[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2014064605A2 - Thermostat - Google Patents

Thermostat Download PDF

Info

Publication number
WO2014064605A2
WO2014064605A2 PCT/IB2013/059530 IB2013059530W WO2014064605A2 WO 2014064605 A2 WO2014064605 A2 WO 2014064605A2 IB 2013059530 W IB2013059530 W IB 2013059530W WO 2014064605 A2 WO2014064605 A2 WO 2014064605A2
Authority
WO
WIPO (PCT)
Prior art keywords
valve
thermostat
gas
chamber
main opening
Prior art date
Application number
PCT/IB2013/059530
Other languages
French (fr)
Other versions
WO2014064605A3 (en
Inventor
Davide BESATI
Massimo DUGNANI
Luca Pedretti
Mauro TAPPA
Giuseppe Valzi
Original Assignee
Controlling Saving Energy Italia S.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Controlling Saving Energy Italia S.R.L. filed Critical Controlling Saving Energy Italia S.R.L.
Priority to MX2015005164A priority Critical patent/MX2015005164A/en
Priority to US14/435,169 priority patent/US9581336B2/en
Priority to KR1020157011641A priority patent/KR20150074019A/en
Priority to BR112015009098A priority patent/BR112015009098A2/en
Priority to RU2015115612A priority patent/RU2015115612A/en
Priority to EP13821953.0A priority patent/EP2912377B1/en
Priority to SI201330678A priority patent/SI2912377T1/en
Priority to ES13821953.0T priority patent/ES2628106T3/en
Priority to CN201380058929.3A priority patent/CN105102892B/en
Publication of WO2014064605A2 publication Critical patent/WO2014064605A2/en
Publication of WO2014064605A3 publication Critical patent/WO2014064605A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/12Arrangement or mounting of control or safety devices
    • F24C3/126Arrangement or mounting of control or safety devices on ranges
    • F24C3/128Arrangement or mounting of control or safety devices on ranges in baking ovens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/007Regulating fuel supply using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/027Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using mechanical means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/02Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2900/00Special features of, or arrangements for fuel supplies
    • F23K2900/05002Valves for gaseous fuel supply lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/24Valve details

