[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014090293A1 - Zubereitungen - Google Patents

Zubereitungen Download PDF

Info

Publication number
WO2014090293A1
WO2014090293A1 PCT/EP2012/075198 EP2012075198W WO2014090293A1 WO 2014090293 A1 WO2014090293 A1 WO 2014090293A1 EP 2012075198 W EP2012075198 W EP 2012075198W WO 2014090293 A1 WO2014090293 A1 WO 2014090293A1
Authority
WO
WIPO (PCT)
Prior art keywords
radical
carbon atoms
menthol
acid
agents
Prior art date
Application number
PCT/EP2012/075198
Other languages
English (en)
French (fr)
Inventor
Torsten Kulke
Sven Siegel
Michael Backes
Benoit JOIN
Hubert Loges
Günter Kindel
Original Assignee
Symrise Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47435932&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014090293(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Symrise Ag filed Critical Symrise Ag
Priority to PCT/EP2012/075198 priority Critical patent/WO2014090293A1/de
Priority to JP2015546865A priority patent/JP2016508122A/ja
Priority to CN201810006791.7A priority patent/CN108853105B/zh
Priority to EP12806419.3A priority patent/EP2931225B1/de
Priority to CN201280078213.5A priority patent/CN105025870B/zh
Priority to US14/651,490 priority patent/US10182584B2/en
Publication of WO2014090293A1 publication Critical patent/WO2014090293A1/de
Priority to US15/799,180 priority patent/US10492511B2/en
Priority to US15/804,026 priority patent/US11234450B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G4/00Chewing gum
    • A23G4/06Chewing gum characterised by the composition containing organic or inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/204Aromatic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/045Organic compounds containing nitrogen as heteroatom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/343Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/357Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having two or more oxygen atoms in the same ring, e.g. crown ethers, guanadrel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/41551,2-Diazoles non condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/4261,3-Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4436Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a heterocyclic ring having sulfur as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • A61K31/497Non-condensed pyrazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/42Amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4986Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with sulfur as the only hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/69Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing fluorine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/24Thermal properties
    • A61K2800/244Endothermic; Cooling; Cooling sensation

