WO2014013967A1 - Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法 - Google Patents
Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法 Download PDFInfo
- Publication number
- WO2014013967A1 WO2014013967A1 PCT/JP2013/069249 JP2013069249W WO2014013967A1 WO 2014013967 A1 WO2014013967 A1 WO 2014013967A1 JP 2013069249 W JP2013069249 W JP 2013069249W WO 2014013967 A1 WO2014013967 A1 WO 2014013967A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zeolite
- beta zeolite
- substituted beta
- sio
- substituted
- Prior art date
Links
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 199
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 197
- 239000010457 zeolite Substances 0.000 title claims abstract description 197
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title claims description 85
- 229930195733 hydrocarbon Natural products 0.000 title claims description 33
- 150000002430 hydrocarbons Chemical class 0.000 title claims description 33
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 20
- 239000003463 adsorbent Substances 0.000 title claims description 12
- 239000007789 gas Substances 0.000 claims abstract description 78
- 239000007864 aqueous solution Substances 0.000 claims abstract description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 151
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 69
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 46
- 238000003756 stirring Methods 0.000 claims description 28
- 150000002500 ions Chemical class 0.000 claims description 20
- 229910052742 iron Inorganic materials 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 12
- 238000001179 sorption measurement Methods 0.000 claims description 11
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 8
- 229960005070 ascorbic acid Drugs 0.000 claims description 5
- 235000010323 ascorbic acid Nutrition 0.000 claims description 5
- 239000011668 ascorbic acid Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 2
- 229910001416 lithium ion Inorganic materials 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 47
- 239000000377 silicon dioxide Substances 0.000 abstract description 20
- -1 Fe(II) ions Chemical class 0.000 abstract description 16
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 10
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract description 6
- 230000003197 catalytic effect Effects 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052593 corundum Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 2
- 239000013078 crystal Substances 0.000 description 40
- 238000006467 substitution reaction Methods 0.000 description 36
- 239000011541 reaction mixture Substances 0.000 description 27
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 24
- 239000000203 mixture Substances 0.000 description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 16
- 239000011734 sodium Substances 0.000 description 15
- 230000032683 aging Effects 0.000 description 12
- 238000005342 ion exchange Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 11
- 238000007796 conventional method Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 230000000704 physical effect Effects 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000012535 impurity Substances 0.000 description 9
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 7
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 229910001388 sodium aluminate Inorganic materials 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 238000001165 gas chromatography-thermal conductivity detection Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 150000001768 cations Chemical group 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229910018068 Li 2 O Inorganic materials 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 150000002506 iron compounds Chemical class 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- IRUDSQHLKGNCGF-UHFFFAOYSA-N 2-methylhex-1-ene Chemical compound CCCCC(C)=C IRUDSQHLKGNCGF-UHFFFAOYSA-N 0.000 description 1
- JMMZCWZIJXAGKW-UHFFFAOYSA-N 2-methylpent-2-ene Chemical compound CCC=C(C)C JMMZCWZIJXAGKW-UHFFFAOYSA-N 0.000 description 1
- 238000004400 29Si cross polarisation magic angle spinning Methods 0.000 description 1
- 229910017090 AlO 2 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 239000012494 Quartz wool Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 description 1
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9481—Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
- B01J20/186—Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28069—Pore volume, e.g. total pore volume, mesopore volume, micropore volume
- B01J20/28071—Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/7615—Zeolite Beta
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0835—Hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
- B01D2253/1085—Zeolites characterized by a silicon-aluminium ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/112—Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
- B01D2253/1122—Metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/306—Surface area, e.g. BET-specific surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/311—Porosity, e.g. pore volume
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/702—Hydrocarbons
Definitions
- the present invention relates to an Fe (II) -substituted beta zeolite, a gas adsorbent containing the same, and a method for producing the same.
- the present invention also relates to an adsorbent for adsorbing and removing nitrogen monoxide gas and hydrocarbon gas in a gas phase such as exhaust gas of an internal combustion engine, and a method for removing nitrogen monoxide gas and hydrocarbon gas from the gas phase.
- Patent Document 1 discloses a support obtained by ion-exchanging a beta zeolite having a SiO 2 / Al 2 O 3 molar ratio of 15 to 300 with 0.1 to 15% by mass of Fe 3+ ions, Denitration catalysts having ferric oxide supported on a support are described.
- Patent Document 2 has a skeletal structure in which the Si content attributed to Q 4 of the zeolite skeleton observed in a 29 Si MAS NMR spectrum is 35 to 47% by mass, and has a molar ratio of SiO 2 / Al 2 O 3 . It is described that a beta-type zeolite having a ratio of 20 or more and less than 100 is ion-exchanged to carry Fe 3+ and is brought into contact with exhaust gas containing nitrogen oxides.
- Patent Document 3 describes a method for producing a NO x adsorbent.
- a beta-type zeolite is impregnated with an iron chloride aqueous solution to form an iron chloride-containing zeolite, and the iron chloride-containing zeolite is heated at 330 ° C. to 500 ° C. in a moisture-free atmosphere to form Fe.
- An object of the present invention is to provide a beta-type zeolite that can eliminate various drawbacks of the above-described prior art.
- the present inventors have used the above object by using an Fe (II) -substituted beta zeolite that has been ion-exchanged with divalent iron and has a specific SiO 2 / Al 2 O 3 ratio. Has been found to be achieved.
- the present invention provides an Fe (II) -substituted beta zeolite having an SiO 2 / Al 2 O 3 ratio of 7 or more and less than 10 and ion-exchanged with Fe (II) ions.
- the present invention also provides a gas adsorbent containing the Fe (II) -substituted beta zeolite.
- the present invention is to disperse a beta zeolite having a SiO 2 / Al 2 O 3 ratio of 7 or more and less than 10 in an aqueous solution of a divalent iron water-soluble compound, and mix and agitate the beta zeolite.
- the present invention provides a method for producing Fe (II) -substituted beta zeolite, which comprises a step of supporting Fe (II) ions.
- the present invention relates to a gas containing nitrogen monoxide or nitrogen monoxide having an SiO 2 / Al 2 O 3 ratio of 7 or more and less than 10 and having Fe (II) -substituted beta zeolite ion-exchanged with Fe (II) ions. And a method for removing nitric oxide in which nitrogen monoxide is adsorbed on the Fe (II) -substituted beta zeolite.
- the SiO 2 / Al 2 O 3 ratio is 7 or more and less than 10, and the Fe (II) -substituted beta zeolite ion-exchanged with Fe (II) ions is brought into contact with hydrocarbon or a gas containing hydrocarbon.
- a method for removing hydrocarbons by adsorbing the hydrocarbons to the Fe (II) -substituted beta zeolite is provided.
- an Fe (II) -substituted beta zeolite useful for catalytic removal of various gases and a method for producing the same are provided.
- an Fe (II) -substituted beta zeolite useful for catalytic removal of various gases and a method for producing the same are provided.
- the present invention when catalytic removal of nitrogen monoxide and hydrocarbons is performed, even if the amount of Fe (II) introduced into the beta zeolite by substitution is small, nitrogen monoxide and hydrocarbons are efficiently obtained. Carbon can be adsorbed and removed.
- FIG. 1 is a process diagram for producing a pre-substitution beta zeolite used in the present invention.
- the present invention relates to an Fe (II) -substituted beta zeolite obtained by ion exchange of beta zeolite with Fe (II) ions.
- the present invention also relates to a gas adsorbent containing the Fe (II) -substituted beta zeolite.
- Fe (II) ions, [AlO 2] in the beta zeolite - that is a cation ion exchange existing on the site, is supported on beta zeolite.
- the important point in the present invention is that the iron ion ion-exchanged with the cation contained in the beta zeolite is Fe (II) ion.