Definitions

  • the present invention generally relates to the field of gas cooking appliances and in particular to a thermostat for gas cooking appliances.
  • Thermostats are used to maintain a desired temperature in closed compartments such as the compartment of an oven inside which a gas-fueled burner provides the thermal energy needed for cooking. Maintenance of a desired temperature is possible thanks to the use of a thermostatic bulb fitted into the heated compartment, which allows retroactive adjustment of the gas flow supplied to the burner through an expandable member operatively connected to a valve arranged within a body of the thermostat.
  • thermostats In the body of thermostats known in the art there is generally formed a plurality of conduits that define a first circuit for supplying gas to a nozzle generating a pilot flame and a second circuit for supplying gas to a burner.
  • the first circuit is characterized by a predefined minimum gas flow, generally controlled by a needle valve and an adjuster screw, while the second circuit is characterized by a variable gas flow controlled by a valve which is retroactively driven by the thermostatic bulb.
  • the desired temperature is set with the aid of a graduated scale by way of a rotatable knob, which acts on a stop member defining a maximum opening position for the valve.
  • An expandable member of the thermostatic bulb is arranged between the valve and the stop member connected to the knob.
  • the expandable member of the bulb In an operating condition of the system wherein the temperature inside the compartment increases, the expandable member of the bulb is expanded and acts on the valve by reducing the flow rate of gas supplied to the burner; on the contrary, when the temperature inside the compartment decreases, the expandable member is contracted and acts on the valve by increasing the flow rate of gas supplied to the burner. It is thus possible to achieve an operating condition of the system wherein the temperature in the heated compartment varies within a predetermined tolerance interval.
  • Thermostats are also known wherein a gas flow is fed directly and solely to the burner, thus eliminating the gas circuit supplying the pilot flame.
  • a single chamber supplied by an inlet conduit and arranged in fluid communication with an outlet conduit both through a main opening and a secondary conduit is formed in the thermostat body, the main opening and the secondary conduit being respectively designed for a maximum and a minimum flow rate of gas.
  • a valve for adjusting the rate of the gas flow is arranged, whose position in the chamber is controlled by the expandable member of a thermostatic bulb of the thermostat and causes gas to flow through the main opening or the secondary conduit toward the outlet conduit.
  • a thermostat of this type is e.g. disclosed in the patent application MI2012A001633, in the applicant's name.
  • the thermostat comprises a body inside which an inlet and an outlet conduits are formed, which are respectively intended to receive a flow of gas from a supply source and to supply the gas flow to a burner, as well as a chamber having a substantially cylindrical shape arranged in fluid communication with the inlet conduit.
  • the chamber is also arranged in fluid communication with the outlet conduit directly, through a main opening formed at one end thereof, as well as through a secondary conduit formed in the body of the thermostat, which reaches the outlet conduit bypassing the main opening.
  • the main opening and the secondary conduit are respectively sized for a maximum and a minimum flow rate of gas.
  • the thermostat further comprises a valve for adjusting the gas flow rate, the valve being arranged inside the chamber.
  • the valve is movable coaxially to the chamber between a first position wherein the main opening is completely clear, thus allowing passage of a flow of gas towards the outlet conduit, and a second position wherein the main opening is completely closed by the valve and the gas flow reaches the outlet conduit through the secondary conduit only.
  • the valve has a substantially cylindrical shape and comprises a pair of flanges formed at its free ends; a first flange faces the main opening of the chamber and has a diameter suitable to close it in the second position, while a second flange closes the chamber at the opposite end and is provided with a circumferential groove wherein a sealing member of the valve may be fitted in order to prevent gas leakages from the chamber.
  • the valve is urged in the first position by a spring fitted in the chamber at the main opening.
  • the position of the valve is controlled by an expandable member of a thermostatic bulb.
  • the thermostat operates at a minimum flow rate with the main opening substantially closed by the valve.
  • thermostat wherein the position of the valve is controlled by the expandable member of a thermostatic valve is disclosed in the French patent publication FR 2366616 Al .
  • a problem of this type of thermostats is that operation failures and even damages may occur at temperatures that are beyond the normal operating temperature.
  • possible dilations of the expandable member due to temperature increases that cannot be foreseen may result in permanent deformations of the expandable member or even cause its break, which would lead to leakages of the fluid contained therein and to damages of the parts of the thermostat dose to the expandable member.
  • a similar technical problem may occur when switching the burner off.
  • the valve substantially closes the main opening, it is necessary to rotate the driving knob of the thermostat in order to bring it in the off position, thus determining an axial compression of the components that are arranged in series below it, among which the expandable member of the thermostatic bulb contacting the valve.
  • An idea of solution underlying the present invention is to make a thermostat that is structurally similar to the thermostat disclosed in the patent application MI2012A001633 in the applicant's name, and wherein the valve arranged in the chamber formed in the body of the thermostat is axially deformable beyond a predefined load threshold.
  • the load threshold is calculated with reference to the spring urging the valve in the first opening position, and is higher than the maximum reaction force said spring may provide when the valve is in the second, closing position, thus allowing to compensate for dilations of the expandable member beyond the dilation determined by the maximum temperature the thermostatic bulb can withstand.
  • This configuration also allows the valve to absorb axial forces consequent to the rotation of the thermostat knob when switching off the burner driven by the thermostat, thus minimizing the risk that such forces damage the expandable member of the thermostatic bulb.
  • valves that are axially deformable are already known in the field, e.g. from the German patent publication DE 102006032020 Al .
  • the axially deformable valve described in this document is not driven by a thermostatic bulb, but through a cam formed on a toothed wheel, and serves as a switch allowing opening and closing of a gas conduit.
  • the stroke of a valve stem is greater than the distance between is closing edge and the aperture through which gas may flow, so that the axial deformability of the valve is used to ensure complete closure of the gas conduit.
  • a further example of a thermostat provided with an axially deformable valve is described in the French patent publication FR 2875573 Al .
  • the axially deformable valve does not contact the expandable member of a thermostatic bulb, but a linear actuator and an electromagnet driving the linear actuator that control the position of the valve.
  • the axial deformability of the valve serves to ensure compensation of the plays between the magnetic cores allowing its axial movements.
  • the invention does not lie in the choice of an axially deformable valve for adjusting a gas flow, but in the combination between an axially deformable valve and the expandable member of a thermostatic bulb in order to provide a thermostat with a mechanical safety device suitable to preserve the expandable member of the thermostatic bulb when subject to loads that are higher than the loads characterizing the normal operating condition of the thermostat.
  • the axial deformability of the valve is preferably obtained by forming an axial cavity in its body and fitting therein an axially movable member urged away therefrom by a spring or equivalent elastic means.
  • the elastic means are sized so as to intervene beyond a predefined load threshold, corresponding to the maximum force the spring urging the valve in the first opening position may exert.
  • This configuration allows to implement the invention in a very simple and cheap way by starting from a one-piece valve already employed in the same type of thermostat.
  • Figure 1 is a perspective view showing a thermostat according to the invention
  • - Figure 2 is a longitudinal sectional view taken along line II-II of Figure 1, which schematically shows the thermostat in an operating condition wherein no gas flow is allowed;
  • Figure 2a shows a detail of Figure 2
  • Figure 3 is a longitudinal sectional view similar to that of Figure 2, which schematically shows the thermostat in a normal operating condition;
  • FIGS 3a and 3b show details of Figure 3
  • Figure 4 is a longitudinal sectional view similar to those of Figures 2 and 3, which schematically shows the thermostat in an operation condition at a minimum flow of gas;
  • Figure 5 is a longitudinal sectional view similar to those of Figures 2, 3 and 4, which schematically shows operation of the deformable valve
  • Figure 5a shows a detail of figure 5.
  • the thermostat 10 comprises a body 20 inside which a plurality of conduits suitable to supply a gas flow to a burner (not shown) from an inlet opening 21 to an outlet opening 22 are formed.
  • the inlet opening is intended to be connected to a gas supply, while the outlet opening is intended to be connected to the burner through suitable conduits.
  • the thermostat 10 also comprises a bell-shaped cover 30 fixed to the body 20, for example by way of screws, which rotatably supports a coupling member 40 configured to allow mounting of a knob (not shown) for ignition of the burner and temperature adjustment.
  • the thermostat 10 further comprises a thermostatic bulb 50 equipped with a probe 51 meant to be inserted in a compartment to be heated, e.g. the compartment of an oven.
  • the thermostatic bulb 50 also comprises in known manner an expandable member 53 (shown in Figures 2 to 5 and in their respective details 2a to 5a), which is connected to the conduit 52 at the end thereof opposite to the end at which the probe 51 is fixed.
  • the expandable member is housed within the bell-shaped cover 30.
  • the expandable member 53 is preferably of a membrane type, whose flat shape allows to limit the overall dimensions of the thermostat 10.
  • the expandable member 53 of the thermostatic bulb is operably connected to a valve of the thermostat 10, which allows to adjust of the gas flow within its body 20.
  • the thermostat 10 further comprises a thermoelectric safety device 60 suitable to block the gas flow through the body 20 when voluntarily switching the burner off or when the burner flame is accidentally extinguished.
  • an inlet conduit 23 and an outlet conduit 24 are formed in the body 20 of the thermostat 10 and respectively adapted to receive a gas flow from a supply source (not shown) and to supply the gas flow to a burner (not shown).
  • the thermoelectric safety device 60 is operatively connected to the inlet conduit 23 and crosses it at an elbow portion 230 thereof, which is formed in a shoulder 231 adapted to receive in abutment a closure member operatively connected to the thermoelectric safety device 60.
  • a chamber 25 having a substantially cylindrical shape is formed inside the body
  • the chamber 25 is also arranged in fluid communication with the outlet conduit 24 through a main opening 70, as well as through a secondary conduit 71 formed in body 20 of the thermostat, which reaches the outlet conduit 24 bypassing the main opening 70.
  • the main opening 70 and the secondary conduit 71 are respectively sized for a maximum and a minimum flow rate of gas.
