Verfahren zur Herstellung von Leuchtstoffen
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Europium-dotierten Erdalkalimetall-Siliconitrids bzw. -Silicooxynitrids mit gesteigerter Emissionseffizienz. Ein weiterer Gegenstand der vorliegenden Erfindung betrifft Europium-dotierte Erdalkalimetall-Siliconitride bzw. -Silicooxynitride, die gemäß dem erfindungsgemäßen Herstellungsverfahren erhältlich sind, sowie die Verwendung der erfindungsgemäßen Europiumdotierten Erdalkalimetall-Siliconitride bzw. -Silicooxynitride als Konversionsleuchtstoffe. Ein weiterer Gegenstand der vorliegenden Erfindung betrifft eine lichtemittierende Vorrichtung, die ein erfindungsgemäßes Europiumdotiertes Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid enthält.
Anorganische fluoreszente Pulver, die im blauen und/oder UV-Spektralbereich anregbar sind, gewinnen immer stärkere Bedeutung als Konversionsleuchtstoffe für phosphorkonvertierte (phosphor converted) LEDs, kurz pc-LEDs. Mittlerweile sind viele Konversionsleuchtstoffsysteme bekannt, wie beispielsweise Erdalkaliorthosilikate, Thiogallate, Granate und Nitride, die jeweils mit Ce3+ oder Eu2+ dotiert sind. Insbesondere die letztgenannten Nitridleuchtstoffe, z. B. M2Si5N8:Eu (M = Ca, Sr und/oder Ba) oder
MAISiN3:Eu (M = Ca und/oder Sr) sind derzeit Thema intensiver Forschung, weil diese Materialien Emissionswellenlängen über 600 nm aufweisen und daher für die Herstellung von warmweißen pc-LEDs mit Farbtemperaturen < 4000 K von Bedeutung sind.
Im Folgenden werden die derzeit bekannten Verfahren zur Herstellung von M2Si5N8:Eu kurz zusammengefasst, wobei M für ein Erdalkalimetall steht:
(1) (2-x) M + x Eu + 5 Si(NH2) -> M2-xEuxSi5N8 + 5 H2
(Schnick et al., Journal of Physics and Chemistry of Solids (2000),
61(12), 2001-2006)
(2) (2-x) M3N2 + 3x EuN + 5 Si3N 3 M2-xEuxSi5N8 + 0,5x N2
(Hintzen et al., Journal of Alloys and Compounds (2006), 417(1-2), 273-279)
(3) (2-x) MO + 1 ,666 Si3N4 + 0,5x Eu2O3 + (2+0,5x) C + 1,5 N2 ^
M2-xEuxSi5N8 + (2+0,5x) CO
(Piao et al., Applied Physics Letters 2006, 88, 161908) (4) 2 Si3N4 + 2(2-x) MCO3 + x/2 Eu2O3 -» M2-xEuxSi5N8 + M2SiO4 + CO2 (Xie et al., Chemistry of Materials, 2006, 18, 5578)
(5) (2-x) M + x Eu + 5 SiCI4 + 28 NH3 M2-xEuxSi5N8 + 20 NH4CI + 2 H2 (Jansen et. al., WO 2010/029184 A1). Silicooxynitride sind beispielsweise durch stöchiometrisches Mischen von SiO2, M3N2, S13N4 und EuN und anschließendes Kalzinieren bei
Temperaturen von ca. 1600 °C zugänglich (z. B. gemäß WO 2011/091839).
Von den oben stehenden Verfahren für die Herstellung von Siliconitriden eignet sich insbesondere das Verfahren (2), da die entsprechenden Edukte kommerziell erhältlich sind, bei der Synthese keine Nebenphasen anfallen und die Effizienz der erhaltenen Materialien am höchsten ist. Bei diesem Verfahren wird häufig ein zweiter Kalzinierschritt angeschlossen, der die Effizienz des Materials noch etwas erhöht.
In einer Abwandlung des oben stehenden Verfahrens (2) kann das zugrunde liegende Erdalkalimetall-Nitrid in einem Überschuss von bis zu 30 mol% zu der in Gleichung (2) angegebenen stöchimetrischen Menge eingesetzt werden. Der überstöchiometrische Einsatz des Erdalkalimetall- Nitrids führt zu einer erhöhten strahlungsinduzierten Emissionseffizienz des erhaltenen Konversionsleuchtstoffs.
Es wurde zudem auch herausgefunden, dass der eingesetzte Überschuss an Erdalkalimetall-Nitrid so hoch gewählt werden kann, dass theoretisch eine andere Nitridphase entsteht. Setzt man die jeweiligen Edukte gemäß unten stehender Reaktionsgleichung (ii) ein, entsteht nicht das ebenfalls bekannte Material SrSiN2, sondern Sr2Si5N8, das standardmäßig nach Reaktionsgleichung (i) entsteht (die für die Dotierung mit Europium notwendige Europiumverbindung wurde zur Vereinfachung weggelassen):
2/3 Sr3N2 + 5/3 Si3N4 Sr2Si5N8 (')
1/3 Sr3N2 + 1/3 Si3N4 > SrSiN2 (ü)
-> 0,2 Sr2Si5N8 + 0,2 Sr3N2
Nach Gleichung (ii) lässt sich allerdings nur die Strontiumverbindung darstellen. Das entsprechende Ba2Si5N8 lässt sich jedoch nicht phasenrein analog zur Reaktionsgleichung (ii) darstellen, sondern lediglich nach Reaktionsgleichung (i).
Weiterhin wurde festgestellt, dass bei einem überstöchiometrischen Einsatz des Erdalkalimetall-Nitrids in einer von dem Verfahren (2) abgewandelten Reaktion auch ein zweiter Kalzinierschritt keinen Effekt auf die Effizienz des so dargestellten Materials hat.
Da Erdalkalimetall-Nitride sehr teuer sind, liegt der Nachteil eines Verfahrens, in dem diese überstöchiometrisch eingesetzt werden, auf der Hand. Zur Ressourcenschonung wäre es daher wünschenswert, ein Verfahren zur Verfügung zu haben, in dem eine geringere Menge des Erdalkalimetall-Nitrids benötigt wird. Der Nachteil eines Verfahrens, in dem das Erdakalimetall-Nitrid stöchiometrisch bzw. nur in geringem Überschuss eingesetzt wird, ist jedoch, wie oben beschrieben, die geringere strahlungs- induzierte Emissionseffizienz des erhaltenen Materials.
Es war somit die Aufgabe der vorliegenden Erfindung, ein Verfahren bereitzustellen, mit dem die strahlungsinduzierte Emissionseffizienz von
Europium-dotierten Erdalkalimetall-Siliconitriden bzw. -Silicooxynitriden gesteigert werden kann, ohne dass ein extremer Überschuss an Erdalkalimetall-Nitrid für die Synthese verwendet werden muss. Eine weitere
Aufgabe der vorliegenden Erfindung ist es zudem, ein Verfahren zur Herstellung von Europium-dotierten Erdalkalimetall-Siliconitriden bzw. -Silicooxynitriden mit gesteigerter strahlungsinduzierter Emissionseffizienz bereitzustellen, mit dem auch die Bariumverbindungen und nicht nur die
Strontiumverbindungen erhältlich sind. Eine weitere Aufgabe der vorliegenden Erfindung ist es, ein Verfahren bereitzustellen, mit dem die Emissionswellenlänge eines Europium-dotierten Erdalkalimetall-Siliconitrids
bzw. -Silicooxynitrids zu größeren oder kleineren Wellenlängen verschoben werden kann.
In einer ersten Ausführungsform der vorliegenden Erfindung wird ein Verfahren zur Steigerung der strahlungsinduzierten Emissionseffizienz und/oder ein Verfahren zur Verschiebung der Emissionswellenlänge eines Europium-dotierten Erdalkalimetall-Siliconitrids bzw. eines Europiumdotierten Erdalkalimetall-Silicooxynitrids bereitgestellt, das die folgenden Schritte umfasst: (a) Herstellen einer Mischung aus einem Europium-dotierten Erdalkali- metall-Siliconitrid bzw. Europium-dotierten Erdalkalimetall-Silicooxy- nitrid und einem Erdalkalimetall-Nitrid, wobei das Erdalkalimetall des Europium-dotierten Erdalkalimetall-Siliconitrids bzw. -Silicooxynitrids und des Erdalkalimetall-Nitrids gleich oder verschieden sein können; und
(b) Kalzinieren der Mischung unter nicht-oxidierenden Bedingungen.
Europium-dotierte Erdalkalimetall-Siliconitride bzw. -Silicooxynitride sind dem Fachmann als Konversionsleuchtstoffe bekannt, und der Fachmann weiß, welche Verbindungen unter diese Materialklassen fallen. Insbeson- dere handelt es sich hier um Verbindungen, die außer dem Dotierstoff im Wesentlichen aus den Elementen Erdalkalimetall, insbesondere Ca, Sr und/oder Ba, Silicium, Stickstoff und im Fall der Oxynitride Sauerstoff bestehen. Diese können auch noch SiO2 und/oder Si3N4 enthalten, wobei diese jeweils amorph und/oder kristallin vorliegen können. Es sei darauf hingewiesen, dass Alumosiliconitride, die zusätzlich noch Aluminium enthalten, nicht als Siliconitride bzw. Silicooxynitrde im Sinne der vorliegenden Anmeldung verstanden werden. Unter dem Begriff "Konversionsleuchtstoff' wird in der vorliegenden Anmeldung ein Material verstanden, das in einem bestimmten Wellenlängenbereich des elektromagnetischen Spektrums, vorzugsweise im blauen oder im UV-Spektralbereich, Strahlung absorbiert und in einem anderen Wellenlängenbereich des elektromagnetischen
Spektrums, vorzugsweise im roten, orangen, gelben oder grünen Spektralbereich, insbesondere im roten Spektralbereich, sichtbares Licht emittiert.
In diesem Zusammenhang ist auch der Begriff "strahlungsinduzierte
Emissionseffizienz" zu verstehen, d. h. der Konversionsleuchtstoff absorbiert Strahlung in einem bestimmten Wellenlängenbereich und emittiert Strahlung in einem anderen Wellenlängenbereich mit einer bestimmten Effizienz. Die Steigerung der Emissionseffizienz wird in der Steigerung der emittierten Lichtintensität gemessen. Unter dem Begriff "Verschiebung der Emissionswellenlänge" versteht man, dass ein Konversionsleuchtstoff im Vergleich zu einem anderen oder ähnlichen Konversionsleuchtstoff Licht bei einer anderen Wellenlänge emittiert, das heißt verschoben zu einer kleineren oder größeren Wellenlänge. Es wird also das Emissionsmaximum verschoben.
Das Europium-dotierte Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid, das im oben genannten Verfahren eingesetzt wird, ist vorzugsweise eine Verbindung der folgenden allgemeinen Formel (I):
EAdEucEeNfOx · m SiO2 · n Si3N4 Formel (I) worin für die verwendeten Symbole und Indizes gilt:
EA ist mindestens ein Erdalkalimetall, insbesondere ausgewählt aus der
Gruppe bestehend aus Ca, Sr und Ba;
E ist mindestens ein Element der vierten Hauptgruppe, insbesondere Si; 0,80 < d < 1 ,995;
0,005 < c < 0,2;
4,0 < e < 6,00;
5,00 < f < 8,70;
0 < x < 3,00;
0 < m < 2,50;
0 < n < 0,50; wobei für die Indizes weiterhin die folgende Beziehung gilt:
2d + 2c + 4e = 3f + 2x.
Bevorzugt ist in den Verbindungen der Formel (I) m = 0 und n = 0.
Bevorzugte Europium-dotierte Erdalkalimetall-Siliconitride bzw. -Silicooxy- nitride sind weiterhin die Verbindungen gemäß den folgenden Formeln (la) und (Ib), Ba2-a-b-c+i,5zSraCabEucSi5N8-2/3x+zOx · m Si02 · n Si3N4 Formel (la) wobei die verwendeten Indizes die folgenden Bedeutungen aufweisen:
0 < a < 2;
0 < b < 2;
0,01 < c < 0,2, bevorzugt 0,02 < c < 0, 1 ;
0 < x < 1 , bevorzugt 0 < x < 0,6;
0 < z < 3,0, bevorzugt 0 < z < 1 ,0, besonders bevorzugt z = 0;
und a + b + c < 2 + 1,5z;
0 < m < 2,50, bevorzugt 0 < m < 1,00, besonders bevorzugt m = 0;
0 < n < 0,50, bevorzugt n = 0; Baa-a-b-c-o.sx+i.özSraCabEucSisNe-x+zOx · m SiO2 · n Si3N4 Formel (Ib) wobei die verwendeten Indizes die folgenden Bedeutungen aufweisen:
0 < a < 2;
0 < b < 2;
0,01 < c < 0,2, bevorzugt 0,02 < c < 0,1 ;
0 < x < 1 , bevorzugt 0 < x < 0,6;
0 < z < 3,0, bevorzugt 0 < z < 1 ,0, besonders bevorzugt z = 0;
0 < m < 2,50, bevorzugt 0 < m < 1 ,00, besonders bevorzugt m = 0;
0 < n < 0,50, bevorzugt n = 0. Ein weiteres geeignetes Erdalkalimetall-Siliconitrid, das im oben genannten Verfahren eingesetzt werden kann, ist eine Verbindung der folgenden allgemeinen Formel (II),
Bai-a-b-c raCabEucSi7Nio · m S1O2 · n S13N4 Formel (II) wobei die verwendeten Indizes die folgenden Bedeutungen aufweisen: 0 < a < 1 ;
0 < b < 1 ;
0,01 < c < 0,2, vorzugsweise 0,02 < c < 0,1 ; und
a + b + c < 1 ;
0 < m < 2,50, bevorzugt 0 < m < 1 ,00, besonders bevorzugt m = 0;
0 < n < 0,50, bevorzugt n = 0.
Bevorzugt ist in den Verbindungen der Formel (I), (la), (Ib) und (II) m = 0 oder n = 0, besonders bevorzugt m = 0 und n = 0.
Besonders bevorzugt treten in den Verbindungen der Formeln (la), (Ib) und (II) die oben genannten Bevorzugungen gleichzeitig auf.
Das in Schritt (a) verwendete Europium-dotierte Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid kann durch jegliches im Stand der Technik bekannte Verfahren, wie beispielsweise oben unter den Verfahren (1) bis (5) oder in WO 2011/091839 beschrieben, hergestellt werden. Es ist jedoch besonders bevorzugt, dass das Europium-dotierte Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid durch einen Schritt (a') umfassend das Kalzinieren einer Mischung enthaltend eine Europiumquelle, eine Siliciumquelle und ein Erdalkalimetall-Nitrid unter nicht-oxidierenden Bedingungen hergestellt wird. Dieser Schritt (a') geht dem Schritt (a) des oben genannten Verfahrens voraus.