- the desired level of gas removal effect cannot be expressed. This is because the Fe (II) -substituted beta type used in the present invention is used. This does not prevent the zeolite from supporting Fe (III) ions. That is, it is permissible for Fe (II) -substituted beta zeolite to carry Fe (III) ions.
- examples of the gas to be adsorbed using the Fe (II) -substituted beta zeolite include nitrogen monoxide gas and hydrocarbon gas which are gases contained in the exhaust gas of an internal combustion engine.
- hydrocarbon gas alkanes such as methane, ethane, propane, butane, pentane, hexane, n-heptane and isooctane, alkenes such as ethylene, propylene, butene, pentene, methylpentene, hexene and methylhexene, benzene
- the Fe (II) -substituted beta zeolite of the present invention is effective for adsorption of aromatics such as toluene, xylene and trimethylbenzene.
- the amount of Fe (II) contained in the Fe (II) -substituted beta zeolite, that is, the supported amount is preferably 0.001 to 0.4 mmol / g with respect to the Fe (II) -substituted beta zeolite. It is more preferably 0.001 to 0.3 mmol / g, more preferably 0.001 to 0.25 mmol / g.
- the amount of Fe (II) supported in the Fe (II) -substituted beta zeolite is measured by the following method. First, the Fe (II) -substituted beta zeolite to be measured is weighed. This Fe (II) -substituted beta zeolite is dissolved with hydrogen fluoride (HF), and the total amount of iron in the solution is quantified using an inductively coupled plasma emission spectrometer. Separately from this, the amount of Fe (III) in the Fe (II) -substituted beta zeolite to be measured is measured by H 2 -TPR (temperature reduction method). Then, the amount of Fe (II) is calculated by subtracting the amount of Fe (III) from the total amount of iron.
- HF hydrogen fluoride
- Beta-type zeolite is dispersed in an aqueous solution of a divalent iron water-soluble compound and mixed by stirring.
- the beta zeolite is preferably mixed at a ratio of 0.5 to 7 parts by mass with respect to 100 parts by mass of the aqueous solution. What is necessary is just to set the addition amount of the water-soluble compound of bivalent iron appropriately according to the grade of ion exchange.
- Mixing and stirring may be performed at room temperature or under heating.
- the liquid temperature is preferably set to 10 to 30 ° C.
- the mixing and stirring may be performed in an air atmosphere or in an inert gas atmosphere such as a nitrogen atmosphere.
- a compound that prevents divalent iron from being oxidized to trivalent iron may be added to water.
- ascorbic acid which is a compound that does not hinder the ion exchange of Fe (II) ions and can prevent the Fe (II) ions from being oxidized to Fe (III) ions.
- the amount of ascorbic acid to be added is 0.1 to 3 times, particularly 0.2 to 2 times the number of moles of divalent iron to be added, from the viewpoint of effectively preventing the oxidation of divalent iron. preferable.
- the solid content is suction filtered, washed with water and dried to obtain the target Fe (II) -substituted beta zeolite.
- the X-ray diffraction pattern of this Fe (II) -substituted beta zeolite is almost the same as the X-ray diffraction pattern of the beta zeolite before supporting Fe (II) ions. That is, the crystal structure of zeolite is not changed by ion exchange.
- the Fe (II) -substituted beta zeolite used in the present invention has a SiO 2 / Al 2 O 3 ratio of 7 or more and less than 10, preferably 8 or more and 9.6 or less. That is, this Fe (II) -substituted beta zeolite has a low SiO 2 / Al 2 O 3 ratio.
- a low SiO 2 / Al 2 O 3 ratio in zeolite means that the number of ion exchange sites is large. In other words, it means that the ability to carry Fe (II) ions is high.
- Fe (II) -substituted beta zeolite having a low SiO 2 / Al 2 O 3 ratio nitrogen monoxide and hydrocarbons that can adsorb one Fe (II) ion can be used. It was found that the number of molecules could be increased. Therefore, by using the Fe (II) -substituted beta zeolite of the present invention, nitrogen monoxide and hydrocarbon can be adsorbed efficiently.
- the specific surface area of the micropores is preferably 270 to 500 m 2 / g, particularly 270 to 450 m 2 / g, particularly 270 to 400 m 2 / g.
- 0.14 ⁇ 0.25m 2 / g, particularly 0.14 ⁇ 0.22m 2 / g is preferably especially 0.14 ⁇ 0.21m 2 / g.
- the Fe (II) -substituted beta zeolite used in the present invention preferably contains lithium.
- an Fe (II) -substituted beta zeolite having a low SiO 2 / Al 2 O 3 ratio can be easily obtained.
- the amount of lithium contained in the Fe (II) -substituted beta zeolite is preferably 0.001 to 0.4 mmol / g with respect to the Fe (II) -substituted beta zeolite, and 0.001 to 0.3 mmol / g. More preferably, it is g.
- the Fe (II) -substituted beta zeolite used in the present invention is particularly excellent in trapping properties of nitrogen monoxide and hydrocarbons discharged at the cold start of the internal combustion engine.
- the temperature of the three-way catalyst is not high enough at the cold start of the gasoline engine or diesel engine.
- beta zeolite having a specific physical property value as the beta zeolite that is ion-exchanged with Fe (II) ions.
- the beta zeolite used in the present invention (hereinafter, this zeolite is referred to as “pre-substitution beta zeolite” in comparison with the Fe (II) -substituted beta zeolite) is SiO 2 / Al 2.
- pre-substitution beta zeolite is SiO 2 / Al 2.
- One of the features is that it is rich in aluminum with a low O 3 ratio.
- the pre-substitution beta-type zeolite is an aluminum-rich one having a SiO 2 / Al 2 O 3 ratio of preferably 7 or more and less than 10, more preferably 8 or more and 9.6.
- Such an aluminum-rich pre-substitution beta zeolite preferably has a BET specific surface area measured in the sodium form of 300 to 700 m 2 / g, more preferably 350 to 600 m 2 / g.
- the micropore specific surface area measured in a sodium type state is preferably 270 to 500 m 2 / g, more preferably 380 to 500 m 2 / g.
- the micropore volume measured in the sodium form is preferably 0.14 to 0.25 cm 3 / g, more preferably 0.14 to 0.21 cm 3 / g.
- the values of SiO 2 / Al 2 O 3 ratio, BET specific surface area, micropore specific surface area and micropore volume in the beta zeolite before substitution are the corresponding values in the Fe (II) substituted beta zeolite. It does n’t change much.
- Pre-substitution beta-type zeolite includes sodium-type zeolite, and further includes sodium-ion-exchanged protons to form H + type.
- the beta zeolite is of the H + type, the measurement of the specific surface area and the like is performed after the proton is replaced with sodium ions.
- the sodium type beta zeolite is dispersed in an aqueous ammonium salt solution such as ammonium nitrate, and the sodium ions in the zeolite are replaced with ammonium ions. By calcining this ammonium type beta zeolite, an H + type beta zeolite can be obtained.
- the aluminum-rich pre-substitution beta zeolite having the above-mentioned physical properties is suitably produced by the production method described later.
- the reason why the pre-substitution beta-type zeolite can achieve the above-mentioned physical properties is that the production method can suppress the occurrence of defects that may occur in the crystal structure of the obtained pre-substitution-type beta zeolite. The details are not clear, although it is presumed that it was because of this.
- the conventional synthesis method of beta zeolite using organic SDA is performed in the order of ⁇ 1>, ⁇ 2>, ⁇ 3>.
- a method carried out in the order of ⁇ 1>, ⁇ 2>, ⁇ 3>, ⁇ 4>, ⁇ 5>, ⁇ 6>, ⁇ 9> for example, Chinese Patent Application No. 10129968A). (Hereinafter also referred to as “conventional method”).
- the use of a seed crystal is essential, and for the production of the seed crystal, an organic compound called tetraethylammonium ion and a structure directing agent (hereinafter also referred to as “SDA”) are essential.