Definitions

  • the invention is in the fields of cosmetics, pharmacy and foodstuffs and relates to preparations having a cooling effect on the skin or mucous membrane containing menthol compounds or flavoring agents together with selected amides.
  • menthol has been known as a cooling substance for many decades and is still indispensable in a variety of applications today, it has a number of disadvantages: it is volatile, has a strong odor and a bitter taste. In higher concentrations it is no longer perceived as pleasantly cool, but as stinging and burning. After all, menthol can not be formulated arbitrarily because it can interact with other chemical components. This has led to the development of a wide variety of menthol compounds, a number of which have better taste characteristics.
  • a first subject of the invention relates to preparations with a cooling effect, containing
  • a 1 is an optionally substituted aryl, heteroaryl or cycloalkyl radical
  • B is an OCR b R b
  • CHR c is -CHR d
  • CR e is CR f
  • R a represents an optionally substituted alkyl, heteroalkyl, alkenyl, heteroalkenyl, aryl, aralkyl, heteroaryl, cyclo or heterocycloalkyl radical having 1 to 20 carbon atoms,
  • R b , R c , R d , R e and R f are independently hydrogen or an alkyl radical having 1 to 4 carbon atoms, and
  • a 2 is an optionally substituted five- or six-membered heteroaryl radical which has at least one heteroatom from the group formed by nitrogen, oxygen and sulfur,
  • X is -OY or -COZ and Y is the following groups:
  • M is a linear or branched alkyl and / or alkenyl radical having 1 to 10, preferably 1 to 4, carbon atoms;
  • S is a carbohydrate radical having from 5 to 12 carbon atoms, preferably a fructose, glucose or sucrose radical;
  • n is 0 or numbers from 1 to 6, preferably 2 to 3;
  • R 1 is a linear or branched alkyl or hydroxyalkyl radical having 1 to 6, preferably 1 to 2 carbon atoms or an allyl radical;
  • R 2 is a hydroxyl radical or a radical -NR 3 R 4 ;
  • R 3 and R 4 independently of one another represent hydrogen or a linear or branched alkyl or hydroxyalkyl radical having 1 to 6, preferably 1 to 2, carbon atoms
  • R 5 and R 6 independently of one another represent hydrogen or a linear or branched alkyl or hydroxyalkyl radical having 1 to 6, preferably 1 to 2, carbon atoms, a phenyl radical or an alkoxyphenyl radical having 1 to 6, preferably 1 to 2, carbon atoms in the alkoxy radical;
  • R 7 is a radical - (CH 2 ) n COOR 8;
  • R 8 is a linear or branched alkyl or hydroxyalkyl radical having 1 to 6, preferably 1 to 2 carbon atoms and
  • n is 0 or numbers from 1 to 10, preferably 1 to 4, or
  • the amides that form group (a) are known substances which can be prepared by the relevant methods of organic chemistry. With respect to their production, the content of International Patent Application WO 2012 061698 AI referenced, the related disclosure of which is incorporated by reference.
  • the two aryl or heteroaryl radicals A 1 and A 2 in formula (I) independently of one another preferably correspond to an optionally substituted phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, thiazolyl, isoxazolyl, isothiazoyl, pyridyl , Pyrinidinyl- or triazinyl.
  • radicals may be substituted by alkyl, heteroalkyl, alkenyl, alkoxy, hydroxyl, amino, N-dialkylamino, halogen, nitro, cyano, acyl, carbonyl, carboxyl ester or amide groups may be monosubstituted or disubstituted, wherein two substituents may optionally form an aliphatic or aromatic ring with a heteroatom of the aryl radical, so that a bicyclic arises.
  • Ra is an optionally substituted alkyl radical having 1 to 6 carbon atoms or an optionally substituted phenyl, pyrrolyl, furanyl, thienyl, pyrazolyl, thiazolyl, isoxazolyl, isothiazoyl, pyridyl, pyrinidinyl or Triazinylrest, wherein the substitution pattern can correspond to that for A 1 and A 2 .
  • R b , R c , R d , R e and R f are all hydrogen.
  • R b , R c , R d , R e and R f are all hydrogen.
  • A213 A214 Particularly preferred are the following substances:
  • Menthol compounds which can be used in the context of the invention and form group (bl) are - in addition to the parent menthol itself - for example selected from the group formed by menthol methyl ether, menthone glyceryl acetal (FEMA GRAS 1 3807), menthone Glyceryl Ketal (FEMA GRAS 3808), Menthyl Lactate (FEMA GRAS 3748), Menthol Ethylene Glycol Carbonate (FEMA GRAS 3805), Menthol Propylene Glycol Carbonate (FEMA GRAS 3806), Menthyl N -ethyloxamate, Monomethyl Succinate (FEMA GRAS 3810), Monomenthyl glutamate (FEMA GRAS 4006), menthoxy-1,2-propanediol (FEMA GRAS 3784), menthoxy-2-methyl-1,2-propanediol (FEMA GRAS 3849) and the menthane carboxylic acid esters and amides WS-3, WS-4
  • a first important representative of the substances which form component (b) is monomethyl succinate (FEMA GRAS 3810), which was used as a substance in 1963 by Brown & Williamson Tobacco Corp. has been patented (US 3,111,127) and as a coolant subject of the patent US 5,725,865 and 5,843,466 (V.Mane Fils) is.
  • Both the succinate and the analogous monomenthyl glutarate (FEMA GRAS 4006) are important representatives of monomethyl esters based on di- and polycarboxylic acids:
  • FEMA stands for "Flavor and Extracts Manufacturers Association” and GRAS is defined as "Generally Regarded As Safe", a FEMA GRAS designation means that the substance identified in this way is tested according to the standard method and considered toxicologically harmless.
  • FEMA GRAS 3807 Menthone glyceryl acetal
  • FEMA GRAS 3808 Menthone glyceryl ketal
  • the former structure is obtained by esterification of lactic acid with menthol, the latter by acetalization of menthone with glycerol (compare DE 2608226 AI, H & R).
  • menthone with glycerol also included in this group of compounds is 3- (1-menthoxy) -l, 2-propanediol, also known as Cooling Agent 10 (FEMA GRAS 3784, see US 6,328,982, TIC), and the 3- (1-menthoxy) -l, 2-propanediol.
  • Menthoxy) -2-methyl-1,2-propanediol FEMA GRAS 3849, which has an additional methyl group.
  • Cooling Agent 10 / -methoxy ⁇ -methyl
  • menthones glyceryl acetyl tal / ketal and the Menthyl Lactate and Menthol Ethylene Glycol carbonates or menthol Propylene Glycol Carbonatw have proven that the Applicant under the names Frescolat ® MGA, Frescolat ® ML, Frecolat ® MGC and Frescolat ® MPC markets.
  • menthol compounds were first developed which have a C-C bond in the 3-position and of which a number of representatives can likewise be used in accordance with the invention. These substances are generally referred to as WS types.
  • Base is a menthol derivative in which the hydroxyl is replaced by a carboxyl group (WS-1). All other WS types are derived from this structure, such as, for example, the preferred species WS-3, WS-4, WS-5, WS-12, WS-14 and WS-30.
  • the two following graphs show the synthetic routes:
  • esters derived from WS-1 are described, for example, in US Pat. No. 4,157,384, the corresponding N-substituted amides in J. Soc. Cosmet. Chem. Pp. 185-200 (1978).
  • the flavorants which form component (b2) are selected from the group consisting of anethole, acetanisole, acetaldehyde, acetylmethylcarbinol, acetylpyrazine-2, acetylpyridine-2, acetylthiazoline-2, acetylthiazole-2, allylcapronate, amylcinnamaldehyde-alpha , Anisaldehyde-para, anisalcohol, dimethylisopropyldithiazine, benzaldehyde, benzylacetate, borneol-1, butyric acid, butylacetate, butylidene-phthalate-3, caproic acid, carvacrol, carvone-1, carvone-d, carvomenthone, carvylacetate-cis, caryophyllene, cineole-1 , 8, cineole-1,4, cinnamyl acetate, citral, citronellal
  • the preparations may comprise, as component (c), cosmetic additives which are selected from the group formed by surfactants, oil bodies, emulsifiers, pearlescent waxes, consistency regulators, thickeners, superfatting agents, stabilizers, polymers, silicone compounds. compounds, fats, waxes, lecithins, phospholipids, UV protection factors, humectants, biogenic agents, antioxidants, deodorants, antiperspirants, antidandruff agents, film formers, swelling agents, insect repellents, self-tanning agents, tyrosine inhibitors (depigmentation agents), hydrotropes, solubilizers, preservatives, Perfume oils and dyes and their mixtures.
  • cosmetic additives which are selected from the group formed by surfactants, oil bodies, emulsifiers, pearlescent waxes, consistency regulators, thickeners, superfatting agents, stabilizers, polymers, silicone compounds. compounds, fats, waxes, lecithins, phospho
  • the preparations according to the invention may contain components (a) and (b) in a weight ratio of 0.1: 99 to 99.9: 1, in particular 10:90 to 90:10, more preferably 25:75 to 75:25 and particularly preferably 40: 60 to 60:40 included.
  • the components (a + b) and (c) may be contained in the weight ratio 0.01: 99.9 to 2:98, preferably 0.5: 99.5 to 1.5: 98.5 and in particular about 1:99.
  • Another object of the present invention relates to cosmetic preparations containing
  • the cosmetic products are preferably skin care products, hair care products, personal care products, sunscreens and medicated and dentifrices. Particularly preferred are those preparations which are present as emulsions, microemulsions or PIT emulsions.
  • Another object of the present invention relates to pharmaceutical preparations containing
  • the pharmaceutical products are preferably lozenges, cold drops, cold suds, cold ointments and cold sprays.
  • the cosmetic or pharmaceutical carriers may preferably be selected from the group formed by water, alcohols having 2 to 6 carbon atoms, polyols having 1 to 10 carbon atoms and 2 to 4 hydroxyl groups and oil bodies. Particularly preferred are, in addition to water, ethanol, isopropyl alcohol, ethylene glycol, propylene glycol, glycerol, trimethylolpropane, pentaerythritol and esters of linear or branched, saturated and especially unsaturated fatty acids having 6 to 22 and preferably 8 to 18 carbon atoms with alcohols having 1 to 6 carbon atoms.
  • the cosmetic and / or pharmaceutical preparations according to the invention may contain components (a) and (b) in a weight ratio of 0.1: 99 to 99.9: 1, in particular 10:90 to 90:10, more preferably 25:75 to 75:25 and more preferably 40:60 to 60:40.
  • the components (a + b) and (c) may be contained in the weight ratio 0.01: 99.9 to 2:98, preferably 0.5: 99.5 to 1.5: 98.5 and in particular about 1:99.
  • the total content of the components (a + b) in the end products can be between 1 and 5,000, preferably 10 to 4,000 and in particular 100 to 1,000 ppm.
  • the cosmetic and / or pharmaceutical compositions according to the invention may contain further typical auxiliaries and additives, such as, for example, mild surfactants, oil bodies, emulsifiers, pearlescent waxes, consistency regulators, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, UV stabilizers.
  • Sunscreens humectants, biogenic agents, antioxidants, deodorants, antiperspirants, antidandruff agents, film formers, swelling agents, insect repellents, self-tanner, tyrosine inhibitors (depigmenting agents), hydrotropes, solubilizers, preservatives, perfume oils, dyes and the like.
  • Surface-active substances which may be present are anionic, nonionic, cationic and / or amphoteric or zwitterionic surfactants whose proportion of the agents is usually from about 1 to 70, preferably from 5 to 50 and in particular from 10 to 30,% by weight.
  • anionic surfactants are soaps, alkylbenzenesulfonates, alkanesulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, cc-methyl ester sulfonates, sulfofatty acids, alkyl sulfates, alkyl ether sulfates, glycerol ether sulfates, fatty acid ether sulfates, hydroxymethylene ether sulfates, monoglyceride (ether) sulfates, fatty acid amide (ether) sulfates, Mono- and dialkylsulfosuccinates, mono- and dialkylsulfosuccinamates, sulfotriglycerides, amide sisides, ethercarboxylic acids and their salts, fatty acid isethionates, fatty acid sarco
  • anionic surfactants contain polyglycol ether chains, these may have a conventional, but preferably a narrow homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid poly glycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or optionally mixed partially oxidized alk (en) yloligoglycosides or glucuronic acid derivatives, fatty acid N-alkylglucamides, protein hydrolysates (in particular vegetable products Wheat base), polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, these may be a conventional, but preferably a restricted, one. have molecular distribution.
  • Typical examples of cationic surfactants are quaternary ammonium compounds such as dimethyl distearyl ammonium chloride, and ester quats, especially quaternized fatty acid trialkanolamine ester salts.
  • Typical examples of amphoteric or zwitterionic surfactants are alkylbetaines, alkylamidobetaines, aminopro- pionates, aminoglycinates, imidazolinium betaines and sulfobetaines. The said surfactants are exclusively known compounds.
  • Typical examples of particularly suitable mild surfactants are fatty alcohol poly glycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid ethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, ⁇ -olefinsulfonates, ethercarboxylic acids, alkyl oligoglucosides, fatty acid glucamides, alkylamidobetaines, amphoacetals and / or protein fatty acid condensates, the latter preferably based on wheat proteins.
  • Guerbet alcohols based on fatty alcohols with 6 to 18, preferably 8 to 10 carbon atoms, esters of linear C 6 -C 22 fatty acids with linear or branched C 6 -C 2 2 fatty alcohols or esters of branched C 6 , for example, are used as the oil body.
  • Ci 3 - carboxylic acids with linear or branched C 6 -C 22 -fatty alcohols such as myristyl myristate, myristyl palmitate, myristyl stearate, Myristylisostearat, myristyl, Myristylbehenat, My- ristylerucat, cetyl myristate, cetyl palmitate, cetyl stearate, Cetylisostearat, cetyl oleate, cetyl behenate, Cetylerucat, Stearylmyristat, stearyl palmitate, stearyl stearate, Stearylisostearat, stearyl oleate, stearyl behenate, Stearylerucat, isostearyl, isostearyl palmitate, Isostea- rylstearat, isostearyl isostearate, Isostearyloleat, isostearyl behenate, Isoste
  • esters of linear C 6 -C 22 -fatty acids with branched alcohols in particular 2-ethylhexanol
  • esters of C 8 -C 38 -alkylhydroxycarboxylic acids with linear or branched C 6 -C 22 -fatty alcohols in particular dioctyl malates
  • esters of linear and / or branched fatty acids with polyhydric alcohols for example propylene glycol, dimer diol or trimer triol
  • polyhydric alcohols for example propylene glycol, dimer diol or trimer triol
  • Guerbet alcohols triglycerides based on C 6 -C 0 fatty, liquid mono- / di- / triglyceride mixtures based on C 6 -C 8- fatty acids
  • esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids in particular benzoic acid, esters of C 2 -C 2 -dicar
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups:
  • alkyl and / or alkenyl oligoglycosides having 8 to 22 carbon atoms in the alk (en) yl radical and their ethoxylated analogs;
  • Adducts of 15 to 60 moles of ethylene oxide with castor oil and / or hydrogenated castor oil Adducts of 15 to 60 moles of ethylene oxide with castor oil and / or hydrogenated castor oil;
  • Partial esters of polyglycerol (average intrinsic degree of condensation 2 to 8), polyethylene glycol (molecular weight 400 to 5000), trimethylolpropane, pentaerythritol, sugar alcohols (eg sorbitol), alkylglucosides (eg methylglucoside, butylglucoside, laurylglucoside) and polyglucosides (eg cellulose ) with saturated and / or unsaturated, linear or branched fatty acids having 12 to 22 carbon atoms and / or hydroxycarboxylic acids having 3 to 18 carbon atoms and their adducts with 1 to 30 moles of ethylene oxide;
  • Block copolymers e.g. Polyethylene glycol-30 dipolyhydroxystearates
  • polymeric emulsifiers such as Pemulen grades (TR-L, TR-2) from Goodrich or Cosmedia SP ® Cognis;
  • Alkyl and / or alkenyl oligoglycosides their preparation and their use are known from the prior art. In particular, their preparation takes place by reaction of glucose or oligosaccharides with primary alcohols having 8 to 18 carbon atoms.
  • the glycoside radical both monoglycosides in which a cyclic sugar residue is bonded glycosidically to the fatty alcohol and oligomeric glycosides having a degree of oligomerization of preferably approximately 8 are suitable.
  • the degree of oligomerization is a statistical mean, which is based on a homolog distribution typical for such technical products.
  • Suitable partial glycerides are Hydroxystearin Textremonoglyce- chloride, hydroxystearic acid diglyceride, isostearic acid, Isostearinklaredigly- cerid, oleic acid monoglyceride, oleic acid diglyceride, Ricinolklaremoglycerid, diglyceride Ricinolklare-, Linolklaremonoglycerid, Linolklarediglycerid, LinolenTalkremonoglycerid, Li nolenklarediglycerid, Erucaklaremonoglycerid, Erucaklarediglycerid, glyceride Weinklaremono-, Weinklarediglycerid, Citronenklamonoglycerid, Citric diglyceride, malic acid monoglyceride, malic acid diglyceride and their technical mixtures, which may contain minor amounts of triglyceride subordinate to the manufacturing process. Also suitable are addition products of 1 to
  • sorbitan esters sorbitan, sorbitan sesquiisostearate, sorbitan diisostearate, sorbitan triisostearate, sorbitan monooleate, sorbitan dioleate, trioleate, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinole- at, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat,
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearates (Dehymuls® PGPH), polyglycerol-3-diisostearates (Lameform® TG I), polyglyceryl-4 isostearates (Isolan® Gl 34), polyglyceryl-3 oleates, diisostearoyl polyglyceryl-3 Diisostea- rate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010 / 90), Polyglyceryl-3 Cetyl Ether (Chimexane ® NL), polyglyceryl-3 distearate (Cromophor® GS 32) and polyglyceryl polyricinoleate (Admul® WOL 1403) polyglyceryl
  • polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol reacted with 1 to 30 mol of ethylene oxide with lauric acid, coconut fatty acid, tallow fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like.
  • Typical anionic emulsifiers are aliphatic fatty acids having 12 to 22 carbon atoms, such as palmitic acid, stearic acid or behenic acid, and
  • Dicarboxylic acids having 12 to 22 carbon atoms such as azelaic acid or sebacic acid.
  • zwitterionic surfactants can be used as emulsifiers.
  • zwitterionic surfactants are those surface-active compounds referred to in the
  • Molecule at least one quaternary ammonium group and at least one carboxylate and a sulfonate group.
  • Particularly suitable zwitterionic surfactants are the so-called betaines, such as N-alkyl-N, N-dimethylammonium glycinates, for example cocoalkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammoniumglycinates, for example cocoacylaminopropyldimethylammonium glycinate, and 2-alkyl-3-carboxylmethyl 3-hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and Kokosacylaminoethylhydroxyethyl- carboxymethylglycinat.
  • fatty acid amide derivative known by the CTFA name Cocamidopropyl Betaine.
  • ampholytic surfactants are surface-active compounds which, in addition to a C8 / i 8 alkyl or acyl group, contain at least one free amino group and at least one -COOH or -S0 3 H group and capable of forming inner salts.
  • suitable phytochemical surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-
  • Particularly preferred ampholytic surfactants are the N-Kokosalkylaminopropionat, the Kokosacylaminoethylamino- propionate and the Ci 2 / i 8 acylsarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the esterquat type, preferably methyl-quaternized difatty acid triethanolamine ester salts, being particularly preferred. Fats and waxes
  • Typical examples of fats are glycerides, i. solid or liquid vegetable or animal products consisting essentially of mixed glycerol esters of higher fatty acids, used as waxes i.a. natural waxes, e.g. Candelilla wax, carnauba wax, Japanese wax, Esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, spermaceti, lanolin (wool wax), crescent fat, ceresin, ozokerite (earth wax), petrolatum, paraffin waxes, microwaxes; chemically modified waxes (hard waxes), e.g.
  • waxes i.a. natural waxes, e.g. Candelilla wax, carnauba wax, Japanese wax, Esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouri
  • synthetic waxes such as e.g. Polyalkylene waxes and polyethylene glycol waxes in question.
  • fats come as additives and fat-like substances such as lecithins and phospholipids in question.
  • lecithin those skilled in the art will understand those glycerophospholipids which are formed from fatty acids, glycerol, phosphoric acid and choline by esterification. Lecithins are therefore often referred to in the art as Phosphatidylcholine (PC).
  • cephalins which are also referred to as phosphatidic acids and derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood as meaning mono- and preferably diesters of phosphoric acid with glycerol (glycerophosphates), which are generally regarded as fats.
  • sphingosines or sphingolipids are also suitable.
  • Suitable pearlescing waxes are, for example: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polybasic, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which in total have at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides having 12 to 22 carbon atoms with fatty alcohols having 12 to 22 carbon atoms and / or polyols having 2 to 15 carbon atoms and 2
  • fatty alcohols or hydroxy fatty alcohols having 12 to 22 and preferably 16 to 18 carbon atoms and in addition partial glycerides, fatty acids or hydroxy fatty acids into consideration. Preference is given to a combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicic acids), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and Tylose, carboxymethylcellulose and hydroxyethyl and hydroxypropyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids , Polyacrylates, (eg, Carbopole® and Pemulen types from Goodrich, Synthalene® from Sigma, Keltrol types from Kelco, sepiolite types from Seppic, Salcare types from Allied Colloids), polyacrylamides, polymers, polyvinyl alcohol, and polyvinylpyrrolidone.
  • Aerosil types hydrophilic silicic acids
  • polysaccharides in particular xanthan gum, guar guar, agar agar, alginates and Tylose, carboxymethylcellulose and hydroxyethyl and hydroxypropyl cellulose, and also
  • bentonites such as Bentone ® Gel VS-5PC (Rheox) have shown which is torit to a mixture of cyclopentasiloxane, disteardimonium HEC and is propylene carbonate.
  • surfactants such as, for example, ethoxylated fatty acid glycerides, esters of fatty acids with polyols, such as pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with narrow homolog distribution or alkyl oligoglucosides, and electrolytes, such as common salt and ammonium chloride.
  • Superfatting agents which can be used are substances such as lanolin and lecithin, as well as polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides, the latter also serving as foam stabilizers.
  • metal salts of fatty acids e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate can be used.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, e.g. a quaternized hydroxyethylcellulose available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers, e.g.
  • Luviquat® condensation products of polyglycols and amines, quaternized collagen polypeptides, such as lauryldimonium hydroxypropyl hydrolyzed collagen (La mequat® L / Grünau), quaternized wheat polypeptides, polyethylenimine, cationic silicone polymers, e.g.
  • Amodimethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat® 550 / Chemviron), polyamino-polyamides and their crosslinked water-soluble polymers, cationic chitin derivatives such as quaternized chitosan, optionally microcrystalline, condensation products from dihaloalkylene, such as Dibromobutane with bis-dialkylamines, e.g. Bis-dimethylamino-1,3-propane, cationic guar gum, e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese, quaternized ammonium salt polymers, e.g. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 from Miranol.
  • Suitable anionic, zwitterionic, amphoteric and nonionic polymers are, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and their esters, uncrosslinked polyols crosslinked with polyols Acrylic Acids, Acrylamidopropyltrimethylammonium Chloride / Acrylate Copolymers, Octylacrylamide / Methylmethacrylate / tert.butylaminoethylmethacrylate / 2-Hydroxypropylmethacrylate Copolymers, Polyvinylpyrrolidone, Vinylpyrrolidone / Vinylacetate Copolymers, Vinylpyrrolidone / Dimethylaminoethylmethacrylat / vinyl
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and also amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluoro-, glycoside- and / or alkyl-modified silicone compounds which may be both liquid and resinous at room temperature.
  • simethicones which are mixtures of dimethicones having an average chain length of from 200 to 300 dimethylsiloxane units and hydrogenated silicates.
  • UV sunscreen factors for example, at room temperature, liquid or crystalline organic substances (sunscreen) to understand that are able to absorb ultraviolet rays and the absorbed energy in the form of longer-wave radiation, e.g. Heat again.
  • the UV sunscreen factors are present in amounts of 0.1 to 5 and preferably 0.2 to 1 wt .-%.
  • UVB filters can be oil-soluble or water-soluble. As oil-soluble substances are e.g. to call:
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and 4- (dimethylamino) benzoic acid amyl ester;
  • esters of cinnamic acid preferably 4-methoxycinnamic acid 2-ethylhexyl ester, propyl 4-methoxycinnamate, isoamyl 4-methoxycinnamate 2-cyano-3,3-phenylcinnamic acid
  • Esters of salicylic acid preferably 2-ethylhexyl salicylate, 4-isopropylbenzyl salicylate, homomenthyl salicylate;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • Esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate
  • Triazine derivatives e.g. 2,4,6-trianilino (p-carbo-2'-ethyl-1-hexyloxy) -l, 3,5-triazine and octyl triazone or dioctyl butamido triazone (Uvasorb® HEB);
  • Propane-1,3-diones e.g. l- (4-tert-butylphenyl) -3- (4'methoxyphenyl) propane-l, 3-dione;
  • Suitable water-soluble substances are: 2-phenylbenzimidazole-5-sulfonic acid and its alkali metal, alkaline earth metal, ammonium, alkylammonium, alkanolammonium and glucammonium salts;
  • Sulfonic acid derivatives of benzophenones preferably 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and its salts;
  • Sulfonic acid derivatives of the 3-benzylidene camphor e.g. 4- (2-oxo-3-bionylidenemethyl) benzenesulfonic acid and 2-methyl-5- (2-oxo-3-bomylidene) -sulfonic acid and its salts.
  • UV-A filter in particular derivatives of benzoylmethane are suitable, such as, for example, 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propan-1, 3-dione, 4-tert-butyl 4'-methoxydibenzoylmethane (Parsol® 1789), 2- (4-diethylamino-2-hydroxybenzoyl) -benzoic acid hexyl ester (Uvinul® A Plus), 1-phenyl-3- (4'-isopropylphenyl) -propane-1, 3-dione and enamine compounds.
  • the UV-A and UV-B filters can also be used in mixtures.
  • Particularly favorable combinations consist of the derivatives of benzoylmethane, e.g. 4-tert-butyl-4'-methoxydibenzoylmethane (Parsol® 1789) and 2-cyano-3,3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene) in combination with esters of cinnamic acid, preferably 2-ethylhexyl 4-methoxycinnamate and / or 4-methoxycinnamic acid propyl ester and / or 4-methoxycinnamic acid isoamyl ester.
  • water-soluble filters e.g. 2-phenylbenzimidazole-5-sulfonic acid and their alkali, alkaline earth, ammonium, alkylammonium, alkanolammonium and glucammonium combined.
  • insoluble photoprotective pigments namely finely dispersed metal oxides or salts
  • suitable metal oxides are in particular zinc oxide and titanium dioxide and also oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • salts silicates (talc), barium sulfate or zinc stearate can be used.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobized.
  • Typical examples are coated titanium dioxides, for example Titandioxid T 805 (Degussa) or Eusolex ® T2000, Eusolex ® T, Eusolex ® T-ECO, Eusolex ® TS, Eusolex ® T-Aqua, Eusolex ® T-45D (all Merck), Uvinul TiO 2 (BASF).
  • Suitable hydrophobic coating agents are in particular silicones and in particular trialkoxyoctylsilanes or simethicones.
  • I n sunscreen agents are preferably used so-called micro- or nanopigments.
  • micronized zinc oxide such as Z-COTE ® or Z-COTE HP1 ® is used.
  • Humectants serve to further optimize the sensory properties of the composition and to regulate the moisture of the skin. At the same time, the low-temperature stability of the preparations according to the invention, in particular in the case of emulsions, is increased.
  • the humectants are usually contained in an amount of 0.1 to 15 wt .-%, preferably 1 to 10 wt .-%, and especially 5 to 10 wt .-%.
  • amino acids for example glycerol, diglycerol, triglycerol, Ethylene glycol, propylene glycol, butylene glycol, erythritol, 1,2,6-hexanetriol, polyethylene glycols such as PEG-4, PEG-6, PEG-7, PEG-8, PEG-9, PEG-10, PEG-12, PEG-14, PEG-16, PEG-18, PEG-20), sugars and sugar derivatives (including fructose, glucose, maltose, maltitol, mannitol, inositol,
  • biogenic active substances include tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, (deoxy) ribonucleic acid and its fragmentation products, ⁇ -glucans, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, Plant extracts, such as Prunus extract, Bambaranussexschreib and vitamin complexes to understand.
  • Antioxidants interrupt the photochemical reaction chain, which is triggered when UV radiation penetrates the skin.
  • Typical examples are amino acids (eg glycine, histidine, tyrosine, tryptophan) and their derivatives, midazoles (eg urocanic acid) and their derivatives, peptides such as D, L-carnosine, D-carnosine, L-carnosine and their derivatives (eg anserin ), Carotenoids, carotenes (eg carotene, beta-carotene, lycopene) and their derivatives, chlorogenic acid and its derivatives, lipoic acid and its derivatives (eg dihydrolipoic acid), aurothioglucose, propylthiouracil and other thiols (eg thioredoxin, glutathione, cysteine).
  • amino acids eg glycine, histidine, tyrosine, tryptophan
  • midazoles eg uroc
  • deodorants counteract, cover or eliminate body odors. Body odors are caused by the action of skin bacteria on apocrine sweat, forming unpleasant-smelling degradation products. Accordingly, deodorants contain active substances which act as antimicrobials, enzyme inhibitors, odor absorbers or odor maskers.
  • Triclosan 4-chloro-3,5-dimethyl-phenol, 2,2 '-methylene-bis (6-bromo-4-chlorophenol), 3-methyl-4- (l-methylethyl) phenol, 2- benzyl-4-chlorophenol, 3- (4-chlorophenoxy) -l, 2-propanediol, 3-iodo-2-propynyl butylcarbamate, chlorhexidine, 3,4,4 '-Trichlorcarbanilid (TTC), antibacterial fragrances, thymol, thyme oil, eugenol , Clove oil, menthol, mint oil, farnesol, phenoxyethanol, glycerol monocaprinate, glycerol monocaprylate, glycerol monolaurate (GML), diglycerol monocaprinate (DMC), salicylic acid N-alkylamides such as. For example, salicylic acid n-octylamide or salicy
  • esterase inhibitors are suitable as enzyme inhibitors.
  • These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl
  • Icitrate, tributyl citrate and especially triethyl citrate (Hydagen® CAT).
  • the substances inhibit the enzyme activity and thereby reduce odors.
  • Further substances which are suitable as esterase inhibitors are sterol sulfates or phosphates, such as, for example, lanosterol, cholesterol, campesterol, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, for example glutaric acid, glutaric acid monoethyl ester, Glutaric acid diethyl ester, adipic acid, adipic acid monoethyl ester, diethyl adipate, malonic acid and diethyl malonate, hydroxycarboxylic acids and their esters such as citric acid, malic acid, tartaric acid or diethyl tartrate, and zinc glycinate.