Als Europiumquelle im Schritt (a') kann jegliche denkbare Europiumverbindung eingesetzt werden, mit der ein Europium-dotiertes Erdalkalimetall- Siliconitrid bzw. -Silicooxynitrid hergestellt werden kann. Vorzugsweise werden im erfindungsgemäßen Verfahren als Europiumquelle Europiumoxid (vor allem Eu2O3) und/oder Europiumnitrid (EuN) eingesetzt, insbesondere Eu2O3.
Als Siliciumquelle im Schritt (a1) kann jegliche denkbare Siliciumverbindung eingesetzt werden, mit der ein Europium-dotiertes Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid hergestellt werden kann. Vorzugsweise werden im erfindungsgemäßen Verfahren als Siliciumquelle Siliciumnitrid und gegebenenfalls Siliciumoxid eingesetzt. Soll ein reines Nitrid hergestellt werden, so ist die Siliciumquelle vorzugsweise Siliciumnitrid. Ist die
Herstellung eines Oxynitrids erwünscht, so wird als Siliciumquelle neben Siliciumnitrid auch Siliciumdioxid eingesetzt.
Unter einem Erdalkalimetall-Nitrid versteht man eine Verbindung der Formel M3N2, in der M bei jedem Auftreten unabhängig voneinander ein Erdalkalimetallion ist, insbesondere ausgewählt aus der Gruppe bestehend aus Calcium, Strontium und Barium. In anderen Worten wird das Erdalkalimetall-Nitrid bevorzugt aus der Gruppe ausgewählt, die aus Calciumnitrid (Ca3N2), Strontiumnitrid (Sr3N2), Bariumnitrid (Ba3N2) und deren
Mischungen besteht.
Die in Schritt (a') eingesetzten Verbindungen zur Herstellung des
Europium-dotierten Erdalkalimetall-Siliconitrids bzw. -Silicooxynitrids werden vorzugsweise in einem Verhältnis so zueinander eingesetzt, dass die Atomanzahl des Erdalkalimetalls, des Siliciums, des Europiums, des Stickstoffs und gegebenenfalls des Sauerstoffs dem gewünschten
Verhältnis in dem Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid der oben genannten Formel (I), (la), (Ib) oder (II) entspricht. Dabei wird insbesondere ein stöchiometrisches Verhältnis verwendet, aber auch ein leichter Über- schuss des Erdalkalinitrids ist möglich.
Das Gewichtsverhältnis des Europium-dotierten Erdalkalimetall-Siliconitrids bzw. -Silicooxynitrids zu dem Erdalkalimetall-Nitrid in Schritt (a) des erfindungsgemäßen Verfahrens liegt vorzugsweise im Bereich von 2:1 bis 20:1 und stärker bevorzugt im Bereich von 4:1 bis 9:1.
Dabei wird das Verfahren unter nicht-oxidierenden Bedingungen, d. h. unter weitgehend oder vollständig sauerstofffreien Bedingungen, insbesondere unter reduzierenden Bedingungen durchgeführt.
Wenn das erfindungsgemäße Verfahren zur Verschiebung der Emissionswellenlänge des Europium-dotierten Erdalkalimetall-Siliconitrids bzw.
-Silicooxynitrids eingesetzt werden soll, ist es bevorzugt, dass in Schritt (a) das Erdalkalimetall in dem Erdalkalimetall-Nitrid von dem Erdalkalimetall in dem Europium-dotierten Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid verschieden ist.
Wird beispielsweise in Schritt (a) Barium als Erdalkalimetall in dem Erd- alkalimetall-Siliconitrid bzw. -Silicooxynitrid eingesetzt, so ist es bevorzugt, dass in dem Erdalkalimetall-Nitrid Strontium als Erdalkalimetall eingesetzt wird. Auf diese Weise führt das erfindungsgemäße Verfahren zu einem Europium-dotierten Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid, das im Vergleich zum Europium-dotierten Barium-Siliconitrid bzw. -Silicooxynitrid, das als Edukt eingesetzt wurde, eine rot verschobene Emission zeigt. Wird umgekehrt in dem Europium-dotierten Erdalkalimetall-Siliconitrid bzw.
-Silicooxynitrid des Schritts (a) Strontium als Erdalkalimetall eingesetzt und Barium als Erdalkalimetall im Erdalkalimetall-Nitrid, dann führt dies zu einem Europium-dotierten Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid, das im Vergleich zum Strontium-Siliconitrid bzw. -Silicooxynitrid, das als Edukt eingesetzt wurde, eine blau verschobene Emission zeigt.
Eine weitere Ausführungsform der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung eines nachbehandelten Europium-dotierten Erdalkalimetall-Siliconitrids bzw. eines nachbehandelten Europiumdotierten -Silicooxynitrids, umfassend die folgenden Schritte:
(i) Synthese eines Europium-dotierten Erdalkalimetall-Siliconitrids bzw.
-Silicooxynitrids; und
(ii) Kalzinieren einer Mischung enthaltend das in Schritt (i) erhaltene
Europium-dotierte Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid und ein Erdalkalimetall-Nitrid unter nicht-oxidierenden Bedingungen.
Dabei erfolgt die Synthese in Verfahrensschritt (i) bevorzugt durch
Kalzinieren einer Mischung enthaltend mindestens eine Europiumquelle, mindestens eine Siliciumquelle und mindestens ein Erdalkalimetall-Nitrid unter nicht-oxidierenden Bedingungen. Durch das Kalzinieren der Mischung dieses Europium-dotierten Erdalkalimetall-Siliconitrids bzw. -Silicooxynitrids mit einem Erdalkalimetall-Nitrid in Schritt (ii) erhält man das nachbehandelte Europium-dotierte Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid. Der Begriff„nachbehandelt" im Sinne der vorliegenden Erfindung bezieht sich daher auf ein Europium-dotiertes Erdalkalimetall-Siliconitrid bzw.
-Silicooxynitrid, welches mit einem Erdalkalimetall-Nitrid unter nicht- oxidierenden Bedingungen kalziniert wurde.
Das im erfindungsgemäßen Verfahren dieser Ausführungsform hergestellte nachbehandelte Europium-dotierte Erdalkalimetall-Siliconitrid bzw. -Silico- oxynitrid ist ebenso definiert, wie oben beschrieben. Alle weiter oben angegebenen bevorzugten Varianten sind auch hier erfindungsgemäß bevorzugt.
Der Schritt (i) wird vorzugsweise identisch zum oben beschriebenen Schritt (a') durchgeführt. Alle Definitionen und bevorzugten Varianten, die zu
Schritt (a') oben genannt sind, gelten auch erfindungsgemäß für den Schritt
(»)■
Das in Schritt (i) erhaltene Produkt ist vorzugsweise ein Europium-dotiertes Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid, wie es weiter oben definiert ist. Bevorzugt sind also Verbindungen der Formel (I), (la), (Ib) und (II). Der Unterschied des in Schritt (i) erhaltenen Europium-dotierten Erdalkalimetall- Siliconitrids bzw. -Silicooxynitrids zu dem im erfindungsgemäßen Verfahren der zweiten Ausführungsform hergestellten nachbehandelten Europiumdotierten Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid kann anhand der Summenformel nicht festgestellt werden, wenn das Erdalkalimetall des Europium-dotierten Erdalkalimetall-Siliconitrids bzw. -Silicooxynitrids und des Erdalkalimetall-Nitrids gleich sind, so dass beide Verbindungen vorzugsweise eine Verbindung der allgemeinen Formel (I), (la), (Ib) bzw. (II) sind. Wenn sich das Erdalkalimetall des Europium-dotierten Erdalkalimetall- Siliconitrids bzw. -Silicooxynitrids von dem Erdalkalimetall des Erdalkali- metall-Nitrids unterscheidet, so unterscheidet sich auch der Gehalt der Erdalkalimetalle des Europium-dotierten Erdalkalimetall-Siliconitrids bzw.
-Silicooxynitrid von dem des nachbehandelten Europium-dotierten Erdalkalimetall-Siliconitrids bzw. -Silicooxynitrids. Wenn also beispielsweise ein Barium-Siliconitrid bzw. -Silicooxynitrid mit Strontium-Nitrid nachbehandelt wird, erhält man nach der Nachbehandlung ein Barium-Strontium-Silico- nitrid bzw. -Silicooxynitrid. Der wesentliche feststellbare Unterschied liegt jedoch nicht in der angegebenen Strukturformel (I) bzw. (II), sondern ist vor allem in der strahlungsinduzierten Emissionseffizienz festzustellen. Wird als
Erdalkalimetall-Nitrid in Schritt (i) ein anderes Erdalkalimetall-Nitrid eingesetzt als in Schritt (ii), dann liegt der Unterschied des Europium-dotiertem Erdalkalimetall-Siliconitrids bzw. -Silicooxynitrids aus Schritt (i) zu dem nach Schritt (ii) erhaltenen nachbehandelten Europium-dotierten Erdalkali- metall-Siliconitrid bzw. -Silicooxynitrid darin, dass das Emissionsmaximum der strahlungsinduzierten Emission verschoben wird.
Das Verhältnis bezogen auf das Gewicht von Europium-dotiertem Erd- alkalimetall-Siliconitrid bzw. -Silicooxynitrid aus Schritt (i) zu dem Erdalkalimetall-Nitrid in Schritt (ii) liegt vorzugsweise im Bereich von 2:1 bis 20:1 und stärker bevorzugt im Bereich von 4:1 bis 9:1.
Alle in den erfindungsgemäßen Verfahren hergestellten Mischungen werden vorzugsweise hergestellt, indem die Ausgangsverbindungen zu einer homogenen Mischung verarbeitet werden. In anderen Worten werden die Ausgangsverbindungen in Pulverform eingesetzt und miteinander, beispielsweise durch einen Mörser, zu einer homogenen Mischung verarbeitet.
Alle Schritte des Kalzinierens, wie die Schritte (a'), (b), (i) und (ii) werden vorzugsweise unter nicht-oxidierenden Bedingungen durchgeführt. Unter nicht-oxidierenden Bedingungen werden jegliche denkbare nicht- oxidierende Atmosphären verstanden, insbesondere weitgehend sauerstofffreie Atmosphären, also eine Atmosphäre, deren Maximalgehalt an Sauerstoff < 100 ppm, insbesondere < 10 ppm ist, wobei sich im vorliegenden Fall Vakuum nicht als nicht-oxidierende Atmosphäre eignet. Eine nicht-oxidierende Atmosphäre kann beispielsweise durch die Verwendung von Schutzgas, insbesondere Stickstoff oder Argon, erzeugt werden. Eine bevorzugte nicht-oxidierende Atmosphäre ist eine reduzierende Atmosphäre. Die reduzierende Atmosphäre ist dadurch definiert, dass sie mindestens ein reduzierend wirkendes Gas enthält. Welche Gase reduzierend wirken, ist dem Fachmann bekannt. Beispiele für geeignete reduzierende Gase sind Wasserstoff, Kohlenmonoxid, Ammoniak oder Ethylen, stärker bevorzugt Wasserstoff, wobei diese Gase auch mit anderen nicht-oxidierenden Gasen gemischt sein können. Die reduzierende Atmosphäre wird insbesondere bevorzugt durch eine Mischung aus Stickstoff und
Wasserstoff hergestellt, vorzugsweise im Verhältnis H2 : N2 von 10 : 50 bis 33 : 30, jeweils bezogen auf das Volumen.
Die Schritte des Kalzinierens (a'), (b), (i) und (ii) werden jeweils unabhängig voneinander vorzugsweise bei einer Temperatur im Bereich von 1200 °C bis 2000 °C, stärker bevorzugt 1400 °C bis 1800 °C und am stärksten bevorzugt 1500 °C bis 1700 °C durchgeführt. Dabei beträgt der Zeitraum der Kalzinierung jeweils unabhängig voneinander vorzugsweise 2 bis 14 h, stärker bevorzugt 4 bis 12 h und am stärksten bevorzugt 6 bis 10 h.
Das Kalzinieren wird vorzugsweise jeweils so durchgeführt, dass die erhaltenen Mischungen beispielsweise in einem Gefäß aus Bornitrid in einen Hochtemperaturofen eingebracht werden. Der Hochtemperaturofen ist vorzugsweise ein Rohrofen, der eine Trägerplatte aus Molybdänfolie enthält.
Nach dem Kalzinieren in Schritt (b) oder in Schritt (ii) werden die erhaltenen Verbindungen vorzugsweise mit Säure behandelt, um nicht umgesetztes Erdalkalimetall-Nitrid auszuwaschen. Als Säure wird vorzugsweise Salzsäure verwendet. Hierbei wird das erhaltene Pulver vorzugsweise über 0,5 bis 3 h, stärker bevorzugt 0,5 bis 1 ,5 h in 0,5 molarer bis 2 molarer Salzsäure, stärker bevorzugt ca. 1 molarer Salzsäure suspendiert, anschließend abfiltriert und bei einer Temperatur im Bereich von 80 bis 150 °C getrocknet.
In einer weiteren Ausführungsform der Erfindung wird nach dem Kalzinieren und der Aufarbeitung, die wie oben beschrieben durch Säurebehandlung erfolgen kann, nochmals ein weiterer Kalzinierungsschritt angeschlossen. Diese findet bevorzugt in einem Temperaturbereich von 200 bis 400 °C, besonders bevorzugt von 250 bis 350 °C statt. Dieser weitere Kalzinierungsschritt wird bevorzugt unter einer reduzierenden Atmosphäre durchgeführt. Die Dauer dieses Kalzinierungsschritts beträgt üblicherweise zwischen 15 Minuten und 10 h, bevorzugt zwischen 30 Minuten und 2 h.
In nochmals einer weiteren Ausführungsform können die Verbindungen, die durch eines der oben genannten erfindungsgemäßen Verfahren erhalten
werden, beschichet werden. Hierfür eignen sich alle Beschichtungsver- fahren, wie sie gemäß dem Stand der Technik dem Fachmann bekannt sind und für Phosphore angewandt werden. Geeignete Materialien für die Beschichtung sind insbesondere Metalloxide und -nitride, insbesondere Erdmetalloxide, wie AI2O3, und Erdmetallnitride, wie AIN, sowie S1O2. Dabei kann die Beschichtung beispielsweise durch Wirbelschichtverfahren durchgeführt werden. Weitere geeignete Beschichtungsverfahren sind bekannt aus JP 04-304290, WO 91/10715, WO 99/27033, US 2007/0298250, WO 2009/065480 und WO 2010/075908.
