basic reaction was filtered to remove excess KOH. Proton NMR analysis was performed in CDC13. Proton nuclear magnetic resonance spectra were recorded with a Bruker Avance 400 spectrometer, are depicted in parts per million on the δ scale, and are referenced from the residual protium in the NMR solvent (CDC13: δ 7.26 (CHC13).
Formulation of Lipid Nanoparticles
[00214] Lipidoids were formulated into nanoparticles for all studies described in the Examples. Nanoparticles were formed by mixing lipidoids, cholesterol (Sigma Aldrich), DSPC (Avanti Polar Lipids, Alabaster, AL) and mPEG2000-DMG (MW 2660, gift from Alnylam Pharamceuticals, Cambridge, MA) at a molar ratio of 38.5 : 50 : (11.5 - X) : X in a solution of 90% ethanol and 10% 10 mM sodium citrate (by volume). An siRNA solution was prepared by diluting siRNA in 10 mM sodium citrate such that the final weight ratio of total lipid (lipidoid + cholesterol + DSPC + PEG) : siRNA was 10 : 1. Equal volumes of lipid solution and siRNA solution were rapidly mixed together using either a microfluidic device (Chen, D. et al. J. Am. Chem. Soc. 134, 120410134818007 (2012)) or by pipet to form nanoparticles. Particles were diluted in phosphate buffered saline (PBS, Invitrogen) and then dialyzed against PBS for 90 minutes in 3500 MWCO cassettes (Pierce/Thermo Scientific, Rockford, IL).
In vitro Transfection of Cell Lines with Lipid Nanoparticles
[00215] HeLa cells stably modified to express both firefly and Renilla luciferase were maintained at 37 °C in high glucose Dulbecco's Modified Eagles Medium without phenol red (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, Invitrogen). 12 - 16 hours prior to transfection, cells were seeded in white 96- well plates at a density of 15,000 cells per well. Cells were transfected with a 40 nM concentration of anti-firefly luciferase siRNA (Dharmacon, Lafayette, CO) that had been formulated with lipidoids into nanoparticles. Firefly luciferase silencing was assessed with a Dual-Glo® Luciferase Assay kit (Promega, Madison, WI). Renilla luciferase activity served as a control. Data for certain lipidoids are shown in Table 1 below.
Table 1. In vitro data
In vivo Gene Silencing
[00216] All animal experiments were conducted using institutionally-approved protocols. Female C57BL/6 mice (Charles River Laboratories, Wilmington, MA) received injections through the lateral tail vein injections of PBS (negative control), or lipidoid nanoparticles containing either non-targeting siRNA (negative control) or anti-Factor VII siRNA diluted in PBS at a volume of 0.01 ml/g. The sequence of the siFVII, provided by Alnylam
Pharmaceuticals, was:
sense: 5'-GGAucAucucAAGucuuAcT*T-3' (SEQ ID NO,: 1)
antisense: 5'-GuAAGAcuuGAGAuGAuccT*T-3' (SEQ ID NO.: 2)
where 2'-fluoro-modified nucleotides are in lower case and phosphorothioate linkages are represented by asterisks. Two days post-injection, a 100 ul blood sample was obtained from mice and centrifuged at 13,000 rpm in serum separator tubes (Becton Dickinson). Serum levels of Factor VII were analyzed using a Biophen FVII assay kit as described previously (Aniara Corporation, Mason, OH) Semple, S. C. et al. Nature Biotechnology 1-7 (2010). Results shown in Table 2.
Table 2: Original Library VII Activity Data
Biodistribution and Immunostaining
[00217] Female C57BL/6 mice received tail vein injections of lipid nanoparticles containing siRNA that had been labeled with Cy5.5 on the 5' end of the sense strand (provided by Alnylam Pharmaceuticals). Animals were dosed at 1 mg/kg of siRNA and volume of 0.01 ml/g. At one hour post-injection, mice were euthanized and organs were removed. Body- wide biodistribution was assessed by imaging whole organs with an IVIS® Spectrum system (Caliper Life Sciences, Hopkinton, MA) at excitation and emission wavelengths of 675 nm and 720 nm, respectively. Cell-specific distribution within hepatocytes was assessed by embedding, sectioning, and staining the whole liver with antibodies. Imaging was conducted on a LSM 700 confocal microscope (Carl Zeiss, Inc., Peabody, MA). For Odyssey and confocal imaging, organs were snap frozen on dry ice and embedded in optimal cutting temperature compound (OCT, Life Technologies, Grand Island, NY). Cryostat sections were cut and collected on superfrost plus treated slides. Prepared frozen sections where kept at -20 °C until needed. Odyssey imaging was conducted on 20 μιη thick cryosections of tissue at a resolution of 21 μιη (Lee, M. J.-E. et ah, Rapid Pharmacokinetic and Biodistribution Studies Using
Choloro toxin-Conjugated Iron Oxide Nanoparticles: A Novel Non-Radioactive Method. PLoS ONE 5, e9536-e9536 (2010)).
[00218] For confocal imaging, liver tissue was cryosectioned (12 μιη) and fixed using 4 % paraformaldehyde at room temperature for 30 min. All solutions were prepared in PBS.
Sections were washed 2x with PBS, permeabilized for 30 min with 0.1% Triton X100, and blocked for 1 hour with 5% normal goat serum. Sections then incubated for 1 hour in an immunostaining cocktail solution consisting of DAPI (3 μΜ), Alexa Fluor 488 conjugated anti-mouse F4/80 (1:200 dilution, BioLegend, San Diego, CA), Alexa Fluor® 555 Phalloidin (1:200 dilution, Life Technologies), and 5 % normal goat serum. Slides were washed 3x with 0.1% Tween 20 and mounted using ProLong® Gold Antifade (Life Technologies). Sections were imaged using an LSM 700 point scanning confocal microscope (Carl Zeiss, Inc, Jena Germany) equipped with a 40X oil immersion objective.
Blood Clearance
[00219] Blood clearance experiments were conducted by injecting LNPs containing Cy5.5 - labeled siRNA at an siRNA dose of 0.5 mg/kg. Blood samples were collected as a function of time via the retroorbital vein, with the exception of final time points, which were collected via cardiac puncture. Serum, obtained by centrifugation, was diluted 1:30 in PBS and imaged and quantified using an Odyssey CLx imaging system (LI-COR Biosciences, Lincoln, NE).
Histology
[00220] Organs were harvested from animals that had received various doses of either 304O13 or C12-200 lipid nanoparticles (C12-200 is a control non-degradable lipidoid shown below). Organs were fixed overnight in 4% paraformaldehyde and transferred to 70% ethanol prior to paraffin embedding, sectioning, and H & E staining.
Serum Chemistry and Hematology Analysis
[00221] Post-sacrifice, cardiac sticks were immediately performed on animals that had been dosed with either 304O13 or C12-200 lipid nanoparticles. Blood was centrifuged in serum separator tubes at 5,000 rpm for 10 minutes, and serum was analyzed for various hematological parameters. Serum chemistry was evaluated on a Beckman Olympus AU400 Serum Chemistry Analyzer. Cytokines were analyzed using Bio-Plex Pro Mouse Cytokine 23-Plex Assay kits (Luminex Corporation, Austin, TX) on the Bio-Plex 200 system, according to manufacturer instructions.
Cytokine Profiling
[00222] Cytokine analysis was done by injecting either 304O13 or C 12-200 nanoparticles at an siRNA dose of 3 mg/kg. Four hours post-injection, blood was harvested via cardiac stick and serum was isolated. Cytokine levels were quantified using an ELISA assay.
Nanoparticle Characterization
[00223] Lipid nanoparticles were diluted to an siRNA concentration of ~ 5 ug/ml in 0.1 x PBS, pH 7.3. siRNA entrapment efficiency was determined using the Quant-iT™ RiboGreen® RNA assay (Invitrogen). Particle sizes were measured with a ZETAPals analyzer (Brookhaven Instruments, Holtsville, NY). Sizes reported are the average effective diameter of each LNP. Zeta potential measurements were acquired on a Zetasizer Nano ZS (Malvern, Westborough, MA), and reported values were the average of 10 - 25 runs.
Table 3: Characterization Parameters for 304Oi3
Results and Discussion
[00224] Michael addition chemistry was employed to rapidly synthesize a library of 1400 lipid-like materials with the potential to serve as effective, biodegradable delivery vehicles (Figure 1). 280 alkyl-amines (Figure 2) were reacted combinatorially with 5 alkyl-acrylates to form lipidoids consisting of a polar, ionizable core surrounded by hydrophobic carbon tails. Alkyl-amines, which were taken from commercially available supply, were chosen to maximize structural diversity and reactivity within a Michael addition scheme. We chose to work with alkyl-acrylate tails of intermediate length (10 - 14 carbon chain length), as previous studies indicated that shorter tails often lack efficacy while longer tails may cause insolubility during the nanoparticle formulation process (Akinc, A. et al. Nature Biotechnology 26, 561-569 (2008); Love, K. T. et al. Proc. Natl. Acad. Sci. USA 107, 1864-1869 (2010)).
[00225] The acrylate-based lipidoids provided herein also contain hydrolysable ester moieties, functional groups which are commonly incorporated into delivery vehicles to promote physiological degradation (Staubli, A., Ron, E. & Langer, R. J. Am. Chem. Soc. 112, 4419-4424 (1990); van Dijkhuizen-Radersma, et al. Biomaterials 23, 4719-4729 (2002); Geng, Y. & Discher, D. E. J. Am. Chem. Soc. 127, 12780-12781 (2005)). Proton NMR analysis indicated that a representative lipidoid, 304O13, degraded to the anticipated alkyl-alcohol product under hydrolytic conditions (Figures 11A and 1 IB).
[00226] To determine the transfection ability of lipidoids, they were first formulated into lipid nanoparticles (LNPs) containing siRNA, cholesterol and the helper lipids, DSPC and PEG(MW2000)-DMG. The delivery potential of lipidoids was assessed by applying LNPs to HeLa cells that had been genetically modified to stably express two reporter luciferase proteins: firefly and Renilla. Firefly luciferase served as the target gene while Renilla luciferase served as a built-in control for toxicity and off-targeting effects. Relative luciferase activity, which is the ratio of firefly to Renilla activity, is shown in Figure 3a after treatment with each LNP at an siRNA concentration of 40 nM. Of the 1400 members of the lipidoid library, -7% mediated target gene silencing of >50% (shown in red circles).
[00227] In order to extract structure-function information from the in vitro data, we asked whether various structural properties were more or less common within the group of efficacious lipidoids (red data points) compared to the bulk library. Figure 3b examines the importance of tail length on transfection. Because there were five tails used in this library, each tail length made up 20% of the library. Of the LNPs that were effective in vitro, however, only 12% contained an O10 tail. Occurrence rate (the y-axis value) was calculated as (the occurrence rate in the library) - (the occurrence rate in the group with >50% silencing). Therefore, the occurrence rate for O10 is 12% - 20% = -8%, indicating that it was significantly
underrepresented among materials with transfection potential. On the other hand, 012 and 013 tails were overrepresented in the efficacious group compared to the library at large, suggesting such tail lengths are associated with efficacious lipidoids. Figure 3c suggests that lipidoids with the greatest transfection potential were synthesized from alkyl-amines with three or more substitution sites. The effect of various functional groups within the alkyl-amine is analyzed in Figure 3d. The presence of tertiary and secondary amines, alcohols, and branched or linear chains conferred efficacy, while ethers and rings generally did not. Piperazine rings, however, were an exception, and generally produced efficacious materials.
[00228] Previous studies have indicated that materials capable of conferring >50% luciferase silencing activity in cell culture have the potential to mediate siRNA delivery in vivo (Whitehead, K. A. et al. In Vitro- In VivoTranslation of Lipid Nanoparticles for Hepatocellular siRNA Delivery. ACS Nano 120706143602000 (2012).doi: 10.1021/nn301922x). Selected lipidoids (those data points shown in red in Figure 3a) were analyzed for siRNA delivery to hepatocytes in a murine model of the blood coagulation Factor VII. The Factor VII model, which has been well- validated in the literature (Akinc, A. et al. Nature Biotechnology 26, 561-569 (2008); John, M. et al. Nature 449, 745-747 (2007); Semple, S. C. et al. Nature
Biotechnology 1-7 (2010)), allows silencing to be assessed from a few drops of blood using a commercially- available assay. In these experiments, LNPs containing anti-Factor VII siRNA were injected intravenously into mice, and Factor VII activity levels were quantified two days post- injection. Fifteen of the 108 lipidoids analyzed in vivo mediated complete knockdown of Factor VII protein levels at an siRNA dose of 5 mg/kg (Figure 4a). For these top LNP candidates, control experiments conducted using non-targeting siRNA at 5 mg/kg resulted in no FVII knockdown and suggested that reductions in protein activity were not due to off-targeting or toxicity-mediated gene downregulation. Silencing for these top candidates was dose dependent (Figure 8), with EC50 values ranging from 0.05 to 2 mg/kg when LNPs were formulated at a lipidoid:cholesterol:DSPC:PEG standard testing molar ratio of 50:38.5: 10: 1.5.
[00229] While seeking an optimal molar ratio for the top LNPs (e.g. 306O12, 113013, and 304O13), the PEG molar percentage was found to have an effect on LNP efficacy. Fig. 4c reveals that, for the lipidoid 304O13, there is a range of PEG % between 0.5 and 1.0 where optimal hepatocellular delivery is achieved. The optimized 304O13 formulation (PEG% = 0.75) has an EC50 value, 0.01 mg/kg, that is a full order of magnitude lower than when using 1.5% PEG. Optimized 304O13 behaved in a dose dependent fashion (Figure 4d), and after a single injection at 0.1 mg/kg, Factor VII levels returned to baseline within 18 days.