  • odor absorbers such as citric acid, malic acid, tartaric acid or die
  • Suitable odor absorbers are substances that absorb and largely retain odor-forming compounds. They reduce the partial pressure of the individual components and thus also reduce their propagation speed. It is important that perfumes must remain unimpaired. Odor absorbers have no activity against bacteria. They contain, for example, as a main component of a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known in the art as "fixatives", such. B. Extracts of Labdanum or Styrax or certain Abietinklarivate. Odor maskers are fragrances or perfume oils which, in addition to their function as odor maskers, give the deodorants their particular scent. Examples of perfume oils are mixtures of natural and synthetic fragrances.
  • Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit peel, roots, woods, herbs and grasses, needles and twigs, as well as resins and balsams. Furthermore, animal raw materials come into question, such as civet and Castoreum.
  • Typical synthetic fragrance compounds are ester type products, ethers, aldehydes, ketones, alcohols and hydrocarbons. Fragrance compounds of the ester type are known e.g.
  • ethers include, for example, benzyl ethyl ether, to the aldehydes e.g.
  • the linear alkanals having 8 to 18 carbon atoms citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones e.g. the alcohols include anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol; the hydrocarbons mainly include the terpenes and balsams.
  • mixtures of different fragrances are used, which together produce an attractive fragrance.
  • perfume oils e.g. Sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, lime blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labdanum oil and lavandin oil.
  • Antiperspirants reduce the formation of sweat by influencing the activity of eccrine sweat glands and thus counteract underarm wetness and body odor.
  • Aqueous or anhydrous formulations of antiperspirants typically contain the following ingredients: Astringent agents,
  • auxiliaries such as As thickener or complexing agent and / or
  • non-aqueous solvents such as ethanol, propylene glycol and / or glycerol.
  • Salts of aluminum, zirconium or zinc are especially suitable as astringent antiperspirant active ingredients.
  • suitable antiperspirant active compounds are e.g. Aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds, eg. With propylene glycol-1,2.
  • antiperspirants may contain customary oil-soluble and water-soluble adjuvants in smaller amounts. Such oil-soluble adjuvants may be e.g. be :
  • Usual water-soluble additives are e.g. Preservatives, water-soluble fragrances, pH adjusters, e.g. Buffer mixtures, water-soluble thickeners, e.g. water-soluble natural or synthetic polymers such as e.g. Xanthan gum, hydroxyethyl cellulose, polyvinylpyrrolidone or high molecular weight polyethylene oxides. film formers
  • Typical film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or salts thereof and similar compounds.
  • Antidandruff agents piroctone olamine come (l-hydroxy-4-methyl-6- (2,4,4-trimythylpentyl) -2- (lH) -pyridinonmonoethanolaminsalz) Baypival ® (Climbazole), Ketoconazol®, (4-acetyl-l - ⁇ - 4- [2- (1H-imidazol-1-ylmethyl) -1,3-dioxylan-c-4-ylmethoxyphenyl] piperazine, ketoconazole, elubiol, selenium disulfide, sulfur colloidal, sulfuric acid, felpolyehtylene glycol sorbitan monooleate, sulfur ricinole polyethoxylate, black tea tar distillates, salicylic acid (or in combination with hexachlorophene), undecylenic acid monoethanolamide sulfosuccinate Na salt, Lamepon® UD (protein undecylenic acid conden
  • Suitable swelling agents for aqueous phases are montmorillonites, clay minerals, pemulen and alkyl-modified carbopol types (Goodrich). Further suitable polymers or swelling agents can be reviewed by R. Lochhead in Cosm.Toil. 108, 95 (1993). insect repellents
  • Suitable insect repellents are N, N-diethyl-m-toluamide, 1,2-pentanediol or ethyl butylacetylaminopropionate.
  • As a self-tanner dihydroxyacetone is suitable.
  • As tyrosine inhibitors which prevent the formation of melanin and find application in depigmentation agents for example, arbutin, ferulic acid, kojic acid, coumarin acid and ascorbic acid (vitamin C) come into question.
  • Toothpastes or toothpastes are generally understood to mean gelatinous or pasty preparations of water, thickening agents, humectants, abrasives or cleaning articles, surfactants, sweeteners, flavoring agents, deodorant active substances and active ingredients for tooth and nail diseases.
  • all the usual cleaning bodies such as. As chalk, dicalcium phosphate, insoluble sodium metaphosphate, aluminum silicates, calcium pyrophosphate, finely divided resins, silicas, alumina and alumina trihydrate are used.
  • Particularly suitable cleaning bodies for the toothpastes according to the invention are, above all, finely divided xerogel silicas, hydrogel silicic acids, precipitated silicas, alumina trihydrate and finely divided alpha alumina or mixtures of these cleansers in amounts of from 15 to 40% by weight of the toothpaste.
  • the humectants are mainly low molecular weight polyethylene glycols, glycerol, sorbitol or mixtures of these products in amounts up to 50 wt .-% in question.
  • the known thickeners are the thickening, finely divided gel silicas and hydrocolloids, such as.
  • carboxymethyl cellulose As carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl guar, hydroxyethyl starch, polyvinyl pyrrolidone, high molecular weight polyethylene glycol, vegetable gums such as tragacanth, agar-agar, Carragheen- moss, gum arabic, xantham gum, and carboxyvinyl polymers (eg. Carbopol ® grades) is suitable.
  • the dentifrices and dentifrices may in particular surface-active substances, preferably anionic and nonionic high-foaming surfactants, such as the substances mentioned above, but especially alkyl ether sulfate salts, alkyl polyglucosides and mixtures thereof.
  • Preservatives and antimicrobials such.
  • organophosphates such as 1-hydroxyethane-1,1-diphosphonic acid, l-phosphonopropane-l, 2,3-tricarboxylic acid and others, the z. B. from US 3,488,419, DE 2224430 AI and DE 2343196 AI are known;
  • Sweeteners such as B. saccharin sodium, sodium cyclamate, sucrose, lactose, maltose, fructose or Apartam ®, (L-aspartyl-L-phenylalanine-methylester), Stivia extracts or their sweetening components, in particular Ribeaudioside;
  • pigments such as For example, titanium dioxide
  • Buffer substances such.
  • a preferred embodiment of the cosmetic preparations are toothpastes in the form of an aqueous, pasty dispersion containing polishes, humectants, viscosity regulators and optionally further customary components, and the mixture of menthofuran and menthol compounds in amounts of 0.5 to 2 wt .-% ,
  • a further preferred embodiment of the invention is an M and water in the form of an aqueous or aqueous-alcoholic solution containing the mixture of menthofuran and menthol compounds in amounts of 0.5 to 2 wt .-%.
  • M and waters diluted prior to use sufficient effects can be achieved with higher concentrations according to the intended dilution ratio.
  • hydrotropes such as, for example, ethanol, isopropyl alcohol, or polyols; These substances largely correspond to the initially described carriers.
  • Polyols contemplated herein preferably have from 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols may contain other functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols having an average molecular weight of from 100 to 1000 daltons;
  • Technical Oligoglyceringemische with an intrinsic degree of condensation of 1.5 to 10 such as technical Diglyceringemische with a diglycerol content of 40 to 50 wt .-%;
  • Methyl compounds in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Low alkyl glucosides especially those having 1 to 8 carbons in the alkyl radical, such as, for example, methyl and butyl glucoside;
  • Sugar alcohols having 5 to 12 carbon atoms such as sorbitol or mannitol,
  • sugars having 5 to 12 carbon atoms such as glucose or sucrose
  • Dialcoholamines such as diethanolamine or 2-amino-l, 3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the well- known under the name ® Surfacine silver complexes, and further substance classes listed in B Annex 6, Part A and the cosmetics regulations are suitable.
  • Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (aniseed, coriander, caraway, juniper), fruit peel (bergamot, Lemon, oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage , Thyme), needles and twigs (spruce, fir, pine, pines), resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are ester type products, ethers, aldehydes, ketones, alcohols and hydrocarbons. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert.-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, methylbenzoate, benzylformate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate and benzylsalicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, Citronellloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial and Bourgeonal, to the ketones such as the Jonone, cc-lsomethylionon and Methylcedrylketon to the alcohols include aethethol, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol; the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils are suitable as perfume oils, eg sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon oil, lime blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • gamotte oil dihydromyrcenol, lilial, lyral, citronellol, phenylethyl alcohol, cc- hexylcinnamaldehyde, geraniol, benzylacetone, cyclamenaldehyde, linalool, Boisambrene Forte, Ambroxan, indole, hedione, sandelice, lemon oil, mandarin oil, orange oil, allylamylglycate, cyclovertal, lavandin oil, M practiceled sage oil, ⁇ -damascone, geranium oil Bourbon, cyclohexyl salicylate, Vertofix Coeur, Iso-E-Super, fixolide NP, evernyl, raldeine gamma, phenylacetic acid, geranyl acetate, benzyl acetate, rose oxide, romilllate, iroty
  • Suitable flavors are, for example, pipe oil, spearmint oil, aniseed oil, star aniseed oil, cumin oil, eucalyptus oil, fennel oil, citrus oil, wintergreen oil, clove oil, menthol and the like.
  • dyes the substances suitable and suitable for cosmetic purposes can be used, as compiled, for example, in the publication "Cosmetic Colorants” of the Dye Commission of the Irish Klastician, Verlag Chemie, Weinheim, 1984, pp. 81-106. Examples are Kochillerot A (Cl. 16255), Patent Blue V (C.1.42051), Indigotin (C.1.73015), Chlorophyllin (C.1.75810), Quinoline Yellow (C.1.47005), Titanium Dioxide (C.1.77891), Indanthrene Blue RS (Cl 69800) and madder paint (Cl58000). As a luminescent dye and luminol may be included. These dyes are usually used in concentrations of 0.001 to 0.1 wt .-%, based on the total mixture.
  • the total amount of auxiliaries and additives may be 1 to 50, preferably 5 to 40 wt .-% - based on the means - amount.
  • the preparation of the agent can be carried out by conventional cold or hot processes; It is preferable to work according to the phase inversion temperature method.
  • a further subject of the invention relates to food preparations containing (a) amides of the formula (I)
  • the carriers may be selected from the group formed by water, ethanol and glycerol.
  • the food preparations are preferably beverages, dairy products, baked goods, and in particular chewing gum and candy.
  • the preparations according to the invention may contain components (a) and (b) in a weight ratio of 0.1: 99 to 99.9: 1, in particular 10:90 to 90:10, more preferably 25:75 to 75:25 and particularly preferably 40: 60 to 60:40 included.
  • the components (a + b) and (c) may be contained in the weight ratio 0.01: 99.9 to 2:98, preferably 0.5: 99.5 to 1.5: 98.5 and in particular about 1:99.
  • the total content of the components (a + b) in the final Products may be between 1 and 5,000, preferably 10 to 4,000 and especially 100 to 1,000 ppm.
  • Chewing gums The preferred food preparations containing the blends of the amides and menthol or menthol compounds as flavoring agents are chewing gums. These products typically contain a water-insoluble and a water-soluble component. Water-insoluble base
  • the water-insoluble base also referred to as "gum base” usually comprises natural or synthetic elastomers, resins, fats and oils, plasticizers, fillers, dyes and, optionally, waxes
  • the proportion of the base in the total composition usually makes 5 to 95, preferably 10
  • the base is comprised of 20 to 60% by weight of synthetic elastomers, 0 to 30% by weight of natural elastomers, 5 to 55% by weight.
  • % Plasticizers 4 to 35 wt .-% of fillers and in minor amounts additives such as dyes, antioxidants and the like together, with the proviso that they are at most in small amounts water-soluble.
  • Suitable synthetic elastomers are, for example, polyisobutylenes having average molecular weights (according to GPC) of 10,000 to 100,000 and preferably 50,000 to 80,000, isobutylene-isoprene copolymers ("butyl elastomers”), styrene-butadiene copolymers (styrene: butadiene ratio eg 1: 3 to 3: 1), polyvinyl acetates having average molecular weights (by GPC) of 2,000 to 90,000, and preferably 10,000 to 65,000, polyisoprenes, polyethylene, vinyl acetate-vinyl laurate copolymers and blends thereof
  • suitable natural elastomers are rubbers such as smoked or liquid Latex or guayules as well as natural rubbers like Jelutong, Lechi caspi, Perillo, Sorva, Massaranduba balata, Massaranduba chocolate, Nispero, Rosindinba,
  • esters of resin acids are suitable, for example, esters of lower aliphatic alcohols or polyols with completely or partially cured, monomeric or oligomeric resin acids.
  • the methyl, glycerol or Pentareythritester and mixtures thereof are used for this purpose.
  • terpene resins are also suitable, which can be derived from alpha-pinene, beta-pinene, delta-limonene or mixtures thereof.
  • Suitable fillers or texturing agents are magnesium or calcium carbonate, ground pumice, silicates, especially magnesium or aluminum silicates, clays, aluminum oxides.
  • Talc titanium dioxide, mono-, di- and tricalcium phosphate as well as cellulose polymers.
  • Suitable emulsifiers are tallow, hardened tallow, hardened or partially hydrogenated vegetable oils, cocoa butter, partial glycerides, lecithin, triacetin and saturated or unsaturated fatty acids having 6 to 22 and preferably 12 to 18 carbon atoms and mixtures thereof.
  • Suitable dyes and whitening agents are the FD and C types, plant and fruit extracts and titanium dioxide permitted for coloring foods.
  • the base stocks may contain waxes or be wax-free; Examples of wax-free compositions can be found, inter alia, in US Pat. No. 5,286,500, the contents of which are hereby expressly incorporated by reference.
  • chewing gum preparations regularly contain a water-soluble portion formed by, for example, softeners, sweeteners, fillers, flavors, flavor enhancers, emulsifiers, colorants, acidulants, antioxidants, and the like, provided that the ingredients are at least sufficiently water soluble Have water solubility.
  • individual constituents may accordingly belong to both the water-insoluble and the water-soluble phase a.
  • the water-insoluble content accounts for 5 to 95 and preferably 20 to 80 wt .-% of the preparation.
  • Water-soluble softeners or plasticizers are added to the chewing gum compositions to improve chewability and chewing sensation and are typically present in the blends in amounts of from 0.5 to 15 percent by weight.
  • Typical examples are glycerol, lecithin and aqueous solutions of sorbitol, hardened starch hydrolysates or corn syrup.
  • Suitable sweeteners are both sugar-containing and sugar-free compounds which are used in amounts of 5 to 95, preferably 20 to 80 and in particular 30 to 60 wt .-% based on the chewing gum composition.
  • Typical saccharide sweeteners are sucrose, dextrose, maltose, dextrin, dried invert sugar, fructose, levulose, galactose, corn syrup and mixtures thereof.
  • Suitable sugar substitutes are sorbitol, mannitol, xylitol, hardened starch hydrolysates, maltitol and mixtures thereof.
  • HIAS High Intensity Articifical Sweeteners
  • sucralose such as sucralose, aspartame, acesulfame salts, alitame, saccharin and saccharin salts, cyclamic acid and its salts, glycyrrhizin, dihydrochalcones, thaumatin, monellin and the like alone or in Particularly effective are the hydrophobic HIAS, the subject of international patent application WO 2002091849 Al (Wrigleys) and Stevia extracts and their active ingredients, in particular Ribeaudi- osid A are.
  • the amount used of these substances depends primarily on their performance and is typically in the range of 0.02 to 8 wt .-%.
  • Fillers such as, for example, polydextrose, raftilose, rafitilin, fructo-oligosaccharides (NautraFlora), palatinose oligosaccharides, guar gum hydrolysates (Sun Fiber) and dextrins are particularly suitable for the production of low-calorie chewing gums.
  • the range of other flavors is virtually unlimited and uncritical of the essence of the invention.
  • the total content of all flavorings is 0.1 to 15 and preferably 0.2 to 5 wt .-% based on the chewing gum composition.
  • Suitable further flavoring agents are, for example, essential oils, synthetic aromas and the like, such as aniseed oil, star anise oil, caraway oil, eucalyptus oil, fenugreek oil, lemon oil, wintergreen oil, clove oil and the like, which are also used, for example, in medicated and dentifrices ,
  • the chewing gums may further contain excipients and additives which are suitable, for example, for the care of the teeth, especially for controlling plaque and gingivitis, e.g. Chlorhexidine, CPC or trichlosan.
  • excipients and additives which are suitable, for example, for the care of the teeth, especially for controlling plaque and gingivitis, e.g. Chlorhexidine, CPC or trichlosan.
  • pH regulators eg buffer or urea
  • anticaries agents eg phosphates or fluorides
  • biogenic agents antibodies, enzymes, caffeine, plant extracts
  • the preparations of the specific amides and menthol or the menthol compounds alone or else the ready-made cosmetic, pharmaceutical and food preparations can also be present in encapsulated form.
  • micro- or nanocapsules come into consideration.
  • the expert spherical aggregates having a diameter in the range of about 0.0001 to about 5 and preferably 0.005 to 0.5 mm, which contain at least one solid or liquid core, which is enclosed by at least one continuous shell. More specifically, it is finely dispersed liquid or solid phases coated with film-forming polymers, in the preparation of which the polymers precipitate on the material to be enveloped after emulsification and coacervation or interfacial polymerization.
  • molten waxes are taken up in a matrix ("microsponge") which, as microparticles, can additionally be coated with film-forming polymers
  • microsponge a matrix
  • particles are coated alternately with polyelectrolytes of different charge ("layer-by-layer "-Method).
  • the microscopic capsules can be dried like powder.
  • mononuclear microcapsules multinuclear aggregates, also called microspheres, are known, which contain two or more cores distributed in the continuous shell material.
  • Mononuclear or polynuclear microcapsules can also be enclosed by an additional second, third, etc. shell.
  • the shell may be made of natural, semi-synthetic or synthetic materials.
  • Natural shell materials are, for example, gum arabic, agar-agar, agarose, maltodextrins, alginic acid or its salts, for example sodium or calcium alginate, fats and fatty acids, cetyl alcohol, collagen, chitosan, lecithins, gelatin, albumin, shellac, polysaccharides, such as Starch or dextran, po lypeptide, protein hydrolysates, sucrose and waxes.
  • Semi-synthetic shell materials include chemically modified celluloses, in particular cellulose esters and ethers, for example cellulose acetate, ethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose and carboxymethylcellulose, and also starch derivatives, in particular starch ethers and esters.
  • Synthetic shell materials are, for example, polymers such as polyacrylates, polyamides, polyvinyl alcohol or polyvinylpyrrolidone.
  • microcapsules of the prior art are the following commercial products (the shell material is indicated in parentheses): Hallcrest microcapsules (gelatin, gum arabic), Coletica thalaspheres (marine collagen), Lipotec millicapsules (alginic acid, agar-agar), induchem Unispheres (lactose, microcrystalline cellulose, hydroxypropyl methylcellulose); Unicerin C30 (lactose, microcrystalline cellulose, hydroxypropylmethylcellulose), Kobo Glycospheres (modified starch, fatty acid esters, phospholipids), Softspheres (modified agar agar) and Kuhs Probiol Nanospheres (phospholipids) and Primaspheres and Primasponges (chitosan, alginates) and Primasys ( phospholipids).
  • Microcapsules often contain the active ingredients dissolved or dispersed in a gel phase.
  • gelling agents preference is given to those substances which exhibit the property of forming gels in aqueous solution at temperatures above 40 ° C.
  • Typical examples are heteropolysaccharides and proteins.
  • Preferred thermogelling heteropoly-saccharides are agaroses which, in the form of the agar agar to be obtained from red algae, may also be present together with up to 30% by weight of non-gel-forming agaropotins.
  • the main constituent of the agaroses are linear polysaccharides of D-galactose and 3,6-anhydro-L-galactose, which are linked alternately to ⁇ -1,3- and ⁇ -1,4-glycosidically.
  • the heteropolysaccharides preferably have a molecular weight in the range of 110,000 to 160,000 and are both colorless and tasteless.
  • Pectins, xanthans (including xanthan gum) as well as their mixtures come into consideration as alternatives. Furthermore, preference is given to those types which still form gels in 1% strength by weight aqueous solution which do not melt below 80 ° C. and solidify again above 40 ° C. Examples of the group of thermogelling proteins are the various gelatin types.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, such as, for example, a quaternized hydroxyethylcellulose which is obtainable under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers, such as, for example, Luviquat® (BASF) , Condensation products of polyglycols and amines, quaternized collagen polypeptides, such as, for example, lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethylenimine, cationic silicates, conpolymers, such as amodimethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® /
  • Chitosans are biopolymers and are counted among the group of hydrocolloids. Chemically, they are partially deacetylated chitins of different molecular weight containing the following - idealized - monomer unit:
  • chitosans are cationic biopolymers under these conditions.
  • the positively charged chitosans can interact with oppositely charged surfaces and are therefore used in cosmetic hair and body care products and pharmaceutical preparations used.
  • For the production of chitosans is based on chitin, preferably the shell remains of crustaceans, which are available as cheap raw materials in large quantities.
  • the chitin is thereby used in a process first described by Hackmann et al. has been described, usually initially deproteinized by the addition of bases, demineralized by the addition of mineral acids and finally deacetylated by the addition of strong bases, wherein the molecular weights may be distributed over a broad spectrum.
  • chitosans are generally used in the form of their salts, preferably as glycolates.
  • the anionic polymers have the task of forming with the cationic membranes.
  • Salts of alginic acid are preferably suitable for this purpose.
  • alginic acid acts it is a mixture of carboxyl-containing polysaccharides with the following idealized monomer unit:
  • the average molecular weight of the alginic acids or alginates is in the range of 150,000 to 250,000.
  • Salts of alginic acid are to be understood as meaning both their complete and their partial neutralization products, in particular the alkali metal salts and preferably sodium alginate ("algin”) and the ammonium and alkaline earth salts.
  • algin alkali metal salts and preferably sodium alginate
  • ammonium and alkaline earth salts preferably sodium alginate
  • anionic chitosan derivatives such as, for example, carboxylation products and, in particular, succinylation products are also suitable for this purpose.
  • Poly (meth) acrylates having average molecular weights in the range from 5,000 to 50,000 are also suitable.
  • anionic surfactants or low molecular weight inorganic salts such as, for example, pyrophosphates, can also be used for the formation of the enveloping membrane.
  • aqueous solution of the gelling agent preferably the agar agar ago and heated them under reflux.
  • a second aqueous solution is added which contains the cationic polymer, preferably the chitosan, in amounts of from 0.1 to 2, preferably from 0.25 to 0.5,% by weight and Active ingredients in amounts of 0.1 to 25 and in particular 0.25 to 10 wt .-% contains; this mixture is called a matrix.
  • the loading of the microcapsules with active ingredients can therefore also amount to 0.1 to 25% by weight, based on the capsule weight.
  • water-insoluble constituents for example inorganic pigments
  • inorganic pigments can also be added at this time to adjust the viscosity, these being added as a rule in the form of aqueous or aqueous / alcoholic dispersions.
  • emulsifiers and / or solubilizers can also be added to the matrix.
  • the matrix of gel former, cation polymer and active ingredients has been prepared, the matrix can optionally be very finely dispersed in an oil phase under high shear in order to produce the smallest possible particles in the subsequent encapsulation.
  • the matrix has proved to be particularly advantageous to heat the matrix to temperatures in the range of 40 to 60 ° C, while the oil phase is cooled to 10 to 20 ° C.
  • the actual encapsulation takes place, ie the formation of the enveloping membrane by contacting the cationic polymer in the matrix with the anionic polymers.
  • the optionally dispersed in the oil phase matrix at a temperature in the range of 40 to 100, preferably 50 to 60 ° C with an aqueous, about 1 to 50 and preferably 10 to 15 wt .-% aqueous solution to treat the anionic polymer while - if necessary - simultaneously or subsequently remove the oil phase.
  • the resulting aqueous preparations generally have a microcapsule content in the range of 1 to 10 wt .-%. In some cases it may be advantageous if the solution of the polymers contains further ingredients, for example emulsifiers or preservatives.
  • microcapsules are obtained, which on average have a diameter in the range of preferably about 0.01 to 1 mm. It is recommended to sift the capsules to ensure the most even size distribution possible.
  • the microcapsules thus obtained may have any shape in the production-related framework, but they are preferably approximately spherical. Alternatively, it is also possible to use the anionic polymers to prepare the matrix and to carry out the encapsulation with the cationic polymers, especially the chitosans.
  • the encapsulation may also be carried out using cationic polymers only, the property of which is found to be useful for coagulating at pH values above the pKa value.
  • an O / W emulsion is initially prepared for producing the microcapsules according to the invention, which contains an effective amount of emulsifier in addition to the oil body, water and the active ingredients.
  • this preparation is mixed with vigorous stirring with an appropriate amount of an aqueous anionic polymer solution.
  • Polysaccharides especially xanthan gum, guar-guar, agar-agar, alginates and Tylose, carboxymethyl cellulose and hydroxyethyl cellulose, high molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates, polyacrylamides and the like can still be supported.
  • the microcapsules are separated from the aqueous phase, for example by decantation, filtration or centrifugation.
  • the formation of the microcapsules is carried out around a preferably solid, for example, crystalline core by coating it in layers with oppositely charged polyelectrolytes.
  • a preferably solid, for example, crystalline core by coating it in layers with oppositely charged polyelectrolytes.
  • the total content of the components (a + b) in the end products is preferably between 1 and 5,000, preferably 10 to 4,000 and in particular 100 to 1,000 ppm.
  • Chewing gum mass consisting of 20% by weight of polyisobutylene (MW 60,000), 51% by weight of sorbitol, 5% by weight of mannitol, 8% by weight of glycerol, 8.2% by weight of a 1: 1 mixture from lycasin and glycerol, 0.2 wt .-% lecithin (ad 99.5 wt .-% water) were prepared and mixed with 0.5 wt .-% of different refrigerants. Subsequently, the chewing gum masses were evaluated by a panel consisting of 5 trained persons on a scale of 1 (barely noticeable) to 10 (dominant). The composition of the refrigerants and the evaluation of the individual taste and odor notes (the mean of the assessments is given in each case) are summarized in Table 1. Examples 1 to 7 are according to the invention, examples VI to V4 are for comparison.
  • the sunscreen lotions differed only with regard to the coolant, which on the one hand to various menthol compounds alone and on the other in (1: 1) blends with 2- (2-isopopyl-5-methylphenoxy) -N- (lH-pyrazole 3-yl) -N- (thiophen-2-yl) -methylacetamide (structure A88).
  • a blank test was first carried out.
  • the mixture was thermostated in a reaction vessel with 300 ml of deionized water to 37 ° C. and suspended therein 0.5 g of hydroxyapatite powder (specific surface area 60 m 2 / g, from Merck).
  • the pH of the suspension was maintained at a constant value of 5 by means of an automatic burette, to which lactic acid solution could be added.
  • the amount of 0.1 molar lactic acid consumed for pH stabilization was registered by a writer.
  • the consumption of lactic acid registered after 2 hours corresponded to the solubility of the untreated hydroxyapatite powder (L u ).
  • ALR (%) (L u -L b ) * 100 / L u (%)
  • a blank test was also initially carried out.
  • 400 ml of a 0.0008 molar solution of KH 2 P0 4 and 45 ml of a 0.012 molar solution of CaCl 2 were initially charged in a reaction vessel.
  • This solution was adjusted by titration with a 0.05 molar solution of KOH to a pH of 7.4.
  • 100 mg of hydroxyapatite powder (specific surface 60 m 2 / g, Merck) were added.
  • the pH of the suspension was maintained at a constant value of 7.4 by means of an automatic burette capable of adding 0.05 molar KOH solution.
  • the amount of 0.05 molar KOH solution consumed for pH stabilization was registered by a recorder.
  • the recorded after 2 hours consumption of KOH solution (K u ) corresponded to the formation of hydroxyapatite (growth of the crystals of the suspension).
  • KWI (%) (K u -K b ) * 100 / K u (%)
  • Examples 15 to 19 show that the preparations according to the invention have a significantly higher apatite solubility and a stronger inhibition of the formation of apatite crystals compared to the individual components. Oral and dentifrices containing such mixtures are characterized by an improved action against calculus formation.
  • Table 6 contains a number of formulation examples for toothpastes and mouthwashes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dermatology (AREA)
  • Nutrition Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