Die vorliegende Erfindung betrifft weiterhin ein nachbehandeltes Europiumdotiertes Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid, das gemäß einem der erfindungsgemäßen Verfahren erhältlich ist. Die nach dem erfindungsgemäßen Verfahren hergestellte Verbindung unterscheidet sich von gemäß dem Stand der Technik hergestellten Verbindungen gleicher oder ähnlicher Zusammensetzung dadurch, dass sie eine höhere Emissionseffizienz aufweist. Aufgrund der komplexen Struktur der erfindungsgemäßen Verbindung kann die erfindungsgemäße Verbindung nicht eindeutig durch strukturelle Merkmale gekennzeichnet werden. Sie ist jedoch eindeutig dadurch von im Stand der Technik bekannten Verbindungen unterscheidbar, dass sie eine höhere strahlungsinduzierte Emissionseffizienz bzw. -Intensität und gegebenenfalls eine Farbverschiebung des Emissionsmaximums aufweist im Vergleich zu entsprechenden Materialien, bei denen kein weiterer Kalzinierungsschritt mit einem Erdalkalimetall-Nitrid durchgeführt wurde.
Ein Erdalkalimetall-Silicooxynitrid der oben genannten Formel (la) ist neu und ist daher ein weiterer Gegenstand der vorliegenden Erfindung. Diese Verbindung ist ein wesentliches Edukt im erfindungsgemäßen Verfahren der ersten Ausführungsform. Diese Verbindung entspricht, je nach genauer Ausführung des Verfahrens und je nach den eingesetzten Edukten, weiterhin dem Reaktionsprodukt nach dem Nachbehandlungsschritt.
Gegenstand der Erfindung ist daher weiterhin eine Verbindung der Formel (la),
Ba2-a-b-c+i,5zSraCabEucSi5N8-2/3x+zOx · m SiO2 · n Si3N4 Formel (la)
wobei die verwendeten Indizes die folgenden Bedeutungen aufweisen: 0 < a < 2;
0 < b < 2;
0,01 < c < 0,2, bevorzugt 0,02 < c < 0,1;
0 < x < 1 , bevorzugt 0,03 < x < 0,8, besonders bevorzugt 0,1 < x < 0,6; 0 < z < 3,0, bevorzugt 0 < z < 1 ,0, besonders bevorzugt z = 0;
0 < m < 2,50, bevorzugt 0 < m < 1,00, besonders bevorzugt m = 0;
0 < n < 0,50, bevorzugt n = 0;
und a + b + c<2 + 1,5z.
Bevorzugt ist in den Verbindungen der Formel (la) m = 0 oder n = 0, besonders bevorzugt m = 0 und n = 0.
Besonders bevorzugt treten in den Verbindungen der Formel (la) die oben genannten Bevorzugungen gleichzeitig auf, das heißt, es handelt sich bevorzugt um Verbindungen, für die gilt:
0 <a <2;
0<b<2;
0,02<c<0,1;
0,03 <x< 0,8;
0 <z < 1,0;
0 < m < 1,00;
n = 0;
und a + b + c<2 + 1,5z.
Besonders bevorzugt handelt es sich um Verbindungen, für die gilt:
0<a<2;
0<b<2;
0,02<c<0,1;
0,1 <x<0,6;
z = 0;
m = 0;
n = 0;
und a + b + c<2 + 1,5z.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung des erfindungsgemäßen nachbehandelten Europium-dotierten Erdalkali- metall-Siliconitrids bzw. -Silicooxynitrid bzw. der Verbindung der oben genannten Formel (la) als Leuchtstoff, insbesondere als Konversionsleuchtstoff.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Emissionskonvertierendes Material umfassend das erfindungsgemäße nachbehandelte Europium-dotierte Erdalkalimetall-Siliconitrid bzw. -Silicooxynitrid bzw. die Verbindung der Formel (la). Das Emissions-konvertierende Material kann aus dem erfindungsgemäßen Europium-dotierten Erdalkalimetall- Siliconitrid bzw. -Silicooxynitrid bzw. der Verbindung der Formel (la) bestehen und wäre in diesem Fall mit dem oben definierten Begriff "Konversionsleuchtstoff' gleichzusetzen.
Es ist auch möglich, dass das erfindungsgemäße Emissions-konver- tierende Material neben der erfindungsgemäßen Verbindung noch weitere Konversionsleuchtstoffe enthält. In diesem Fall enthält das erfindungsgemäße Emissions-konvertierende Material eine Mischung aus mindestens zwei Konversionsleuchtstoffen, wobei einer davon ein erfindungsgemäßes nachbehandeltes Europium-dotiertes Erdalkalimetall-Siliconitrid bzw.
-Silicooxynitrid bzw. eine Verbindung der Formel (la) ist. Es ist insbesondere bevorzugt, dass die mindestens zwei Konversionsleuchtstoffe Leuchtstoffe sind, die Licht unterschiedlicher Wellenlängen emittieren, die komplementär zueinander sind. Handelt es sich bei dem erfindungsgemäßen nachbehandelten Europium-dotierten Erdalkalimetall-Siliconitrid bzw.
-Silicooxynitrid bzw. der Verbindung der Formel (la) um einen rot
emittierenden Leuchtstoff, so wird dieser bevorzugt in Kombination mit einem grün oder gelb emittierenden Leuchtstoff oder auch mit einem cyan oder blau emittierenden Leuchtstoff eingesetzt. Alternativ dazu kann auch der erfindungsgemäße rot-emittierende Konversionsleuchtstoff in Kombination mit (einem) blau- und grün-emitierenden Konversionsleuchtstoff(en) eingesetzt werden. Alternativ dazu kann auch der erfindungsgemäße rot- emittierende Konversionsleuchtstoff in Kombination mit (einem) grünemittierenden Konversionsleuchtstoff(en) eingesetzt werden. Es kann also bevorzugt sein, dass der erfindungsgemäße Konversionsleuchtstoff in
Kombination mit einem oder mehreren weiteren Konversionsleuchtstoffen in dem erfindungsgemäße Emissions-konvertierenden Material eingesetzt wird, die dann zusammen vorzugsweise weißes Licht emittieren. Im Kontext dieser Anmeldung wird als blaues Licht solches Licht bezeichnet, dessen Emissionsmaximum zwischen 400 und 459 nm liegt, als cyan- farbenes Licht solches, dessen Emissionsmaximum zwischen 460 und 505 nm liegt, als grünes Licht solches, dessen Emissionsmaximum zwischen 506 und 545 nm liegt, als gelbes Licht solches, dessen Emissionsmaximum zwischen 546 und 565 nm liegt, als orange Licht solches, dessen
Emissionsmaximum zwischen 566 und 600 nm liegt und als rotes Licht solches, dessen Emissionsmaximum zwischen 601 und 670 nm liegt. Das erfindungsgemäße nachbehandelte Europium-dotierte Erdalkalimetall- Siliconitrid bzw. -Silicooxynitrid bzw. die Verbindung der Formel (la) ist vorzugsweise ein rot-emittierender Konversionsleuchtstoff. Als weiterer Konversionsleuchtstoff, der zusammen mit der erfindungsgemäßen Verbindung eingesetzt werden kann, kann generell jeder mögliche Konversionsleuchtstoff eingesetzt werden. Dabei eignen sich beispielsweise: Ba2Si04:Eu2+, BaSi2O5:Pb2+, BaxSr1-xF2:Eu2+,
BaSrMgSi207:Eu2+, BaTiP2O7, (Ba,Ti)2P2O7:Ti, Ba3W06:U,
BaY2F8:Er3+,Yb+, Be2Si04:Mn2+, Bi4Ge3O12, CaAI204:Ce3+, CaLa4O7:Ce3+,
CaAI204:Eu2+, CaAI204:Mn2+, CaAI4O7:Pb2+, Mn2+, CaAI2O4:Tb3+,
Ca3AI
2Si
3O
2:Ce
3+,
Ca
3AI
2Si
30
2:Eu
2+, Ca
2B
5O
9Br:Eu
2+, Ca
2B
5O
9CI:Eu
2+, Ca
2B
50
9CI:Pb
2+, CaB
20
4:Mn
2+, Ca
2B
20
5:Mn
2+,
CaB204:Pb2+, CaB2P209:Eu2+, Ca5B2SiOi0:Eu3+,
Cao.5Bao.5Ali2Oi9:Ce3+,Mn2+, Ca2Ba3(PO4)3CI:Eu2+, CaBr2:Eu2+ in SiO2, CaCI2:Eu2+ in SiO2, CaCI2:Eu2+,Mn2+ in SiO2, CaF2:Ce3+, CaF2:Ce3+,Mn2+, CaF2:Ce3+,Tb3+, CaF2:Eu2+, CaF2:Mn2+, CaF2:U, CaGa204:Mn2+,
CaGa407:Mn2+, CaGa2S4:Ce3+, CaGa2S4:Eu2+, CaGa2S4:Mn2+,
CaGa2S4:Pb2+, CaGeO3:Mn2+, Cal2:Eu2+ in SiO2, Cal2:Eu2+,Mn2+ in
Si02, CaLaBO4:Eu3+, CaLaB307:Ce3+,Mn2+, Ca2La2BO6.5:Pb2+, Ca2MgSi2O7> Ca2MgSi207:Ce3+, CaMgSi2O6:Eu2+, Ca3MgSi208:Eu2+, Ca2 gSi2O7:Eu2+, CaMgSi206:Eu2+,Mn2+, Ca2MgSi2O7:Eu2+,Mn2+, CaMo04, CaMoO4:Eu3+, CaO:Bi3+, CaO:Cd2+, CaO:Cu+, CaO:Eu3+, CaO:Eu3+, Na\ CaO:Mn2+, CaO:Pb2+, CaO:Sb3+, CaO:Sm3+, CaO:Tb3+, CaO:TI, CaO:Zn2+,
Ca2P2O7:Ce3+, a-Ca3(P04)2:Ce3+, ß-Ca3(P04)2:Ce3+, Ca5(PO4)3CI:Eu2+, Ca5(PO4)3CI:Mn2+, Ca5(PO4)3CI:Sb3+, Ca5(P04)3CI:Sn2+ (
ß-Ca3(PO4)2:Eu2+,Mn2+, Ca5(P04)3F:Mn2+, Cas(PO4)3F:Sb3+, Cas(PO4)3F:Sn2+, a-Ca3(PO4)2:Eu2+, ß-Ca3(PO4)2:Eu2+, Ca2P207:Eu2+, Ca2P2O7:Eu2+ 1Mn2+ > CaP2O6:Mn2+, a-Ca3(PO4)2:Pb2+, a-Ca3(P04)2:Sn2+, ß-Ca3(PO4)2:Sn2+, ß-Ca2P2O7:Sn,Mn, a-Ca3(PO4)2:Tr, CaS:Bi3+, CaS:Bi3+,Na, CaS:Ce3+,
CaS:Eu2+, CaS:Cu+,Na+, CaS:La3+, CaS:Mn2+, CaSO4:Bi, CaSO4:Ce3+, CaSO4:Ce3+,Mn2+, CaSO4:Eu2+, CaSO4:Eu2+,Mn2+, CaSO4:Pb2+, CaS:Pb2+, CaS:Pb2+,CI, CaS:Pb2+,Mn2+, CaS:Pr3+,Pb2+,CI, CaS:Sb3+, CaS:Sb3+,Na, CaS:Sm3+, CaS:Sn2+, CaS:Sn2+,F, CaS:Tb3+, CaS:Tb3+,CI, CaS:Y3+,
CaS:Yb2+, CaS:Yb2+,CI, CaSiO3:Ce3+, Ca3Si04CI2:Eu2+, Ca3Si04CI2:Pb2+,
CaSi03:Eu2+, CaSiOaiMn^.Pb, CaSi03:Pb2+, CaSiO3:Pb2+,Mn2+, CaSiO3:Ti4+, CaSr2(PO4)2:Bi3+, ß-(Ca,Sr)3(P04)2:Sn2+Mn2+, CaTio.gAlo.iOsiBi3*,
CaTi03:Eu3+, CaTi03:Pr3+, Ca5(V04)3CI, CaWO4, CaW04:Pb2+, CaWO4:W, Ca3W06:U, CaYAI04:Eu3+, CaYBO4:Bi3+, CaYB04:Eu3+, CaYBo.803.7:Eu3+, CaY2Zr06:Eu3+, (Ca,Zn,Mg)3(P04)2:SnI CeF3, (Ce,Mg)BaAl Oie:Ce,
(Ce,Mg)SrAlnOi8:Ce, CeMgAl Oi9:Ce:Tb, Cd^eO iMn2*, CdS:Ag+,Cr, CdS:ln, CdS:ln, CdS:ln,Te, CdS:Te, CdW04, CsF, Csl, Csl:Na+, CshTI, (ErCI3)o.25(BaCI2)o.75, GaN:Zn, Gd3Ga5O12:Cr3+, Gd3Ga5012:Cr,Ce,
GdNb04:Bi3+, Gd202S:Eu3+, Gd202Pr3+, Gd202S:Pr,Ce,F, Gd202S:Tb3+, Gd2Si05:Ce3+, KAIn017:TI+, KGa 0 7:Mn2\ K2La2Ti3O10:Eu, KMgF3:Eu2+, KMgF3:Mn2+, K2SiF6:Mn4+, LaAI3B40i2:Eu3+, LaAIB2O6:Eu3+, LaAIO3:Eu3+, LaAI03:Sm3+, LaAsO4:Eu3+, LaBr3:Ce3+, LaBO3:Eu3+, (La,Ce,Tb)PO4:Ce:Tb, LaCI3:Ce3+, La203:Bi3+, LaOBr:Tb3+, LaOBr:Tm3+, LaOCI:Bi3+, LaOCI:Eu3+, LaOF:Eu3+, La2O3:Eu3+, La2O3:Pr3+, La202S:Tb3+, LaPO4:Ce3+, LaP04:Eu3+, LaSi03CI:Ce3+, LaSi03CI:Ce3+,Tb3+, LaV04:Eu3+, La2W3O12:Eu3+,
LiAIF4:Mn2+, LiAI508:Fe3+, LiAI02:Fe3+, LiAI02:Mn2+, LiAI5O8:Mn2+,
Li2CaP2O7:Ce3+,Mn2+, LiCeBa4Si40i4:Mn2+, LiCeSrBa3Si4O14:Mn2+,