  • a valve 80 for the regulation of the flow rate of the gas flow is arranged inside the chamber 25.
  • the valve 80 is movable coaxially to the chamber 25 from a first, maximum opening position, wherein the main opening 70 is completely clear allowing passage of a gas flow to the outlet conduit 24, to a second, closing position wherein the main opening 70 is completely closed by the valve and the gas flow reaches the outlet conduit 24 through the secondary conduit 71.
  • the movement of the valve 80 between the first and the second positions thus determines the flow rate of the gas supplied to the burner, which ranges from a maximum to a minimum flow rate, thus allowing to achieve a range of temperatures within the compartment to be heated.
  • an axis of the chamber 25 is oriented in a first direction A of the body 20 of the thermostat 10 and the inlet conduit 23 is connected to the chamber 25 through an opening formed in its peripheral wall.
  • the main opening 70 is formed at one end of the chamber 25 in the first direction A so as to allow fluid communication with the outlet conduit 24 in the same direction A. Hence, the chamber 25, the main opening 70 and the outlet conduit 24 are arranged in series.
  • the secondary conduit 71 is instead connected to the chamber 25 through an opening formed in its peripheral wall and has a U-shape whose straight branches extend parallel to one another transversely to the chamber 25 in a second direction B of the body 20 the thermostat 10 perpendicular to the first direction A, and are connected together by an elbow portion extending in the first direction A.
  • the secondary conduit 71 so configured connects the chamber 25 with the outlet conduit 24 downstream of the main opening 70 with respect to the direction of the gas flow through the body 20 of the thermostat 10. This configuration allows to supply gas to the burner at a minimum flow rate when the valve 80 is in the closing position.
  • the valve 80 has a substantially cylindrical shape and comprises a pair of flanges 81 , 82 formed at its ends.
  • a first flange 81 faces the main opening 70 of the chamber 25 which communicates with the outlet conduit 24 and has a diameter suitable to close it in the closing position of the valve 80, while a second flange 82 closes the chamber 25 at the opposite end and to this aim it is provided with a circumferential groove wherein a sealing element 83 of the valve 80 suitable to prevent gas leakages may be fitted.
  • the diameter of the portion of the valve 80 comprised between the two flanges 81, 82 is smaller than the diameter of the chamber 25 and defines a volume therewith having a substantially toroid shape suitable to allow passage of the gas supplied from the inlet conduit 23.
  • a flat lid 26 partially closing the chamber 25 is fixed to the body 20 of the thermostat 10.
  • the flat lid 26 restricts the movement of the valve 80 coaxially to the chamber 25 and therefore determines the maximum opening position.
  • the valve 80 comprises a drive portion 84 formed on the flange 82 which closes the chamber 25 at the end opposite to the end at which the main opening 70 is formed.
  • the valve 80 is urged by a helical spring (not shown) away from the main opening 70 in the first direction A, hence towards the first, opening position, and the drive portion 84 protrudes from the body 20 through a circular opening formed in the lid 26 thus pressing against the expandable member 53 of the thermostatic bulb 50.
  • this configuration allows to control the normal operation of the thermostat.
  • FIG. 2 shows a non-operating condition of the thermostat 10, wherein the thermoelectric device 60 is in a blocking condition that prevents a flow of gas from entering the chamber 25.
  • FIG 3 instead shows an operating condition of the thermostat, wherein the valve 80 is spaced from the opening 70 and arranged in the maximum opening position.
  • the gas supplied from the inlet pipe 23 fills the chamber 25 and flows into the outlet conduit 24 through the main opening 70 passing around the flange 81.
  • the minimum flow rate of gas in the secondary conduit 71 can advantageously be adjusted by means of a valve, for example a needle valve controlled by way of an adjuster screw.
  • a needle valve 90 is shown fitted in a partially threaded hole formed in the body 20 of the thermostat in the first direction A; the needle valve is provided with a suitable sealing element, such as an O-ring.
  • the needle valve 90 crosses the secondary conduit 71 at its elbow portion, which to this aim has a frustum -conical shape adapted to receive in abutment a corresponding frustum-conical end portion 91 of the needle valve 90. This configuration is advantageous, because it provides more room for housing the needle valve 90.
  • the needle valve 90 of the thermostat 10 also comprises an axial hole 92 formed at its frustum-conical end portion 91 and a plurality of radial holes 93, e.g. four holes, formed in the cylindrical portion immediately adjacent the frustum-conical end portion 91 and arranged in fluid communication with the axial hole 92, thus allowing fluid communication through the secondary conduit 71 also when the frustum-conical portion 91 of the needle valve 90 abuts the frustum- shaped elbow portion.
  • this configuration always ensures passage of a gas flow through the secondary conduit 71, and then operation at a minimum flow rate of a burner connected to the thermostat 10 according to the invention.
  • a user sets a desired temperature with the aid of a graduated scale by acting on a knob (not shown) connected to the rotatable coupling member 40.
  • the rotation direction of the rotatable coupling member 40 is schematically shown in Figures 2 to 4 by an arrow R.
  • the rotatable coupling member 40 acts on the valve 80 through the expandable member 53 of the thermostatic bulb 50 and when it is rotated by a user in order to set a desired operating temperature it defines a maximum opening position for the valve 80.
  • the expandable member 53 of the thermostatic bulb 50 is expanded thus pressing against the drive portion 84 of the valve 80. Consequently the valve 80 is moved towards the main opening 70 of the chamber 25 thus reducing the flow rate of the gas supplied to the burner and lowering the temperature.
  • the expandable member 53 of the thermostatic bulb 50 is contracted thus allowing a higher opening of the valve 80, which is urged in the opening position by a spring, thus increasing the flow rate of the gas supplied to the burner and consequently raising the temperature.
  • the expandable member 53 of the thermostatic bulb 50 is contracted thus allowing a higher opening of the valve 80, which is urged in the opening position by a spring, thus increasing the flow rate of the gas supplied to the burner and consequently raising the temperature.
  • the valve 80 is axially deformable beyond a predefined load threshold.
  • the load threshold is calculated with respect to the helical spring urging the valve in the first, opening position and is higher than the maximum reaction force that this spring can exert when the valve is in the second, closing position, i.e. in an operating condition characterized by a minimum flow rate as shown in figures 4 and 4a, thus allowing to compensate for dilations of the expandable member 53 of the thermostatic bulb 50, as well as to absorb axial forces exerted upon rotation of the knob of the thermostat 10 when switching off the burner driven by the thermostat.
  • the axial deformability of the valve 80 is obtained by forming an axial cavity 85 in its body and fitting therein a member 86 axially movable relative to the valve 80.
  • the movable member 86 is urged by elastic means away from the valve.
  • the elastic means consist of a helical spring 87, but it is clear that elastic members made of rubber and other polymeric materials may also be used, as well as elastic membranes and other equivalent means.
  • the elastic means are dimensioned so as to be deformed only beyond a predefined load threshold, corresponding to the maximum force the helical spring urging the valve 80 in the first, opening position may exert.
  • a predefined load threshold corresponding to the maximum force the helical spring urging the valve 80 in the first, opening position may exert.
  • Figures 5 and 5a show operation of the valve 80 when the axial loads applied thereon exceed the predefined load threshold.
  • these figures show a condition wherein the expandable member 53 of the thermostatic bulb 50 is dilated when the thermostat 10 operates with a minimum flow rate of gas.
  • the helical spring 87 yields and is axially deformed causing the movable member 86 to move within the cavity 85 toward the valve 80.
  • thermoelectric safety device 60 As explained above, the thermostat 10 is also provided with a thermoelectric safety device 60.
  • This device comprises in known manner an electromagnet 61 controlled by a thermocouple (not shown).
  • the electromagnet 61 is provided with a plate member 62 movable from an unlocking position to a blocking position respectively to open or close the inlet conduit 23 of the gas.
  • the movable plate member 62 is urged by a spring (not shown) away from the electromagnet 61.
  • thermocouple When the thermocouple is heated by the flames of the burner, due to the well-known Seebeck effect the electromagnet 61 is electrically supplied and generates a force on the plate member 62 opposing the force of the spring biasing it, thus causing opening of the inlet conduit 23 of the gas, that enters the chamber through the inlet opening 21 formed in the body 20 of the thermostat 10.
  • the electromagnet 61 When the thermocouple cools down due to intentional or accidental switch off of the burner flames, the electromagnet 61 is no longer electrically supplied and releases the plate member 62 which closes the inlet conduit 23 of the gas urged by the spring biasing it.
  • thermoelectric safety device in order to ignite a burner connected to a thermostat provided with a thermoelectric safety device, it is necessary to manually unlock the thermoelectric safety device by typically pressing the knob to the body of the thermostat and maintaining this position until the thermocouple supplies electromagnet with a current sufficient to keep the inlet conduit of the gas open.
  • a drive rod is typically inserted in a hole formed in the body of the thermostat and arranged below the knob. The drive rod extends from the knob to the plate member of the electromagnet of the safety device, thus allowing unlocking of the latter by pressing on the knob.
  • the drive rod is urged towards the knob typically by an helical spring.
  • thermoelectric safety device 60 acts on the plate 62 of the electromagnet 61 through a thrust member 1 10 telescopically inserted therein and urged away therefrom by a spring (not shown).
  • the thrust member 1 10 is arranged in the inlet conduit 23 at the shoulder 231 formed in the elbow 230 and contacts the movable plate member 62 of the electromagnet 61.
  • the thrust member 110 includes a flange 1 1 1 provided with a gasket 1 12 dimensioned so as to seal the inlet conduit 23 by pressing against the shoulder 231 when the electromagnet 61 is not powered by the thermocouple.
  • the drive rod 100 is driven by the rotatable coupling member 40 of the knob and is urged towards it by a spring 101 arranged between the flat lid 26 of the body 20 of the thermostat 10 and a retaining ring 102 axially restrained to the drive rod 100 in correspondence with a circumferential groove formed therein.
  • the rotatable coupling member 40 comprises a cam profile 41 formed on the surface facing the drive rod 100 and configured so as to engage the latter only beyond a certain rotation angle of the knob fixed to the rotatable coupling member 40 in the direction indicated by the arrow R, thus making the thermostat 10 inherently reliable also in case of accidental rotation of the knob.
  • the cam profile 41 is for example configured to act on the drive rod 100 beyond a rotation angle corresponding to 52°.
  • the deformable structure of the valve 80 might be obtained by dividing the valve in two portions telescopically movable relative to each other between which elastic members are arranged.
  • the valve 80 might comprise a portion made of an elastically deformable material, such as e.g. rubber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

