[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013181981A1 - 考虑周围物体时计算建构筑物雷击次数截收面积的方法 - Google Patents

考虑周围物体时计算建构筑物雷击次数截收面积的方法 Download PDF

Info

Publication number
WO2013181981A1
WO2013181981A1 PCT/CN2013/075412 CN2013075412W WO2013181981A1 WO 2013181981 A1 WO2013181981 A1 WO 2013181981A1 CN 2013075412 W CN2013075412 W CN 2013075412W WO 2013181981 A1 WO2013181981 A1 WO 2013181981A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
area
interception
intercepting
range
Prior art date
Application number
PCT/CN2013/075412
Other languages
English (en)
French (fr)
Inventor
高磊
Original Assignee
Gao Lei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210182588.8A external-priority patent/CN102799706B/zh
Application filed by Gao Lei filed Critical Gao Lei
Priority to US14/405,058 priority Critical patent/US20150177414A1/en
Priority to EP13800212.6A priority patent/EP2857997A4/en
Priority to BR112014030140A priority patent/BR112014030140A2/pt
Publication of WO2013181981A1 publication Critical patent/WO2013181981A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G13/00Installations of lightning conductors; Fastening thereof to supporting structure

Definitions

  • the present invention is a quantitative calculation of a building (including structures) in consideration of surrounding objects (which may be buildings, structures, or any other fixed location facility or device above the ground).
  • surrounding objects which may be buildings, structures, or any other fixed location facility or device above the ground.
  • the method of intercepting the area of lightning strikes for buildings is applicable to the lightning protection industry. It can be used for lightning protection risks of buildings in construction engineering design institutes, lightning protection centers of various national and municipal meteorological bureaus, lightning protection companies, lightning protection offices and other related units. Evaluation, design, acceptance and inspection of lightning protection devices. Background technique:
  • Lightning is a common natural disaster that threatens the safety of buildings and people.
  • GB50057-2010 Code for Lightning Protection of Buildings
  • N k Ng Ae (Formula 1)
  • N the estimated number of lightning strikes per year for the building (unit: times/year); k is the correction factor, generally 1 is taken, no numerical unit; Ng is the building
  • the annual average density of lightning strikes in the area, in units of: per square kilometer per year, generally converted according to the number of local thunderstorm days (according to GB50057, the conversion formula is: Ng 0.1 X Td, where Td is the local average annual number of thunderstorm days) Or according to the local lightning location system detection data;
  • Ae is the equivalent area of the range of lightning strikes (hereinafter referred to as the interception range) on the ground and the building interception (hereinafter referred to as the interception area), unit: square kilometers .
  • GB50057 stipulates in "Appendix A Estimated Lightning Strikes of Building Years": The equivalent area of the same number of lightning strikes as the interception of buildings shall be the area where the actual flat area is enlarged outward. For buildings with rectangular structures, it is on the ground.
  • the plan view of the upper intercepting range is shown in Fig. 1. It is a rectangle with rounded corners. The rounded rectangle has a length of L+2D, a width of W+2D, and a radius of four rounded corners.
  • the intercepted area is calculated according to the following formula:
  • Equation 2 L, W, D—the length, width, and width of the rectangular building, respectively (unit: m)
  • D the extended width D of the building is the distance from the edge of the building to the edge of the side corresponding to its interception range, which varies with the height H of the building (unit: m); when the height H of the building is less than At 100 meters, D is obtained by the following formula:
  • the intercepted area in GB21714 is represented by Ad.
  • the rectangular block-shaped building calculates the intercepted area according to Formula 2, and the plan view of the intercepting range is as shown in Fig. 1.
  • GB50057 also stipulates, "When the height of each part of the building is different, the maximum expanded width shall be calculated point by point along the perimeter of the building. The equivalent area shall be the area enclosed by the connecting line at the outer end of the maximum expanded width of each point.” Therefore, if the perimeter of the top surface of the building is connected to the perimeter of the intercepting range, the shape of the intercepting range in the three-dimensional space can be obtained, as shown in FIG. 2, which is the intercepting range of the rectangular building. Sectional view.
  • GB50057 also specifies the calculation method for correcting the interception area of the building when there are other buildings around the building in the "Appendix A expected lightning strikes”.
  • Article 3 stipulates: "When the height of the building is less than 100m and the surrounding area has other buildings higher than 2D, the calculated equivalent area may be subtracted from DX (these buildings and the considered building side) Long parallel to the sum of the lengths in meters) X 10_ 6 (km 2 )",
  • Article 5 states: "When the height of the building is equal to or greater than 100m, and its surroundings are equal or lower than the other in the 2H range If the building is not within the protection range of the determined building with the radius of the ball equal to the height of the building (m), the equivalent area calculated can be subtracted from (H/2) X (the buildings and the identified buildings) Side Changping The sum of the length of the line in meters) X 10- 6 (km 2) ", and the like.
  • GB50057 gives these calculation methods, its definition is not clear enough, and the regulations are not detailed enough. For example: It stipulates, "When these buildings are not within the protection scope of the building under consideration", how to judge one Is the building within the protection of another building? If the part of the building is within the protection of the building under consideration, how is it calculated? For another example, one of the calculation parameters frequently mentioned in GB50057 is "the length of these buildings parallel to the side length of the identified building", but if it is circular or not parallel to the building under consideration , how to calculate? GB50057 does not have a clear definition or provision for these situations.
  • the calculation method given by GB50057 does not consider various complicated situations, such as: where the difference in height between the building and other buildings is only “equal or lower” and “higher than” The two options, no matter how high, are the same option 'higher than it', and the results obtained are the same; for the difference in distance between the building and other buildings, only “in the 2D range” Or “in the 2H range” two options, as long as it is within this range, no matter how far away, the calculation results are the same.
  • Such highly similar calculations clearly do not reflect the vast differences in height and distance between different buildings.
  • Gao Lei has studied and proposed a method for calculating the intercepted area of lightning strikes of buildings when considering surrounding objects scientifically and reasonably. From the quantitative point of view, the method is convenient to establish a mathematical model to calculate. According to the method of developing software, the user only needs to complete the measurement and modeling work of the building and its surrounding objects, and the rest of the calculation work can be automatically completed by the software. Convenient and accurate. Summary of the invention: Buildings rarely exist alone, and most buildings or structures exist more or less in the vicinity of most buildings. The scope of each interception overlaps with each other (by borrowing the concept of mathematics, the interception range is mutual There is an intersection between them.
  • the building when calculating the intercepted area of a certain building (hereinafter referred to as the building), if the other buildings around it are not considered, the calculation result is unscientific. Then, when considering surrounding objects, how to calculate the interception area of the lightning strikes of this building?
  • the intercepting range of the building is a range surrounded by the outermost connecting lines of the enlarged width of each point around the top surface of the building. Therefore, the surrounding object can be considered from the perspective of three-dimensional The impact of the interception area of the number of lightning strikes on the building.
