[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013174208A1 - 基于空间原子氧的无燃料航天器推进系统及推进方法 - Google Patents

基于空间原子氧的无燃料航天器推进系统及推进方法 Download PDF

Info

Publication number
WO2013174208A1
WO2013174208A1 PCT/CN2013/075242 CN2013075242W WO2013174208A1 WO 2013174208 A1 WO2013174208 A1 WO 2013174208A1 CN 2013075242 W CN2013075242 W CN 2013075242W WO 2013174208 A1 WO2013174208 A1 WO 2013174208A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic oxygen
spacecraft
fuel
oxygen
propulsion
Prior art date
Application number
PCT/CN2013/075242
Other languages
English (en)
French (fr)
Inventor
易忠
张超
孟立飞
姜海富
刘业楠
肖琦
姜利祥
于兆吉
Original Assignee
北京卫星环境工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京卫星环境工程研究所 filed Critical 北京卫星环境工程研究所
Priority to EP13794208.2A priority Critical patent/EP2853737B1/en
Priority to US14/403,109 priority patent/US9796487B2/en
Publication of WO2013174208A1 publication Critical patent/WO2013174208A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/405Ion or plasma engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/409Unconventional spacecraft propulsion systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/411Electric propulsion
    • B64G1/413Ion or plasma engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/74Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof combined with another jet-propulsion plant
    • F02K9/76Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof combined with another jet-propulsion plant with another rocket-engine plant; Multistage rocket-engine plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0012Means for supplying the propellant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0081Electromagnetic plasma thrusters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0093Electro-thermal plasma thrusters, i.e. thrusters heating the particles in a plasma