[00230] In addition to examining hepatocellular delivery, we also explored the ability of biodegradable lipidoid materials to deliver siRNA to leukocyte populations in vivo. Immune cells are attractive targets for RNA interference therapy, as they have been implicated in various aspects of disease initiation and progression, including inflammation and autoimmune responses (Geissmann, F. et al. Science 327, 656-661 (2010); Grivennikov, et al. Cell 140, 883-899 (2010)). Although moderate levels of gene silencing have been achieved recently in leukocytes (Leuschner, F. et al. Nature Biotechnology 29, 1005-1010 (2011); Novobrantseva, T. I. et al. Molecular Therapy— Nucleic Acids 1, e4 (2012)), it will be important clinically that compounds can be degraded and eliminated from the body. In these experiments, LNPs were formulated with siRNA specific against CD45, which is a tyrosine phosphatase protein found on the surface of all white blood cells. Three days following the intravenous delivery of LNPs in mice, immune cells were harvested from the peritoneal cavity and spleen. Cells were stained with fluorescent antibodies, and CD45 protein silencing was quantified in specific immune cell subsets via flow cytometry analysis. Results were normalized to CD45 levels after delivery of the same LNP containing a non-targeting siRNA. Of the five lipidoid materials evaluated in this model, 304O13 and 306O13 mediated the most robust CD45 silencing in immune cells
isolated from both the peritoneal cavity and the spleen (Fig. 4e and f). CD1 lb+ and CD1 lc+ populations (monocyte/macrophages and dendritic cells, respectively) were subject to high levels of knockdown within the peritoneal cavity (up to 90%) and to a lesser degree within the spleen (up to 40%). The lipidoids 306O12, 306O14, and 315012 also offered modest CD45 silencing in several immune cell subpopulations (Figure 9).
[00231] Nanoparticle characterization parameters for three of the top LNP candidates were similar (Table 1). Entrapment of siRNA refers to the percentage of siRNA in solution that is incorporated into the nanoparticle during formulation, as measured by an RNA dye-binding assay (Nolan, T., Hands, R. E. & Bustin, S. A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc 1, 1559-1582 (2006)). These results are in keeping with a previous finding that efficacious lipidoid nanoparticles often have entrapment values of approximately 75% 17. Zeta potential measurements were conducted under neutral pH conditions. pKa values, which were obtained using a toluene nitrosulphonic acid (TNS) assay, evaluated the pKa of the nanoparticle surface (Heyes, J., Palmer, L., Bremner, K. & MacLachlan, I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release 107, 276-287 (2005)). The pKa values of top LNP candidates corroborate the results of another study in which surface pKa values in the 6 - 7 range conveyed efficacy in vivo (Jayaraman, M. M. et ah, Maximizing the Potency of siRNA Lipid Nanoparticles for Hepatic Gene Silencing In Vivo. Angew. Chem. Int. Ed. 51, 8529-8533 (2012)).
[00232] Several analyses were performed to assess the biodistribution of the lead compound, 304O13, in mice. For these experiments, nanoparticles were formulated with Cy5.5-labeled siRNA. Whole organ IVIS images (Figure 5a) and Odyssey scans (Figure 5b) showed that naked siRNA accumulated in the kidneys at 1 hour post-injection, suggesting rapid renal clearance. Quantification of IVIS signal indicated that 14%, 1%, and 71% of naked siRNA signal appeared in the liver, spleen, and kidneys, respectively. In contrast, at 1 hour post injection, 304O13 localized primarily within the liver (42%) and spleen (24%), with only 18% distributing to the kidneys.
[00233] Given their effectiveness for silencing the hepatocellular target, FVII, we examined how 304O13 nanoparticles were distributing within the liver. Confocal imaging was performed on liver tissues harvested one hour post-injection and stained with nuclear, actin, and macrophage markers (Figure 7c). Images were taken near the central vein in liver lobules (black void near the center of images). Hepatocytes are outlined in green and macrophages, which appear sporadically, are colored magenta. Only 304O13 was able to mediate siRNA
accumulation throughout nearly all hepatocellular tissue (in red).
[00234] Serum clearance kinetics were assessed by measuring Cy5.5 signal in the mouse bloodstream as a function of time (Figure 5d). It should be noted that, while the first blood sample was drawn as quickly as possible (20 seconds), maximum signal may have occurred even earlier. Half of the material initially detected at 20 seconds had distributed to tissues by 6 minutes. At 90 minutes post-injection, only 4% of signal remained.
[00235] A preliminary safety assessment was conducted on the lead LNP, 304O13, and it was compared to another previously-discovered LNP formulation, C 12-200 (Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. PNAS 107, 1864-1869 (2010)). C12-200 is a 5-tailed, lipidoid that has the same EC50 as 304O13 (0.01 mg/kg). It was chosen for comparison purposes because it does not contain any functional groups that are overtly sensitive to hydrolysis. We chose to examine the effect of doses that were at least 100-fold higher than the EC50. Serum cytokine levels for both materials were assessed in mice four hours after a 3 mg/kg IV bolus injection (total siRNA). IL-6, IP- 10, KC, and MCP-1 were elevated in the C 12-200 group compared to both PBS negative control and 304O13 groups under these conditions (Figure 6). Clinical chemistry parameters were evaluated for both materials 72 hours after a single dose of 3 mg/kg and after four once weekly doses of 3 mg/kg each. There were no toxicologically significant increases in albumin, ALT, AST, ALP, total bilirubin, or GGT for either 304O13 or C12-200 after single or multiple doses (Figure 12).
[00236] Histological analysis was performed through H&E staining on sections from the liver, spleen, kidneys and pancreas. In single-dose studies (0, 1, 2, 3, 5, 7.5, 10 mg/kg), liver necrosis was observed in mice administered ^ 7.5 mg/kg of C12-200 and at 10 mg/kg of 304O13. Pancreatic inflammation and islet cell enlargement were detected at C12-200 doses ^ 2 mg/kg. A small amount of apoptosis in splenic red pulp was observed at 10 mg/kg for 304O13. Multi-dose studies were also conducted in which mice received four injections of 0.3, 1, 2, 3, or 5 mg/kg, once per week for four weeks. Liver necrosis and inflammation were observed in mice administered ^ 1 mg/kg of C 12-200. There was no sign of liver toxicity in any of the 304O13 groups up to 5 mg/kg. Based on this limited evaluation, the collective data suggest an improved toxicity profile for 304O13 compared to C12-200 in mice.
[00237] The data from the 108 materials tested in vivo at a total siRNA dose of 5 mg/kg are shown in Figure 7a. Of the 108 materials tested in mice, 25 of them contained an 013 tail, 66 of them had three or more tails, and 42 of them had been synthesized from an alkyl-amine that contained at least one tertiary amine.
[00238] Figure 7b shows a second generation library of lipidoids from certain amines conjugated to an 013 tail. When tested in vivo, 10 out of 12 of these materials mediated 100% Factor VII silencing at a dose of 5 mg/kg {Figure 7c). Knockdown was dose-dependent, with EC50 values varying from 0.05 - 1 mg/kg {Figure 7d). Formulation optimization of the best second generation material, 503O13, markedly decreased the EC50 value to 0.01 mg/kg {Figure 7e). Several second generation materials also facilitated significant CD45 knockdown in monocyte, macrophage, dendritic cell, and B cell populations {Figure 13).
[00239] Since the ability of materials to take on a positive charge with decreasing pH has been shown to confer transfection efficacy (Zhang, J. J., Fan, H. H., Levorse, D. A. D. & Crocker, L. S. L. Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid-biomembrane interactions. Langmuir 27, 1907-1914 (2011)), the surface pKa values of 59 distinct lipidoid nanoparticles were measured. The data in Figure 10 indicate that pKa values play a decisive role in this LNP delivery system, with a critical pKa value of approximately 5.5. Materials demonstrating considerable in vivo efficacy (red data points) had surface pKa values of approximately 5.5 or higher. For values less than approximately 5.5, average efficacy decreased monotonically with pKa. Therefore, surface pKa can be used as an indicator of in vivo potency, improving our predictive capability for this data set.
Other Embodiments
[00240] All patents, patent applications, and literature references cited herein are incorporated herein by reference.
[00241] Having now described some illustrative embodiments of the invention, it should be apparent to those skilled in the art that the foregoing is merely illustrative and not limiting, having been presented by way of example only. Numerous modifications and other illustrative embodiments are within the scope of one of ordinary skill in the art and are contemplated as falling within the scope of the invention. In particular, although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. Acts, elements, and features discussed only in connection with one embodiment are not intended to be excluded from a similar role in other embodiments.
Further, for the one or more means-plus-function limitations recited in the following claims, the means are not intended to be limited to the means disclosed herein for performing the
recited function, but are intended to cover in scope any means, known now or later developed, for performing the recited function. Use of terms such as "first", "second", "third", etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements. Similarly, use of a), b), etc., or i), ii), etc. does not by itself connote any priority, precedence, or order of steps in the claims. Similarly, the use of these terms in the specification does not by itself connote any required priority, precedence, or order.
[00242] The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by examples provided, since the examples are intended as a single illustration of one aspect of the invention and other functionally equivalent embodiments are within the scope of the invention. Various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims. The advantages and objects of the invention are not necessarily encompassed by each embodiment of the invention.
Claims
Claims
What is claimed is:
I
or a salt thereof,
wherein
each L is, independently, branched or unbranched C1-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals;
each RA is, independently, branched or unbranched Ci_6 alkyl, C3_7 cycloalkyl, or branched or unbranched C4_12 cycloalkylalkyl, wherein RA is optionally substituted with one or more fluorine radicals;
each R is, independently, hydrogen or -CH2CH2C(=0)OR ;
each R B is, independently, C10-14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals; and
q is 1, 2, or 3;
provided that at least three R groups are -CH2CH2C(=0)OR ; and
2. The compound of claim 1, wherein the compound is of the Formula (I-a):
or a salt thereof, wherein
each n is, independently, 0, 1, or 2; and
m is 0, 1, or 2.
3. The compound of claim 1, wherein L is unbranched Ci_6 alkylene.
4. The compound of claim 3, wherein L is ethylene.
5. The compound of claim 3, wherein L is propylene.
6. The compound of any one of claims 1 or 3-5, wherein q is 1.
7. The compound of any one of claims 1 or 3-5, wherein q is 2.
8. The compound of any one of claims 1 or 3-5, wherein q is 3.
9. The compound of claim 2, wherein m is 0.
10. The compound of claim 2, wherein m is 1.
11. The compound of claim 2, wherein m is 2.
12. The compound of claim 2, wherein n is 0.
13. The compound of claim 2, wherein n is 1.
14. The compound of claim 2, wherein n is 2.
15. The compound of claim 2, wherein m is 0, and n is 0.
16. The compound of claim 2, wherein m is 1, and n is 0.
17. The compound of claim 2, wherein m is 2, and n is 0.
18. The compound of claim 2, wherein m is 0, and n is 1.
19. The compound of claim 2, wherein m is 0, and n is 2.
20. The compound of claim 2, wherein m is 1, and n is 1.
The compound of claim 1, wherein the compound is of the Formula (I-b):
RA R
R . - N . - N .
R
I
RA
I-b
or a salt thereof. oo The compound of claim 1, wherein the compound is of the Formula (I-c):
ΊΜ' ΊΜ'
I
RA
I-c
or a salt thereof.
The compound of claim 1, wherein the compound is of the Formula (I-d):
I-d
or a salt thereof.
I-e
or a salt thereof.
The compound of any one of claims 1-24, wherein all R groups are the same.
The compound of any one of claims 1-24, wherein the R groups are different.
27. The compound of any one of claims 1-26, wherein R is branched or unbranched C1-6 alkyl.
The compound of claim 27, wherein R is branched C1-6 alkyl.
The compound of claim 27, wherein R is unbranched Ci_6 alkyl.
The compound of any one of claims 27-29, wherein R is C1-3 alkyl.
31. The compound of claim 27, wherein R is methyl, ethyl, or propyl.
The compound of any one of claims 1-24, wherein R is C3_7 cycloalkyl.
33. The compound of claim 32, wherein RA is cyclohexyl.
34. The compound of any one of claims 1-24, wherein RA is branched or unbranched C4_12 cycloalkylalkyl.
35. The compound of claim 1, wherein the compound is of the formula:
137
36. The compound of any one of claims 1-35, wherein all R groups are
-CH2CH2C(=0)ORB.
37. The compound of any one of claims 1-36, wherein all R groups are the same.
38. The compound of any one of claims 1-37, wherein R is C10 alkyl.
39. The compound of any one of claims 1-37, wherein R is Cn alkyl.
40. The compound of any one of claims 1-37, wherein R is C12 alkyl.
41. The compound of any one of claims 1-37, wherein R is C13 alkyl.
42. The compound of any one of claims 1-37, wherein R is C14 alkyl.
43. A compound of Formula (II):
II
or a salt thereof, wherein
each L is, independently, branched or unbranched C1-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals;
each RA is, independently, branched or unbranched Ci_6 alkyl, C3_7 cycloalkyl, or branched or unbranched C4_12 cycloalkylalkyl, wherein RA is optionally substituted with one or more fluorine radicals;
each R C is, independently, -L-N(R D )2 or -R;
each R is, independently, hydrogen or -CH2CH2C(=0)OR ;
each RD is, independently, -RA or -R; and
each R is, independently, C10-14 alkyl, wherein R is optionally substituted with one fluorine radicals.
44. The compound of claim 43, wherein L is unbranched C1-6 alkylene.
45. The compound of claim 44, wherein L is ethylene.
46. The compound of claim 44, wherein L is propylene.
47. The compound of claim 43 wherein the compound is of the Formula (Il-a):
Il-a
or a salt thereof, wherein
each v is, independently, 1, 2, or 3.
The compound of claim 47, wherein
The compound of claim 47, wherein
The compound of claim 47, wherein
The compound of claim 43, wherein the compound is of the Formula (Il-b)
Il-b
or a salt thereof.
52. The compound of any one of claims 43-51, wherein all RA groups are the same.
53. The compound of any one of claims 43-51, wherein the RA groups are different.
54. The compound of any one of claims 43-53, wherein RA is branched or unbranched C1-6 alkyl.
55. The compound of claim 54, wherein RA is branched C1-6 alkyl.
56. The compound of claim 54, wherein RA is unbranched Ci_6 alkyl.
57. The compound of any one of claims 54-56, wherein RA is C1-3 alkyl.
58. The compound of claim 54, wherein RA is methyl, ethyl, or propyl.
59. The compound of any one of claims 43-53, wherein RA is C3_7 cycloalkyl.
60. The compound of claim 59, wherein RA is cyclohexyl.
61. The compound of any one of claims 43-53, wherein RA is branched or unbranched C4-12 cycloalkylalkyl.
The compound of claim 43, wherein the compound is of the formula:
or a salt thereof.
63. The compound of claim 43, wherein the compound is of the Formula (II-c):
RD RA RA RD
I I I I
R ^ ^L . ^ ^ "RD
N
RD L
II-c
or a salt thereof.