  • the top surface (the top surface may be a horizontal plane or a slope surface, a building may have multiple top surfaces) points on the peripheral edge line (referred to as this point, its height is set For ⁇ ) according to the respective expanded width depends on #, the specific definition may be different in different standards or specifications.) Projecting to the ground around it, you can get the respective circular projection areas of each point on the ground. . The adjacent points of this point may have overlapping projection areas (with intersections).
  • the edges of the top surface can also be projected to the ground around them according to their respective expanded widths/?
  • the essence is to integrate the projection areas of the points on the side lines to obtain the projection area of the edge line.
  • the so-called integration means that if a point on the ground is located in the projection area of any of the points on the side line, the point is considered to be in the projection area of the edge line, thereby obtaining the projection area of the edge line (using mathematical Concept, the projected area of the edge can be understood as the union of the projected areas of each of the points. If the edge is horizontal, its projected area on the ground resembles a capsule, as shown in Figure 3.
  • the entire top surface can be projected to its circumference according to its respective expanded width/?, the essence is that the projection area of each side line on the top surface and the vertical projection of the top surface itself on the ground are integrated.
  • the specific shape of the projected area varies with the shape and height of the top surface.
  • the separate projection area of each top surface of the building is integrated, and the entire projection area obtained is the interception range of the building on the ground, which is called the interception range of the building, and the area is the building.
  • the intercepted area of the object is called the intercepted area of the building.
  • the intercepting body In the three-dimensional space, the top surface of the building, the intercepting range of the building on the ground, and the line segment projected from the top facing the intercepting range are called the intercepting body. .
  • the intercepting body of the building consists of the top surface (that is, the top surface of the building, which may be horizontal, or it may be inclined, or even vertical, such as the roof connecting the upper and lower roofs The outer wall), the bottom surface (the section of the building on the ground) and the side (the side is composed of the outermost projection lines, connecting the perimeter of the top surface and the perimeter of the bottom surface)
  • the side is generally formed by a combination of a conical surface and a slope surface.
  • the top surface of the space intercepting body is a circle
  • the bottom surface is also a circle
  • the side circumference is a 360-degree corner conical surface
  • the entire shape is a flat-headed cone. As shown in Fig.
  • the top surface of the space intercepting body is a rectangle, the bottom surface of which is a rounded rectangle as shown in Fig. 1, and the side surface is four slope faces (four slope faces)
  • the upper side is the two long sides and the two short sides of the rectangle, and the four conical surfaces of the 90 degree angle (the vertices of the four conical surfaces correspond to the four vertices of the rectangle respectively).
  • the whole form is similar to the abutment. .
  • the principle of handling on the side is: The sides are always on the outermost side and the upper side.
  • the meaning of this sentence is that if the sides and the top surface of the space intercepting body are interlaced, the sides on the outermost side and the upper side are the sides of the entire space intercepting body, and the sides on the inner side and the lower side are Encased inside the space interceptor, it no longer becomes a side. If a top surface of a building is a slope with a large angle of inclination, or if a top surface is at a lower position throughout the building (such as the roof of a high-rise building's podium), then all or part of the top surface It is also possible to be enclosed in the interior of the space interceptor and no longer be the top surface.
  • each of the other buildings located around the building can be treated like this. Go to the respective space to intercept the body. For buildings that are far away, if the interception range on the ground does not overlap with the interception range of the building (no intersection), it has no effect on the intercepted area of the building and may be disregarded. Therefore, other buildings referred to here are only those buildings that have an impact on the interception area of the building. There may be more than one other building, distributed in all directions around the building.
  • the individual space interceptors of each other building are integrated together, and the whole (which can be understood as the union of the spatial interceptors) is called another intercepting body.
  • the collection range is called other interception range, and the interception area is called other interception area.
  • the meaning of integration here is: If a point in space is located within the space interceptor of any other building, it is considered that the space point belongs to other interceptors, thus obtaining other intercepts. Since the number of other buildings may be more than one and may be located in all directions of the building, the shape of other interceptors may be more complicated, and may even be morphologically divided into different parts that are not connected to each other.
  • the top surface, the bottom surface and the side surface, and the sides thereof are generally composed of a combination of a conical surface and a slope surface, and the side or the top surface may be interlaced.
  • the outermost side and the upper side are the sides of the entire space intercepting body.
  • Figure 5 is a plan view of the interception range of two adjacent buildings, where A is the building and B is the other building.
  • the interception range of the two buildings overlaps.
  • the area is the intersection of the interception scope of the building and other interception ranges. Therefore, the interception scope of this building can be divided into two parts, one part is unique to the building, and there is no overlap with the interception range of other buildings.
  • the area of this part is recorded as SO; the other part and others
  • the interception range of the building overlaps, called the overlapping interception range, and the area of this part is denoted as S. According to the knowledge of plane geometry and calculus, SO and 5 can be obtained by calculation.
  • SO or S may be zero. For example, if the building is very small, the other buildings are very large, and the distance between the two is very close, then the interception range of the building is completely within the other interception range (for its subset), then SO is 0; If there is no other building around the building, then there is no intersection between the interception range and other interception ranges, then S is 0. Even in these cases, the calculation method of this patent can still be used.
  • the overlapping interception range is shared by the building and other buildings. Therefore, if S is greater than 0, the area can be divided into two parts, some of which belong to the building, which is recorded as S1; the other part belongs to other buildings, remember For S2.
  • Method 1 volumetric method
  • the main intercepting body and the other intercepting body are respectively cut vertically upwards with the peripheral loop lines of the overlapping intercepting range. As shown in FIG. 6, the portions of the two intercepting bodies respectively located within the overlapping intercepting range can be obtained.
  • the volume is referred to as the overlap volume VI and the other overlap volume V2, respectively.
  • the volume of VI and V2 can be obtained by calculation based on the knowledge of solid geometry and calculus.
  • Sl can be obtained according to VI, V2 and S. The specific formula is as follows:
  • the volumetric method is scientific and reasonable, and it is our recommended method. However, this method has a small deficiency: Since the Sl is calculated quantitatively, the boundary between the interception range and other interception ranges cannot be clearly defined. Therefore, the following method can be used as a supplement. Method two, called the highly qualitative method.
  • a dividing line can be drawn between them. It is called the boundary of the interception range.
  • the two sides are called the building side and other sides.