Definitions

  • the invention relates to the technical field of spacecraft propulsion and space environment utilization, and particularly relates to a system for using a space atomic oxygen to promote the movement of a spacecraft in a spacecraft and a propulsion method for propelling the spacecraft in a constant motion. Background technique
  • Space propulsion technology can generally be divided into chemical propulsion, electric propulsion, and other propulsion technologies (such as solar sails, rope propulsion, etc.). At present, most of the aircraft's main propellers use chemical propulsion. Electric propulsion, as an advanced propulsion technology, is also receiving more and more attention.
  • Chemical propulsion is the use of chemical energy to propel spacecraft into a predetermined space orbit and to achieve on-orbit maneuvering.
  • the most prominent feature of chemical propulsion is the ability to provide high thrust, which has long been the most used propulsion technology in the aerospace industry.
  • the chemical engine is a control execution component that is currently required for long-life three-axis attitude-controlled stable satellites and satellites.
  • pulsed operation is mainly used for attitude adjustment or positional maintenance of satellites
  • steady-state operation is mainly used for orbital maneuvers of satellites.
  • the electric propulsion system uses the electrical energy generated by solar panel windsurfing or nuclear reactors to provide energy to the propellant, allowing the propellant to produce jet velocities that are much higher than those produced by conventional chemical thrusters.
  • the high specific impulse of the electric push can reduce the system quality, save the propellant to improve the life and increase the payload.
  • the electric propulsion can complete the tasks that the conventional propulsion system cannot accomplish.
  • the problem solved by the present invention is that the existing fuel-propelled spacecraft propulsion method has a high launching cost, and the orbital life of the spacecraft mainly depends on the amount of fuel carried, which leads to the problem that the spacecraft's orbit life is limited.
  • the present invention utilizes space atomic oxygen as a propellant working medium, so that a spacecraft that performs orbital motion in a space environment can always perform spatial rotational motion without being affected by minute resistance in the space environment.
  • the present invention adopts the following technical solutions.
  • a space-free atomic oxygen-based fuel-free spacecraft propulsion system comprising an outer cylinder of a propulsion device with open ends, an atomic oxygen collection device disposed inside the outer cylinder of the propulsion device, an RF generating device and an ion cyclotron heating device, atomic oxygen collection
  • the device is disposed at the front end of the outwardly propelling device outer cylinder, which is sequentially sealed with the radio frequency generating device and the ion cyclotron heating device by the magnetic confinement device, and the spiral wave discharge oxygen plasma inlet and outlet in the ion cyclotron heating device
  • the atomic oxygen collecting device supercharges the space atomic oxygen entering the front end of the outer tube of the propelling device during the forward process of the spacecraft, and the pressurized space atomic oxygen is spirally waved in the radio frequency generating device segment.
  • the discharge method performs ionization, and in the ion cyclotron heating device, the oxygen ions in the ionized oxygen plasma absorb the energy of the ion cyclotron wave to cause the kinetic energy to increase, and the discharge port is changed by adjusting the magnetic confinement device in the ion cyclotron heating device.
  • Magnetic field type ie the shape and distribution of magnetic lines of force
  • the circumferential movement of oxygen ions is converted into parallel motion, and oxygen ions are ejected from the discharge port to provide propulsion for the spacecraft.
  • the atomic oxygen collecting device is an atomic oxygen collecting device whose cross-sectional area is gradually reduced, and is preferably a horn type atomic oxygen collecting device.
  • the spiral wave discharge mode in the RF generating device is generated by the RF discharge, and the ion cyclotron wave in the ion cyclotron heating device is generated by the RF device.
  • the above adjustment of the magnetic field position means that the magnetic field is adjusted to a divergent magnetic field.
  • propulsion system wherein the propulsion system is disposed on both sides of the spacecraft, and the atomic oxygen in the orbital space environment is used as a working medium, and is subjected to spiral wave ionization, ion cyclotron heating, and then accelerated to be ejected.
  • the orbital motion of the spacecraft wherein the propulsion system is disposed on both sides of the spacecraft, and the atomic oxygen in the orbital space environment is used as a working medium, and is subjected to spiral wave ionization, ion cyclotron heating, and then accelerated to be ejected.
  • the orbital motion of the spacecraft wherein the propulsion system is disposed on both sides of the spacecraft, and the atomic oxygen in the orbital space environment is used as a working medium, and is subjected to spiral wave ionization, ion cyclotron heating, and then accelerated to be ejected.