64. The compound of claim 43, wherein the compound is of the Formula (Il-d):
RA RA RA RA
I I I I
R \T LT R
N
RA L
I I
R^ ^ R
Il-d
or a salt thereof.
65. The compound of claim 43, wherein the compound is of the Formula (Il-e):
li e
or a salt thereof.
66. The compound of claim 43, wherein the compound is of the Formula (Il-f):
Il-f
or a salt thereof.
67. The compound of claim 43, wherein the compound is of the formula:
68. The compound of any one of claims 43-67, wherein all R groups are -CH2CH2C(=0)ORB.
69. The compound of any one of claims 43-68, wherein all RB groups are the
70. The compound of any one of claims 43-69, wherein R is C10 alkyl.
71. The compound of any one of claims 43-69, wherein R is Cn alkyl.
72. The compound of any one of claims 43-69, wherein R is C12 alkyl.
73. The compound of any one of claims 43-69, wherein R is C13 alkyl.
74. The compound of any one of claims 43-69, wherein R is C14 alkyl.
75. A compound of Formula III):
III
or a salt thereof,
wherein
each L is, independently, branched or unbranched C1-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals;
each R is, independently, hydrogen or -CH2CH2C(=0)OR ;
each R B is, independently, C10-14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals;
each R1 is, independently, fluoro or C1-6 alkyl optionally substituted with one or more fluorine radicals;
j is 0,1, 2, 3, or 4; and
p is 1 or 2;
provided that at least three R groups are -CH2CH2C(=0)ORB.
76. The compound of claim 75, wherein L is unbranched C1-6 alkylene.
The compound of claim 76, wherein L is methyli
The compound of claim 76, wherein L is ethyli
The compound of claim 76, wherein L is propylene.
80. The compound of claim 75 wherein the compound is of the Formula (Ill-a):
Ill-a
or a salt thereof, wherein
each w is, independently, 1, 2, or 3.
81. The compound of any one of claims 75-80, wherein p is 1.
82. The compound of any one of claims 75-80, wherein p is 2.
83. The compound of claim 80, wherein the compound is of the Formula (Ill-b):
Ill-b
or a salt thereof.
III-c
or a salt thereof.
Ill-d
or a salt thereof.
86. The compound of claim 80, wherein the compound is of the Formula (Ill-e):
Ill-e
or a salt thereof.
87. The compound of any one of claims 80-86, wherein w is 1.
88. The compound of any one of claims 80-86, wherein w is 2.
89. The compound of any one of claims 80-86, wherein w is 3.
The compound of claim 75, wherein the compound is of the formula:
91. The compound of any one of claims 75-90, wherein all R groups are
-CH2CH2C(=0)ORB
92. The compound of any one of claims 75-91, wherein all R groups are the same.
93. The compound of any one of claims 75-92, wherein R is Qo alkyl.
94. The compound of any one of claims 75-92, wherein R is Cn alkyl.
95. The compound of any one of claims 75-92, wherein R is C12 alkyl.
96. The compound of any one of claims 75-92, wherein R is C13 alkyl.
97. The compound of any one of claims 75-92, wherein R is C14 alkyl.
A compound of Formula (IV)
IV
or a salt thereof, wherein
each R is, independently, hydrogen or -CH2CH2C(=0)OR ;
each R B is, independently, Cio , wherein R B
-i4 alkyl is optionally substituted with one or more fluorine radicals;
x is 1 or 2; and
y is 1 or 2.
The compound of claim 98, wherein the compound is of the Formula (IV-
R R
I I
I I R R
IV-a
or a salt thereof.
100. The compound of claim 98 or 99, wherein at least two R groups are -CH2CH2C(=0)ORB.
101. The compound of claim 98 or 99, wherein at least three R groups are -CH2CH2C(=0)ORB.
102. The compound of claim 98 or 99, wherein all RB groups are -CH2CH2C(=0)ORB.
103. The compound of any one of claims 98-102, wherein all R groups are the same.
104. The compound of any one of claims 98-103, wherein R is C10 alkyl.
105. The compound of any one of claims 98-103, wherein R is Cn alkyl.
106. The compound of any one of claims 98-103, wherein R is C12 alkyl.
107. The compound of any one of claims 98-103, wherein R is C13 alkyl.
108. The compound of any one of claims 98-103, wherein R is C14 alkyl.
each L is, independently, branched or unbranched C1-6 alkylene, wherein L is optionally substituted with one or more fluorine radicals;
each R is, independently, halo, Ci_6 aliphatic optionally substituted with one or more fluorine radicals, -ORx, -N(Ry)2, -SRX, -CN, -C(=Z)Ry, -C(=Z)ZRy, or -ZC(=Z)ZRy;
Z is O or N;
each Rx is, independently, C1-6 aliphatic;
each Ry is, independently, hydrogen or Ci_6 aliphatic;
g is 0, 1, 2, 3, or 4;
each R is, independently, hydrogen or -CH2CH2C(=0)OR ; and
each R B is, independently, C10-14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
V-a
or a salt thereof.
V-b
or a salt thereof.
V-c
or a salt thereof.
113. The compound of any one of claims 109-112, wherein L is unbranched C1-6 alkylene.
114. The compound of claim 113, wherein L is methylene.
115. The compound of claim 113, wherein L is ethylene.
The compound of claim 113, wherein L is propylene.
V-d
or a salt thereof.
118. The compound of any one of claims 109-117, wherein at least two R groups are -CH2CH2C(=0)ORB.
119. The compound of any one of claims 109-117, wherein at least three R groups are -CH2CH2C(=0)ORB.
120. The compound of any one of claims 109-117, wherein all R groups are
-CH2CH2C(=0)ORB.
121. The compound of any one of claims 109-120, wherein all R groups are the same.
122. The compound of any one of claims 109-121, wherein R is C10 alkyl.
123. The compound of any one of claims 109-121, wherein R is Cn alkyl.
124. The compound of any one of claims 109-121, wherein R is C12 alkyl.
125. The compound of any one of claims 109-121, wherein R is C13 alkyl.
126. The compound of any one of claims 109-121, wherein R is C14 alkyl.
A compound of formula:
or a salt thereof, wherein
each RA is, independently, branched or unbranched Ci_6 alkyl, C3_7 cycloalkyl, or branched or unbranched C4-12 cycloalkylalkyl, wherein RA is optionally substituted with one or more fluorine radicals;
each R is, independently, hydrogen or -CH2CH2C(=0)OR ; and
each R B is, independently, C10-14 alkyl, wherein R B is optionally substituted with one or more fluorine radicals.
128. The compound of claim 127, wherein all R groups are the same.
129. The compound of claim 127, wherein the R groups are different.
130. The compound of any one of claims 127-129, wherein R is branched or unbranched
C1-6 alkyl.
The compound of claim 130, wherein R is branched C1-6 alkyl.
132. The compound of claim 130, wherein RA is unbranched Ci_6 alkyl.
133. The compound of any one of claims 127-129, wherein RA is C1-3 alkyl.
134. The compound of claim 130, wherein RA is methyl, ethyl, or propyl.
135. The compound of any one of claims 127-129, wherein RA is C3_7 cycloalkyl.
136. The compound of claim 135, wherein RA is cyclohexyl.
137. The compound of any one of claims 127-129, wherein RA is branched or unbranched C4-12 cycloalkylalkyl.
138. A compound of formula:
or a salt thereof, wherein
each R is, independently, hydrogen or -CH2CH2C(=0)OR ; and
each R is, independently, C10-14 alkyl.
139. The compound of any one of claims 127-138, wherein at least three R groups are -CH2CH2C(=0)ORB.
140. The compound of any one of claims 127-139, wherein all R groups are
-CH2CH2C(=0)ORB.
141. The compound of any one of claims 127-140, wherein all R groups are the same.
142. The compound of any one of claims 127-141, wherein R is C10 alkyl.
143. The compound of any one of claims 127-141, wherein R is Cn alkyl.
144. The compound of any one of claims 127-141, wherein R is C12 alkyl.
145. The compound of any one of claims 127-141, wherein R is C13 alkyl.
146. The compound of any one of claims 127-141, wherein R is C14 alkyl.
147. A com ound selected from the group consisting of:
WO 2014/028487
. ^\_/(CH2)iocH3 ^\0/(CH2)ioCH3
and salts thereof.
A compound of the formula:
149. A nanoparticle comprising a compound of any one of claims 1-148 and one or more agents to be delivered.
150. The nanoparticle of claim 149, wherein the one or more agents is a polynucleotide.
151. The nanoparticle of claim 149, wherein the one or more agents is RNA.
152. The nanoparticle of claim 151, wherein the RNA is siRNA.
153. The nanoparticle of claim 149, wherein the one or more agents is a drug.
154. The nanoparticle of claim 149, wherein the one or more agents is a protein or peptide.
155. The nanoparticle of claim 149, wherein the one or more agents is a small molecule.
156. The nanoparticle of claim 149, wherein the one or more agents is a gas.
157. The nanoparticle of claim 149, wherein the nanoparticle ranges in size from 20 nanometers to 2000 nanometers.
158. The nanoparticle of claim 149 further comprising cholesterol or a derivative thereof.
The nanoparticle of claim 158, wherein the cholesterol derivative is DC-cholesterol. The nanoparticle of claim 149 further comprising a PEG-based material. The nanoparticle of claim 160, wherein the PEG-based material is PEG-ceramide. The nanoparticle of claim 160, wherein the PEG-based material is PEG-DMG. The nanoparticle of claim 160, wherein the PEG-based material is PEG-PE. The nanoparticle of claim 160, wherein the PEG-based material is a poloxamer. The nanoparticle of claim 160, wherein the PEG-based material is DSPE carboxy PEG. The nanoparticle of claim 149 further comprising a lipid. The nanoparticle of claim 166, wherein the lipid is DSPC. The nanoparticle of claim 166, wherein the lipid is DOPC. The nanoparticle of claim 166, wherein the lipid is DOPE.
The nanoparticle of claim 149 comprising a compound of any one of claims 1-148; an agent, wherein the agent is an RNA;
a lipid;
cholesterol or a derivative thereof; and
a PEG-based material.
The nanoparticle of claim 170, wherein the RNA is siRNA. The nanoparticle of claim 170, wherein the lipid is DSPC.
173. The nanoparticle of claim 170, wherein the PEG-based material is PEG-DMG.
174. The nanoparticle of claim 173, wherein the PEG-DMG is C14 PEG2000 DMG, C15 PEG2000 DMG, C16 PEG2000 DMG, or CI 8 PEG2000 DMG.
175. The nanoparticle of claim 170, wherein the PEG-based material is PEG-ceramide.
176. The nanoparticle of claim 175, wherein the PEG-ceramide is C14 PEG 2000 ceramide, C15 PEG2000 ceramide, C16 PEG2000 ceramide, or CI 8 PEG2000 ceramide.
177. The nanoparticle of claim 170, wherein the PEG-based material is PEG-PE.
178. The nanoparticle of claim 177, wherein the PEG-PE is C14 PEG2000 PE, C15 PEG2000 PE, C16 PEG2000 PE, C18 PEG2000 PE, C14 PEG350 PE, or C14 PEG5000 PE.
179. The nanoparticle of claim 170, wherein the PEG-based material is a poloxamer.
180. The nanoparticle of claim 179, wherein the poloxamer is poloxamer F-127, poloxamer F-68, or poloxamer L-64.
181. The nanoparticle of claim 170, wherein the PEG-based material is DSPE carboxy PEG.
182. A composition comprising one or more compounds of any one of claims 1-148, and an excipient.
183. The composition of claim 182, wherein the composition is a pharmaceutical composition or a cosmetic composition.
184. The composition of claim 182, wherein the composition further comprises an agent.
185. The composition of claim 184, wherein the agent is an organic molecule, inorganic molecule, nucleic acid, protein, peptide, polynucleotide, targeting agent, an isotopically labeled chemical compound, vaccine, or an immunological agent.
186. The composition of claim 185, wherein the agent is a polynucleotide, and the polynucleotide is DNA or RNA.
187. The composition of claim 186, wherein the RNA is mRNA, dsRNA, siRNA, shRNA, miRNA, or antisense RNA.
188. The composition of claim 186, wherein the polynucleotide and the one or more compounds of any one of claims 1-148 are not covalently attached.
189. The composition of claim 185, wherein the agent is a chemo therapeutic.
190. The composition of claim 189, wherein the chemotherapeutic is doxorubicin or dexamethasone.
191. The composition of claim 182, wherein the one or more compounds of any one of claims 1-110 are in the form of a particle.
192. The composition of claim 182, wherein the particle is a nanoparticle or microparticle.
193. The composition of claim 182, wherein the particle is a micelle, liposome, or lipoplex.
194. The composition of claim 191, 192, or 193, wherein the particle encapsulates an agent.
195. A method of administering an agent, the method comprising:
administering to a subject in need thereof a therapeutically effective amount of a composition comprising a compound of any one of claims 1-148 and an agent to be delivered.
196. The method claim 195, wherein the agent is selected from the group consisting of polynucleotides, proteins, peptides, and small molecules.