  • the building side is close to the building and the other side is close to other buildings, as shown in Figure 7.
  • this boundary line will be an obvious separation zone, and the height of the interception body will be 0 at any point in the separation zone.
  • the boundary of the interception range is defined as: At any point on the side of the dividing line, the height of the intercepting body at the point is not lower than the height of the other intercepting body at that point; On the other side, at any point, the height of the other intercepting body at this point is not lower than the height of the intercepting body of the building at this point; at any point on the dividing line, the intercepting body and other intercepting bodies The height at this point is the same.
  • this dividing line may be a straight line, a curve or other form.
  • the overlapping interception range is divided into two parts by this dividing line.
  • the area on the side of the building is Sl, and the area on the other side is S2, as shown in Figure 7.
  • the specific method is to divide the overlapping interception range into a grid according to a certain scale, and calculate the heights hi and h2 of the intercepting body and other intercepting bodies on each grid node respectively. According to the difference between hi and h2, they are processed as follows:
  • the node position is located on the side of the dividing line of the dividing line, and the grid area is counted into S1;
  • the node position is located on the other side of the dividing line, and the grid area is counted into S2;
  • the point is the point on the boundary of the interception range, and the point is drawn; after each mesh node is processed in this way, the final accumulated values of S1 and S2 are finally obtained; , draw the points on the boundary line in turn, and finally form the boundary of the interception range.
  • the calculation results using the high-qualification method are the same as the volumetric quantitative method, and the high-qualification method can clearly distinguish the boundary between the interception range and other interception ranges of the building, which is convenient for showing the concrete structure of the building to the user. Intercept range.
  • the highly qualitative method has problems in some cases, such as: If the height difference between the two buildings is very close, the interception range of the short buildings is a subset of the interception range of the high buildings, as shown in Figure 8. As shown, the interception range boundary does not exist at this time, and the height qualitative method cannot be used; or, although the interception range boundary exists, the building side and the other side are on the same side of the boundary line, as shown in FIG. At this time, the calculation result is relatively large.
  • Sl can be obtained by the above two methods (volume quantitative method or highly qualitative method). Finally, adding SO to Sl is the intercept area of the building's lightning flash when considering surrounding objects.
  • Figure 1 The rectangle in the middle is the projection of a rectangular building on the ground.
  • the length, width and height are respectively! ⁇ , W, H;
  • the rounded rectangle outside the rectangle is a schematic plan view of the interception range of the rectangular building on the ground, the length is L+2D, the width is W+2D, and the radius of the four rounded corners is D; D Is the expanded width according to H; Note that the entire rounded rectangle interior, including the rectangular projection area of the building itself on the ground, belongs to the interception range.
  • Figure 2 is a cross-sectional view of the intercepting range of the rectangular building.
  • the length of the building is L and the height is H. It is projected from the edge of the roof top surface to the outer ground.
  • the projected width is D, so the intercepting range is The length is L+2D;
  • Figure 3 is a plan view of a projected area of a horizontal edge on the ground, the shape of which is a round-headed rectangle similar to a capsule;
  • Figure 4 is a three-dimensional form of a space intercepting body of a cylindrical building, the inner cylinder is the building itself, and the outer flat cone is its space intercepting body;
  • Figure 5 is a plan view showing the interception range of two adjacent buildings on the ground, where A is the building, B is the other building, and SO is the area of the interception range unique to the building.
  • the shaded area in the figure is the overlapping interception range (intersection part) of the two buildings, the area of which is S; S is composed of S1 and S2, and S1 and S2 are overlapping and intercepted by the building and other buildings respectively.
  • Figure 6 is a schematic cross-sectional view of S1 and S2 of two adjacent buildings calculated according to the volumetric quantitative method.
  • the space intercepting bodies of the two buildings overlap, and the building is cut upwards by the peripheral loop lines of the overlapping intercepting range.
  • VI and V2 can be obtained;
  • S1 and S2 are calculated according to the ratio of VI and V2.
  • Figure 7 is a plan view showing the calculation of S1 and S2 of two adjacent buildings according to a highly qualitative method, wherein A is the building and B is another building, and the overlapping intercepting range is divided into two parts by the dividing line.
  • the area is divided into S1 and S2 respectively; the entire interception range is divided into the side of the building and the other side by the dividing line.
  • the intercepting body of the building is not lower than the other intercepting bodies at any point; on the other side, At any point, the other intercepting body is not lower than the intercepting body of the building; on the dividing line, the intercepting body and other intercepting bodies are equal; the dividing line may be a straight line or a curved line.
  • Figure 8 is a situation that cannot be calculated by the highly qualitative method.
  • the A building is higher, the B building is shorter, and the distance between the two is relatively close.
  • the intercepting range of the B building is completely within the interception range of the A building. Subset), there is no boundary of the interception range at this time, and it is impossible to calculate the intercepted area by the highly qualitative method.
  • Figure 9 is a case where the calculation error of the high-precision method is large. Although there is a boundary of the interception range, the side of the building and the other side are on the same side of the boundary line. At this time, the calculation result of the high-qualification method has a large error.
  • Figure 10 is a schematic cross-sectional view of the operation of a grid node.
  • the building is located on the left side of the screen, other buildings are on the right side of the screen, and M and h2 are the interceptors and other interceptors respectively.
  • the intensity at the grid node is allocated according to the ratio of hi and h2 to the area of the grid where the point is located.
  • Step 1 For the building and Other buildings around it are measured to obtain information about their orientation, shape, size, height, etc., and are entered into the computer in a way that is modeled in the program; if it is not clear which buildings belong to other buildings, then as many surrounding areas as possible Building input, the wider the area, the better;
  • Step 2 The entire area including the interception range of all buildings is divided into one according to a certain scale by a computer program.
  • Grids calculate the height of the interceptor and other interceptors on each grid node, and store them in a multidimensional array;
  • the array has at least three dimensions, two of which are used to represent the plane Coordinates, there is also a dimension indicating the height of the space interceptor at the coordinate points; the finer the mesh is, the more the number of meshes, the larger the size of the array, the more accurate the calculation results, the calculation needs The longer the time is;
  • Step 3 The computer program scans each grid node in the entire area to obtain the heights hi and h2 of the intercepting body and other intercepting bodies respectively at the point position, such as Figure 10 shows: According to whether the height of hi is 0, it is divided into the following two cases:
  • Step 4 The area of each grid in the entire area is processed in this way, and the resulting accumulated value is obtained. , that is, the interception area of the lightning strikes of the building when considering the surrounding objects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Architecture (AREA)
  • Mathematical Analysis (AREA)
  • Structural Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