- SDA structure directing agent
- the beta-type zeolite obtained by the conventional method it is necessary to remove tetraethylammonium ion by high temperature baking.
- pre-substitution beta zeolite can be produced by six methods.
- the first method is the same method as the conventional method ⁇ 1>, ⁇ 2>, ⁇ 3>, ⁇ 4>, ⁇ 5>, ⁇ 6>, ⁇ 9>.
- the reaction conditions are different from the conventional method. Therefore, according to the present invention, a beta zeolite before substitution having a low SiO 2 / Al 2 O 3 ratio can be produced.
- the second method is a method performed in the order of ⁇ 1>, ⁇ 2>, ⁇ 3>, ⁇ 4>, ⁇ 5>, ⁇ 7>, ⁇ 6>, ⁇ 9>. In this method, a seed crystal having a low SiO 2 / Al 2 O 3 ratio can be effectively used by standing and heating after aging.
- the third method is a method performed in the order of ⁇ 1>, ⁇ 2>, ⁇ 3>, ⁇ 4>, ⁇ 5>, ⁇ 7>, ⁇ 8>, ⁇ 9>. Even in this method, the reaction conditions are different from those of the conventional method.
- the following three orders are also possible.
- the reaction conditions such as the SiO 2 / Al 2 O 3 ratio of the seed crystal and the composition of the reaction mixture are different from those of the conventional method.
- the pre-substitution beta zeolite obtained by the method of the present invention is used as a seed crystal to be used. That is, in these three production methods, seed crystals can be used repeatedly, and thus organic SDA is essentially not used. In short, these three production methods can be said to be methods for producing a beta zeolite by a green process that has an extremely low environmental load.
- the method of the beta zeolite before substitution used in the present invention will be described in more detail.
- the method in the order of ⁇ 1>, ⁇ 2>, and ⁇ 3> in FIG. 1 is the same as the conventional method using organic SDA.
- the SiO 2 / Al 2 O 3 ratio range of the seed crystal is limited to a narrow range of 22-25.
- Beta-type zeolite having a seed crystal SiO 2 / Al 2 O 3 ratio of less than 8 is generally not used because it is extremely difficult to synthesize. If the SiO 2 / Al 2 O 3 ratio of the seed crystal exceeds 30, the product tends to be ZSM-5 regardless of the composition of the reaction mixture. Further, the amount of seed crystals added in this production method is in the range of 0.1 to 20% by mass with respect to the silica component contained in the reaction mixture. The amount added is preferably small, but is determined in consideration of the reaction rate and the effect of suppressing impurities. A preferable addition amount is 1 to 20% by mass, and a more preferable addition amount is 1 to 10% by mass.
- the average particle size of the beta-type zeolite seed crystal used in this production method is 150 nm or more, preferably 150 to 1000 nm, and more preferably 200 to 600 nm.
- the size of the pre-substitution beta zeolite obtained by synthesis is generally not uniform and has a certain particle size distribution, and it is not difficult to determine the crystal particle size having the highest frequency among them. .
- the average particle diameter refers to the maximum particle diameter of crystals in observation with a scanning electron microscope. Beta-type zeolite using organic SDA generally has a small average particle size and is generally in the range of 100 nm to 1000 nm. However, the particle diameter is unclear due to the aggregation of small particles, or there are those exceeding 1000 nm.
- beta zeolite having an average particle size of 150 nm or more is used as a seed crystal. Since the pre-substitution beta zeolite obtained by this production method also has an average particle diameter in this range, it can be suitably used as a seed crystal.
- the reaction mixture to which the seed crystal is added is obtained by mixing a silica source, an alumina source, an alkali source, and water so as to have a composition represented by a molar ratio shown below, for example. If the composition of the reaction mixture is outside this range, it is not easy to obtain the target pre-substitution beta zeolite.
- silica source used for obtaining the reaction mixture having the above molar ratio examples include silica itself and silicon-containing compounds capable of generating silicate ions in water. Specific examples include wet method silica, dry method silica, colloidal silica, sodium silicate, aluminosilicate gel, and the like. These silica sources can be used alone or in combination of two or more. Among these silica sources, it is preferable to use silica (silicon dioxide) in that a zeolite can be obtained without unnecessary by-products.
- alumina source for example, a water-soluble aluminum-containing compound can be used. Specific examples include sodium aluminate, aluminum nitrate, and aluminum sulfate.
- Aluminum hydroxide is also a suitable alumina source. These alumina sources can be used alone or in combination of two or more. Of these alumina sources, it is preferable to use sodium aluminate or aluminum hydroxide because zeolite can be obtained without unnecessary by-products (for example, sulfate, nitrate, etc.).
- sodium hydroxide can be used in the case of sodium.
- lithium halides such as lithium chloride and lithium bromide
- lithium salts such as lithium acetate, or lithium hydroxide
- sodium silicate is used as the silica source or sodium aluminate is used as the alumina source
- sodium which is an alkali metal component contained therein is simultaneously regarded as NaOH and is also an alkali component.
- Na 2 O is calculated as the sum of all alkali components in the reaction mixture.
- the intended pre-substitution beta zeolite can be obtained even if the reaction mixture does not contain lithium ions.
- the method of adding the raw materials when preparing the reaction mixture may be a method that facilitates obtaining a uniform reaction mixture.
- a uniform reaction mixture can be obtained by adding and dissolving an alumina source and a lithium source in an aqueous sodium hydroxide solution at room temperature, and then adding a silica source and stirring.
- the seed crystals are added with mixing with the silica source or after the silica source is added. Thereafter, stirring and mixing are performed so that the seed crystals are uniformly dispersed.
- the temperature at which the reaction mixture is prepared and generally the reaction may be performed at room temperature (20 to 25 ° C.).
- the reaction mixture containing seed crystals is placed in a closed container and heated to react to crystallize the beta zeolite.
- This reaction mixture does not contain organic SDA.
- One method of crystallizing is to heat by standing method without aging as shown in the conventional method ( ⁇ 4>, ⁇ 5>, ⁇ 6>, ⁇ 9> procedure) ).
- aging refers to an operation of maintaining the temperature at a temperature lower than the reaction temperature for a certain period of time. In aging, it is generally allowed to stand without stirring. It is known that by aging, effects such as preventing by-product impurities, enabling heating under stirring without by-product impurities, and increasing the reaction rate are known. However, the mechanism of action is not always clear. The temperature and time for aging are set so that the above-mentioned effects are maximized. In this production method, aging is preferably carried out at 20 to 80 ° C., more preferably 20 to 60 ° C., and preferably in the range of 2 hours to 1 day.
- the following three methods are methods for producing a pre-substitution beta zeolite by the green process, which is a feature of this production method. According to these three methods, infinite self-reproduction using the pre-substitution beta zeolite obtained by the present production method as a seed crystal is possible, and a production process using no organic SDA is possible. That is, a method in the order ⁇ 10>, ⁇ 5>, ⁇ 6>, ⁇ 9>, a method in the order ⁇ 10>, ⁇ 5>, ⁇ 7>, ⁇ 6>, ⁇ 9>, ⁇ 10>, It is a method in the order of ⁇ 5>, ⁇ 7>, ⁇ 8>, ⁇ 9>.
- the characteristics of each process are as described above. When stirring and heating, aging is preferably performed.
- the heating temperature is in the range of 100 to 200 ° C., preferably 120 to 180 ° C., and heating is performed under an autogenous pressure. If the temperature is lower than 100 ° C., the crystallization rate becomes extremely slow, so that the production efficiency of the beta zeolite is deteriorated. On the other hand, when the temperature exceeds 200 ° C., an autoclave having a high pressure resistance is required, which is not economical, and the generation rate of impurities increases.