The invention relates to a thermostat (10) for cooking appliances powered by gas, said thermostat (10) comprising a body (20) within which there are formed an inlet conduit (23) and an outlet conduit (24), suitable to receive a gas flow from a supply source and to supply such a gas flow to a gas burner, respectively, as well as a chamber (25) with a substantially cylindrical shape arranged in fluid communication with said inlet conduit (23). The chamber (25) is also arranged in fluid communication with said outlet conduit (24) either directly, through a main opening (70) formed at one end thereof, or indirectly, through a secondary conduit (71) that is formed in the body (20) of the thermostat (10) and reaches the outlet conduit (24) bypassing said main opening (70), said main opening and secondary conduit (70, 71) being respectively dimensioned for a maximum and a minimum flow rate of gas. The thermostat (10) further comprises a valve (80) for adjusting the gas flow rate, the valve being coaxially fitted in the chamber (25). The position of the valve (80) is controlled by an expandable member (53) of a thermostatic bulb (50) of the thermostat (10) and the valve is axially deformable beyond a predefined load threshold. Thanks to this configuration, the valve allows to compensate for dilations of the expandable member (53) under a normal operation condition, as well as to absorb axial forces exerted by the thermostat (10) knob when it is rotated in order to switch off a burner driven by the thermostat, thus minimizing the risk that these forces damage even irreparably the expandable member (53) of the thermostatic bulb (50).