197. The method of claim 196, wherein the agent is RNA.
198. The method of claim 197, wherein the agent is siRNA.
199. The method of claim 196, wherein the agent is a chemotherapeutic.
200. The method of claim 199, wherein the chemotherapeutic is doxorubicin or dexamethasone.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13751043.4A EP2882706A1 (en) | 2012-08-13 | 2013-08-13 | Amine-containing lipidoids and uses thereof |
CA2884870A CA2884870C (en) | 2012-08-13 | 2013-08-13 | Amine-containing lipidoids and uses thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261682468P | 2012-08-13 | 2012-08-13 | |
US61/682,468 | 2012-08-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014028487A1 true WO2014028487A1 (en) | 2014-02-20 |
Family
ID=49004050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/054726 WO2014028487A1 (en) | 2012-08-13 | 2013-08-13 | Amine-containing lipidoids and uses thereof |
Country Status (4)
Country | Link |
---|---|
US (3) | US9227917B2 (en) |
EP (1) | EP2882706A1 (en) |
CA (1) | CA2884870C (en) |
WO (1) | WO2014028487A1 (en) |
Cited By (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
US8921314B2 (en) | 2008-10-15 | 2014-12-30 | Angiochem, Inc. | Conjugates of GLP-1 agonists and uses thereof |
WO2014207231A1 (en) * | 2013-06-28 | 2014-12-31 | Ethris Gmbh | Compositions for introducing rna into cells |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
WO2015128030A1 (en) * | 2014-02-26 | 2015-09-03 | Ethris Gmbh | Compositions for gastrointestinal administration of rna |
CN104922067A (en) * | 2014-12-08 | 2015-09-23 | 上海张江生物技术有限公司 | Drug-loading nano-liposome, and preparation method and application thereof |
WO2015157652A1 (en) * | 2014-04-11 | 2015-10-15 | University Of Louisville Research Foundation, Inc. | Coated edible plant-derived microvesicle compositions and methods for using the same |
US9181321B2 (en) | 2013-03-14 | 2015-11-10 | Shire Human Genetic Therapies, Inc. | CFTR mRNA compositions and related methods and uses |
US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
US9193827B2 (en) | 2010-08-26 | 2015-11-24 | Massachusetts Institute Of Technology | Poly(beta-amino alcohols), their preparation, and uses thereof |
US9227917B2 (en) | 2012-08-13 | 2016-01-05 | Massachusetts Institute Of Technology | Amine-containing lipidoids and uses thereof |
WO2016004202A1 (en) * | 2014-07-02 | 2016-01-07 | Massachusetts Institute Of Technology | Polyamine-fatty acid derived lipidoids and uses thereof |
US9238716B2 (en) | 2011-03-28 | 2016-01-19 | Massachusetts Institute Of Technology | Conjugated lipomers and uses thereof |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9308281B2 (en) | 2011-06-08 | 2016-04-12 | Shire Human Genetic Therapies, Inc. | MRNA therapy for Fabry disease |
US9315472B2 (en) | 2013-05-01 | 2016-04-19 | Massachusetts Institute Of Technology | 1,3,5-triazinane-2,4,6-trione derivatives and uses thereof |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9365634B2 (en) | 2007-05-29 | 2016-06-14 | Angiochem Inc. | Aprotinin-like polypeptides for delivering agents conjugated thereto to tissues |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9512073B2 (en) | 2011-10-27 | 2016-12-06 | Massachusetts Institute Of Technology | Amino acid-, peptide-and polypeptide-lipids, isomers, compositions, and uses thereof |
US9522176B2 (en) | 2013-10-22 | 2016-12-20 | Shire Human Genetic Therapies, Inc. | MRNA therapy for phenylketonuria |
US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US9556110B2 (en) | 2008-11-07 | 2017-01-31 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
US9629804B2 (en) | 2013-10-22 | 2017-04-25 | Shire Human Genetic Therapies, Inc. | Lipid formulations for delivery of messenger RNA |
WO2017075531A1 (en) * | 2015-10-28 | 2017-05-04 | Acuitas Therapeutics, Inc. | Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids |
KR20170081684A (en) * | 2014-11-10 | 2017-07-12 | 에트리스 게엠베하 | Induction of osteogenesis by delivering bmp encoding rna |
US9850269B2 (en) | 2014-04-25 | 2017-12-26 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US9872900B2 (en) | 2014-04-23 | 2018-01-23 | Modernatx, Inc. | Nucleic acid vaccines |
US9957499B2 (en) | 2013-03-14 | 2018-05-01 | Translate Bio, Inc. | Methods for purification of messenger RNA |
WO2018078053A1 (en) * | 2016-10-26 | 2018-05-03 | Curevac Ag | Lipid nanoparticle mrna vaccines |
US10022455B2 (en) | 2014-05-30 | 2018-07-17 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
US10106490B2 (en) | 2014-06-25 | 2018-10-23 | Acuitas Therapeutics, Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
US10138213B2 (en) | 2014-06-24 | 2018-11-27 | Translate Bio, Inc. | Stereochemically enriched compositions for delivery of nucleic acids |
US10195156B2 (en) | 2015-12-22 | 2019-02-05 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US10201618B2 (en) | 2015-06-19 | 2019-02-12 | Massachusetts Institute Of Technology | Alkenyl substituted 2,5-piperazinediones, compositions, and uses thereof |
US10207010B2 (en) | 2015-12-10 | 2019-02-19 | Modernatx, Inc. | Compositions and methods for delivery of agents |
WO2019036028A1 (en) * | 2017-08-17 | 2019-02-21 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
WO2019036030A1 (en) * | 2017-08-17 | 2019-02-21 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
US10221127B2 (en) | 2015-06-29 | 2019-03-05 | Acuitas Therapeutics, Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
US10266485B2 (en) | 2015-09-17 | 2019-04-23 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
US10576166B2 (en) | 2009-12-01 | 2020-03-03 | Translate Bio, Inc. | Liver specific delivery of messenger RNA |
US10799457B2 (en) | 2010-02-05 | 2020-10-13 | University Of Louisville Research Foundation, Inc. | Exosomal compositions and methods for the treatment of disease |
US10815520B2 (en) | 2017-04-07 | 2020-10-27 | University Of Louisville Research Foundation, Inc. | Nanovesicles, methods, and systems for diagnosis and prognosis of cancer |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
US10857105B2 (en) | 2017-03-15 | 2020-12-08 | MordernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
WO2021061815A1 (en) | 2019-09-23 | 2021-04-01 | Omega Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR MODULATING HEPATOCYTE NUCLEAR FACTOR 4-ALPHA (HNF4α) GENE EXPRESSION |
WO2021061707A1 (en) | 2019-09-23 | 2021-04-01 | Omega Therapeutics, Inc. | Compositions and methods for modulating apolipoprotein b (apob) gene expression |
US10980892B2 (en) | 2015-06-15 | 2021-04-20 | Angiochem Inc. | Methods for the treatment of leptomeningeal carcinomatosis |
US11066355B2 (en) | 2019-09-19 | 2021-07-20 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
WO2021183720A1 (en) | 2020-03-11 | 2021-09-16 | Omega Therapeutics, Inc. | Compositions and methods for modulating forkhead box p3 (foxp3) gene expression |
WO2021204175A1 (en) * | 2020-04-09 | 2021-10-14 | Suzhou Abogen Biosciences Co., Ltd. | Lipid nanoparticle composition |
US11174500B2 (en) | 2018-08-24 | 2021-11-16 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US11173190B2 (en) | 2017-05-16 | 2021-11-16 | Translate Bio, Inc. | Treatment of cystic fibrosis by delivery of codon-optimized mRNA encoding CFTR |
US11203569B2 (en) | 2017-03-15 | 2021-12-21 | Modernatx, Inc. | Crystal forms of amino lipids |
US11224642B2 (en) | 2013-10-22 | 2022-01-18 | Translate Bio, Inc. | MRNA therapy for argininosuccinate synthetase deficiency |
US11241490B2 (en) | 2017-01-11 | 2022-02-08 | The Trustees Of The University Of Pennsylvania | Nucleoside-modified RNA for inducing an immune response against zika virus |
US11246933B1 (en) | 2011-12-07 | 2022-02-15 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11253605B2 (en) | 2017-02-27 | 2022-02-22 | Translate Bio, Inc. | Codon-optimized CFTR MRNA |
US11254936B2 (en) | 2012-06-08 | 2022-02-22 | Translate Bio, Inc. | Nuclease resistant polynucleotides and uses thereof |
CN114409554A (en) * | 2022-01-27 | 2022-04-29 | 英维沃生物科技(苏州)有限公司 | Novel cationic lipid compound, composition and application thereof |
JP2022077496A (en) * | 2020-11-11 | 2022-05-23 | 紹興瑞康生物科技有限公司 | Structure of steric hindrance adjustable weak base photostabilizer and its manufacturing method and use |
WO2022115075A1 (en) * | 2020-11-30 | 2022-06-02 | Ege Üni̇versi̇tesi̇ | Targeted nanoparticles carrying dual drugs in the treatment of melanoma |
US11357856B2 (en) | 2017-04-13 | 2022-06-14 | Acuitas Therapeutics, Inc. | Lipids for delivery of active agents |
WO2022180213A1 (en) | 2021-02-26 | 2022-09-01 | Ethris Gmbh | Formulations for aerosol formation and aerosols for the delivery of nucleic acid |
US11453639B2 (en) | 2019-01-11 | 2022-09-27 | Acuitas Therapeutics, Inc. | Lipids for lipid nanoparticle delivery of active agents |
WO2022227888A1 (en) * | 2021-04-30 | 2022-11-03 | 普瑞科德(香港)生物医药科技有限公司 | Lipid compounds, and lipid carrier, nucleic acid lipid nanoparticle composition and pharmaceutical preparation containing same |
US11510977B2 (en) | 2020-04-09 | 2022-11-29 | Suzhou Abogen Biosciences Co., Ltd. | Nucleic acid vaccines for coronavirus |
US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
WO2023283359A2 (en) | 2021-07-07 | 2023-01-12 | Omega Therapeutics, Inc. | Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression |
US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
US11639329B2 (en) | 2017-08-16 | 2023-05-02 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
WO2023078950A1 (en) * | 2021-11-02 | 2023-05-11 | Ziphius Vaccines Nv | Lipid nanoparticles for oligonucleotide delivery |
WO2023078946A1 (en) * | 2021-11-02 | 2023-05-11 | Ziphius Vaccines Nv | Lipid nanoparticles for oligonucleotide delivery |
WO2023078954A1 (en) * | 2021-11-02 | 2023-05-11 | Ziphius Vaccines Nv | Lipid nanoparticles for oligonucleotide delivery |
WO2023134325A1 (en) * | 2022-01-14 | 2023-07-20 | 华南理工大学 | Lipid compound, composition containing same, and use |
WO2023136688A1 (en) * | 2022-01-17 | 2023-07-20 | 에스티팜 주식회사 | Ionizable lipid containing biodegradable disulfide bond and lipid nanoparticles comprising same |
WO2023141576A1 (en) * | 2022-01-21 | 2023-07-27 | Poseida Therapeutics, Inc. | Compositions and methods for delivery of nucleic acids |
US11744801B2 (en) | 2017-08-31 | 2023-09-05 | Modernatx, Inc. | Methods of making lipid nanoparticles |
US11786607B2 (en) | 2017-06-15 | 2023-10-17 | Modernatx, Inc. | RNA formulations |
US11820728B2 (en) | 2017-04-28 | 2023-11-21 | Acuitas Therapeutics, Inc. | Carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids |
WO2023196527A3 (en) * | 2022-04-08 | 2023-11-30 | SunVax mRNA Therapeutics Inc. | Ionizable lipid compounds and lipid nanoparticle compositions |
US11890382B2 (en) | 2011-11-07 | 2024-02-06 | University Of Louisville Research Foundation, Inc. | Edible plant-derived microvesicle compositions for diagnosis and treatment of disease |
EP4327829A1 (en) | 2022-08-26 | 2024-02-28 | Ethris GmbH | Stabilization of lipid or lipidoid nanoparticle suspensions |
WO2024042236A1 (en) | 2022-08-26 | 2024-02-29 | Ethris Gmbh | Stable lipid or lipidoid nanoparticle suspensions |
WO2024049979A3 (en) * | 2022-08-31 | 2024-04-18 | Senda Biosciences, Inc. | Novel ionizable lipids and lipid nanoparticles and methods of using the same |
US11964052B2 (en) | 2021-05-24 | 2024-04-23 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
US11969506B2 (en) | 2017-03-15 | 2024-04-30 | Modernatx, Inc. | Lipid nanoparticle formulation |
US11976019B2 (en) | 2020-07-16 | 2024-05-07 | Acuitas Therapeutics, Inc. | Cationic lipids for use in lipid nanoparticles |
EP4146278A4 (en) * | 2020-05-04 | 2024-06-05 | Trustees Of Tufts College | Synthetic lipid-like materials for brain delivery |
WO2024125469A1 (en) * | 2022-12-12 | 2024-06-20 | Starna Therapeutics | Novel compounds and use thereof for targeted delivery |
WO2024136309A1 (en) * | 2022-12-23 | 2024-06-27 | Green Cross Corporation | Ionizable lipid and use thereof |
US12036262B2 (en) | 2017-11-22 | 2024-07-16 | University Of Louisville Research Foundation, Inc. | Edible plant-derived nanoparticles for regulation of gut microbiota |
EP4164647A4 (en) * | 2020-06-12 | 2024-07-24 | Tufts College | Ph-responsive lipidoid nanoparticles for intracellular mrna delivery |
US12065396B2 (en) | 2017-08-17 | 2024-08-20 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
WO2024177426A1 (en) * | 2023-02-24 | 2024-08-29 | 에스티팜 주식회사 | Lipid nanoparicles for in vivo drug delivery |
US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US12090235B2 (en) | 2018-09-20 | 2024-09-17 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
US12129223B2 (en) | 2021-12-16 | 2024-10-29 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
US12138305B2 (en) | 2022-03-28 | 2024-11-12 | The Trustees Of The University Of Pennsylvania | Nucleoside-modified RNA for inducing an adaptive immune response |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2476756A1 (en) * | 2005-06-15 | 2012-07-18 | Massachusetts Institute of Technology | Amine-containing lipids and uses thereof |