  • the propulsion system of the invention does not need to carry the working medium, greatly reduces the launching cost, and can realize the full life cycle of the spacecraft in orbit, which has great advantages.
  • FIG. 1 is a schematic diagram of a space atomic oxygen-based fuel-free spacecraft propulsion system of the present invention.
  • 1-space atomic oxygen 2-propulsion device outer cylinder; 3-atomic oxygen collection device; 4-RF generator; 5-magnetic restraint device; 6-spiral discharge oxygen plasma; 7-ion cyclotron wave heating Device; 8-magnetic restraint; 9-ion flame.
  • the space atomic oxygen-based fuel-free spacecraft propulsion system of the present invention comprises a propulsion device outer cylinder 2 open at both ends, an atomic oxygen collecting device 3 disposed inside the outer cylinder 2 of the propulsion device, and a radio frequency generating device 4
  • the ion cyclotron wave heating device 7 is disposed at the front end of the outer cylinder 2 of the propulsion device as the orbiting spacecraft advances, and the space atomic oxygen 1 is rushed into the atomic oxygen with the forward movement of the orbiting spacecraft.
  • the atomic oxygen collecting device 3 is sealedly connected to one end of the radio frequency generating device 4 through a magnetic confinement device disposed at both ends of the radio frequency generating device 4.
  • the other end of the RF generating device 4 is also sealedly connected to the ion cyclotron heating device 7 through the magnetic confinement device at the end, from the entry end of the space atomic oxygen 1 to the space atomic oxygen entering the entry end of the RF generating device 4, the atomic oxygen collecting device 3
  • the cross-sectional area is gradually reduced, such as a horn type atomic oxygen collecting device.
  • the atomic oxygen collecting device 3 supercharges the space atomic oxygen entering the front end of the outer tube of the propelling device during the forward process of the spacecraft, and the pressurized space atomic oxygen is ionized by the spiral wave discharge method in the radio frequency generating device 4, and the ion cyclotron wave
  • the spiral wave discharge oxygen plasma 6 discharged from the radio frequency generating device 4 in the heating device enters the heating device, and the spiral wave discharge oxygen plasma 6 inlet and outlet of the heating device are respectively provided with another magnetic constraint 8 in the ion cyclotron
  • the energy in the wave heating device 7 that causes the oxygen ions in the ionized oxygen plasma to absorb the ion cyclotron wave causes the kinetic energy to increase, and the magnetic constraint at the inlet and the outlet of the spiral wave discharge oxygen plasma 6 in the ion cyclotron heating device 7 is adjusted.
  • the device changes the position of the magnetic field at the exit (ie, the shape and distribution of the magnetic lines of force), causing the circumferential movement of the oxygen ions to be converted into parallel motion, and the oxygen ions are ejected from the outlet to provide propulsion for the spacecraft, and the plasma is ejected.
  • adjusting the magnetic field position means adjusting the magnetic field to a divergent magnetic field
  • the diverging magnetic field means extending radially outward from the magnetic field line of the magnetic field of the oxygen ion ejection port from the inside of the ion cyclotron heating device.
  • the space atomic oxygen-based fuel-free spacecraft propulsion system of the present invention is particularly suitable for propelling spacecraft in orbit motion in a space environment.
  • the propulsion system is placed on both sides of the spacecraft, and the orbit space environment is utilized.
  • the atomic oxygen in the working medium is ionized by spiral wave method, heated by ion cyclotron, and then accelerated to eject to accelerate the orbital motion of the spacecraft.
  • the fuel-free propulsion system can be simplified into a cylindrical space particle collector that is installed at a specific location in the spacecraft and simultaneously collects space in the orbital space as the spacecraft moves.
  • Atomic oxygen there are AOs with a density of about 1015/m3 in the 300km orbital environment.
  • the average thermal motion velocity is negligible compared with the spacecraft's motion velocity, so the AO in the orbit can be regarded as immobile.
  • the speed of motion is the speed of the spacecraft, which is about 8km/s (take the first cosmic speed).
  • An AO ionizes to ionic oxygen. If the horizontal kinetic energy is increased to IKeyV by means of RF heating,
  • an impulse of 0+ is about 0.3 X 10-20 (N ⁇ S ).
  • the spacecraft carries an AO collector with a cross-sectional area of lm2, which can be collected in unit time.
  • the number of AOs is:
  • n is the orbital AO number density (1015/m3)
  • S is the collector cross-sectional area (lm2)
  • v is the spacecraft operating speed (about 8km/s)
  • the available thrust is proportional to the atomic oxygen flux density, ionization rate, and ion heating energy collected per unit time. If the collector radius is set to lm, the atomic oxygen collected per unit time is 100% ionized, and the oxygen ion is heated to IKeV, the thrust is about 70mN. Even if the ionization rate is 50%, a thrust of 35 mN can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)