LilnO2:Eu3+, LilnO2:Sm3+, LiLa02:Eu3+, LuAIO3:Ce3+, (Lu,Gd)2Si05:Ce3+, Lu2Si05:Ce3+, Lu2Si2O7:Ce3+, LuTa04:Nb5+, Lu1-xYxAI03:Ce3+, MgAI204:Mn2+, gSrAI10O17:Ce, MgB2O4:Mn2+, MgBa2(P04)2:Sn2+, MgBa2(PO4)2:U,
MgBaP2O7:Eu2+, MgBaP2O7:Eu2+,Mn2+, MgBa3Si2O8:Eu2+, MgBa(SO4)2:Eu2+, Mg3Ca3(P04)4:Eu2+, MgCaP2O7:Mn2+, Mg2Ca(SO4)3:Eu2+,
Mg2Ca(S04)3:Eu2+,Mn2, MgCeAln019:Tb3+, Mg4(F)GeO6:Mn2+,
Mg4(F)(Ge,Sn)06:Mn2+, MgF2:Mn2+, MgGa204:Mn +, Mg8Ge2O1iF2:Mn4+, MgS:Eu2+, MgSiO3:Mn2+, Mg2SiO4:Mn2+, Mg3Si03F4:Ti4+, MgSO4:Eu2+,
MgS04:Pb2+, MgSrBa2Si2O7:Eu2+, MgSrP207:Eu2+, MgSr5(P04)4:Sn2+, MgSr3Si20e:Eu2+,Mn2+, Mg2Sr(S04)3:Eu2+, Mg2Ti04:Mn4\ MgW04,
gYB04:Eu3+, Na3Ce(P04)2:Tb3+, NalrTI, Na^Ko^Euo.^TiSUO^Eu3*, Nai 23Ko.42Euo.i2TiSi5O13 xH20:Eu3+, Na1 29Ko.46Ero.o8TiSi4Oii:Eu3+,
Na2Mg3A!2Si2Oi0:Tb1 Na(Mg2-xMnx)LiSi4O10F2:Mn, NaYF4:Er3+, Yb3+,
NaY02:Eu3\ P46(70%) + P47 (30%), SrAI12019:Ce3+, Mn2+, SrAI2O4:Eu2+, SrAI407:Eu3+, SrAli2O19:Eu2+, SrAI2S4:Eu2+, Sr2B5O9CI:Eu2+,
SrB407:Eu2+(F,CI,Br), SrB407:Pb2+, SrB407:Pb2+, Mn2+, SrB80i3:Sm2+, SrxBayClzAI2O4-z/2: Mn2+, Ce3+, SrBaSiO4:Eu2+, Sr(CI,Br,l)2:Eu2+ in SiO2, SrCI2:Eu2+ in SiO2, Sr5CI(PO4)3:Eu, SrwFxB406.5:Eu2+, SrwFxByOz:Eu2+,Sm2+, SrF2:Eu2+, SrGai2O19:Mn2+, SrGa2S4:Ce3+, SrGa2S4:Eu2+, SrGa2S4:Pb2+, Srln2O4:Pr3+, Al3+, (Sr,Mg)3(P04)2:Sn, SrMgSi2O6:Eu2+, Sr2MgSi207:Eu2+, Sr3MgSi2O8:Eu2\ SrMoO4:U, SrO-3B2O3:Eu2+,CI, ß-SrO-3B203:Pb2+, ß-SrO-3B2O3 :Pb2\Mn2+, a-SrO-3B203:Sm2+, Sr6P5BO2o:Eu,
Sr5(PO4)3CI:Eu +, Sr5(P04)3CI:Eu2+,Pr3+, Sr5(PO4)3CI:Mn2+, Sr5(PO4)3CI:Sb3+, Sr2P2O7:Eu2+, ß-Sr3(P04)2:Eu2+, Sr5(PO4)3F:Mn2+, Sr5(P04)3F:Sb3+,
Sr5(PO4)3F:Sb3+,Mn2+, Sr5(P04)3F:Sn2+, Sr2P207:Sn2+, ß-Sr3(PO4)2:Sn2+, ß-Sr3(PO4)2:Sn2+,Mn2+(AI), SrS:Ce3+, SrS:Eu +, SrS:Mn2+, SrS:Cu+,Na, SrS04:Bi, SrS04:Ce3+, SrS04:Eu2\ SrSO4:Eu2+,Mn2+, Sr5Si4O10CI6:Eu2+ ( Sr2SiO4:Eu2+, SrTiO3:Pr3+, SrTiOs r^.AI3*, Sr3W06:U, SrY2O3:Eu3+, Th02:Eu3+, ThO2:Pr3+, Th02:Tb3+, YAI3B4O12:Bi3+, YAI3B4Oi2:Ce3+,
YAI3B4O12:Ce3+,Mn, YAI3B40i2:Ce3+,Tb3+, YAI3B4O12:Eu3+,
YAI
3B
4O
12:Eu
3+,Cr
3+ I YAI
3B
4Oi
2:Th
4+,Ce
3+,Mn
2+, YAIO
3:Ce
3+, YaAlsO^iCe
3*, Y3AI
5O
12:Cr
3+, YAI0
3:Eu
3+, Y3AI
5Oi
2:Eu
3r,
YAI03:Sm3+, YAI03:Tb3+, Y3AI50i2:Tb3+, YAsO4:Eu3+, YBO3:Ce3+, YBO3:Eu3+, YF3:Er3+,Yb3+, YF3:Mn2+, YF3:Mn2+,Th4+, YF3:Tm3+,Yb3+, (Y,Gd)B03:Eu, (Y,Gd)B03:Tb, (Y,Gd)2O3:Eu3+, Y1 34Gd0.6oO3(Eu,Pr), Y2O3:Bi3+, YOBr:Eu3+, Y203:Ce, Y203:Er3+, Y2O3:Eu3+(YOE), Y2O3:Ce3+,Tb3+, YOCI:Ce3+,
YOCI:Eu3+, YOF:Eu3+, YOF:Tb3+, Y2O3:Ho3+, Y202S:Eu3+, Y2O2S:Pr3+, Y2O2S:Tb3+, Y2O3:Tb3+, YPO4:Ce3+, YPO4:Ce3+,Tb3+, YPO4:Eu3+,
YPO4:Mn2+,Th +, YPO4:V5\ Y(P,V)04:Eu, Y2SiO5:Ce3+, YTa04) YTaO4:Nb5+, YVO4:Dy3+, YVO4:Eu3\ ZnAI2O4:Mn2+, ZnB2O4:Mn2+, ZnBa2S3:Mn2+,
(Zn,Be)2Si04:Mn2+, Zn0.4Cd0.6S:Ag, Zn0.6Cdo.4S:Ag, (Zn,Cd)S:Ag,CI,
(Zn,Cd)S:Cu, ZnF2:Mn2+, ZnGa204, ZnGa204:Mn2+, ZnGa2S4:Mn2+,
Zn2Ge04:Mn2+, (Zn,Mg)F2:Mn2+, ZnMg2(PO4)2:Mn2+, (Zn,Mg)3(PO4)2:Mn2+, ZnO:AI3+,Ga3+, ZnO:Bi3+, ZnO:Ga3+, ZnO:Ga, ZnO-CdO:Ga, ZnO:S, ZnO:Se,
ZnO:Zn, ZnS:Ag+,Cr, ZnS:Ag,Cu,CI, ZnS:Ag,Ni, ZnS:Au,ln, ZnS-CdS (25- 75), ZnS-CdS (50-50), ZnS-CdS (75-25), ZnS-CdS:Ag,Br,Ni, ZnS- CdS:Ag+,CI, ZnS-CdS:Cu,Br, ZnS-CdS:Cu,l, ZnS:CI", ZnS:Eu2+, ZnS:Cu, ZnS:Cu+,AI3+, ZnS:Cu+,CI", ZnS:Cu,Sn, ZnS:Eu2+, ZnS:Mn2+, ZnS:Mn,Cu, ZnS:Mn2+,Te2+, ZnS:P, ZnS:P3-,Cr, ZnS:Pb2+, ZnS:Pb2+,CI", ZnS:Pb,Cu, Zn3(P04)2:Mn2+, Zn2Si04:Mn2+, Zn2SiO4:Mn2+,As5+, Zn2SiO4:Mn,Sb202l Zn2Si04:Mn2+,P, Zn2SiO4:Ti4+, ZnS:Sn2+, ZnS:Sn,Ag, ZnS:Sn2+,Li+,
ZnS:Te,Mn, ZnS-ZnTe:Mn2+, ZnSe:Cu+,CI oder ZnWO4.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung des erfindungsgemäßen Emissions-konvertierenden Materials in einer Lichtquelle. Besonders bevorzugt ist die Lichtquelle eine LED, insbesondere eine phosphorkonvertierte LED, kurz pc-LED. Hierbei ist es besonders bevorzugt, dass das Emissions-konvertierende Material neben dem erfindungsgemäßen Konversionsleuchtstoff mindestens einen weiteren Konversionsleuchtstoff umfasst, insbesondere so, dass die Lichtquelle weißes Licht oder Licht mit einem bestimmten Farbpunkt (Color-on- demand-Prinzip) emittiert. Unter„Color-on-demand-Prinzip" versteht man die Realisierung von Licht eines bestimmten Farbpunktes mit einer pc-LED unter Einsatz eines oder mehrerer Konversionsleuchtstoffe.
Ein weiterer Gegenstand der vorliegenden Erfindung ist somit eine Lichtquelle, die eine Primärlichtquelle und das Emissions-konvertierende Material umfasst.
Auch hier ist es insbesondere bevorzugt, dass das Emissions-konvertierende Material neben dem erfindungsgemäßen Konversionsleuchtstoff mindestens einen weiteren Konversionsleuchtstoff umfasst, so dass die Lichtquelle vorzugsweise weißes Licht oder Licht mit einem bestimmten Farbpunkt emittiert.
Die erfindungsgemäße Lichtquelle ist vorzugsweise eine pc-LED. Eine pc- LED enthält in der Regel eine Primärlichtquelle und ein Emissions-konver- tierendes Material. Das erfindungsgemäße Emissions-konvertierende
Material kann hierfür entweder in einem Harz dispergiert (z.B. Epoxy- oder Siliconharz) oder bei geeigneten Größenverhältnissen direkt auf der
Primärlichtquelle oder aber von dieser, je nach Anwendung, entfernt angeordnet sein (letztere Anordnung schließt auch die "Remote Phosphor Technology" mit ein). Die Primärlichtquelle kann ein Halbleiterchip, eine lumineszente Lichtquelle, wie ZnO, eine sogenanntes TCO (Transparent Conducting Oxide), eine ZnSe oder SiC basierende Anordnung, eine auf einer organischen Lichtemittierenden Schicht basierende Anordnung (OLED) oder eine Plasmaoder Entladungsquelle sein, am stärksten bevorzugt ein Halbleiterchip. Dem Fachmann sind mögliche Formen von derartigen Primärlichtquellen bekannt.
Ist die Primärlichtquelle ein Halbleiterchip, so handelt es sich vorzugsweise um ein lumineszentes Indium-Aluminium-Gallium-Nitrid (InAIGaN), wie es im Stand der Technik bekannt ist. Weiterhin geeignet sind Laser als Lichtquelle.
Das erfindungsgemäße Emissions-konvertierende Material kann zum Einsatz in Lichtquellen, insbesondere pc-LEDs, auch in beliebige äußeren Formen wie sphärische Partikel, Plättchen sowie strukturierte Materialien und Keramiken überführt werden. Diese Formen werden unter dem Begriff
"Formkörper" zusammengefasst. Folglich handelt es sich bei den Formkörpern um Emissions-konvertierende Formkörper.
Ein weiterer Erfindungsgegenstand ist eine Beleuchtungseinheit, die mindestens eine erfindungsgemäße Lichtquelle enthält. Solche Beleuch- tungseinheiten werden hauptsächlich in Anzeigevorrichtungen, insbesondere Flüssigkristallanzeigevorrichtungen (LC-Display) mit einer Hintergrundbeleuchtung eingesetzt. Daher ist auch eine derartige Anzeigevorrichtung Gegenstand der vorliegenden Erfindung.
In der erfindungsgemäßen Beleuchtungseinheit erfolgt die optische
Ankopplung zwischen dem Emissions-konvertierenden Material und der Primärlichtquelle (insbesondere Halbleiterchips) vorzugsweise durch eine lichtleitende Anordnung. Dadurch ist es möglich, dass an einem zentralen
Ort die Primärlichtquelle installiert wird und diese mittels lichtleitender Vorrichtungen, wie beispielsweise lichtleitenden Fasern, an das Emissionskonvertierende Material optisch angekoppelt ist. Auf diese Weise lassen sich den Beleuchtungswünschen angepasste Leuchten bestehend aus einem oder mehreren unterschiedlichen Konversionsleuchtstoffen, die zu einem Leuchtschirm angeordnet sein können, und einem Lichtleiter, der an die Primärlichtquelle angekoppelt ist, realisieren. Dadurch ist es möglich, eine starke Primärlichtquelle an einem für die elektrische Installation günstigen Ort zu platzieren und ohne weitere elektrische Verkabelung, nur durch Verlegung von Lichtleitern an beliebigen Orten, Leuchten aus Emissions-konvertierenden Materialien, die an die Lichtleiter gekoppelt sind, zu installieren.
Die folgenden Beispiele und Figuren sollen die vorliegende Erfindung verdeutlichen. Sie sind jedoch keinesfalls als limitierend zu betrachten. Beschreibung der Figuren
Figur 1 : Emissionsspektren verschiedenartig hergestellter Nitrid-Leuchtstoffe. Die mit 1 gekennzeichnete Kurve zeigt das Emissionsspektrum eines nach Vergleichsbeispiel 1A) hergestellten Leuchtstoffs, der durch stöchiometrische Zusammensetzung der
Reaktionsmischung hergestellt wurde. Die mit 2 gekennzeichnete Kurve zeigt das Emissionsspektrum eines nach Vergleichsbeispiel 1 B) hergestellten Leuchtstoffs, der mit einem Überschuss an Strontiumnitrid in einem einzigen Glühschritt hergestellt wurde. Figur 2: Emissionsspektren verschiedenartig hergestellter Nitrid-Leuchtstoffe. Die mit 2 gekennzeichnete Kurve zeigt ein Emissionsspektrum eines nach Vergleichsbeispiel 1 B) hergestellten Leuchtstoffs, der mit einem Überschuss an Strontiumnitrid in einem einzigen Glühschritt hergestellt wurde. Die mit 3 gekennzeichnete Kurve zeigt ein Emissionsspektrum eines nach Beispiel 1C) herge- stellten erfindungsgemäßen Leuchtstoffs, der durch stöchiometrische Darstellung des Leuchtstoffs im ersten Glühschritt und
anschließender Nachkalzination des Leuchtstoffs unter Zusatz von 20 Gew.-% Strontiumnitrid hergestellt wurde.