WO2016168469A1 (en) * | 2015-04-17 | 2016-10-20 | The Regents Of The University Of California | Fatty acid analogs and methods of use thereof |
JP6789994B2 (en) * | 2015-06-12 | 2020-11-25 | ザ ルブリゾル コーポレイションThe Lubrizol Corporation | Michael-added amino ester as a total base value booster for marine diesel engine lubrication compositions |
WO2017100744A1 (en) * | 2015-12-11 | 2017-06-15 | Preceres Inc. | Aminolipidoids and uses thereof |
US10457631B2 (en) | 2016-04-06 | 2019-10-29 | Ohio State Innovation Foundation | Biodegradable amino-ester nanomaterials for nucleic acid delivery |
US10751423B2 (en) | 2016-05-02 | 2020-08-25 | Massachusetts Institute Of Technology | Nanoparticle conjugates of highly potent toxins and intraperitoneal administration of nanoparticles for treating or imaging cancer |
WO2018022292A1 (en) * | 2016-07-26 | 2018-02-01 | Trustees Of Tufts College | Antibody-conjugated nanoparticles and medical uses thereof |
JP2020517638A (en) | 2017-04-20 | 2020-06-18 | エータイアー ファーマ, インコーポレイテッド | Compositions and methods for treating lung inflammation |
BR112020025721A2 (en) | 2018-07-03 | 2021-04-06 | Gilead Sciences, Inc. | ANTIBODIES AIMING AT HIV GP120 AND METHODS OF USE |
CR20210687A (en) | 2019-06-25 | 2022-03-03 | Gilead Sciences Inc | Flt3l-fc fusion proteins and methods of use |
KR20240137107A (en) | 2019-07-16 | 2024-09-19 | 길리애드 사이언시즈, 인코포레이티드 | Hiv vaccines and methods of making and using |
KR20220074917A (en) | 2019-09-30 | 2022-06-03 | 길리애드 사이언시즈, 인코포레이티드 | HBV vaccines and methods of treating HBV |
US11773391B2 (en) | 2020-04-01 | 2023-10-03 | University of Pittsburgh—of the Commonwealth System of Higher Education | Therapeutic and diagnostic target for SARS-CoV-2 and COVID-19 |
EP3954393A1 (en) | 2020-08-13 | 2022-02-16 | Bioasis Technologies Inc. | Combination therapies for delivery across the blood brain barrier |
TW202406932A (en) | 2020-10-22 | 2024-02-16 | 美商基利科學股份有限公司 | Interleukin-2-fc fusion proteins and methods of use |
WO2022152109A2 (en) * | 2021-01-14 | 2022-07-21 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
EP4333810A1 (en) * | 2021-05-07 | 2024-03-13 | Carnegie Mellon University | Lipid nanoparticle-mediated mrna delivery to the pancreas |
WO2022260772A1 (en) * | 2021-06-09 | 2022-12-15 | Carnegie Mellon University | Lipid nanoparticle formulations for gastrointestinal delivery |
CA3241492A1 (en) * | 2021-12-23 | 2023-06-29 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compound and lipid nanoparticle composition |
WO2023201295A1 (en) * | 2022-04-14 | 2023-10-19 | The Trustees Of The University Of Pennsylvania | Biodegradable lipidoids and compositions and methods of use thereof for liver targeted delivery |
WO2024015741A1 (en) | 2022-07-12 | 2024-01-18 | Gilead Sciences, Inc. | Hiv immunogenic polypeptides and vaccines and uses thereof |
WO2024199355A1 (en) * | 2023-03-29 | 2024-10-03 | Starna Therapeutics | Nucleic acids encoding therapeutic polypeptides and lipid nanoparticle composition comprising the nucleic acids |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010053572A2 (en) * | 2008-11-07 | 2010-05-14 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
WO2010129709A1 (en) * | 2009-05-05 | 2010-11-11 | Alnylam Pharmaceuticals, Inc. | Lipid compositions |
Family Cites Families (157)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2647121A (en) | 1951-02-02 | 1953-07-28 | Ruth P Jacoby | Diamine-bis-acetamides |
US2717909A (en) | 1953-09-24 | 1955-09-13 | Monsanto Chemicals | Hydroxyethyl-keryl-alkylene-ammonium compounds |
US2844629A (en) | 1956-04-25 | 1958-07-22 | American Home Prod | Fatty acid amides and derivatives thereof |
US3096560A (en) | 1958-11-21 | 1963-07-09 | William J Liebig | Process for synthetic vascular implants |
FR1378382A (en) | 1962-12-01 | 1964-11-13 | Sandoz Sa | Amides of amino-propionic acid, usable in particular for the treatment of textile fibers |
GB1072118A (en) | 1962-12-01 | 1967-06-14 | Sandoz Ag | Amides of aminopropionic acid |
US3350325A (en) | 1964-07-31 | 1967-10-31 | Dow Chemical Co | Water soluble polymer of diglycidyl ether and an alkanolamine |
JPS5141663B1 (en) | 1966-03-12 | 1976-11-11 | ||
JPS4822365Y1 (en) | 1969-11-28 | 1973-06-29 | ||
US3945052A (en) | 1972-05-01 | 1976-03-23 | Meadox Medicals, Inc. | Synthetic vascular graft and method for manufacturing the same |
US3805301A (en) | 1972-07-28 | 1974-04-23 | Meadox Medicals Inc | Tubular grafts having indicia thereon |
US4022833A (en) | 1973-02-14 | 1977-05-10 | Sterling Drug Inc. | N,N'-bridged-bis[2-alkyl-2-hydroxyethylamines] |
JPS49127908A (en) | 1973-04-20 | 1974-12-07 | ||
JPS5624664B2 (en) | 1973-06-28 | 1981-06-08 | ||
US4013507A (en) | 1973-09-18 | 1977-03-22 | California Institute Of Technology | Ionene polymers for selectively inhibiting the vitro growth of malignant cells |
JPS5123537A (en) | 1974-04-26 | 1976-02-25 | Adeka Argus Chemical Co Ltd | KASOZAISOSEIBUTSU |
GB1527592A (en) | 1974-08-05 | 1978-10-04 | Ici Ltd | Wound dressing |
US3956502A (en) | 1974-09-04 | 1976-05-11 | Nalco Chemical Company | Polyamine alcohols as microbiocides |
JPS5524302Y2 (en) | 1975-03-31 | 1980-06-10 | ||
DE2520814A1 (en) | 1975-05-09 | 1976-11-18 | Bayer Ag | Light stabilisation of polyurethanes - using polymeric tert. amines from aliphatic diamines and (meth)acrylic esters or amides |
DE2530243C2 (en) | 1975-07-07 | 1985-03-07 | Henkel KGaA, 4000 Düsseldorf | Use of N-substituted aminoalkanols as antimicrobial agents |
JPS5210847A (en) | 1975-07-16 | 1977-01-27 | Nippon Steel Corp | Pinch roll |
JPS5278924U (en) | 1975-12-11 | 1977-06-13 | ||
US4265745A (en) | 1977-05-25 | 1981-05-05 | Teijin Limited | Permselective membrane |
US4182833A (en) | 1977-12-07 | 1980-01-08 | Celanese Polymer Specialties Company | Cationic epoxide-amine reaction products |
US4180068A (en) | 1978-04-13 | 1979-12-25 | Motion Control, Incorporated | Bi-directional flow catheter with retractable trocar/valve structure |
DE2960875D1 (en) | 1978-04-19 | 1981-12-10 | Ici Plc | A method of preparing a tubular product by electrostatic spinning |
DE2903979A1 (en) | 1979-02-02 | 1980-08-07 | Henkel Kgaa | Hydroxy-carboxylic acid amide derivs. - prepd. by acylating hydroxyalkyl alkylene di:amine and used as greying inhibitors in detergent compsns. |
US4308085A (en) | 1980-07-28 | 1981-12-29 | Jenoptik Jena Gmbh | Process for the preparation of high molecular thermoplastic epoxide-amine-polyadducts |
US4339369A (en) | 1981-04-23 | 1982-07-13 | Celanese Corporation | Cationic epoxide-amine reaction products |
US4475972A (en) | 1981-10-01 | 1984-10-09 | Ontario Research Foundation | Implantable material |
US5201998A (en) | 1982-05-28 | 1993-04-13 | Ciba-Geigy Corporation | Process for sizing paper with anionic hydrophobic sizing agents and cationic retention aids |
US4737518A (en) | 1984-04-03 | 1988-04-12 | Takeda Chemical Industries, Ltd. | Lipid derivatives, their production and use |
US4897355A (en) | 1985-01-07 | 1990-01-30 | Syntex (U.S.A.) Inc. | N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US4762915A (en) | 1985-01-18 | 1988-08-09 | Liposome Technology, Inc. | Protein-liposome conjugates |
CA1320724C (en) | 1985-07-19 | 1993-07-27 | Koichi Kanehira | Terpene amino alcohols and medicinal uses thereof |
DE3685861T2 (en) | 1985-08-05 | 1992-12-17 | Miyoshi Yushi Kk | METHOD FOR DEPOSITING METALS. |
DE3616824A1 (en) | 1986-05-17 | 1987-11-19 | Schering Ag | USE OF CURABLE RESIN MIXTURES FOR SURFACE COATINGS AND PRINTING INKS AND METHOD FOR THE PRODUCTION THEREOF |
JPH0829776B2 (en) | 1986-10-29 | 1996-03-27 | 東燃化学株式会社 | Synthetic resin container and mold for manufacturing the same |
US4720517A (en) | 1986-11-24 | 1988-01-19 | Ciba-Geigy Corporation | Compositions stabilized with N-hydroxyiminodiacetic and dipropionic acids and esters thereof |
US4873370A (en) | 1987-03-03 | 1989-10-10 | Pennzoil Products Company | Alkylene diamines for use in friction and wear reducing compositions |
US5047540A (en) | 1987-12-17 | 1991-09-10 | Shionogi & Co., Ltd. | Lipid derivatives |
US5138067A (en) | 1987-12-17 | 1992-08-11 | Shionogi & Co. Ltd. | Lipid derivatives |
CA2001401A1 (en) | 1988-10-25 | 1990-04-25 | Claude Piantadosi | Quaternary amine containing ether or ester lipid derivatives and therapeutic compositions |
FR2645866B1 (en) | 1989-04-17 | 1991-07-05 | Centre Nat Rech Scient | NEW LIPOPOLYAMINES, THEIR PREPARATION AND THEIR USE |
US5693338A (en) | 1994-09-29 | 1997-12-02 | Emisphere Technologies, Inc. | Diketopiperazine-based delivery systems |
US6331318B1 (en) | 1994-09-30 | 2001-12-18 | Emisphere Technologies Inc. | Carbon-substituted diketopiperazine delivery systems |
JPH0765267B2 (en) | 1990-08-22 | 1995-07-12 | 花王株式会社 | Softening agent |
JP2547524Y2 (en) | 1991-01-22 | 1997-09-10 | 東洋ラジエーター株式会社 | Oil cooler |
US5330768A (en) | 1991-07-05 | 1994-07-19 | Massachusetts Institute Of Technology | Controlled drug delivery using polymer/pluronic blends |
US5545449A (en) | 1991-10-02 | 1996-08-13 | Weyerhaeuser Company | Polyether-reinforced fiber-based materials |
US5352461A (en) | 1992-03-11 | 1994-10-04 | Pharmaceutical Discovery Corporation | Self assembling diketopiperazine drug delivery system |
SE9200951D0 (en) | 1992-03-27 | 1992-03-27 | Kabi Pharmacia Ab | PHARMACEUTICAL COMPOSITION CONTAINING A DEFINED LIPID SYSTEM |
CA2141685A1 (en) | 1992-08-04 | 1994-02-17 | Koji Naito | Antiallergic composition |
US5334761A (en) | 1992-08-28 | 1994-08-02 | Life Technologies, Inc. | Cationic lipids |
US5380778A (en) | 1992-09-30 | 1995-01-10 | Minnesota Mining And Manufacturing Company | Fluorochemical aminoalcohols |
JPH06211978A (en) | 1992-10-28 | 1994-08-02 | Takeda Chem Ind Ltd | New polyether polyol and production of polyurethane foam therefrom |
US5705188A (en) | 1993-02-19 | 1998-01-06 | Nippon Shinyaku Company, Ltd. | Drug composition containing nucleic acid copolymer |
US5395619A (en) | 1993-03-03 | 1995-03-07 | Liposome Technology, Inc. | Lipid-polymer conjugates and liposomes |
FR2703055B1 (en) | 1993-03-22 | 1995-07-07 | Guerbet Sa | New polyiodinated compounds, their preparation and their use as contrast agents for radiology. |
US5624976A (en) | 1994-03-25 | 1997-04-29 | Dentsply Gmbh | Dental filling composition and method |
DE4325848A1 (en) | 1993-07-31 | 1995-02-02 | Basf Ag | Process for the preparation of N- (2-hydroxyethyl) piperazine |
EP0647462A1 (en) | 1993-10-06 | 1995-04-12 | The Kansai Electric Power Co., Inc. | Method for removing carbon dioxide from combustion exhaust gas |
SE9303481L (en) | 1993-10-22 | 1995-04-23 | Berol Nobel Ab | hygiene composition |
KR960705798A (en) | 1993-11-24 | 1996-11-08 | 벤자민 에프 맥그로우 | AMPHIPHILIC DERIVATIVES OF PIPERAZINE |
US5464924A (en) | 1994-01-07 | 1995-11-07 | The Dow Chemical Company | Flexible poly(amino ethers) for barrier packaging |
US5795790A (en) | 1994-07-20 | 1998-08-18 | Cytotherapeutics, Inc. | Method for controlling proliferation and differentiation of cells encapsulated within bioartificial organs |
US5885613A (en) | 1994-09-30 | 1999-03-23 | The University Of British Columbia | Bilayer stabilizing components and their use in forming programmable fusogenic liposomes |
GB9524630D0 (en) | 1994-12-24 | 1996-01-31 | Zeneca Ltd | Chemical compounds |
US5830430A (en) | 1995-02-21 | 1998-11-03 | Imarx Pharmaceutical Corp. | Cationic lipids and the use thereof |
EP0822835A1 (en) | 1995-04-17 | 1998-02-11 | Imarx Pharmaceutical Corp. | Hybrid magnetic resonance contrast agents |
US6428771B1 (en) | 1995-05-15 | 2002-08-06 | Pharmaceutical Discovery Corporation | Method for drug delivery to the pulmonary system |
US5728844A (en) | 1995-08-29 | 1998-03-17 | Celgene Corporation | Immunotherapeutic agents |
US5874105A (en) | 1996-01-31 | 1999-02-23 | Collaborative Laboratories, Inc. | Lipid vesicles formed with alkylammonium fatty acid salts |
US5736573A (en) | 1996-07-31 | 1998-04-07 | Galat; Alexander | Lipid and water soluble derivatives of drugs |
TW520297B (en) | 1996-10-11 | 2003-02-11 | Sequus Pharm Inc | Fusogenic liposome composition and method |
US6204297B1 (en) | 1996-11-26 | 2001-03-20 | Rhodia Inc. | Nonionic gemini surfactants |
JPH10197978A (en) | 1997-01-09 | 1998-07-31 | Mitsubishi Paper Mills Ltd | Silver halide photographic sensitive material |
FR2760193B1 (en) | 1997-02-28 | 1999-05-28 | Transgene Sa | LIPIDS AND COMPLEXES OF CATIONIC LIPIDS AND ACTIVE SUBSTANCES, IN PARTICULAR FOR THE TRANSFECTION OF CELLS |
US5837283A (en) | 1997-03-12 | 1998-11-17 | The Regents Of The University Of California | Cationic lipid compositions targeting angiogenic endothelial cells |
JPH115786A (en) | 1997-06-13 | 1999-01-12 | Pola Chem Ind Inc | Novel aminohydroxypropylpiperazine derivative |
JPH1180142A (en) | 1997-09-05 | 1999-03-26 | Pola Chem Ind Inc | Production of diphenylalkyl compound |
US6271209B1 (en) | 1998-04-03 | 2001-08-07 | Valentis, Inc. | Cationic lipid formulation delivering nucleic acid to peritoneal tumors |