一种计算建筑物的雷击次数截收面积的方法以及根据该方法计算某个区域内若干栋建筑物各自截收面积的方法,该方法包括对本栋建筑物及其周围物体进行测量和建模,并在三维立体空间里建立虚拟的本栋截收体和其它截收体,按照本栋重叠体积V1和其它重叠体积V2的比例对重叠截收面积S进行分配,获取重叠截收面积中属于本栋建筑物的那部分面积S1,再加上本栋建筑物所独有的截收面积S0即为考虑周围物体时本栋建筑物的截收面积;或者将全部截收范围所在的区域按照一定的尺度划分为一个个网格,分别计算得到本栋截收体和其它截收体在每个网格节点上的高度h1和h2,如果h1高于h2,则将该网络面积计入本栋建筑物的截收面积;如果h1低于h2,则不做操作;如果h1和h2相同或基本相同,则该点就是截收范围分界线上的点,将该点绘制出来;依次对每个网络节点这样处理以后,最后得到的最终累计值为本栋建筑物的截收面积;并且将分界线上的点依次绘制处理,最后形成截收范围分界线。该方法解决了考虑周围物体的情况下计算建筑物的雷击次数截收面积的问题。

Description

考虑周围物体时计算建构筑物雷击次数截收面积的方法 技术领域:
本发明专利是一种考虑周围物体 (该物体可以是建筑物、 构筑物或其它任何高于地面的 有固定位置的设施或装置) 时定量计算建筑物 (包括构筑物, 为简明起见, 以下均统称为建 筑物) 的雷击次数截收面积的方法, 适用于雷电防护行业, 可供建筑工程设计院、 各省区市 气象局防雷中心、 防雷公司、 防雷办等相关单位对建筑物进行雷击风险评估、 雷电防护装置 的设计、 验收及检测工作。 背景技术:
雷电是威胁建筑物及人身安全的一种常见的自然灾害, 在对建筑物进行雷击风险评估、 雷电防护设计以及防雷装置的验收及检测时, 均需要计算建筑物的年预计雷击次数, 以便对 其进行合理的防雷分类。 根据 2011 年 10 月 1 日开始实施的中华人民共和国国家标准 GB50057-2010《建筑物防雷设计规范》 (以下简称 GB50057 ) 的规定, 其计算公式如下:
N = k Ng Ae ( 公式 1 ) 在公式 1中, N是建筑物的年预计雷击次数 (单位: 次 /年); k是校正系数, 一般情况下 取 1, 无数值单位; Ng是建筑物所处地区雷击大地的年平均密度, 单位: 次 /平方公里 /年, 一般根据当地的雷暴日数换算 (根据 GB50057, 换算公式为: Ng = 0.1 X Td, 其中 Td是当 地的年平均雷暴日数)或根据当地的闪电定位系统的探测数据得来; Ae是地面上与建筑物截 收相同雷击次数的范围 (以下简称截收范围) 的等效面积(以下简称截收面积), 单位: 平方 公里。
总体来说, k和 Ng这两个参数是比较容易确定的,只有 Ae的计算过程比较复杂。 GB50057 在"附录 A建筑物年预计雷击次数"中规定: 与建筑物截收相同雷击次数的等效面积应为其 实际平面积向外扩大后的面积, 对于长方体形态的建筑物, 其在地面上的截收范围的平面图 如附图 1所示, 是一个四角为圆角的矩形, 该圆角矩形的长度为 L+2D , 宽度为 W+2D, 四 个圆角的半径为 D, 其截收面积按下列公式计算:
Ae = [ LX W+ 2(L+W) X D + TTD2 ] X 10^ (公式 2) 公式 2中: L、 W、 D—分别是长方体建筑物的长度、 宽度和扩大宽度 (单位: 米); 所谓建筑物的扩大宽度 D, 是从建筑物的边缘到其截收范围相对应一侧的边缘的距离, 随建筑物的高度 H (单位: 米)而变; 当建筑物的高度 H小于 100米时, 按下列公式得到 D:
D = [ Hx(200-H ) ] 1 2 (公式 3)
当建筑物的高度 H等于或大于 100米时, 按下列公式得到 D:
D = H (公式 4)
以上为 GB50057中的规定。 在不同的标准或规范中对扩大宽度和截收面积的定义有所 不同, 比如 GB21714.2- 2008 《雷电防护第 2部分: 风险管理》 中规定不论建筑物的高度是多 少, 扩大宽度都取值为三倍高度, 即按下列公式得到 D-
D = 3H (公式 5)
与之相对应的, 在 GB21714中截收面积用 Ad表示。
扩大宽度和截收面积的不同定义不影响本发明专利的独立性和完整性。不管用哪一个标 准或规范计算建筑物的截收面积, 本发明专利的基本原理都是一样的, 只需套用其扩大宽度 D的相应公式即可。
综上所述, 长方体形态的建筑物根据公式 2计算截收面积,其截收范围的平面图如附图 1所示。 GB50057同时规定, "当建筑物各部位的高不同时, 应沿建筑物周边逐点算出最大扩 大宽度, 其等效面积应按每点最大扩大宽度外端的连接线所包围的面积"。 因此, 如果将建筑 物顶面的周边和其截收范围的周边连接起来, 则可以得到该截收范围在三维立体空间内的形 态, 如附图 2所示为长方体建筑物的截收范围的剖面图。
以上介绍的是周边没有其它物体的孤立建筑物的截收面积的计算方法,但事实上建筑物 很少单独存在,现代城市里建筑物更是高度密集,这些相邻的建筑物其截收面积会相互影响, 为此 GB50057在其 "附录 A建筑物年预计雷击次数" 中同时规定了在建筑物周边有其它建 筑物时,对本栋建筑物的截收面积进行修正的计算方法, 比如其中第 3条规定: "当建筑物的 高度小于 100m, 同时其周边在 2D范围内有比它高的其他建筑物时, …算出的等效面积可减 去 DX (这些建筑物与所考虑建筑物边长平行以米计的长度总和) X 10_6 (km2)", 第 5条规 定: "当建筑物的高度等于或大于 100m, 同时其周边在 2H范围内有等高或比它低的其他建 筑物, 且不在所确定建筑物以滚球半径等于建筑物高度 (m) 的保护范围内时, …算出的等 效面积可减去 (H/2) X (这些建筑物与所确定建筑物边长平行以米计的长度总和) X 10— 6 (km2)", 等等。
GB50057虽然给出了这些计算方法, 但是其定义不够明确, 规定不够详细, 比如: 其中 规定, "当这些建筑物不在所考虑建筑物的保护范围内时 ...... ", 如何判断一栋建筑物是否位 于另一栋建筑物的保护范围内?如果该建筑物的一部分位于所考虑建筑物的保护范围内, 该 如何计算?再比如, GB50057中频频提到的一个计算参数是 "这些建筑物与所确定建筑物边 长平行以米计的长度", 但如果是圆形的或者与所考虑建筑物并不平行的建筑物, 该如何计 算? GB50057对这些情况没有做出明确的定义或规定。
同时, GB50057给出的计算方法对各种复杂情况的考虑不充分, 比如: 其中对于本栋建 筑物和其它建筑物在高度上的差别只有 "等高或比它低"和 "比它高"两个选项, 不论高多 少, 都是同一个选项 '比它高', 所得到的计算结果都一样; 对于本栋建筑物和其它建筑物之 间距离上的差别, 只有 "在 2D范围内 "或 "在 2H范围内 "两个选项, 只要在这个范围内, 不论距离多远, 计算结果也都一样。 这样高度雷同的计算结果显然无法反映不同的建筑物相 互之间在高度和距离上的千差万别。
而且, GB50057给出的计算方法, 很大程度上需要人工判断和选取不同的条款、 公式和 相应的参数, 在建筑物数量多、 形状复杂的情况下, 出错的概率是很大的。
总而言之, GB50057给出的计算方法, 是从定性的角度考虑, 不利于建立数学模型, 操 作难度大, 出错概率高, 计算精准度差, 实际上无法满足实际情况下日常工作的需求。