Description

THERMOSTAT
The present invention generally relates to the field of gas cooking appliances and in particular to a thermostat for gas cooking appliances.
Thermostats are used to maintain a desired temperature in closed compartments such as the compartment of an oven inside which a gas-fueled burner provides the thermal energy needed for cooking. Maintenance of a desired temperature is possible thanks to the use of a thermostatic bulb fitted into the heated compartment, which allows retroactive adjustment of the gas flow supplied to the burner through an expandable member operatively connected to a valve arranged within a body of the thermostat.
In the body of thermostats known in the art there is generally formed a plurality of conduits that define a first circuit for supplying gas to a nozzle generating a pilot flame and a second circuit for supplying gas to a burner. The first circuit is characterized by a predefined minimum gas flow, generally controlled by a needle valve and an adjuster screw, while the second circuit is characterized by a variable gas flow controlled by a valve which is retroactively driven by the thermostatic bulb.
When only the pilot flame is lit, the gas flows exclusively in the first circuit and the valve of the second circuit is completely closed. In a normal operation condition of the thermostat instead gas flows through both the first and the second circuits.
The desired temperature is set with the aid of a graduated scale by way of a rotatable knob, which acts on a stop member defining a maximum opening position for the valve. An expandable member of the thermostatic bulb is arranged between the valve and the stop member connected to the knob. In an operating condition of the system wherein the temperature inside the compartment increases, the expandable member of the bulb is expanded and acts on the valve by reducing the flow rate of gas supplied to the burner; on the contrary, when the temperature inside the compartment decreases, the expandable member is contracted and acts on the valve by increasing the flow rate of gas supplied to the burner. It is thus possible to achieve an operating condition of the system wherein the temperature in the heated compartment varies within a predetermined tolerance interval. Thermostats are also known wherein a gas flow is fed directly and solely to the burner, thus eliminating the gas circuit supplying the pilot flame. To this aim, a single chamber supplied by an inlet conduit and arranged in fluid communication with an outlet conduit both through a main opening and a secondary conduit is formed in the thermostat body, the main opening and the secondary conduit being respectively designed for a maximum and a minimum flow rate of gas. Inside the chamber a valve for adjusting the rate of the gas flow is arranged, whose position in the chamber is controlled by the expandable member of a thermostatic bulb of the thermostat and causes gas to flow through the main opening or the secondary conduit toward the outlet conduit.
A thermostat of this type is e.g. disclosed in the patent application MI2012A001633, in the applicant's name. The thermostat comprises a body inside which an inlet and an outlet conduits are formed, which are respectively intended to receive a flow of gas from a supply source and to supply the gas flow to a burner, as well as a chamber having a substantially cylindrical shape arranged in fluid communication with the inlet conduit. The chamber is also arranged in fluid communication with the outlet conduit directly, through a main opening formed at one end thereof, as well as through a secondary conduit formed in the body of the thermostat, which reaches the outlet conduit bypassing the main opening. The main opening and the secondary conduit are respectively sized for a maximum and a minimum flow rate of gas.
The thermostat further comprises a valve for adjusting the gas flow rate, the valve being arranged inside the chamber. The valve is movable coaxially to the chamber between a first position wherein the main opening is completely clear, thus allowing passage of a flow of gas towards the outlet conduit, and a second position wherein the main opening is completely closed by the valve and the gas flow reaches the outlet conduit through the secondary conduit only. The valve has a substantially cylindrical shape and comprises a pair of flanges formed at its free ends; a first flange faces the main opening of the chamber and has a diameter suitable to close it in the second position, while a second flange closes the chamber at the opposite end and is provided with a circumferential groove wherein a sealing member of the valve may be fitted in order to prevent gas leakages from the chamber. The valve is urged in the first position by a spring fitted in the chamber at the main opening.
In a normal operating condition, the position of the valve is controlled by an expandable member of a thermostatic bulb. In this condition the thermostat operates at a minimum flow rate with the main opening substantially closed by the valve.
Another example of a thermostat wherein the position of the valve is controlled by the expandable member of a thermostatic valve is disclosed in the French patent publication FR 2366616 Al .
A problem of this type of thermostats is that operation failures and even damages may occur at temperatures that are beyond the normal operating temperature. In fact, when the valve contacts the main opening for the gas flow, possible dilations of the expandable member due to temperature increases that cannot be foreseen may result in permanent deformations of the expandable member or even cause its break, which would lead to leakages of the fluid contained therein and to damages of the parts of the thermostat dose to the expandable member.
A similar technical problem may occur when switching the burner off. In this case, starting from a normal operating condition wherein the valve substantially closes the main opening, it is necessary to rotate the driving knob of the thermostat in order to bring it in the off position, thus determining an axial compression of the components that are arranged in series below it, among which the expandable member of the thermostatic bulb contacting the valve.
It is therefore an object of the present invention to provide a thermostat allowing to overcome these drawbacks. Said object is achieved with a thermostat whose main features are specified in the first claim, while other features are specified in the remaining claims.
An idea of solution underlying the present invention is to make a thermostat that is structurally similar to the thermostat disclosed in the patent application MI2012A001633 in the applicant's name, and wherein the valve arranged in the chamber formed in the body of the thermostat is axially deformable beyond a predefined load threshold. The load threshold is calculated with reference to the spring urging the valve in the first opening position, and is higher than the maximum reaction force said spring may provide when the valve is in the second, closing position, thus allowing to compensate for dilations of the expandable member beyond the dilation determined by the maximum temperature the thermostatic bulb can withstand. This configuration also allows the valve to absorb axial forces consequent to the rotation of the thermostat knob when switching off the burner driven by the thermostat, thus minimizing the risk that such forces damage the expandable member of the thermostatic bulb.
Thermostats provided with valves that are axially deformable are already known in the field, e.g. from the German patent publication DE 102006032020 Al . However, the axially deformable valve described in this document is not driven by a thermostatic bulb, but through a cam formed on a toothed wheel, and serves as a switch allowing opening and closing of a gas conduit. The stroke of a valve stem is greater than the distance between is closing edge and the aperture through which gas may flow, so that the axial deformability of the valve is used to ensure complete closure of the gas conduit. This solves a technical problem that is completely different from the technical problem of the invention and unrelated thereto.
A further example of a thermostat provided with an axially deformable valve is described in the French patent publication FR 2875573 Al . Also in this case the axially deformable valve does not contact the expandable member of a thermostatic bulb, but a linear actuator and an electromagnet driving the linear actuator that control the position of the valve. The axial deformability of the valve serves to ensure compensation of the plays between the magnetic cores allowing its axial movements.
In other words, the invention does not lie in the choice of an axially deformable valve for adjusting a gas flow, but in the combination between an axially deformable valve and the expandable member of a thermostatic bulb in order to provide a thermostat with a mechanical safety device suitable to preserve the expandable member of the thermostatic bulb when subject to loads that are higher than the loads characterizing the normal operating condition of the thermostat.
The axial deformability of the valve is preferably obtained by forming an axial cavity in its body and fitting therein an axially movable member urged away therefrom by a spring or equivalent elastic means. The elastic means are sized so as to intervene beyond a predefined load threshold, corresponding to the maximum force the spring urging the valve in the first opening position may exert. Hence, under normal operating conditions the valve behaves like a rigid body, whereas when the predefined load threshold is exceeded, the valve is axially deformed thus allowing to absorb dilations of the expandable member beyond those characterizing the normal operation of the thermostat and/or the axial forces exerted when switching off the burner.
This configuration allows to implement the invention in a very simple and cheap way by starting from a one-piece valve already employed in the same type of thermostat.
Further advantages and features of the thermostat according to the present invention will become clear to those skilled in the art from the following detailed and non-limiting description of an embodiment thereof with reference to the attached drawings in which:
Figure 1 is a perspective view showing a thermostat according to the invention; - Figure 2 is a longitudinal sectional view taken along line II-II of Figure 1, which schematically shows the thermostat in an operating condition wherein no gas flow is allowed;
Figure 2a shows a detail of Figure 2;
Figure 3 is a longitudinal sectional view similar to that of Figure 2, which schematically shows the thermostat in a normal operating condition;
Figures 3a and 3b show details of Figure 3;
Figure 4 is a longitudinal sectional view similar to those of Figures 2 and 3, which schematically shows the thermostat in an operation condition at a minimum flow of gas;
- Figure 4a shows a detail of Figure 4;
Figure 5 is a longitudinal sectional view similar to those of Figures 2, 3 and 4, which schematically shows operation of the deformable valve; and
Figure 5a shows a detail of figure 5.
Referring to Figure 1, the thermostat 10 according to the invention comprises a body 20 inside which a plurality of conduits suitable to supply a gas flow to a burner (not shown) from an inlet opening 21 to an outlet opening 22 are formed. The inlet opening is intended to be connected to a gas supply, while the outlet opening is intended to be connected to the burner through suitable conduits.
The thermostat 10 also comprises a bell-shaped cover 30 fixed to the body 20, for example by way of screws, which rotatably supports a coupling member 40 configured to allow mounting of a knob (not shown) for ignition of the burner and temperature adjustment.
The thermostat 10 further comprises a thermostatic bulb 50 equipped with a probe 51 meant to be inserted in a compartment to be heated, e.g. the compartment of an oven. A conduit 52 filled with a thermally expandable fluid medium, e.g. a diathermic oil, is connected to the probe 51 of the thermostatic bulb 50. The thermostatic bulb 50 also comprises in known manner an expandable member 53 (shown in Figures 2 to 5 and in their respective details 2a to 5a), which is connected to the conduit 52 at the end thereof opposite to the end at which the probe 51 is fixed. The expandable member is housed within the bell-shaped cover 30. The expandable member 53 is preferably of a membrane type, whose flat shape allows to limit the overall dimensions of the thermostat 10.
As it will be described in detail below with reference to Figures 2 to 5, the expandable member 53 of the thermostatic bulb is operably connected to a valve of the thermostat 10, which allows to adjust of the gas flow within its body 20.
The thermostat 10 further comprises a thermoelectric safety device 60 suitable to block the gas flow through the body 20 when voluntarily switching the burner off or when the burner flame is accidentally extinguished.
Now referring to Figures 2 to 5, an inlet conduit 23 and an outlet conduit 24 are formed in the body 20 of the thermostat 10 and respectively adapted to receive a gas flow from a supply source (not shown) and to supply the gas flow to a burner (not shown). The thermoelectric safety device 60 is operatively connected to the inlet conduit 23 and crosses it at an elbow portion 230 thereof, which is formed in a shoulder 231 adapted to receive in abutment a closure member operatively connected to the thermoelectric safety device 60.
A chamber 25 having a substantially cylindrical shape is formed inside the body
20 of the thermostat 10 and arranged in fluid communication with the inlet conduit 23. The chamber 25 is also arranged in fluid communication with the outlet conduit 24 through a main opening 70, as well as through a secondary conduit 71 formed in body 20 of the thermostat, which reaches the outlet conduit 24 bypassing the main opening 70.