Vorgeschlagen werden Zubereitungen, enthaltend spezielle Amide und Menthol bzw. Mentholverbindungen oder Aromastoffe, die sich durch verbesserte geschmackliche und geruchliche Eigenschaften auszeichnen und darüber hinaus die Herstellung von Zubereitungen, speziell Emulsionen mit verbesserter Lagerbeständigkeit ermöglichen.

Description

Zubereitungen
Gebiet der Erfindung
Die Erfindung befindet sich auf den Gebieten der Kosmetik, Pharmazie sowie der Nahrungsmittel und betrifft Zubereitungen mit kühlendem Effekt auf der Haut oder Schleimhaut, die Menthol bzw. Mentholverbindungen oder Aromastoffe zusammen mit ausgewählten Amiden enthalten. Stand der Technik
Obschon Menthol als kühlender Stoff schon seit vielen Jahrzehnten bekannt und auch heute noch in einer Vielzahl von Anwendungen unverzichtbar ist, hat dieser Stoff doch eine ganze Reihe von Nachteilen: er ist flüchtig, hat einen strengen Geruch und bitteren Geschmack. I n höheren Konzentrationen wird er nicht mehr als angenehm kühlend, sondern als stechend und brennend empfunden. Schließlich lässt sich Menthol nicht beliebig formulieren, da es mit anderen chemischen Komponenten in Wechselwirkung treten kann. Dies hat zur Entwicklung von unterschiedlichsten Mentholverbindungen geführt, von denen eine Reihe in über bessere geschmackliche Eigenschaften verfügen.
Aus der internationalen Patentanmeldung WO 2012 061698 A2 (Senomyx) sind komplexe Amide bekannt, die als TRPM8-Modulatoren (= Transient Receptor Potential Channel Melas- tin Member 8) verwendet werden können. Hierunter versteht man Stoffe, die in der Lage sind, auf der Haut oder Schleimhaut Heiß- oder Kaltempfindungen auszulösen. Diese Stoffe werden speziell für den Einsatz in Nahrungs- sowie Körperpflegeprodukten empfohlen.
Trotz der in den letzten Jahren erzielten Fortschritte und der Entwicklung immer wirksame- rer Kühlstoffe mit Terpengerüst, besteht sowohl in der Kosmetik als auch im Nahrungsmittelbereich nach wie vor Bedarf an Kühlstoffen oder synergistischen Kühlstoffmischungen, die verbesserte sensorische Eigenschaften aufweisen, sich leichter formulieren lassen, die anwendungstechnischen Eigenschaften der Endprodukte vorteilhaft beeinflussen und insbesondere trotz geringerer Einsatzkonzentrationen einen subjektiv gleich starken Effekt auf der Haut oder Schleimhaut bewirken.
Die Aufgabe der vorliegenden Erfindung hat daher darin bestanden, Zubereitungen der oben geschilderten Art zur Verfügung zu stellen. Beschreibung der Erfindung
Ein erster Gegenstand der Erfindung betrifft Zubereitungen mit kühlendem Effekt, enthaltend
(a) Amide der Formel (I)
A1-[B]-CO-NRa-(CH2)pA2 (I)
in der
A1 für einen gegebenenfalls substituierten Aryl-, Heteroaryl- oder Cycloalkylrest, B für eine OCRbRb, CHRc-CHRd, CRe=CRf, oder einen Cycloalkylrest,
p für Zahlen von 1 bis 3,
Ra für einen gegebenenfalls substituierten Alkyl-, Heteroalkyl-, Alkenyl-, Heteroal- kenyl-, Aryl-, Aralkyl-, Heteroaryl- Cyclo- oder Heterocycloalkylrest mit 1 bis 20 Kohlenstoffatomen,
Rb, Rc, Rd, Re und Rf unabhängig für Wasserstoff oder einen Alkylrest mit 1 bis 4 Kohlenstoffatomen, und
A2 für einen gegebenenfalls substituierten fünf- oder sechsgliedrigen Heteroaryl- rest steht, der mindestens ein Heteroatom aus der Gruppe aufweist, die gebildet wird von Stickstoff, Sauerstoff und Schwefel,
sowie deren Salze, und
rmeln (II), (III) und/oder (IV)
Figure imgf000003_0001
(Ii) (HD (IV)
in der X für -OY oder -COZ und Y für die folgenden Gruppen steht:
(i) einen linearen oder verzweigten Alkyl- oder Hydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen oder einen Allylrest;
(ii) einen Hydroxy- oder Dihydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen;
(iii) einen Rest -OCR1;
(iv) einen Rest -OCO(M)OH;
(v) einen Rest - OCO-S
(vi) einen Rest -OC(CH2)nCOR2
wobei
M für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 1 bis 10, vorzugsweise 1 bis 4 Kohlenstoffatomen; S für einen Kohlenhydratrest mit 5 bis 12 Kohlenstoffatomen, vorzugsweise einen Fructose-, Glucose oder Sucroserest;
n für 0 oder Zahlen von 1 bis 6, vorzugsweise 2 bis 3;
R1 für einen linearen oder verzweigten Alkyl- oder Hydroxyalkylrest mit 1 bis 6, vorzugsweise 1 bis 2 Kohlenstoffatomen oder einen Allylrest;
R2 für einen Hydroxylrest oder einen Rest -N R3R4;
R3 und R4 unabhängig voneinander für Wasserstoff oder einen linearen oder verzweigten Alkyl- oder Hydroxyalkylrest mit 1 bis 6, vorzugsweise 1 bis 2 Kohlenstoffatomen
stehen, während Z für die folgenden Gruppen steht:
(vii) einen Rest N R5R6 oder
(viii) einen Rest N HR7
wobei
R5 und R6 unabhängig voneinander für Wasserstoff oder einen linearen oder verzweigten Alkyl- oder Hydroxyalkylrest mit 1 bis 6, vorzugsweise 1 bis 2 Kohlenstoffatomen, einen Phenylrest oder einen Alkoxyphenylrest mit 1 bis 6, vorzugsweise 1 bis 2 Kohlenstoffatomen im Alkoxyrest;
R7 für einen Rest -(CH2)nCOOR8;
R8 für einen linearen oder verzweigten Alkyl- oder Hydroxyalkylrest mit 1 bis 6, vorzugsweise 1 bis 2 Kohlenstoffatomen und
n für 0 oder Zahlen von 1 bis 10, vorzugsweise 1 bis 4 steht oder
Aromastoffe.
Überraschenderweise wurde gefunden, dass Mischungen aus den Amiden, die aus der WO 2012 061698 bereits bekannt sind, und Menthol bzw. Mentholverbindungen der beschrieben Art nicht nur eine synergistische Verstärkung des Kühleffektes bewirken, sondern vom Verbraucher auch geschmacklich besser beurteilt werden. Das gleiche gilt für die Kombination mit einer Vielzahl von Aromastoffen.
Bei der Untersuchung der sensorischen Eigenschaften von M und- und Zehnpflegemitteln wurde darüber hinaus festgestellt, dass Mischungen der speziellen Amide und Menthol bzw. den Mentholverbindungen die Löslichkeit von Hydroxylapatit in synergistischer Weise verringert und das Kristallwachstum inhibiert, so dass solche Zubereitungen auch der Demine- ralisierung des Zahnschmelzes entgegenwirken und die Bildung von Zahnstein verhindern. Amide
Bei den Amiden, die die Gruppe (a) bilden, handelt es sich um bekannte Stoffe, die nach den einschlägigen Methoden der organischen Chemie hergestellt werden können. Bezüglich ihrer Herstellung wird voll inhaltlich auf die internationale Patentanmeldung WO 2012 061698 AI verwiesen, deren diesbezüglicher Offenbarungsgehalt über Bezugnahme miteingeschlossen ist.
Die beiden Aryl- bzw. Heteroarylreste A1 und A2 in Formel (I) entsprechen dabei voneinander unabhängig vorzugsweise einem gegebenenfalls substituierten Phenyl-, Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Thiazolyl-, Isoxazolyl-, Isothiazoyl-, Pyridyl-, Pyrinidinyl- oder Triazinylrest. Diese Reste können mit Alkyl-, Heteroalkyl-, Alkenyl-, Alkoxy-, Hydroxyl-, Ami- no-, N-Dialkylamino-, Halogen-, Nitro-, Cyano-, Acyl-, Carbonyl-, Carboxylester- oder Amid- gruppen ein- oder auch zweifach substituiert sein, wobei zwei Substituenten gegebenenfalls mit einem Heteroatom des Arylrestes einen aliphatischen oder aromatischen Ring formen können, so dass ein Bizyklus entsteht.
Die Gruppe [B] stellt vorzugsweise einen Rest -OCH2-, -OCH(CH3)-, OCH(CH2CH2)3-, -CH2CH2-, -CH=CH- dar oder leitet sich von Cyclopropan, Cyclobutan oder Cyclopentan ab.
In einer weiteren bevorzugten Ausführungsform steht Ra für einen gegebenenfalls substituierten Alkylrest mit 1 bis 6 Kohlenstoffatomen oder einen gegebenenfalls substituierten Phenyl-, Pyrrolyl-, Furanyl-, Thienyl-, Pyrazolyl-, Thiazolyl-, Isoxazolyl-, Isothiazoyl-, Pyridyl-, Pyrinidinyl- oder Triazinylrest, wobei das Substitutionsmuster dem für A1 und A2 entsprechen kann.
Vorzugsweise steht p für 2, während Rb, Rc, Rd, Re und Rf alle Wasserstoff bedeuten. Zur Vermeidung von Unklarheiten sei darauf hingewiesen, dass die einzelnen bevorzugten Strukturelemente jeweils für sich bevorzugt sind oder beliebig untereinander zu besonders bevorzugten Ausführungsformen kombiniert werden können. Im Folgenden werden die besonders bevorzugten Ausführungsformen an Hand der Strukturformeln AI bis A214 näher erläutert:
Figure imgf000005_0001
AI A2
Figure imgf000005_0002
Figure imgf000006_0001
Figure imgf000007_0001
Figure imgf000008_0001
Figure imgf000009_0001
Figure imgf000010_0001
Figure imgf000011_0001
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000016_0002
Alll A112
Figure imgf000017_0001
A113 A114
Figure imgf000017_0002
A117 A118
Figure imgf000017_0003
A121 A122
Figure imgf000018_0001
Figure imgf000019_0001
A141 A142
Figure imgf000020_0001
A143 A144
Figure imgf000020_0002
A151 A152
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001

Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
A205 A206
Figure imgf000027_0002
A213 A214 In besondere Weise bevorzugt sind die folgenden Stoffe:
• N-(lH-pyrazol-5-yl)-N-(thiophen-2-ylmethyl)-2-(p-tolyloxy)acetamide;
• N-ethyl-N-(thiophen-2-ylmethyl)-2-(p-tolyloxy)acetamide;
• 2-(p-tolyloxy)acetyl Chloride;
• N-(thiophen-2-ylmethyl)ethanamine;
• 2-(2,3-dlHydro-lH-inden-5-yloxy)-N-(lH-pyrazol-3-yl)-N-(thiophen-2-ylmethyl)acet- amide;
• 2-(2,3-dlHydro-lH-inden-5-yloxy)-N-(4-methyl-lH-pyrazol-3-yl)-N-(thiophen-2- ylme thyl)acetamide;
• 2-(2,3-dlHydro-lH-inden-5-yloxy)-N-(3,5-dimethyl-lH-pyrazol-4-yl)-N-(thiophen-2- ylmethyl)acetamide;
• N-(3-methyl-lH-pyrazol-4-yl)-N-(thiophen-2-ylmethyl)-2-(p- tolyloxy)acetamide;
• 4-(N-(thiophen-2-ylmethyl)-2-(p-tolyloxy)acetamido)-lH-pyrazol-2-ium Chloride;
• N-(isoxazol-3-yl)-N-(thiophen-2-ylmethyl)-2-(p-tolyloxy)acetamide;
• 2-(benzo[d][l,3]dioxol-5-yloxy)-N-(3-methyl-lH-pyrazol-4-yl)-N-(thiophen-2- ylme- thyl)acetamide;
• 2-(benzo[d] [l,3]dioxol-5-yloxy)-N-(lH-pyrazol-4-yl)-N-(thiophen-2-ylmethyl)- acetamide;
• N-cyclopropyl-N-(thiophen-2-ylmethyl)-2-(p-tolyloxy)acetamide;
• N-allyl-N-(thiophen-2-ylmethyl)-2-(p-tolyloxy)acetamide;
• N-propyl-N-(thiophen-2-ylmethyl)-2-(p-tolyloxy)acetamide;
• 2-(3-methoxyphenoxy)-N-(lH-pyrazol-4-yl)-N-(thiophen-2-ylmethyl)acetamide;
• N-(bicyclo[2.2.1]heptan-2-ylmethyl)-N-(lH-pyrazol-3-yl)-2-(p-tolyloxy)acetamide;
• N-(bicyclo[2.2.1]heptan-2-ylmethyl)-N-(lH-pyrazol-3-yl)-2-(p-tolyloxy)acetamide;
• N-(bicyclo[2.2.1]heptan-2-ylmethyl)-3-phenyl-N-(lH-pyrazol-3-yl) propanamide;
• N-ethyl-N-((5-methylthiophen-2-yl)methyl)-2-(p-tolyloxy)acetamide;
• N 2-(4-ethylphenoxy)-N-(pyridin-3-yl)-N-(thiophen-2-ylmethyl)acetamide
• N-(l-methyl-lH-pyrazol-5-yl)-N-(thiophen-2-ylmethyl)-2-(p-tolyloxy)acetamide;
• N-(bicyclo[2.2.1]heptan-2-ylmethyl)-2-phenoxy-N-(lH-pyrazol-3-yl)acetamide;
• N-sec-butyl-N-(thiophen-2-ylmethyl)-2-(p-tolyloxy)acetamide;
• N-methyl-N-(thiophen-2-ylmethyl)-2-(p-tolyloxy)acetamide;
• 2-(3-methoxyphenoxy)-N-(pyridin-2-yl)-N-(thiophen-2-ylmethyl)acetamide;
• 2-(2-isopropyl-5-methylphenoxy)-N-(lH-pyrazol-3-yl)-N-(thiophen-2- ylme- thyl)acetamide;
• N-(pyridin-2-yl)-N-(thiophen-2-ylmethyl)-2-(m-tolyloxy)acetamide;
• 2-(4-ethylphenoxy)-N-(pyridin-2-yl)-N-(thiophen-2-ylmethyl)acetamide;
• N-ethyl-N-(thiazol-5-ylmethyl)-2-(p-tolyloxy)acetamide;
• ((R)-N-(l-hydroxy-3-methylbutan-2-yl)-N-isopropyl-2-(m-tolyloxy)acetamide;
• 3,5-dimethyl-N-(pyridin-2-yl)-N-(thiophen-2-ylmethyl)benzofuran-2-carboxamide;
• N-(pyrazin-2-yl)-N-(thiophen-2-ylmethyl)-2-(p-tolyloxy)acetamide;
• N-benzyl-N-ethyl-2-(p-tolyloxy)acetamide;
• 2-(2-isopropyl-5-methylcyclohexyloxy)-N-(2-(pyridin-4-yl)ethyl)acetamide;
• N-(furan-2-ylmethyl)-N-(pyridin-2-yl)-2-(p-tolyloxy)acetamide;
• N-ethyl-N-(thiazol-2-ylmethyl)-2-(p-tolyloxy)acetamide; • 3,5,6-trimethyl-N-(pyridin-2-yl)-N-(thiophen-2-ylmethyl)benzofuran-2-carboxamide;
• N-((5-ethylthiophen-2-yl)methyl)-N-phenyl-2-(p-tolyloxy)acetamide;
• 2-phenoxy-N-(pyridin-3-yl)-N-(thiophen-2-ylmethyl)acetamide;
• 2-(3-chlorophenoxy)-N-(pyridin-2-yl)-N-(thiophen-2-ylmethyl)acetamide;
• N-((3-methylthiophen-2-yl)methyl)-N-phenyl-2-(p-tolyloxy)acetamide;
• (E)-N-(S-methyl- lH-pyrazol-4-yl)-N-(thiophen-2-ylmethyl)-3-p-tolylacrylamide;
• (E)-N-(lH-pyrazol-4-yl)-N-(thiophen-2-ylmethyl)-3-p-tolylacrylamide;
• (E)-3-p-tolylacryloyl Chloride;
• (E)-3-(benzo[d] [l,3]dioxol-5-yl)-N-(lH-pyrazol-4-yl)-N-(thiophen-2- ylme- thyl)acrylamide;
• (E)-N-(3,5-dimethyl-lH-pyrazol-4-yl)-N-(thiophen-2-ylmethyl)-3-p-tolylacrylamide
• (E)-3-(benzo[d] [l,3]dioxol-5-yl)-N-ethyl-N-(thiophen-2-ylmethyl)acrylamide;
• (E)-3-(4-methoxyphenyl)-N-(lH-pyrazol-4-yl)-N-(thiophen-2-ylmethyl)acrylamide;
• N-(3,5-dimethyl-lH-pyrazol-4-yl)-N-(thiophen-2-ylmethyl)cinnamamide;
• N-(lH-pyrazol-4-yl)-N-(thiophen-2-ylmethyl)cinnamamide;
• (E)-3-(2,3-dlHydro-lH-inden-5-yl)-N-(3,5-dimethyl-lH-pyrazol-4-yl)-N- (thiophen-2- ylmethyl) acrylamide;
• (+/-) (E)-2-phenyl-N-(lH-pyrazol-4-yl)-N-(thiophen-2- ylme- thyl)cyclopropanecarboxamide
• (E)-3-(2,3-dlHydro-lH-inden-5-yl)-N-(lH-pyrazol-5-yl)-N-(thiophen-2-ylmethyl) acrylamide;
• N-ethyl-N-(thiophen-2-ylmethyl)cinnamamide;
• 2-(2,3-dlHydro-lH-inden-5-yloxy)-N-ethyl-N-(thiazol-5-ylmethyl)acetamide;
• 2-(2,3-dlHydro-lH-inden-5-yloxy)-N-ethyl-N-(thiazol-5-ylmethyl)acetamide
• (+/-) (E)-N-ethyl-2-phenyl-N-(thiophen-2-ylmethyl)cyclopropanecarboxamide;
• N-(bicyclo[2.2.1]heptan-2-yl)-2-(2,3-dlHydro-lH-inden-5-yloxy)-N-(lH-pyrazol-5-yl) acetamide;
• N-(bicyclo[2.2.1]heptan-2-yl)-2-(cyclohexyloxy)-N-(lH-pyrazol-5-yl)acetamide;
• 2-(2,3-dlHydro-lH-inden-5-yloxy)-N-ethyl-N-((5-methylthiophen-2- yl)methyl)acetamide;
• (E)-N-phenyl-N-(thiophen-2-ylmethyl)-3-p-tolylacrylamide;
• (+/-) (E)-N,2-diphenyl-N-(thiophen-2-ylmethyl)cyclopropanecarboxamide;
• 3,5-dimethyl-N-(pyridin-2-yl)-N-(thiophen-2-ylmethyl)benzofuran-2-carboxamide;
• (E)-N-allyl-3-(7-chlorobenzo[d] [l,3]dioxol-5-yl)-N-(thiophen-2-ylmethyl)acrylamide;
• (E)-N-ethyl-3-(4-(imidazo [ 1,2-a] pyridin-2-ylmethoxy)phenyl)-N-(thiophen-2-ylmethyl) acrylamide;
• N-(cyclohexylmethyl)-N-ethyl-2-(p-tolyloxy)acetamide; Menthol und Mentholverbindungen
Mentholverbindungen die im Sinne der Erfindung eingesetzt werden können und die Gruppe (bl) bilden, sind - neben dem Grundkörper Menthol selber - beispielsweise ausgewählt aus der Gruppe, die gebildet wird von Menthol Methyl Ether, Menthone Glyceryl Acetal (FEMA GRAS1 3807), Menthone Glyceryl Ketal (FEMA GRAS 3808), Menthyl Lactate (FEMA GRAS 3748), Menthol Ethylene Glycol Carbonate (FEMA GRAS 3805), Menthol Propylene Glycol Carbonate (FEMA GRAS 3806), Menthyl-N-ethyloxamat, Monomethyl Succinate (FEMA GRAS 3810), Monomenthyl Glutamate (FEMA GRAS 4006), Menthoxy-1,2- propanediol (FEMA GRAS 3784), Menthoxy-2-methyl-l,2-propandiol (FEMA GRAS 3849) sowie den Menthancarbonsäureestern und -amiden WS-3, WS-4, WS-5, WS-12, WS-14 und WS-30 sowie deren Gemischen.
Ein erster wichtiger Vertreter der Stoffe, die die Komponente (b) bilden, stellt das Monomenthyl Succinate (FEMA GRAS 3810) dar, das als Stoff bereits 1963 von Brown & William- son Tobacco Corp. patentiert worden (US 3,111,127) und als Kühlmittel Gegenstand der Schutzrechte US 5,725,865 und 5,843,466 (V.Mane Fils) ist. Sowohl das Succinat als auch das analoge Monomenthyl Glutarate (FEMA GRAS 4006) stellen wichtige Vertreter von Mo- nomenthylestern auf Basis von Di- und Polycarbonsäuren dar:
Figure imgf000030_0001
Beispiele für Anwendungen dieser Stoffe finden sich beispielsweise in den Druckschriften WO 2003 043431 (Unilever) oder EP 1332772 AI (IFF).
Die nächste wichtige Gruppe von im Sinne der Erfindung bevorzugten Mentholverbindungen umfasst Carbonatester von Menthol und Polyolen, wie beispielsweise Glykolen, Glycerin oder Kohlenhydraten, wie beispielsweise Menthol Ethylenglycol Carbonate (FEMA GRAS 3805 = Frescolat® MGC), Menthol Propylenglycol Carbonate (FEMA GRAS 3784 = Frescolat® MPC), Menthol 2-Methyl-l,2-propandiol Carbonate (FEMA GRAS 3849) oder den entsprechenden Zuckerderivaten:
1 FEMA steht für„Flavor and Extracts Manufacturers Association" und GRAS ist definiert als„Generally Regar- ded As Safe", Eine FEMA GRAS Bezeichnung bedeutet, dass die so gekennzeichnete Substanz nach Standardmethode getestet und für toxikologisch unbedenklich erachtet wird.
Figure imgf000031_0001
Menthol ethylene glycol carbonate
Die Verwendung derartiger Stoffe als Kühlstoff für Zigaretten ist beispielsweise Gegenstand der Druckschrift US 3,419,543 (Mold et al.) aus dem Jahre 1968; die Anwendung als physiologisches Kühlmittel wird in DE 4226043 AI (H&R) beansprucht.
Im Sinne der Erfindung bevorzugt sind die Mentholverbindungen Menthyl Lactate (FEMA GRAS 3748 = Frescolat® ML) und insbesondere das Menthone Glyceryl Acetal (FEMA GRAS 3807) bzw. Menthone Glyceryl Ketal (FEMA GRAS 3808), das unter der Bezeichnung Frescolat® MGA vermarktet wird.
Figure imgf000031_0002
Erstere Struktur wird durch Veresterung von Milchsäure mit Menthol, letztere durch Aceta- lisierung von Menthon mit Glycerin gewonnen (vgl. DE 2608226 AI, H&R). In diese Gruppe von Verbindungen gehört auch das 3-(l-Menthoxy)-l,2,propandiol, das auch als Cooling Agent 10 bekannt ist (FEMA GRAS 3784, vgl. US 6,328,982, TIC), sowie das 3-(l-Menthoxy)-2- methyl-l,2,propandiol (FEMA GRAS 3849), das über eine zusätzliche Methylgruppe verfügt.
Figure imgf000031_0003
Cooling Agent 10 /-Menthoxy^-methyl
1 2-DroDanediol
Die Herstellung des 3-(l-Menthoxy)-l,2,propandiol erfolgt beispielsweise ausgehend von Menthol nach dem folgenden Schema (vgl. US 4,459,425, Takagaso):
Figure imgf000032_0001
Alternative Routen, bei denen in der ersten Stufe Menthol mit Epichlorhydrin umgesetzt wird, wird in US 6,407,293 und US 6,515,188 (Takagaso) beschrieben. Im Folgenden wird eine Übersicht der bevorzugten Mentholverbindungen gegeben, die sich durch eine CO- Bindung auszeichnen:
Figure imgf000032_0002
Als ganz besonders vorteilhaft haben sich unter diesen Stoffen Menthone Glyceryl Ace- tal/Ketal sowie das Menthyl Lactate sowie Menthol Ethylene Glycol Carbonate bzw. Menthol Propylene Glycol Carbonatw erwiesen, die die Anmelderin unter den Bezeichnungen Frescolat® MGA, Frescolat® ML, Frecolat® MGC und Frescolat® MPC vertreibt.
In den 70er Jahren des vergangenen Jahrhunderts wurden erstmals Mentholverbindungen entwickelt, die in der 3-Stellung über eine C-C-Bindung verfügen und von denen ebenfalls eine Reihe von Vertretern im Sinne der Erfindung eingesetzt werden können. Diese Stoffe werden im Allgemeinen als WS-Typen bezeichnet. Grundkörper ist ein Mentholderivat, bei dem die Hydroxyl- gegen eine Carboxylgruppe ersetzt ist (WS-1). Von dieser Struktur leiten sich alle weiteren WS-Typen ab, wie beispielsweise die ebenfalls im Sinne der Erfindung bevorzugten Spezies WS-3, WS-4, WS-5, WS-12, WS-14 und WS-30. Die beiden nachfolgenden Schaubilder zeigen die Synthesewege auf:
Figure imgf000033_0001
Figure imgf000033_0002
Die sich von WS-1 ableitenden Ester werden beispielsweise in US 4,157,384, die entsprechenden N-substituierten Amide in J. Soc. Cosmet. Chem. S. 185-200 (1978) beschrieben.
Aromastoffe
Die Aromastoffe, die die Komponente (b2) bilden, sind ausgewählt aus der Gruppe, die gebildet wird von Anethol, Acetanisol, Acetaldehyd, Acetylmethylcarbinol, Acetylpyrazin-2, Acetylpyridin-2, Acethylthiazolin-2, Acethylthiazol-2, Allylcapronat, Amylzimtaldehyd-alpha, Anisaldehyd-para, Anisalkohol, Dimethylisopropyldithiazin, Benzaldehyd, Benzylacetat, Bor- neol-l, Buttersäure, Butylacetat, Butylidenphtalid-3, Capronsäure, Carvacrol, Carvon-I, Carvon-d, Carvomenthon, Carvylacetat-cis, Caryophyllen, Cineol-1,8, Cineol-1,4, Cinna- mylacetat, Citral, Citronellal, Citronellol, Citronellylacetat, Cuminaldehyd, Cyclopentadeca- nolid, Damascon-alpha, Damascon-beta, Damascenon-alpha, Damascenon-beta, Decalacton delta, Decalacton-gamma, Dehydromenthofurolacton, Dihydromenthofurolacton, Diethyl- pyrazin-2,3, Dihydroanethol, Dihydrocarvon, Dihydrocumarin, Dihydroionon-beta, Dime- thylanthranilat, Dimethylsulfid, Dimethylpyrazin, Sotolon, Diphenyloxid, Divanillin, Decadi- enal-2,4, Dodecalacton-delta, Dodecalacton-gamma, Essigsäure, Ethylacetat, Ethylbutyrat, Ethylmethylbutyrat-2, Ethylcapronat, Ethylcaprylat, Ethylcinnamat, Ethylisobutyrat, Ethylva- nillin, Ethyllactat, Ethylmaltol, Ethylmethylthiopropionat, Ethylphenol-4, Ethylisovalerianat, Eugenol, Fenchol, Furaneol, Filbertone, Frambinon, Frambinonmethylether, Furfurylthiol, Undecatriene, Geraniol, Geranylacetat, Geranylisobutyrat, Guaiacol, Heliotropin, Heptanon- 2, Heptenal-Z-4, Hexalacton-gamma, Heptalacton-gamma, Hexenol-Z-3, Hexenol-E-2, Hexa- nol, Hexylacetat, Hexenylacetat-Z-3, Hexenylacetat-E-2, Hexylzimtaldehyd-alpha, Hexe- nylcapronat-Z-3, Hotrienol, Indol, Iron-alpha, lonon-alpha, lonon-beta, Isoamylacetat, Iso- amylbutyrat, Isoamylisovaerianat, Isobutylacetat, Isobutylthiazol, Isobutyraldehyd, Isovaler- aldehyd, Isoeugenol, Isomenthon, Isopropylmethoxypyrazin, Isobutylmethoxypyrazin, Isop- ropylmethylpyrazin-2,4, Isopulegol, Jasminlacton, Jasmon eis, Kampfer, Ketoisophoron, Kre- sol, Limonen-d, Linalool-I, Linalool-d, Linalylacetat, Linalooloxid, Maltol, Methylcyclopenten- olon, L-Menthon, D-Menthon, L-Menthol, D-Menthol, Neo Menthol, L-Menthylacetat, D Menthylacetat, Massoilacton, Melonal, Menthenthiol-1,8, Epithiomenthan-1,8, Thioment- hanon-8,3, Menthofurolacton, Menthadienylacetat, Methoxymethylpyrazin-2,3, Methyl- anthranilat, Methylsalicylat, Thymol, Methylbutyrat, Methylbutylacetat-2, Methylcinnamat, Methylfuranthiol-2,3, Methyltetrahydrofuranthiol-2,3, Methyljasmonat, Methyldihydrojas- monat, Methylthiobutyrat, Methylthiohexylacetat-1,3, Methylthiohexanol-1,3, Methional, Myrtenal, Naringin, Neral, Nerol, Nerylacetat, Nonalacton-gamma, Nonalacton-delta, No- nenal-E-2, Nonenal-Z-6, Nonenol-Z-6, Nootkaton, Dihydronootkaton, Octenol-1,3, Octalac- ton-gamma, Octalacton-delta, Pelitorin, Pentenon-1,3, Pentylacetat, Phenylacetaldehyd, Phenylethylalkohol, Phenylethylacetat, Piperitanat, Prenylthiol, Prenylthioacetat, Rosenoxid, Rubenamin, Rubescenamin, Sabinenhydrat, Skatol, Styrolylacetat, Terpineol, Terpinenol-4, Thiohexanol-1,3, Thiohexylacetat-1,3, Thiopentanon-4,4,2, Trimethylpyrazin, Undecalacton- gamma und delta, Decadienal-2,4, Nonadienal-2,4, Nonadienal-2,6, Undecadienal-2,4, Vanillin, Vinylguaiacol, Whiskylacton, Zimtaldehyd, Zimtalkohol, Diallyldisulfid, Allylisothiocyanat, Hexanal, E-2-Hexenal, Octanal, Decanal, Tridecatrienal, 12-Methyltridecanal, Pinen-alpha, Pinen-beta, Piperiton sowie deren Gemischen. In einer weiteren bevorzugten Ausführungsform der Erfindung können die Zubereitungen als Komponente (c) kosmetische Zusatzstoffe enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Tensiden, Ölkörpern, Emulgatoren, Perlglanzwachsen, Konsistenzgebern, Verdickungsmitteln, Überfettungsmitteln, Stabilisatoren, Polymeren, Siliconver- bindungen, Fetten, Wachsen, Lecithinen, Phospholipiden, UV-Lichtschutzfaktoren, Feuchthaltemitteln, biogenen Wirkstoffen, Antioxidantien, Deodorantien, Antitranspirantien, Anti- schuppenmitteln, Filmbildnern, Quellmitteln, Insektenrepellentien, Selbstbräunern, Tyrosin- inhibitoren (Depigmentierungsmittel), Hydrotropen, Solubilisatoren, Konservierungsmitteln, Parfümölen und Farbstoffen sowie deren Gemischen. Derartige Zubereitungen, insbesonde- re wenn sie als Emulsionen vorliegen, zeichnen sich durch eine verbesserte Lagerbeständigkeit aus.
Die erfindungsgemäßen Zubereitungen können die Komponenten (a) und (b) im Gewichtsverhältnis 0,1:99 bis 99,9:1, insbesondere 10:90 bis 90:10, weiter bevorzugt 25:75 bis 75:25 und besonders bevorzugt 40:60 bis 60:40 enthalten. Die Komponenten (a+b) und (c) können im Gewichtsverhältnis 0.01:99,9 bis 2:98, vorzugsweise 0,5 :99,5 bis 1,5: 98,5 und insbesondere ungefähr 1:99 enthalten sein.
Gewerbliche Anwendbarkeit
Kosmetische und/oder pharmazeutische Zubereitungen
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft kosmetische Zubereitungen, enthaltend
(a) Amide der Formel (I),
(b) Menthol und/oder Mentholverbindungen der Formeln (I I), (I II) und/oder (IV) oder Aromastoffe, sowie
(c) einen für kosmetische Anwendungen zugelassenen Träger.
Bei den kosmetischen Produkten handelt es sich vorzugsweise um Hautpflegemittel, Haarpflegemittel, Körperpflegemittel, Sonnenschutzmittel sowie M und- und Zahnpflegemittel. Besonders bevorzugt sind solche Zubereitungen, die als Emulsionen, Mikroemulsionen oder PIT-Emulsionen vorliegen.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft pharmazeutische Zubereitungen, enthaltend
(a) Amide der Formel (I),
(b) Menthol und/oder Mentholverbindungen der Formeln (I I), (I II) und/oder (IV) oder Aromastoffe sowie
(c) einen für pharmazeutische Anwendungen zugelassenen Träger
zur Behandlung von Erkältungszuständen, wobei das Kennzeichen der Erfindung darin besteht, dass eine therapeutische Verwendung erfolgt.
Bei den pharmazeutischen Produkten handelt es sich vorzugsweise um Lutschpastillen, Erkältungsbonbons, Erkältungssäfte, Erkältungssalben und Erkältungssprays. Die kosmetischen bzw. pharmazeutischen Träger können dabei vorzugsweise ausgewählt sein aus der Gruppe, die gebildet wird von Wasser, Alkoholen mit 2 bis 6 Kohlenstoffatomen, Polyolen mit 1 bis 10 Kohlenstoffatomen und 2 bis 4 Hydroxylgruppen sowie Ölkör- pern. Besonders bevorzugt sind neben Wasser, Ethanol, Isopropylalkohol, Ethylenglykol, Propylenglykol, Glycerin, Trimethylolpropan, Pentaerythritol sowie Ester von linearen oder verzweigten, gesättigten und insbesondere ungesättigten Fettsäuren mit 6 bis 22 und vorzugsweise 8 bis 18 Kohlenstoffatomen mit Alkoholen mit 1 bis 6 Kohlenstoffatomen.
Die erfindungsgemäßen kosmetischen und/oder pharmazeutischen Zubereitungen können die Komponenten (a) und (b) im Gewichtsverhältnis 0,1:99 bis 99,9:1, insbesondere 10:90 bis 90:10, weiter bevorzugt 25 :75 bis 75 :25 und besonders bevorzugt 40:60 bis 60:40 enthalten. Die Komponenten (a+b) und (c) können im Gewichtsverhältnis 0.01:99,9 bis 2:98, vorzugsweise 0,5:99,5 bis 1,5 : 98,5 und insbesondere ungefähr 1:99 enthalten sein. Der Gesamtgehalt der Komponenten (a+b) in den Endprodukten kann zwischen 1 und 5.000, vorzugsweise 10 bis 4.000 und insbesondere 100 bis 1.000 ppm liegen.
Die erfindungsgemäßen kosmetischen und/oder pharmazeutischen Mittel können weitere typische Hilfs- und Zusatzstoffe enthalten, wie beispielsweise milde Tenside, Ölkörper, Emulgatoren, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Überfettungsmittel, Stabilisatoren, Polymere, Siliconverbindungen, Fette, Wachse, Lecithine, Phospholipide, UV- Lichtschutzfaktoren, Feuchthaltemittel, biogene Wirkstoffe, Antioxidantien, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, Insektenrepellentien, Selbstbräuner, Tyrosininhibitoren (Depigmentierungsmittel), Hydrotrope, Solubilisatoren, Konservierungsmittel, Parfümöle, Farbstoffe und dergleichen enthalten.
Tenside
Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder am- photere bzw. zwitterionische Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, cc-Methylestersulfonate, Sul- fofettsäuren, Alkylsulfate, Alkylethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hy- droxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidsei- fen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fett- säuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylgluta- mate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepoly- glycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsä ureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten ent- halten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Ho- mologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminop- ropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Ten- siden handelt es sich ausschließlich um bekannte Verbindungen. Typische Beispiele für besonders geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpoly- glycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäurei- sethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, cc-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine, Ampho- acetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Ölkörper
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten C6-Ci3- Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, My- ristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostea- rylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylmy- ristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behe- nylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22- Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Ci8-C38- Alkylhydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesonde- re Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C6-Ci0-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von C6-Ci8-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, wie z.B. Dicaprylyl Carbonate (Cetiol® CC), Guerbetcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische o- der unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z.B. Dicaprylyl Ether (Cetiol® OE), Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Siliciummethicontypen u.a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohe- xane in Betracht. Emulgatoren
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
• Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest;
• Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga;
· Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
• Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
• Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättig- ten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycar- bonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
• Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Po- lyethylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zu- ckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Lau- rylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
· Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
• Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
· Wollwachsalkohole;
• Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
• Block-Copolymere z.B. Polyethylenglycol-30 Dipolyhydroxystearate;
• Polymeremulgatoren, z.B. Pemulen-Typen (TR-l,TR-2) von Goodrich oder Cosmedia® SP von Cognis;
· Polyalkylenglycole sowie
• Glycerincarbonat. Im Folgenden werden besonders geeignete Emulgatoren näher erläutert:
(a) Alkoxylate
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Pro- dukte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxy- lierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Ci2/i8- Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind als Rückfettungsmittel für kosmetische Zubereitungen bekannt. (a) Alkyl- und/oder Alkenyloligoglykoside
Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. I hre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fetta lkohol gebunden ist, als auch oligo- mere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
(b) Partialglyceride
Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglyce- rid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäuredigly- cerid, Ölsäuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäure- diglycerid, Linolsäuremonoglycerid, Linolsäurediglycerid, Linolensäuremonoglycerid, Li- nolensäurediglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäuremono- glycerid, Weinsäurediglycerid, Citronensäuremonoglycerid, Citronendiglycerid, Äpfel- säuremonoglycerid, Äpfelsäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride. (c) Sorbitanester
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitan- diisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitan- dioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinole- at, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat,
Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sorbitan- sesqui-tartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmonocitrat, Sorbitansesqui- citrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitan-dimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls ge- eignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester. (d) Polyglycerinester
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxyste- arate (Dehymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TG I), Polyglyceryl-4 Isostearate (Isolan® Gl 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostea- rate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® N L), Polyglyceryl-3 Distearate (Cre- mophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Di- merate Isostearate sowie deren Gemische. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Trie- ster von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Talgfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.
(e) Anionische Emulgatoren
Typische anionische Emulgatoren sind aliphatische Fettsäuren mit 12 bis 22 Kohlen- Stoffatomen, wie beispielsweise Palmitinsäure, Stea rinsäure oder Behensäure, sowie
Dicarbonsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Azelainsäure oder Sebacinsäure.
(f) Amphotere und kationische Emulgatoren
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwit- terionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im
Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acylaminopropyl-N,N-dimethylammo- niumglycinate, beispielsweise das Kokosacylaminopropyldimethyl-ammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethyl- carboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Co- camidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8/i8-Alkyl- oder Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -S03H- Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete am pholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobutter- säuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-
Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe.. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylamino- propionat und das Ci2/i8-Acylsarcosin. Schließlich kommen auch Kationtenside als Emul- gatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquater- nierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind. Fette und Wachse