DE19822602A1 (en) | 1998-05-20 | 1999-11-25 | Goldschmidt Ag Th | Process for the preparation of polyamino acid esters by esterification of acidic polyamino acids or transesterification of polyamino acid esters |
NO313244B1 (en) | 1998-07-08 | 2002-09-02 | Crew Dev Corp | Process for the isolation and production of magnesite or magnesium chloride |
US6696424B1 (en) | 1999-05-28 | 2004-02-24 | Vical Incorporated | Cytofectin dimers and methods of use thereof |
DE60036950T2 (en) | 1999-08-27 | 2008-08-07 | Inex Pharmaceuticals Corp., Burnaby | COMPOSITIONS FOR STIMULATING CYTOKIN SECRETION AND INDUCING AN IMMUNE RESPONSE |
AU3366901A (en) | 1999-12-30 | 2001-07-16 | Novartis Ag | Novel colloid synthetic vectors for gene therapy |
US6565960B2 (en) | 2000-06-01 | 2003-05-20 | Shriners Hospital Of Children | Polymer composite compositions |
IL138474A0 (en) | 2000-09-14 | 2001-10-31 | Epox Ltd | Highly branched water-soluble polyamine oligomers, process for their preparation and applications thereof |
US7427394B2 (en) | 2000-10-10 | 2008-09-23 | Massachusetts Institute Of Technology | Biodegradable poly(β-amino esters) and uses thereof |
US6998115B2 (en) | 2000-10-10 | 2006-02-14 | Massachusetts Institute Of Technology | Biodegradable poly(β-amino esters) and uses thereof |
USRE43612E1 (en) | 2000-10-10 | 2012-08-28 | Massachusetts Institute Of Technology | Biodegradable poly(β-amino esters) and uses thereof |
JP2002167368A (en) | 2000-12-01 | 2002-06-11 | Nitto Denko Corp | Alkyl group-substituted dendrimer and method for preparing the same |
KR100823815B1 (en) | 2001-04-23 | 2008-04-21 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Novel Tertiary Amine Compounds Having an Ester Structure and Processes for Preparing Same |
US6656977B2 (en) | 2001-07-20 | 2003-12-02 | Air Products And Chemical, Inc. | Alkyl glycidyl ether-capped polyamine foam control agents |
US7132295B2 (en) | 2001-11-09 | 2006-11-07 | Bayer Aktiengesellschaft | Isotopically coded affinity markers 3 |
DE10207178A1 (en) | 2002-02-19 | 2003-09-04 | Novosom Ag | Components for the production of amphoteric liposomes |
US20030215395A1 (en) | 2002-05-14 | 2003-11-20 | Lei Yu | Controllably degradable polymeric biomolecule or drug carrier and method of synthesizing said carrier |
US7601367B2 (en) | 2002-05-28 | 2009-10-13 | Mirus Bio Llc | Compositions and processes using siRNA, amphipathic compounds and polycations |
US20040028804A1 (en) | 2002-08-07 | 2004-02-12 | Anderson Daniel G. | Production of polymeric microarrays |
WO2004018654A2 (en) | 2002-08-22 | 2004-03-04 | Celltran Limited | Cell culture surface |
EP1565512B1 (en) | 2002-11-04 | 2018-07-04 | Momentive Performance Materials GmbH | Linear polyamino and/or polyammonium polysiloxane copolymers i |
AU2003281978A1 (en) | 2002-11-22 | 2004-06-18 | Boehringer Ingelheim International Gmbh | 2,5-diketopiperazines for the treatment of obesity |
US6998508B2 (en) | 2003-03-10 | 2006-02-14 | Air Products And Chemicals, Inc. | Tertiary alkanolamines containing surface active alkyl groups |
US7619017B2 (en) | 2003-05-19 | 2009-11-17 | Wacker Chemical Corporation | Polymer emulsions resistant to biodeterioration |
EP1644479A4 (en) | 2003-06-16 | 2008-04-23 | Mark W Grinstaff | Functional synthetic molecules and macromolecules for gene delivery |
CA2539670A1 (en) | 2003-09-15 | 2005-03-31 | Massachusetts Institute Of Technology | Nanoliter-scale synthesis of arrayed biomaterials and screening thereof |
US20050069590A1 (en) | 2003-09-30 | 2005-03-31 | Buehler Gail K. | Stable suspensions for medicinal dosages |
EP1683784A4 (en) | 2003-11-10 | 2007-08-22 | Nippon Kayaku Kk | Diimonium salt compound and use thereof |
US7022214B2 (en) | 2004-01-21 | 2006-04-04 | Bio-Rad Laboratories, Inc. | Carrier ampholytes of high pH range |
US7556684B2 (en) | 2004-02-26 | 2009-07-07 | Construction Research & Technology Gmbh | Amine containing strength improvement admixture |
US20060228404A1 (en) | 2004-03-04 | 2006-10-12 | Anderson Daniel G | Compositions and methods for treatment of hypertrophic tissues |
US7981444B2 (en) | 2004-04-20 | 2011-07-19 | Dendritic Nanotechnologies, Inc. | Dendritic polymers with enhanced amplification and interior functionality |
EP1766035B1 (en) | 2004-06-07 | 2011-12-07 | Protiva Biotherapeutics Inc. | Lipid encapsulated interfering rna |
DE102004043342A1 (en) | 2004-09-08 | 2006-03-09 | Bayer Materialscience Ag | Blocked polyurethane prepolymers as adhesives |
GB0502482D0 (en) | 2005-02-07 | 2005-03-16 | Glaxo Group Ltd | Novel compounds |
WO2006105043A2 (en) | 2005-03-28 | 2006-10-05 | Dendritic Nanotechnologies, Inc. | Janus dendrimers and dendrons |
EP2476756A1 (en) | 2005-06-15 | 2012-07-18 | Massachusetts Institute of Technology | Amine-containing lipids and uses thereof |
WO2007073489A2 (en) | 2005-12-22 | 2007-06-28 | Trustees Of Boston University | Molecules for gene delivery and gene therapy, and methods of use thereof |
CN100569877C (en) | 2005-12-30 | 2009-12-16 | 财团法人工业技术研究院 | Contain the dendritic structural compounds of branch and the application thereof of many UV crosslinking reactive group |
CA2643744A1 (en) | 2006-02-27 | 2007-08-30 | Technische Universitaet Muenchen | Cancer imaging and treatment |
US20070275923A1 (en) | 2006-05-25 | 2007-11-29 | Nastech Pharmaceutical Company Inc. | CATIONIC PEPTIDES FOR siRNA INTRACELLULAR DELIVERY |
US8808681B2 (en) | 2006-06-05 | 2014-08-19 | Massachusetts Institute Of Technology | Crosslinked, degradable polymers and uses thereof |
ES2293834B1 (en) | 2006-07-20 | 2009-02-16 | Consejo Superior Investig. Cientificas | COMPOSED WITH INHIBITING ACTIVITY OF UBC13-UEV INTERACTIONS, PHARMACEUTICAL COMPOSITIONS THAT INCLUDE IT AND ITS THERAPEUTIC APPLICATIONS. |
EP2046266A4 (en) | 2006-07-21 | 2009-11-04 | Massachusetts Inst Technology | End-modified poly(beta-amino esters) and uses thereof |
NZ575193A (en) | 2006-08-30 | 2011-12-22 | Unversity Of Michigan | Small molecule inhibitors of MDM2 comprising a spiropyrrolidine |
EP2695608B1 (en) | 2006-10-03 | 2016-11-23 | Arbutus Biopharma Corporation | Lipid containing formulations |
EP2139461A2 (en) | 2007-03-20 | 2010-01-06 | Recepticon Aps | Amino derivatives to prevent nephrotoxicity and cancer |
JP5186126B2 (en) | 2007-03-29 | 2013-04-17 | 公益財団法人地球環境産業技術研究機構 | Novel triazine derivatives, their production and their use as gas separation membranes |
EA200901212A1 (en) | 2007-03-29 | 2010-04-30 | Новартис Аг | 3-IMIDAZOLYLINDOLES INTENDED FOR THE TREATMENT OF PROLIFERATIVE DISEASES |
WO2008137470A1 (en) | 2007-05-01 | 2008-11-13 | Pgr-Solutions | Multi-chain lipophilic polyamines |
GB0716897D0 (en) | 2007-08-30 | 2007-10-10 | Univ Muenchen Tech | Cancer imaging and treatment |
CN101939027B (en) | 2007-10-02 | 2014-07-30 | 玛瑞纳生物技术有限公司 | Lipopeptides for delivery of nucleic acids |
US8361555B2 (en) | 2007-12-27 | 2013-01-29 | E I Du Pont De Nemours And Company | Hydroxy alkyl isocyanurates |
JP5777519B2 (en) | 2008-10-09 | 2015-09-09 | テクミラ ファーマシューティカルズ コーポレイション | Improved aminolipid and nucleic acid delivery methods |
US20100112042A1 (en) | 2008-10-16 | 2010-05-06 | Mdrna, Inc. | Processes and Compositions for Liposomal and Efficient Delivery of Gene Silencing Therapeutics |
WO2010062322A2 (en) | 2008-10-27 | 2010-06-03 | Massachusetts Institute Of Technology | Modulation of the immune response |
US8314106B2 (en) | 2008-12-29 | 2012-11-20 | Mannkind Corporation | Substituted diketopiperazine analogs for use as drug delivery agents |
US20100222489A1 (en) | 2009-02-27 | 2010-09-02 | Jiang Dayue D | Copolymer composition, membrane article, and methods thereof |
CN102334237B (en) | 2009-04-02 | 2015-05-13 | 西蒙公司 | Telecommunications patch panel |
WO2010132876A1 (en) | 2009-05-15 | 2010-11-18 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Polymers for delivering a substance into a cell |
KR20190090092A (en) | 2009-06-12 | 2019-07-31 | 맨카인드 코포레이션 | Diketopiperazine microparticles with defined specific surface areas |
WO2011012746A2 (en) | 2009-07-30 | 2011-02-03 | Laboratorios Salvat, S.A. | Apaf-1 inhibitor compounds |
EP3403647A1 (en) | 2009-12-01 | 2018-11-21 | Translate Bio, Inc. | Delivery of mrna for the augmentation of proteins and enzymes in human genetic diseases |
CN101863544B (en) | 2010-06-29 | 2011-09-28 | 湖南科技大学 | Cyanuric acid-based heavy metal chelating flocculant and preparation method thereof |
US9193827B2 (en) | 2010-08-26 | 2015-11-24 | Massachusetts Institute Of Technology | Poly(beta-amino alcohols), their preparation, and uses thereof |
EP2691443B1 (en) | 2011-03-28 | 2021-02-17 | Massachusetts Institute of Technology | Conjugated lipomers and uses thereof |
WO2012133737A1 (en) | 2011-03-31 | 2012-10-04 | 公益財団法人地球環境産業技術研究機構 | Crosslinkable amine compound, polymer membrane using crosslinkable amine compound, and method for producing polymer membrane |
EP2532649B1 (en) | 2011-06-07 | 2015-04-08 | Incella GmbH | Amino lipids, their synthesis and uses thereof |
ES2663360T3 (en) | 2011-06-08 | 2018-04-12 | Translate Bio, Inc. | Cleavable lipids |
ES2740248T3 (en) | 2011-06-08 | 2020-02-05 | Translate Bio Inc | Lipid nanoparticle compositions and methods for mRNA administration |
KR102451116B1 (en) | 2011-10-27 | 2022-10-06 | 메사추세츠 인스티튜트 오브 테크놀로지 | Amino acid derivatives functionalized on the n-terminal capable of forming drug incapsulating microspheres |
EP2882706A1 (en) | 2012-08-13 | 2015-06-17 | Massachusetts Institute of Technology | Amine-containing lipidoids and uses thereof |
JP5991937B2 (en) | 2013-03-06 | 2016-09-14 | Jxエネルギー株式会社 | Friction modifier and lubricating oil composition |
US9315472B2 (en) | 2013-05-01 | 2016-04-19 | Massachusetts Institute Of Technology | 1,3,5-triazinane-2,4,6-trione derivatives and uses thereof |
US9895443B2 (en) | 2013-06-26 | 2018-02-20 | Massachusetts Institute Of Technology | Multi-tailed lipids and uses thereof |
-
2013
- 2013-08-13 EP EP13751043.4A patent/EP2882706A1/en not_active Withdrawn
- 2013-08-13 CA CA2884870A patent/CA2884870C/en active Active
- 2013-08-13 WO PCT/US2013/054726 patent/WO2014028487A1/en active Application Filing
- 2013-11-25 US US14/089,603 patent/US9227917B2/en active Active
-
2016
- 2016-01-04 US US14/987,717 patent/US9439968B2/en active Active
- 2016-09-13 US US15/264,315 patent/US20170152213A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010053572A2 (en) * | 2008-11-07 | 2010-05-14 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
WO2010129709A1 (en) * | 2009-05-05 | 2010-11-11 | Alnylam Pharmaceuticals, Inc. | Lipid compositions |
Non-Patent Citations (1)
Title |
---|
AKINC AKIN ET AL: "A combinatorial library of lipid-like materials for delivery of RNAi therapeutics", NATURE BIOTECHNOLOGY, NATURE PUBLISHING GROUP, NEW YORK, NY, US, vol. 26, no. 5, 1 May 2008 (2008-05-01), pages 561 - 569, XP002577899, ISSN: 1087-0156, [retrieved on 20080427], DOI: 10.1038/NBT1402 * |
Cited By (240)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9365634B2 (en) | 2007-05-29 | 2016-06-14 | Angiochem Inc. | Aprotinin-like polypeptides for delivering agents conjugated thereto to tissues |
US8921314B2 (en) | 2008-10-15 | 2014-12-30 | Angiochem, Inc. | Conjugates of GLP-1 agonists and uses thereof |
US11414393B2 (en) | 2008-11-07 | 2022-08-16 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
US10844028B2 (en) | 2008-11-07 | 2020-11-24 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
US9556110B2 (en) | 2008-11-07 | 2017-01-31 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
US10189802B2 (en) | 2008-11-07 | 2019-01-29 | Massachusetts Institute Of Technology | Aminoalcohol lipidoids and uses thereof |
US10576166B2 (en) | 2009-12-01 | 2020-03-03 | Translate Bio, Inc. | Liver specific delivery of messenger RNA |
US10799457B2 (en) | 2010-02-05 | 2020-10-13 | University Of Louisville Research Foundation, Inc. | Exosomal compositions and methods for the treatment of disease |
US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9447164B2 (en) | 2010-08-06 | 2016-09-20 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9937233B2 (en) | 2010-08-06 | 2018-04-10 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9181319B2 (en) | 2010-08-06 | 2015-11-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9193827B2 (en) | 2010-08-26 | 2015-11-24 | Massachusetts Institute Of Technology | Poly(beta-amino alcohols), their preparation, and uses thereof |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9657295B2 (en) | 2010-10-01 | 2017-05-23 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US10064959B2 (en) | 2010-10-01 | 2018-09-04 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US10117934B2 (en) | 2011-03-28 | 2018-11-06 | Massachusetts Institute Of Technology | Conjugated lipomers and uses thereof |
US9238716B2 (en) | 2011-03-28 | 2016-01-19 | Massachusetts Institute Of Technology | Conjugated lipomers and uses thereof |
US10933139B2 (en) | 2011-03-28 | 2021-03-02 | Massachusetts Institute Of Technology | Conjugated lipomers and uses thereof |