Abstract

一种基于空间原子氧的无燃料航天器推进系统及推进方法,推进系统包括两端开口的推进装置外筒(2)、原子氧收集装置(3)、射频发生装置(4)和离子回旋波加热装置(7),原子氧收集装置(3)对航天器前行过程中进入推进装置外筒(2)前端的空间原子氧进行增压,增压后的空间原子氧在射频发生装置(4)内以螺旋波放电方式进行电离,并在离子回旋波加热装置(7)内使电离后的氧离子吸收能量引起其动能增加,氧离子喷出后为航天器提供前进的动力。与携带燃料的推进技术相比,利用空间环境粒子的无燃料推进系统无需携带工质,并可实现航天器在轨全寿命周期工作。

Description

基于空间原子氧的无燃料航天器推进系统及推进方法 技术领域
本发明涉及航天器推进及空间环境利用的技术领域, 具体涉及一种利 用空间原子氧的无燃料推进在规航天器运动的系统及利用该系统推进在规 航天器一直运动的推进方法。 背景技术
空间推进技术一般可以分为化学推进、 电推进, 以及其他一些推进技 术 (如太阳帆、 绳系推进等) 。 目前, 绝大部分飞行器的主推进器采用的 是化学推进。 而电推进作为先进的推进技术也正在得到越来越多的关注。
化学推进是利用化学能将航天器送入预定空间轨道和实现在轨机动的 推进技术。 化学推进最突出的特点是可以提供大推力, 一直以来是航天领 域使用最多的推进技术。 化学发动机是目前长寿命三轴姿控稳定卫星、 自 旋卫星一般都必须采用的一种控制执行部件。 化学发动机的工作方式有两 种: 脉冲工作和稳态工作。 脉冲工作主要用于卫星的姿态调整或位置保持; 稳态工作主要用于卫星的轨道机动。
电推进系统利用太阳电池帆板或核反应堆发电产生的电能给推进剂提 供能量, 使推进剂可以产生远高于普通化学推力器产生的喷气速度。 电推 进的高比冲可以降低系统质量、 节约推进剂提高寿命、 增加有效载荷, 除 了应用在长寿命通讯卫星上以提高卫星平台性能外, 电推进更可以完成常 规推进系统无法完成的任务。
化学推进和电推进都需要携带一定量的工质, 不仅占用了航天器的平 台重量, 大大增加了发射成本, 同时航天器的在轨运行寿命也主要取决于 所携带燃料的量, 依靠携带燃料的推进模式极大的制约了航天器平台功能 扩展以及服役寿命的延长。 因此, 当前国际航天界正积极发展以空间环境 利用为基础的各类推进技术。 包括太阳帆、 磁帆、 磁发动机等都是利用空 间环境中的光、 电、 磁等为基础发展而来的新技术。 发明内容
因此, 本发明解决的问题是现有携带燃料的航天器推进方法发射成本 高, 航天器在轨寿命主要依赖于燃料携带数量从而导致航天器在轨寿命受 限的问题。 本发明通过利用空间原子氧作为推进工质, 使得在空间环境中 进行在轨运动的航天器能够一直进行空间旋转运动而不受空间环境中微小 阻力的影响。
为了解决上述技术问题, 本发明采用了如下的技术方案。
一种基于空间原子氧的无燃料航天器推进系统, 包括两端开口的推进 装置外筒、 设置在推进装置外筒内部的原子氧收集装置、 射频发生装置和 离子回旋波加热装置, 原子氧收集装置设置在向前推进的推进装置外筒的 前端, 其依次通过磁约束装置分别与射频发生装置和离子回旋波加热装置 密封连接, 离子回旋波加热装置内的螺旋波放电氧等离子体入口和出口处 分别设置有另一磁约束装置, 原子氧收集装置对航天器前行过程中进入推 进装置外筒前端的空间原子氧进行增压, 增压后的空间原子氧在射频发生 装置段以螺旋波放电方式进行电离, 在离子回旋波加热装置内使电离后的 氧等离子体中的氧离子吸收离子回旋波的能量引起其动能增加, 通过调整 离子回旋波加热装置内的磁约束装置改变喷出口处的磁场位型 (即磁力线 的形状和分布) , 使氧离子的周向运动转变为平行运动, 氧离子喷出所述 喷出口后为航天器提供推进力。
进一歩地, 上述原子氧收集装置为截面积逐渐縮小的原子氧收集装置, 优选为喇叭型的原子氧收集装置。 进一歩地, 射频发生装置中的螺旋波放电方式通过射频放电产生, 且 离子回旋波加热装置内的离子回旋波通过射频装置产生。
进一歩地, 上述调整磁场位型是指将磁场调整为发散磁场。
一种上述推进系统的用途, 其中, 将该推进系统设置在航天器的两侧, 利用轨道空间环境中的原子氧作为工质, 经过螺旋波方式电离、 离子回旋 加热, 再经加速喷出来推进航天器的在轨运动。
与传统电推进技术相比, 本发明的推进系统无需携带工质, 大大降低 了发射成本, 并可实现航天器在轨全寿命周期工作, 具有巨大优势。 附图说明