- the heating time is not critical in the present production method, and it may be heated until a beta zeolite with sufficiently high crystallinity is produced. In general, a pre-substitution beta zeolite with satisfactory crystallinity can be obtained by heating for about 5 to 150 hours.
- Pre-substitution beta-type zeolite crystals are obtained by the heating described above. After completion of the heating, the produced crystal powder is separated from the mother liquor by filtration, washed with water or warm water and dried. Since it does not contain organic substances in a dry state, there is no need for firing.
- the beta zeolite before substitution thus obtained is ion-exchanged with Fe (II) ions as described above to become Fe (II) substituted beta zeolite.
- the Fe (II) -substituted beta zeolite may be used as it is as an adsorbent for various gases such as nitric oxide and hydrocarbons, or as a gas adsorbent containing the Fe (II) -substituted beta zeolite. May be.
- the Fe (II) -substituted beta zeolite is brought into solid-gas contact with various gases such as nitrogen monoxide and hydrocarbons, whereby the gas is converted into Fe (II).
- gases such as nitrogen monoxide and hydrocarbons, whereby the gas is converted into Fe (II).
- II) Can be adsorbed on substituted beta zeolite.
- the nitric oxide gas or hydrocarbon gas in addition to adsorbing the nitric oxide gas or hydrocarbon gas by bringing the nitric oxide gas or hydrocarbon gas itself into contact with the Fe (II) substituted beta zeolite, the nitric oxide gas or hydrocarbon gas is adsorbed.
- a gas containing gas may be brought into contact with the Fe (II) -substituted beta zeolite to adsorb nitrogen monoxide gas or hydrocarbon gas in the gas and remove nitrogen monoxide gas or hydrocarbon gas from the gas.
- Examples of such gas include exhaust gas of an internal combustion engine using hydrocarbons such as gasoline and light oil as fuel, exhaust gas generated from various boilers and incinerators, and the like.
- Beta-type zeolite was dissolved using potassium hydroxide (KOH), and the solution was analyzed using ICP to quantify Si.
- the SiO 2 / Al 2 O 3 ratio was calculated based on the determined amounts of Si and Al.
- Example 1 Production of pre-substitution beta-type zeolite This is an example of producing an Fe (II) -substitution beta-type zeolite having a SiO 2 / Al 2 O 3 ratio of 9.4. In 12.71 g of pure water, 0.801 g of sodium aluminate and 1.443 g of 36% sodium hydroxide were dissolved.
- a finely divided silica 3.048G, a mixture of beta-type zeolite seed crystal 0.305g of SiO 2 / Al 2 O 3 ratio 24.0, mixed with stirring by adding to an aqueous solution of the gradually, SiO 2
- This beta type zeolite seed crystal was obtained by the method described below using SDA.
- This reaction mixture was placed in a 60 cc sealed stainless steel container and heated at 150 ° C. for 60 hours under autogenous pressure without aging and stirring. After cooling the sealed container, the product was filtered and washed with warm water to obtain a white powder. When XRD measurement was performed on this product, it was confirmed that this product was a beta zeolite containing no impurities such as SDA.
- Table 1 shows the physical property values of the pre-substitution beta zeolite thus obtained.
- Fe (II) -substituted beta zeolite After adding 60 ml of distilled water, 1 g of beta-type zeolite before substitution, and ascorbic acid twice as many as the iron compound to be added to a polypropylene container, Fe (II) SO the 4 ⁇ 7H 2 O, was added 10 wt% with respect to the front-substituted beta zeolite, under a nitrogen atmosphere and stirred at room temperature for 1 day. Thereafter, the precipitate was filtered by suction, washed with distilled water, and dried to obtain Fe (II) -substituted beta zeolite carrying Fe 2+ at 0.065 mmol / g.
- the amount of Fe 2+ supported was determined by the method described above.
- XRD measurement was performed on the obtained Fe (II) substituted beta zeolite, it was observed that the peak position and peak intensity were almost the same as those of the beta zeolite before substitution, and the structure of the beta zeolite was maintained after ion exchange. It was confirmed that
- the amount of nitric oxide gas that has come out of the quartz glass tube without being adsorbed is measured using the peak area of a thermal conductivity gas chromatograph (GC-TCD, manufactured by Shimadzu Corporation, GC-8A) and a chemiluminescent NO analyzer (NOx). It was calculated from the value detected by analyzer, manufactured by Yanagimoto Seisakusho, ECL-77A).
- the measurement conditions of the thermal conductivity gas chromatograph (GC-TCD) are as shown below.
- the amount of nitrogen monoxide gas adsorbed on the Fe (II) -substituted beta zeolite per unit mass was determined by subtracting the calculated value from the supply amount of nitric oxide gas. The results are shown in Table 1 below.
- Toluene gas adsorption evaluation Toluene which is a typical hydrocarbon contained in exhaust gas discharged from an internal combustion engine, was used as an adsorption target gas. 20 mg of Fe (II) -substituted beta zeolite was put in a quartz tube having an inner diameter of 4 mm and held between quartz wool and glass beads. Helium was used as the mobile phase and the sample was activated at 390 ° C. for about 1 hour. After cooling the column to 50 ° C., toluene was injected until saturated.
- the amount of toluene gas that was not adsorbed and emerged from the quartz glass tube was calculated from the value detected by the peak area of the thermal conductivity gas chromatograph (GC-TCD, manufactured by Shimadzu Corporation, GC-8A).
- the measurement conditions of the thermal conductivity gas chromatograph (GC-TCD) are as shown below.
- the amount of toluene gas adsorbed on the Fe (II) -substituted beta zeolite per unit mass was determined by subtracting the calculated value from the supply amount of toluene gas. The results are shown in Table 1 below.
- Example 2 and 3 Fe (II) SO 4 .7H 2 O was added in the same manner as in Example 1 except that 20% by mass (Example 2) and 40% by mass (Example 3) were added to the pre-substitution beta-type zeolite. ) A substituted beta zeolite was obtained. The amount of Fe 2+ supported was as shown in Table 1. The obtained Fe (II) -substituted beta zeolite was evaluated in the same manner as in Example 1. The results are shown in Table 1. Note that Example 3 has a larger amount of Fe (II) SO 4 .7H 2 O added than Example 2, but the amount of Fe 2+ supported in Example 2 is larger. Should.
- Example 4 (1) Production of Beta-Type Zeolite Before Substitution This is an example of producing an Fe (II) -substituted beta-type zeolite having a SiO 2 / Al 2 O 3 ratio of 8.8. In 12.73 g of pure water, 0.898 g of sodium aluminate and 1.337 g of 36% sodium hydroxide were dissolved.
- a finely divided silica 3.039G, a mixture of beta-type zeolite seed crystal 0.304g of SiO 2 / Al 2 O 3 ratio 24.0, mixed with stirring by adding to an aqueous solution of the gradually, SiO 2
- This beta-type zeolite seed crystal is the same as that used in Example 1.
- This reaction mixture was placed in a 60 cc sealed stainless steel container and heated at 150 ° C. for 60 hours under autogenous pressure without aging and stirring. After cooling the sealed container, the product was filtered and washed with warm water to obtain a white powder. When XRD measurement was performed on this product, it was confirmed that this product was a beta zeolite containing no impurities such as SDA.
- Table 1 shows the physical property values of the pre-substitution beta zeolite thus obtained.
- Fe (II) -substituted beta zeolite After adding 60 ml of distilled water, 1 g of beta-type zeolite before substitution, and ascorbic acid twice as many as the iron compound to be added to a polypropylene container, Fe (II) SO the 4 ⁇ 7H 2 O, was added 40 wt% with respect to the front-substituted beta zeolite, under a nitrogen atmosphere and stirred at room temperature for 1 day. Thereafter, the precipitate was filtered by suction, washed with distilled water, and dried to obtain Fe (II) -substituted beta zeolite carrying Fe 2+ at 0.117 mmol / g.