Figur 3: Emissionsspektrum verschiedenartig hergestellter Nitrid-Leucht- Stoffe. Die mit 4 gekennzeichnete Kurve zeigt ein Emissionsspektrum eines nach Vergleichsbeispiel 2A) hergestellten Leuchtstoffs, der durch stöchiometrische Darstellung mit einem einzigen Glühschritt hergestellt wurde. Die mit 5 gekennzeichnete Kurve zeigt ein Emissionsspektrum eines nach Vergleichsbeispiel 2B) hergestellten Leuchtstoffs, der mit einem Überschuss an Barium- nitrid in einem Glühschritt hergestellt wurde.
Figur 4: Emissionsspektren verschiedenartig hergestellter Nitrid-Leuchtstoffe. Die mit 4 gekennzeichnete Kurve zeigt ein Emissionsspektrum eines nach Vergleichsbeispiel 2A) hergestellten Leuchtstoffs, der durch Einsatz einer stöchiometrischen Mischung in einem einzigen Glühschritt hergestellt wurde. Die mit 6 gekennzeichnete Kurve zeigt ein Emissionsspektrum eines nach Beispiel 2C) hergestellten Leuchtstoffs, der durch eine stöchiometrische Mischung in einem ersten Glühschritt mit anschließender Nachkalzination des Leuchtstoffs unter Zusatz von 20 Gew.-% Barium- nitrid hergestellt wurde.
Figur 5: Emissionsspektren verschiedenartig hergestellter Nitrid-Leuchtstoffe. Die mit 6 gekennzeichnete Kurve zeigt ein Emissionsspektrum eines nach Beispiel 2C) hergestellten Leuchtstoffs, der durch eine stöchiometrische Mischung im ersten Glühschritt mit anschließender Nachkalzination des Leuchtstoffs unter Zusatz von
20 Gew.-% Bariumnitrid hergestellt wurde. Die mit 7 gekennzeichnete Kurve zeigt ein Emissionsspektrum eines nach Beispiel 2D) hergestellten Leuchtstoffs, der durch eine stöchiometrische Mischung im ersten Glühschritt und anschließender Nachkalzination des Leuchtstoffs unter Zusatz von 20 Gew.-% Strontiumnitrid hergestellt wurde.
Figuren 6 bis 14: Emissionsspektren und Ergebnisse der LEDs gemäß den Beispielen 13 bis 21 , wobei sich Figur 6 auf Beispiel 13, Figur 7 auf Beispiel 14, etc. bezieht.
Figur 15: Emissionsspekten und Ergebnisse der LEDs gemäß Beispiel 22A) enthaltend den Phosphor gemäß Beispiel 8A) gemäß dem Stand der Technik und Beispiel 22B) enthaltend den Phosphor gemäß Beispiel 8C) gemäß der vorliegenden Erfindung.
Beispiele:
Allgemeine Vorschrift zur Messung der Emission
Die Messung der Pulveremissionsspektren erfolgt durch das folgende allgemeine Verfahren: Eine Leuchtstoff-Pulverschüttung mit einer Tiefe von 5 mm, deren Oberfläche mit einem Glasplättchen glatt gestrichen ist, wird in die Integrationskugel eines Fluoreszenzspektrometers Edinburgh
Instruments FL 920 mit einer Xenonlampe als Anregungslichtquelle bei einer Wellenlänge von 450 nm bestrahlt und die Intensität der emittierten Fluoreszenzstrahlung in einem Bereich von 465 nm bis 800 nm in 1 nm Schritten gemessen.
Beispiel 1 :
A) Vergleichsbeispiel: Darstellung von Sr2Si5 7)6660o,5:Eu (stöchio- metrische Zusammensetzung)
3,625 g (12,4 mmol) Strontiumnitrid, 4,438 g (31 mmol) Siliciumnitrid, 0,451 g (7,5 mmol) Siliciumdioxid und 0,498 g (3,0 mmol) Europiumnitrid werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
B) Vergleichsbeispiel: Darstellung von Sr2Si5N7>666O0,5:Eu unter
Verwendung eines Sr3N2-Überschusses
9,452 g (32,333 mmol) Strontiumnitrid, 4,438 g (31 mmol) Siliciumnitrid, 0,451 g (7,5 mmol) Siliciumdioxid und 0,498 g (3,0 mmol) Europiumnitrid
werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
C) Darstellung von Sr2Si5N7,6660o,5:Eu (stöchiometrische Zusammensetzung) und Nachkalzination unter Zusatz von Sr3N2
3,625 g (12,4 mmol) Strontiumnitrid, 4,438 g (31 mmol) Siliciumnitrid, 0,451 g (7,5 mmol) Siliciumdioxid und 0,498 g (3,0 mmol) Europiumnitrid werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
Der so erhaltene Leuchtstoff wird in einer Glovebox mit 20 Gew.-%
Strontiumnitrid versetzt und so lange gemischt, bis eine homogene
Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Strontiumnitrid wird der so erhaltene Leuchtstoff 1 h in 1- molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
Beispiel 2
A) Vergleichsbeispiel: Darstellung von Ba2Si5N8:Eu (stöchiometrische Zusammensetzung)
7,223 g (16,333 mmol) Bariumnitrid, 5,964 g (41 ,666 mmol) Siliciumnitrid und 0,166 g (1 ,0 mmol) Europiumnitrid werden in einer Glovebox
zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/
Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
B) Vergleichsbeispiel: Darstellung von Ba2Si5N8:Eu unter Verwendung eines Ba3N2-Überschusses
14,269 g (32,333 mmol) Bariumnitrid, 4,772 g (33,333 mmol) Siliciumnitrid und 0,166 g (1 ,0 mmol) Europiumnitrid werden in einer Glovebox
zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasser- stoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht. C) Darstellung von Ba2Si5N8:Eu (stöchiometrische Zusammensetzung) und Nachkalzination unter Zusatz von Ba3N2
7,223 g (16,333 mmol) Bariumnitrid, 5,964 g (41 ,666 mmol) Siliciumnitrid und 0,166 g (1 ,0 mmol) Europiumnitrid werden in einer Glovebox
zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasser- stoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
Der so erhaltene Leuchtstoff wird in einer Glovebox mit 20 Gew.-% Bariumnitrid versetzt und so lange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Bariumnitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet. D) Darstellung von Ba2Si5N8:Eu (stöchiometrische Zusammensetzung) und Nachkalzination unter Zusatz von Sr3N2
7,223 g (16,333 mmol) Bariumnitrid, 5,964 g (41 ,666 mmol) Siliciumnitrid und 0,166 g (1 ,0 mmol) Europiumnitrid werden in einer Glovebox
zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
Der so erhaltene Leuchtstoff wird in einer Glovebox mit 20 Gew.-%
Strontiumnitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Bariumnitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert anschließend abfiltriert und getrocknet.
Beispiel 3
A) Vergleichsbeispiel: Synthese von (Sr,Ba)i,9oEuo,ioSi5 7,670o,5
(stöchiometrisch)
0,443 g Eu203 (1 ,26 mmol), 3,500 g Ba3N2 (7,95 mmol), 5,552 g Si3N4 (39,58 mmol), 0,376 g Si02 (6,25 mmol) sowie 2,313 g Sr3N2 (7,95 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
B) Vergleichsbeispiel: Synthese von (Sr,Ba)i,9oEu0,ioSi5N >67Oo,5
(Überschuss)
0,443 g Eu2O3 (1 ,26 mmol), 4,900 g Ba3N2 (10,13 mmol), 5,552 g Si3N4 (39,58 mmol), 0,376 g Si02 (6,25 mmol) sowie 3,233 g Sr3N2 (10,13 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht. Zur Entfernung von überschüssigem Barium- und Strontiumnitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert,
anschließend abfiltriert und getrocknet.
C) Synthese von (Sr,Ba)i,9oEuo,ioSi5N7,67Oo,5 - Nachkalzination
1 ,761 g Eu2O3 (5 mmol), 28,008 g Ba3N2 (63,336 mmol), 22,660 g Si3N4 (158,300 mmol) sowie 1 ,502 g Si02 (25,000 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis
eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasser- stoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
Der so erhaltene Leuchtstoff wird in einer Glovebox mit 20 Gew.-%
Strontiumnitrid versetzt und so lange gemischt bis eine homogene
Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Bariumnitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert anschließend abfiltriert und getrocknet.
D) Synthese von (Sr,Ba)i,9oEuo,ioSi5N7>67Oo,5 - Nachkalzination
1 ,761 g Eu2O3 (5 mmol), 18,421 g Sr3N2 (63,336 mmol), 22,660 g Si3N4 (158,300 mmol) sowie 1 ,502 g SiO2 (25,000 mmol) werden in einer
Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/ Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
Der so erhaltene Leuchtstoff wird in einer Glovebox mit 20 Gew.-% Barium- nitrid versetzt und so lange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Strontiumnitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
E) Synthese von (Sr,Ba)i,9oEuo,ioSi5N7,670o,5 - stöchiometrische
Zusammensetzung und anschließende Nachkalzination
0,443 g Eu203 (1 ,26 mmol), 3,500 g Ba3N2 (7,95 mmol), 5,552 g Si3N4
(39,58 mmol), 0,376 g SiO2 (6,25 mmol) sowie 2,313 g Sr3N2 (7,95 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf
einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
Der so erhaltene Leuchtstoff wird in einer Glovebox mit 20 Gew.-% einer 1 :1-Mischung aus Strontiumnitrid/Bariumnitrid versetzt und so lange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Barium- und Strontiumnitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert,
anschließend abfiltriert und getrocknet.
F) (Sr,Ca,Ba)i,92Euo,o8Si5 7,670o,5 - Nachkalzination
50 g Leuchtstoff, beschrieben in den Beispielen 3A) - 3E), wird in einer Glovebox mit 20 Gew.-% Calciumnitrid versetzt und so lange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
Beispiel 4
A) Vergleichsbeispiel: (Sr,Ca)i,92Euo,o8Si5 7,670o,5 - stöchiometrische Zusammensetzung
2,115g Eu203 (6,00 mmol), 16,370 g (56,00 mmol) Sr3N2 , 33,998 g Si3N4 (242,35 mmol), 5,930 g Ca3N2 (40,00 mmol) sowie 2,253 g (37,50 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
B) Vergleichsbeispiel:
- Überschuss
2,115g Eu2O3 (6,00 mmol), 23,560 g (81 ,00 mmol) Sr3N2 , 33,998 g Si3N4 (242,35 mmol), 10,674 g Ca3N2 (72,00 mmol) sowie 2,253 g (37,50 mmol) SiO2 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die
Mischung wird in ein Schiffchen aus Bomitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
C) (Sr,Ca)i,92Euo,o8Si5N7,670o,5 - stöchiometrische Zusammensetzung und anschließende Nachkalzination
2,115g Eu203 (6,00 mmol), 16,370 g (56,00 mmol) Sr3N2 , 33,998 g Si3N4 (242,35 mmol), 5,930 g Ca3N2 (40,00 mmol) sowie 2,253 g (37,50 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
60 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit 20 Gew.-% einer Mischung aus 8,810 g Strontiumnitrid und 3,190 g Calciumnitrid versetzt und so lange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Calcium- und Strontiumnitrid wird der so erhaltene Leuchtstoff 1 h in
1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
2,115g Eu203 (6,00 mmol), 27,924 g (96,00 mmol) Sr3N2 , 33,998 g Si3N4 (242,35 mmol),sowie 2,253 g (37,50 mmol) SiO2 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
60 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit 20 Gew.-% Calciumnitrid versetzt und so lange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen
sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Strontiumnitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet. E) (Sr.Ca^Euo.osSis ^Oo.s - Nachkalzination
2,115g Eu203 (6,00 mmol), 14,232 g (96,00 mmol) Ca3N2 , 33,998 g Si3N4 (242,35 mmol), sowie 2,253 g (37,50 mmol) SiO2 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
50 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit 20 Gew.-% Strontiumnitrid versetzt und so lange gemischt bis eine homogene
Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Strontiumnitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
F) (Sr,Ca,Ba)i,92Euo,o8Si5 7,670o,5 - Nachkalzination
50 g Leuchtstoff, beschrieben in den Beispielen 4A) - 4E) wird in einer Glovebox mit 20 Gew.-% Bariummnitrid versetzt und so lange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
Beispiel 5
A) Vergleichsbeispiel: (Ca,Ba)i,92Euo,o8SisN7,670o,5 - stöchiometrische Zusammensetzung
2,115g Eu2O3 (6,00 mmol), 17,600 g (40,00 mmol) Ba3N2 , 33,998 g Si3N4 (242,35 mmol), 8,302 g Ca3N2 (56,00 mmol) sowie 2,253 g (37,50 mmol) SiO2 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohr-
ofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
B) Vergleichsbeispiel:
- Überschuss
2,115g Eu203 (6,00 mmol), 27,940 g (63,50 mmol) Ba3N2 , 33,998 g Si3N4 (242,35 mmol), 10,791 g Ca3N2 (72,79 mmol) sowie 2,253 g (37,50 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem
Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
C) (Ca,Ba)i,92Euo,o8Si5N7>670o,5 - stöchiometrische Zusammensetzung und anschließende Nachkalzination
2,115g Eu2O3 (6,00 mmol), 17,600 g (40,00 mmol) Ba3N2 , 33,998 g Si3N4 (242,35 mmol), 8,302 g Ca3N2 (56,00 mmol) sowie 2,253 g (37,50 mmol) SiO2 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem
Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
60 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit 20 Gew.-% einer Mischung aus 9,680 g Bariumnitrid und 2,320 g Calciumnitrid versetzt und so lange gemischt, bis eine homogene Mischung entsteht.
Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Calcium- und Strontiumnitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
D) (Ca,Ba)i,92Eu0>o8Si5 7>670o,5 - Nachkalzination
2,115g Eu203 (6,00 mmol), 42,240 g (96,00 mmol) Ba3N2 , 33,998 g Si3N4 (242,35 mmol),sowie 2,253 g (37,50 mmol) SiO2 werden in einer Glovebox
zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wässerstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
80 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit 20 Gew.-% Calciumnitrid versetzt und so lange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Bariumnitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
E) (Sr,Ca)i,92Eu0,o8Si5N7,67 o,5 - Nachkalzination
2,115g Eu2O3 (6,00 mmol), 14,232 g (96,00 mmol) Ca3N2 , 33,998 g Si3N4 (242,35 mmol) sowie 2,253 g (37,50 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasser- stoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
50 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit 20 Gew.-% Bariumnitrid versetzt und so lange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Calciumnitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
F) (Sr,Ca,Ba)i,92Euo,o8Si5 7)670o,5 - Nachkalzination
50 g Leuchtstoff, beschrieben in den Beispielen 5A) - 5E) wird in einer Glovebox mit 20 Gew.-% Strontiumnitrid versetzt und so lange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur
Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
Beispiel 6
A) Vergleichsbeispiel: (Sr,Ca,
-stöchio- metrische Zusammensetzung
2,115g Eu203 (6,00 mmol), 8,144 g (28,00 mmol) Sr3N2 , 33,998 g Si3N4 (242,35 mmol), 5,930 g Ca3N2 (40,00 mmol), 12,320 g (28,00 mmol) Ba3N2 sowie 2,253 g (37,50 mmol) SiO2 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
B) Vergleichsbeispiel: (Sr, Ca, Ba)i,92Euo,o8Si5 7,670o,5 - Überschuss
2,115g Eu203 (6,00 mmol), 12,217 g (42,00 mmol) Sr3N2 , 33,998 g Si3N4 (242,35 mmol), 8,895 g Ca3N2 (60,00 mmol), 18,480 g (42,00 mmol) Ba3N2 sowie 2,253 g (37,50 mmol) SiO2 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer StickstoffA/Vasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
C) (Sr, Ba, Ca)i,92Euo,o8Si5N7>67Oo,5 - stöchiometrische Zusammensetzung und anschließende Nachkalzination
2,115g Eu203 (6,00 mmol), 8,144 g (28,00 mmol) Sr3N2 , 33,998 g Si3N4 (242,35 mmol), 5,930 g Ca3N2 (40,00 mmol), 12,320 g (28,00 mmol) Ba3N2 sowie 2,253 g (37,50 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
60 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit ca. 20 Gew.-% einer Mischung aus 3,054 g Strontiumnitrid und 2,313 g Calcium-
nitrid und 4,620 g Bariumnitrid versetzt und so lange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzina- tion, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff 1 h in
1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
D) (Sr,Ca,Ba)i,92Eu0,o8Si5N7,670o,5 - Nachkalzination
2,115g Eu2O3 (6,00 mmol), 14,232 g (96,00 mmol) Ca3N2 , 33,998 g Si3N4 (242,35 mmol) sowie 2,253 g (37,50 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus
Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
50 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit ca. 20 Gew.-% einer Mischung aus 4,000 g Strontiumnitrid und 6,000 g Bariumnitrid versetzt und so lange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert anschließend abfiltriert und getrocknet.
E) (Sr,Ca,Ba)i,92Euo,o8Si5N7,670o,5 - Nachkalzination
2,115g Eu203 (6,00 mmol), 27,924 g (96,00 mmol) Sr3N2 , 33,998 g Si3N4 (242,35 mmol),sowie 2,253 g (37,50 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasser- stoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
5Ό g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit ca. 20 Gew.-% einer Mischung aus 8,200 g Bariumnitrid und 1 ,800 g Calciumnitrid versetzt und so lange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind
identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet. F) (Sr,Ca,Ba)i,92Euo,o8Si5N7i670o,5 - Nachkalzination
2,115g Eu203 (6,00 mmol), 42,240 g (96,00 mmol) Ba3N2 , 33,998 g Si3N4 (242,35 mmol),sowie 2,253 g (37,50 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser so lange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
80 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit ca. 20 Gew.-% einer Mischung aus 12,000 g Strontiumnitrird und 4,000 g Calcium- nitrid versetzt und so lange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
Beispiel 7:
A) Vergieichsbeispiel (Ba)i,87Euo,o3Si5N7,800>2
0,599 g Eu2O3 (1 ,70 mmol), 32,811 g Ba3N2 (74,57 mmol), 26,589 g Si3N4 (189,6 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht. Der so erhaltene Leuchtstoff wird 1 h in 1 -molarer Salzsäure suspendiert anschließend abfiltriert und getrocknet.
B) (Ba) >87EuoIo3Si5N7>80o)2
0,599 g Eu2O3 (1 ,70 mmol), 32,811 g Ba3N2 (74,57 mmol), 26,589 g Si3N4 (189,6 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht.
Der so erhaltene Leuchtstoff wird in einer Glovebox mit 20 Gew.% Bariumnitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff noch 1 h in 1-molarer Salzsäure suspendiert anschließend abfiltriert und getrocknet.
C) (Ba)i,87Euo,o3Si5N7;80o,2
0,599 g Eu
2O
3 (1 ,70 mmol), 38,133 g Ba
3N
2 (86,67 mmol), 26,589 g Si
3N
4 (189,6 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N
2 + 20 l/min H
2) geglüht. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff noch 1 h in 1-molarer Salzsäure suspendiert und anschließend abfiltriert und getrocknet.
0,199 g Eu2Os (0,565 mmol), 10,985 g Ba3N2 (24,97 mmol), 8,143 g Si3N4 (58,10 mmol) sowie 0,817 g Si02 (13,60 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/
Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht. Der so erhaltene Leuchtstoff wird 1 h in 1-molarer Salzsäure suspendiert und anschließend abfiltriert und getrocknet.
E) (Ba eaEuo.oaSisNyjOo.a
0,199 g Eu
2O
3 (0,565 mmol), 10,985 g Ba
3N
2 (24,97 mmol), 8,143 g Si
3N
4 (58,10 mmol) sowie 0,817 g SiO
2 (13,60 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Der so erhaltene Leuchtstoff wird in einer Glovebox mit 20 Gewichtsprozent Bariumnitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine
erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff eine Stunde in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
0,199 g Eu203 (0,565 mmol), 13,200 g Ba3N2 (30,00 mmol), 8,143 g Si3N4 (58,10 mmol) sowie 0,817 g SiO2 (13,60 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/ Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht. Der so erhaltene Leuchtstoff noch 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet. G) (Ba)i,87Euo,o3Si5N7,8Oo,2
0,199 g Eu203 (0,565 mmol), 10,985 g Ba3N2 (24,97 mmol), 8,881 g Si3N4 (64,33 mmol) sowie 0,817 g SiO2 (13,60 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus
Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/ Wasserstoff-Atmosphäre (50 l/min N
2 + 20 l/min H
2) geglüht. Der so erhaltene Leuchtstoff wird 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
0,199 g Eu
20
3 (0,565 mmol), 10,985 g Ba
3N
2 (24,97 mmol), 8,881 g Si
3N
4 (64,33 mmol) sowie 0,817 g SiO
2 (13,60 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Der so erhaltene Leuchtstoff wird in einer Glovebox mit 20 Gewichtsprozent Bariumnitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt.
Der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
0,199 g Eu2O3 (0,565 mmol), 13,200 g Ba3N2 (30,00 mmol), 8,881 g Si3N4 (64,33 mmol) sowie 0,817 g Si02 (13,60 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1600 °C unter einer Stickstoff/ Wasser- stoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht. Der so erhaltene Leuchtstoff wird 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
Beispiel 8: A) Vergleichsbeispiel (Sr,Ba)iI77Euo,o8Si5N7>7Oo>3
0,531 g Eu2O3 (1 ,51 mmol), 4,200 g Ba3N2 (9,54 mmol), 6,718 g Si3N4 (47,90 mmol), 0,451 g Si02 (7,50 mmol) sowie 2,775 g Sr3N2 (9,54 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1625 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (70 l/min N2 + 10 l/min H2) geglüht.
B) (Sr,Ba)i(82Euo,o8Si5 7,80o,2
0,443 g Eu2O3 (1 ,26 mmol), 3,500 g Ba3N2 (7,95 mmol), 6,077 g Si3N4 (43,33 mmol), 0,376 g SiO2 (6,25 mmol) sowie 2,313 g Sr3N2 (7,95 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1625 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (70 l/min N2 + 10 l/min H2) geglüht. Der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
C) (Sr.BaJuTEuo.oeSisN/jOo.a
1 ,761 g Eu203 (5 mmol), 28,008 g Ba3N2 (63,336 mmol), 22,660 g Si3N4 (158,300 mmol) sowie 1 ,502 g SiO2 (25,000 mmol) werden in einer
Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1625 °C unter einer Stickstoff/ Wasserstoff-Atmosphäre (70 l/min N2 + 10 l/min H2) geglüht.
Der so erhaltene Leuchtstoff wird in einer Glovebox mit 20 Gew.-%
Strontiumnitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die 8 h bei 1625 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (70 l/min N2 + 10 l/min H2) stattfindet. Der so erhaltene Leuchtstoff wird 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet. D) (Sr,Ba)i;77Euo,o8Si5N7,700>3
1 ,761 g Eu203 (5 mmol), 18,421 g Sr3N2 (63,336 mmol), 22,660 g Si3N4 (158,300 mmol) sowie 1 ,502 g SiO2 (25,000 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1625 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (70 l/min N2 + 10 l/min H2) geglüht.
Der so erhaltene Leuchtstoff wird in einer Glovebox mit 20 Gew.-% Bariumnitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Der so erhaltene Leuchtstoff wird 1 h in 1- molarer Salzsäure suspendiert anschließend abfiltriert und getrocknet.
0,443 g Eu203 (1 ,26 mmol), 4,900 g Ba3N2 (10,13 mmol), 5,552 g Si3N4 (39,58 mmol), 0,376 g Si02 (6,25 mmol) sowie 3,233 g Sr3N2 (10,13 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung
wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1625 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (70 l/min N2 + 20 l/min H2) geglüht. Der so erhaltene Leuchtstoff wird 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
F) (Sr,Ba)i,82Euo,o8Si5N7,800>2
1 ,761 g Eu2O3 (5 mmol), 18,421 g Sr3N2 (63,336 mmol), 23,840 g Si3N4 (170,00 mmol) sowie 1 ,502 g SiO2 (25,000 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus
Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1625 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (70 l/min N2 + 10 l/min H2) geglüht.
Der so erhaltene Leuchtstoff wird in einer Glovebox mit 20 Gew.-% Barium- nitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Der so erhaltene Leuchtstoff wird 1 h in 1- molarer Salzsäure suspendiert anschließend abfiltriert und getrocknet.
G) (Sr.BaJij Euo.osSisN jOo.a
1 ,330 g Eu203 (3,78 mmol), 10,494 g Ba3N2 (23,85 mmol), 6,937 g Si3N4 (23,85 mmol), 1 ,127 g Si02 (18,75 mmol) sowie 16,652 g Sr3N2 (118,74 mmol) werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1625 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (60 l/min N2 + 15 l/min H2) geglüht.
Der so erhaltene Leuchtstoff wird in einer Glovebox mit 20 Gew.-% einer 1 :1-Mischung aus Strontiumnitrid/Bariumnitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt.
Zur Entfernung von überschüssigem Nitrid wird der Leuchtstoff eine Stunde in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
Beispiel 9:
A) Vergleichsbeispiel (Ca,Ba)i,83Euo,o7Si5N7>80o,2
1 ,309g Eu203 (3,72 mmol), 18,979 g (43,13 mmol) Ba3N2 , 21 ,074 g Si3N4 (150,33 mmol), 2,471 g Ca3N2 (16,67 mmol) sowie 1 ,399 g (23,3 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem
Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1650 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (70 l/min N
2 + 10 l/min H
2) geglüht.
1 ,309g Eu2O3 (3,72 mmol), 26,312 g (59,80 mmol) Ba3N2 , 21 ,074 g Si3N4 (150,33 mmol) sowie 1 ,399 g (23,3 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1625 °C unter einer Stickstoff/Wasser- stoff-Atmosphäre (70 l/min N2 + 10 l/min H2) geglüht.
60 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit 5 Gew.% Calciumnitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff eine Stunde in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
C) (Ca,Ba)i,83Euo>o7Si5N7>80o,2
21 ,309g Eu203 (3,72 mmol), 26,312 g (59,80 mmol) Ba3N2 , 21 ,074 g Si3N4 (150,33 mmol) sowie 1 ,399 g (23,3 mmol) SiO2 werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus
Molybdänfolie platziert und 8 h bei 1625 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (70 l/min N2 + 10 l/min H2) geglüht.
80 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit 20 Gew.-% einer anteiligen Mischung aus relativem Anteil von 80 % Bariumnitrid und 20 % Calciumnitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Der so erhaltene Leuchtstoff wird 1 h in 1-molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
D) (Ca,Ba)i,83Euo,o7Si5N7,800>2
21 ,309g Eu203 (3,72 mmol), 26,312 g (59,80 mmol) Ba3N2 ) 21 ,074 g Si3N4 (150,33 mmol) sowie 1 ,399 g (23,3 mmol) SiO2 werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1625 °C unter einer Stickstoff Wasser- stoff-Atmosphäre (70 l/min N2 + 10 l/min H2) geglüht.
80 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit 20 Gew.-% einer anteiligen Mischung aus relativem Anteil von 90 % Bariumnitrid und 10 % Calciumnitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Der so erhaltene Leuchtstoff wird 1 h in 1-molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
E) (Ba.Ca eaEuo.oTSisN/.eOo.a
1 ,309g Eu203 (3,72 mmol), 8,865 g (59,80 mmol) Ca3N2 , 21 ,074 g Si3N4 (150,33 mmol) sowie 1 ,399 g (23,3 mmol) SiO2 werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1650 °C unter einer Stickstoff Wasser- stoff-Atmosphäre (70 l/min N2 + 10 l/min H2) geglüht.