图 1为本发明的基于空间原子氧的无燃料航天器推进系统示意图。 图中: 1-空间原子氧; 2-推进装置外筒; 3-原子氧收集装置; 4-射频 发生装置; 5-磁约束装置; 6-螺旋波放电氧等离子体; 7-离子回旋波加热 装置; 8-磁约束装置; 9-离子喷焰。
具体实施方式
以下结合附图对本发明的基于空间原子氧的无燃料航天器推进系统进 行详细说明, 具体实施方式仅为示例的目的, 并不旨在限制本发明的保护 范围。
参照图 1, 本发明的基于空间原子氧的无燃料航天器推进系统, 包括两 端开口的推进装置外筒 2、设置在推进装置外筒 2内部的原子氧收集装置 3、 射频发生装置 4和离子回旋波加热装置 7,原子氧收集装置 3设置在随着在 轨航天器向前推进的推进装置外筒 2的前端, 空间原子氧 1随着在轨航天 器的前进运动而冲入原子氧收集装置 3中, 原子氧收集装置 3通过射频发 生装置 4两端设置的磁约束装置与射频发生装置 4的一端进行密封连接, 然后射频发生装置 4另一端同样通过该端的磁约束装置与离子回旋波加热 装置 7密封连接, 从空间原子氧 1的进入端到空间原子氧进入射频发生装 置 4的进入端, 原子氧收集装置 3的截面积呈逐渐縮小, 例如喇叭型的原 子氧收集装置。 原子氧收集装置 3对航天器前行过程中进入推进装置外筒 前端的空间原子氧进行增压, 增压后的空间原子氧在射频发生装置 4 以螺 旋波放电方式进行电离, 且离子回旋波加热装置中从射频发生装置 4 中排 出的螺旋波放电氧等离子体 6进入该加热装置, 该加热装置的螺旋波放电 氧等离子体 6进口和出口都分别设置有另一磁约束 8,在离子回旋波加热装 置 7 内使电离后的氧等离子体中的氧离子吸收离子回旋波的能量引起其动 能增加, 通过调整离子回旋波加热装置 7中螺旋波放电氧等离子体 6进口 和出口处的磁约束装置改变出口处的磁场位型(即磁力线的形状和分布) , 使氧离子的周向运动转变为平行运动, 氧离子喷出所述出口后为航天器提 供推进力, 其喷出的等离子体为离子喷焰。 其中, 调整磁场位型是指将磁 场调整为发散磁场, 发散磁场是指从离子回旋波加热装置内部向着氧离子 喷出口磁场的磁力线呈放射状向外延伸。
本发明的基于空间原子氧的无燃料航天器推进系统特别适用于推进空 间环境中在轨运动的航天器, 使用该推进系统时, 将该推进系统设置在航 天器的两侧, 利用轨道空间环境中的原子氧作为工质, 经过螺旋波方式电 离、 离子回旋加热, 再经加速喷出来推进航天器的在轨运动。
为了简单说明无燃料推进系统在空间的使用过程, 可以将无燃料推进 系统简化为一个圆筒形的空间粒子收集器, 安装在航天器的特定位置, 随 航天器运动同时收集轨道空间环境中的原子氧, 300km轨道环境中存在着数 密度约为 1015/m3的 AO, 其平均热运动速度与航天器运动速度相比可以忽 略, 因而可以将轨道上的 AO视为不动, 二者的相对运动速度为航天器运动 速度, 约为 8km/s (取第一宇宙速度) 。 一个 AO电离为离子氧,如果经射频加热等方式将水平动能增加至 IKeV,
Figure imgf000007_0001
则一个 0+可获得的冲量约为 0. 3 X 10-20 (N · S ) 。
假设航天器携带一个截面积 lm2的 AO收集器, 则单位时间内可收集的
AO数量为:
N= nV= nSvt
其中, n为轨道 AO数密度(1015/m3), S为收集器横截面积 (lm2 ) , v 为航天器运行速度(约 8km/s ) , 则单位时间内收集的 A0数量 8 X 1018个。 由 Ft=A (MV) =△ (nmv)可知, 在粒子加速能量固定的前提下, 利用 空间原子氧可获得的推力与其电离率成正比例关系。 当前, 美国相关单位 采用螺旋波放电方法, 在一定条件下可以获得 100%电离的等离子体。 以此 为参考, 将收集的 A0全部电离并将氧离子加速至 IKeV, 可获得总冲量为 Ft=2. 4 X 10-2 (N - S ) , 获得推进力为 24mN。
基于空间原子氧的无燃料推进, 可获得的推力与单位时间收集的原子 氧通量密度、 电离率以及离子加热能量成正比例关系。 如果将收集器半径 设置为 lm, 单位时间收集的原子氧 100%电离, 且氧离子加热至 IKeV的情 况下, 可获得推力约为 70mN。 即使电离率在 50%的条件下, 也可获得 35mN 的推力。
尽管上文对本发明的具体实施方式进行了详细的描述和说明, 但应该 指明的是, 我们可以对上述实施方式进行各种改变和修改, 但这些都不脱 离本发明的精神和所附的权利要求所记载的范围。