- Example 5 an Fe (II) -substituted beta zeolite having a SiO 2 / Al 2 O 3 ratio of 8.8 is produced.
- 14.54 g of pure water 0.477 g of sodium aluminate, 0.822 g of 36% sodium hydroxide, and 0.141 g of lithium hydroxide monohydrate were dissolved to obtain an aqueous solution.
- a finely divided silica 2.017G, a mixture of beta-type zeolite seed crystal 0.202g of SiO 2 / Al 2 O 3 ratio 24.0, mixed with stirring by adding to an aqueous solution of the gradually, SiO 2
- This beta-type zeolite seed crystal is the same as that used in Example 1.
- This reaction mixture was put in a 60 cc sealed stainless steel vessel, aged at 80 ° C. for 16 hours, and then allowed to stand still at 150 ° C. for 72 hours under autogenous pressure without stirring.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Catalysts (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
換言すれば、Fe(II)イオンを担持する能力が高いことを意味する。本発明者の検討の結果、意外にも、SiO2/Al2O3比が低いFe(II)置換ベータ型ゼオライトでは、1個のFe(II)イオンが吸着できる一酸化窒素やハイドロカーボンの分子数を高められることが判明した。したがって本発明のFe(II)置換ベータ型ゼオライトを用いることで、一酸化窒素やハイドロカーボンを効率よく吸着することができる。
・<10>、<5>、<6>、<9>
・<10>、<5>、<7>、<6>、<9>
・<10>、<5>、<7>、<8>、<9>
これらの場合も種結晶のSiO2/Al2O3比や、反応混合物の組成などの反応条件が従来法と異なる。その上、これらの三通りの方法では、使用する種結晶として、本発明の方法によって得られた置換前ベータ型ゼオライトを用いている。すなわち、この三通りの製造方法では種結晶が繰り返し使用可能なので、本質的に有機SDAを使用しない。要するに、この三通りの製造方法は、環境負荷が究極的に小さいグリーンプロセスによるベータ型ゼオライトの製造方法ということができる。
・SiO2/Al2O3=6~40
・Na2O/SiO2=0.05~0.25
・Li2O/SiO2=0.005~0.25
・H2O/SiO2=5~50
・SiO2/Al2O3=10~40
・Na2O/SiO2=0.1~0.25
・Li2O/SiO2=0.01~0.15
・H2O/SiO2=10~25
・SiO2/Al2O3=40~200
・Na2O/SiO2=0.22~0.4
・H2O/SiO2=10~50
・SiO2/Al2O3=44~200
・Na2O/SiO2=0.24~0.35
・H2O/SiO2=15~25
・SiO2/Al2O3=10~40
・Na2O/SiO2=0.05~0.25
・H2O/SiO2=5~50
・SiO2/Al2O3=12~40
・Na2O/SiO2=0.1~0.25
・H2O/SiO2=10~25
粉末X線回折装置:マック サイエンス社製、粉末X線回折装置 MO3XHF22、Cukα線使用、電圧40kV、電流30mA、スキャンステップ0.02°、スキャン速度2°/min
SiO2/Al2O3比:ベータ型ゼオライトを、フッ化水素(HF)を用いて溶解させ、溶解液を、ICPを用いて分析しAlを定量した。またベータ型ゼオライトを、水酸化カリウム(KOH)を用いて溶解させ、溶解液を、ICPを用いて分析しSiを定量した。定量したSi及びAlの量に基づきSiO2/Al2O3比を算出した。
BET表面積、ミクロ孔比表面積及びミクロ孔容積測定装置:(株)カンタクローム インスツルメンツ社製 AUTOSORB-1
(1)置換前ベータ型ゼオライトの製造
SiO2/Al2O3比が9.4であるFe(II)置換ベータ型ゼオライトを製造した例である。純水12.71gに、アルミン酸ナトリウム0.801gと、36%水酸化ナトリウム1.443gとを溶解した。微粉状シリカ3.048gと、SiO2/Al2O3比=24.0のベータ型ゼオライト種結晶0.305gを混合したものを、少しずつ前記の水溶液に添加して撹拌混合し、SiO2/Al2O3=18.0、Na2O/SiO2=0.20、H2O/SiO2=15の組成の反応混合物を得た。このベータ型ゼオライト種結晶は、SDAを用いて以下に述べる方法で得られたものである。この反応混合物を60ccのステンレス製密閉容器に入れて、熟成及び撹拌することなしに150℃で60時間、自生圧力下で静置加熱した。密閉容器を冷却後、生成物を濾過、温水洗浄して白色粉末を得た。この生成物についてXRD測定を行ったところ、この生成物はSDA等の不純物を含まないベータ型ゼオライトであることが確認された。このようにして得られた置換前ベータ型ゼオライトの物性値を表1に示す。
テトラエチルアンモニウムヒドロキシドをSDAとして用い、アルミン酸ナトリウムをアルミナ源、微粉状シリカ(Mizukasil P707)をシリカ源とする従来公知の方法により、165℃、96時間、撹拌加熱を行って、SiO2/Al2O3比が24.0のベータ型ゼオライトを合成した。これを電気炉中で空気を流通しながら550℃で10時間焼成して、有機物を含まない結晶を製造した。X線回折の結果から、この結晶はベータ型ゼオライトであることが確認された。この結晶を走査型電子顕微鏡により観察した結果、平均粒子径は280nmであった。このベータ型ゼオライトは、SDAを含まないものであった。
ポリプロピレン容器に60mlの蒸留水、置換前ベータ型ゼオライト1g及び加える鉄化合物の2倍のモル数のアスコルビン酸を加えた後、Fe(II)SO4・7H2Oを、置換前ベータ型ゼオライトに対して10質量%加え、窒素雰囲気下、室温で1日撹拌した。その後、沈殿物を吸引濾過し、蒸留水で洗浄後、乾燥させFe2+を0.065mmol/g担持したFe(II)置換ベータ型ゼオライトを得た。Fe2+の担持量は、上述した方法で求めた。得られたFe(II)置換ベータ型ゼオライトについてXRD測定を行ったところ、ピーク位置及びピーク強度が置換前ベータ型ゼオライトとほぼ変わらないことが観察され、イオン交換後もベータ型ゼオライトの構造を維持していることが確認された。
Fe(II)置換ベータ型ゼオライト20mgを電子天秤で正確に秤量した後、希釈剤としてシリコンカーバイトを180mg用いて、両者を均等になるように混合した。混合物を、内径6mmの石英ガラス管に詰めた。混合中の吸着水をマントルヒーターで加温して除去した後、室温まで冷却した。次に、石英ガラス管内に2分おきに1030ppmの一酸化窒素ガスを、室温で、5cm3パルスした。吸着されずに石英ガラス管から出てきた一酸化窒素ガスの量を、熱伝導度型ガスクロマトグラフ(GC-TCD、島津製作所製、GC-8A)のピーク面積及び化学発光式NO分析装置(NOx analyzer、柳本製作所製、ECL-77A)で検出される値から算出した。熱伝導度型ガスクロマトグラフ(GC-TCD)の測定条件は、以下に示すとおりである。そして、算出した値を、一酸化窒素ガスの供給量から差し引くことで、単位質量あたりのFe(II)置換ベータ型ゼオライトに吸着した一酸化窒素ガスの量を求めた。その結果を以下の表1に示す。
・キャリアガス:Heガス
・キャリアガス流量:30cm3・min-1
・検出部温度:100℃
・検出部電流:80mA
内燃機関から排出される排気ガスに含まれるハイドロカーボンの典型であるトルエンを吸着の対象ガスとして用いた。Fe(II)置換ベータ型ゼオライト20mgを内径4mmの石英管に入れ、石英ウールとガラスビーズとの間に保持した。移動相としてヘリウムを用い、試料を390℃で約1時間活性化させた。カラムを50℃に冷却した後、トルエンを飽和状態になるまで注入した。吸着されずに石英ガラス管から出てきたトルエンガスの量を、熱伝導度型ガスクロマトグラフ(GC-TCD、島津製作所製、GC-8A)のピーク面積で検出される値から算出した。熱伝導度型ガスクロマトグラフ(GC-TCD)の測定条件は、以下に示すとおりである。そして、算出した値を、トルエンガスの供給量から差し引くことで、単位質量あたりのFe(II)置換ベータ型ゼオライトに吸着したトルエンガスの量を求めた。その結果を以下の表1に示す。
・キャリアガス:Heガス
・キャリアガス流量:30cm3・min-1
・検出部温度:150℃
・検出部電流:50mA
Fe(II)SO4・7H2Oを、置換前ベータ型ゼオライトに対して20質量%(実施例2)及び40質量%(実施例3)加える以外は実施例1と同様にしてFe(II)置換ベータ型ゼオライトを得た。Fe2+の担持量は表1に示すとおりとなった。得られたFe(II)置換ベータ型ゼオライトについて実施例1と同様の評価を行った。その結果を表1に示す。なお実施例3は、実施例2よりも、Fe(II)SO4・7H2Oの添加量は多いが、Fe2+の担持量は実施例2の方が多くなっていることに留意すべきである。
(1)置換前ベータ型ゼオライトの製造