50 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit 20 Gew.-% Bariumnitrid versetzt und solange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Der so erhaltene Leuchtstoff wird 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
F) (Ca,Ba)i,83Euo,o7Si5N7,80 o.2
1 ,309g Eu203 (3,72 mmol), 20,534 g (46,67 mmol) Ba3N2 , 2,965 g Ca3N2 (20,00 mmol), 21 ,074 g Si3N4 (150,33 mmol) sowie 1 ,399 g (23,3 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Hand- mörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem
Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 8 h bei 1625 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (70 l/min N2 + 10 l/min H2) geglüht. Der so erhaltene Leuchtstoff wird 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
Beispiel 10:
A) Vergleichsbeispiel (Sr,Ca, Ba)i,83Eu0,o7Si5N7,80o,2
0,757g Eu2O3 (2,15 mmol), 1 ,939 g (6,67 mmol) Sr3N2 , 8,125 g (18,47 mmol) Ba3N2 , 1 ,483 g (10,00 mmol) Ca3N2 , 13,183 g Si3N4 (94,00 mmol), sowie 0,601 g (10,00 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 6 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
B) (Sr, Ba, Ca eaEuo.ozSis ^Oo^
0,757g Eu203 (2,15 mmol), 1 ,939 g (6,67 mmol) Sr3N2 , 8,125 g (18,47 mmol) Ba3N2, 1 ,483 g (10,00 mmol) Ca3N2, 13,183 g Si3N4 (94,00 mmol), sowie 0,601 g (10,00 mmol) SiO2 werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene
Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie
platziert und 6 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
60 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit ca. 20 Gew.-% einer Mischung aus 1 ,940 g Strontiumnitrid und 1 ,460 g Calcium- nitrid und 8,600 g Bariumnitrid versetzt und solange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzina- tion, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff noch 1 h in 1- molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
C) (Sr, Ca, Ba eaEuo.o SisNy.eOca
0,757g Eu2O3 (2,15 mmol), 2,133 g (7,33 mmol) Sr3N2 , 8,800 g (20,00 mmol) Ba3N2, 1 ,631 g (1 1 ,00 mmol) Ca3N2, 13,183 g Si3N (94,00 mmol), sowie 0,601 g (10,00 mmol) SiO2 werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 6 h bei 1625 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht. Der so erhaltene Leuchtstoff wird 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
D) (Sr,Ca,Ba)i,83Euo,o7Si5 7>80o,2
0,757g Eu2O3 (2,15 mmol), 15,459 g (35,13 mmol) Ba3N2, 13,183 g Si3N4 (94,00 mmol), sowie 0,601 g (10,00 mmol) SiO2 werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 6 h bei 1600 °C unter einer Stickstoff/Wasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
80 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit rund 20 Gew.-% einer Mischung aus 0,000 g Strontiumnitrid und 6,000 g Calcium- nitrid versetzt und solange gemischt, bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid
wird der so erhaltene Leuchtstoff noch 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
0,757g Eu2O3 (2,15 mmol), 5,209 g (35,13 mmol) Ca3N2 , 13,183 g Si3N4 (94,00 mmol), sowie 0,601 g (10,00 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 6 h bei 1600 °C unter einer Stickstoff/Wasser- 0 stoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
50 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit rund 20 Gew.-% einer Mischung aus 4,000 g Strontiumnitrid und 6,000 g Bariumnitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind 5 identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff noch 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
F) (Sr,Ca,Ba)i,83Euo,o7Si5N7,80o,2
0,757g Eu203 (2,15 mmol), 10,219 g (35,13 mmol) Sr3N2, 13,183 g Si3N4 (94,00 mmol), sowie 0,601 g (10,00 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 6 h bei 1625 °C unter einer Stickstoff/Wasser- ,5 stoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
50 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit rund 20 Gew.-% einer Mischung aus 8,200 g Bariumnitrid und 1 ,800 g Calciumnitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch i0 zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff 1 h in 1 -molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
G) (Sr,Ca,Ba)i>83Euo,o7Si5N7>80o>2
0,757g Eu203 (2,15 mmol), 2,133 g (7,33 mmol) Sr3N2 , 8,800 g (20,00 mmol) Ba3N2, 1 ,156 g (7,80 mmol) Ca3N2, 13,183 g Si3N4 (94,00 mmol), sowie 0,601 g (10,00 mmol) Si02 werden in einer Glovebox zusammen eingewogen und im Handmörser solange gemischt, bis eine homogene Mischung entsteht. Die Mischung wird in ein Schiffchen aus Bornitrid überführt und in einem Rohrofen mittig auf einer Trägerplatte aus Molybdänfolie platziert und 6 h bei 1600 °C unter einer StickstoffA/Vasserstoff-Atmosphäre (50 l/min N2 + 20 l/min H2) geglüht.
80 g des so erhaltenen Leuchtstoffs wird in einer Glovebox mit rund 20 Gew.-% einer Mischung aus 10,000 g Bariumnitrid, 2,000 g Strontiumnitrird und 4,000 g Calciumnitrid versetzt und solange gemischt bis eine homogene Mischung entsteht. Anschließend erfolgt eine erneute Kalzination, die Bedingungen sind identisch zum ersten Glühschritt. Zur Entfernung von überschüssigem Nitrid wird der so erhaltene Leuchtstoff noch 1 h in 1- molarer Salzsäure suspendiert, anschließend abfiltriert und getrocknet.
Beispiel 11 : Beschichtung der Leuchtstoffe
A) Beschichtung der erfindungsgemäßen Leuchtstoffe mit Si02
50 g eines der zuvor beschriebenen erfindungsgemäßen Leuchtstoffe werden in einem 2-L-Reaktor mit Schliffdeckel, Heizmantel und Rückflusskühler in 1 Liter Ethanol suspendiert. Dazu wird eine Lösung von 17 g Ammoniakwasser (25 Gew.-% NH3) in 70 ml Wasser und 100 ml Ethanol gegeben. Unter Rühren wird bei 65 °C eine Lösung von 48 g Tetraethyl- orthosilikat (TEOS) in 48 g wasserfreiem Ethanol langsam (ca. 1 ,5 ml/min) zugetropft. Nach Beendigung der Zugabe wird die Suspension noch 1 ,5 h nachgerührt, auf Raumtemperatur gebracht und abfiltriert. Der Rückstand wird mit Ethanol gewaschen und bei 150 °C bis 200 °C getrocknet.
B) Beschichtung der erfindungsgemäßen Leuchtstoffe mit Al203
In einem Glasreaktor mit Heizmantel werden 50 g eines der zuvor beschriebenen erfindungsgemäßen Leuchtstoffe in 950 g Ethanol suspendiert. Zu der Suspension werden unter Rühren bei 80 °C 600 g einer ethanolischen Lösung von 98,7 g AICI3 *6H2O pro kg Lösung über 3 h
zudosiert. Dabei wird der pH-Wert durch Zudosierung von Natronlauge konstant auf 6,5 gehalten. Nach dem Ende der Zudosierung wird noch 1 h bei 80 °C nachgerührt, dann wird auf Raumtemperatur abgekühlt, der Leuchtstoff abfiltriert, mit Ethanol gewaschen und getrocknet.
C) Beschichtung der erfindungsgemäßen Leuchtstoffe mit B203
In einem Glasreaktor mit Heizmantel werden 50 g eines der zuvor beschriebenen erfindungsgemäßen Leuchtstoffe in 1000 ml Wasser suspendiert. Die Suspension wird auf 60 °C erhitzt und unter Rühren mit 4,994 g Borsäure H3BO3 (80 mmol) versetzt. Die Suspension wird unter Rühren auf Raumtemperatur abgekühlt und anschließend 1 h gerührt.
Danach erfolgt das Absaugen der Suspension und Trocknung im Trockenschrank. Nach erfolgter Trocknung erfolgt die Kalzination des Materials bei 500 °C unter Stickstoff-Atmosphäre.
D) Beschichtung der erfindungsgemäßen Leuchtstoffe mit BN
in einem Glasreaktor mit Heizmantel werden 50 g eines der zuvor beschriebenen erfindungsgemäßen Leuchtstoffe in 1000 ml Wasser suspendiert. Die Suspension wird auf 60 °C erhitzt und unter Rühren mit 4,994 g Borsäure H3BO3 (80 mmol) versetzt. Die Suspension wird unter Rühren auf Raumtemperatur abgekühlt und anschließend 1 h gerührt. Danach erfolgt das Absaugen der Suspension und Trocknung im Trockenschrank. Nach erfolgter Trocknung erfolgt die Kalzination des Materials bei 1000 °C unter Stickstoff-Ammoniak-Atmosphäre.
E) Beschichtung der erfindungsgemäßen Leuchtstoffe mit Zr02
In einem Glasreaktor mit Heizmantel werden 50 g eines der zuvor beschriebenen erfindungsgemäßen Leuchtstoffe in 1000 ml Wasser suspendiert. Die Suspension wird auf 60 °C erhitzt und auf pH 3,0 eingestellt. Anschließend erfolgt die langsame Dosierung von 10 g einer 30 gewichtsprozentigen ZrOC -Lösung unter Rühren. Nach erfolgter
Dosierung wird noch 1 h gerührt, anschließend abgesaugt und mit VE- Wasser gewaschen. Nach erfolgter Trocknung erfolgt die Kalzination des Materials bei 600 °C unter Stickstoff-Atmosphäre.
F) Beschichtung der erfindungsgemäßen Leuchtstoffe mit MgO
In einem Glasreaktor mit Heizmantel werden 50 g eines der zuvor beschriebenen erfindungsgemäßen Leuchtstoffe in 1000 ml Wasser suspendiert. Die Suspension wird auf 25 °C temperiert und mit 19,750 g
Ammoniumhydrogencarbonat (250 mmol) versetzt. Es erfolgt langsame
Zugabe von 100 ml einer 15 gewichtsprozentigen Magnesiumchloridlösung. Nach erfolgter Dosierung wird noch 1 h gerührt, anschließend abgesaugt und mit VE-Wasser gewaschen. Nach erfolgter Trocknung erfolgt die Kalzination des Materials bei 1000 °C unter Stickstoff-Wasserstoff- Atmosphäre.
Beispiel 12: Thermische Nachkalzination
50 g eines der zuvor beschriebenen Leuchtstoffe wird in einen Alsint- Glühtiegel überführt und anschließend reduktiv kalziniert. Die Kalzination erfolgt dabei bei 300 °C unter Stickstoff-Wasserstoff-Atmosphäre. Der Wasserstoffanteil beträgt bis zu 10 Volumenprozent. Nach dem Abkühlen wird der erfindungsgemäße Leuchtstoff kurz vorsichtig gemörsert und anschließend gesiebt, sowie weitergehend charkaterisiert.
Beispiel 13: Herstellung einer pc-LED unter Einsatz eines erfindungsgemäß hergestellten Leuchtstoffs, die eine Correlated Color
Temperature (CCT) von 3000 K aufweist:
1 g des in Beispiel 8C) beschriebenen roten Leuchtstoffs mit einem
Maximum der Emissionswellenlänge von 620 nm wird zusammen mit 8 g eines grünen Leuchtstoffes mit der Zusammensetzung Lu2,976Ce0,o24Al5O12 abgewogen und in einem Planeten-Zentrifugalmischer homogen vermischt. Anschließend wird das Gemisch mit einem optisch transparenten Silikon versetzt und vermischt, so dass die Leuchtstoffkonzentration 14 wt. % beträgt. Das so erhaltene Silikon-Leuchtstoff-Gemisch wird mit Hilfe eines automatischen Dispensers auf den Chip einer blauen Halbleiter-LED aufgebracht und unter Wärmezufuhr ausgehärtet. Die für die LED-Charakterisierung verwendeten blauen Halbleiter-LEDs weisen eine Emissionswellenlänge von 442 nm auf und werden mit 350 mA Stromstärke betrieben. Die lichttechnische Charakterisierung der LED erfolgt mit einem Spektrometer der Fa. Instrument Systems - Spektrometer CAS 140 und einer damit verbundenen Integrationskugel ISP 250. Charakterisiert wird die LED über die
Ermittlung der wellenlängenabhängigen spektralen Leistungsdichte. Das so erhaltene Spektrum des von der LED emittierten Lichts wird zu weiteren Berechnungen von charakteristischen Eigenschaften der LED verwendet. Diese sind die Farbpunktkoordinaten CIE x und y, die Helligkeit in Lumen sowie der allgemeine Farbwiedergabeindex Ra.
Beispiel 14: Herstellung einer pc-LED unter Einsatz eines erfindungsgemäß hergestellten Leuchtstoffs, die eine Correlated Color
Temperature (CCT) von 5000 K aufweist:
1 g des in Beispiel 8C) beschriebenen roten Leuchtstoffs mit einem
Maximum der Emissionswellenlänge von 620 nm wird zusammen mit 19 g eines grünen Leuchtstoffes mit der Zusammensetzung Lu2,976Ce0,o2 Al5Oi2 abgewogen und in einem Planeten-Zentrifugalmischer homogen vermischt. Anschließend wird das Gemisch mit einem optisch transparenten Silikon versetzt und vermischt, so dass die Leuchtstoffkonzentration 12 wt. % beträgt. Das so erhaltene Silikon-Leuchtstoff-Gemisch wird mit Hilfe eines automatischen Dispensers auf den Chip einer blauen Halbleiter-LED aufgebracht und unter Wärmezufuhr ausgehärtet. Die für die LED-Charakterisierung verwendeten blauen Halbleiter-LEDs weisen eine Emissionswellenlänge von 442 nm auf und werden mit 350 mA Stromstärke betrieben. Die lichttechnische Charakterisierung der LED erfolgt mit einem Spektrometer der Fa. Instrument Systems - Spektrometer CAS 140 und einer damit verbundenen Integrationskugel ISP 250. Charakterisiert wird die LED über die Ermittlung der wellenlängenabhängigen spektralen Leistungsdichte. Das so erhaltene Spektrum des von der LED emittierten Lichts wird zu weiteren Berechnungen von charakteristischen Eigenschaften der LED verwendet. Diese sind die Farbpunktkoordinaten CIE x und y, die Helligkeit in Lumen sowie der allgemeine Farbwiedergabeindex Ra.
Beispiel 15: Herstellung einer pc-LED unter Einsatz eines erfindungsgemäß hergestellten Leuchtstoffs, die eine Correlated Color
Temperature (CCT) von 6500 K aufweist:
1 g des in Beispiel 8G) beschriebenen roten Leuchtstoffs mit einem
Maximum der Emissionswellenlänge von 620 nm wird zusammen mit 21 g eines grünen Leuchtstoffes mit der Zusammensetzung Lu2,976Ce0,o24Al5Oi2 abgewogen und in einem Planeten-Zentrifugalmischer homogen vermischt.