Claims

权利要求书
1、 一种基于空间原子氧的无燃料航天器推进系统, 包括两端开口的推 进装置外筒、 依次设置在推进装置外筒内部的原子氧收集装置、 射频发生 装置和离子回旋波加热装置, 原子氧收集装置设置在向前推进的推进装置 外筒的前端, 其依次通过磁约束装置分别与射频发生装置和离子回旋波加 热装置密封连接, 离子回旋波加热装置内的螺旋波放电氧等离子体入口和 出口处分别设置有另一磁约束装置, 原子氧收集装置对航天器前行过程中 进入推进装置外筒前端的空间原子氧进行增压, 增压后的空间原子氧在射 频发生装置段以螺旋波放电方式进行电离, 在离子回旋波加热装置内使电 离后的氧等离子体中的氧离子吸收离子回旋波的能量引起其动能增加, 通 过调整离子回旋波加热装置内的磁约束装置改变喷出口处的磁场位型, 使 氧离子的周向运动转变为平行运动, 氧离子喷出所述喷出口后为航天器提 供推进力。
2、 如权利要求 1所述的无燃料航天器推进系统, 其中, 所述原子氧收 集装置为截面积逐渐縮小的原子氧收集装置。
3、 如权利要求 2所述的无燃料航天器推进系统, 其中, 所述原子氧收 集装置为喇叭型的原子氧收集装置。
4、 如权利要求 1所述的无燃料航天器推进系统, 其中, 射频发生装置 中的螺旋波放电方式通过射频放电产生, 且离子回旋波加热装置内的离子 回旋波通过射频装置产生。
5、 如权利要求 1-4任一项所述的无燃料航天器推进系统, 其中, 所述 调整磁场位型是指将磁场调整为发散磁场。
6、 如权利要求 1-5任一项所述推进系统的用途, 其中, 将该推进系统 设置在航天器的两侧, 利用轨道空间环境中的原子氧作为工质, 经过螺旋 波方式电离、 离子回旋加热, 再经加速喷出来推进航天器的在轨运动。
PCT/CN2013/075242 2012-05-22 2013-05-07 基于空间原子氧的无燃料航天器推进系统及推进方法 WO2013174208A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13794208.2A EP2853737B1 (en) 2012-05-22 2013-05-07 Fuel-free spacecraft propelling system based on spatial atomic oxygen
US14/403,109 US9796487B2 (en) 2012-05-22 2013-05-07 Fuel-free spacecraft propelling system based on spatial atomic oxygen and propelling method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210159715 2012-05-22
CN201210159721.8 2012-05-22
CN201210270034.3A CN102767497B (zh) 2012-05-22 2012-08-01 基于空间原子氧的无燃料航天器推进系统及推进方法
CN201210270030.5 2012-08-01

Publications (1)

Publication Number Publication Date
WO2013174208A1 true WO2013174208A1 (zh) 2013-11-28

Family

ID=47095014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/075242 WO2013174208A1 (zh) 2012-05-22 2013-05-07 基于空间原子氧的无燃料航天器推进系统及推进方法

Country Status (4)