SiO2/Al2O3比が8.8であるFe(II)置換ベータ型ゼオライトを製造した例である。純水12.73gに、アルミン酸ナトリウム0.898gと、36%水酸化ナトリウム1.337gとを溶解した。微粉状シリカ3.039gと、SiO2/Al2O3比=24.0のベータ型ゼオライト種結晶0.304gを混合したものを、少しずつ前記の水溶液に添加して撹拌混合し、SiO2/Al2O3=16.0、Na2O/SiO2=0.20、H2O/SiO2=15の組成の反応混合物を得た。このベータ型ゼオライト種結晶は、実施例1で用いたものと同様のものである。この反応混合物を60ccのステンレス製密閉容器に入れて、熟成及び撹拌することなしに150℃で60時間、自生圧力下で静置加熱した。密閉容器を冷却後、生成物を濾過、温水洗浄して白色粉末を得た。この生成物についてXRD測定を行ったところ、この生成物はSDA等の不純物を含まないベータ型ゼオライトであることが確認された。このようにして得られた置換前ベータ型ゼオライトの物性値を表1に示す。
ポリプロピレン容器に60mlの蒸留水、置換前ベータ型ゼオライト1g及び加える鉄化合物の2倍のモル数のアスコルビン酸を加えた後、Fe(II)SO4・7H2Oを、置換前ベータ型ゼオライトに対して40質量%加え、窒素雰囲気下、室温で1日撹拌した。その後、沈殿物を吸引濾過し、蒸留水で洗浄後、乾燥させFe2+を0.117mmol/g担持したFe(II)置換ベータ型ゼオライトを得た。得られたFe(II)置換ベータ型ゼオライト及び置換前ベータ型ゼオライトについてXRD測定を行ったところ、ピーク位置及びピーク強度がほぼ変わらないことが観察され、イオン交換後もベータ型ゼオライトの構造を維持していることが確認された。得られたFe(II)置換ベータ型ゼオライトについて実施例1と同様の評価を行った。その結果を表1に示す。
SiO2/Al2O3比が8.8であるFe(II)置換ベータ型ゼオライトを製造した例である。純水14.54gに、アルミン酸ナトリウム0.477gと、36%水酸化ナトリウム0.822gと、水酸化リチウム一水塩0.141gとを溶解して水溶液を得た。微粉状シリカ2.017gと、SiO2/Al2O3比=24.0のベータ型ゼオライト種結晶0.202gを混合したものを、少しずつ前記の水溶液に添加して撹拌混合し、SiO2/Al2O3=20.0、Na2O/SiO2=0.175、Li2O/SiO2=0.05、H2O/SiO2=25の組成の反応混合物を得た。このベータ型ゼオライト種結晶は、実施例1で用いたものと同様のものである。この反応混合物を60ccのステンレス製密閉容器に入れて、80℃で16時間熟成した後、撹拌することなしに150℃で72時間、自生圧力下で静置加熱した。密閉容器を冷却後、生成物を濾過、温水洗浄して白色粉末を得た。この生成物についてXRD測定を行ったところ、この生成物はSDA等の不純物を含まないベータ型ゼオライトであることが確認された。このようにして得られた置換前ベータ型ゼオライトの物性値を表1に示す。その後は実施例1と同様にしてFe2+の担持を行った。Fe2+の担持量は表1に示すとおりとなった。得られたFe(II)置換ベータ型ゼオライトについて実施例1と同様の評価を行った。その結果を表1に示す。
置換前ベータ型ゼオライトとして東ソー(株)製のH+型ベータ型ゼオライト(型番HSZ-940HOA、SDAを用いて合成)を用いた。これ以外は実施例1と同様にしてFe(II)置換ベータ型ゼオライトを得た。得られたFe(II)置換ベータ型ゼオライトについて、実施例1と同様の評価を行った。その結果を表1に示す。
置換前ベータ型ゼオライトとして東ソー(株)製のNH4 +型ベータ型ゼオライト(型番HSZ-930NHA、SDAを用いて合成)を用いた。これ以外は実施例1と同様にしてFe(II)置換ベータ型ゼオライトを得た。得られたFe(II)置換ベータ型ゼオライトについて、実施例1と同様の評価を行った。その結果を表1に示す。
Claims (12)
- SiO2/Al2O3比が7以上10未満であり、Fe(II)イオンによってイオン交換されたFe(II)置換ベータ型ゼオライト。
- Fe(II)の担持量が、Fe(II)置換ベータ型ゼオライトに対して0.001~0.4mmol/gである請求項1に記載のFe(II)置換ベータ型ゼオライト。
- Fe(II)イオンによってイオン交換される前のベータ型ゼオライトとして、SiO2/Al2O3比が7以上10未満あるものを用いた請求項1又は2に記載のFe(II)置換ベータ型ゼオライト。
- BET比表面積が300~600m2/gであり、ミクロ孔比表面積が270~500m2/gであり、かつミクロ孔容積が0.14~0.25cm3/gである請求項1ないし3のいずれか一項に記載のFe(II)置換ベータ型ゼオライト。
- リチウムイオンを含有する請求項1ないし4のいずれか一項に記載のFe(II)置換ベータ型ゼオライト。
- 請求項1ないし5のいずれか一項に記載のFe(II)置換ベータ型ゼオライトを含むガス吸着剤。
- 一酸化窒素の吸着に用いられる請求項6に記載のガス吸着剤。
- ハイドロカーボンの吸着に用いられる請求項6に記載のガス吸着剤。
- SiO2/Al2O3比が7以上10未満であるベータ型ゼオライトを、二価の鉄の水溶性化合物水溶液中に分散し、混合撹拌することで、該ベータ型ゼオライトにFe(II)イオンを担持させる工程を有する、Fe(II)置換ベータ型ゼオライトの製造方法。
- 前記混合撹拌に際し、前記水溶液に、前記二価の鉄のモル数の0.1~3倍のアスコルビン酸を添加する請求項9に記載の製造方法。
- SiO2/Al2O3比が7以上10未満であり、Fe(II)イオンによってイオン交換されたFe(II)置換ベータ型ゼオライトを一酸化窒素又は一酸化窒素を含むガスと接触させて、一酸化窒素を該Fe(II)置換ベータ型ゼオライトに吸着させる一酸化窒素の除去方法。
- SiO2/Al2O3比が7以上10未満であり、Fe(II)イオンによってイオン交換されたFe(II)置換ベータ型ゼオライトをハイドロカーボン又はハイドロカーボンを含むガスと接触させて、ハイドロカーボンを該Fe(II)置換ベータ型ゼオライトに吸着させるハイドロカーボンの除去方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157000811A KR102074751B1 (ko) | 2012-07-18 | 2013-07-16 | Fe(II) 치환 β형 제올라이트, 그를 포함하는 가스 흡착제 및 그의 제조 방법, 및 일산화질소 및 히드로카본의 제거 방법 |
BR112015000913-1A BR112015000913B1 (pt) | 2012-07-18 | 2013-07-16 | Zeólita do tipo beta substituída com fe(ii), método de produção para a mesma e adsorvente de gás incluindo a mesma, e método de remoção de óxido nítrico e de hidrocarbonetos |
EP13820472.2A EP2876086B1 (en) | 2012-07-18 | 2013-07-16 | Fe(II)-SUBSTITUTED BETA-TYPE ZEOLITE, PRODUCTION METHOD THEREFOR AND GAS ADSORBENT INCLUDING SAME, AND NITRIC OXIDE AND HYDROCARBON REMOVAL METHOD |
US14/414,350 US9656238B2 (en) | 2012-07-18 | 2013-07-16 | Fe(II)-substituted beta-type zeolite, production method therefor and gas adsorbent including same, and nitric oxide and hydrocarbon removal method |
CN201380037116.6A CN104428249B (zh) | 2012-07-18 | 2013-07-16 | Fe(II)置换β型沸石及其制造方法、包含其的气体吸附剂、以及一氧化氮及烃的除去方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012159148A JP5988743B2 (ja) | 2012-07-18 | 2012-07-18 | Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法 |
JP2012-159148 | 2012-07-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014013967A1 true WO2014013967A1 (ja) | 2014-01-23 |
Family
ID=49948794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/069249 WO2014013967A1 (ja) | 2012-07-18 | 2013-07-16 | Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9656238B2 (ja) |
EP (1) | EP2876086B1 (ja) |
JP (1) | JP5988743B2 (ja) |
KR (1) | KR102074751B1 (ja) |
CN (1) | CN104428249B (ja) |
BR (1) | BR112015000913B1 (ja) |
WO (1) | WO2014013967A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107428549A (zh) * | 2015-02-09 | 2017-12-01 | UniZeo株式会社 | β型沸石的制造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5988743B2 (ja) | 2012-07-18 | 2016-09-07 | ユニゼオ株式会社 | Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法 |