US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US9950068B2 (en) | 2011-03-31 | 2018-04-24 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US11338044B2 (en) | 2011-06-08 | 2022-05-24 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US10888626B2 (en) | 2011-06-08 | 2021-01-12 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US10507249B2 (en) | 2011-06-08 | 2019-12-17 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US11052159B2 (en) | 2011-06-08 | 2021-07-06 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US11291734B2 (en) | 2011-06-08 | 2022-04-05 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US10350303B1 (en) | 2011-06-08 | 2019-07-16 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US12121592B2 (en) | 2011-06-08 | 2024-10-22 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US11730825B2 (en) | 2011-06-08 | 2023-08-22 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US10413618B2 (en) | 2011-06-08 | 2019-09-17 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US11951181B2 (en) | 2011-06-08 | 2024-04-09 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US9597413B2 (en) | 2011-06-08 | 2017-03-21 | Shire Human Genetic Therapies, Inc. | Pulmonary delivery of mRNA |
US11185595B2 (en) | 2011-06-08 | 2021-11-30 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
US11547764B2 (en) | 2011-06-08 | 2023-01-10 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
US11951179B2 (en) | 2011-06-08 | 2024-04-09 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
US11951180B2 (en) | 2011-06-08 | 2024-04-09 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
US9308281B2 (en) | 2011-06-08 | 2016-04-12 | Shire Human Genetic Therapies, Inc. | MRNA therapy for Fabry disease |
US10238754B2 (en) | 2011-06-08 | 2019-03-26 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
US10022425B2 (en) | 2011-09-12 | 2018-07-17 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US10751386B2 (en) | 2011-09-12 | 2020-08-25 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US11458158B2 (en) | 2011-10-27 | 2022-10-04 | Massachusetts Institute Of Technology | Amino acid-, peptide- and polypeptide-lipids, isomers, compositions, and uses thereof |
US10086013B2 (en) | 2011-10-27 | 2018-10-02 | Massachusetts Institute Of Technology | Amino acid-, peptide- and polypeptide-lipids, isomers, compositions, and uses thereof |
US9512073B2 (en) | 2011-10-27 | 2016-12-06 | Massachusetts Institute Of Technology | Amino acid-, peptide-and polypeptide-lipids, isomers, compositions, and uses thereof |
US10682374B2 (en) | 2011-10-27 | 2020-06-16 | Massachusetts Intstitute Of Technology | Amino acid-, peptide- and polypeptide-lipids, isomers, compositions, and uses thereof |
US11890382B2 (en) | 2011-11-07 | 2024-02-06 | University Of Louisville Research Foundation, Inc. | Edible plant-derived microvesicle compositions for diagnosis and treatment of disease |
US11590229B2 (en) | 2011-12-07 | 2023-02-28 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11400158B2 (en) | 2011-12-07 | 2022-08-02 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11382979B2 (en) | 2011-12-07 | 2022-07-12 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11633479B2 (en) | 2011-12-07 | 2023-04-25 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11246933B1 (en) | 2011-12-07 | 2022-02-15 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11612657B2 (en) | 2011-12-07 | 2023-03-28 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11679158B2 (en) | 2011-12-07 | 2023-06-20 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US11633480B2 (en) | 2011-12-07 | 2023-04-25 | Alnylam Pharmaceuticals, Inc. | Biodegradable lipids for the delivery of active agents |
US9295689B2 (en) | 2011-12-16 | 2016-03-29 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
US9271996B2 (en) | 2011-12-16 | 2016-03-01 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
US9221891B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | In vivo production of proteins |
US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
US9828416B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
US9827332B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of proteins |
US9782462B2 (en) | 2012-04-02 | 2017-10-10 | Modernatx, Inc. | Modified polynucleotides for the production of proteins associated with human disease |
US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9675668B2 (en) | 2012-04-02 | 2017-06-13 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding hepatitis A virus cellular receptor 2 |
US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
US9050297B2 (en) | 2012-04-02 | 2015-06-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aryl hydrocarbon receptor nuclear translocator |
US9061059B2 (en) | 2012-04-02 | 2015-06-23 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating protein deficiency |
US9089604B2 (en) | 2012-04-02 | 2015-07-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating galactosylceramidase protein deficiency |
US9587003B2 (en) | 2012-04-02 | 2017-03-07 | Modernatx, Inc. | Modified polynucleotides for the production of oncology-related proteins and peptides |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9095552B2 (en) | 2012-04-02 | 2015-08-04 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding copper metabolism (MURR1) domain containing 1 |
US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
US9114113B2 (en) | 2012-04-02 | 2015-08-25 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding citeD4 |
US9149506B2 (en) | 2012-04-02 | 2015-10-06 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding septin-4 |
US9301993B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding apoptosis inducing factor 1 |
US9303079B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9255129B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding SIAH E3 ubiquitin protein ligase 1 |
US9814760B2 (en) | 2012-04-02 | 2017-11-14 | Modernatx, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9233141B2 (en) | 2012-04-02 | 2016-01-12 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
US9192651B2 (en) | 2012-04-02 | 2015-11-24 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of secreted proteins |
US10501512B2 (en) | 2012-04-02 | 2019-12-10 | Modernatx, Inc. | Modified polynucleotides |
US9216205B2 (en) | 2012-04-02 | 2015-12-22 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding granulysin |
US9220792B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aquaporin-5 |
US9220755B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
US11254936B2 (en) | 2012-06-08 | 2022-02-22 | Translate Bio, Inc. | Nuclease resistant polynucleotides and uses thereof |
US9439968B2 (en) | 2012-08-13 | 2016-09-13 | Massachusetts Institute Of Technology | Amine-containing lipidoids and uses thereof |
US9227917B2 (en) | 2012-08-13 | 2016-01-05 | Massachusetts Institute Of Technology | Amine-containing lipidoids and uses thereof |
US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
US10876104B2 (en) | 2013-03-14 | 2020-12-29 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US11510937B2 (en) | 2013-03-14 | 2022-11-29 | Translate Bio, Inc. | CFTR MRNA compositions and related methods and uses |
US11820977B2 (en) | 2013-03-14 | 2023-11-21 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US9957499B2 (en) | 2013-03-14 | 2018-05-01 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US9181321B2 (en) | 2013-03-14 | 2015-11-10 | Shire Human Genetic Therapies, Inc. | CFTR mRNA compositions and related methods and uses |
US11692189B2 (en) | 2013-03-14 | 2023-07-04 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US9713626B2 (en) | 2013-03-14 | 2017-07-25 | Rana Therapeutics, Inc. | CFTR mRNA compositions and related methods and uses |
US10420791B2 (en) | 2013-03-14 | 2019-09-24 | Translate Bio, Inc. | CFTR MRNA compositions and related methods and uses |
WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
US9315472B2 (en) | 2013-05-01 | 2016-04-19 | Massachusetts Institute Of Technology | 1,3,5-triazinane-2,4,6-trione derivatives and uses thereof |
EA036400B1 (en) * | 2013-06-28 | 2020-11-06 | Этрис Гмбх | Compositions for introducing rna into cells |
US12064484B2 (en) | 2013-06-28 | 2024-08-20 | Ethris Gmbh | Compositions for introducing RNA into cells |
WO2014207231A1 (en) * | 2013-06-28 | 2014-12-31 | Ethris Gmbh | Compositions for introducing rna into cells |
AU2014300980B2 (en) * | 2013-06-28 | 2020-03-05 | Ethris Gmbh | Compositions for introducing RNA into cells |
US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
US9522176B2 (en) | 2013-10-22 | 2016-12-20 | Shire Human Genetic Therapies, Inc. | MRNA therapy for phenylketonuria |
US10052284B2 (en) | 2013-10-22 | 2018-08-21 | Translate Bio, Inc. | Lipid formulations for delivery of messenger RNA |
US9629804B2 (en) | 2013-10-22 | 2017-04-25 | Shire Human Genetic Therapies, Inc. | Lipid formulations for delivery of messenger RNA |
US10493031B2 (en) | 2013-10-22 | 2019-12-03 | Translate Bio, Inc. | Lipid formulations for delivery of messenger RNA |
US11224642B2 (en) | 2013-10-22 | 2022-01-18 | Translate Bio, Inc. | MRNA therapy for argininosuccinate synthetase deficiency |
US11377642B2 (en) | 2013-10-22 | 2022-07-05 | Translate Bio, Inc. | mRNA therapy for phenylketonuria |
US11890377B2 (en) | 2013-10-22 | 2024-02-06 | Translate Bio, Inc. | Lipid formulations for delivery of messenger RNA |
US10208295B2 (en) | 2013-10-22 | 2019-02-19 | Translate Bio, Inc. | MRNA therapy for phenylketonuria |
US10959953B2 (en) | 2013-10-22 | 2021-03-30 | Translate Bio, Inc. | Lipid formulations for delivery of messenger RNA |
WO2015128030A1 (en) * | 2014-02-26 | 2015-09-03 | Ethris Gmbh | Compositions for gastrointestinal administration of rna |
WO2015157652A1 (en) * | 2014-04-11 | 2015-10-15 | University Of Louisville Research Foundation, Inc. | Coated edible plant-derived microvesicle compositions and methods for using the same |
US9872900B2 (en) | 2014-04-23 | 2018-01-23 | Modernatx, Inc. | Nucleic acid vaccines |
US10709779B2 (en) | 2014-04-23 | 2020-07-14 | Modernatx, Inc. | Nucleic acid vaccines |
US10022435B2 (en) | 2014-04-23 | 2018-07-17 | Modernatx, Inc. | Nucleic acid vaccines |
US9850269B2 (en) | 2014-04-25 | 2017-12-26 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US11884692B2 (en) | 2014-04-25 | 2024-01-30 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US12060381B2 (en) | 2014-04-25 | 2024-08-13 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US10155785B2 (en) | 2014-04-25 | 2018-12-18 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US11059841B2 (en) | 2014-04-25 | 2021-07-13 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US10286082B2 (en) | 2014-05-30 | 2019-05-14 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
US10293057B2 (en) | 2014-05-30 | 2019-05-21 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
US10912844B2 (en) | 2014-05-30 | 2021-02-09 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
US10493166B2 (en) | 2014-05-30 | 2019-12-03 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
US11433144B2 (en) | 2014-05-30 | 2022-09-06 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
US10022455B2 (en) | 2014-05-30 | 2018-07-17 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
US10286083B2 (en) | 2014-05-30 | 2019-05-14 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
US11104652B2 (en) | 2014-06-24 | 2021-08-31 | Translate Bio, Inc. | Stereochemically enriched compositions for delivery of nucleic acids |
US10138213B2 (en) | 2014-06-24 | 2018-11-27 | Translate Bio, Inc. | Stereochemically enriched compositions for delivery of nucleic acids |
US10106490B2 (en) | 2014-06-25 | 2018-10-23 | Acuitas Therapeutics, Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
US10723692B2 (en) | 2014-06-25 | 2020-07-28 | Acuitas Therapeutics, Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
US11634379B2 (en) | 2014-06-25 | 2023-04-25 | Acuitas Therapeutics, Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
US9840479B2 (en) | 2014-07-02 | 2017-12-12 | Massachusetts Institute Of Technology | Polyamine-fatty acid derived lipidoids and uses thereof |
WO2016004202A1 (en) * | 2014-07-02 | 2016-01-07 | Massachusetts Institute Of Technology | Polyamine-fatty acid derived lipidoids and uses thereof |
KR102647743B1 (en) * | 2014-11-10 | 2024-03-14 | 에트리스 게엠베하 | Induction of osteogenesis by delivering bmp encoding rna |
CN113786498A (en) * | 2014-11-10 | 2021-12-14 | 埃泽瑞斯公司 | Induction of osteogenesis by delivery of BMP-encoding RNA |
KR20170081684A (en) * | 2014-11-10 | 2017-07-12 | 에트리스 게엠베하 | Induction of osteogenesis by delivering bmp encoding rna |
CN104922067A (en) * | 2014-12-08 | 2015-09-23 | 上海张江生物技术有限公司 | Drug-loading nano-liposome, and preparation method and application thereof |
US10980892B2 (en) | 2015-06-15 | 2021-04-20 | Angiochem Inc. | Methods for the treatment of leptomeningeal carcinomatosis |
US10695444B2 (en) | 2015-06-19 | 2020-06-30 | Massachusetts Institute Of Technology | Alkenyl substituted 2,5-piperazinediones, compositions, and uses thereof |