The main opening 70 and the secondary conduit 71 are respectively sized for a maximum and a minimum flow rate of gas.
A valve 80 for the regulation of the flow rate of the gas flow is arranged inside the chamber 25. The valve 80 is movable coaxially to the chamber 25 from a first, maximum opening position, wherein the main opening 70 is completely clear allowing passage of a gas flow to the outlet conduit 24, to a second, closing position wherein the main opening 70 is completely closed by the valve and the gas flow reaches the outlet conduit 24 through the secondary conduit 71. The movement of the valve 80 between the first and the second positions thus determines the flow rate of the gas supplied to the burner, which ranges from a maximum to a minimum flow rate, thus allowing to achieve a range of temperatures within the compartment to be heated.
In the illustrated embodiment, an axis of the chamber 25 is oriented in a first direction A of the body 20 of the thermostat 10 and the inlet conduit 23 is connected to the chamber 25 through an opening formed in its peripheral wall.
The main opening 70 is formed at one end of the chamber 25 in the first direction A so as to allow fluid communication with the outlet conduit 24 in the same direction A. Hence, the chamber 25, the main opening 70 and the outlet conduit 24 are arranged in series.
The secondary conduit 71 is instead connected to the chamber 25 through an opening formed in its peripheral wall and has a U-shape whose straight branches extend parallel to one another transversely to the chamber 25 in a second direction B of the body 20 the thermostat 10 perpendicular to the first direction A, and are connected together by an elbow portion extending in the first direction A.
The secondary conduit 71 so configured connects the chamber 25 with the outlet conduit 24 downstream of the main opening 70 with respect to the direction of the gas flow through the body 20 of the thermostat 10. This configuration allows to supply gas to the burner at a minimum flow rate when the valve 80 is in the closing position. The valve 80 has a substantially cylindrical shape and comprises a pair of flanges 81 , 82 formed at its ends. In the illustrated embodiment, a first flange 81 faces the main opening 70 of the chamber 25 which communicates with the outlet conduit 24 and has a diameter suitable to close it in the closing position of the valve 80, while a second flange 82 closes the chamber 25 at the opposite end and to this aim it is provided with a circumferential groove wherein a sealing element 83 of the valve 80 suitable to prevent gas leakages may be fitted.
The diameter of the portion of the valve 80 comprised between the two flanges 81, 82 is smaller than the diameter of the chamber 25 and defines a volume therewith having a substantially toroid shape suitable to allow passage of the gas supplied from the inlet conduit 23.
At the end of the chamber 25 opposite to the end at which the main opening 70 is formed, a flat lid 26 partially closing the chamber 25 is fixed to the body 20 of the thermostat 10. The flat lid 26 restricts the movement of the valve 80 coaxially to the chamber 25 and therefore determines the maximum opening position.
The valve 80 comprises a drive portion 84 formed on the flange 82 which closes the chamber 25 at the end opposite to the end at which the main opening 70 is formed. In an assembled configuration of the thermostat 10, the valve 80 is urged by a helical spring (not shown) away from the main opening 70 in the first direction A, hence towards the first, opening position, and the drive portion 84 protrudes from the body 20 through a circular opening formed in the lid 26 thus pressing against the expandable member 53 of the thermostatic bulb 50. As it will be better described below, this configuration allows to control the normal operation of the thermostat.
In Figures 2 to 5, the gas flow through the body 20 of the thermostat 10 is schematically shown by way of a plurality of arrows.
Figure 2 shows a non-operating condition of the thermostat 10, wherein the thermoelectric device 60 is in a blocking condition that prevents a flow of gas from entering the chamber 25.
Figure 3 instead shows an operating condition of the thermostat, wherein the valve 80 is spaced from the opening 70 and arranged in the maximum opening position. In this operating condition the gas supplied from the inlet pipe 23 fills the chamber 25 and flows into the outlet conduit 24 through the main opening 70 passing around the flange 81.
In positions of the valve 80 comprised between the maximum opening position and the closing position, the gas flow rate through the main opening 70 is progressively reduced and in the closing position the gas that fills the chamber 25 flows at a minimum flow rate solely through the secondary conduit 71. This operating condition at a minimum flow rate is shown in Figure 4.
The minimum flow rate of gas in the secondary conduit 71 can advantageously be adjusted by means of a valve, for example a needle valve controlled by way of an adjuster screw.
In the illustrated embodiment a needle valve 90 is shown fitted in a partially threaded hole formed in the body 20 of the thermostat in the first direction A; the needle valve is provided with a suitable sealing element, such as an O-ring.
The needle valve 90 crosses the secondary conduit 71 at its elbow portion, which to this aim has a frustum -conical shape adapted to receive in abutment a corresponding frustum-conical end portion 91 of the needle valve 90. This configuration is advantageous, because it provides more room for housing the needle valve 90.
The needle valve 90 of the thermostat 10 according to the invention also comprises an axial hole 92 formed at its frustum-conical end portion 91 and a plurality of radial holes 93, e.g. four holes, formed in the cylindrical portion immediately adjacent the frustum-conical end portion 91 and arranged in fluid communication with the axial hole 92, thus allowing fluid communication through the secondary conduit 71 also when the frustum-conical portion 91 of the needle valve 90 abuts the frustum- shaped elbow portion. Hence, this configuration always ensures passage of a gas flow through the secondary conduit 71, and then operation at a minimum flow rate of a burner connected to the thermostat 10 according to the invention.
In a normal operating condition of the thermostat 10, a user sets a desired temperature with the aid of a graduated scale by acting on a knob (not shown) connected to the rotatable coupling member 40. The rotation direction of the rotatable coupling member 40 is schematically shown in Figures 2 to 4 by an arrow R.
As explained above, the rotatable coupling member 40 acts on the valve 80 through the expandable member 53 of the thermostatic bulb 50 and when it is rotated by a user in order to set a desired operating temperature it defines a maximum opening position for the valve 80. Under normal operating conditions, i.e. once reached a desired temperature, if the temperature inside the heated compartment increases, the expandable member 53 of the thermostatic bulb 50 is expanded thus pressing against the drive portion 84 of the valve 80. Consequently the valve 80 is moved towards the main opening 70 of the chamber 25 thus reducing the flow rate of the gas supplied to the burner and lowering the temperature.
When the temperature inside the heated compartment instead decreases, the expandable member 53 of the thermostatic bulb 50 is contracted thus allowing a higher opening of the valve 80, which is urged in the opening position by a spring, thus increasing the flow rate of the gas supplied to the burner and consequently raising the temperature. In this way it is possible to obtain an operating condition of the system wherein the temperature in the heated compartment varies in a predetermined tolerance range relative to a desired value set by the user.
According to the invention the valve 80 is axially deformable beyond a predefined load threshold. The load threshold is calculated with respect to the helical spring urging the valve in the first, opening position and is higher than the maximum reaction force that this spring can exert when the valve is in the second, closing position, i.e. in an operating condition characterized by a minimum flow rate as shown in figures 4 and 4a, thus allowing to compensate for dilations of the expandable member 53 of the thermostatic bulb 50, as well as to absorb axial forces exerted upon rotation of the knob of the thermostat 10 when switching off the burner driven by the thermostat.
As shown in figures 2 to 5, according to an embodiment of the invention the axial deformability of the valve 80 is obtained by forming an axial cavity 85 in its body and fitting therein a member 86 axially movable relative to the valve 80.
The movable member 86 is urged by elastic means away from the valve. In the illustrated embodiment the elastic means consist of a helical spring 87, but it is clear that elastic members made of rubber and other polymeric materials may also be used, as well as elastic membranes and other equivalent means.
The elastic means are dimensioned so as to be deformed only beyond a predefined load threshold, corresponding to the maximum force the helical spring urging the valve 80 in the first, opening position may exert. Hence, during normal operation of the thermostat, the valve 80 behaves like a rigid body, whereas when the load threshold is exceeded the valve undergoes axial deformation thus allowing to absorb dilations of the expandable member 53 that are greater than those characterizing the normal operation of the thermostat 10 and/or axial forces exerted when switching the burner off.
Figures 5 and 5a show operation of the valve 80 when the axial loads applied thereon exceed the predefined load threshold. In particular, these figures show a condition wherein the expandable member 53 of the thermostatic bulb 50 is dilated when the thermostat 10 operates with a minimum flow rate of gas.
As it may be seen, once the predefined load threshold is exceeded, the helical spring 87 yields and is axially deformed causing the movable member 86 to move within the cavity 85 toward the valve 80. The height if the valve 80 is consequently reduced with respect to the height it has during normal operation of the thermostat 10.
As explained above, the thermostat 10 is also provided with a thermoelectric safety device 60. This device comprises in known manner an electromagnet 61 controlled by a thermocouple (not shown). The electromagnet 61 is provided with a plate member 62 movable from an unlocking position to a blocking position respectively to open or close the inlet conduit 23 of the gas. The movable plate member 62 is urged by a spring (not shown) away from the electromagnet 61. When the thermocouple is heated by the flames of the burner, due to the well-known Seebeck effect the electromagnet 61 is electrically supplied and generates a force on the plate member 62 opposing the force of the spring biasing it, thus causing opening of the inlet conduit 23 of the gas, that enters the chamber through the inlet opening 21 formed in the body 20 of the thermostat 10. When the thermocouple cools down due to intentional or accidental switch off of the burner flames, the electromagnet 61 is no longer electrically supplied and releases the plate member 62 which closes the inlet conduit 23 of the gas urged by the spring biasing it.
As it is known, in order to ignite a burner connected to a thermostat provided with a thermoelectric safety device, it is necessary to manually unlock the thermoelectric safety device by typically pressing the knob to the body of the thermostat and maintaining this position until the thermocouple supplies electromagnet with a current sufficient to keep the inlet conduit of the gas open. To this aim, a drive rod is typically inserted in a hole formed in the body of the thermostat and arranged below the knob. The drive rod extends from the knob to the plate member of the electromagnet of the safety device, thus allowing unlocking of the latter by pressing on the knob.
The drive rod is urged towards the knob typically by an helical spring.
The drive rod 100 of the thermoelectric safety device 60 acts on the plate 62 of the electromagnet 61 through a thrust member 1 10 telescopically inserted therein and urged away therefrom by a spring (not shown).
In an assembled configuration of the thermostat 10, the thrust member 1 10 is arranged in the inlet conduit 23 at the shoulder 231 formed in the elbow 230 and contacts the movable plate member 62 of the electromagnet 61. The thrust member 110 includes a flange 1 1 1 provided with a gasket 1 12 dimensioned so as to seal the inlet conduit 23 by pressing against the shoulder 231 when the electromagnet 61 is not powered by the thermocouple. The drive rod 100 is driven by the rotatable coupling member 40 of the knob and is urged towards it by a spring 101 arranged between the flat lid 26 of the body 20 of the thermostat 10 and a retaining ring 102 axially restrained to the drive rod 100 in correspondence with a circumferential groove formed therein.
To this aim the rotatable coupling member 40 comprises a cam profile 41 formed on the surface facing the drive rod 100 and configured so as to engage the latter only beyond a certain rotation angle of the knob fixed to the rotatable coupling member 40 in the direction indicated by the arrow R, thus making the thermostat 10 inherently reliable also in case of accidental rotation of the knob. In the illustrated embodiment, the cam profile 41 is for example configured to act on the drive rod 100 beyond a rotation angle corresponding to 52°.
The embodiment of the invention above described and illustrated is just an example susceptible of numerous variants. For example, the deformable structure of the valve 80 might be obtained by dividing the valve in two portions telescopically movable relative to each other between which elastic members are arranged. Alternatively, the valve 80 might comprise a portion made of an elastically deformable material, such as e.g. rubber.