JP6058433B2 (ja) | 2013-03-12 | 2017-01-11 | ユニゼオ株式会社 | ハイドロカーボンリフォーマトラップ材及びハイドロカーボンの除去方法 |
JP6153196B2 (ja) * | 2013-06-14 | 2017-06-28 | ユニゼオ株式会社 | Mn+置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素の除去方法 |
JP6814433B2 (ja) * | 2016-06-17 | 2021-01-20 | 三井金属鉱業株式会社 | ベータ型ゼオライトの製造方法 |
TWI619539B (zh) | 2016-10-14 | 2018-04-01 | 財團法人工業技術研究院 | 淨化含氮氧化物氣體的組成物及裝置 |
US12083509B2 (en) | 2019-07-03 | 2024-09-10 | Mitsui Mining &Smelting Co., Ltd. | Beta-type zeolite and catalyst containing same |
CN113950460A (zh) | 2019-07-03 | 2022-01-18 | 三井金属矿业株式会社 | 沸石的制造方法 |
CN111751357B (zh) * | 2020-07-22 | 2022-05-24 | 攀钢集团研究院有限公司 | 测定EDTA络合脱硝液中多形态铁离子共存体系下Fe2+与Fe3+含量的方法 |
CN111751355B (zh) * | 2020-07-22 | 2022-05-24 | 攀钢集团研究院有限公司 | 测定Fe(Ⅱ)-EDTA络合脱硝液中二价铁离子含量的方法 |
CN111751356B (zh) * | 2020-07-22 | 2022-05-24 | 攀钢集团研究院有限公司 | 同时测定Fe-EDTA络合脱硝溶液中二价与三价铁离子浓度分量的方法 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002321912A (ja) * | 2001-04-23 | 2002-11-08 | Mitsubishi Electric Corp | 吸着用ゼオライトおよびそれを用いたガス除去装置 |
WO2006011575A1 (ja) | 2004-07-29 | 2006-02-02 | N.E. Chemcat Corporation | 低温特性に優れる脱硝触媒 |
JP2007076990A (ja) | 2005-09-16 | 2007-03-29 | Tosoh Corp | β型ゼオライト及びそれを用いた窒素酸化物の浄化方法 |
JP2008073625A (ja) * | 2006-09-22 | 2008-04-03 | Mitsubishi Motors Corp | Hcトラップ触媒及びhcトラップ触媒の調製方法。 |
CN101249968A (zh) | 2008-03-10 | 2008-08-27 | 吉林大学 | 无有机模板剂合成Beta分子筛的方法 |
JP2008264702A (ja) | 2007-04-20 | 2008-11-06 | Toyota Motor Corp | NOx吸着材の製造方法及びNOx吸着材 |
JP2008542173A (ja) * | 2005-05-31 | 2008-11-27 | 中國石油化工股▲分▼有限公司 | 改質ゼオライトβ |
JP2009520583A (ja) * | 2005-12-22 | 2009-05-28 | ズード−ケミー アーゲー | 鉄含有モレキュラーシーブから作製された吸着材料を含んでいる揮発性炭化水素の吸着ユニット |
JP2010070450A (ja) * | 2008-08-19 | 2010-04-02 | Tosoh Corp | 高耐熱性β型ゼオライト及びそれを用いたSCR触媒 |
JP2010536692A (ja) * | 2007-08-13 | 2010-12-02 | ピーキュー コーポレイション | 新規鉄含有アルミノケイ酸塩ゼオライト、ならびにその作製方法および使用方法 |
WO2010145077A1 (en) * | 2009-06-18 | 2010-12-23 | Basf Se | Organotemplate-free synthetic process for production of zeolitic material |
JP2011116627A (ja) * | 2009-11-05 | 2011-06-16 | Ngk Insulators Ltd | ゼオライト構造体及びその製造方法 |
JP2012126632A (ja) * | 2010-07-01 | 2012-07-05 | Nippon Chem Ind Co Ltd | ゼオライトの製造方法 |
WO2012099090A1 (ja) * | 2011-01-18 | 2012-07-26 | 日本化学工業株式会社 | Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4923690A (en) | 1984-06-11 | 1990-05-08 | Mobil Oil Corporation | Method for producing highly siliceous zeolites |
NZ212014A (en) | 1984-06-11 | 1988-05-30 | Mobil Oil Corp | Preparation of a zeolite and composition thereof |
JPH05123578A (ja) | 1991-11-06 | 1993-05-21 | Nippon Oil Co Ltd | 炭化水素転化触媒の製造方法 |
US5804155A (en) | 1992-11-19 | 1998-09-08 | Engelhard Corporation | Basic zeolites as hydrocarbon traps for diesel oxidation catalysts |
US6248684B1 (en) * | 1992-11-19 | 2001-06-19 | Englehard Corporation | Zeolite-containing oxidation catalyst and method of use |
JP3371527B2 (ja) | 1994-03-11 | 2003-01-27 | エヌオーケー株式会社 | ゼオライト・ベ−タの製造方法 |
US5520895A (en) * | 1994-07-07 | 1996-05-28 | Mobil Oil Corporation | Method for the reduction of nitrogen oxides using iron impregnated zeolites |
DE19712727C1 (de) | 1997-03-26 | 1998-09-24 | Dornier Gmbh | Verfahren zur Herstellung eines Fe(II)- oder Mn(II)-ausgetauschten Zeolithen |
US6286693B1 (en) | 1999-07-01 | 2001-09-11 | Alltrista Corporation | Rack support system for plastic pallets |
US6689709B1 (en) | 2000-11-15 | 2004-02-10 | Engelhard Corporation | Hydrothermally stable metal promoted zeolite beta for NOx reduction |
US20040001781A1 (en) * | 2002-06-27 | 2004-01-01 | Engelhard Corporation | Multi-zone catalytic converter |
US7422628B2 (en) * | 2003-05-12 | 2008-09-09 | Basf Catalysts Llc | Volatile hydrocarbon adsorber unit |
WO2006050820A1 (de) | 2004-11-12 | 2006-05-18 | Süd-Chemie AG | Verfahren zur synthese von zeolith beta mit diethylentriamin |
FI121531B (fi) | 2007-07-23 | 2010-12-31 | Ecocat Oy | Katalyytti poiste- tai prosessikaasuissa olevien haitallisten hiilivetyjen poistamiseksi sekä menetelmä tällaisen katalyytin valmistamiseksi ja käyttämiseksi |
US7754638B2 (en) | 2007-11-30 | 2010-07-13 | Corning Incorporated | Zeolite-based honeycomb body |
US8372477B2 (en) * | 2009-06-11 | 2013-02-12 | Basf Corporation | Polymeric trap with adsorbent |
JP5238908B2 (ja) | 2009-06-18 | 2013-07-17 | ビーエーエスエフ ソシエタス・ヨーロピア | ゼオライト材料を生成するための有機テンプレート不要の合成プロセス |
US8865121B2 (en) | 2009-06-18 | 2014-10-21 | Basf Se | Organotemplate-free synthetic process for the production of a zeolitic material |