Country Link
US (1) US9796487B2 (zh)
EP (1) EP2853737B1 (zh)
CN (1) CN102767497B (zh)
WO (1) WO2013174208A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113062838A (zh) * 2021-04-30 2021-07-02 中国科学院力学研究所 一种吸气电推技术用激光预电离增强吸气装置及方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9180984B2 (en) 2012-05-11 2015-11-10 The Boeing Company Methods and apparatus for performing propulsion operations using electric propulsion systems
US8915472B2 (en) 2012-05-11 2014-12-23 The Boeing Company Multiple space vehicle launch system
CN102767497B (zh) * 2012-05-22 2014-06-18 北京卫星环境工程研究所 基于空间原子氧的无燃料航天器推进系统及推进方法
CA2831309C (en) * 2012-12-04 2017-05-30 The Boeing Company Methods and apparatus for performing propulsion operations using electric propulsion systems
CN103114979B (zh) * 2013-02-04 2015-05-06 江汉大学 一种推进装置
CN103397991A (zh) * 2013-08-21 2013-11-20 哈尔滨工业大学 一种基于多级尖端会切磁场的等离子体推力器
CN103600854B (zh) * 2013-11-25 2017-01-11 北京卫星环境工程研究所 利用空间等离子体和磁场作用的航天器助推系统
CN104653422B (zh) * 2015-01-22 2017-04-12 大连理工大学 三级加速式螺旋波等离子体推进装置
EP3093966B1 (en) * 2015-05-13 2019-03-27 Airbus Defence and Space Limited Electric power generation from a low density plasma
FR3038663B1 (fr) * 2015-07-08 2019-09-13 Safran Aircraft Engines Propulseur a effet hall exploitable en haute altitude
CN106673930A (zh) * 2015-11-09 2017-05-17 北京卫星环境工程研究所 碱性金属或其氢化物在低地球轨道作为化学推进剂的应用
CN106672267B (zh) * 2015-11-10 2018-11-27 北京卫星环境工程研究所 基于空间原子氧与物质相互作用的推进系统与方法
RU2614906C1 (ru) * 2016-04-05 2017-03-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Прямоточный электрореактивный двигатель
DE102016206039A1 (de) * 2016-04-12 2017-10-12 Airbus Ds Gmbh Entladungskammer eines Ionenantriebs, Ionenantrieb mit einer Entladungskammer und eine Blende zur Anbringung in einer Entladungskammer eines Ionenantriebs
CN106286178B (zh) * 2016-08-26 2019-06-25 大连理工大学 离子碰撞加速式电推力器装置
US10590068B2 (en) 2016-12-06 2020-03-17 Skeyeon, Inc. System for producing remote sensing data from near earth orbit
US10715245B2 (en) 2016-12-06 2020-07-14 Skeyeon, Inc. Radio frequency data downlink for a high revisit rate, near earth orbit satellite system
US10351267B2 (en) 2016-12-06 2019-07-16 Skeyeon, Inc. Satellite system
US10415552B2 (en) * 2017-02-07 2019-09-17 The Boeing Company Injection system and method for injecting a cylindrical array of liquid jets
US10793295B2 (en) * 2017-12-05 2020-10-06 Jerome Drexler Asteroid redirection facilitated by cosmic ray and muon-catalyzed fusion
US10583632B2 (en) 2018-01-11 2020-03-10 Skeyeon, Inc. Atomic oxygen-resistant, low drag coatings and materials
RU2703854C1 (ru) * 2018-11-28 2019-10-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Двигатель на забортном воздухе с геликонным источником плазмы для поддержания малых космических аппаратов на низкой околоземной орбите
CN110748467B (zh) * 2019-10-29 2020-08-21 中国人民解放军国防科技大学 可应用于多流态的智能控制吸气式电推进系统
RU2741401C1 (ru) * 2020-01-29 2021-01-25 Андрей Иванович Шумейко Модуль с многоканальной плазменной двигательной установкой для малого космического аппарата
RU2764823C1 (ru) * 2020-11-16 2022-01-21 Общество С Ограниченной Отвественностью «Эдвансд Пропалшн Системс» Двунаправленный волновой плазменный двигатель для космического аппарата
CN113200141B (zh) * 2021-05-26 2022-05-31 西安理工大学 一种基于拉瓦管状等离子体吸气式增升装置
CN114135457B (zh) * 2021-11-30 2023-03-14 中国工程物理研究院电子工程研究所 一种离子推进器
US20240035458A1 (en) * 2022-08-01 2024-02-01 Cristina Nania Method and Apparatus for Accelerating a Vehicle in a Gravitational Field