Claims

1. A thermostat (10) for cooking appliances supplied by gas, said thermostat (10) comprising a body (20) within which there are formed an inlet duct (23) and an outlet duct (24), suitable to receive a gas flow from a supply source and to supply such a gas flow to a gas burner, respectively, as well as a chamber (25) with a substantially cylindrical shape arranged in fluid communication with said inlet duct (23), wherein said chamber (25) is also arranged in fluid communication with said outlet duct (24) either directly, through a main opening (70) formed at one end thereof, or indirectly, through a secondary duct (71) that is formed in the body (20) of the thermostat (10) and reaches the outlet duct (24) bypassing said main opening (70), said main opening and secondary duct (70, 71) being respectively dimensioned for a maximum and a minimum flow rates of gas, the thermostat (10) further comprising a valve (80) arranged in the chamber (25) and suitable to regulate the flow rate of the gas, wherein the valve (80) is movable coaxially to the chamber (25) in a first direction (A) of the body (20) between a first, maximum opening position, wherein the main opening (70) is completely clear thus allowing the passage of a flow of gas towards the outlet duct (24), and a second, closing position, wherein the main opening (70) is completely closed by the valve (80) and the gas flow reaches the outlet duct (24) through the secondary duct (71) only, the valve (80) being urged in said first, opening position by an helical spring fitted in the chamber (25) at the main opening (70), the position of the valve being controlled by way of an expandable member (53) of a thermostatic bulb (50) of the thermostat (10), which contacts the valve (80) at the end opposite to the end on which the helical spring acts, characterized in that the valve (80) is configured so as to be axially deformable beyond a predefined load threshold, said load threshold being higher than the maximum reaction force that the helical spring urging the valve (80) towards the first, opening position may exert when the valve (80) is in the second, closing position.
2. A thermostat (10) according to claim 1 , wherein the valve (80) comprises an axial cavity (85) and a movable member (86) movably fitted in said cavity (85), said movable member (86) being urged away from the valve (80) by way of elastic means.
3. A thermostat (10) according to claim 2, wherein said elastic means comprise an helical spring (87).
4. A thermostat (10) according to claim 1, wherein the axially deformable valve (80) comprises two portions that are telescopically movable relative to each other, as well as elastic means arranged therebetween.
5. A thermostat (10) according to claim 1, wherein the axially deformable valve (80) comprises a portion made of an elastically deformable material.
PCT/IB2013/059530 2012-10-26 2013-10-22 Thermostat WO2014064605A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MX2015005164A MX2015005164A (en) 2012-10-26 2013-10-22 Thermostatic valve.
US14/435,169 US9581336B2 (en) 2012-10-26 2013-10-22 Thermostat
KR1020157011641A KR20150074019A (en) 2012-10-26 2013-10-22 Thermostatic valve
BR112015009098A BR112015009098A2 (en) 2012-10-26 2013-10-22 thermostat for gas-fired cooking appliances.
RU2015115612A RU2015115612A (en) 2012-10-26 2013-10-22 THERMOSTAT
EP13821953.0A EP2912377B1 (en) 2012-10-26 2013-10-22 Thermostatic valve
SI201330678A SI2912377T1 (en) 2012-10-26 2013-10-22 Thermostatic valve
ES13821953.0T ES2628106T3 (en) 2012-10-26 2013-10-22 Thermostatic valve
CN201380058929.3A CN105102892B (en) 2012-10-26 2013-10-22 Temperature-adjusting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT001823A ITMI20121823A1 (en) 2012-10-26 2012-10-26 THERMOSTAT
ITMI2012A001823 2012-10-26