JP4904417B2 (ja) | 2009-07-27 | 2012-03-28 | 日本化学工業株式会社 | ベータ型ゼオライト及びその製造方法 |
ES2465617T3 (es) * | 2010-05-21 | 2014-06-06 | Pq Corporation | Zeolita beta que contiene metal para la reducción de NOx |
JP5988743B2 (ja) | 2012-07-18 | 2016-09-07 | ユニゼオ株式会社 | Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法 |
JP6058433B2 (ja) * | 2013-03-12 | 2017-01-11 | ユニゼオ株式会社 | ハイドロカーボンリフォーマトラップ材及びハイドロカーボンの除去方法 |
-
2012
- 2012-07-18 JP JP2012159148A patent/JP5988743B2/ja active Active
-
2013
- 2013-07-16 KR KR1020157000811A patent/KR102074751B1/ko active IP Right Grant
- 2013-07-16 US US14/414,350 patent/US9656238B2/en active Active
- 2013-07-16 EP EP13820472.2A patent/EP2876086B1/en active Active
- 2013-07-16 WO PCT/JP2013/069249 patent/WO2014013967A1/ja active Application Filing
- 2013-07-16 CN CN201380037116.6A patent/CN104428249B/zh active Active
- 2013-07-16 BR BR112015000913-1A patent/BR112015000913B1/pt active IP Right Grant
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002321912A (ja) * | 2001-04-23 | 2002-11-08 | Mitsubishi Electric Corp | 吸着用ゼオライトおよびそれを用いたガス除去装置 |
WO2006011575A1 (ja) | 2004-07-29 | 2006-02-02 | N.E. Chemcat Corporation | 低温特性に優れる脱硝触媒 |
JP2008542173A (ja) * | 2005-05-31 | 2008-11-27 | 中國石油化工股▲分▼有限公司 | 改質ゼオライトβ |
JP2007076990A (ja) | 2005-09-16 | 2007-03-29 | Tosoh Corp | β型ゼオライト及びそれを用いた窒素酸化物の浄化方法 |
JP2009520583A (ja) * | 2005-12-22 | 2009-05-28 | ズード−ケミー アーゲー | 鉄含有モレキュラーシーブから作製された吸着材料を含んでいる揮発性炭化水素の吸着ユニット |
JP2008073625A (ja) * | 2006-09-22 | 2008-04-03 | Mitsubishi Motors Corp | Hcトラップ触媒及びhcトラップ触媒の調製方法。 |
JP2008264702A (ja) | 2007-04-20 | 2008-11-06 | Toyota Motor Corp | NOx吸着材の製造方法及びNOx吸着材 |
JP2010536692A (ja) * | 2007-08-13 | 2010-12-02 | ピーキュー コーポレイション | 新規鉄含有アルミノケイ酸塩ゼオライト、ならびにその作製方法および使用方法 |
CN101249968A (zh) | 2008-03-10 | 2008-08-27 | 吉林大学 | 无有机模板剂合成Beta分子筛的方法 |
JP2010070450A (ja) * | 2008-08-19 | 2010-04-02 | Tosoh Corp | 高耐熱性β型ゼオライト及びそれを用いたSCR触媒 |
WO2010145077A1 (en) * | 2009-06-18 | 2010-12-23 | Basf Se | Organotemplate-free synthetic process for production of zeolitic material |
JP2011116627A (ja) * | 2009-11-05 | 2011-06-16 | Ngk Insulators Ltd | ゼオライト構造体及びその製造方法 |
JP2012126632A (ja) * | 2010-07-01 | 2012-07-05 | Nippon Chem Ind Co Ltd | ゼオライトの製造方法 |
WO2012099090A1 (ja) * | 2011-01-18 | 2012-07-26 | 日本化学工業株式会社 | Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2876086A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107428549A (zh) * | 2015-02-09 | 2017-12-01 | UniZeo株式会社 | β型沸石的制造方法 |
EP3257813A4 (en) * | 2015-02-09 | 2018-06-06 | Mitsui Mining & Smelting Co., Ltd. | Method for producing beta zeolite |
US10501328B2 (en) | 2015-02-09 | 2019-12-10 | Mistui Mining & Smelting Co., Ltd. | Method for producing beta zeolite |
CN107428549B (zh) * | 2015-02-09 | 2021-01-12 | 三井金属矿业株式会社 | β型沸石的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5988743B2 (ja) | 2016-09-07 |
JP2014019601A (ja) | 2014-02-03 |
US20150182941A1 (en) | 2015-07-02 |
CN104428249A (zh) | 2015-03-18 |
EP2876086A4 (en) | 2015-08-05 |
EP2876086A1 (en) | 2015-05-27 |
KR102074751B1 (ko) | 2020-02-10 |
BR112015000913B1 (pt) | 2021-11-16 |
EP2876086B1 (en) | 2016-09-14 |
KR20150036053A (ko) | 2015-04-07 |
CN104428249B (zh) | 2017-08-29 |
BR112015000913A2 (pt) | 2017-06-27 |
US9656238B2 (en) | 2017-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5988743B2 (ja) | Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法 | |
JP5116880B2 (ja) | Fe(II)置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法 | |
JP4904417B2 (ja) | ベータ型ゼオライト及びその製造方法 | |
JP6153196B2 (ja) | Mn+置換ベータ型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素の除去方法 | |
WO2011078149A1 (ja) | 新規メタロシリケート、その製造方法、窒素酸化物浄化触媒、その製造方法、及びそれを用いた窒素酸化物浄化方法 | |
WO2014142053A1 (ja) | ハイドロカーボンリフォーマトラップ材及びハイドロカーボンの除去方法 | |
JP5972694B2 (ja) | Fe(II)置換MEL型ゼオライト、それを含むガス吸着剤及びその製造方法、並びに一酸化窒素及びハイドロカーボンの除去方法 | |
CN113713851A (zh) | 一种提高抗硫抗水性能的In/H-β催化剂制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13820472 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14414350 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157000811 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013820472 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013820472 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015000913 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015000913 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150115 |