Anschließend wird das Gemisch mit einem optisch transparenten Silikon versetzt und vermischt, so dass die Leuchtstoffkonzentration 10 wt. % beträgt. Das so erhaltene Silikon-Leuchtstoff-Gemisch wird mit Hilfe eines automatischen Dispensers auf den Chip einer blauen Halbleiter-LED auf- gebracht und unter Wärmezufuhr ausgehärtet. Die für die LED-Charakterisierung verwendeten blauen Halbleiter-LEDs weisen eine Emissionswellenlänge von 442 nm auf und werden mit 350 mA Stromstärke betrieben. Die lichttechnische Charakterisierung der LED erfolgt mit einem Spektrometer der Fa. Instrument Systems - Spektrometer CAS 140 und einer damit verbundenen Integrationskugel ISP 250. Charakterisiert wird die LED über die Ermittlung der wellenlängenabhängigen spektralen Leistungsdichte. Das so erhaltene Spektrum des von der LED emittierten Lichts wird zu weiteren Berechnungen von charakteristischen Eigenschaften der LED verwendet. Diese sind die Farbpunktkoordinaten CIE x und y, die Helligkeit in Lumen sowie der allgemeine Farbwiedergabeindex Ra. Beispiel 16: Herstellung einer pc-LED unter Einsatz eines erfindungsgemäß hergestellten Leuchtstoffs, die eine Correlated Color
Temperature (CCT) von 3000 K aufweist:
1 g des in Beispiel 6F) beschriebenen roten Leuchtstoffs mit einem
Maximum der Emissionswellenlänge von 630 nm wird zusammen mit 12 g eines grünen Leuchtstoffes mit der Zusammensetzung Lu2,976Ceo,o2 Al5O-i2 abgewogen und in einem Planeten-Zentrifugalmischer homogen vermischt. Anschließend wird das Gemisch mit einem optisch transparenten Silikon versetzt und vermischt, so dass die Leuchtstoffkonzentration 17 wt. % beträgt. Das so erhaltene Silikon-Leuchtstoff-Gemisch wird mit Hilfe eines automatischen Dispensers auf den Chip einer blauen Halbleiter-LED auf- gebracht und unter Wärmezufuhr ausgehärtet. Die für die LED-Charakterisierung verwendeten blauen Halbleiter-LEDs weisen eine Emissionswellenlänge von 442 nm auf und werden mit 350 mA Stromstärke betrieben. Die lichttechnische Charakterisierung der LED erfolgt mit einem Spektrometer der Fa. Instrument Systems - Spektrometer CAS 140 und einer damit verbundenen Integrationskugel ISP 250. Charakterisiert wird die LED über die Ermittlung der wellenlängenabhängigen spektralen Leistungsdichte. Das so erhaltene Spektrum des von der LED emittierten Lichts wird zu weiteren Berechnungen von charakteristischen Eigenschaften der LED
verwendet. Diese sind die Farbpunktkoordinaten CIE x und y, die Helligkeit in Lumen sowie der allgemeine Farbwiedergabeindex Ra.
Beispiel 17: Herstellung einer pc-LED unter Einsatz eines erfindungsgemäß hergestellten Leuchtstoffs, die eine Correlated Color
Temperature (CCT) von 5000 K aufweist:
1 g des in Beispiel 6F) beschriebenen roten Leuchtstoffs mit einem
Maximum der Emissionswellenlänge von 630 nm wird zusammen mit 21 g eines grünen Leuchtstoffes mit der Zusammensetzung Lu2,976Ce0,o24Al5O12 abgewogen und in einem Planeten-Zentrifugalmischer homogen vermischt. Anschließend wird das Gemisch mit einem optisch transparenten Silikon versetzt und vermischt, so dass die Leuchtstoffkonzentration 13.5 wt. % beträgt. Das so erhaltene Silikon-Leuchtstoff-Gemisch wird mit Hilfe eines automatischen Dispensers auf den Chip einer blauen Halbleiter-LED aufgebracht und unter Wärmezufuhr ausgehärtet. Die für die LED-Charakterisierung verwendeten blauen Halbleiter-LEDs weisen eine Emissionswellen- länge von 442 nm auf und werden mit 350 mA Stromstärke betrieben. Die lichttechnische Charakterisierung der LED erfolgt mit einem Spektrometer der Fa. Instrument Systems - Spektrometer CAS 140 und einer damit verbundenen Integrationskugel ISP 250. Charakterisiert wird die LED über die Ermittlung der wellenlängenabhängigen spektralen Leistungsdichte. Das so erhaltene Spektrum des von der LED emittierten Lichts wird zu weiteren Berechnungen von charakteristischen Eigenschaften der LED verwendet. Diese sind die Farbpunktkoordinaten CIE x und y, die Helligkeit in Lumen sowie der allgemeine Farbwiedergabeindex Ra.
Beispiel 18: Herstellung einer pc-LED unter Einsatz eines erfindungs- gemäß hergestellten Leuchtstoffs, die eine Correlated Color
Temperature (CCT) von 6500 K aufweist:
1 g des in Beispiel 6F) beschriebenen roten Leuchtstoffs mit einem
Maximum der Emissionswellenlänge von 630 nm wird zusammen mit 23 g eines grünen Leuchtstoffes mit der Zusammensetzung Lu2,976Ce0,o24Al5O12 abgewogen und in einem Planeten-Zentrifugalmischer homogen vermischt. Anschließend wird das Gemisch mit einem optisch transparenten Silikon versetzt und vermischt, so dass die Leuchtstoffkonzentration 12 wt. % beträgt. Das so erhaltene Silikon-Leuchtstoff-Gemisch wird mit Hilfe eines
automatischen Dispensers auf den Chip einer blauen Halbleiter-LED aufgebracht und unter Wärmezufuhr ausgehärtet. Die für die LED-Charakterisierung verwendeten blauen Halbleiter-LEDs weisen eine Emissionswellenlänge von 442 nm auf und werden mit 350 mA Stromstärke betrieben. Die lichttechnische Charakterisierung der LED erfolgt mit einem Spektrometer der Fa. Instrument Systems - Spektrometer CAS 140 und einer damit verbundenen Integrationskugel ISP 250. Charakterisiert wird die LED über die Ermittlung der wellenlängenabhängigen spektralen Leistungsdichte. Das so erhaltene Spektrum des von der LED emittierten Lichts wird zu weiteren Berechnungen von charakteristischen Eigenschaften der LED verwendet. Diese sind die Farbpunktkoordinaten CIE x und y, die Helligkeit in Lumen sowie der allgemeine Farbwiedergabeindex Ra.
Beispiel 19: Herstellung einer pc-LED unter Einsatz eines erfindungsgemäß hergestellten Leuchtstoffs, die eine Correlated Color
Temperature (CCT) von 3000 K aufweist:
1 g des in Beispiel 5C) beschriebenen roten Leuchtstoffs mit einem
Maximum der Emissionswellenlänge von 650 nm wird zusammen mit 4.5 g eines grünen Leuchtstoffes mit der Zusammensetzung Lu2,976Ce0,o24Al5Oi2 abgewogen und in einem Planeten-Zentrifugalmischer homogen vermischt. Anschließend wird das Gemisch mit einem optisch transparenten Silikon versetzt und vermischt, so dass die Leuchtstoffkonzentration 21 wt. % beträgt. Das so erhaltene Silikon-Leuchtstoff-Gemisch wird mit Hilfe eines automatischen Dispensers auf den Chip einer blauen Halbleiter-LED aufgebracht und unter Wärmezufuhr ausgehärtet. Die für die LED-Charakterisierung verwendeten blauen Halbleiter-LEDs weisen eine Emissionswellenlänge von 442 nm auf und werden mit 350 mA Stromstärke betrieben. Die lichttechnische Charakterisierung der LED erfolgt mit einem Spektrometer der Fa. Instrument Systems - Spektrometer CAS 140 und einer damit verbundenen Integrationskugel ISP 250. Charakterisiert wird die LED über die Ermittlung der wellenlängenabhängigen spektralen Leistungsdichte. Das so erhaltene Spektrum des von der LED emittierten Lichts wird zu weiteren Berechnungen von charakteristischen Eigenschaften der LED verwendet. Diese sind die Farbpunktkoordinaten CIE x und y, die Helligkeit in Lumen sowie der allgemeine Farbwiedergabeindex Ra.
Beispiel 20: Herstellung einer pc-LED unter Einsatz eines erfindungsgemäß hergestellten Leuchtstoffs, die eine Correlated Color
Temperature (CCT) von 5000 K aufweist:
1 g des in Beispiel 5C) beschriebenen roten Leuchtstoffs mit einem
Maximum der Emissionswellenlänge von 650 nm wird zusammen mit 7.5 g eines grünen Leuchtstoffes mit der Zusammensetzung Lu2,976Ce0,o24Al5Oi2 abgewogen und in einem Planeten-Zentrifugalmischer homogen vermischt. Anschließend wird das Gemisch mit einem optisch transparenten Silikon versetzt und vermischt, so dass die Leuchtstoffkonzentration 18 wt. % beträgt. Das so erhaltene Silikon-Leuchtstoff-Gemisch wird mit Hilfe eines automatischen Dispensers auf den Chip einer blauen Halbleiter-LED aufgebracht und unter Wärmezufuhr ausgehärtet. Die für die LED-Charakterisierung verwendeten blauen Halbleiter-LEDs weisen eine Emissionswellenlänge von 442 nm auf und werden mit 350 mA Stromstärke betrieben. Die lichttechnische Charakterisierung der LED erfolgt mit einem Spektrometer der Fa. Instrument Systems - Spektrometer CAS 140 und einer damit verbundenen Integrationskugel ISP 250. Charakterisiert wird die LED über die Ermittlung der wellenlängenabhängigen spektralen Leistungsdichte. Das so erhaltene Spektrum des von der LED emittierten Lichts wird zu weiteren Berechnungen von charakteristischen Eigenschaften der LED verwendet. Diese sind die Farbpunktkoordinaten CIE x und y, die Helligkeit in Lumen sowie der allgemeine Farbwiedergabeindex Ra.
Beispiel 21: Herstellung einer pc-LED unter Einsatz eines erfindungsgemäß hergestellten Leuchtstoffs, die eine Correlated Color
Temperature (CCT) von 6500 K aufweist:
1 g des in Beispiel 5C) beschriebenen roten Leuchtstoffs mit einem
Maximum der Emissionswellenlänge von 650 nm wird zusammen mit 8 g eines grünen Leuchtstoffes mit der Zusammensetzung Lu2,976Ce0,o2 AI5Oi2 abgewogen und in einem Planeten-Zentrifugalmischer homogen vermischt. Anschließend wird das Gemisch mit einem optisch transparenten Silikon versetzt und vermischt, so dass die Leuchtstoffkonzentration 15 wt. % beträgt. Das so erhaltene Silikon-Leuchtstoff-Gemisch wird mit Hilfe eines automatischen Dispensers auf den Chip einer blauen Halbleiter-LED aufgebracht und unter Wärmezufuhr ausgehärtet. Die für die LED-Charakterisierung verwendeten blauen Halbleiter-LEDs weisen eine Emissionswellen-
länge von 442 nm auf und werden mit 350 mA Stromstärke betrieben. Die lichttechnische Charakterisierung der LED erfolgt mit einem Spektrometer der Fa. Instrument Systems - Spektrometer CAS 140 und einer damit verbundenen Integrationskugel ISP 250. Charakterisiert wird die LED über die Ermittlung der wellenlängenabhängigen spektralen Leistungsdichte. Das so erhaltene Spektrum des von der LED emittierten Lichts wird zu weiteren Berechnungen von charakteristischen Eigenschaften der LED verwendet. Diese sind die Farbpunktkoordinaten CIE x und y, die Helligkeit in Lumen sowie der allgemeine Farbwiedergabeindex Ra.
Beispiel 22
A) Herstellung einer pc-LED, die ausschliesslich einen roten
Leuchtstoff gemäß Beispiel 8A) enthält
0,175 g des in Beispiel 8A) beschriebenen roten Leuchtstoffs wird mit einem optisch transparenten Silikon versetzt und vermischt, so dass die Leuchtstoffkonzentration 1.75 wt. % beträgt. Das so erhaltene Silikon- Leuchtstoff-Gemisch wird mit Hilfe eines automatischen Dispensers auf den Chip einer blauen Halbleiter-LED aufgebracht und unter Wärmezufuhr ausgehärtet. Die für die LED-Charakterisierung verwendeten blauen Halbleiter- LEDs weisen eine Emissionswellenlänge von 442 nm auf und werden mit 350 mA Stromstärke betrieben. Die lichttechnische Charakterisierung der LED erfolgt mit einem Spektrometer der Fa. Instrument Systems - Spektrometer CAS 140 und einer damit verbundenen Integrationskugel ISP 250. Charakterisiert wird die LED über die Ermittlung der wellenlängenabhängigen spektralen Leistungsdichte. Das so erhaltene Spektrum des von der LED emittierten Lichts wird zu weiteren Berechnungen von charakteristischen Eigenschaften der LED verwendet.
B) Herstellung einer pc-LED, die ausschliesslich einen roten
Leuchtstoff gemäß Beispiel 8C) enthält
Die Herstellung der pc-LED und die Charakterisierung derselben erfolgt gemäß Beispiel 22A), jedoch unter Verwendung des in Beispiel 8C) beschriebenen roten Leuchtstoffs.
Ergebnisse:
Aus Figur 1 geht hervor, dass der nach Vergleichsbeispiel 1A) hergestellte Leuchtstoff eine höhere Emissionsintensität als der nach Vergleichsbeispiel 1B) hergestellte Leuchtstoff aufweist. Figur 2 zeigt, dass der erfindungsgemäße Leuchtstoff nach Beispiel 1C) eine noch höhere Emissionsintensität als der nach Vergleichsbeispiel 1A) hergestellte Leuchtstoff aufweist. Dies belegt, wie durch das erfindungsgemäße Verfahren Leuchtstoffe mit erhöhter Emissionseffizienz hergestellt werden können. Gleiches gilt bei dem Vergleich der Intensitäten in den Figuren 3 und 4 der in den Vergleichsbeispielen 2A) und 2B) und in dem erfindungsgemäßen Beispiel 2C) hergestellten Leuchtstoffen. Der Vergleich der Wellenlängen in Figur 5 der in den Beispielen 2C) und 2D) hergestellten Leuchtstoffe zeigt zudem, dass die Emissionswellenlänge durch das erfindungsgemäße Verfahren verschoben werden kann.
Die Figuren 6 bis 14 zeigen, dass sich die erfindungsgemäßen Leuchtstoffe sehr gut für die Herstellung weiß emittierender LEDs eignen.
Aus Figur 15 geht hervor, dass der nach Beispiel 8C) hergestellte
erfindungsgemäße Leuchtstoff bei Einsatz in einer pc-LED trotz identischer Leuchtstoffkonzentration einen höheren Anteil der Emissionsintensität im LED-Spektrum aufweist, als der nach Beispiel 8A) hergestellte Leuchtstoff.