Publications (2)

Publication Number Publication Date
WO2014064605A2 true WO2014064605A2 (en) 2014-05-01
WO2014064605A3 WO2014064605A3 (en) 2014-09-12

Family

ID=47428844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/059530 WO2014064605A2 (en) 2012-10-26 2013-10-22 Thermostat

Country Status (12)

Country Link
US (1) US9581336B2 (en)
EP (1) EP2912377B1 (en)
KR (1) KR20150074019A (en)
CN (1) CN105102892B (en)
BR (1) BR112015009098A2 (en)
ES (1) ES2628106T3 (en)
IT (1) ITMI20121823A1 (en)
MX (1) MX2015005164A (en)
PL (1) PL2912377T3 (en)
RU (1) RU2015115612A (en)
SI (1) SI2912377T1 (en)
WO (1) WO2014064605A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175110A1 (en) * 2016-04-04 2017-10-12 Defendi Italy S.R.L. An improved thermostat

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107616716A (en) * 2016-07-13 2018-01-23 李健 A kind of air door regulating mechanism and rotisserie device
US11421790B2 (en) * 2019-09-06 2022-08-23 Illinois Tool Works Inc. Ballstat flow diverter
JP7315504B2 (en) * 2020-03-17 2023-07-26 リンナイ株式会社 thermal control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2366616A1 (en) 1976-02-09 1978-04-28 Euroflex Gas flow control for heating installation - uses regulator with thermostatic control valve to keep temperature constant
FR2875573A1 (en) 2004-09-22 2006-03-24 Cartier Technologies Soc Par A DOUBLE SECURITY CONTROL VALVE
DE102006032020A1 (en) 2006-07-10 2008-01-24 Heatec Thermotechnik Gmbh Valve unit for e.g. domestic gas fire, is based on actuator-controlled rotary valve plug with cams operating position-sensing switch connected to controller
ITMI20121633A1 (en) 2012-10-01 2014-04-02 Controlling Saving Energy Italia S R L THERMOSTAT

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2718918A (en) * 1951-05-24 1955-09-27 Milwankee Gas Specialty Compan Control device
US3434694A (en) * 1966-03-30 1969-03-25 Westmoreland Plastics Co Valve mechanisms
US3810578A (en) * 1972-10-17 1974-05-14 Johnson Service Co Bulb modulating gas valve
GB1445117A (en) * 1973-08-10 1976-08-04 Ti Domestic Appliances Ltd Fluid flow control
US4134573A (en) * 1977-05-12 1979-01-16 Messinger Roderick G Fluid flow stop valve
DE3102123A1 (en) * 1981-01-23 1982-08-12 Paul Isphording Metallwerke GmbH & Co KG, 5952 Attendorn Gas-adjusting device
US4413975A (en) * 1982-04-09 1983-11-08 Essex Group, Inc. Combination control with high/low pilot gas flow
CN2050554U (en) * 1988-04-13 1990-01-03 陈喜文 Protective device for putting -out fire
US5215115A (en) * 1991-12-31 1993-06-01 Honeywell Inc. Gas valve capable of modulating or on/off operation
TW233336B (en) * 1993-02-26 1994-11-01 Rinnai Kk
US5439199A (en) * 1993-12-20 1995-08-08 The National Latex Products Company Water balloon filling valve
JP3793861B2 (en) * 1996-12-06 2006-07-05 パロマ工業株式会社 Gas cock for automatic ignition
CN2430594Y (en) * 1999-09-24 2001-05-16 蒋春生 Gas regulator
ITVE20070031A1 (en) * 2007-05-17 2008-11-18 Defendi Italy Srl GAS TAP WITH SAFETY FOR DUAL BURNER.
EP2105662B1 (en) * 2008-03-25 2012-07-11 Electrolux Home Products Corporation N.V. Cooking top with improved gas top burner
CN201891923U (en) * 2010-06-08 2011-07-06 国家燃气用具质量监督检验中心 Constant load gas flow-control valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2366616A1 (en) 1976-02-09 1978-04-28 Euroflex Gas flow control for heating installation - uses regulator with thermostatic control valve to keep temperature constant
FR2875573A1 (en) 2004-09-22 2006-03-24 Cartier Technologies Soc Par A DOUBLE SECURITY CONTROL VALVE
DE102006032020A1 (en) 2006-07-10 2008-01-24 Heatec Thermotechnik Gmbh Valve unit for e.g. domestic gas fire, is based on actuator-controlled rotary valve plug with cams operating position-sensing switch connected to controller
ITMI20121633A1 (en) 2012-10-01 2014-04-02 Controlling Saving Energy Italia S R L THERMOSTAT

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175110A1 (en) * 2016-04-04 2017-10-12 Defendi Italy S.R.L. An improved thermostat

Also Published As

Publication number Publication date
PL2912377T3 (en) 2017-09-29
ITMI20121823A1 (en) 2014-04-27
SI2912377T1 (en) 2017-07-31
BR112015009098A2 (en) 2017-07-04
US20150292748A1 (en) 2015-10-15
EP2912377A2 (en) 2015-09-02
ES2628106T3 (en) 2017-08-01
CN105102892A (en) 2015-11-25
US9581336B2 (en) 2017-02-28
KR20150074019A (en) 2015-07-01
CN105102892B (en) 2017-08-25
MX2015005164A (en) 2015-07-17
RU2015115612A (en) 2016-12-10
EP2912377B1 (en) 2017-03-22
WO2014064605A3 (en) 2014-09-12

Similar Documents

Publication Publication Date Title
EP2912377B1 (en) Thermostatic valve
AU2003229356B2 (en) Gas control valve
EP2904319B1 (en) Thermostic valve
EP3303924B1 (en) Thermostat for gas cooking appliances
US1794531A (en) Valve structure
US3841552A (en) Manifold valve for domestic gas ovens
US4007907A (en) Fuel control system and control device therefore or the like
GB2039344A (en) Flow regulating valve
DK2976571T3 (en) Gas regulating valve
US4085891A (en) Fuel control system and control device therefor or the like
US3448764A (en) Dual stage control device
US4159800A (en) Fuel control system and control device therefor or the like
JPH0345004Y2 (en)
US3398890A (en) Fail-safe regulator for gas-oven burners
US1542712A (en) Thermostat control for water heaters
EP3364107B1 (en) Thermostatic valve for gas stoves
GB2121520A (en) Gas valve means
US3979103A (en) Fuel control system and control device therefor or the like
EP3440406B1 (en) Improved thermostat
US4007872A (en) Fuel control system and control device therefor or the like
CN115023680B (en) Device for controlling fluid flow
US2990119A (en) willson
GB2183789A (en) Valve
EP3184893B1 (en) A thermostat tap with a motor controlled by electronic circuit for domestic ovens
RU2631403C1 (en) Universal temperature sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380058929.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13821953

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14435169

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013821953

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013821953

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/005164

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20157011641

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015115612

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015009098

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015009098

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150422