US10201618B2 (en) | 2015-06-19 | 2019-02-12 | Massachusetts Institute Of Technology | Alkenyl substituted 2,5-piperazinediones, compositions, and uses thereof |
US11168051B2 (en) | 2015-06-29 | 2021-11-09 | Acuitas Therapeutics, Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
US10221127B2 (en) | 2015-06-29 | 2019-03-05 | Acuitas Therapeutics, Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
US10266485B2 (en) | 2015-09-17 | 2019-04-23 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US11220476B2 (en) | 2015-09-17 | 2022-01-11 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10442756B2 (en) | 2015-09-17 | 2019-10-15 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US10392341B2 (en) | 2015-09-17 | 2019-08-27 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
JP7453269B2 (en) | 2015-10-28 | 2024-03-19 | アキィタス・セラピューティクス・インコーポレイテッド | Novel lipid and lipid nanoparticle formulations for delivery of nucleic acids |
CN108368028A (en) * | 2015-10-28 | 2018-08-03 | 爱康泰生治疗公司 | Novel lipid and lipid nanoparticle preparation for delivering nucleic acid |
US11712481B2 (en) | 2015-10-28 | 2023-08-01 | Acuitas Therapeutics, Inc. | Lipid nanoparticle formulations |
US10166298B2 (en) | 2015-10-28 | 2019-01-01 | Acuitas Therapeutics, Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
US11648324B2 (en) | 2015-10-28 | 2023-05-16 | Acuitas Therapeutics, Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
JP2022081512A (en) * | 2015-10-28 | 2022-05-31 | アキィタス・セラピューティクス・インコーポレイテッド | Novel lipid for delivery of nucleic acid and lipid nanoparticle preparation |
CN108368028B (en) * | 2015-10-28 | 2021-09-03 | 爱康泰生治疗公司 | Novel lipid and lipid nanoparticle formulations for delivery of nucleic acids |
EP4212510A1 (en) * | 2015-10-28 | 2023-07-19 | Acuitas Therapeutics Inc. | Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids |
US11040112B2 (en) | 2015-10-28 | 2021-06-22 | Acuitas Therapeutics, Inc. | Lipids and lipid nanoparticle formulations for delivery of nucleic acids |
WO2017075531A1 (en) * | 2015-10-28 | 2017-05-04 | Acuitas Therapeutics, Inc. | Novel lipids and lipid nanoparticle formulations for delivery of nucleic acids |
US11285222B2 (en) | 2015-12-10 | 2022-03-29 | Modernatx, Inc. | Compositions and methods for delivery of agents |
US10207010B2 (en) | 2015-12-10 | 2019-02-19 | Modernatx, Inc. | Compositions and methods for delivery of agents |
US10556018B2 (en) | 2015-12-10 | 2020-02-11 | Modernatx, Inc. | Compositions and methods for delivery of agents |
US10485885B2 (en) | 2015-12-10 | 2019-11-26 | Modernatx, Inc. | Compositions and methods for delivery of agents |
US10195156B2 (en) | 2015-12-22 | 2019-02-05 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US10799463B2 (en) | 2015-12-22 | 2020-10-13 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
EP3394030B1 (en) | 2015-12-22 | 2021-12-22 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
IL266194B1 (en) * | 2016-10-26 | 2023-05-01 | Curevac Ag | Lipid nanoparticle mrna vaccines |
IL266194B2 (en) * | 2016-10-26 | 2023-09-01 | Curevac Ag | Lipid nanoparticle mrna vaccines |
CN110352071A (en) * | 2016-10-26 | 2019-10-18 | 库瑞瓦格股份公司 | Lipidic nanoparticles mRNA vaccine |
AU2017350488B2 (en) * | 2016-10-26 | 2022-06-23 | Acuitas Therapeutics Inc. | Lipid nanoparticle mRNA vaccines |
WO2018078053A1 (en) * | 2016-10-26 | 2018-05-03 | Curevac Ag | Lipid nanoparticle mrna vaccines |
US11583504B2 (en) | 2016-11-08 | 2023-02-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
US11241490B2 (en) | 2017-01-11 | 2022-02-08 | The Trustees Of The University Of Pennsylvania | Nucleoside-modified RNA for inducing an immune response against zika virus |
US11253605B2 (en) | 2017-02-27 | 2022-02-22 | Translate Bio, Inc. | Codon-optimized CFTR MRNA |
US10857105B2 (en) | 2017-03-15 | 2020-12-08 | MordernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
US11969506B2 (en) | 2017-03-15 | 2024-04-30 | Modernatx, Inc. | Lipid nanoparticle formulation |
US11203569B2 (en) | 2017-03-15 | 2021-12-21 | Modernatx, Inc. | Crystal forms of amino lipids |
US10815520B2 (en) | 2017-04-07 | 2020-10-27 | University Of Louisville Research Foundation, Inc. | Nanovesicles, methods, and systems for diagnosis and prognosis of cancer |
US11357856B2 (en) | 2017-04-13 | 2022-06-14 | Acuitas Therapeutics, Inc. | Lipids for delivery of active agents |
US11820728B2 (en) | 2017-04-28 | 2023-11-21 | Acuitas Therapeutics, Inc. | Carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids |
US11173190B2 (en) | 2017-05-16 | 2021-11-16 | Translate Bio, Inc. | Treatment of cystic fibrosis by delivery of codon-optimized mRNA encoding CFTR |
US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
US11786607B2 (en) | 2017-06-15 | 2023-10-17 | Modernatx, Inc. | RNA formulations |
US11639329B2 (en) | 2017-08-16 | 2023-05-02 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
WO2019036028A1 (en) * | 2017-08-17 | 2019-02-21 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
US11524932B2 (en) | 2017-08-17 | 2022-12-13 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
US12065396B2 (en) | 2017-08-17 | 2024-08-20 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
WO2019036030A1 (en) * | 2017-08-17 | 2019-02-21 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
US11542225B2 (en) | 2017-08-17 | 2023-01-03 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
US11744801B2 (en) | 2017-08-31 | 2023-09-05 | Modernatx, Inc. | Methods of making lipid nanoparticles |
US12036262B2 (en) | 2017-11-22 | 2024-07-16 | University Of Louisville Research Foundation, Inc. | Edible plant-derived nanoparticles for regulation of gut microbiota |
US12084702B2 (en) | 2018-08-24 | 2024-09-10 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US11174500B2 (en) | 2018-08-24 | 2021-11-16 | Translate Bio, Inc. | Methods for purification of messenger RNA |
US12090235B2 (en) | 2018-09-20 | 2024-09-17 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
US11453639B2 (en) | 2019-01-11 | 2022-09-27 | Acuitas Therapeutics, Inc. | Lipids for lipid nanoparticle delivery of active agents |
US11597698B2 (en) | 2019-09-19 | 2023-03-07 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
US11066355B2 (en) | 2019-09-19 | 2021-07-20 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
WO2021061815A1 (en) | 2019-09-23 | 2021-04-01 | Omega Therapeutics, Inc. | COMPOSITIONS AND METHODS FOR MODULATING HEPATOCYTE NUCLEAR FACTOR 4-ALPHA (HNF4α) GENE EXPRESSION |
WO2021061707A1 (en) | 2019-09-23 | 2021-04-01 | Omega Therapeutics, Inc. | Compositions and methods for modulating apolipoprotein b (apob) gene expression |
WO2021183720A1 (en) | 2020-03-11 | 2021-09-16 | Omega Therapeutics, Inc. | Compositions and methods for modulating forkhead box p3 (foxp3) gene expression |
US11472766B2 (en) | 2020-04-09 | 2022-10-18 | Suzhou Abogen Biosciences Co., Ltd. | Lipid nanoparticle composition |
US11510977B2 (en) | 2020-04-09 | 2022-11-29 | Suzhou Abogen Biosciences Co., Ltd. | Nucleic acid vaccines for coronavirus |
WO2021204175A1 (en) * | 2020-04-09 | 2021-10-14 | Suzhou Abogen Biosciences Co., Ltd. | Lipid nanoparticle composition |
CN114206827A (en) * | 2020-04-09 | 2022-03-18 | 苏州艾博生物科技有限公司 | Lipid nanoparticle compositions |
EP4146278A4 (en) * | 2020-05-04 | 2024-06-05 | Trustees Of Tufts College | Synthetic lipid-like materials for brain delivery |
EP4164647A4 (en) * | 2020-06-12 | 2024-07-24 | Tufts College | Ph-responsive lipidoid nanoparticles for intracellular mrna delivery |
US11976019B2 (en) | 2020-07-16 | 2024-05-07 | Acuitas Therapeutics, Inc. | Cationic lipids for use in lipid nanoparticles |
JP7320295B2 (en) | 2020-11-11 | 2023-08-03 | 紹興瑞康生物科技有限公司 | Structure of sterically hindrance-adjustable weak base light stabilizer, its preparation method and use |
JP2022077496A (en) * | 2020-11-11 | 2022-05-23 | 紹興瑞康生物科技有限公司 | Structure of steric hindrance adjustable weak base photostabilizer and its manufacturing method and use |
EP4001265A1 (en) * | 2020-11-11 | 2022-05-25 | Shaoxing Ruikang Biotechnologies Co., Inc | Structure of adjustable steric hindrance weak basic light stabilizer and preparation method and application thereof |
WO2022115075A1 (en) * | 2020-11-30 | 2022-06-02 | Ege Üni̇versi̇tesi̇ | Targeted nanoparticles carrying dual drugs in the treatment of melanoma |
US11622972B2 (en) | 2021-02-19 | 2023-04-11 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
WO2022180213A1 (en) | 2021-02-26 | 2022-09-01 | Ethris Gmbh | Formulations for aerosol formation and aerosols for the delivery of nucleic acid |
WO2022227888A1 (en) * | 2021-04-30 | 2022-11-03 | 普瑞科德(香港)生物医药科技有限公司 | Lipid compounds, and lipid carrier, nucleic acid lipid nanoparticle composition and pharmaceutical preparation containing same |
US11786609B2 (en) | 2021-04-30 | 2023-10-17 | Purecodon (Hong Kong) Biopharma Limited | Lipid compound as well as lipid vector, nucleic acid lipid nanoparticle composition, and pharmaceutical preparation comprising the same |
EP4108655A4 (en) * | 2021-04-30 | 2023-09-27 | Purecodon (Hongkong) Biopharma Limited | Lipid compounds, and lipid carrier, nucleic acid lipid nanoparticle composition and pharmaceutical preparation containing same |
US11964052B2 (en) | 2021-05-24 | 2024-04-23 | Suzhou Abogen Biosciences Co., Ltd. | Lipid compounds and lipid nanoparticle compositions |
WO2023283359A2 (en) | 2021-07-07 | 2023-01-12 | Omega Therapeutics, Inc. | Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression |
WO2023078954A1 (en) * | 2021-11-02 | 2023-05-11 | Ziphius Vaccines Nv | Lipid nanoparticles for oligonucleotide delivery |
WO2023078950A1 (en) * | 2021-11-02 | 2023-05-11 | Ziphius Vaccines Nv | Lipid nanoparticles for oligonucleotide delivery |
WO2023078946A1 (en) * | 2021-11-02 | 2023-05-11 | Ziphius Vaccines Nv | Lipid nanoparticles for oligonucleotide delivery |
US12129223B2 (en) | 2021-12-16 | 2024-10-29 | Acuitas Therapeutics, Inc. | Lipids for use in lipid nanoparticle formulations |
WO2023134325A1 (en) * | 2022-01-14 | 2023-07-20 | 华南理工大学 | Lipid compound, composition containing same, and use |
WO2023136688A1 (en) * | 2022-01-17 | 2023-07-20 | 에스티팜 주식회사 | Ionizable lipid containing biodegradable disulfide bond and lipid nanoparticles comprising same |
WO2023141576A1 (en) * | 2022-01-21 | 2023-07-27 | Poseida Therapeutics, Inc. | Compositions and methods for delivery of nucleic acids |
CN114409554A (en) * | 2022-01-27 | 2022-04-29 | 英维沃生物科技(苏州)有限公司 | Novel cationic lipid compound, composition and application thereof |
US12138305B2 (en) | 2022-03-28 | 2024-11-12 | The Trustees Of The University Of Pennsylvania | Nucleoside-modified RNA for inducing an adaptive immune response |
WO2023196527A3 (en) * | 2022-04-08 | 2023-11-30 | SunVax mRNA Therapeutics Inc. | Ionizable lipid compounds and lipid nanoparticle compositions |
EP4327829A1 (en) | 2022-08-26 | 2024-02-28 | Ethris GmbH | Stabilization of lipid or lipidoid nanoparticle suspensions |
WO2024042236A1 (en) | 2022-08-26 | 2024-02-29 | Ethris Gmbh | Stable lipid or lipidoid nanoparticle suspensions |
WO2024049979A3 (en) * | 2022-08-31 | 2024-04-18 | Senda Biosciences, Inc. | Novel ionizable lipids and lipid nanoparticles and methods of using the same |
WO2024125469A1 (en) * | 2022-12-12 | 2024-06-20 | Starna Therapeutics | Novel compounds and use thereof for targeted delivery |
US12144895B2 (en) | 2022-12-13 | 2024-11-19 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
WO2024136309A1 (en) * | 2022-12-23 | 2024-06-27 | Green Cross Corporation | Ionizable lipid and use thereof |
WO2024177426A1 (en) * | 2023-02-24 | 2024-08-29 | 에스티팜 주식회사 | Lipid nanoparicles for in vivo drug delivery |
Also Published As
Publication number | Publication date |
---|---|
US20140161830A1 (en) | 2014-06-12 |
EP2882706A1 (en) | 2015-06-17 |
US9227917B2 (en) | 2016-01-05 |
US20160114042A1 (en) | 2016-04-28 |
US9439968B2 (en) | 2016-09-13 |
CA2884870C (en) | 2022-03-29 |
US20170152213A1 (en) | 2017-06-01 |
CA2884870A1 (en) | 2014-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9439968B2 (en) | Amine-containing lipidoids and uses thereof | |
US10933139B2 (en) | Conjugated lipomers and uses thereof | |
JP7527650B2 (en) | N-Terminally Functionalized Amino Acid Derivatives Capable of Forming Drug-Loaded Microspheres | |
US9872911B2 (en) | Alpha-aminoamidine polymers and uses thereof | |
JP2024505723A (en) | Polyoxazoline-lipid conjugates and lipid nanoparticles and pharmaceutical compositions containing them | |
EP3153172A1 (en) | Ckap5-gene-silencing rnai pharmaceutical composition | |
US20240342294A1 (en) | Polymers containing beta-amino-ester (bae) and beta-thio-ester (bte) | |
JP7043411B2 (en) | Compounds as cationic lipids | |
EA040020B1 (en) | AMINO ACID DERIVATIVES FUNCTIONALIZED AT THE N-TERMINAL, CAPABLE OF FORMING DRUG ENCAPSULATED MICROSPHERES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13751043 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2884870 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013751043 Country of ref document: EP |