在这种情况下, 高磊经过研究, 提出了一种科学合理地考虑周围物体时计算建筑物雷击 次数截收面积的方法。 该方法从定量的角度考虑, 便于建立数学模型来计算, 按照该方法开 发软件, 用户只需完成对本栋建筑物和其周边物体的测量及建模工作, 其余计算工作都可由 软件自动完成, 使用方便, 而且计算准确。 发明内容: 建筑物很少单独存在, 绝大多数建筑物附近或多或少存在有其它建筑物或者构筑物, 各 自的截收范围相互之间会有所重叠(借用数学里的概念, 其截收范围相互之间有交集), 因此 在计算某一座建筑物 (以下称之为本栋建筑物) 的截收面积时, 如果不考虑其周边的其它建 筑物, 其计算结果无疑是不科学的。 那么, 在考虑周围物体时, 该如何计算本栋建筑物的雷 击次数截收面积呢?
从附图 2可见, 建筑物的截收范围是建筑物顶面的周边各点向外放出扩大宽度的最外端 的连接线所包围的范围, 因此, 可以从三维立体的角度来考虑周围物体对本栋建筑物的雷击 次数截收面积的影响。
具体来说, 对于本栋建筑物, 将其顶面 (顶面可能是水平面或斜坡面, 一个建筑物可能 有多个顶面)周边边线上的各点 (称之为本点, 其高度设为^) 按照各自的扩大宽度 取 决于 #, 具体定义在不同的标准或规范中可能有所不同) 向其四周的地面进行投射, 可以得 到各个本点位于地面上的各自的圆形的投射区域。相邻的本点,其投射区域可能有所重叠(有 交集)。
同理, 也可以将顶面周边的各条边线按照各自的扩大宽度/?向其四周的地面进行投射, 其本质就是将边线上各个本点的投射区域整合起来, 得到该条边线的投射区域。 所谓整合是 指, 如果地面上某一点位于这条边线上任何一个本点的投射区域内, 就认为该点位于该条边 线的投射区域内, 据此得到这条边线的投射区域 (借用数学的概念, 边线的投射区域可以理 解为其各个本点的投射区域的并集)。如果这条边线是水平的,则其在地面上的投射区域的形 状类似于胶囊, 如附图 3所示。
同理也可以将整个顶面按照各自的扩大宽度/?向其四周进行投射, 其本质就是将顶面上 各条边线的投射区域以及顶面本身在地面上的垂直投影整合起来, 所得到的投射区域的具体 形态随顶面的形状和高度而变。
将本栋建筑物各个顶面的单独的投射区域整合起来, 所得到的整个投射区域就是本栋建 筑物在地面上的截收范围, 称之为本栋截收范围, 其面积就是本栋建筑物的截收面积, 称之 为本栋截收面积。
在三维立体空间内, 本栋建筑物的各个顶面、 建筑物在地面上的截收范围、 从顶面向截 收范围进行投射的线段所共同组成的空间体, 称之为本栋截收体。
具体来说, 本栋截收体由顶面 (即本栋建筑物的各个顶面, 可能是水平的, 也可能是倾 斜的, 甚至是竖直的, 比如楼顶将上下两层屋顶连接起来的外墙壁)、 底面(即本栋建筑物在 地面上的截收范围)和侧面 (侧面由位于最外侧的投射线组合而成, 将顶面的周边和底面的 周边连接起来) 围合而成, 其侧面一般由圆锥面和斜坡面两种形态组合而成。 比如, 对于圆 柱形的建筑物而言, 其空间截收体的顶面是个圆形, 底面也是个圆形, 其侧面周圈是 360度 转角的圆锥面, 整个形态是一个平头的圆锥体, 如附图 4所示; 对于长方体建筑物而言, 其 空间截收体的顶面是个矩形, 其底面是附图 1所示的圆角矩形, 其侧面是四个斜坡面 (四个 斜坡面的上边分别是矩形的两个长边和两个短边)和四个 90度转角的圆锥面(四个圆锥面的 顶点分别对应于矩形的四个顶点) 共同组成, 整个形态类似于桥台。
关于侧面的处理原则是: 侧面总是位于最外侧和上侧的。 这句话的含义是, 如果空间截 收体的各个侧面和顶面有相互交错的情况, 则位于最外侧和上侧的侧面是整个空间截收体的 侧面, 位于内侧和下侧的侧面则被包入空间截收体的内部, 不再成为侧面。 如果建筑物的某 个顶面是倾斜角度很大的斜面, 或者某个顶面在整个建筑物中处于较低的位置 (比如高层建 筑的裙楼的屋顶),则该顶面的全部或者一部分也有可能被包入空间截收体的内部,不再成为 顶面。
以上是根据本栋建筑物建立本栋截收体的过程。
按照上述的方法, 可以对位于本栋建筑物周边的每一栋其它建筑物都这样进行处理, 得 到各自的空间截收体。 距离较远的建筑物, 如果其在地面上的截收范围和本栋建筑物的截收 范围没有重叠 (没有交集), 则其对本栋建筑物的截收面积没有影响, 可以不考虑。 因此, 这 里所谓的其它建筑物, 只是那些对本栋建筑物的截收面积有影响的建筑物。 其它建筑物的数 量可能不止一个, 分布于本栋建筑物周边各个方向。
对扩大宽度 的不同定义会影响到其它建筑物的数量。 毫无疑问, 采用公式 5定义扩大 宽度时, 其它建筑物的数量会多于采用公式 4的定义时。
在确定了其它建筑物以后, 将各个其它建筑物的单独的空间截收体整合到一起, 将其整 体(可以理解为各空间截收体的并集)称之为其它截收体, 其截收范围称之为其它截收范围, 其截收面积称之为其它截收面积。 这里整合的意思是: 空间中某一点如果位于其中任何一个 其它建筑物的空间截收体范围内, 就认为该空间点是属于其它截收体的, 由此得到其它截收 体。 由于其它建筑物的数量可能不止一个并且可能位于本栋建筑物的各个方向, 所以其它截 收体的形态可能比较复杂, 甚至可能在形态上分为相互之间并不相连的不同部分。 但和本栋 截收体一样, 其它截收体也是由顶面、 底面和侧面围合而成, 其侧面一般由圆锥面和斜坡面 组合而成, 其侧面或顶面可能有相互交错的情况, 此时位于最外侧和上侧的成为整个空间截 收体的侧面。
以上得到了本栋截收体和其它截收体。 下面据此来计算本栋建筑物的截收面积。
附图 5是两座相邻建筑物的截收范围的平面示意图, 其中, A是本栋建筑物, B是其它建 筑物, 这两座建筑物的截收范围有所重叠, 图中的阴影区域即本栋截收范围和其它截收范围 的交集。 因此, 本栋建筑物的截收范围可以分为两部分, 一部分是本栋建筑物所独有的, 和 其它建筑物的截收范围没有重叠, 这部分的面积记为 SO; 另一部分和其它建筑物的截收范围 相重叠, 称为重叠截收范围, 这部分的面积记为 S。 根据平面几何和微积分的相关知识经过 计算可以得到 SO和5。
在某些情况下, SO或 S可能为 0。 比如, 如果本栋建筑物很矮小, 其它建筑物很高大, 并且两者之间距离很近, 此时本栋截收范围完全位于其它截收范围之内 (为其子集), 则 SO 为 0; 如果本栋建筑物周边没有其它建筑物, 此时本栋截收范围和其它截收范围没有交集, 则 S为 0。 即使在这些情况下, 仍然可以使用本专利的计算方法。
重叠截收范围由本栋建筑物和其它建筑物所共有, 因此 S如果大于 0的话,其面积可以划 分为两部分, 其中一部分归本栋建筑物, 记为 S1 ; 另一部分归其它建筑物, 记为 S2。
如附图 5所示, S=S1 +S2, 因此, 问题的关键是计算 S1的面积大小。
有两种方法可以计算 S1 , 分别介绍如下: 方法一, 称之为体积定量法。
以重叠截收范围的周边环线竖直向上分别切割本栋截收体和其它截收体, 如附图 6所示, 可以得到这两个截收体各自位于重叠截收范围内的部分,其体积分别称为本栋重叠体积 VI和 其它重叠体积 V2。根据立体几何和微积分的相关知识经过计算可以得到 VI和 V2的体积大小。 根据 VI、 V2以及 S可以得到 Sl, 具体公式如下:
Sl = S XV1/ (V1 +V2)