Typische Beispiele für Fette sind Glyceride, d.h. feste oder flüssige pflanzliche oder tierische Produkte, die im Wesentlichen aus gemischten Glycerinestern höherer Fettsäuren bestehen, als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Carnaubawachs, Ja- panwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Po- lyethylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine versteht der Fachmann diejenigen Glycero-Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC). Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1,2- Diacyl-sn-glycerin-3-phosphorsäuren darstellen. Dem gegenüber versteht man unter Phos- pholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphingolipide in Frage.
Perlglanzwachse
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethyl- englycoldistearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialgly- ceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxy- substituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell lang- kettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäu- re oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoff- atomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Konsistenzgeber und Verdickungsmittel
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan- Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Ca rboxymethylcellulose und Hydroxy- ethyl- und Hydroxypropylcellulose, ferner höhermolekulare Polyethylenglycolmono- und - diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® und Pemulen-Typen von Goodrich; Synthalene® von Sigma; Keltrol-Typen von Kelco; Sepigel-Typen von Seppic; Salcare-Typen von Allied Colloids), Polyacrylamide, Polymere, Polyvinylalkohol und Polyvinylpyrrolidon. Als besonders wirkungsvoll haben sich auch Bentonite, wie z.B. Bentone® Gel VS-5PC (Rheox) erwiesen, bei dem es sich um eine Mischung aus Cyclopentasiloxan, Disteardimonium Hec- torit und Propylencarbonat handelt. Weiter in Frage kom men Tenside, wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pen- taerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Überfettungsmittel
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Mono- glyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Stabilisatoren
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Polymere
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium Hydroxypropyl Hydrolyzed Collagen (La- mequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Dimethyla- minohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl-diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino- 1,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vi- nylacetat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäurean- hydrid-Copolymere und deren Ester, unvernetzte und mit Polyolen vernetzte Poly- acrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacryl- amid/Methylmeth-acrylat/tert.Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat- Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls deri- vatisierte Celluloseether und Silicone in Frage.
Siliconverbindungen
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpo- lysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt.
UV- Lieh tsch utzfaktoren
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. Üblicherweise sind die UV-Lichtschutzfaktoren in Mengen von 0,1 bis 5 und vorzugsweise 0,2 bis 1 Gew.-% zugegen. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
• 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4- Methylbenzyliden)campher beschrieben;
• 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethyl- hexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoe- säureamylester;
• Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxy- zimtsäurepropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-
2-ethylhexylester (Octocrylene);
• Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-iso- propylbenzylester, Salicylsäurehomomenthylester;
• Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2- Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
• Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexyl- ester;
• Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-l'-hexyloxy)-l,3,5-triazin und Octyl Triazon oder Dioctyl Butamido Triazone (Uvasorb® HEB);
· Propan-l,3-dione, wie z.B. l-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-l,3-dion;
• Ketotricyclo(5.2.1.0)decan-Derivate.
Als wasserlösliche Substanzen kommen in Frage: • 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Al- kylammonium-, Alkanolammonium- und Glucammoniumsalze;
• lH-Benzimidazole-4,6-Disulfonic Acid, 2,2'-(l,4-Phenylene)Bis-, Disodium Salt (Neo He- liopan® AP)
· Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo- phenon-5-sulfonsäure und ihre Salze;
• Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenme- thyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise l-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-l,3-dion, 4-tert.-Butyl- 4'-methoxydibenzoylmethan (Parsol® 1789), 2-(4-Diethylamino-2-hydroxybenzoyl)-benzoic acid hexylester (Uvinul® A Plus), l-Phenyl-3-(4'-isopropylphenyl)-propan-l,3-dion sowie Enaminverbindungen. Die UV-A und UV-B-Filter können selbstverständlich auch in Mischun- gen eingesetzt werden. Besonders günstige Kombinationen bestehen aus den Derivate des Benzoylmethans,, z.B. 4-tert.-Butyl-4'-methoxydibenzoylmethan (Parsol® 1789) und 2- Cyano-3,3-phenylzimtsäure-2-ethyl-hexylester (Octocrylene) in Kombination mit Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester und/oder 4- Methoxyzimtsäurepropylester und/oder 4-Methoxyzimtsäureisoamylester. Vorteilhaft werden derartige Kombinationen mit wasserlöslichen Filtern wie z.B. 2-Phenylbenzimidazol- 5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze kombiniert.
Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeigne- te Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000, Eusolex® T, Eusolex® T-ECO, Eusolex® T-S, Eusolex® T-Aqua, Eusolex® T-45D (alle Merck), Uvinul Ti02 (BASF). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trial- koxyoctylsilane oder Simethicone in Frage. I n Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid wie z.B. Z-COTE® oder Z-COTE HP1® verwendet. Feuchthaltemittel
Feuchthaltemittel dienen zur weiteren Optimierung der sensorischen Eigenschaften der Zusammensetzung sowie zur Feuchtigkeitsregulierung der Haut. Gleichzeitig wird die Kältestabilität der erfindungsgemäßen Zubereitungen, insbesondere im Falle von Emulsionen, erhöht. Die Feuchthaltemittel sind üblicherweise in einer Menge von 0,1 bis 15 Gew.-%, vorzugsweise 1 bis 10 Gew.-%, und insbesondere 5 bis 10 Gew.-% enthalten.
Erfindungsgemäß geeignet sind u.a. Aminosäuren, Pyrrolidoncarbonsäure, Milchsäure und deren Salze, Lactitol, Harnstoff und Harnstoffderivate, Harnsäure, Glucosamin, Kreatinin, Spaltprodukte des Kollagens, Chitosan oder Chitosansalze/-derivate, und insbesondere Po- lyole und Polyolderivate (z. B. Glycerin, Diglycerin, Triglycerin, Ethylenglycol, Propylenglycol, Butylenglycol, Erythrit, 1,2,6-Hexantriol, Polyethylenglycole wie PEG-4, PEG-6, PEG-7, PEG-8, PEG-9, PEG-10, PEG-12, PEG-14, PEG-16, PEG-18, PEG-20), Zucker und Zuckerderivate (u.a. Fructose, Glucose, Maltose, Maltitol, Mannit, Inosit, Sorbit, Sorbitylsilandiol, Sucrose, Treha- lose, Xylose, Xylit, Glucuronsäure und deren Salze), ethoxyliertes Sorbit (Sorbeth-6, Sorbeth- 20, Sorbeth-30, Sorbeth-40), Honig und gehärteter Honig, gehärtete Stärkehydrolysate sowie Mischungen aus gehärtetem Weizenprotein und PEG-20-Acetatcopolymer. Erfindungsgemäß bevorzugt geeignet als Feuchthaltemittel sind Glycerin, Diglycerin, Triglycerin und Butylenglycol. Biogene Wirkstoffe und Antioxidantien
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherol- palmitat, Ascorbinsäure, (Desoxy)Ribonucleinsäure und deren Fragmentierungsprodukte, ß- Glucane, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte, wie z.B. Prunusextrakt, Bam- baranussextrakt und Vitaminkomplexe zu verstehen.
Antioxidantien unterbrechen die photochemische Reaktionskette, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, I midazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. -Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäu- re), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cys- tein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, N ukleotide, Nukleoside und Salze) sowie Sulfoximinverbindun- gen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μιηοΙ/kg), ferner (Metall)-Chelatoren (z.B. cc-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lac- toferrin), cc-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascor- bylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin- E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, cc-Glycosylrutin, Ferulasäure, Furfurylidengluci- tol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Man- nose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnS04) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe. Deodorantien und keimhemmende Mittel
Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzymin- hibitoren, Geruchsabsorber oder Geruchsüberdecker fungieren.
(a) Keimhemmende Mittel
Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4- Chlorphenyl)-N'-(3,4-dichlorphenyl)harnstoff, 2,4,4'-Trichlor-2'-hydroxy-diphenylether
(Triclosan), 4-Chlor-3,5-dimethyl-phenol, 2,2'-Methylen-bis(6-brom-4-chlorphenol), 3- Methyl-4-(l-methylethyl)-phenol, 2-Benzyl-4-chlorphenol, 3-(4-Chlorphenoxy)-l,2- propandiol, 3-lod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4'-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonocaprinat, Glycerinmonocaprylat, Glycerinmo- nolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Sa- licylsäure-n-octylamid oder Salicylsäure-n-decylamid.
(b) Enzyminhibitoren
Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropy-
Icitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitos- terinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutar- säure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäure- monoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkglycinat. Geruchsabsorber
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfüms unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodoran- tien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzyl- salicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronelly- loxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamil- lenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbee- renöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, cc- Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Al- lylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniu- möl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, I- raldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Iro- tyl und Floramat allein oder in Mischungen, eingesetzt.
Antitranspirantien
Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe: • adstringierende Wirkstoffe,
• Ölkomponenten,
• nichtionische Emulgatoren,
• Coemulgatoren,
· Konsistenzgeber,
• Hilfsstoffe wie z. B. Verdicker oder Komplexierungs mittel und/oder
• nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.
Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten a ntihydrotisch wirksamen Wirkstof- fe sind z.B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Alumi- niumsesquichlorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1,2. Aluminiumhydroxyallantoinat, Aluminiumchloridtartrat, Aluminium-Zirkonium-Tri- chlorohydrat, Aluminium-Zirkonium-tetrachlorohydrat, Aluminium-Zirkoniumpentachlo- rohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Glycin. Daneben können in Antitranspirantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z.B. sein :
• entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,
• synthetische hautschützende Wirkstoffe und/oder
• öllösliche Parfümöle.
Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duftstoffe, pH-Wert-Stellmittel, z.B. Puffergemische, wasserlösliche Verdickungsmittel, z.B. wasserlösliche natürliche oder synthetische Polymere wie z.B. Xanthan-Gum, Hydroxyethyl- cellulose, Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide. Filmbildner
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quater- niertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Antischuppenwirkstoffe
Als Antischuppenwirkstoffe kommen Pirocton Olamin (l-Hydroxy-4-methyl-6-(2,4,4- trimythylpentyl)-2-(lH)-pyridinonmonoethanolaminsalz), Baypival® (Climbazole), Ketoconazol®, (4-Acetyl-l-{-4-[2-(2.4-dichlorphenyl) r-2-(lH-imidazol-l-ylmethyl)-l,3-dioxylan-c-4- ylmethoxyphenyljpiperazin, Ketoconazol, Elubiol, Selendisulfid, Schwefel kolloidal, Schwe- felpolyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwfel-teer Destillate, Salicylsäure (bzw. in Kombination mit Hexachlorophen), Undexylensäure Monoetha- nolamid Sulfosuccinat Na-Salz, Lamepon® UD (Protein-Undecylensäurekondensat), Zinkpy- rithion, Aluminiumpyrithion und Magnesiumpyrithion / Dipyrithion-Magnesiumsulfat in Frage.
Quellmittel
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkylmodifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden. Insektenrepellentien
Als I nsekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1,2-Pentandiol oder Ethyl Buty- lacetylaminopropionate in Frage. Als Selbstbräuner eignet sich Dihydroxyaceton. Als Tyros- inhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmen- tierungsmitteln finden, kommen beispielsweise Arbutin, Ferulasäure, Kojisäure, Cumarin- säure und Ascorbinsäure (Vitamin C) in Frage.
Inhaltsstoffe für Mund- und Zahnpflegemittel
Unter Zahnpasten oder Zahncremes werden im allgemeinen gelförmige oder pastöse Zubereitungen aus Wasser, Verdickungsmitteln, Feuchthaltemitteln, Schleif- oder Putzkörpern, Tensiden, Süßmitteln, Aromastoffen, deodorierenden Wirkstoffen sowie Wirkstoffen gegen M und- und Zahnerkrankungen verstanden. I n die erfindungsgemäßen Zahnpasten können alle üblichen Putzkörper, wie z. B. Kreide, Dicalciumphosphat, unlösliches Natriummetaphosphat, Aluminiumsilikate, Calciumpyrophosphat, feinteilige Kunstharze, Kieselsäuren, Aluminiumoxid und Aluminiumoxidtrihydrat eingesetzt werden.
Bevorzugt geeignete Putzkörper für die erfindungsgemäßen Zahnpasten sind vor allem fein- teilige Xerogelkieselsäuren, Hydrogelkieselsäuren, Fällungskieselsäuren, Aluminiumoxidtrihydrat und feinteiliges alpha -Aluminiumoxid oder Mischungen dieser Putzkörper in Mengen von 15 bis 40 Gew.-% der Zahnpasta. Als Feuchthaltemittel kommen vorwiegend niedermolekulare Polyethylenglykole, Glycerin, Sorbit oder Mischungen dieser Produkte in Mengen bis zu 50 Gew.-% in Frage. Unter den bekannten Verdickungsmitteln sind die verdickenden, feinteiligen Gelkieselsäuren und Hydrokolloide, wie z. B. Carboxymethylcellulose, Hydroxyethylcellulose, Hydroxypropylguar, Hydroxyethylstärke, Polyvinylpyrrolidon, hochmolekulares Polyethylenglykol, Pflanzengummen wie Traganth, Agar-Agar, Carragheen- moos, Gummiarabicum, Xantham-Gum und Carboxyvinylpolymere (z. B. Carbopol®-Typen) geeignet. Zusätzlich zu den Mischungen aus menthofuran und Mentholverbindungen können die M und- und Zahnpflegemittel insbesondere oberflächenaktive Stoffe, bevorzugt anionische und nichtionische schaumstarke Tenside, wie die bereits oben genannten Stoffe, insbesondere aber Alkylethersulfat-Salze, Alkylpolyglucoside und deren Gemische.
Weitere übliche Zahnpastenzusätze sind :
· Konservierungsmittel und antimikrobielle Stoffe wie z. B. p- Hydroxybenzösäuremethyl-, -ethyl- oder -propylester, Natriumsorbat, Natriumbenzoat, Bromchlorophen, Phenylsa- licylsäureester, Thymol und dergleichen; • Antizahnsteinwirkstoffe, z. B. Organophosphate wie 1-Hydroxyethan- 1.1-diphosphon- säure, l-Phosphonpropan-l,2,3-tricarbonsäure und andere, die z. B. aus US 3,488,419, DE 2224430 AI und DE 2343196 AI bekannt sind;
• andere karieshemmende Stoffe wie z. B. Natriumfluorid, Natriummonofluorphosphat, Zinnfluorid;
• Süssungsmittel, wie z. B. Saccharin-Natrium, Natrium-Cyclamat, Sucrose, Lactose, Maltose, Fructose oder Apartam®, (L-Aspartyl- L-phenylalanin-methylester), Stivia-extrakte oder deren süßenden Bestandteile, insbesondere Ribeaudioside;
• Zusätzliche Aromen wie z. B. Eukalyptusöl, Anisöl, Fenchelöl, Kümmelöl, Methylacetat, Zimtaldehyd, Anethol, Vanillin, Thymol sowie Mischungen dieser und anderer natürlicher und synthetischer Aromen;
• Pigmente wie z. B. Titandioxid;
• Farbstoffe;
• Puffersubstanzen wie z. B. primäre, sekundäre oder tertiäre Alkaliphosphate oder Cit- ronensäure/Natriumcitrat;
• wundheilende und entzündungshemmende Stoffe wie z. B. Allantoin, Harnstoff, Azulen, Kamillenwirkstoffe und Acetylsalicylsäurederivate.
Eine bevorzugte Ausführung der kosmetischen Zubereitungen sind Zahnpasten in Form einer wässrigen, pastösen Dispersion, enthaltend Poliermittel, Feuchthaltemittel, Viskositäts- regulatoren und gegebenenfalls weitere übliche Komponenten, sowie die Mischung aus Menthofuran und Mentholverbindungen in Mengen von 0,5 bis 2 Gew.-% enthalten.
In M undwässern ist eine Kombination mit wässrig-alkoholischen Lösungen verschiedener Grädigkeit von ätherischen Ölen, Emulgatoren, adstringierenden und tonisierenden Drogenauszügen, zahnsteinhemmenden, antibakteriellen Zusätzen und Geschmackskorrigentien ohne weiteres möglich. Eine weitere bevorzugte Ausführung der Erfindung ist ein M undwasser in Form einer wässrigen oder wässrig-alkoholischen Lösung enthaltend die Mischung aus Menthofuran und Mentholverbindungen in Mengen von 0,5 bis 2 Gew.-%. In M undwässern, die vor der Anwendung verdünnt werden, können mit, entsprechend dem vorgesehenen Verdünnungsverhältnis, höheren Konzentrationen ausreichende Effekte erzielt werden.
Hydrotrope
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden; diese Stoffe entsprechen weitgehend den eingangs geschildern Trägern. Polyole, die hier in Betracht kommen, besitzen vorzugs- weise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
• Glycerin;
• Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Buty- lenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton; • technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
• Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trime- thylolbutan, Pentaerythrit und Dipentaerythrit;
· Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
• Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
• Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
• Aminozucker, wie beispielsweise Glucamin;
· Dialkoholamine, wie Diethanolamin oder 2-Amino-l,3-propandiol.
Konservierungsmittel
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die unter der Bezeichnung Surfacine® bekann- ten Silberkomplexe und die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen.
Parfümöle und Aromen
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Na- türliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang- Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Ange- lica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Lina- lylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallyl- propionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Cit- ronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, cc-lsomethylionon und Methylcedrylketon, zu den Alkoholen A- nethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpi- neol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Ber- gamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, cc- Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, I ndol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylgly- colat, Cyclovertal, Lavandinöl, M uskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, I raldein gamma, Phe- nylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Als Aromen kommen beispielsweise Pfeife rminzöl, Krauseminzöl, Anisöl, Sternanisöl, Küm- melöl, Eukalyptusöl, Fenchelöl, Citronenöl, Wintergrünöl, Nelkenöl, Menthol und derglei- chen in Frage.
Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Beispiele sind Kochenillerot A (C.l . 16255), Patentblau V (C.1.42051), Indigotin (C.1.73015), Chlorophyllin (C.1.75810), Chinolingelb (C.1.47005), Titandioxid (C.1.77891), Indanthrenblau RS (C.l. 69800) und Krapplack (C.l.58000). Als Lumineszenzfarbstoff kann auch Luminol enthalten sein. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur- Methode.
Nahrungsmittelzubereitungen
Ein weiterer Gegenstand der Erfindung betrifft Nahrungsmittelzubereitungen, enthaltend (a) Amide der Formel (I),
(b) Menthol und/oder Mentholverbindungen der Formeln (I I), (I II) und/oder (IV) oder Aromastoffe sowie
(c) einen für Nahrungsmittelzwecke zugelassenen Träger.
Die Träger können dabei ausgewählt sein aus der Gruppe, die gebildet wird von Wasser, Ethanol und Glycerin.
Bei den Nahrungsmittelzubereitungen handelt es sich vorzugsweise um Getränke, Milchprodukten, Backwaren, sowie insbesondere Kaugummis und Bonbons.
Die erfindungsgemäßen Zubereitungen können die Komponenten (a) und (b) im Gewichtsverhältnis 0,1:99 bis 99,9:1, insbesondere 10:90 bis 90:10, weiter bevorzugt 25:75 bis 75:25 und besonders bevorzugt 40:60 bis 60:40 enthalten. Die Komponenten (a+b) und (c) können im Gewichtsverhältnis 0.01:99,9 bis 2:98, vorzugsweise 0,5 :99,5 bis 1,5: 98,5 und insbesondere ungefähr 1:99 enthalten sein. Der Gesamtgehalt der Komponenten (a+b) in den End- Produkten kann zwischen 1 und 5.000, vorzugsweise 10 bis 4.000 und insbesondere 100 bis 1.000 ppm liegen.
Kaugummis Bei den bevorzugten Nahrungsmittelzubereitungen, die als Geschmacksstoffe die Mischungen aus den Amiden und Menthol bzw. den Mentholverbindungen enthalten, handelt es sich um Kaugummis. Diese Produkte enthalten typischerweise eine wasserunlösliche und eine wasserlösliche Komponente. Wasserunlösliche Basis
Die wasserunlösliche Basis, die auch als„Gummibasis" bezeichnet wird, umfasst üblicherweise natürliche oder synthetische Elastomere, Harze, Fette und Öle, Weichmacher, Füllstoffe, Farbstoffe sowie gegebenenfalls Wachse. Der Anteil der Basis an der Gesamtzusammensetzung macht üblicherweise 5 bis 95, vorzugsweise 10 bis 50 und insbesondere 20 bis 35 Gew.-% aus. In einer typischen Ausgestaltungsform der Erfindung setzt sich die Basis aus 20 bis 60 Gew.-% synthetischen Elastomeren, 0 bis 30 Gew.-% natürlichen Elastomeren, 5 bis 55 Gew.-% Weichmachern, 4 bis 35 Gew.-% Füllstoffe und in untergeordneten Mengen Zusatzstoffe wie Farbstoffe, Antioxidantien und dergleichen zusammen, mit der Maßgabe, dass sie allenfalls in geringen Mengen wasserlöslich sind.
Als geeignete synthetische Elastomere kommen beispielsweise Polyisobutylene mit durchschnittlichen Molekulargewichten (nach GPC) von 10.000 bis 100.000 und vorzugsweise 50.000 bis 80.000, Isobutylen-Isopren-Copolymere („Butyl Elastomere"), Styrol-Butadien- Copolymere (Styrol :Butadien-Verhältnis z.B. 1: 3 bis 3 : 1), Polyvinylacetate mit durchschnittlichen Molekulargewichten (nach GPC) von 2.000 bis 90.000 und vorzugsweise 10.000 bis 65.000, Polyisoprene, Polyethylen, Vinylacetat-Vinyllaurat-Copolymere und deren Gemische. Beispiele für geeignete natürliche Elastomere sind Kautschuks wie etwa geräucherter oder flüssiger Latex oder Guayule sowie natürliche Gummistoffe wie Jelutong, Lechi caspi, Perillo, Sorva, Massaranduba balata, Massaranduba chocolate, Nispero, Rosindinba, Chicle, Gutta hang lkang sowie deren Gemische. Die Auswahl der synthetischen und natürlichen Elastomere und deren Mischungsverhältnisse richtet sich im Wesentlichen danach, ob mit den Kaugummis Blasen erzeugt werden sollen („bubble gums") oder nicht. Vorzugsweise werden Elastomergemische eingesetzt, die Jelutong, Chicle, Sorva und Massaranduba enthalten.
In den meisten Fällen erweisen sich die Elastomere in der Verarbeitung als zu hart oder zu wenig verformbar, so dass es sich als vorteilhaft erwiesen hat, spezielle Weichmacher mit- zuverwenden, die natürlich insbesondere auch alle Anforderungen an die Zulassung als Nahrungsmittelzusatzstoffe erfüllen müssen. In dieser Hinsicht kommen vor allem Ester von Harzsäuren in Betracht, beispielsweise Ester von niederen aliphatischen Alkoholen oder Po- lyolen mit ganz oder teilweise gehärteten, monomeren oder oligomeren Harzsäuren. Insbe- sondere werden für diesen Zweck die Methyl-, Glycerin-, oder Pentareythritester sowie deren Gemische eingesetzt. Alternativ kommen auch Terpenharze in Betracht, die sich von alpha-Pinen, beta-Pinen, delta-Limonen oder deren Gemischen ableiten können. Als Füllstoffe oder Texturiermittel kommen Magnesium- oder Calciumcarbonat, gemahlener Bimsstein, Silicate, speziell Magnesium- oder Aluminiumsilicate, Tone, Aluminiumoxide. Talkum, Titandioxid, Mono-, Di- und Tricalciumphosphat sowie Cellulosepolymere.
Geeignete Emulgatoren sind Talg, gehärteter Talg, gehärtete oder teilweise gehärtete pflanzliche Öle, Kakaobutter, Partialglyceride, Lecithin, Triacetin und gesättigte oder ungesättigte Fettsäuren mit 6 bis 22 und vorzugsweise 12 bis 18 Kohlenstoffatomen sowie deren Gemische.