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449941B1 (en) * 1999-04-28 2002-09-17 Lockheed Martin Corporation Hall effect electric propulsion system
CN1736131A (zh) * 2003-01-11 2006-02-15 泰雷兹电子器件有限公司 离子加速器系统
US7581380B2 (en) * 2006-08-07 2009-09-01 Wahl Eric L Air-breathing electrostatic ion thruster
CN101855948A (zh) * 2007-09-14 2010-10-06 塔莱斯电子设备有限公司 高压绝缘装置以及具有这种高压绝缘装置的离子加速器装置
CN102767497A (zh) * 2012-05-22 2012-11-07 北京卫星环境工程研究所 基于空间原子氧的无燃料航天器推进系统及推进方法
CN102797656A (zh) * 2012-08-03 2012-11-28 北京卫星环境工程研究所 吸气式螺旋波电推进装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29501616U1 (de) * 1995-02-02 1995-04-06 Schönenberg, Rolf, Prof. Dipl.-Ing., 55124 Mainz Ionenantrieb zum Beschleunigen von Flugkörpern oder Fahrzeugen
US6334302B1 (en) * 1999-06-28 2002-01-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Variable specific impulse magnetoplasma rocket engine
US20020100836A1 (en) * 2001-01-31 2002-08-01 Hunt Robert Daniel Hydrogen and oxygen battery, or hudrogen and oxygen to fire a combustion engine and/or for commerce.
DE10215660B4 (de) * 2002-04-09 2008-01-17 Eads Space Transportation Gmbh Hochfrequenz-Elektronenquelle, insbesondere Neutralisator
ES2272909T3 (es) * 2003-03-20 2007-05-01 Elwing Llc Propulsor para vehiculo espacial.
US7461502B2 (en) * 2003-03-20 2008-12-09 Elwing Llc Spacecraft thruster
EP1995458B1 (en) * 2004-09-22 2013-01-23 Elwing LLC Spacecraft thruster
US7581390B2 (en) 2006-04-26 2009-09-01 Cummins Inc. Method and system for improving sensor accuracy
JP2010519448A (ja) * 2007-02-16 2010-06-03 エイディー アストラ ロケット カンパニー 改良型プラズマ源
CN102230456B (zh) * 2011-06-22 2013-05-08 江苏大学 大气呼吸式激光发动机装置
CN102434414A (zh) * 2011-11-02 2012-05-02 北京理工大学 一种可变比冲磁等离子体火箭的磁喷管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449941B1 (en) * 1999-04-28 2002-09-17 Lockheed Martin Corporation Hall effect electric propulsion system
CN1736131A (zh) * 2003-01-11 2006-02-15 泰雷兹电子器件有限公司 离子加速器系统
US7581380B2 (en) * 2006-08-07 2009-09-01 Wahl Eric L Air-breathing electrostatic ion thruster
CN101855948A (zh) * 2007-09-14 2010-10-06 塔莱斯电子设备有限公司 高压绝缘装置以及具有这种高压绝缘装置的离子加速器装置
CN102767497A (zh) * 2012-05-22 2012-11-07 北京卫星环境工程研究所 基于空间原子氧的无燃料航天器推进系统及推进方法
CN102797656A (zh) * 2012-08-03 2012-11-28 北京卫星环境工程研究所 吸气式螺旋波电推进装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113062838A (zh) * 2021-04-30 2021-07-02 中国科学院力学研究所 一种吸气电推技术用激光预电离增强吸气装置及方法
CN113062838B (zh) * 2021-04-30 2024-05-03 中国科学院力学研究所 一种吸气电推技术用激光预电离增强吸气装置及方法

Also Published As

Publication number Publication date
CN102767497B (zh) 2014-06-18
CN102767497A (zh) 2012-11-07
EP2853737A1 (en) 2015-04-01
US20150210406A1 (en) 2015-07-30
US9796487B2 (en) 2017-10-24
EP2853737B1 (en) 2019-07-17
EP2853737A4 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
WO2013174208A1 (zh) 基于空间原子氧的无燃料航天器推进系统及推进方法
CN102797656B (zh) 吸气式螺旋波电推进装置
Zheng et al. A Comprehensive Review of Atmosphere‐Breathing Electric Propulsion Systems
CN104653422B (zh) 三级加速式螺旋波等离子体推进装置
WO2021082873A1 (zh) 可应用于多流态的智能控制吸气式电推进系统
US9657725B2 (en) Ion thruster
US7306189B2 (en) System and method for an ambient atmosphere ion thruster
EP2853736B1 (en) Chemical-electromagnetic hybrid propulsion system with variable specific impulse
CN110439771A (zh) 一种吸气式脉冲等离子体推力器
CN111486071A (zh) 一种吸气式电推进器
US12006923B2 (en) Intake system for an atmosphere breathing electric thruster for a spacecraft
Kuninaka et al. Hayabusa asteroid explorer powered by ion engines on the way to earth
CN105822515B (zh) 空间碎片等离子体推进器
Lan et al. Debris engine: A potential thruster for space debris removal
CN116101516B (zh) 一种具有静电式电推进系统的卫星
Sun et al. Propulsion Technology
Barnett Nuclear electric propulsion technologies: Overview of the NASA/DOE/DOD nuclear electric propulsion workshop
Slough A Harvesting Planetary Orbiter to Enable Deep Space Missions to the Jovian Planets
Bering et al. Using VASIMR® for the proposed europa mission
Böhrk et al. Flexible piloted Mars missions using the TIHTUS engine
CN117345572A (zh) 水加力离子发动机
Matsuda et al. A magnetic thrust chamber design for a laser fusion rocket based on impact fast ignition scheme
CN115288965A (zh) 一种封闭型非对称性电容器等离子加速推进模块
CN114572424A (zh) 一种近地卫星吸气式电推进器及其速度控制方法
MATLOFF Electric propulsion and interstellar flight

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13794208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013794208

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14403109

Country of ref document: US