体积定量法科学合理, 是我们重点推荐的方法。 但是该方法有一点小小的不足: 由于以 定量的方法计算 Sl,所以无法清楚地划分本栋截收范围和其它截收范围之间的分界线。因此, 可以用下面的方法作为补充。 方法二, 称之为高度定性法。
本栋截收体和其它截收体如果有重叠部分 (有交集), 在它们之间可以绘制一条分界线, 称之为截收范围分界线, 其两侧分别称之为本栋侧和其它侧, 本栋侧靠近本栋建筑物, 其它 侧靠近其它建筑物, 如附图 7所示; 事实上, 如果本栋截收范围和其它截收范围没有交集, 则这条分界线会是一个明显的分隔带, 在分隔带内任何一点位置截收体的高度都为 0。
截收范围分界线的定义是: 在分界线的本栋侧, 任何一点位置上, 本栋截收体在该点的高 度都不低于其它截收体在该点的高度; 在分界线的其它侧, 任何一点位置上, 其它截收体在 该点的高度都不低于本栋截收体在该点的高度; 在分界线上任何一点位置, 本栋截收体和其 它截收体在该点的高度相同。 据此定义, 这条分界线可能是直线、 曲线或其它形态。 重叠截 收范围被这条分界线分为两部分, 位于本栋侧的那部分面积是 Sl, 位于其它侧的那部分面积 是 S2, 如附图 7所示。
根据以上定义, 可以绘制出这条分界线, 并计算 S1和 S2。 具体方法是将重叠截收范围按 照一定的尺度划分为一个个网格, 分别计算得到本栋截收体和其它截收体在每个网格节点上 的高度 hi和 h2。 根据 hi和 h2的高差不同, 分别处理如下:
如果 hi高于 h2, 则该节点位置位于分界线的本栋侧, 将该网格面积计入 S1;
如果 hi低于 h2, 则该节点位置位于分界线的其它侧, 将该网格面积计入 S2;
如果 hi和 h2相同或者基本相同, 则该点就是截收范围分界线上的点, 将该点绘制出来; 依次对每个网格节点这样处理以后, 最后得到 S1和 S2的最终累计值; 并且, 将分界线上 的点依次绘制出来, 最后形成的就是截收范围分界线。
在一般情况下,用高度定性法的计算结果和体积定量法相同, 而且高度定性法可以清楚地 划分本栋截收范围和其它截收范围之间的分界线, 便于向用户展示建筑物的具体截收范围。 但是, 高度定性法在某些情况下存在问题, 比如: 如果两栋建筑物高差很大, 距离很近, 矮 建筑的截收范围是高建筑的截收范围的子集, 如附图 8所示,此时截收范围分界线并不存在, 无法使用高度定性法; 或者, 虽然截收范围分界线存在, 但是本栋侧和其它侧位于分界线的 同一侧, 如附图 9所示, 这时的计算结果误差比较大。 因此我们并不推荐使用这种方法, 除 非需要绘制本栋截收范围和其它截收范围之间的分界线,并且在保证计算结果正确的前提下。 通过上述的两种方法 (体积定量法或者高度定性法), 都可以得到 Sl。 最后, 将 SO加上 Sl, 就是考虑周围物体时建筑物的雷闪次数截收面积。
以上就是本发明专利的主要内容。
附图说明:
图 1 位于中间的矩形是一座长方体建筑物在地面上的投影, 其长宽高分别是!^、 W、 H; 矩形外面的圆角矩形是长方体建筑物在地面上的截收范围的平面示意图, 其长度为 L+2D, 宽度为 W+2D, 四个圆角的半径是 D; D是根据 H得出的扩大宽度; 注意, 整个圆角矩形内 部, 包括建筑物本身在地面上的矩形投影区域, 都属于截收范围
图 2是长方体建筑物的截收范围的剖面图, 建筑物的长度为 L, 高度为 H, 从其屋顶顶 面的边缘向外侧的地面进行投射, 投射的扩大宽度为 D, 因此截收范围的长度为 L+2D;
图 3是一条水平的边线在地面上的投射区域的平面示意图, 其形状是类似于胶囊那样的 圆头矩形;
图 4是一座圆柱形建筑物的空间截收体的立体形态, 其内部的圆柱体是建筑物本身, 外 部的平头圆锥体是其空间截收体;
图 5是两栋相邻的建筑物在地面上的截收范围的平面示意图, 其中 A是本栋建筑物, B 是其它建筑物, SO是本栋建筑物所独有的截收范围的面积, 图中的阴影区域是两栋建筑物的 重叠截收范围 (交集部分), 其面积为 S; S由 S1和 S2构成, S1和 S2分别是本栋建筑物和 其它建筑物在重叠截收范围内各自所占有部分的面积;
图 6是根据体积定量法来计算两栋相邻建筑物的 S1和 S2的剖面示意图, 这两栋建筑物 的空间截收体有所重叠,以重叠截收范围的周边环线向上分别切割本栋截收体和其它截收体, 可以得到 VI和 V2; 根据 VI和 V2的比例来计算 S1和 S2
图 7是根据高度定性法来计算两栋相邻建筑物的 S1和 S2的平面示意图,其中 A是本栋 建筑物, B是其它建筑物, 其重叠截收范围被分界线分为两部分, 其面积分别是 S1和 S2; 整个截收范围被分界线分为本栋侧和其它侧, 在本栋侧, 任何一点位置上本栋截收体不低于 其它截收体; 在其它侧, 任何一点位置上其它截收体不低于本栋截收体; 在分界线上, 本栋 截收体和其它截收体等高; 分界线可能是直线或曲线
图 8 是高度定性法无法计算的一种情况, 图中的 A建筑较高, B建筑较矮, 两者距离较 近, B建筑的截收范围完全位于 A建筑的截收范围以内(成为其子集),此时不存在截收范围 分界线, 也就无法用高度定性法计算截收面积
图 9 是高度定性法计算误差较大的一种情况, 图中虽然有截收范围分界线存在, 但是本 栋侧和其它侧位于分界线的同一侧, 此时高度定性法计算结果误差较大
图 10 是对某个网格节点进行操作的剖面示意图 , 图中本栋建筑物位于画面左侧, 其它 建筑物位于画面右侧, M和 h2分别是本栋截收体和其它截收体在该网格节点处的髙度, 根 据 hi和 h2的比例对该点所在网格的面积进行分配 具体实施方式:
空间截收体的形态一般是比较复杂的, 以手工计算的方式要得到准确的 S0、 S、 VI和 V2 是不大可能的, 因此最好用计算机编程来计算。 虽然原理相同, 但具体编程的方式和流程可 能随每个人的习惯不同而有多种形式, 下面列出了其中一种最简单的实施方式, 由以下步骤 组成: 步骤一: 对本栋建筑物及其周边的其它建筑物进行测量, 获取其方位、 形态、 尺寸、 高度等相关信息, 以在程序中建模的方式输入计算机; 如果不清楚哪些建筑物属于其它建筑 物, 则将周边尽可能多的建筑物输入, 区域越广越好; 步骤二:由计算机程序将包括所有建筑物截收范围的整个区域按照一定的尺度划分为一 个个网格, 计算得到本栋截收体和其它截收体分别在每个网格节点上的高度, 保存在一个多 维数组中; 该数组至少有三个维度, 其中两个维度用于表示平面坐标, 还有一个维度表示空 间截收体在坐标点上的高度; 网格划分得越细密, 网格的数量就越多, 数组的规模就越大, 计算结果也就越精准, 计算所需要的时间也就越长; 步骤三: 由计算机程序对整个区域内的每个网格节点进行扫描, 获取本栋截收体和其 它截收体分别在这个点位置上的高度 hi和 h2, 如附图 10所示; 根据 hi的高度是否为 0, 分 为下面两种情况处理:
如果 hi为 0, 不作任何处理;
如果 hi大于 0, 将该网格面积的 hl/ (hl+h2) 累加入本栋建筑物的截收面积, 比如: 假设 hl = 3米, h2 = 7米, 则将该网格面积的 30% (即 3/10) 加入; 假如 h2=0, 则将该 网格面积的 100%都加入; 步骤四: 对整个区域内的每一个网格的面积都这样进行处理, 最后得到的累加值, 即为 考虑周围物体时本栋建筑物的雷击次数截收面积。

Claims

权 利 要 求 书 WO 2013/181981 PCT/CN2013/075412
1、 一种量化计算建筑物 (或构筑物)的雷击次数截收面积的方法, 包括对本栋建筑物及 其周围物体 (建筑物或构筑物)进行测量和建模的过程, 特征是在三维立体空间里建立虚拟的 本栋截收体和其它截收体, 按照本栋重叠体积 VI和其它重叠体积 V2的比例对重叠截收面积 S进行分配, 获取重叠截收面积中属于本栋建筑物的那部分面积 Sl, 再加上本栋建筑物所独 有的截收面积 S0, 即为考虑周围物体时本栋建筑物的截收面积。
2、 权利要求 1所述的方法, 其特征是将本栋建筑物周围所有可能对其截收面积有影响 的其它物体分别建立空间截收体并整合到一起, 最后得到的其它截收体作为一个整体 (即所 有其它物体的空间截收体的并集)参与对本栋建筑物的截收面积的计算。
3、 权利要求 1所述的方法, 其特征是所建立的本栋截收体和其它截收体由顶面、 底面 和侧面围合而成, 其顶面是建筑物的顶面, 底面是建筑物在地面上的截收范围, 侧面将顶面 周边和底面周边相连接, 由圆锥面和斜坡面两种形态组合而成; 侧面在相互之间或者和顶面 发生交错时, 以位于最外侧或上侧的面作为整个空间截收体的侧面, 位于内侧或下侧的面被 包入空间截收体内部, 不再作为侧面或顶面。
4、 权利要求 1所述的方法, 其特征是对本栋建筑物和其它建筑物的重叠截收面积 S进 行分配, 得到其中属于本栋建筑物的那部分面积 S1; 具体方法是用重叠截收范围的周边环线 竖直向上对本栋截收体和其它截收体进行切割, 分别得到本栋重叠体积 VI 和其它重叠体积 V2, 据此得到 Sl, 公式为: Sl = S XV1/ (Vl +V2)0
5、 权利要求 1所述的方法, 其特征是将所建立的本栋截收体或其它截收体以多维数组 的形式进行保存和计算, 具体方法是将包括所有建筑物截收范围的整个区域按照一定的尺度 划分为一个个网格, 计算得到本栋截收体和其它截收体分别在每个网格节点上的高度, 保存 在一个多维数组中; 该数组至少有三个维度, 其中两个维度用于表示平面坐标, 还有一个维 度表示空间截收体在坐标点上的高度。
6、 权利要求 1所述的方法, 其特征是将包含全部截收范围的平面区域划分为一个个网 格, 网格尺寸的大小可在一定范围内变动, 根据每个网格节点位置上本栋截收体和其它截收 体的高度 hi和 h2判断该节点位置的相关信息: 如果该节点位置上 hl=0, h2=0, 则该点不属 于任何截收范围; 如果 hl〉0, h2=0, 则该点位于且只位于本栋截收范围内; 如果 hl=0, h2〉0, 则该点位于且只位于其它截收范围内; 如果 hl>0, h2>0, 则该点位于本栋建筑物和其它建筑 物的重叠截收范围内; 如果 hi和 h2相等或基本相等, 则该点位于本栋截收范围和其它截收 范围的分界线上。
7、 权利要求 1所述的方法, 其特征是将本栋建筑物和其它建筑物的重叠截收范围划分 为一个个网格, 网格尺寸的大小可在一定范围内变动, 计算得到本栋截收体和其它截收体分 别在每个网格节点上的高度 hi和 h2, 如果 h i大于 0的话, 将该网格面积的 hi/ (hl+h2) 部分划归本栋建筑物; 对每个网格都这样操作, 最后得到的累计值即为重叠截收范围中属于 本栋建筑物的部分 Sl。
8、 权利要求 1所述的方法, 其特征是将包含全部截收范围的平面区域划分为一个个网 格, 网格尺寸的大小可在一定范围内变动, 计算得到本栋截收体和其它截收体分别在每个网 格节点位置上的高度 hi和 h2; 如果 hi为 0, 则跳过去, 否则将该网格面积的 hi/ (hl+h2) 部分累加入本栋建筑物的截收面积; 对每个网格都这样操作, 最后得到的累计值即为考虑周 围物体时本栋建筑物的雷击次数截收面积。
9、 一种根据权利要求 1所述的方法计算某个区域内若干栋建筑物各自的截收面积的方 法, 其特征是每次指定其中某一栋建筑物为本栋建筑物, 计算得到其考虑周围物体时的截收 面积; 对区域内的各栋建筑依次进行操作, 最后得到各栋建筑物的截收面积。
10、 一种计算建筑物 (或构筑物)的雷击次数截收面积的方法, 包括对本栋建筑物及其周围 物体 (建筑物或构筑物)进行测量和建模的过程, 特征是在三维立体空间里建立虚拟的本栋截 权 利 要 求 书
WO 2013/181981 PCT/CN2013/075412
收体和其它截收体, 将全部截收范围所在的整个区域按照一定的尺度划分为一个个网格, 分 别计算得到本栋截收体和其它截收体在每个网格节点上的高度 hi和 h2。 根据 hi和 h2的高 差不同, 分别处理:
如果 hi高于 h2, 则将该网格面积计入本栋建筑物的截收面积;
如果 hi低于 h2, 不做操作;
如果 hi和 h2相同或者基本相同, 则该点就是截收范围分界线上的点, 将该点绘制出来; 依次对每个网格节点这样处理以后, 最后得到的最终累计值为本栋建筑物的截收面积; 并 且, 可以将分界线上的点依次绘制出来, 最后形成截收范围分界线。
PCT/CN2013/075412 2011-12-26 2013-05-09 考虑周围物体时计算建构筑物雷击次数截收面积的方法 WO2013181981A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/405,058 US20150177414A1 (en) 2011-12-26 2013-05-09 Method for calculating lightning stroke frequency interception area of structure and building under consideration of surrounding objects
EP13800212.6A EP2857997A4 (en) 2012-06-04 2013-05-09 METHOD FOR CALCULATING THE FREQUENCY INTERCEPTION AREA ASSOCIATED WITH LIGHTNING OF A BUILDING AND A BUILDING TAKING INTO ACCOUNT ENVIRONMENTAL OBJECTS
BR112014030140A BR112014030140A2 (pt) 2012-06-04 2013-05-09 método para o cálculo quantitativo da área de interceptação da frequência de relâmpagos de um edifício (ou uma estrutura); e método para o cálculo de cada ia de vários edifícios dentro de uma determinada região