Als Farbstoffe und Weißungsmittel kommen beispielsweise die für die Färbung von Lebensmitteln zugelassenen FD und C-Typen, Pflanzen- und Fruchtextrakte sowie Titandioxid in Frage.
Die Basismassen können Wachse enthalten oder wachsfrei sein; Beispiele für wachsfreie Zusammensetzungen finden sich unter anderem in der Patentschrift US 5,286,500, auf deren I nhalt hiermit ausdrücklich Bezug genommen wird.
Wasserlösliche Bestandteile
Zusätzlich zu der wasserunlöslichen Gummibasis enthalten Kaugummizubereitungen regelmäßig einen wasserlösliche Anteil, der beispielsweise von Softener, Süßstoffen, Füllstoffen, Geschmacksstoffen, Geschmacksverstärkern, Emulgatoren, Farbstoffen, Säuerungsmitteln, Antioxidantien und dergleichen gebildet werden, hier mit der Maßgabe, dass die Bestand- teile eine wenigstens hinreichende Wasserlöslichkeit besitzen. In Abhängigkeit der Wasserlöslichkeit der speziellen Vertreter können demnach einzelne Bestandteile sowohl der wasserunlöslichen wie auch der wasserlöslichen Phase a ngehören. Es ist jedoch auch möglich, Kombinationen beispielsweise eines wasserlöslichen und eines wasserunlöslichen Emulga- tors einzusetzen, wobei sich die einzelnen Vertreter, dann in unterschiedlichen Phasen be- finden. Üblicherweise macht der wasserunlösliche Anteil 5 bis 95 und vorzugsweise 20 bis 80 Gew.-% der Zubereitung aus.
Wasserlösliche Softener oder Plastifiziermittel werden den Kaugummizusammensetzungen hinzugegeben um die Kaubarkeit und das Kaugefühl zu verbessern und sind in den Mischungen typischerweise in Mengen von 0,5 bis 15 Gew.-% zugegen. Typische Beispiele sind Gly- cerin, Lecithin sowie wässrige Lösungen von Sorbitol, gehärteten Stärkehydrolysaten oder Kornsirup.
Als Süßstoffe kommen sowohl zuckerhaltige wie zuckerfreie Verbindungen in Frage, die in Mengen von 5 bis 95, vorzugsweise 20 bis 80 und insbesondere 30 bis 60 Gew.-% bezogen auf die Kaugummizusammensetzung eingesetzt werden. Typische Saccharid-Süssstoffe sind Sucrose, Dextrose, Maltose, Dextrin, getrockneter Invertzucker, Fructose, Levulose, Galacto- se, Kornsirup sowie deren Gemische. Als Zuckerersatzstoffe kommen Sorbitol, Mannitol, Xylitol, gehärtete Stärkehydrolysate, Maltitol und deren Gemische in Frage. Weiterhin kommen als Zusatzstoffe auch sogenannte HIAS („High I ntensity Articifical Sweeteners") in Betracht, wie beispielsweise Sucralose, Aspartam, Acesulfamsalze, Alitam, Saccharin und Saccharinsalze, Cyclamsäure und deren Salze, Glycyrrhizine, Dihydrochalcone, Thaumatin, Monellin und dergleichen alleine oder in Abmischungen. Besonders wirksam sind auch die hydrophoben HIAS, die Gegenstand der internationalen Patentanmeldung WO 2002091849 AI (Wrigleys) sowie Stevia Extrakte und deren aktiven Bestandteile, insbesondere Ribeaudi- osid A sind. Die Einsatzmenge dieser Stoffe hängt in erster Linie von ihrem Leistungsvermögen ab und liegt typischerweise im Bereich von 0,02 bis 8 Gew.-%.
Insbesondere für die Herstellung kalorienarmer Kaugummis eignen sich Füllstoffe wie beispielsweise Polydextrose, Raftilose, Rafitilin, Fructooligosaccharide (N utraFlora), Palatinose- oligosaaccharide, Guar Gum Hydrolysate (Sun Fiber) sowie Dextrine.
Die Auswahl an weiteren Geschmacksstoffen ist praktisch unbegrenzt und für das Wesen der Erfindung unkritisch. Üblicherweise liegt der Gesamtanteil aller Geschmacksstoffe bei 0,1 bis 15 und vorzugsweise 0,2 bis 5 gew.-% bezogen auf die Kaugummizusammensetzung. Geeignete weitere Geschmacksstoffe stellen beispielsweise essentielle Öle, synthetische Aromen und dergleichen dar, wie etwa Anisöl, Sterna nisöl, Kümmelöl, Eukalyptusöl, Fen- chelöl, Citronenöl, Wintergrünöl, Nelkenöl, und dergleichen, wie sie auch beispielsweise in M und- und Zahnpflegemittel Verwendung finden.
Die Kaugummis können des weiteren Hilfs- und Zusatzstoffe enthalten, die beispielsweise für die Zahnpflege, speziell zur Bekämpfung von Plaque und Gingivitis geeignet sind, wie z.B. Chlorhexidin, CPC oder Trichlosan. Weiter können pH-Regulatoren (z.B. Puffer oder Harnstoff), Wirkstoffe gegen Karies (z.B. Phosphate oder Fluoride), biogene Wirkstoffe (Antikörper, Enzyme, Koffein, Pflanzenextrakte) enthalten sein, solange diese Stoffe für Nahrungsmittel zugelassen sind und nicht in unerwünschter Weise miteinander in Wechselwirkung treten.
Kapseln
Die Zubereitungen aus den speziellen Amiden und Menthol bzw. den Mentholverbindungen alleine oder aber die fertig konfektionierten kosmetischen, pharmazeutischen und Nahrungsmittelzubereitungen können auch in verkapselter Form vorliegen. Neben üblichen Makrokapsein auf Basis von Gelatine kommen dabei vor allem auch so genannte Mikro- o- der Nanokapseln in Betracht. Darunter werden vom Fachmann sphärische Aggregate mit einem Durchmesser im Bereich von etwa 0,0001 bis etwa 5 und vorzugsweise 0,005 bis 0,5 mm verstanden, die mindestens einen festen oder flüssigen Kern enthalten, der von mindestens einer kontinuierlichen Hülle umschlossen ist. Genauer gesagt handelt es sich um mit filmbildenden Polymeren umhüllte feindisperse flüssige oder feste Phasen, bei deren Herstellung sich die Polymere nach Emulgierung und Koazervation oder Grenzflächenpolymerisation auf dem einzuhüllenden Material niederschlagen. Nach einem anderen Verfahren werden geschmolzene Wachse in einer Matrix aufgenommen („microsponge"), die als Mik- ropartikel zusätzlich mit filmbildenden Polymeren umhüllt sein können. Nach einem dritten Verfahren werden Partikel abwechselnd mit Polyelektrolyten unterschiedlicher Ladung beschichtet (,,layer-by-layer"-Verfahren). Die mikroskopisch kleinen Kapseln lassen sich wie Pulver trocknen. Neben einkernigen Mikrokapseln sind auch mehrkernige Aggregate, auch Mikrosphären genannt, bekannt, die zwei oder mehr Kerne im kontinuierlichen Hüllmaterial verteilt enthalten. Ein- oder mehrkernige Mikrokapseln können zudem von einer zusätzli- chen zweiten, dritten etc. Hülle umschlossen sein. Die Hülle kann aus natürlichen, halbsynthetischen oder synthetischen Materialien bestehen. Natürlich Hüllmaterialien sind beispielsweise Gummi Arabicum, Agar-Agar, Agarose, Maltodextrine, Alginsäure bzw. ihre Salze, z.B. Natrium- oder Calciumalginat, Fette und Fettsäuren, Cetylalkohol, Collagen, Chito- san, Lecithine, Gelatine, Albumin, Schellack, Polysaccharide, wie Stärke oder Dextran, Po- lypeptide, Proteinhydrolysate, Sucrose und Wachse. Halbsynthetische Hüllmaterialien sind unter anderem chemisch modifizierte Cellulosen, insbesondere Celluloseester und -ether, z.B. Celluloseacetat, Ethylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose und Carboxymethylcellulose, sowie Stärkederivate, insbesondere Stärkeether und -ester. Synthetische Hüllmaterialien sind beispielsweise Polymere wie Polyacrylate, Polyamide, Po- lyvinylalkohol oder Polyvinylpyrrolidon. Beispiele für Mikro kapseln des Stands der Technik sind folgende Handelsprodukte (in Klammern angegeben ist jeweils das Hüllmaterial) : Hall- crest Microcapsules (Gelatine, Gummi Arabicum), Coletica Thalaspheres (maritimes Collagen), Lipotec Millicapseln (Alginsäure, Agar-Agar), Induchem Unispheres (Lactose, mikrokris- talline Cellulose, Hydroxypropylmethylcellulose); Unicerin C30 (Lactose, mikrokristalline Cel- lulose, Hydroxypropylmethylcellulose), Kobo Glycospheres (modifizierte Stärke, Fettsäureester, Phospholipide), Softspheres (modifiziertes Agar-Agar) und Kuhs Probiol Nanospheres (Phospholipide) sowie Primaspheres und Primasponges (Chitosan, Alginate) und Primasys (Phospholipide). Besonders interessant für die Verkapselung von Zubereitungen für kosme- tische Anwendungen sind Koazervate von kationischen Polymeren, insbesondere von Chitosan, mit anioniscchen polymeren, speziell Alginaten. Entsprechende Verfahren sind beispielsweise in den Druckschriften WO 2001 001926, WO 2001 001927, WO 2001 001928 und WO 2001 001929 (Cognis) beschrieben. Gelbildner
Mikro kapseln enthalten die Wirkstoffe häufig in einer Gelphase gelöst oder dispergiert. Als Gelbildner werden vorzugsweise solche Stoffe in Betracht gezogen, welche die Eigenschaft zeigen in wässriger Lösung bei Temperaturen oberhalb von 40 °C Gele zu bilden. Typische Beispiele hierfür sind Heteropolysaccharide und Proteine. Als thermogelierende Heteropoly- saccharide kommen vorzugsweise Agarosen in Frage, welche in Form des aus Rotalgen zu gewinnenden Agar-Agar auch zusammen mit bis zu 30 Gew.-% nicht-gelbildenden Agaropek- tinen vorliegen können. Hauptbestandteil der Agarosen sind lineare Polysaccharide aus D- Galaktose und 3,6-Anhydro-L-galaktose, die alternierend ß-1,3- und ß-l,4-glykosidisch verknüpft sind. Die Heteropolysaccharide besitzen vorzugsweise ein Molekulargewicht im Be- reich von 110.000 bis 160.000 und sind sowohl färb- als auch geschmacklos. Als Alternativen kommen Pektine, Xanthane (auch Xanthan Gum) sowie deren Mischungen in Frage. Es sind weiterhin solche Typen bevorzugt, die noch in l-Gew.-%iger wässriger Lösung Gele bilden, die nicht unterhalb von 80 °C schmelzen und sich bereits oberhalb von 40 °C wieder verfestigen. Aus der Gruppe der thermogelierenden Proteine seien exemplarisch die verschiede- nen Gelatine-Typen genannt.
Kationpolymere
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium Hydroxypropyl Hydrolyzed Collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Sili- conpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Dimethyla- minohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyldiallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino- 1,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol. Vorzugsweise wird als Verkapselungsmaterial Chi- tosan eingesetzt. Chitosane stellen Biopolymere dar und werden zur Gruppe der Hydrokollo- ide gezählt. Chemisch betrachtet handelt es sich um partiell deacetylierte Chitine unterschiedlichen Molekulargewichtes, die den folgenden - idealisierten - Monomerbaustein enthalten:
Figure imgf000057_0001
Im Gegensatz zu den meisten Hydrokolloiden, die im Bereich biologischer pH-Werte negativ geladen sind, stellen Chitosane unter diesen Bedingungen kationische Biopolymere dar. Die positiv geladenen Chitosane können mit entgegengesetzt geladenen Oberflächen in Wech- selwirkung treten und werden daher in kosmetischen Haar- und Körperpflegemitteln sowie pharmazeutischen Zubereitungen eingesetzt. Zur Herstellung der Chitosane geht man von Chitin, vorzugsweise den Schalenresten von Krustentieren aus, die als billige Rohstoffe in großen Mengen zur Verfügung stehen. Das Chitin wird dabei in einem Verfahren, das erstmals von Hackmann et al. beschrieben worden ist, üblicherweise zunächst durch Zusatz von Basen deproteiniert, durch Zugabe von Mineralsäuren demineralisiert und schließlich durch Zugabe von starken Basen deacetyliert, wobei die Molekulargewichte über ein breites Spektrum verteilt sein können. Vorzugsweise werden solche Typen eingesetzt, wie die ein durchschnittliches Molekulargewicht von 10.000 bis 500.000 bzw. 800.000 bis 1.200.000 Dalton aufweisen und/oder eine Viskosität nach Brookfield (1 Gew.-%ig in Glycolsäure) un- terhalb von 5000 mPas, einen Deacetylierungsgrad im Bereich von 80 bis 88 % und einem Aschegehalt von weniger als 0,3 Gew.-% besitzen. Aus Gründen der besseren Wasserlöslichkeit werden die Chitosane in der Regel in Form ihrer Salze, vorzugsweise als Glycolate eingesetzt. Anionpolymere
Die anionischen Polymere haben die Aufgabe, mit den kationischen Membranen zu bilden. Für diesen Zweck eignen sich vorzugsweise Salze der Alginsäure. Bei der Alginsäure handelt es sich um ein Gemisch carboxylgruppenhaltiger Polysaccharide mit folgendem idealisierten Monomerbaustein :
Figure imgf000058_0001
Das durchschnittliche Molekulargewicht der Alginsäuren bzw. der Alginate liegt im Bereich von 150.000 bis 250.000. Dabei sind als Salze der Alginsäure sowohl deren vollständige als auch deren partiellen Neutralisationsprodukte zu verstehen, insbesondere die Alkalisalze und hierunter vorzugsweise das Natriumalginat („Algin") sowie die Ammonium- und Erdal- kalisalze. besonders bevorzugt sind Mischalginate, wie z.B. Natrium/Magnesium- oder Nat- rium/Calciumalginate. In einer alternativen Ausführungsform der Erfindung kommen für diesen Zweck jedoch auch anionische Chitosanderivate, wie z.B. Carboxylierungs- und vor allem Succinylierungsprodukte in Frage. Alternativ kommen auch Poly(meth)acrylate mit durchschnittlichen Molekulargewichten im Bereich von 5.000 bis 50.000 Dalton sowie die verschiedenen Carboxymethylcellulosen in Frage. Anstelle der anionischen Polymeren können für die Ausbildung der Hüllmembran auch anionische Tenside oder niedermolekulare anorganische Salze, wie beispielsweise Pyrophosphate eingesetzt werden.
Verkapselung
Zur Herstellung der Mikrokapseln stellt man üblicherweise eine 1 bis 10, vorzugsweise 2 bis 5 Gew.-%ige wässrige Lösung des Gelbildners, vorzugsweise des Agar-Agars her und erhitzt diese unter Rückfluss. I n der Siedehitze, vorzugsweise bei 80 bis 100 °C, wird eine zweite wässrige Lösung zugegeben, welche das Kationpolymer, vorzugsweise das Chitosan in Mengen von 0,1 bis 2, vorzugsweise 0,25 bis 0,5 Gew.-% und den Wirkstoffen in Mengen von 0,1 bis 25 und insbesondere 0,25 bis 10 Gew.-% enthält; diese Mischung wird als Matrix bezeichnet. Die Beladung der Mikrokapseln mit Wirkstoffen kann daher ebenfalls 0,1 bis 25 Gew.-% bezogen auf das Kapselgewicht betragen. Falls gewünscht, können zu diesem Zeitpunkt zur Viskositätseinstellung auch wasserunlösliche Bestandteile, beispielsweise anorganische Pigmente zugegeben werden, wobei man diese in der Regel in Form von wässrigen oder wässrig/alkoholischen Dispersionen zusetzt. Zur Em ulgierung bzw. Dispergierung der Wirkstoffe kann es ferner von Nutzen sein, der Matrix Emulgatoren und/oder Lösungsvermittler hinzuzugeben. Nach der Herstellung der Matrix aus Gelbildner, Kationpolymer und Wirkstoffen kann die Matrix optional in einer Ölphase unter starker Scherung sehr fein dis- pergiert werden, um bei der nachfolgenden Verkapselung möglichst kleine Teilchen herzu- stellen. Dabei hat es sich als besonders vorteilhaft erwiesen, die Matrix auf Temperaturen im Bereich von 40 bis 60 °C zu erwärmen, während man die Ölphase auf 10 bis 20 °C kühlt. Im letzten, nun wieder obligatorischen Schritt erfolgt dann die eigentliche Verkapselung, d.h. die Ausbildung der Hüllmembran durch Inkontaktbringen des Kationpolymers in der Matrix mit den anionischen Polymeren. Hierzu empfiehlt es sich, die gegebenenfalls in der Ölphase dispergierte Matrix bei einer Temperatur im Bereich von 40 bis 100, vorzugsweise 50 bis 60 °C mit einer wässrigen, etwa 1 bis 50 und vorzugsweise 10 bis 15 Gew.-%ige wäss- rigen Lösung des Anionpolymers zu behandeln und dabei - falls erforderlich - gleichzeitig oder nachträglich die Ölphase zu entfernen. Die dabei resultierenden wässrigen Zubereitungen weisen in der Regel einen Mikrokapselgehalt im Bereich von 1 bis 10 Gew.-% auf. I n manchen Fällen kann es dabei von Vorteil sein, wenn die Lösung der Polymeren weitere Inhaltsstoffe, beispielsweise Emulgatoren oder Konservierungsmittel enthält. Nach Filtration werden Mikrokapseln erhalten, welche im Mittel einen Durchmesser im Bereich von vorzugsweise etwa 0,01 bis 1 mm aufweisen. Es empfiehlt sich, die Kapseln zu sieben, um eine möglichst gleichmäßige Größenverteilung sicherzustellen. Die so erhaltenen Mikrokapseln können im herstellungsbedingten Rahmen eine beliebige Form aufweisen, sie sind jedoch bevorzugt näherungsweise kugelförmig. Alternativ ka nn man die Anionpolymere auch zur Herstellung der Matrix einsetzen und die Verkapselung mit den Kationpolymeren, speziell den Chitosanen durchführen.
Alternativ kann die Verkapselung auch unter ausschließlicher Verwendung von Kationpolymeren erfolgen, wobei man sich deren Eigenschaft zu N utze macht, bei pH-Werten oberhalb des pKs-Wertes zu koagulieren.
In einem zweiten alternativen Verfahren wird zur Herstellung der erfindungsgemäßen Mikrokapseln wird zunächst eine O/W-Emulsion zubereitet, welche neben dem Ölkörper, Wasser und den Wirkstoffen eine wirksame Menge Emulgator enthält. Zur Herstellung der Matrix wird diese Zubereitung unter starkem Rühren mit einer entsprechenden Menge einer wässrigen Anionpolymerlösung versetzt. Die Membranbildung erfolgt durch Zugabe der Chi- tosanlösung. Der gesamte Vorgang findet vorzugsweise im schwach sauren Bereich bei pH = 3 bis 4 statt. Falls erforderlich erfolgt die pH-Einstellung durch Zugabe von Mineralsäure. Nach der Membranbildung wird der pH-Wert auf 5 bis 6 angehoben, beispielsweise durch Zugabe von Triethanolamin oder einer anderen Base. Hierbei kommt es zu einem Anstieg der Viskosität, die durch Zugabe von weiteren Verdickungsmitteln, wie z.B. Polysacchariden, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginaten und Tylosen, Carboxymethyl- cellulose und Hydroxyethylcellulose, höhermolekularen Polyethylenglycolmono- und - diestern von Fettsäuren, Polyacrylaten, Polyacrylamiden und dergleichen noch unterstützt werden kann. Abschließend werden die Mikrokapseln von der wässrigen Phase beispielsweise durch Dekantieren, Filtrieren oder Zentrifugieren abgetrennt.
In einem dritten alternativen Verfahren erfolgt die Bildung der Mikrokapseln um einen vorzugsweise festen, beispielsweise kristallinen Kern, indem dieser schichtweise mit entgegengesetzt geladenen Polyelektrolyten eingehüllt wird. I n diesem Zusammenhang sei auf das Europäische Patent EP 1064088 Bl (Max-Planck Gesellschaft) verwiesen. Verwendung der Zubereitungen
Schließlich betrifft die Erfindung weiterhin die Verwendung von Mischungen enthaltend
(a) Amide der Formel (I) und
(b) Menthol und/oder Mentholverbindungen der Formeln (II), (III) und/oder (IV) oder Aromstoffe
zur Herstellung von kosmetischen Zubereitungen, pharmazeutischen Zubereitungen sowie Nahrungsmittelzubereitungen, wobei der Gesamtgehalt der Komponenten (a+b) in den Endprodukten vorzugsweise zwischen 1 und 5.000, vorzugsweise 10 bis 4.000 und insbesondere 100 bis 1.000 ppm liegt.
Beispiele
Beispiele 1 bis 7, Vergleichsbeispiele VI bis V4
Kaugummimassen bestehend aus 20 Gew.-% Polyisobutylen (MW 60.000), 51 Gew.-% Sor- bitol, 5 Gew.-% Mannitol, 8 Gew.-% Glycerin, 8,2 Gew.-% einer l:l-Mischung aus Lycasin und Glycerin, 0,2 Gew.-% Lecithin (ad 99,5 Gew.-% Wasser) wurden hergestellt und mit jeweils 0,5 Gew.-% verschiedener Kühlstoffe versetzt. Anschließend wurden die Kaugummimassen von einem Panel bestehend aus 5 geschulten Personen sensorisch auf einer Skala von 1 (kaum zu bemerken) bis 10 (dominant) bewertet. Die Zusammensetzung der Kühlstoffe sowie die Bewertung der einzelnen Geschmacks- und Geruchsnoten (angegeben ist jeweils der Mittelwert der Beurteilungen) sind in Tabelle 1 zusammengefasst. Die Beispiele 1 bis 7 sind erfindungsgemäß, die Beispiele VI bis V4 dienen zum Vergleich.
Tabelle 1
Sensorische Bewertung von Kaugummis in Abhängigkeit der Kühlstoffe
Figure imgf000061_0001
Struktur A24: N-phenyl-N-(thiophen-2-ylmethyl)-2(m-tolyloxy)acetamid
Struktur A194:€-3-(2,2-difluorbenzo[d] [l,3]dioxol-5-yl)-N-ethyl-N-(thiohen-2-ylmethyl)acrylamid
In der sensorischen Beurteilung schnitten alle erfindungsgemäßen Formulierungen deutlich besser als die Vergleichsprodukte ab, insbesondere schmeckten die Formulierungen eher süß als bitter, der Teergeschmack wurde fast völlig überdeckt und der unangenehme scharfstechende Geruch war deutlich vermindert. Beispiele 8 bis 14, Vergleichsbeispiele V5 bis V8
Verschiedene klare O/W-Sonnenschutzemulsionen wurden nach der PIT-Methode durch Vermischen der Komponenten gemäß Tabelle 2 hergestellt: Tabelle 2
Zusammensetzung O/W-Sonnenschutzlotionen
Figure imgf000062_0001
Die Sonnenschutzlotionen unterschieden sich lediglich im Hinblick auf den Kühlstoff, bei dem es sich zum einen um verschiedene Mentholverbindungen alleine und zum anderen in (1:1) Abmischungen mit 2-(2-isopopyl-5-methylphenoxy)-N-(lH-pyrazol-3-yl)-N-(thiophen-2- yl)-methylacetamid (Struktur A88) handelte.
Nach der Herstellung wurden die Lotionen in klare PET-Flaschen abgefüllt und diese bei 30 °C gelagert. Anschließend wurden die Lotionen nach 12, 24 und 48 h hinsichtlich ihres Er- scheinungsbildes beurteilt. Dabei bedeutet (+) = unverändert; (#) geringfügige Tröpfchenbildung und (-) Abscheidung von Öltröpfchen an der Oberfläche sowie leicht gelbliche Verfärbung. Die Ergebnisse sind in Tabelle 3 zusammengefast. Die Beispiele 8 bis 14 sind erfindungsgemäß, die Beispiele V5 bis V8 dienen wieder zum Vergleich. Die erfindungsgemäßen Zubereitungen zeigen dabei eine deutlich verbesserte Stabilität. Tabelle 3
Bewertung der Lagerstabilität von O/W-Sonnenschutzlotionen in Abhängigkeit der Kühlstoffe
Figure imgf000063_0001
In den nachfolgenden Tabellen finden sich zahlreiche Formulierungsbeispiele für kosmetische, pharmazeutische und Nahrungsmittelzubereitungen.
Tabelle 4
Beispiele für kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%)
Figure imgf000064_0001
(1-4) Haarspülung, (5-6) Haarkur, (7-8) Duschbad, (9) Duschgel, (10) Waschlotion Tabelle 4
Beispiele für kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) (Forts.)
Figure imgf000065_0001
(11-14) Duschbad„Two-in-One), (15-20) Shampoo Tabelle 4
Beispiele für kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) (Forts.)
Figure imgf000066_0001
(21-25) Schaumbad, (26) Softcreme, (27, 28) Feuchtigkeitsemulsion, (29, 30) Nachtcreme Tabelle 4
Beispiele für kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) (Forts.)
Figure imgf000067_0001
(31) W/O-Sonnenschutzcreme, (32-34) W/O-Sonnenschutzlotion, (35, 38, 40) O/W-Sonnenschutzlotio (36, 37, 39) O/W-Sonnenschutzcreme Beispiele 15 bis 19, Vergleichsbeispiele V9 bis Vll
Zur Bestimmung der Reduktion der Apatitlöslichkeit wurde zunächst ein Blindversuch durchgeführt. Hierzu wurde in einem Reaktionsgefäß mit 300 ml entsalztes Wasserauf 37 °C thermostatiert und darin 0,5 g Hydroxylapatitpulver (spez. Oberfläche 60 m2/g, Fa. Merck) suspendiert. Der pH-Wert der Suspension wurde mittels einer automatischen Bürette, mit der Milchsäurelösung zugegeben werden konnte, auf einen konstanten Wert von 5 gehalten. Die zur pH-Stabilisierung verbrauchte Menge 0,1 molarer Milchsäure wurde von einem Schreiber registriert. Der nach 2 Stunden registrierte Verbrauch an Milchsäure entsprach der Löslichkeit des unbehandelten Hydroxylapatitpulvers (Lu).
Anschließend wurde der Versuch unter Zugabe von 50 bzw. 150 mg der zu untersuchenden Wirkstoffgemische wiederholt. Der nach zwei Stunden registrierte Verbrauch an Milchsäure entsprach der Löslichkeit des behandelten Hydroxylapatitpulvers (Lb). Die Reduktion der Apatitlöslichkeit (ALR in %) durch den Wirkstoff berechnete sich nach :
ALR (%) = (Lu-Lb)*100/Lu (%)
Die Ergebnisse der Messungen sind in Tabelle 5 zusam mengefasst.
Zur Bestimmung der I nhibierung des Kristallwachstums (KWI in %) von Hydroxylapatit wurde ebenfalls zunächst ein Blindversuch durchgeführt. Hierzu wurden in einem Reaktionsgefäß 400 ml einer 0,0008 molaren Lösung von KH2P04 und 45 ml einer 0,012 molaren Lösung von CaCI2 vorgelegt. Diese Lösung wurde durch Titration mit einer 0,05 molaren Lösung von KOH auf einen pH-Wert von 7,4 eingestellt. Nach Erhalt eines über mindestens 30 Minuten stabilen pH-Wertes wurden 100 mg Hydroxylapatitpulver (spez. Oberfläche 60 m2/g, Fa. Merck) zugegeben. Der pH-Wert der Suspension wurde mittels einer automatischen Bürette, mit der 0,05 molare KOH-Lösung zugegeben werden kann, auf einen konstanten Wert von 7,4 gehalten. Die zur pH-Stabilisierung verbrauchte Menge 0,05 molarer KOH-Lösung wurde von einem Schreiber registriert. Der nach 2 Stunden registrierte Verbrauch an KOH-Lösung (Ku) entsprach der Bildung von Hydroxylapatit (Wachstum der Kristalle der Suspension).
Anschließend wurde der Versuch unter Zugabe von 6 bzw. 30 mg des zu untersuchenden Wirkstoffs wiederholt. Der nach 2 Stunden registrierte Verbrauch an 0,05 molarer KOH- Lösung (Kb) entsprach der Bildung von Hydroxylapatit (Wachstum der Kristalle in der Sus- pension) unter dem Einfluss des Wirkstoffs. Die I nhibierung des Kristallwachstums durch den Wirkstoff berechnet sich nach :
KWI (%) = (Ku-Kb)*100/Ku (%)
Die Ergebnisse der Messungen sind in Tabelle 5 zusam mengefasst. Tabelle 5
Apatitlöslichkeit und Kristallwachstumsinhibierung in Abhängigkeit der Aromakomponente
Figure imgf000069_0001
Die Beispiele 15 bis 19 zeigen, dass die erfindungsgemäßen Zubereitungen gegenüber den einzelnen Komponenten über eine deutlich höhere Apatitlöslichkeit und eine stärkere Inhibierung der Bildung von Apatitkristallen verfügen. Mund- und Zahnputzmittel, die derartige Mischungen enthalten, zeichnen sich durch eine verbesserte Wirkung gegen Zahnsteinbildung aus.
Die folgende Tabelle 6 enthält eine Reihe von Formulierungsbeispielen für Zahnpasten und Mundwässer.
Tabelle 6a
Zusammensetzung Zahnpaste
Figure imgf000069_0002
Tabelle 6b
Zusammensetzung Mundwasser
Figure imgf000070_0001
Struktur A124: N-phenyl-N-(thiophen-2-ylmethyl)-2-(m-tolyloxy)acetamid
In der folgenden Tabelle 7 ist schließlich eine Reihe von Beispielformulierungen für Kaugummimassen zusammengestellt.
Tabelle 7
Kaugummimassen
Figure imgf000070_0002
Struktur A157: N-(pyridin-2-yl)-N-(thiophen-2-ylmethyl)-3-p-tolylpropanamid