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210182588.8A CN102799706B (zh) 2011-12-26 2012-06-04 考虑周围物体时计算建构筑物雷击次数截收面积的方法
CN201210182588.8 2012-06-04

Publications (1)

Publication Number Publication Date
WO2013181981A1 true WO2013181981A1 (zh) 2013-12-12

Family

ID=49711474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075412 WO2013181981A1 (zh) 2011-12-26 2013-05-09 考虑周围物体时计算建构筑物雷击次数截收面积的方法

Country Status (3)

Country Link
EP (1) EP2857997A4 (zh)
BR (1) BR112014030140A2 (zh)
WO (1) WO2013181981A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112070826A (zh) * 2020-08-31 2020-12-11 中铁大桥勘测设计院集团有限公司 一种建筑物防雷等效面积的计算方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105938505B (zh) * 2016-04-12 2019-11-19 广州京维智能科技有限公司 一种供水管网压力检测点的布置方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936880A (zh) * 2006-10-17 2007-03-28 国网武汉高压研究院 采用网格法确定雷电参数的统计方法
CN101261616A (zh) * 2008-04-21 2008-09-10 国网武汉高压研究院 电网雷害分布确定方法
JP2008217541A (ja) * 2007-03-06 2008-09-18 Tokyo Electric Power Co Inc:The 配電線雷事故数の算出装置、及び配電線雷事故数の算出方法
CN101272040A (zh) * 2008-04-28 2008-09-24 华北电力科学研究院有限责任公司 利用电网雷害分布进行输电线路防雷配置的方法
CN102799706A (zh) * 2011-12-26 2012-11-28 高磊 考虑周围物体时计算建构筑物雷击次数截收面积的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936880A (zh) * 2006-10-17 2007-03-28 国网武汉高压研究院 采用网格法确定雷电参数的统计方法
JP2008217541A (ja) * 2007-03-06 2008-09-18 Tokyo Electric Power Co Inc:The 配電線雷事故数の算出装置、及び配電線雷事故数の算出方法
CN101261616A (zh) * 2008-04-21 2008-09-10 国网武汉高压研究院 电网雷害分布确定方法
CN101272040A (zh) * 2008-04-28 2008-09-24 华北电力科学研究院有限责任公司 利用电网雷害分布进行输电线路防雷配置的方法
CN102799706A (zh) * 2011-12-26 2012-11-28 高磊 考虑周围物体时计算建构筑物雷击次数截收面积的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
""Design code for lighting protection of buildings"", PRC STANDARD GB50057-2010, 1 October 2011 (2011-10-01)
See also references of EP2857997A4 *
UNKNOWN: ""Lightning protection, part 2: Risk Management",", PRC STANDARD GB21714.2-2008

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112070826A (zh) * 2020-08-31 2020-12-11 中铁大桥勘测设计院集团有限公司 一种建筑物防雷等效面积的计算方法
CN112070826B (zh) * 2020-08-31 2023-11-07 中铁大桥勘测设计院集团有限公司 一种建筑物防雷等效面积的计算方法

Also Published As

Publication number Publication date
EP2857997A4 (en) 2016-06-15
EP2857997A1 (en) 2015-04-08
BR112014030140A2 (pt) 2017-06-27

Similar Documents

Publication Publication Date Title
CN102799706B (zh) 考虑周围物体时计算建构筑物雷击次数截收面积的方法
CN109726470B (zh) 一种三维模型指标的核查方法、装置和介质
Turkan et al. Tracking of secondary and temporary objects in structural concrete work
CN106898045B (zh) 一种基于sgog瓦块的大区域真三维地理场景自适应构建方法
CN103020342B (zh) 一种从地面LiDAR数据中提取建筑物轮廓和角点的方法
Bitelli et al. Automated voxel model from point clouds for structural analysis of cultural heritage
CN106023312A (zh) 基于航空LiDAR数据的三维建筑物模型自动重建方法
CN103927788A (zh) 基于城市竖向规划的建筑地物分层dem模型制作方法
US11250175B2 (en) Spatial-information generation apparatus, spatial-information generation method, and non-transitory computer readable medium
CN104133936A (zh) 考虑周边物体时计算建构筑物各部位雷击概率的方法
CN104751479A (zh) 基于tin数据的建筑物提取方法和装置
CN107918953A (zh) 基于三维空间的激光扫描电力线点云的提取方法及装置
WO2015066714A1 (en) Estimation of three-dimensional models of roofs from spatial two-dimensional graphs
WO2013181981A1 (zh) 考虑周围物体时计算建构筑物雷击次数截收面积的方法
Temizer et al. 3D documentation of a historical monument using terrestrial laser scanning case study: Byzantine Water Cistern, Istanbul
CN107169080A (zh) 一种基于gis和空间数据库相结合的地理空间分析系统
Sammartano et al. High scale 3D modelling and orthophoto of curved masonries for a multipurpose representation, analysis and assessment
Canciani et al. Virtual anastylosis of the Arch of Titus at Circus Maximus in Rome
KR102282933B1 (ko) 도시 개발 패턴이 반영된 도시모델 생성 장치
CN113051642B (zh) 非住宅景观生成方法、装置、设备及存储介质
CN112784421B (zh) 一种建筑bim模型走廊、房间空间提取及统计方法
CN115391871A (zh) 商业用地自动布局方法、电子设备及存储介质
CN116051771A (zh) 一种基于无人机倾斜摄影模型的光伏bim屋顶自动建模方法
CN113987614A (zh) 一种基于Revit平台的地下室支承点网自动生成装置
CN114580053A (zh) 一种基于bim参数化的装配式叠合剪力墙智能建模方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800212

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14405058

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013800212

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014030140

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014030140

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141202