Claims

Patentansprüche
1. Zubereitungen, enthaltend
(a) Amide der Formel (I)
A1-[B]-CO-NRa-(CH2)pA2 (I)
In der
A1 für einen gegebenenfalls substituierten Aryl-, Heteroaryl- oder Cycloalkyl- rest,
B für eine OCRbRb, CHRc-CHRd, CRe=CRf, oder einen Cycloalkylrest, p für Zahlen von 1 bis 3,
Ra für einen gegebenenfalls substituierten Alkyl-, Heteroalkyl-, Alkenyl-, Hete- roalkenyl-, Aryl-, Aralkyl-, Heteroaryl- Cyclo- oder Heterocycloalkylrest mit 1 bis 20 Kohlenstoffatomen,
Rb, Rc, Rd, Re und Rf unabhängig für Wasserstoff oder einen Alkylrest mit 1 bis 4 Kohlenstoffatomen, und
A2 für einen gegebenenfalls substituierten fünf- oder sechsgliedrigen Hete- roarylrest steht, der mindestens ein Heteroatom aus der Gruppe aufweist, die gebildet wird von Stickstoff, Sauerstoff und Schwefel, sowie deren Salze, und
(bl) Menthol und/oder Mentholverbindungen der Formeln (II), (III) und/oder (IV)
Figure imgf000071_0001
(Ii) (HD (IV)
in der X für -OY oder -COZ und Y für die folgenden Gruppen steht:
(i) einen linearen oder verzweigten Alkyl- oder Hydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen oder einen Allylrest;
(ii) einen Hydroxy- oder Dihydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen;
(iii) einen Rest -OCR1;
(iv) einen Rest -OCO(M)OH;
(v) einen Rest -OCO-S;
(vi) einen Rest -OC(CH2)nCOR2
wobei M für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 1 bis 10 Kohlenstoffatomen;
S für einen Kohlenhydratrest mit 5 bis 12 Kohlenstoffatomen;
n für 0 oder Zahlen von 1 bis 6;
R1 für einen linearen oder verzweigten Alkyl- oder Hydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen oder einen Allylrest;
R für einen Hydroxylrest oder einen Rest NR R ;
R3 und R4 unabhängig voneinander für Wasserstoff oder einen linearen oder verzweigten Alkyl- oder Hydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen stehen, während Z für die folgenden Gruppen steht:
(vii) einen Rest NR5R6 oder
(viii) einen Rest NHR7
wobei
R5 und R6 unabhängig voneinander für Wasserstoff oder einen linearen oder verzweigten Alkyl- oder Hydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen, einen Phenylrest oder einen Alkoxyphenylrest mit 1 bis 6 Kohlenstoffatomen im Alkoxyrest
R7 für einen Rest -(CH2)nCOOR8
R8 für einen linearen oder verzweigten Alkyl- oder Hydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen und
n für 0 oder Zahlen von 1 bis 10 steht oder
(b2) Aromastoffe.
Zubereitungen nach Anspruch 1, dadurch gekennzeichnet, dass sie als Komponente (b) Mentholverbindungen enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Menthol Methyl Ether, Menthone Glyceryl Acetal (FEMA GRAS 3807), Men- thone Glyceryl Ketal (FEMA GRAS 3808), Menthyl Lactate (FEMA GRAS 3748), Menthol Ethylene Glycol Carbonate (FEMA GRAS 3805), Menthol Propylene Glycol Carbonate (FEMA GRAS 3806), Menthyl-N-ethyloxamat, Monomethyl Succinate (FEMA GRAS 3810), Monomenthyl Glutamate (FEMA GRAS 4006), Menthoxy-l,2-propanediol (FEMA GRAS 3784), Menthoxy-2-methyl-l,2-propandiol (FEMA GRAS 3849) sowie den Menthancarbonsäureestern und -amiden WS-3, WS-4, WS-5, WS-12, WS-14 und WS- 30 sowie deren Gemischen.
Zubereitungen nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, dass sie einen kosmetischen Zusatzstoff (Komponente c) enthalten, der ausgewählt ist aus der Gruppe, die gebildet wird von Tensiden, Ölkörpern, Emulgatoren, Perlglanzwachsen, Konsistenzgebern, Verdickungsmitteln, Überfettungsmitteln, Stabilisatoren, Polymeren, Siliconverbindungen, Fetten, Wachsen, Lecithinen, Phospholipiden, UV- Lichtschutzfaktoren, Feuchthaltemitteln, biogenen Wirkstoffen, Antioxidantien, Deo- dorantien, Antitranspirantien, Antischuppenmitteln, Filmbildnern, Quellmitteln, Insek- tenrepellentien, Selbstbräunern, Tyrosininhibitoren (Depigmentierungsmittel), Hydro- tropen, Solubilisatoren, Konservierungsmitteln, Parfümölen und Farbstoffen sowie deren Gemischen.
Zubereitungen nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie die Komponenten (a) und (b) im Gewichtsverhältnis 0,1:99 bis 99,9:1 enthalten.
Zubereitungen nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie die Komponenten (a+b) und (c) im Gewichtsverhältnis 0.01:99,9 bis 2:98 enthalten.
Kosmetische Zubereitungen, enthaltend
(a) Amide der Formel (I),
(b) Menthol und/oder Mentholverbindungen der Formeln (II), (III) und/oder (IV) oder Aroma Stoffe sowie
(c) einen für kosmetische Anwendungen zugelassenen Träger.
Kosmetische Zubereitungen nach Anspruch 6, dadurch gekennzeichnet, dass der Träger ausgewählt ist aus der Gruppe, die gebildet wird von Wasser, Alkoholen mit 2 bis 6 Kohlenstoffatomen, Polyolen mit 1 bis 10 Kohlenstoffatomen und 2 bis 4 Hydroxylgruppen sowie Ölkörpern.
Kosmetische Zubereitungen nach den Ansprüchen 6 und/oder 7, dadurch gekennzeichnet, dass es sich um Produkte handelt, die ausgewählt sind aus der Gruppe, die gebildet wird von Hautpflegemitteln, Haarpflegemitteln, Körperpflegemitteln, Sonnenschutzmitteln sowie Mund- und Zahnpflegemitteln.
Pharmazeutische Zubereitungen, enthaltend
(a) Amide der Formel (I),
(b) Menthol und/oder Mentholverbindungen der Formeln (II), (III) und/oder (IV) oder Aroma Stoffe sowie
(c) einen für pharmazeutische Anwendungen zugelassenen Träger
zur Behandlung von Erkältungszuständen, dadurch gekennzeichnet, dass eine therapeutische Verwendung erfolgt.
Pharmazeutische Zubereitungen nach Anspruch 9, dadurch gekennzeichnet, dass der Träger ausgewählt ist aus der Gruppe, die gebildet wird von Wasser, Alkoholen mit 2 bis 6 Kohlenstoffatomen, Polyolen mit 1 bis 10 Kohlenstoffatomen und 2 bis 4 Hydroxylgruppen sowie Ölkörpern.
Pharmazeutische Zubereitungen nach den Ansprüchen 9 und/oder 10, dadurch gekennzeichnet, dass es sich um Produkte handelt, die ausgewählt sind aus der Gruppe, die gebildet wird von Lutschpastillen, Erkältungsbonbons, Erkältungssäfte, Erkältungssalben und Erkältungssprays.
12. Nahrungsmittelzubereitungen, enthaltend
(a) Amide der Formel (I),
(b) Menthol und/oder Mentholverbindungen der Formeln (II), (III) und/oder (IV) oder Aroma Stoffe sowie
(c) einen für Nahrungsmittelzwecke zugelassenen Träger.
13. Nahrungsmittelzubereitungen nach Anspruch 12, dadurch gekennzeichnet, dass der Träger ausgewählt ist aus der Gruppe, die gebildet wird von Wasser, Ethanol und Gly- cerin.
14. Nahrungsmittelzubereitungen nach den Ansprüchen 12 und/oder 13, dadurch ge- kennzeichnet, dass es sich um Produkte handelt, die ausgewählt sind aus der Gruppe, die gebildet wird von Getränken, Milchprodukten, Backwaren, Kaugummis und Bonbons.
15. Verwendung von Mischungen enthaltend
(a) Amide der Formel (I) und
(b) Menthol und/oder Mentholverbindungen der Formeln (II), (III) und/oder (IV) oder
Aromastoffe
zur Herstellung von kosmetischen Zubereitungen, pharmazeutischen Zubereitungen sowie Nahrungsmittelzubereitungen.
PCT/EP2012/075198 2012-12-12 2012-12-12 Zubereitungen WO2014090293A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/EP2012/075198 WO2014090293A1 (de) 2012-12-12 2012-12-12 Zubereitungen
JP2015546865A JP2016508122A (ja) 2012-12-12 2012-12-12 調製物
CN201810006791.7A CN108853105B (zh) 2012-12-12 2012-12-12 化妆品组合物、药品组合物和食品组合物
EP12806419.3A EP2931225B1 (de) 2012-12-12 2012-12-12 Kühlende zubereitungen
CN201280078213.5A CN105025870B (zh) 2012-12-12 2012-12-12 组合物
US14/651,490 US10182584B2 (en) 2012-12-12 2012-12-12 Cooling preparations
US15/799,180 US10492511B2 (en) 2012-12-12 2017-10-31 Preparations
US15/804,026 US11234450B2 (en) 2012-12-12 2017-11-06 Preparations having a cooling effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/075198 WO2014090293A1 (de) 2012-12-12 2012-12-12 Zubereitungen

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/651,490 A-371-Of-International US10182584B2 (en) 2012-12-12 2012-12-12 Cooling preparations
US15/799,180 Division US10492511B2 (en) 2012-12-12 2017-10-31 Preparations
US15/804,026 Division US11234450B2 (en) 2012-12-12 2017-11-06 Preparations having a cooling effect

Publications (1)

Publication Number Publication Date
WO2014090293A1 true WO2014090293A1 (de) 2014-06-19

Family

ID=47435932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/075198 WO2014090293A1 (de) 2012-12-12 2012-12-12 Zubereitungen

Country Status (5)

Country Link
US (3) US10182584B2 (de)
EP (1) EP2931225B1 (de)
JP (1) JP2016508122A (de)
CN (2) CN108853105B (de)
WO (1) WO2014090293A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017055603A1 (en) * 2015-10-02 2017-04-06 Firmenich Sa Perfume emanating device
CN108473484A (zh) * 2015-10-01 2018-08-31 赛诺米克斯公司 可用作trpm8调节剂的化合物
WO2018211420A1 (en) 2017-05-15 2018-11-22 Firmenich Sa Compositions comprising essential oils
WO2019012071A1 (en) * 2017-07-14 2019-01-17 Firmenich Sa COOLING COMPOSITION
WO2019043164A1 (de) 2017-08-31 2019-03-07 Basf Se Verwendung physiologischer kühlwirkstoffe und mittel enthaltend solche wirkstoffe
WO2019121660A1 (en) 2017-12-20 2019-06-27 Firmenich Sa Oral care compositions
WO2020033669A1 (en) 2018-08-10 2020-02-13 Firmenich Incorporated Antagonists of t2r54 and compositions and uses thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108078959A (zh) * 2016-11-22 2018-05-29 北京赛特瑞科技发展有限公司 一种抗菌防护膜及其制备方法和用途
DE102017119863A1 (de) * 2017-08-30 2019-02-28 Jürgen Lademann Kosmetisches Licht- und Sonnenschutzmittel
DE102017217735A1 (de) * 2017-10-05 2019-04-11 Henkel Ag & Co. Kgaa "Deodorantien mit verlängerter Dufthaftung"
JP7133564B2 (ja) * 2017-11-15 2022-09-08 ポーラ化成工業株式会社 油性組成物
EP3958987B1 (de) * 2019-04-24 2023-11-29 Unilever Global Ip Limited Antimikrobielle zusammensetzungen
EP3996505A4 (de) * 2019-10-08 2023-08-02 Bedoukian Research, Inc. Synergistische formulierungen zur bekämpfung und abweisung von beissenden gliederfüsslern
CN111004224B (zh) * 2019-12-11 2021-03-12 中国烟草总公司郑州烟草研究院 一种环甲位烯胺酮类化合物及其合成方法、应用、烟草制品
JP2021153809A (ja) * 2020-03-26 2021-10-07 大日本除蟲菊株式会社 食品由来生ゴミの腐敗臭発生抑制剤
CN114289042B (zh) * 2022-01-10 2023-05-30 万华化学集团股份有限公司 一种介孔固体酸催化剂、制备方法及其应用
CN117547471B (zh) * 2024-01-11 2024-05-03 万华化学集团股份有限公司 一种具有改善的凉感透发性的l薄荷醇组合物及其应用

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111127A (en) 1961-06-27 1963-11-19 Brown & Williamson Tobacco Smoking tobacco product and method of making the same
US3419543A (en) 1964-10-01 1968-12-31 Liggett & Myers Inc Carbonate esters of flavorants
US3488419A (en) 1965-12-08 1970-01-06 Procter & Gamble Oral compositions for calculus retardation
DE2224430A1 (de) 1972-05-19 1973-12-06 Henkel & Cie Gmbh Zahnsteinbildung verhindernde mundund zahnpflegemittel
DE2343196A1 (de) 1973-08-27 1975-04-03 Henkel & Cie Gmbh Azacycloalkan-2,2-diphosphonsaeuren
DE2608226A1 (de) 1976-02-28 1977-09-08 Haarmann & Reimer Gmbh Mittel mit physiologischer kuehlwirkung
US4157384A (en) 1972-01-28 1979-06-05 Wilkinson Sword Limited Compositions having a physiological cooling effect
US4459425A (en) 1981-11-20 1984-07-10 Takasago Perfumery Co., Ltd. 3-Levo-Menthoxypropane-1,2-diol
DE4226043A1 (de) 1992-08-06 1994-02-10 Haarmann & Reimer Gmbh Mittel mit physiologischem Kühleffekt und für diese Mittel geeignete wirksame Verbindungen
US5286500A (en) 1992-03-03 1994-02-15 Wm. Wrigley Jr. Company Wax-free chewing gum base
US5725865A (en) 1995-08-29 1998-03-10 V. Mane Fils S.A. Coolant compositions
US5843466A (en) 1995-08-29 1998-12-01 V. Mane Fils S.A. Coolant compositions
WO2001001929A2 (de) 1999-07-02 2001-01-11 Primacare S.A. Mikrokapseln - iv
WO2001001926A1 (de) 1999-07-02 2001-01-11 Primacare S.A. Mikrokapseln - ii
WO2001001928A1 (de) 1999-07-02 2001-01-11 Primacare S.A. Mikrokapseln - iii
WO2001001927A1 (de) 1999-07-02 2001-01-11 Primacare S.A. Mikrokapseln - i
US6328982B1 (en) 1998-08-04 2001-12-11 Takasago International Corporation Cool feeling composition
US6407293B1 (en) 2000-10-23 2002-06-18 Takasago International Corporation Process for producing 3-1-menthoxypropane-1,2-diol
WO2002091849A1 (en) 2001-05-11 2002-11-21 Wm. Wrigley Jr. Company A chewing gum having prolonged sensory benefits
EP1064088B1 (de) 1998-03-19 2002-12-04 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Herstellung von mit mehrlagen gestrichenen partikeln und hohlen schalen durch elektrostatische selbstorganisierung von nanokompositmehrlagen auf zersetzbaren schablonen
US6515188B2 (en) 2001-04-23 2003-02-04 Takasago International Corporation Method for producing 3-l-menthoxypropane-1,2-diol
WO2003043431A1 (en) 2001-11-23 2003-05-30 Unilever N.V. Water continuous food product with cooling flavour
EP1332772A2 (de) 2002-02-05 2003-08-06 INTERNATIONAL FLAVORS & FRAGRANCES INC. Zusammensetzungen gegen Schuppen und Jukreiz, die ein Kältegefühl erzeugendes Material und einen Kältegefühl-Verstärker enthalten
US20060210482A1 (en) * 2005-03-18 2006-09-21 John Cassara Chemical composition and method for cold and sinus relief
WO2012061698A2 (en) 2010-11-05 2012-05-10 Senomyx, Inc. Compounds useful as modulators of trpm8

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009893A (en) * 1989-07-17 1991-04-23 Warner-Lambert Company Breath-freshening edible compositions of methol and a carboxamide
US5589158A (en) * 1994-11-17 1996-12-31 Bush Boake Allen Inc. Flavor enhancer
EP0847268B1 (de) * 1995-08-29 2001-09-12 V. Mane Fils S.A. Erfrischende zusammensetzungen
FR2788695B1 (fr) * 1999-01-22 2002-09-06 Roc Sa Composition cosmetique a base de menthol et de menthyl lactate, peu odorante et non-irritante
US6503517B1 (en) * 2000-01-28 2003-01-07 Conopco, Inc. Cosmetic compositions with menthol
DE10130397A1 (de) * 2001-06-23 2003-01-09 Bayer Cropscience Gmbh Herbizide substituierte Pyridine, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbzide und Pflanzenwachstumsregulatoren
US6897195B2 (en) * 2002-07-24 2005-05-24 Nanjing Zhongshi Chemical Co. Composition of menthol and menthyl lactate, its preparation method and its applications as a cooling agent
PL2079321T3 (pl) * 2006-09-27 2013-11-29 Intercontinental Great Brands Llc Chłodzące wyroby cukiernicze i napoje
US8084050B2 (en) * 2006-10-11 2011-12-27 Colgate-Palmolive Company Compositions comprising combinations of sensates
GB0704163D0 (en) * 2007-03-02 2007-04-11 Quest Int Serv Bv Compositions comprising a physiological coolant
US20100273887A1 (en) * 2007-08-16 2010-10-28 Symrise Gmbh & Co. Kg Mixtures comprising pellitorin and uses thereof
EP2033688B1 (de) * 2007-08-20 2012-10-17 Symrise AG Oxalsäurederivate und deren Verwendung als physiologische Kühlwirkstoffe
BRPI0917997A2 (pt) * 2008-08-15 2015-11-17 Procter & Gamble solução de mentanocarboxamidas para uso em produtos destinados ao consumidor
CN107375284B (zh) * 2008-08-26 2020-08-07 巴斯夫欧洲公司 冷薄荷醇受体trpm8的低分子量调节剂的检测和用途
BRPI0920909B1 (pt) * 2008-11-20 2017-04-18 Procter & Gamble método de acentuação e/ou modulação da atividade de um ou mais agentes refrigerantes não mentol e composições de cuidados pessoais para uso oral
ES2787606T3 (es) * 2010-10-01 2020-10-16 Procter & Gamble Composiciones para el cuidado bucal con mejor sabor
JP2012152127A (ja) * 2011-01-25 2012-08-16 Shiseido Co Ltd 皮膚バリア機能回復剤

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3111127A (en) 1961-06-27 1963-11-19 Brown & Williamson Tobacco Smoking tobacco product and method of making the same
US3419543A (en) 1964-10-01 1968-12-31 Liggett & Myers Inc Carbonate esters of flavorants
US3488419A (en) 1965-12-08 1970-01-06 Procter & Gamble Oral compositions for calculus retardation
US4157384A (en) 1972-01-28 1979-06-05 Wilkinson Sword Limited Compositions having a physiological cooling effect
DE2224430A1 (de) 1972-05-19 1973-12-06 Henkel & Cie Gmbh Zahnsteinbildung verhindernde mundund zahnpflegemittel
DE2343196A1 (de) 1973-08-27 1975-04-03 Henkel & Cie Gmbh Azacycloalkan-2,2-diphosphonsaeuren
DE2608226A1 (de) 1976-02-28 1977-09-08 Haarmann & Reimer Gmbh Mittel mit physiologischer kuehlwirkung
US4459425A (en) 1981-11-20 1984-07-10 Takasago Perfumery Co., Ltd. 3-Levo-Menthoxypropane-1,2-diol
US5286500A (en) 1992-03-03 1994-02-15 Wm. Wrigley Jr. Company Wax-free chewing gum base
DE4226043A1 (de) 1992-08-06 1994-02-10 Haarmann & Reimer Gmbh Mittel mit physiologischem Kühleffekt und für diese Mittel geeignete wirksame Verbindungen
US5725865A (en) 1995-08-29 1998-03-10 V. Mane Fils S.A. Coolant compositions
US5843466A (en) 1995-08-29 1998-12-01 V. Mane Fils S.A. Coolant compositions
EP1064088B1 (de) 1998-03-19 2002-12-04 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Herstellung von mit mehrlagen gestrichenen partikeln und hohlen schalen durch elektrostatische selbstorganisierung von nanokompositmehrlagen auf zersetzbaren schablonen
US6328982B1 (en) 1998-08-04 2001-12-11 Takasago International Corporation Cool feeling composition
WO2001001929A2 (de) 1999-07-02 2001-01-11 Primacare S.A. Mikrokapseln - iv
WO2001001927A1 (de) 1999-07-02 2001-01-11 Primacare S.A. Mikrokapseln - i
WO2001001928A1 (de) 1999-07-02 2001-01-11 Primacare S.A. Mikrokapseln - iii
WO2001001926A1 (de) 1999-07-02 2001-01-11 Primacare S.A. Mikrokapseln - ii
US6407293B1 (en) 2000-10-23 2002-06-18 Takasago International Corporation Process for producing 3-1-menthoxypropane-1,2-diol
US6515188B2 (en) 2001-04-23 2003-02-04 Takasago International Corporation Method for producing 3-l-menthoxypropane-1,2-diol
WO2002091849A1 (en) 2001-05-11 2002-11-21 Wm. Wrigley Jr. Company A chewing gum having prolonged sensory benefits
US20030072842A1 (en) * 2001-05-11 2003-04-17 Johnson Sonya S. Chewing gum having prolonged sensory benefits
WO2003043431A1 (en) 2001-11-23 2003-05-30 Unilever N.V. Water continuous food product with cooling flavour
EP1332772A2 (de) 2002-02-05 2003-08-06 INTERNATIONAL FLAVORS & FRAGRANCES INC. Zusammensetzungen gegen Schuppen und Jukreiz, die ein Kältegefühl erzeugendes Material und einen Kältegefühl-Verstärker enthalten
US20060210482A1 (en) * 2005-03-18 2006-09-21 John Cassara Chemical composition and method for cold and sinus relief
WO2012061698A2 (en) 2010-11-05 2012-05-10 Senomyx, Inc. Compounds useful as modulators of trpm8

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Kosmetische Färbemittel", 1984, VERLAG CHEMIE, pages: 81 - 106
J. SOC. COSMET. CHEM., 1978, pages 185 - 200
R.LOCHHEAD, COSM.TOIL., vol. 108, 1993, pages 95

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392371B2 (en) 2015-10-01 2019-08-27 Senomyx, Inc. Compounds useful as modulators of TRPM8
CN108473484A (zh) * 2015-10-01 2018-08-31 赛诺米克斯公司 可用作trpm8调节剂的化合物
EP3356356A4 (de) * 2015-10-01 2019-02-27 Senomyx, Inc. Verbindungen als trpm8-modulatoren
CN108473484B (zh) * 2015-10-01 2021-06-29 弗门尼舍公司 可用作trpm8调节剂的化合物
JP2018531690A (ja) * 2015-10-02 2018-11-01 フイルメニツヒ ソシエテ アノニムFirmenich Sa 香料発散デバイス
CN108136063A (zh) * 2015-10-02 2018-06-08 弗门尼舍有限公司 香料发散装置
WO2017055603A1 (en) * 2015-10-02 2017-04-06 Firmenich Sa Perfume emanating device
US11160894B2 (en) 2015-10-02 2021-11-02 Firmenich Sa Perfume emanating device
WO2018211420A1 (en) 2017-05-15 2018-11-22 Firmenich Sa Compositions comprising essential oils
US11174249B2 (en) 2017-07-14 2021-11-16 Firmenich Sa Cooling composition
WO2019012071A1 (en) * 2017-07-14 2019-01-17 Firmenich Sa COOLING COMPOSITION
WO2019043164A1 (de) 2017-08-31 2019-03-07 Basf Se Verwendung physiologischer kühlwirkstoffe und mittel enthaltend solche wirkstoffe
US11434220B2 (en) 2017-08-31 2022-09-06 Basf Se Use of physiological cooling active ingredients, and compositions comprising such active ingredients
WO2019121660A1 (en) 2017-12-20 2019-06-27 Firmenich Sa Oral care compositions
WO2020033669A1 (en) 2018-08-10 2020-02-13 Firmenich Incorporated Antagonists of t2r54 and compositions and uses thereof

Also Published As

Publication number Publication date
US20180055069A1 (en) 2018-03-01
US20180049449A1 (en) 2018-02-22
CN108853105A (zh) 2018-11-23
US11234450B2 (en) 2022-02-01
CN108853105B (zh) 2021-10-15
US10492511B2 (en) 2019-12-03
US10182584B2 (en) 2019-01-22
CN105025870A (zh) 2015-11-04
EP2931225B1 (de) 2021-03-31
CN105025870B (zh) 2018-02-02
EP2931225A1 (de) 2015-10-21
US20150313820A1 (en) 2015-11-05
JP2016508122A (ja) 2016-03-17

Similar Documents

Publication Publication Date Title
EP2931225B1 (de) Kühlende zubereitungen
EP3219303B1 (de) Zubereitungen
EP2789247B1 (de) Antioxidative zubereitung
EP2849718B1 (de) Mischungen mit verbesserter kühlwirkung
EP2932956B1 (de) Kapseln mit hoher Wirkstoffbeladung
WO2013037977A2 (de) Kosmetische zubereitungen
DE10232774B4 (de) Kosmetische Zubereitungen mit antibakteriellen Eigenschaften
JP2021059582A (ja) 液状冷却組成物
DE202012013357U1 (de) Zubereitungen
EP1479432B1 (de) Mikrokapseln (XXIV)
WO2018113925A1 (de) Aromamischung zur reduktion des geruchs oder geschmacks biogener amine
JP6882144B6 (ja) 組成物および化粧品組成物
EP3689324A1 (de) Neue kühlstoffe und zubereitungen, die diese enthalten
EP3231294A1 (de) Zusammensetzung und herstellung von spinatextrakt mit beta-ecdyson

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280078213.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12806419

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012806419

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14651490

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015546865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE