WO2013161454A1 - 微細パターン転写用のモールドの製造方法及びそれを用いた凹凸構造を有する基板の製造方法、並びに該凹凸構造を有する基板を有する有機el素子の製造方法 - Google Patents
微細パターン転写用のモールドの製造方法及びそれを用いた凹凸構造を有する基板の製造方法、並びに該凹凸構造を有する基板を有する有機el素子の製造方法 Download PDFInfo
- Publication number
- WO2013161454A1 WO2013161454A1 PCT/JP2013/057851 JP2013057851W WO2013161454A1 WO 2013161454 A1 WO2013161454 A1 WO 2013161454A1 JP 2013057851 W JP2013057851 W JP 2013057851W WO 2013161454 A1 WO2013161454 A1 WO 2013161454A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- mold
- concavo
- block copolymer
- unevenness
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 274
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 115
- 229920001400 block copolymer Polymers 0.000 claims abstract description 189
- 238000000034 method Methods 0.000 claims abstract description 162
- 239000000463 material Substances 0.000 claims abstract description 131
- 239000002904 solvent Substances 0.000 claims abstract description 102
- 230000008569 process Effects 0.000 claims abstract description 85
- 229910052751 metal Inorganic materials 0.000 claims abstract description 56
- 239000002184 metal Substances 0.000 claims abstract description 56
- 239000003960 organic solvent Substances 0.000 claims abstract description 25
- 229920000233 poly(alkylene oxides) Polymers 0.000 claims abstract description 21
- 238000005323 electroforming Methods 0.000 claims abstract description 20
- 238000005191 phase separation Methods 0.000 claims abstract description 20
- 239000010410 layer Substances 0.000 claims description 130
- 238000004458 analytical method Methods 0.000 claims description 79
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 67
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 67
- 229920000642 polymer Polymers 0.000 claims description 64
- 239000004793 Polystyrene Substances 0.000 claims description 63
- 238000009826 distribution Methods 0.000 claims description 55
- 238000012546 transfer Methods 0.000 claims description 47
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 36
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 36
- 238000003825 pressing Methods 0.000 claims description 35
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 24
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 claims description 21
- 239000012044 organic layer Substances 0.000 claims description 19
- 238000005530 etching Methods 0.000 claims description 18
- 238000010030 laminating Methods 0.000 claims description 9
- 239000012046 mixed solvent Substances 0.000 claims description 8
- 229920002223 polystyrene Polymers 0.000 claims description 7
- 238000000576 coating method Methods 0.000 abstract description 67
- 239000011248 coating agent Substances 0.000 abstract description 62
- 239000010408 film Substances 0.000 description 131
- 239000010409 thin film Substances 0.000 description 96
- 239000011347 resin Substances 0.000 description 88
- 229920005989 resin Polymers 0.000 description 88
- 239000000243 solution Substances 0.000 description 80
- 238000000137 annealing Methods 0.000 description 73
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 46
- 229920001519 homopolymer Polymers 0.000 description 43
- 239000011521 glass Substances 0.000 description 40
- 238000010438 heat treatment Methods 0.000 description 32
- 238000005259 measurement Methods 0.000 description 29
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 26
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 24
- -1 octylstyrene Chemical compound 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 22
- 229910052759 nickel Inorganic materials 0.000 description 22
- 239000002585 base Substances 0.000 description 20
- 230000003287 optical effect Effects 0.000 description 20
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 14
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 14
- 238000010168 coupling process Methods 0.000 description 14
- 238000001035 drying Methods 0.000 description 14
- 229910000077 silane Inorganic materials 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 238000004544 sputter deposition Methods 0.000 description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- 230000008878 coupling Effects 0.000 description 12
- 238000005859 coupling reaction Methods 0.000 description 12
- 230000007547 defect Effects 0.000 description 12
- 229920000139 polyethylene terephthalate Polymers 0.000 description 12
- 239000005020 polyethylene terephthalate Substances 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 239000012298 atmosphere Substances 0.000 description 11
- 238000004140 cleaning Methods 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 238000004528 spin coating Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 229910010272 inorganic material Inorganic materials 0.000 description 8
- 239000011147 inorganic material Substances 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 230000005525 hole transport Effects 0.000 description 7
- 238000001459 lithography Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000007607 die coating method Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 238000001879 gelation Methods 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 230000001678 irradiating effect Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 4
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 239000005062 Polybutadiene Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- GZGREZWGCWVAEE-UHFFFAOYSA-N chloro-dimethyl-octadecylsilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](C)(C)Cl GZGREZWGCWVAEE-UHFFFAOYSA-N 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229920002857 polybutadiene Polymers 0.000 description 4
- 229920005553 polystyrene-acrylate Polymers 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000003618 dip coating Methods 0.000 description 3
- 238000005108 dry cleaning Methods 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 3
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920001195 polyisoprene Polymers 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- PYJJCSYBSYXGQQ-UHFFFAOYSA-N trichloro(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](Cl)(Cl)Cl PYJJCSYBSYXGQQ-UHFFFAOYSA-N 0.000 description 3
- KZVBBTZJMSWGTK-UHFFFAOYSA-N 1-[2-(2-butoxyethoxy)ethoxy]butane Chemical compound CCCCOCCOCCOCCCC KZVBBTZJMSWGTK-UHFFFAOYSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- GEQBRULPNIVQPP-UHFFFAOYSA-N 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1 GEQBRULPNIVQPP-UHFFFAOYSA-N 0.000 description 2
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 2
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000007611 bar coating method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- 238000007766 curtain coating Methods 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229940116333 ethyl lactate Drugs 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 150000008040 ionic compounds Chemical class 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 238000007644 letterpress printing Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 2
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 2
- KERTUBUCQCSNJU-UHFFFAOYSA-L nickel(2+);disulfamate Chemical compound [Ni+2].NS([O-])(=O)=O.NS([O-])(=O)=O KERTUBUCQCSNJU-UHFFFAOYSA-L 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003219 pyrazolines Chemical class 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 125000001567 quinoxalinyl group Chemical class N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 238000000235 small-angle X-ray scattering Methods 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical class C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 1
- KLCLIOISYBHYDZ-UHFFFAOYSA-N 1,4,4-triphenylbuta-1,3-dienylbenzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)=CC=C(C=1C=CC=CC=1)C1=CC=CC=C1 KLCLIOISYBHYDZ-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- XXKRKYCPIGXMAM-UHFFFAOYSA-N 1-methyl-3-(2-phenylphenyl)benzene Chemical group CC1=CC=CC(C=2C(=CC=CC=2)C=2C=CC=CC=2)=C1 XXKRKYCPIGXMAM-UHFFFAOYSA-N 0.000 description 1
- GUPMCMZMDAGSPF-UHFFFAOYSA-N 1-phenylbuta-1,3-dienylbenzene Chemical compound C=1C=CC=CC=1[C](C=C[CH2])C1=CC=CC=C1 GUPMCMZMDAGSPF-UHFFFAOYSA-N 0.000 description 1
- RECMXJOGNNTEBG-UHFFFAOYSA-N 1-phenylmethoxyethanol Chemical compound CC(O)OCC1=CC=CC=C1 RECMXJOGNNTEBG-UHFFFAOYSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- CTHJQRHPNQEPAB-UHFFFAOYSA-N 2-methoxyethenylbenzene Chemical compound COC=CC1=CC=CC=C1 CTHJQRHPNQEPAB-UHFFFAOYSA-N 0.000 description 1
- HONWGFNQCPRRFM-UHFFFAOYSA-N 2-n-(3-methylphenyl)-1-n,1-n,2-n-triphenylbenzene-1,2-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C(=CC=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 HONWGFNQCPRRFM-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- XLLXMBCBJGATSP-UHFFFAOYSA-N 2-phenylethenol Chemical compound OC=CC1=CC=CC=C1 XLLXMBCBJGATSP-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- CAAMSDWKXXPUJR-UHFFFAOYSA-N 3,5-dihydro-4H-imidazol-4-one Chemical compound O=C1CNC=N1 CAAMSDWKXXPUJR-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- WEELZNKFYGCZKL-UHFFFAOYSA-N 4-(4-phenylphenyl)-n,n-bis[4-(4-phenylphenyl)phenyl]aniline Chemical compound C1=CC=CC=C1C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)C=2C=CC(=CC=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 WEELZNKFYGCZKL-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical class C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910017073 AlLi Inorganic materials 0.000 description 1
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- LXFNWYKBYLTZAI-UHFFFAOYSA-N C(C)(C)C(CC(OCCC)(OCCC)OCCC)O[Si](OCCC)(OCCC)C1=CC=CC=C1 Chemical compound C(C)(C)C(CC(OCCC)(OCCC)OCCC)O[Si](OCCC)(OCCC)C1=CC=CC=C1 LXFNWYKBYLTZAI-UHFFFAOYSA-N 0.000 description 1
- FZDKJPVEFROYDX-UHFFFAOYSA-N C(C)O[SiH3].C(C)[Si](OC)(OC)OC Chemical compound C(C)O[SiH3].C(C)[Si](OC)(OC)OC FZDKJPVEFROYDX-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- WRYCSMQKUKOKBP-UHFFFAOYSA-N Imidazolidine Chemical compound C1CNCN1 WRYCSMQKUKOKBP-UHFFFAOYSA-N 0.000 description 1
- 241000446313 Lamella Species 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical class NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- 229910017911 MgIn Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- IGOJDKCIHXGPTI-UHFFFAOYSA-N [P].[Co].[Ni] Chemical compound [P].[Co].[Ni] IGOJDKCIHXGPTI-UHFFFAOYSA-N 0.000 description 1
- TUVYSBJZBYRDHP-UHFFFAOYSA-N acetic acid;methoxymethane Chemical compound COC.CC(O)=O TUVYSBJZBYRDHP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- XWQLYVIMMBLXPY-UHFFFAOYSA-N butan-2-yloxysilane Chemical compound CCC(C)O[SiH3] XWQLYVIMMBLXPY-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- RCJVRSBWZCNNQT-UHFFFAOYSA-N dichloridooxygen Chemical compound ClOCl RCJVRSBWZCNNQT-UHFFFAOYSA-N 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- KUCGHDUQOVVQED-UHFFFAOYSA-N ethyl(tripropoxy)silane Chemical compound CCCO[Si](CC)(OCCC)OCCC KUCGHDUQOVVQED-UHFFFAOYSA-N 0.000 description 1
- MYEJNNDSIXAGNK-UHFFFAOYSA-N ethyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](CC)(OC(C)C)OC(C)C MYEJNNDSIXAGNK-UHFFFAOYSA-N 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- KETWBQOXTBGBBN-UHFFFAOYSA-N hex-1-enylbenzene Chemical compound CCCCC=CC1=CC=CC=C1 KETWBQOXTBGBBN-UHFFFAOYSA-N 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- MILUBEOXRNEUHS-UHFFFAOYSA-N iridium(3+) Chemical compound [Ir+3] MILUBEOXRNEUHS-UHFFFAOYSA-N 0.000 description 1
- NSABRUJKERBGOU-UHFFFAOYSA-N iridium(3+);2-phenylpyridine Chemical compound [Ir+3].[C-]1=CC=CC=C1C1=CC=CC=N1.[C-]1=CC=CC=C1C1=CC=CC=N1.[C-]1=CC=CC=C1C1=CC=CC=N1 NSABRUJKERBGOU-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- RJMRIDVWCWSWFR-UHFFFAOYSA-N methyl(tripropoxy)silane Chemical compound CCCO[Si](C)(OCCC)OCCC RJMRIDVWCWSWFR-UHFFFAOYSA-N 0.000 description 1
- HLXDKGBELJJMHR-UHFFFAOYSA-N methyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](C)(OC(C)C)OC(C)C HLXDKGBELJJMHR-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- JESXATFQYMPTNL-UHFFFAOYSA-N mono-hydroxyphenyl-ethylene Natural products OC1=CC=CC=C1C=C JESXATFQYMPTNL-UHFFFAOYSA-N 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- AODWRBPUCXIRKB-UHFFFAOYSA-N naphthalene perylene Chemical group C1=CC=CC2=CC=CC=C21.C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 AODWRBPUCXIRKB-UHFFFAOYSA-N 0.000 description 1
- LKKPNUDVOYAOBB-UHFFFAOYSA-N naphthalocyanine Chemical class N1C(N=C2C3=CC4=CC=CC=C4C=C3C(N=C3C4=CC5=CC=CC=C5C=C4C(=N4)N3)=N2)=C(C=C2C(C=CC=C2)=C2)C2=C1N=C1C2=CC3=CC=CC=C3C=C2C4=N1 LKKPNUDVOYAOBB-UHFFFAOYSA-N 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- BSIDXUHWUKTRQL-UHFFFAOYSA-N nickel palladium Chemical compound [Ni].[Pd] BSIDXUHWUKTRQL-UHFFFAOYSA-N 0.000 description 1
- CLDVQCMGOSGNIW-UHFFFAOYSA-N nickel tin Chemical compound [Ni].[Sn] CLDVQCMGOSGNIW-UHFFFAOYSA-N 0.000 description 1
- RCALDWJXTVCBAZ-UHFFFAOYSA-N oct-1-enylbenzene Chemical compound CCCCCCC=CC1=CC=CC=C1 RCALDWJXTVCBAZ-UHFFFAOYSA-N 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- 229940065472 octyl acrylate Drugs 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- 229910000487 osmium oxide Inorganic materials 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- JIWAALDUIFCBLV-UHFFFAOYSA-N oxoosmium Chemical compound [Os]=O JIWAALDUIFCBLV-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- KHMYONNPZWOTKW-UHFFFAOYSA-N pent-1-enylbenzene Chemical compound CCCC=CC1=CC=CC=C1 KHMYONNPZWOTKW-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- VPLNCHFJAOKWBT-UHFFFAOYSA-N phenyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)C1=CC=CC=C1 VPLNCHFJAOKWBT-UHFFFAOYSA-N 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003050 poly-cycloolefin Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 150000004033 porphyrin derivatives Chemical class 0.000 description 1
- 238000011417 postcuring Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- YHNFWGSEMSWPBF-UHFFFAOYSA-N propan-2-yl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)C(C)C YHNFWGSEMSWPBF-UHFFFAOYSA-N 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- 229910001927 ruthenium tetroxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- MQVCTPXBBSKLFS-UHFFFAOYSA-N tri(propan-2-yloxy)-propylsilane Chemical compound CCC[Si](OC(C)C)(OC(C)C)OC(C)C MQVCTPXBBSKLFS-UHFFFAOYSA-N 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- BJDLPDPRMYAOCM-UHFFFAOYSA-N triethoxy(propan-2-yl)silane Chemical compound CCO[Si](OCC)(OCC)C(C)C BJDLPDPRMYAOCM-UHFFFAOYSA-N 0.000 description 1
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- JCGDCINCKDQXDX-UHFFFAOYSA-N trimethoxy(2-trimethoxysilylethyl)silane Chemical compound CO[Si](OC)(OC)CC[Si](OC)(OC)OC JCGDCINCKDQXDX-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- LGROXJWYRXANBB-UHFFFAOYSA-N trimethoxy(propan-2-yl)silane Chemical compound CO[Si](OC)(OC)C(C)C LGROXJWYRXANBB-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- VUWVDNLZJXLQPT-UHFFFAOYSA-N tripropoxy(propyl)silane Chemical compound CCCO[Si](CCC)(OCCC)OCCC VUWVDNLZJXLQPT-UHFFFAOYSA-N 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3842—Manufacturing moulds, e.g. shaping the mould surface by machining
- B29C33/3857—Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts
- B29C33/3878—Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts used as masters for making successive impressions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3807—Resin-bonded materials, e.g. inorganic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/42—Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
- B29C33/424—Moulding surfaces provided with means for marking or patterning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
- B29C45/263—Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
- B29C59/022—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
- B29C59/026—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing of layered or coated substantially flat surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/10—Moulds; Masks; Masterforms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/16—Coating processes; Apparatus therefor
- G03F7/165—Monolayers, e.g. Langmuir-Blodgett
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3842—Manufacturing moulds, e.g. shaping the mould surface by machining
- B29C2033/385—Manufacturing moulds, e.g. shaping the mould surface by machining by laminating a plurality of layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C59/00—Surface shaping of articles, e.g. embossing; Apparatus therefor
- B29C59/02—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
- B29C59/022—Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
- B29C2059/023—Microembossing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3842—Manufacturing moulds, e.g. shaping the mould surface by machining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0058—Liquid or visquous
- B29K2105/0061—Gel or sol
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2825/00—Use of polymers of vinyl-aromatic compounds or derivatives thereof as mould material
- B29K2825/04—Polymers of styrene
- B29K2825/08—Copolymers of styrene, e.g. AS or SAN, i.e. acrylonitrile styrene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2833/00—Use of polymers of unsaturated acids or derivatives thereof as mould material
- B29K2833/04—Polymers of esters
- B29K2833/12—Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2011/00—Optical elements, e.g. lenses, prisms
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/858—Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
Definitions
- the present invention relates to a mold for transferring a fine pattern, a substrate having an uneven structure, and an organic EL element.
- Lithography is known as a method for forming a fine pattern such as a semiconductor integrated circuit.
- the resolution of the pattern formed by the lithography method depends on the wavelength of the light source and the numerical aperture of the optical system.
- a light source having a shorter wavelength is desired.
- short wavelength light sources are expensive, and their development is not easy, and development of optical materials that transmit such short wavelength light is also necessary.
- manufacturing a large-area pattern by a conventional lithography method requires a large optical element, and is difficult both technically and economically. Therefore, a new method for forming a desired pattern having a large area has been studied.
- a nanoimprint method is known as a method for forming a fine pattern without using a conventional lithography apparatus.
- the nanoimprint method is a technology that can transfer a nanometer order pattern by sandwiching a resin between a mold (mold) and a substrate. Basically, i) application of a resin layer, ii) press by a mold, iii) It consists of four steps of pattern transfer and iv) mold release, and is excellent in that nano-size processing can be realized by such a simple process. Moreover, since the equipment to be used is simple, large-area processing is possible, and high throughput can be expected, practical application is expected not only in semiconductor devices but also in many fields such as storage media, optical members, and biochips. ing.
- a mold for transferring a pattern having a line width of several tens of nanometers can basically expose and develop a resist pattern on a silicon substrate using a lithography apparatus. is necessary.
- a metal current seed layer is formed on the resist pattern.
- the pattern definition becomes 100 nm or less, the coverage of the current seed layer formed on the resist pattern by sputtering decreases, and at the top, side walls, and bottom of the resist pattern (the substrate exposed portion of the pattern recess, that is, the trench).
- the thickness of the current seed layer obtained is different.
- the formation of the current seed layer proceeds preferentially, which causes a problem that the trench opening is narrowed. For this reason, when holes or trenches and ridges are formed on the substrate using a resist layer, the current seed layer is unlikely to deposit metal at the bottom of the holes or trenches, resulting in overhangs on top of the resist layer ridge. There was a problem.
- the laminate is electroformed using such a current seed layer, the electroformed film is joined above the hole or the trench due to overhang, and a void is left inside the trench.
- the mold obtained by electroforming has a problem of low mechanical strength and causes defects such as deformation of the mold and pattern loss.
- Patent Document 1 discloses a process of forming a resist layer having a concavo-convex pattern on a substrate having a conductive surface and exposing the conductive surface in a concave portion of the pattern of the resist layer in order to solve the above problem; A step of performing electroforming on the conductive surface exposed in the concave portion of the pattern of the resist layer to form an electroformed film having a thickness larger than the thickness of the resist layer; a substrate having a conductive surface and the resist layer A method for producing a mold for nanoimprinting, comprising In this method, the electroformed film can be grown unidirectionally upward from the conductive surface at the bottom of the resist pattern without using a current seed layer, so that there is no void in the nanoimprint mold. Has been. However, even if this method is used, the mold used in the nanoimprint method still has to rely on the lithography method.
- JP 2010-017865 A WO2011 / 007878A1 JP 2010-056256 A
- the inventor of the present application applies a block copolymer solution containing a block copolymer and a solvent satisfying a predetermined condition on a base material, and dries it to cause microphase separation of the block copolymer.
- Disclosed is a method of obtaining a mother mold (mold) in which a fine and irregular concavo-convex pattern is formed by forming a structure.
- a matrix used for nanoimprinting or the like can be obtained using a phenomenon in which a block copolymer is self-assembled without using a lithography method.
- a liquid mixture of a silicone polymer and a curing agent is dropped onto the obtained matrix and cured to obtain a transfer pattern
- a glass substrate coated with a curable resin is pressed against the transfer pattern, and the curable resin is applied by ultraviolet rays.
- a diffraction grating in which the transfer pattern is duplicated is produced.
- An organic EL element (organic light emitting diode) obtained by laminating a transparent electrode, an organic layer and a metal electrode on the diffraction grating has a sufficiently high luminous efficiency and a sufficiently high external extraction efficiency. It has been confirmed that the wavelength dependency and directivity of light emission are sufficiently low and the power efficiency is sufficiently high.
- a step of removing one polymer constituting the block copolymer by etching treatment is required.
- one polymer is removed on the surface of the base material, and the portion where the base material is exposed and the other polymer remain to form a convex portion, but the remaining convex portion is in contact with the base material. Since the area is small, it is easy to peel off from the substrate surface. Further, with the etching process, foreign substances may adhere to the surface of the base material or the convex portion, and the diffraction grating manufactured from the mother mold or the mother mold through the transfer process may be contaminated.
- Patent Document 2 the manufacturing method of the diffraction grating that can be achieved in the above-mentioned prior patent application (Patent Document 2) of the present inventor is further advanced, and the manufacturing is more suitable for mass production of products such as organic EL elements. It was desired to provide a method.
- Patent Document 3 discloses that a polymer layer containing a relatively low molecular weight block copolymer is phase-separated to form a columnar microdomain structure or a lamellar microdomain structure. The polymer is removed by etching or the like.
- an object of the present invention is to provide a method for producing a mold for transferring a fine pattern, which is suitable for mass production of a substrate having a concavo-convex structure such as a diffraction grating used for general-purpose products such as organic EL elements, and obtained. It is to provide a method for producing a substrate having a concavo-convex structure using a mold and a method for producing an organic EL element using a substrate having such a concavo-convex structure.
- a further object of the present invention is to produce a mold for transferring a fine pattern, a substrate having a concavo-convex structure, and an organic EL element with high throughput using these production methods.
- a method for producing a mold for transferring a fine pattern wherein a solution containing at least a block copolymer comprising first and second polymer segments and a polyalkylene oxide is applied to the surface of a substrate.
- the volume ratio of the first polymer and the second polymer in the block copolymer is 4: 6 to 6: 4 in order to create a horizontal cylinder structure.
- the polyalkylene oxide is preferably contained in an amount of 5 to 70 parts by mass with respect to 100 parts by mass of the block copolymer in order to obtain a sufficient height (groove depth) of the concavo-convex structure.
- the number average molecular weight of the block copolymer is preferably 500,000 or more.
- the first polymer constituting the block copolymer may be polystyrene
- the second polymer may be polymethyl methacrylate
- the organic solvent is chloroform, acetone, dichloromethane, and It may be a kind selected from the group consisting of a carbon disulfide / acetone mixed solvent.
- the time for phase separation of the block copolymer in the presence of organic solvent vapor may be 6 to 168 hours.
- the mold manufacturing method of the present invention even if the first or second polymer segment is formed in one or two stages in the cylinder structure, a concavo-convex structure appears on the surface.
- the average value of the unevenness depth distribution is in the range of 20 to 200 nm, preferably in the range of 30 to 150 nm, and the standard deviation of the unevenness depth is in the range of 10 to 100 nm, preferably 15 to 75 nm. It is desirable to be a mold for a substrate having a concavo-convex structure such as a diffraction grating.
- a primer layer is formed on the surface of the base material before applying a solution containing at least a block copolymer composed of first and second polymer segments and a polyalkylene oxide. It is preferable.
- the molecular weight distribution (Mw / Mn) of the block copolymer is preferably 1.5 or less, and the difference in solubility parameter between the first polymer and the second polymer is 0.1 to 10 (cal / cm 3). ) It is preferable that it is 1/2 .
- the mold obtained by the mold manufacturing method is pressed onto the substrate on which the unevenness forming material is applied to cure the unevenness forming material, and the mold is removed to remove the mold.
- a method of manufacturing a diffraction grating for forming a diffraction grating having an uneven structure is provided.
- the mold obtained by the method for producing a mold is pressed onto a substrate coated with a concavo-convex forming material to cure the concavo-convex forming material, and the mold is removed to remove the mold.
- a diffraction grating having a concavo-convex structure made of a sol-gel material is prepared by pressing the structure onto a substrate coated with a sol-gel material to cure the sol-gel material and removing the structure.
- a method of manufacturing a diffraction grating to be formed is provided.
- an organic EL device is manufactured by sequentially laminating a transparent electrode, an organic layer, and a metal electrode on the concavo-convex structure of the diffraction grating manufactured by the method for manufacturing a diffraction grating.
- a method for manufacturing an EL device is provided.
- a mold for transferring a fine pattern manufactured by the mold manufacturing method is provided.
- a diffraction grating manufactured by the method for manufacturing a diffraction grating and having an uneven structure on the surface.
- the average pitch of the unevenness of the uneven structure is preferably 100 to 1500 nm, and more preferably 200 to 1200 nm.
- the cross-sectional shape of the concavo-convex structure is a waveform, and the planar shape of the concavo-convex structure is subjected to a two-dimensional fast Fourier transform process on the concavo-convex analysis image obtained by analysis using an atomic force microscope to obtain a Fourier transform image.
- the Fourier transform image shows an annular pattern substantially centered at the origin where the absolute value of the wave number is 0 ⁇ m ⁇ 1 , and the annular pattern has an absolute value of the wave number of 10 ⁇ m ⁇ It is desirable to exist in a region that is 1 or less. Further, it is desirable that the kurtosis of the cross-sectional shape of the concavo-convex structure of the diffraction grating is ⁇ 1.2 or more, and further ⁇ 1.2 to 1.2.
- an organic EL element produced by the method for producing an organic EL element.
- a concavo-convex structure is obtained by pressing the mold obtained by the mold manufacturing method onto a substrate coated with the concavo-convex forming material, curing the concavo-convex forming material, and removing the mold.
- a method for manufacturing a substrate having a diffractive concavo-convex structure is provided.
- the mold obtained by the method for producing a mold is pressed onto a substrate coated with a concavo-convex forming material to cure the concavo-convex forming material, and then removed from the mold.
- a structure having a concavo-convex structure is prepared by pressing the structure onto a substrate coated with a sol-gel material, curing the sol-gel material, and removing the structure.
- a method for manufacturing a substrate having a concavo-convex structure is provided.
- a substrate having a concavo-convex structure on the surface produced by the method for producing a diffraction grating.
- the substrate having this concavo-convex structure preferably has an average pitch of the concavo-convex of 100 to 1500 nm, and more preferably 200 to 1200 nm.
- the block copolymer is self-organized by phase-separating the solution containing the block copolymer with an organic solvent, and the surface has a smooth corrugated uneven structure and the cross-sectional structure is A block copolymer film having a horizontal cylinder structure is obtained. Therefore, the etching process required for forming the concavo-convex structure is not required, the manufacturing process can be simplified, and the possibility of dirt and foreign matter adhering to the mold through the manufacturing process can be reduced. it can. As for the surface property of the metal layer of the obtained mold, smooth irregularities are distributed substantially uniformly, and it is suppressed that the resin remains on the mold side when the block copolymer and the substrate are peeled from the mold.
- FIG. 8A It is the photograph which observed the cross section of the thin film after solvent annealing obtained in Example 1 with the transmission electron microscope, and shows the one-step horizontal cylinder structure. It is an enlarged photograph of the photograph of FIG. 8C.
- FIG. 2 is a photograph showing a concavity and convexity analysis image by an atomic force microscope on the surface of the thin film concavity and convexity obtained in Example 1.
- FIG. 9A It is a photograph which shows the unevenness
- FIG. 9B It is a photograph which shows the Fourier-transform image obtained based on the unevenness
- FIG. 10A It is a photograph which shows the unevenness
- the mold manufacturing method mainly includes a block copolymer solution preparation process, a block copolymer solution coating process, a drying process, a solvent annealing process, a seed layer forming process, an electroforming process.
- a process and a peeling process are included.
- each process of the manufacturing method of a mold and a subsequent process are demonstrated, referring also to the conceptual diagram of FIG.1 and FIG.2.
- a diffraction grating substrate will be described as an example of a substrate having a concavo-convex structure.
- the substrate having a concavo-convex structure of the present invention is not limited to an optical substrate such as a diffraction grating substrate as described later, It can be applied to a substrate having the following uses.
- the block copolymer used in the present invention has at least a first polymer segment composed of a first homopolymer and a second polymer segment composed of a second homopolymer different from the first homopolymer.
- the second homopolymer desirably has a solubility parameter that is 0.1 to 10 (cal / cm 3 ) 1/2 higher than the solubility parameter of the first homopolymer.
- the difference between the solubility parameters of the first and second homopolymers is less than 0.1 (cal / cm 3 ) 1/2, it is difficult to form a regular microphase separation structure of the block copolymer, and the difference is 10 When it exceeds (cal / cm 3 ) 1/2 , it is difficult to prepare a uniform solution of the block copolymer.
- Examples of the monomer that can be used as the first homopolymer and the second homopolymer as a raw material for the homopolymer include styrene, methylstyrene, propylstyrene, butylstyrene, hexylstyrene, octylstyrene, methoxystyrene, ethylene, Propylene, butene, hexene, acrylonitrile, acrylamide, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, hexyl methacrylate, octyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, buty
- styrene methyl methacrylate, ethylene oxide, butadiene, isoprene, vinyl pyridine, and lactic acid from the viewpoint that phase-separation formation easily occurs and unevenness is easily formed by etching.
- styrenic polymer more preferably polystyrene
- polyalkyl methacrylate more preferably polymethyl methacrylate
- polyethylene oxide polybutadiene
- polyisoprene polyvinyl pyridine
- two combinations selected from the group consisting of polylactic acid are two combinations selected from the group consisting of polylactic acid.
- a combination of methyl methacrylate, a combination of styrenic polymer and polyisoprene, a combination of styrenic polymer and polybutadiene is particularly preferred. More preferred is a combination of polystyrene (PS) and polymethyl methacrylate (PMMA) from the viewpoint of obtaining a preferred number average molecular weight (Mn) of the block copolymer.
- the number average molecular weight (Mn) of the block copolymer is preferably 500,000 or more, more preferably 1,000,000 or more, and particularly preferably 1,000,000 to 5,000,000.
- the domain size of block copolymers increases with molecular weight.
- the average pitch of the unevenness formed by the microphase separation structure of the block copolymer becomes small, and the average pitch of the unevenness of the resulting diffraction grating becomes insufficient.
- the average pitch is preferably 100 to 1500 nm, and more preferably 200 to 1200 nm. From this point, the number average molecular weight (Mn) of the block copolymer is preferably 500,000 or more.
- the molecular weight distribution (Mw / Mn) of the block copolymer is preferably 1.5 or less, more preferably 1.0 to 1.35. When such molecular weight distribution exceeds 1.5, it becomes difficult to form a regular microphase separation structure of the block copolymer.
- the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the block copolymer are values measured by gel permeation chromatography (GPC) and converted to the molecular weight of standard polystyrene.
- the volume ratio of the first polymer segment to the second polymer segment (first polymer segment: second polymer segment) in the block copolymer creates a horizontal cylinder structure described later by self-assembly. Therefore, it is in the range of 4: 6 to 6: 4, and more preferably about 5: 5.
- the volume ratio is out of the above range, it becomes difficult to form a concavo-convex pattern due to the horizontal cylinder structure described later, and a spherical or vertical cylinder structure tends to appear.
- the block copolymer solution used in the present invention is prepared by dissolving the block copolymer in a solvent.
- solvents include aliphatic hydrocarbons such as hexane, heptane, octane, decane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene; ethers such as diethyl ether, tetrahydrofuran, and dioxane.
- Ketones such as acetone, methyl ethyl ketone, isophorone and cyclohexanone; ether alcohols such as butoxyethyl ether, hexyloxyethyl alcohol, methoxy-2-propanol and benzyloxyethanol; ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triglyme, propylene glycol monomethyl Glycol ethers such as ether and propylene glycol monomethyl ether acetate; ethyl acetate, ethyl lactate, ⁇ Esters such as butyrolactone; phenols such as phenol and chlorophenol; amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone; chloroform, methylene chloride, tetrachloroethane, monochlorobenzene, di Halogen-based solvents such as chlorobenzene; hetero-
- the block copolymer solution may contain other homopolymer (a homopolymer other than the first homopolymer and the second homopolymer in the block copolymer contained in the solution: for example, block copolymer
- a homopolymer other than the first homopolymer and the second homopolymer in the block copolymer contained in the solution for example, block copolymer
- the combination of the first homopolymer and the second homopolymer in the combination is a combination of polystyrene and polymethyl methacrylate
- it may be a homopolymer of a type other than polystyrene and polymethyl methacrylate.
- polyalkylene oxide a homopolymer other than the first homopolymer and the second homopolymer in the block copolymer contained in the solution: for example, block copolymer
- block copolymer When the combination of the first homopolymer and the second homopolymer in the combination is a combination of polystyrene and
- the depth of the unevenness formed by the microphase separation structure of the block copolymer can be made deeper.
- polyalkylene oxide polyethylene oxide and polypropylene oxide are more preferable, and polyethylene oxide is particularly preferable.
- polyethylene oxide the following formula: HO— (CH 2 —CH 2 —O) n —H [Wherein, n represents an integer of 10 to 5000 (more preferably an integer of 50 to 1000, still more preferably an integer of 50 to 500). ] The thing represented by these is preferable.
- the number average molecular weight (Mn) of the polyalkylene oxide is preferably 460 to 220,000, and more preferably 2200 to 46000. When such a number average molecular weight is less than the lower limit, the molecular weight is too low, it is liquid at room temperature, and is likely to separate and precipitate, and those exceeding the upper limit are difficult to synthesize.
- the molecular weight distribution (Mw / Mn) of the polyalkylene oxide is preferably 1.5 or less, more preferably 1.0 to 1.3. If the molecular weight distribution exceeds the above upper limit, it is difficult to maintain the uniformity of the microphase separation shape.
- Such number average molecular weight (Mn) and weight average molecular weight (Mw) are values measured by gel permeation chromatography (GPC) and converted to the molecular weight of standard polystyrene.
- the combination of the first homopolymer and the second homopolymer in the block copolymer is preferably a combination of polystyrene and polymethyl methacrylate (polystyrene-polymethyl methacrylate).
- polystyrene-polymethyl methacrylate polystyrene-polymethyl methacrylate
- polyalkylene oxide such as polyethylene oxide
- the content of the polyalkylene oxide is preferably 1 to 100 parts by mass, more preferably 5 to 100 parts by mass, with respect to 100 parts by mass of the block copolymer. More preferably, it is 5 to 70 parts by mass.
- the content of the polyalkylene oxide is less than 5 parts by mass, the effect obtained by containing the polyalkylene oxide becomes poor.
- the content of the polyalkylene oxide exceeds 100 parts by mass with respect to 100 parts by mass of the block copolymer, the uneven pattern formed by phase separation of the block copolymer tends to collapse, and when the content exceeds 70 parts by mass. Polyalkylene oxide may precipitate.
- the total content of polyalkylene oxide and other homopolymers in the block copolymer solution is preferably 0.1 to 15% by mass in the block copolymer solution, and 0.3 to 5 More preferably, it is mass%.
- the total content is less than the lower limit, it is not easy to uniformly apply the solution with a sufficient film thickness in order to obtain a required film thickness. Is relatively difficult to prepare.
- the block copolymer solution may further contain a homopolymer other than polyalkylene oxide, a surfactant, an ionic compound, an antifoaming agent, a leveling agent, and the like.
- the block copolymer When other homopolymer is contained, it can be contained in a proportion of 1 to 100 parts by mass with respect to 100 parts by mass of the block copolymer, as in the case of polyalkylene oxide. Moreover, when using the said surfactant, it is preferable that the content is 10 mass parts or less with respect to 100 mass parts of said block copolymers. Furthermore, when using the said ionic compound, it is preferable that the content is 10 mass parts or less with respect to 100 mass parts of said block copolymers.
- the block copolymer solution prepared as described above is applied onto the substrate 10 to form the thin film 30.
- resin substrates such as a polyimide, polyphenylene sulfide (PPS), polyphenylene oxide, polyether ketone, polyethylene naphthalate, polyethylene terephthalate, polyarylate, triacetyl cellulose, polycycloolefin; Glass, octadecyldimethylchlorosilane (ODS) treated glass, octadecyltrichlorosilane (OTS) treated glass, organosilicate treated glass, glass treated with a silane coupling agent, inorganic substrates such as silicon substrates; metal substrates such as aluminum, iron and copper Is mentioned.
- the base material 10 may be subjected to a surface treatment such as an orientation treatment.
- a surface treatment such as an orientation treatment.
- an organosilicate-treated glass is prepared by applying a methyl isobutyl ketone (MIBK) solution of methyltrimethoxysilane (MTMS) and 1,2-bis (trimethoxysilyl) ethane (BTMSE) to the glass and heat-treating it.
- MIBK methyl isobutyl ketone
- MTMS methyltrimethoxysilane
- BTMSE 1,2-bis (trimethoxysilyl) ethane
- the octadecyldimethylchlorosilane-treated glass and octadecyltrichlorosilane-treated glass can be produced by a method of immersing the glass in a heptane solution of those silanes and washing away unreacted components later.
- the substrate surface of glass or the like may be surface-treated with a primer layer such as octadecyldimethylchlorosilane or organosilicate, or a block copolymer substrate by performing a silane coupling treatment with a general silane coupling agent.
- Adhesion to can be improved. If the adhesion is insufficient, it peels off during electroforming, which hinders the production of a transfer mold.
- the method for applying the block copolymer solution is not particularly limited.
- spin coating, spray coating, dip coating, dropping, gravure printing, screen printing, letterpress printing, die coating, A curtain coating method or an ink jet method can be employed.
- the thickness of the thin film 30 of the block copolymer is preferably 10 to 3000 nm, more preferably 50 to 500 nm, as described later.
- the thin film 30 made of the block copolymer solution is applied on the base material 10
- the thin film 30 on the base material 10 is dried. Drying can be performed in an air atmosphere.
- the drying temperature is not particularly limited as long as the solvent can be removed from the thin film 30, but is preferably 10 to 200 ° C, and more preferably 20 to 100 ° C.
- corrugation may be seen on the surface of the thin film 30 when the said block copolymer begins to form a micro phase-separation structure by drying.
- the thin film 30 is subjected to solvent annealing (solvent phase separation) in an organic solvent vapor atmosphere to form a block copolymer phase separation structure in the thin film 30.
- solvent annealing solvent phase separation
- the self-assembly of the block copolymer proceeds, and the block copolymer is microphase-separated into the first polymer segment 32 and the second polymer segment 34 as shown in FIG. It becomes a horizontal cylinder structure.
- the “horizontal cylinder structure” means that the first polymer segment or the second polymer segment extends in a cylinder shape (orientation) in a direction along the surface of the base material to which the block copolymer solution is applied.
- the “vertical cylinder structure” means that the first polymer segment or the second polymer segment extends in a cylinder shape (orientation) in a direction substantially perpendicular to the surface of the substrate to which the block copolymer solution is applied. It means self-organization.
- These structures can be confirmed by dyeing a polymer with ruthenium oxide, osmium oxide or the like and observing the cross-sectional structure by electron microscope measurement or the like. Small-angle X-ray scattering (SAXS) measurement is also effective in identifying their orientation structure.
- SAXS Small-angle X-ray scattering
- the solvent annealing treatment can be performed, for example, by bringing a vapor atmosphere of an organic solvent into a sealable container such as a desiccator and exposing the thin film 30 as an object in this atmosphere.
- concentration of the organic solvent vapor is preferably higher in order to promote the phase separation of the block copolymer, desirably a saturated vapor pressure, and concentration management is relatively easy.
- the saturated vapor amount is known to be 0.4 g / l to 2.5 g / l at room temperature (0 ° C. to 45 ° C.).
- the annealing time for the organic solvent such as chloroform is too long, polyethylene oxide is deposited on the surface of the coating film or the phase-separated uneven shape (pattern) tends to be broken (rounded).
- the treatment time of the solvent annealing treatment can be 6 hours to 168 hours, preferably 12 hours to 48 hours, and more preferably 12 hours to 36 hours. If the treatment time is too long, the concavo-convex shape is broken (smoothed), and if it is too short, the groove of the concavo-convex structure is shallow, and when a diffraction grating is produced using a mold, the diffraction effect becomes insufficient.
- an organic solvent having a boiling point of 20 ° C. to 120 ° C. is preferable.
- chloroform, dichloromethane, toluene, tetrahydrofuran (THF), acetone, carbon disulfide, a mixed solvent thereof or the like is used. Can do. Among these, chloroform, dichloromethane, acetone, and a mixed solvent of acetone / carbon disulfide are preferable.
- the ambient temperature of the solvent annealing is preferably 0 ° C. to 45 ° C. When the temperature is higher than 45 ° C., the uneven structure formed in the thin film becomes loose and easily collapses. In an environment lower than 0 ° C., the organic solvent is difficult to evaporate, and phase separation of the block copolymer is difficult to occur.
- the block copolymer is phase-separated into a horizontal cylinder structure by the solvent annealing treatment.
- the mixing ratio of the first homopolymer and the second homopolymer constituting the block copolymer is equal (5: 5) or close to it, a lamellar phase separation structure appears by thermal annealing. It is generally known that a cylindrical structure appears at about 7 and a spherical structure appears at about 2: 8.
- the solvent annealing treatment according to the present invention is performed, even if the mixing ratio of the first homopolymer and the second homopolymer composing the block copolymer is 40:60 to 60:40, the cylinder structure is formed in the horizontal direction.
- the first homopolymer 32 extends in a cylinder shape in a direction substantially parallel to the surface of the substrate 10 in the layer of the second homopolymer 34.
- the orientation is as follows.
- the surface layer portion of the second homopolymer 34 in which the first homopolymer 32 is present rises smoothly to form a waveform.
- the cylinder-like arrangement in which the first homopolymer 32 extends in a cylinder shape in a direction substantially parallel to the surface of the substrate 10 has a plurality of layers (a plurality of steps) in the direction perpendicular to the surface of the substrate 10 (height direction). (See FIGS. 8A and 8B described later).
- the raised corrugated structure can be directly used as an uneven pattern of an optical substrate such as a diffraction grating. For this reason, unlike the case of phase separation by thermal annealing, it is not necessary to remove one homopolymer by etching after phase separation.
- a part of the horizontal cylinder structure may include a vertical cylinder or a spherical structure.
- the patterning process of the mold can be simplified.
- the etching process usually involves the following problems, but such a problem does not occur in the mold manufacturing method of the present invention. That is, when the etching process is performed, protrusions are likely to occur in the remaining homopolymer pattern, the numerical value of kurtosis described later is reduced, and an overhang cross-sectional shape is also likely to occur. For this reason, in the subsequent electroforming process, the plated metal is likely to be drawn to the convex portion or protruding corner of the object, and is difficult to be drawn to the concave portion or the recessed portion.
- the seed layer applied before the electroforming process is less likely to adhere to such a complicated structure. For these reasons, pattern defects are likely to occur due to the etching process. Further, in the etching process, dirt and dust are easily generated on the mold by using an etching solution and removing one of the homopolymers.
- the use of the solvent annealing process eliminates the need for an etching process, which eliminates the problems associated with etching as described above, and a mold having a reliable concavo-convex pattern and less adhesion of foreign matter, and a mold made therefrom.
- An optical substrate such as a diffraction grating can be obtained. Therefore, an optical substrate such as a diffraction grating can be manufactured with a high throughput and a simple process.
- the surface shape defined by the polymer segment 34 by the solvent annealing treatment is a relatively smooth inclined surface as conceptually shown in FIG. Is referred to as a “waveform structure” as appropriate).
- a corrugated structure there is no overhang, and the metal layer deposited on the corrugated structure 38 is replicated in its reverse pattern and is therefore easily peeled off.
- the base material 10 having the corrugated structure 38 thus obtained can be used as a transfer master (mold) in a subsequent process.
- the average pitch of the irregularities representing the corrugated structure 38 is preferably in the range of 100 to 1500 nm, and more preferably in the range of 200 to 1200 nm. If the average pitch of the irregularities is less than the lower limit, the pitch is too small with respect to the wavelength of visible light, so that it is difficult to cause visible light diffraction in a diffraction grating obtained using such a matrix, and exceeds the upper limit. The diffraction angle of the diffraction grating obtained by using such a matrix becomes small, and the function as the diffraction grating cannot be fully exhibited.
- corrugation means the average value of the pitch of an unevenness
- the average value of the pitch of the unevenness is obtained by analyzing the unevenness of the surface using a scanning probe microscope (for example, product name “E-sweep” manufactured by SII NanoTechnology Co., Ltd.). Is measured, 100 or more intervals between adjacent adjacent convex portions or adjacent concave portions in the unevenness analysis image are measured, and a value calculated by calculating the average is adopted.
- the average value of the depth distribution of the unevenness representing the corrugated structure 38 is preferably in the range of 20 to 200 nm, and more preferably in the range of 30 to 150 nm. If the average depth distribution is less than the lower limit, the height is insufficient with respect to the wavelength of visible light, resulting in insufficient diffraction. If the upper limit is exceeded, the resulting diffraction grating is extracted from the organic EL device. When used as an optical element on the mouth side, the electric field distribution inside the organic layer becomes non-uniform, and the element is easily destroyed due to heat generated by the concentration of the electric field at a specific location, and the life is likely to be shortened.
- the average value (m) of the uneven depth distribution is represented by the following formula (I):
- N represents the total number of measurement points (total number of pixels), i represents any of integers from 1 ⁇ N, x i is the i-th measurement point uneven depth Data is shown, m shows the average value of the uneven
- the heating temperature can be, for example, not less than the glass transition temperature of the first and second polymer segments 32, 34, for example, not less than the glass transition temperature of those homopolymers and not more than 70 ° C. higher than the glass transition temperature. can do.
- the heat treatment can be performed in an air atmosphere using an oven or the like.
- a seed layer 40 to be a conductive layer for the subsequent electroforming process is formed on the surface of the master corrugated structure 38 obtained as described above.
- the seed layer 40 can be formed by electroless plating, sputtering, or vapor deposition.
- the thickness of the seed layer 40 is preferably 10 nm or more, more preferably 20 nm or more in order to make the current density uniform in the subsequent electroforming process and to make the thickness of the metal layer deposited by the subsequent electroforming process constant. is there.
- seed layer materials include nickel, copper, gold, silver, platinum, titanium, cobalt, tin, zinc, chromium, gold / cobalt alloy, gold / nickel alloy, boron / nickel alloy, solder, copper / nickel / chromium An alloy, a tin-nickel alloy, a nickel-palladium alloy, a nickel-cobalt-phosphorus alloy, or an alloy thereof can be used.
- a metal layer 50 is deposited on the seed layer 40 by electroforming (electroplating).
- the thickness of the metal layer 50 can be set to a total thickness of 10 to 3000 ⁇ m including the thickness of the seed layer 40, for example.
- Any of the above metal species that can be used as the seed layer 40 can be used as the material of the metal layer 50 deposited by electroforming. From the viewpoint of wear resistance as a mold, peelability, etc., nickel is preferable. In this case, it is preferable to use nickel also for the seed layer 40.
- the current density in electroforming can be set to, for example, 0.03 to 10 A / cm 2 from the viewpoint of shortening the electroforming time while suppressing the bridge to form a uniform metal layer.
- the formed metal layer 50 has an appropriate hardness and thickness in view of the ease of processing such as pressing, peeling and cleaning of the subsequent resin layer.
- the surface of the metal layer may be subjected to diamond-like carbon (DLC) treatment or Cr plating treatment.
- the metal layer may be further heat treated to increase its surface hardness.
- the metal layer 50 including the seed layer obtained as described above is peeled from the base material having the concavo-convex structure to obtain a mold that becomes a father.
- the peeling method may be physically peeled off, and the first homopolymer and the remaining block copolymer are removed by dissolving them using an organic solvent such as toluene, tetrahydrofuran (THF) or chloroform. May be.
- ⁇ Washing process> When the mold is peeled from the substrate 10 having the corrugated structure 38 as described above, a part of the polymer 60 may remain in the mold as shown in FIG. In such a case, those remaining portions 60 can be removed by washing.
- wet cleaning or dry cleaning can be used.
- the wet cleaning can be removed by cleaning with an organic solvent such as toluene or tetrahydrofuran, a surfactant, or an alkaline solution.
- ultrasonic cleaning may be performed. Further, it may be removed by electrolytic cleaning.
- As the dry cleaning it can be removed by ashing using ultraviolet rays or plasma.
- a combination of wet cleaning and dry cleaning may be used. After such washing, rinsing with pure water or purified water may be performed, followed by ozone irradiation after drying. In this way, a mold 70 having a desired uneven structure as shown in FIG.
- the mold 70 may be subjected to a mold release treatment in order to improve the mold release from the resin.
- a mold release treatment a prescription for lowering the surface energy is generally used, and there is no particular limitation.
- the method include coating the surface 70a, treating with a fluorine-based silane coupling agent, and forming a diamond-like carbon film on the surface.
- the concavo-convex structure (pattern) of the mold is transferred to a concavo-convex forming material layer made of an organic material such as a resin or an inorganic material such as a sol-gel material. Or a mother mold).
- the shape of the mold 70 may be changed to a shape suitable for transfer at the time of transfer. For example, when performing roll transfer, the mold 70 can be wound around the outer periphery of a cylindrical body to form a roll-shaped mold (a transfer process using the roll-shaped mold will be described later).
- the unevenness forming material layer to be transferred is a resin layer
- a transfer processing method as shown in FIG. 2B, for example, a curable resin is applied to the support substrate 90, and then the resin layer 80 is cured while pressing the uneven structure of the mold 70 against the resin layer 80.
- a base material made of a transparent inorganic material such as glass; polyethylene terephthalate (PET), polyethylene terephthalate (PEN), polycarbonate (PC), cycloolefin polymer (COP), polymethyl methacrylate (PMMA), Base material made of resin such as polystyrene (PS); gas barrier layer made of inorganic material such as SiN, SiO 2 , SiC, SiO x N y , TiO 2 , Al 2 O 3 is formed on the surface of the base material made of these resins A laminated substrate formed by alternately laminating a substrate made of these resins and a gas barrier layer made of these inorganic substances.
- the thickness of the support substrate 90 can be in the range of 1 to 500 ⁇ m.
- the support substrate 90 is desirably transparent depending on the application. However, when the resin layer 80 to which the concavo-convex structure is transferred is used again as a mold (matrix), the support substrate 90 does not need to be transparent. .
- the unevenness forming material examples include curable resins such as various UV curable resins such as epoxy resins, acrylic resins, urethane resins, melamine resins, urea resins, polyester resins, phenol resins, and cross-linked liquid crystal resins.
- the thickness of the curable resin is preferably in the range of 0.5 to 500 ⁇ m. If the thickness is less than the lower limit, the height of the irregularities formed on the surface of the cured resin layer tends to be insufficient, and if the thickness exceeds the upper limit, the influence of the volume change of the resin that occurs during curing increases and the irregular shape is well formed. It may not be possible.
- the unevenness forming material 84 such as a curable resin
- the conditions for curing the unevenness forming material 84 vary depending on the type of resin used.
- the curing temperature is in the range of room temperature to 250 ° C.
- the curing time is 0.5 minutes to It is preferably in the range of 3 hours.
- a method of curing by irradiating energy rays such as ultraviolet rays or electron beams may be used. In that case, the irradiation amount is preferably in the range of 20 mJ / cm 2 to 5 J / cm 2 .
- the mold 70 is removed from the cured resin layer 80 after curing.
- the method for removing the mold 70 is not limited to the mechanical peeling method, and any known method can be adopted.
- a peeling roll can be used. In this way, as shown in FIG. 2C, a resin film structure 100 having a cured resin layer in which irregularities are formed on the support substrate 90 can be obtained.
- the resin film structure 100 can be used as it is as a diffraction grating.
- the resin film structure 100 is further used as a mold to produce a diffraction grating made of an organic material such as a resin or a structure made of an inorganic material such as a sol-gel material and used as the diffraction grating. You can also.
- the mold manufacturing method of the present invention can be used not only for manufacturing a diffraction grating provided on the light extraction port side of an organic EL element but also for manufacturing an optical component having a fine pattern used in various devices.
- an optical component having a fine pattern used in various devices .
- a wire grid polarizer, an antireflection film, a liquid crystal display, a touch panel, or an optical element for providing a light confinement effect inside a solar cell by being installed on the photoelectric conversion surface side of the solar cell is used for manufacturing. be able to.
- the resin film structure 100 having a desired pattern can be obtained.
- the reverse pattern of the resin film structure 100 is used as a diffraction grating, the resin film structure obtained through the above-described mold transfer process.
- a curable resin layer 82 is applied on another transparent support base 92 as shown in FIG.
- the resin film structure 100 is pressed against the curable resin layer 82 to cure the curable resin layer 82.
- the resin film structure 100 is peeled from the cured curable resin layer 82, whereby a replica 110 which is another resin film structure as shown in FIG. 2E can be obtained.
- the above-described transfer process may be performed using the replica 110 as a master to manufacture a reverse pattern replica of the replica 110, and the transfer process may be repeated again using the reverse pattern as a master to form a child replica. Also good.
- the roll process apparatus 170 shown in FIG. 4 manufactures the film-like substrate 180a by forming a concavo-convex pattern on the film covered with the long substrate film 180.
- the roll process apparatus 170 includes a transport system 186 for a substrate film (base material) 180, a die coater 182 for applying an unevenness forming material to the substrate film 180 being transported, and a metal that is located downstream of the die coater 182 and transfers a pattern.
- a roll 190 and an irradiation light source 185 for irradiating the substrate film 180 with UV light are mainly provided to face the metal roll 190 with the substrate film 180 interposed therebetween.
- the transport system 186 for the substrate film 180 includes a film feed roll 172 that feeds the substrate film 180, a nip roll 174 and a release roll 176 that are arranged on the upstream and downstream sides of the metal roll 190 and bias the substrate film to the metal roll 190, respectively.
- a winding roll 187 that winds up the substrate film 180a to which the pattern has been transferred, and a plurality of transport rolls 178 that transport the substrate film 180.
- the metal roll 190 can be a roll-shaped mold formed by winding the previously prepared mold 70 (see FIG. 1F) around the outer periphery of a cylindrical body.
- a film-like substrate to which the pattern of the metal roll 190 is transferred is obtained by the following process.
- the substrate film 180 that has been wound around the film feeding roll 172 in advance is fed downstream by the rotation of the film feeding roll 172 and the film winding roll 187.
- the unevenness forming material 184 is applied to one surface of the substrate film 180 by the die coater 182 to form a coating film having a predetermined thickness.
- the coating film of the substrate film 180 is pressed against the outer peripheral surface of the metal roll 190 by the nip roll 174, and the pattern on the outer peripheral surface of the metal roll 190 is transferred to the coating film.
- the coating film is irradiated with UV light from the irradiation light source 185 and the unevenness forming material 184 is cured.
- the wavelength of the UV light varies depending on the unevenness forming material 184, but is generally 200 to 450 nm, and the irradiation amount can be 10 mJ / cm 2 to 5 J / cm 2 .
- the concavo-convex pattern can be retransferred to a curable resin or a sol-gel material using the long film-like substrate 180a as a mold.
- a long film-like substrate 180a is obtained in a form wound in a roll shape, it is suitable for a mass production process of an optical substrate (diffraction grating substrate) using the film-like substrate as a mold. It is also suitable for conveyance to an apparatus that performs a mass production process of substrates.
- storage and an aging process can be performed by producing a film-like substrate and winding it once in a roll shape.
- the method for forming a substrate having a concavo-convex pattern using a sol-gel material is mainly a solution preparation step S1 for preparing a sol solution, a coating step S2 for applying the prepared sol solution to a substrate, a substrate Drying step S3 for drying the coating film of the sol solution applied to the substrate, transfer step S4 for pressing the mold on which the transfer pattern is formed, peeling step S5 for peeling the mold from the coating film, and main firing step for firing the coating film S6.
- a solution preparation step S1 for preparing a sol solution
- a coating step S2 for applying the prepared sol solution to a substrate
- a substrate Drying step S3 for drying the coating film of the sol solution applied to the substrate
- transfer step S4 for pressing the mold on which the transfer pattern is formed
- peeling step S5 for peeling the mold from the coating film
- main firing step for firing the coating film S6 main firing the coating film S6.
- a sol solution used to form a coating film to which a pattern is transferred is prepared by a sol-gel method (step S1 in FIG. 5).
- a sol solution of a metal alkoxide sica precursor
- tetramethoxysilane MTES
- tetraethoxysilane TEOS
- tetra-i-propoxysilane tetra-n-propoxysilane
- tetra-i-butoxysilane tetra-n-butoxysilane
- tetra-n-butoxysilane tetra-n-butoxysilane
- tetra- Tetraalkoxide monomers such as sec-butoxysilane and tetra-t-butoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, isopropyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane Ethoxysilane, propyltriethoxysilane, isopropyltriethoxysilane
- metal acetylacetonate metal carboxylate, oxychloride, chloride, a mixture thereof and the like can be mentioned, but not limited thereto.
- the metal species include, but are not limited to, Ti, Sn, Al, Zn, Zr, In, and a mixture thereof in addition to Si. What mixed suitably the precursor of the said metal oxide can also be used.
- the mixing ratio can be 1: 1, for example, in a molar ratio.
- This sol solution produces amorphous silica by performing hydrolysis and polycondensation reactions.
- an acid such as hydrochloric acid or an alkali such as ammonia is added.
- the pH is preferably 4 or less or 10 or more.
- the amount of water to be added can be 1.5 times or more in molar ratio with respect to the metal alkoxide species.
- a material other than silica can be used as the sol-gel material.
- a Ti-based material, an ITO (indium-tin-oxide) -based material, Al 2 O 3 , ZrO 2 , ZnO, or the like can be used.
- solvent for the sol solution examples include alcohols such as methanol, ethanol, isopropyl alcohol (IPA), butanol, aliphatic hydrocarbons such as hexane, heptane, octane, decane, and cyclohexane, benzene, toluene, xylene, mesitylene, and the like.
- alcohols such as methanol, ethanol, isopropyl alcohol (IPA), butanol, aliphatic hydrocarbons such as hexane, heptane, octane, decane, and cyclohexane, benzene, toluene, xylene, mesitylene, and the like.
- Aromatic hydrocarbons such as diethyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl ketone, isophorone and cyclohexanone, ethers such as butoxyethyl ether, hexyloxyethyl alcohol, methoxy-2-propanol and benzyloxyethanol Alcohols, glycols such as ethylene glycol and propylene glycol, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, propylene Glycol ethers such as recall monomethyl ether acetate, esters such as ethyl acetate, ethyl lactate and ⁇ -butyrolactone, phenols such as phenol and chlorophenol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl Amides such as pyrrolidone, halogen-based solvents such as chloroform,
- Sol solution additives include polyethylene glycol, polyethylene oxide, hydroxypropyl cellulose, polyvinyl alcohol for viscosity adjustment, alkanolamines such as triethanolamine, which are solution stabilizers, ⁇ -diketones such as acetylacetone, and ⁇ -ketoesters. , Formamide, dimethylformamide, dioxane and the like can be used.
- the sol solution prepared as described above is applied on the substrate (step S2 in FIG. 5). From the viewpoint of mass productivity, it is preferable to apply the sol solution to the substrate at a predetermined position while continuously transporting the plurality of substrates.
- a coating method any coating method such as a bar coating method, a spin coating method, a spray coating method, a dip coating method, a die coating method, and an ink jet method can be used, but the sol solution is uniformly applied to a relatively large area substrate.
- the die coating method, the bar coating method, and the spin coating method are preferred because the coating can be completed quickly before the sol solution is gelled.
- Substrates made of inorganic materials such as glass, quartz and silicon substrates, polyethylene terephthalate (PET), polyethylene terephthalate (PEN), polycarbonate (PC), cycloolefin polymer (COP), polymethyl methacrylate (PMMA), polystyrene Resin substrates such as (PS), polyimide (PI), and polyarylate can be used.
- the substrate may be transparent or opaque, but it is relatively hard if the sol-gel material layer is formed on this substrate, and further the functional layer is further formed on the optical substrate when it is incorporated into the device.
- a substrate is preferred.
- substrate provided with heat resistance, weather resistance with respect to UV light etc. is desirable.
- a substrate made of an inorganic material such as glass, quartz, or silicon substrate is more preferable, and the substrate made of these inorganic materials can be divided into a substrate and a sol-gel material if the applied sol-gel material is an inorganic material. It is also preferable in that the difference in refractive index between the layers is small and unintended refraction and reflection in the optical substrate can be prevented.
- a surface treatment or an easy-adhesion layer may be provided on the substrate, or a gas barrier layer may be provided for the purpose of preventing the ingress of gases such as moisture and oxygen.
- a gas barrier layer may be provided for the purpose of preventing the ingress of gases such as moisture and oxygen.
- the substrate is held in the atmosphere or under reduced pressure to dry the solvent in the coated film (hereinafter also referred to as “sol-gel material layer” as appropriate) (step S3 in FIG. 5). If this holding time is short, the viscosity of the coating film is too low to transfer the pattern in the subsequent transfer step, and if the holding time is too long, the polymerization reaction of the precursor proceeds so much that transfer cannot be performed in the transfer step. In the case of mass production of an optical substrate, the holding time can be managed by the substrate transport time from the application of the sol solution to the subsequent transfer process using the film-like substrate.
- the substrate holding temperature in this drying step is preferably a constant temperature in the range of 10 to 100 ° C., and more preferably in the range of 10 to 30 ° C.
- the holding temperature is higher than this range, the gelation reaction of the coating film proceeds rapidly before the transfer process, which is not preferable.
- the holding temperature is lower than this range, the gelation reaction of the coating film before the transfer process is slow. This is not preferable because productivity decreases.
- the evaporation of the solvent proceeds and the polymerization reaction of the precursor also proceeds, and the physical properties such as the viscosity of the sol solution change in a short time.
- the amount of evaporation of the solvent also depends on the amount of solvent used at the time of preparing the sol solution (sol solution concentration).
- the sol solution is a silica precursor
- hydrolysis / condensation polymerization of the silica precursor occurs as a gelation reaction
- alcohol is generated in the sol solution through a dealcoholization reaction.
- a volatile solvent such as alcohol is used as a solvent in the sol solution. That is, the sol solution contains alcohol generated in the hydrolysis process and alcohol present as a solvent, and the sol-gel reaction proceeds by removing them in the drying step. Therefore, it is desirable to adjust the holding time and holding temperature in consideration of the gelation reaction and the solvent used.
- the drying process since the solvent in the sol solution evaporates simply by holding the substrate as it is, it is not always necessary to perform an aggressive drying operation such as heating or blowing, and the substrate on which the coating film has been formed is left as it is for a predetermined time. It can be left alone or transported for a predetermined time for a subsequent process. In this respect, the drying process is not essential.
- the film-like substrate 180a as a mold obtained by the roll process apparatus 170 shown in FIG. 4 is pressed against the coating film by a press roll (laminate roll) to thereby form the film-like substrate.
- the uneven pattern is transferred to the coating film on the substrate (step S4 in FIG. 5).
- the film-like substrate 180 a is fed between the pressing roll 122 and the substrate 140 conveyed immediately below it, so that the concavo-convex pattern of the film-like substrate 180 a is applied to the coating film (sol solution) on the substrate 140. 142).
- the film-like substrate 180a when the film-like substrate 180a is pressed against the substrate 140 by the pressing roll 122, the film-like substrate 180a is coated on the surface of the coating film 142 of the substrate 140 while the film-like substrate 180a and the substrate 140 are conveyed synchronously. At this time, the film-like substrate 180a and the substrate 140 are in close contact with each other by rotating while pressing the pressing roll 122 against the back surface of the film-like substrate 180a (the surface opposite to the surface on which the concavo-convex pattern is formed). In order to feed the long film-like substrate 180a toward the pressing roll 140, the film-like substrate 180a is unwound as it is from the take-up roll 187 (see FIG. 4) on which the long film-like substrate 180a is wound. It is advantageous to use.
- Hard molds made of metal, quartz, etc. can be cleaned and repaired (defect repaired) when defects are found in the concavo-convex pattern, thereby transferring the defects to the sol-gel side. It is possible to prevent defects due to being performed. However, in the case of a film mold (soft mold), such cleaning and repair is not easy.
- a mold made of metal, quartz or the like is in a roll shape, and when a defect occurs due to clogging or the like, the transfer device must be stopped immediately to replace the mold.
- the desired substrate can be obtained by selecting a material suitable for each process, which is divided into two processes, a process for producing a film mold from a metal mold and a process for transferring the film mold to the sol-gel side.
- a desired material can be used, and not only necessary characteristics but also pattern transfer can be performed with no pattern defect and good releasability.
- the roll process using the above-described pressing roll has the following advantages compared to the press type. i) Since the time for contact between the mold and the coating film is short, it is possible to prevent the pattern from being damaged due to the difference in thermal expansion coefficient between the mold, the substrate and the stage on which the substrate is installed. ii) Productivity is improved due to the roll process, and further productivity can be further improved by using a long film substrate (film mold). iii) It is possible to prevent gas bubbles from being generated in the pattern or gas marks from remaining due to bumping of the solvent in the gel solution. iv) Since it is in line contact with the substrate (coating film), the transfer pressure and the peeling force can be reduced, and it is easy to cope with an increase in area.
- the film substrate may be pressed against the coating film while heating the coating film.
- the heating may be performed through a pressing roll, or the coating film may be heated directly or from the substrate side.
- a heating means may be provided inside the pressure roll (transfer roll), and any heating means can be used.
- a heater provided with a heater inside the pressing roll is suitable, but a heater separate from the pressing roll may be provided. In any case, any pressing roll may be used as long as pressing is possible while heating the coating film.
- the pressing roll is preferably a roll having a coating of a resin material such as ethylene-propylene-diene rubber (EPDM), silicone rubber, nitrile rubber, fluororubber, acrylic rubber, chloroprene rubber, etc. having heat resistance on the surface.
- a supporting roll may be provided so as to sandwich the substrate facing the pressing roll, or a supporting table for supporting the substrate may be installed.
- the heating temperature of the coating film at the time of transfer can be 40 ° C. to 150 ° C.
- the heating temperature of the pressing roll can be similarly 40 ° C. to 150 ° C. it can.
- the coating film may be temporarily fired.
- Pre-baking promotes gelation of the coating film, solidifies the pattern, and makes it difficult to collapse during peeling.
- pre-baking it is preferably heated in the atmosphere at a temperature of 40 to 150 ° C.
- the film-like substrate is peeled from the coating film (sol-gel material layer) after the transfer process or the pre-baking process (process S5 in FIG. 5). Since the roll process is used as described above, the peel force may be smaller than that of the plate-type mold used in the press method, and the mold can be easily peeled off from the coating film without remaining on the mold (film substrate). can do. In particular, since the coating film is transferred while being heated, the reaction easily proceeds, and the mold is easily peeled off from the coating film immediately after the transfer. Furthermore, you may use a peeling roll for the improvement of the peelability of a mold. As shown in FIG.
- the peeling roll 123 is provided on the downstream side of the pressing roll 122, and the film-like substrate 180a is turned into the coating film by rotating and supporting the film-like substrate 180a against the coating film 142 by the peeling roll 123.
- the attached state can be maintained only for the distance between the pressing roll 122 and the peeling roll 123 (a fixed time).
- substrate 180a is peeled from the coating film 142 by changing the course of the film-like board
- the above-described pre-baking or heating of the coating film may be performed while the film-like substrate 180a is attached to the coating film 142.
- the peeling roll 123 it is possible to further facilitate the peeling of the coating film by peeling while heating at 40 to 150 ° C., for example.
- the coating film 142 is subjected to main baking (step S6 in FIG. 5).
- the main baking is preferably performed at a temperature of 200 to 1200 ° C. for about 5 minutes to 6 hours.
- the coating film is cured to obtain a substrate having a concavo-convex pattern film corresponding to the concavo-convex pattern of the film substrate 180a, that is, a substrate (diffraction grating) in which a sol-gel material layer having a concavo-convex pattern is directly formed on a flat substrate. It is done. At this time, when the sol-gel material layer is silica, it becomes amorphous or crystalline, or a mixed state of amorphous and crystalline depending on the firing temperature and firing time.
- replicating the replica 110 (or sol-gel structure) using the resin film structure 100, or using the obtained replica 110 (or sol-gel structure) another replica is used.
- a film may be laminated on the surface of the resin film structure 100 or the replica 110 (or sol-gel structure) on which the concavo-convex pattern is formed by a vapor phase method such as a vapor deposition method or a sputtering method.
- a deposited film examples include metals such as aluminum, gold, silver, platinum, and nickel, and metal oxides such as aluminum oxide.
- the thickness of such a film is preferably 5 to 500 nm. If the thickness is less than the lower limit, it is difficult to obtain a uniform film, and the effect of sufficiently reducing the adhesiveness is reduced. If the thickness exceeds the upper limit, the shape of the matrix tends to be distorted.
- post curing may be appropriately performed by irradiating ultraviolet light again after the resin is cured.
- the curable resins 80 and 82 are applied to the support substrates 90 and 92, respectively, but directly on the surface of the mold 70 or the cured resin layer 80 which is a matrix.
- a matrix that is applied with a curable resin and removed after curing may be used.
- a concave / convex film of a cured resin obtained by pressing the mother die against the resin coating and curing the resin may be used as the mother die.
- the substrate is washed with a brush or the like, and organic substances and the like are removed with an alkaline cleaner and an organic solvent.
- the transparent electrode 93 is laminated on the sol-gel material layer 142 of the substrate 140 so that the uneven structure formed on the surface of the sol-gel material layer (coating film) 142 is maintained.
- the material of the transparent electrode 93 for example, indium oxide, zinc oxide, tin oxide, and indium tin oxide (ITO) that is a composite thereof, gold, platinum, silver, and copper are used. Among these, ITO is preferable from the viewpoints of transparency and conductivity.
- the thickness of the transparent electrode 93 is preferably in the range of 20 to 500 nm. If the thickness is less than the lower limit, the conductivity tends to be insufficient, and if it exceeds the upper limit, the transparency may be insufficient and the emitted EL light may not be sufficiently extracted to the outside.
- a known method such as a vapor deposition method, a sputtering method, or a spin coating method can be appropriately employed.
- the sputtering method is preferable from the viewpoint of improving adhesion, and after that, a photoresist is applied and exposed with an electrode mask pattern, and then etched with a developer to obtain a transparent electrode having a predetermined pattern. . Note that the substrate is exposed to a high temperature of about 300 ° C. during sputtering. It is desirable to clean the obtained transparent electrode with a brush, remove organic matter with an alkaline cleaner and an organic solvent, and then perform UV ozone treatment.
- Such an organic layer 94 shown in FIG. 7 is laminated on the transparent electrode 93.
- Such an organic layer 94 is not particularly limited as long as it can be used for the organic layer of the organic EL element, and a known organic layer can be appropriately used.
- Such an organic layer 94 may be a laminate of various organic thin films. For example, a laminate comprising a hole transport layer 95, a light emitting layer 96, and an electron transport layer 97 as shown in FIG. It may be.
- phthalocyanine derivatives As a material of the hole transport layer 95, phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′- Aromatic diamine compounds such as diamine (TPD) and 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), oxazole, oxadiazole, triazole, imidazole, imidazolone, stilbene Derivatives, pyrazoline derivatives, tetrahydroimidazole, polyarylalkanes, butadiene, 4,4 ′, 4 ′′ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (m-MTDATA), It is not limited to these.
- TPD diamine
- ⁇ -NPD
- the light emitting layer 96 is provided to recombine the holes injected from the transparent electrode 93 and the electrons injected from the metal electrode 98 to emit light.
- Materials that can be used for the light emitting layer 96 include anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, cyclopentadiene, aluminum Organometallic complexes such as quinolinol complex (Alq3), tri- (p-terphenyl-4-yl) amine, 1-aryl-2,5-di (2-thienyl) pyrrole derivatives, pyran, quinacridone, rubrene, distyryl Benzene derivatives, distyrylarylene derivatives,
- the light emitting material selected from these compounds suitably.
- a material system that emits light from a spin multiplet for example, a phosphorescent material that emits phosphorescence, and a compound that includes a portion formed of these in a part of the molecule can be preferably used.
- the phosphorescent material preferably contains a heavy metal such as iridium. Even if the above-mentioned light emitting material is doped as a guest material in a host material having high carrier mobility, light can be emitted by utilizing dipole-dipole interaction (Felster mechanism) and electron exchange interaction (Dexter mechanism). good.
- the material for the electron transport layer 97 includes nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, carbodiimide, fluorenylidenemethane derivatives, anthraquinodimethane. And organometallic complexes such as anthrone derivatives, oxadiazole derivatives, aluminum quinolinol complexes (Alq3), and the like.
- a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- the hole transport layer 95 or the electron transport layer 97 may also serve as the light emitting layer 96.
- the organic layer between the transparent electrode 93 and the metal electrode 98 is two layers.
- a metal fluoride such as lithium fluoride (LiF) or Li 2 O 3 or a metal oxide is used as an electron injection layer between the organic layer 94 and the metal electrode 98.
- a layer made of a highly active alkaline earth metal such as Ca, Ba, or Cs, an organic insulating material, or the like may be provided.
- a triazole derivative, oxadiazole derivative, imidazole derivative, polyarylalkane derivative as a hole injection layer between the organic layer 94 and the transparent electrode 93, Pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, or conductive polymer oligomers
- a layer made of a thiophene oligomer or the like may be provided.
- the organic layer 94 is a stacked body including the hole transport layer 95, the light emitting layer 96, and the electron transport layer 97
- the thickness of the hole transport layer 95, the light emitting layer 96, and the electron transport layer 97 is 1 respectively.
- a range of ⁇ 200 nm, a range of 5 to 100 nm, and a range of 5 to 200 nm are preferable.
- a method for laminating the organic layer 94 a known method such as an evaporation method, a sputtering method, a spin coating method, or a die coating method can be appropriately employed.
- a metal electrode 98 is then laminated on the organic layer 94 as shown in FIG.
- a material of the metal electrode 98 a substance having a small work function can be used as appropriate, and is not particularly limited, and examples thereof include aluminum, MgAg, MgIn, and AlLi.
- the thickness of the metal electrode 98 is preferably in the range of 50 to 500 nm. If the thickness is less than the lower limit, the conductivity tends to decrease, and if the thickness exceeds the upper limit, it may be difficult to repair when a short circuit occurs between the electrodes.
- the metal electrode 98 can be laminated by employing a known method such as vapor deposition or sputtering. Thus, an organic EL element 200 having a structure as shown in FIG. 7 is obtained.
- an organic EL element is manufactured using a diffraction grating formed from a sol-gel material, it is advantageous in comparison with a diffraction grating in which a concavo-convex pattern is formed from a curable resin as described below.
- a sol-gel material is excellent in mechanical strength, scratches, adhesion of foreign matter, protrusions on the transparent electrode, etc. are unlikely to occur even if the concavo-convex pattern surface is washed after forming the substrate and the transparent electrode in the manufacturing process of the organic EL element. , Device defects caused by them can be suppressed.
- the organic EL element obtained by the method of the present invention is superior to the case of using a curable resin substrate in terms of the mechanical strength of the substrate having a concavo-convex pattern.
- a substrate formed from a sol-gel material is excellent in chemical resistance. Therefore, it is relatively corrosion resistant to the alkaline liquid and organic solvent used in the cleaning process of the substrate and the transparent electrode, and various cleaning liquids can be used. Further, as described above, an alkaline developer may be used when patterning the substrate, and the developer is also resistant to corrosion. This is advantageous compared to a curable resin substrate having a relatively low resistance to an alkaline solution. Furthermore, the substrate formed from the sol-gel material is excellent in heat resistance.
- a substrate formed from a sol-gel material is excellent in UV resistance and weather resistance as compared with a curable resin substrate. For this reason, it has tolerance also to the UV ozone cleaning process after transparent electrode formation.
- the organic EL element produced by the method of the present invention When the organic EL element produced by the method of the present invention is used outdoors, deterioration due to sunlight can be suppressed as compared with the case of using a curable resin substrate. Further, the cured resin as described above may deteriorate when left for a long period of time due to heat generated during light emission, and may cause yellowing or generation of gas. Although it is difficult to use, deterioration is suppressed in an organic EL element including a substrate manufactured using a sol-gel material.
- Block copolymers 1 to 11 (referred to as “BCP-1” to “BCP-11” as appropriate) manufactured by Polymer Source, which are used in Examples 1 and 2 were prepared. All of these block copolymers have polystyrene (hereinafter abbreviated as “PS” where appropriate) as the first polymer segment and polymethyl methacrylate (hereinafter abbreviated as “PMMA” where appropriate) as the second polymer segment.
- PS polystyrene
- PMMA polymethyl methacrylate
- Table 1 also shows the volume ratio (PS: PMMA) and molecular weight distribution (Mw / Mn) of the PS segment and the PMMA segment, and the Tg of the PS segment and the PMMA segment.
- the volume ratio of the first and second polymer segments in the block copolymer is such that the density of polystyrene is 1.05 g / cm 3 and the density of polymethyl methacrylate is It was calculated as 1.19 g / cm 3 .
- the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the polymer segment or polymer are gel permeation chromatography (manufactured by Tosoh Corporation, model number “GPC-8020”, TSK-GEL SuperH1000, SuperH2000, SuperH3000, and SuperH4000 in series. Measured by using a device connected to The glass transition point (Tg) of the polymer segment was determined by using a differential scanning calorimeter (manufactured by Perkin-Elmer, product name “DSC7”) at a temperature increase rate of 20 ° C./min in the temperature range of 0 to 200 ° C. Measurement was performed while raising the temperature.
- the solubility parameters of polystyrene and polymethylmethacrylate are 9.0 and 9.3, respectively (see Chemical Handbook, Application, 2nd revised edition).
- Table 1 shows the physical properties of the block copolymer 1 (hereinafter abbreviated as BCP-1 as appropriate).
- the block copolymer solution was filtered through a membrane filter having a pore size of 0.5 ⁇ m to obtain a block copolymer solution.
- a mixed solution of 1 g of KBM-5103 manufactured by Shin-Etsu Silicone Co., Ltd., 1 g of ion-exchanged water, 0.1 ml of acetic acid, and 19 g of isopropyl alcohol was spin-coated on a glass substrate (after 10 seconds at a rotation speed of 500 rpm, followed by For 45 seconds at 800 rpm). It processed at 130 degreeC for 15 minute (s), and the silane coupling process glass was obtained.
- the obtained block copolymer solution was applied on a silane coupling-treated glass as a base material with a film thickness of 150 to 170 nm by spin coating.
- the spin coating was performed at a rotational speed of 200 rpm for 10 seconds, and subsequently at 300 rpm for 30 seconds.
- FIG. 8B show an observation photograph of the thin film cross section. Since the PS portion is preliminarily RuO4 stained, as shown in FIG. 8B, the PS portion is dark (dark gray) and the PMMA portion is thin (light gray). From this observation photograph, it can be seen that the circular cross-sections of the PS portion are arranged in two steps in the direction (height direction) perpendicular to the substrate surface while being separated from each other in the direction parallel to the substrate surface. When considered together with an analysis image of an atomic force microscope described later, it can be seen that the PS portion is phase-separated from the PMMA portion into a horizontal cylinder structure. The PS part is a core (island), and the PMMA part surrounds it (sea).
- the solvent chloroform is a good solvent for both PS and PMMA, it is a better solvent for PMMA. Therefore, it is considered that PMMA swelled more and the volume ratio deviated from 5: 5. Further, it can be seen that the surface of the thin film has a waveform shape reflecting the presence of the PS portion isolated with the PMMA portion interposed therebetween.
- the concentration of the block copolymer 1 in the block copolymer solution is reduced to 0.5%
- a thin film was formed on the substrate in the same manner as described above, and a solvent annealing treatment was performed.
- the cross-sectional structure of this thin film observed with a transmission electron microscope is shown in FIG. 8C and FIG. 8D which is an enlarged view thereof.
- the horizontal cylinder structure was maintained by the decrease in the block copolymer concentration, but the block copolymer was arranged in one step in the height direction. Also in FIG.
- the surface of the thin film has a waveform shape reflecting the presence of the PS portion isolated with the PMMA portion interposed therebetween.
- the portion that appears as dark black on the surface of the thin film shows the shade of the protective film applied to cut the thin film, and is not a component of the thin film itself.
- a thin nickel layer of about 20 nm was formed as a current seed layer on the surface of the thin film corrugated by the solvent annealing treatment by sputtering.
- the substrate with the thin film was placed in a nickel sulfamate bath, and electrocasting (maximum current density 0.05 A / cm 2 ) was performed at a temperature of 50 ° C. to deposit nickel until the thickness reached 250 ⁇ m.
- the substrate with a thin film was mechanically peeled from the nickel electroformed body thus obtained.
- the nickel electroformed body is immersed in a tetrahydrofuran solvent for 2 hours, and then partially coated on the surface of the electroformed body by repeating the application and curing of an acrylic UV curable resin three times.
- the polymer component that had been removed was removed. Then, it immersed in Nippon CB Chemical's Chemisole 2303, and it wash
- the nickel electroformed body was immersed in HD-2101TH manufactured by Daikin Chemicals Sales Co., Ltd. for about 1 minute, dried, and allowed to stand overnight.
- the nickel electroformed body was immersed in HDTH manufactured by Daikin Chemicals Sales Co., Ltd. and subjected to ultrasonic treatment for about 1 minute.
- a nickel mold subjected to the release treatment was obtained.
- a fluorine-based UV curable resin is applied onto a PET substrate (Toyobo Co., Ltd., Cosmo Shine A-4100), and irradiated with ultraviolet rays at 600 mJ / cm 2 while pressing a nickel mold, the fluorine-based UV curable resin.
- a PET substrate Toyobo Co., Ltd., Cosmo Shine A-4100
- the fluorine-based UV curable resin was cured.
- the nickel mold was peeled off from the cured resin. In this way, a diffraction grating composed of a PET substrate with a resin film onto which the surface shape of the nickel mold was transferred was obtained.
- Measurement mode Dynamic force mode Cantilever: SI-DF40P2 (material: Si, lever width: 40 ⁇ m, tip diameter: 10 nm) Measurement atmosphere: in the air Measurement temperature: 25 ° C.
- FIG. 9A An unevenness analysis image of the thin film surface is shown in FIG. 9A.
- corrugation analysis image of the cross section (The cross section along the line in FIG. 9A) of the thin film surface vicinity is shown to FIG. 9B. From the cross-sectional structure of FIG. 9B, it can be seen that smooth irregularities are formed on the surface. The full scale of the vertical axis is 160 nm (the same applies to the unevenness analysis images of other cross sections).
- the Fourier transform image, the average pitch of the unevenness, the average value of the unevenness depth distribution, the standard deviation of the unevenness depth, and the kurtosis of the unevenness are as follows. It asked for by the method.
- ⁇ Fourier transform image> An irregularity analysis image is obtained as described above by measuring an arbitrary measurement area of 3 ⁇ m square (vertical 3 ⁇ m, horizontal 3 ⁇ m) of the diffraction grating. The obtained unevenness analysis image was subjected to flat processing including primary inclination correction, and then subjected to two-dimensional fast Fourier transform processing to obtain a Fourier transform image. The obtained Fourier transform image is shown in FIG. As is clear from the results shown in FIG.
- the Fourier transform image shows an annular pattern substantially centered at the origin where the absolute value of the wave number is 0 ⁇ m ⁇ 1 , and the annular pattern was confirmed to be present in a region where the absolute value of the wave number falls within the range of 10 ⁇ m ⁇ 1 or less.
- the circular pattern of the Fourier transform image is a pattern that is observed when bright spots are gathered in the Fourier transform image.
- “Circular” as used herein means that the pattern of bright spots appears to be almost circular, and is a concept that includes a part of the outer shape that appears to be convex or concave. .
- a pattern in which bright spots are gathered may appear to be almost circular, and this case is expressed as “annular”.
- annular includes those in which the outer circle of the ring and the inner circle appear to be substantially circular, and the outer circle of the ring and a part of the outer shape of the inner circle are convex or concave. It is a concept including what appears to be.
- the term “present in” means that 30% or more (more preferably 50% or more, even more preferably 80% or more, particularly preferably 90% or more) of luminescent spots constituting the Fourier transform image have wavenumbers. It means that the absolute value is within a range of 10 ⁇ m ⁇ 1 or less (more preferably 1.25 to 10 ⁇ m ⁇ 1 , more preferably 1.25 to 5 ⁇ m ⁇ 1 ).
- the two-dimensional fast Fourier transform processing of the unevenness analysis image can be easily performed by electronic image processing using a computer equipped with two-dimensional fast Fourier transform processing software.
- ⁇ Average pitch of unevenness> An irregularity analysis image is obtained as described above by measuring an arbitrary measurement area of 3 ⁇ m square (vertical 3 ⁇ m, horizontal 3 ⁇ m) of the diffraction grating. In such an unevenness analysis image, 100 or more intervals between any adjacent convex portions or adjacent concave portions are measured, and the average is calculated as the average pitch of the unevenness. From the analysis image obtained in this example, the average pitch of the concavo-convex pattern was 73.5 nm.
- An unevenness analysis image is obtained by measuring a measurement region of an arbitrary 3 ⁇ m square (3 ⁇ m in length and 3 ⁇ m in width) of the thin film.
- region are each calculated
- 65536 points 256 vertical points ⁇ 256 horizontal points
- the measurement point P having the highest height from the surface of the substrate is obtained.
- a plane including the measurement point P and parallel to the surface of the substrate is defined as a reference plane (horizontal plane), and a depth value from the reference plane (a height value from the substrate at the measurement point P is determined at each measurement point).
- the difference obtained by subtracting the height from the substrate is determined as the depth data.
- Such unevenness depth data can be automatically calculated by the software in E-sweep, and the automatically calculated value can be obtained as the unevenness depth data.
- the average value (m) of the unevenness depth distribution can be determined by calculating using the above-described equation (I).
- the average value (m) of the uneven depth distribution of the diffraction grating obtained in this example was 20.6 nm.
- N denotes the total number of measurement points (total number of pixels)
- x i denotes the data of the i-th uneven depth measuring points
- m represents the average value of the depth distribution of the irregularities .
- the standard deviation ( ⁇ ) of the unevenness depth of the thin film was 18.2 nm.
- N represents the total number of measurement points (total number of pixels)
- x i denotes the data of the i-th uneven depth measuring points
- m represents the average value of the depth distribution of the irregularities
- ⁇ indicates the value of the standard deviation of the unevenness depth.
- the kurtosis of the irregularities formed on the surface of the thin film is preferably ⁇ 1.2 or more, more preferably ⁇ 1.2 to 1.2, and ⁇ 1. 2 to 1 is more preferable, and ⁇ 1.1 to 0.0 is particularly preferable from the previous experiments of the present application (see, for example, Applicants' WO2011 / 007878A1). . If the kurtosis is less than the lower limit, it tends to be difficult to sufficiently suppress the occurrence of leakage current when used in an organic EL element. On the other hand, if the upper limit is exceeded, the thin film has a cross-sectional shape.
- the unevenness is almost eliminated and there are sparse protrusions or depressions, the light extraction efficiency that is a feature of the uneven structure cannot be sufficiently improved (a sufficient diffraction effect cannot be obtained).
- the electric field tends to concentrate on the protrusion, and a leak current tends to occur.
- the kurtosis (k) is -1.2 or more, the cross-sectional shape of the structure has no extreme cusp regardless of the height, pitch, and surface shape of the corrugations.
- the organic layer is deposited on the surface of the unevenness by using this for the production of an organic EL device, the thickness of a part of the organic layer can be sufficiently prevented. It is considered that the organic layer can be laminated with a sufficiently uniform film thickness.
- the distance between the electrodes can be made sufficiently uniform, and the concentration of the electric field can be sufficiently suppressed. Further, in the organic EL element, it is considered that the generation of leakage current can be more sufficiently suppressed because the gradient of the potential distribution at the inclined portion of the corrugated structure has a gentle slope.
- the kurtosis of the unevenness of the diffraction grating obtained in Example 1 was ⁇ 0.67.
- Example 2 In this example, how the uneven structure of the thin film after the solvent annealing treatment is changed by changing the number average molecular weight (Mn) of the block copolymer and the ratio of the PS portion and the PMMA portion constituting the block copolymer. Observed about what to do.
- the block copolymer block copolymers 1 (BCP-1) to 11 (BCP-11) having physical properties as shown in Table 1 are used, and the amount of polyethylene oxide added is 100 parts by mass of the block copolymer. Except having changed to 30 mass parts, it carried out similarly to Example 1, the block copolymer solution was apply
- Block copolymer 1 (BCP-1): The block copolymer 1 is the same as in Example 1, but the polyethylene oxide content in the block copolymer solution is higher than in Example 1. From the unevenness analysis image (not shown) near the cross section of the thin film obtained by the solvent annealing treatment, it was found that the shape of the unevenness was clearer than that in Example 1. Although it is thought that this is due to the difference in the content of polyethylene oxide, the influence of the content of polyethylene oxide on the unevenness height will be described in detail in Example 5.
- the average value of the depth distribution of the unevenness on the thin film surface calculated by E-sweep based on the unevenness analysis image is 78.1 nm, the average pitch of the unevenness is 305 nm, and the standard deviation of the unevenness depth is 24.7 nm. there were.
- the Fourier transform image shows an annular pattern whose center is the origin whose absolute value of wave number is 0 ⁇ m ⁇ 1 , and the annular pattern falls within the range where the absolute value of wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area. The kurtosis of the unevenness was ⁇ 0.63.
- Block copolymer 2 (BCP-2): Although the number average molecular weight (Mn) of the block copolymer 2 exceeds 500,000, the number average molecular weight (Mn) of the PS portion and the PMMA portion constituting the block copolymer 2 is considerably larger than that of Example 1. Low, 270,000 and 289,000, respectively, and the ratio PS: PMMA of PS part to PMMA part is 51:49. From the unevenness analysis image (not shown) of the cross section near the surface of the thin film obtained by the solvent annealing treatment, it was found that the height of the unevenness was considerably lower than that of the block copolymer 1.
- the average value of the depth distribution of the unevenness on the thin film surface calculated by E-sweep based on the unevenness analysis image is 22.5 nm, the average pitch of the unevenness is 162 nm, and the standard deviation of the unevenness depth is 10.1 nm. there were.
- the Fourier transform image shows an annular pattern whose center is the origin whose absolute value of wave number is 0 ⁇ m ⁇ 1 , and the annular pattern falls within the range where the absolute value of wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area.
- the kurtosis of the unevenness was ⁇ 1.01.
- Block copolymer 3 (BCP-3): The number average molecular weight (Mn) of the block copolymer 3 is 1,010,000, and the number average molecular weights (Mn) of the PS portion and the PMMA portion constituting the block copolymer 3 are 510,000 and 500,000, respectively.
- the ratio PS: PMMA between the PS portion and the PMMA portion is 54:46, which is the same as in the first embodiment. From the unevenness analysis image (not shown) of the cross section in the vicinity of the thin film surface obtained by the solvent annealing treatment, it was found that the unevenness on the surface was as smooth as in Example 1.
- the average value of the unevenness distribution on the surface of the thin film calculated by E-sweep based on the unevenness analysis image is 47.1 nm, the average pitch of the unevenness is 258 nm, and the standard deviation of the unevenness depth is 18.0 nm. there were.
- the Fourier transform image shows an annular pattern whose center is the origin whose absolute value of wave number is 0 ⁇ m ⁇ 1 , and the annular pattern falls within the range where the absolute value of wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area. The kurtosis of the unevenness was ⁇ 0.95.
- Block copolymer 4 (BCP-4): The number average molecular weight (Mn) of the block copolymer 4 is 1,160,000, and the number average molecular weights (Mn) of the PS portion and the PMMA portion constituting the block copolymer 4 are 590,000 and 570, respectively.
- the ratio PS: PMMA between the PS portion and the PMMA portion is 54:46, which is the same as in the first embodiment. From the unevenness analysis image (not shown) of the cross section in the vicinity of the thin film surface obtained by the solvent annealing treatment, it was found that the unevenness on the surface was generally smooth although there was a part protruding.
- the average value of the depth distribution of the unevenness on the thin film surface calculated by E-sweep based on the unevenness analysis image is 80.1 nm, the average pitch of the unevenness is 278 nm, and the standard deviation of the unevenness depth is 31.2 nm. there were.
- the Fourier transform image shows an annular pattern whose center is the origin whose absolute value of wave number is 0 ⁇ m ⁇ 1 , and the annular pattern falls within the range where the absolute value of wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area. The kurtosis of the unevenness was ⁇ 1.06.
- Block copolymer 5 (BCP-5): The number average molecular weight (Mn) of the block copolymer 5 is 1,600,000, and the number average molecular weights (Mn) of the PS portion and the PMMA portion constituting the block copolymer 5 are 700,000 and 900,000, respectively. 000, and the ratio PS: PMMA between the PS portion and the PMMA portion is 47:53. From the unevenness analysis image (not shown) of the cross section near the surface of the thin film obtained by the solvent annealing treatment, it was found that the unevenness on the surface was smooth.
- the average value of the depth distribution of the unevenness on the thin film surface calculated by E-sweep based on the unevenness analysis image is 53.7 nm, the average pitch of the unevenness is 315 nm, and the standard deviation of the unevenness depth is 18.0 nm. there were.
- the Fourier transform image shows an annular pattern whose center is the origin whose absolute value of wave number is 0 ⁇ m ⁇ 1 , and the annular pattern falls within the range where the absolute value of wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area. The kurtosis of the unevenness was ⁇ 0.33.
- Block copolymer 6 (BCP-6): The number average molecular weight (Mn) of the block copolymer 6 is 1,725,000, and the number average molecular weights (Mn) of the PS portion and the PMMA portion constituting the block copolymer 6 are 868,000 and 857, respectively.
- the ratio PS: PMMA of the PS portion and the PMMA portion is 53:47. From the unevenness analysis image (not shown) of the cross section near the surface of the thin film obtained by the solvent annealing treatment, it was found that the unevenness on the surface was smooth.
- the average value of the depth distribution of the unevenness on the thin film surface calculated by E-sweep based on the unevenness analysis image is 72.9 nm, the average pitch of the unevenness is 356 nm, and the standard deviation of the unevenness depth is 19.9 nm. there were.
- the Fourier transform image shows an annular pattern whose center is the origin whose absolute value of wave number is 0 ⁇ m ⁇ 1 , and the annular pattern falls within the range where the absolute value of wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area. The kurtosis of the unevenness was ⁇ 0.09.
- Block copolymer 7 (BCP-7):
- the number average molecular weight (Mn) of the block copolymer 7 is 1,120,000, and the number average molecular weights (Mn) of the PS portion and the PMMA portion constituting the block copolymer 7 are 700,000 and 420, respectively.
- the ratio PS: PMMA of the PS portion and the PMMA portion is 65:35. According to the unevenness analysis image (not shown) of the cross section in the vicinity of the thin film surface obtained by the solvent annealing treatment, the surface unevenness hardly appeared.
- the average value of the unevenness distribution of the thin film surface calculated by E-sweep based on the unevenness analysis image was as extremely low as 5.0 nm, and the standard deviation of the unevenness depth was 1.4 nm.
- the average pitch of the irregularities was not measurable.
- the Fourier transform image shows a circular pattern whose center is the origin where the absolute value of the wave number is 0 ⁇ m ⁇ 1 , and the circular pattern falls within the range where the absolute value of the wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area.
- the kurtosis of the unevenness was ⁇ 0.33.
- Block copolymer 8 (BCP-8): The number average molecular weight (Mn) of the block copolymer 8 is 1,350,000, and the number average molecular weight (Mn) of the PS portion and the PMMA portion constituting the block copolymer 8 is 1,200,000 and The ratio PS: PMMA of the PS portion and the PMMA portion is 90:10.
- the unevenness analysis image (not shown) of the cross section near the thin film surface obtained by the solvent annealing treatment, the unevenness appeared slightly on the surface of the thin film.
- the average value of the unevenness distribution of the thin film surface calculated by E-sweep based on the unevenness analysis image was 36.9 nm, and the standard deviation of the unevenness depth was 5.6 nm.
- the average pitch of the irregularities was not measurable.
- the Fourier transform image shows a circular pattern whose center is the origin where the absolute value of the wave number is 0 ⁇ m ⁇ 1 , and the circular pattern falls within the range where the absolute value of the wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area.
- the kurtosis of the irregularities was 2.29.
- Block copolymer 9 (BCP-9): The number average molecular weight (Mn) of the block copolymer 9 is 1,700,000, and the number average molecular weights (Mn) of the PS portion and the PMMA portion constituting the block copolymer 9 are 556,000 and 120,000, respectively.
- the ratio PS: PMMA of the PS portion and the PMMA portion is 34:66.
- the unevenness analysis image (not shown) of the cross section near the thin film surface obtained by the solvent annealing treatment, the unevenness appeared slightly on the surface of the thin film.
- the average value of the unevenness distribution of the thin film surface calculated by E-sweep based on the unevenness analysis image was 35.7 nm, and the standard deviation of the unevenness depth was 14.5 nm.
- the average pitch of the irregularities was not measurable.
- the Fourier transform image shows a circular pattern whose center is the origin where the absolute value of the wave number is 0 ⁇ m ⁇ 1 , and the circular pattern falls within the range where the absolute value of the wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area. The kurtosis of the unevenness was 0.03.
- Block copolymer 10 (BCP-10): The number average molecular weight (Mn) of the block copolymer 10 is 995,000, and the number average molecular weights (Mn) of the PS portion and the PMMA portion constituting the block copolymer 10 are 315,000 and 680,000, respectively. In addition, the ratio PS: PMMA of the PS portion and the PMMA portion is 34:66. According to the unevenness analysis image (not shown) of the cross section near the thin film surface obtained by the solvent annealing treatment, the unevenness appeared slightly on the surface of the thin film.
- the average value of the unevenness depth distribution on the thin film surface calculated by E-sweep based on the unevenness analysis image was 31.3 nm, and the standard deviation of the unevenness depth was 8.5 nm.
- the average pitch of the irregularities was not measurable.
- the Fourier transform image shows a circular pattern whose center is the origin where the absolute value of the wave number is 0 ⁇ m ⁇ 1 , and the circular pattern falls within the range where the absolute value of the wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area.
- the kurtosis of the unevenness was ⁇ 0.13.
- Block copolymer 11 (BCP-11): The number average molecular weight (Mn) of the block copolymer 11 is 263,000, and the number average molecular weight (Mn) of the PS portion and the PMMA portion constituting the block copolymer 10 is 133,000 and 139,000, respectively. Yes, and the ratio PS: PMMA of the PS portion to the PMMA portion is 54:46. From the unevenness analysis image (not shown) of the cross section near the surface of the thin film obtained by the solvent annealing treatment, it was found that the unevenness on the surface was small.
- the average value of the unevenness depth distribution on the thin film surface calculated by E-sweep based on the unevenness analysis image is 17.7 nm, the average pitch of the unevenness is 87 nm, and the standard deviation of the unevenness depth is 4.8 nm. there were. Unevenness does not appear on the surface of the thin film.
- the Fourier transform image shows an annular pattern whose center is the origin whose absolute value of the wave number is 0 ⁇ m ⁇ 1 , and the annular pattern falls within the range where the absolute value of the wave number is 15 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area. The kurtosis of the irregularities was 1.4.
- the number average molecular weight of the block copolymer is less than 500,000. It is understood that the uneven surface hardly appears and the number average molecular weight is preferably at least 500,000, and the number average molecular weight of the block copolymer is particularly preferably 1,000,000 or more in view of the height of the unevenness. It can also be seen that when the ratio PS: PMMA of the PS part to the PMMA part is outside the range of 40:60 to 60:40 as in the case of the block copolymers 7 to 10, the height of the unevenness is lowered.
- Example 3 it was observed how the uneven structure of the thin film was changed by changing the processing time of the solvent annealing.
- the block copolymer used was the block copolymer 1 (BCP-1) used in Example 1, except that the treatment time was changed to 1, 3, 6, 12, 48 and 168 hours.
- the block copolymer solution was applied to a silane coupling-treated glass substrate, dried, and then subjected to a solvent annealing treatment with chloroform.
- An analysis image of the uneven shape on the surface of the thin film after the solvent annealing treatment was observed with an atomic force microscope under the same analysis conditions as in Example 1.
- Table 2 shows the average value of the depth distribution of the unevenness on the thin film surface (average unevenness), the standard deviation of the unevenness depth, and the kurtosis calculated by E-sweep based on these analysis images.
- the Fourier transform image shows an annular pattern whose center is the origin where the absolute value of the wave number is 0 ⁇ m ⁇ 1 in any processing time film, and the annular pattern has an absolute value of the wave number. It was confirmed that it was present in a region within a range of 10 ⁇ m ⁇ 1 or less. Note that 6 to 168 hours are preferable based on the average value of the uneven depth distribution.
- Example 4 changes in the shape of the unevenness due to the type of solvent used in the solvent annealing treatment were observed.
- Silane coupling treatment of the block copolymer solution (block copolymer BCP-1) was conducted in the same manner as in Example 1 except that a mixed solvent of carbon disulfide and acetone (75:25) was used instead of chloroform as the solvent. It was applied to a glass substrate, dried, and then subjected to a solvent annealing treatment. An analysis image of the uneven shape on the surface of the thin film after the solvent annealing treatment was observed with an atomic force microscope under the same analysis conditions as in Example 1.
- the average value of the unevenness distribution of the thin film surface calculated by E-sweep based on the analysis image and the standard deviation of the unevenness depth were 50.5 nm and 20.0 nm, respectively.
- the Fourier transform image shows an annular pattern whose center is the origin whose absolute value of wave number is 0 ⁇ m ⁇ 1 , and the annular pattern falls within the range where the absolute value of wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area.
- the kurtosis of the unevenness was ⁇ 0.27.
- block copolymer solution (block copolymer BCP-1) was treated with silane coupling in the same manner as above except that the mixing ratio of carbon disulfide and acetone was changed to 50:50 instead of chloroform as a solvent. It was applied to a glass substrate, dried, and then subjected to a solvent annealing treatment.
- the average value of the unevenness distribution of the thin film surface and the standard deviation of the unevenness depth calculated by E-sweep based on the unevenness analysis image of the film surface and the unevenness analysis image of the cross section near the surface were 23.6 nm, respectively. And 10.3 nm. It can be seen that the height of the unevenness decreases as the mixing ratio of acetone increases.
- the Fourier transform image shows an annular pattern whose center is the origin whose absolute value of wave number is 0 ⁇ m ⁇ 1 , and the annular pattern falls within the range where the absolute value of wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area. The kurtosis of the unevenness was -0.98.
- a block copolymer solution (block copolymer BCP-1) was applied to a silane coupling treated glass substrate in the same manner as above except that dichloromethane was used as a solvent, dried, and then subjected to a solvent annealing treatment. went.
- the average value of the unevenness distribution of the thin film surface and the standard deviation of the unevenness depth calculated by E-sweep based on the unevenness analysis image of the film surface and the unevenness analysis image of the cross section near the surface are 45.0 nm, respectively. And 15.0 nm.
- the Fourier transform image shows an annular pattern whose center is the origin whose absolute value of wave number is 0 ⁇ m ⁇ 1 , and the annular pattern falls within the range where the absolute value of wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area. The kurtosis of the unevenness was ⁇ 0.51.
- a block copolymer solution (block copolymer BCP-1) was applied to a silane coupling treated glass substrate in the same manner as above except that toluene was used as a solvent, dried, and then subjected to a solvent annealing treatment. went.
- the unevenness analysis image of the film surface and the unevenness analysis image (not shown) of the cross section near the surface the unevenness was not so clear and the pitch seemed to be widened.
- the average value of the depth distribution of the unevenness on the thin film surface and the standard deviation of the unevenness depth calculated by E-sweep based on the unevenness analysis image were 33.0 nm and 10.3 nm, respectively.
- the Fourier transform image shows a circular pattern whose center is the origin where the absolute value of the wave number is 0 ⁇ m ⁇ 1 , and the circular pattern falls within the range where the absolute value of the wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area. The kurtosis of the unevenness was ⁇ 0.17.
- a block copolymer solution (block copolymer BCP-1) was applied to the silane coupling treated glass substrate in the same manner as above except that acetone alone was used as a solvent, dried, and then solvent annealed Processed.
- the average value of the unevenness distribution of the thin film surface and the standard deviation of the unevenness depth calculated by E-sweep based on the unevenness analysis image of the film surface and the unevenness analysis image of the cross section near the surface are 52.1 nm, respectively. And 16.3 nm.
- the Fourier transform image shows an annular pattern whose center is the origin whose absolute value of wave number is 0 ⁇ m ⁇ 1 , and the annular pattern falls within the range where the absolute value of wave number is 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area. The kurtosis of the unevenness was ⁇ 0.6.
- Example 5 the change in the shape of the irregularities after the solvent annealing treatment was observed when the amount of polyethylene oxide (PEO) added to the block copolymer solution was changed.
- the mass parts (% notation) of polyethylene oxide with respect to 100 parts by mass of the block copolymer were changed to 0%, 5%, 15%, 25%, 30%, 35%, and 70%, and the same as in Example 1.
- the block copolymer solution (block copolymer BCP-1) was applied to a silane coupling-treated glass substrate, dried, and then subjected to a solvent annealing treatment.
- An analysis image of the uneven shape on the surface of the thin film after the solvent annealing treatment was observed with an atomic force microscope under the same analysis conditions as in Example 1. Based on these unevenness analysis images, the average value of the unevenness distribution of the surface of the thin film calculated by E-sweep (and the standard deviation of the unevenness depth) was obtained. The results are shown in Table 3 together with the kurtosis.
- the Fourier transform image shows an annular pattern with the origin at which the absolute value of the wave number is 0 ⁇ m ⁇ 1 for all the films with different PEO addition amounts, and the annular pattern is the absolute value of the wave number.
- the annular pattern is the absolute value of the wave number.
- Example 6 the change in the concavo-convex shape was observed depending on the presence or absence of heat treatment (heat annealing) after the solvent annealing treatment and the heating temperature.
- a block copolymer was used in the same manner as in Example 1 except that the block copolymer 1 (BCP-1) was used as the block copolymer and the content of polyethylene oxide in the block copolymer was changed to 30%.
- the solution was applied to a silane coupling treated glass substrate, dried, and then subjected to a solvent annealing treatment. After the solvent annealing treatment, a sample that was not heated, a sample that was heat-treated at 40 ° C. for 1 hour, a sample that was heat-treated at 50 ° C.
- FIG. 1 The average value of the depth distribution of the unevenness on the surface of the thin film, the standard deviation of the unevenness depth, and the kurtosis calculated by E-sweep based on the unevenness analysis image are shown in the following table.
- the average value of the unevenness depth distribution was 71.3 nm, but by heating at 40 ° C. for 1 hour, the average value of the unevenness depth distribution was reduced to 55.8 nm. .
- the heating temperature was raised to 50 ° C.
- the average value of the uneven depth distribution was further reduced to 40.4 nm.
- the heating temperature is increased to 60 ° C.
- the average value of the uneven depth distribution is further decreased to 27.1 nm.
- the height of the unevenness is sufficient only by the solvent annealing treatment and the kurtosis is -0.75, and a smooth uneven waveform is obtained. Therefore, it can be seen that the thermal annealing after patterning (solvent annealing) is basically unnecessary except in special cases such as when the height of the unevenness is required.
- this base material was heated in an oven at 160 ° C. for 3 hours (annealing treatment). Concavities and convexities were formed on the thin film on the substrate surface after heating, and it was observed that the block copolymer was microphase-separated.
- the heated thin film was etched as follows. After irradiating with ultraviolet rays at an irradiation intensity of 30 J / cm 2 using a high-pressure mercury lamp, it was immersed in acetone, washed with ion-exchanged water, and then dried. By this etching process, PMMA on the substrate was selectively removed to obtain a thin film on which a fine concavo-convex pattern was formed.
- FIG. 10A The obtained unevenness analysis image of the thin film surface is shown in FIG. 10A, and the unevenness analysis image of the cross section near the thin film surface is shown in FIG. 10B.
- FIG. 10B From the cross-sectional structure of FIG. 10B, since it has a vertical cross-sectional structure, it is considered that PS and PMMA are aligned in a vertical lamella. 10A and 10B, the Fourier transform image, the average pitch of the unevenness, the average value of the unevenness depth distribution, and the standard deviation of the unevenness depth were obtained in the same manner as in Example 1. However, the average value of the uneven depth distribution was 75.8 nm, the standard deviation of the uneven depth was 47.2 nm, and the kurtosis was ⁇ 1.63. As shown in FIG.
- the Fourier transform image shows a circular pattern whose center is the origin, and the annular pattern has an absolute value of the wave number of 10 ⁇ m ⁇ 1 or less. It was confirmed to exist in the area. From these results, even when a block polymer having the same composition as in Example 1 was used, the microphase separation structure caused by the self-organization of the block copolymer was different due to the different annealing method, and according to the present invention. It can be seen that a horizontal cylinder structure can only appear by solvent phase separation (solvent annealing). In addition, it can be seen that in the solvent phase separation according to the present invention, a corrugated uneven structure with a smooth surface is obtained.
- Example 7 In this example, a mold is manufactured according to the method of the present invention, a diffraction grating is manufactured using the mold, and an organic EL element is manufactured using the obtained diffraction grating.
- Block copolymer 1 (BCP-1) was used as the block copolymer and polyethylene oxide was used at 30 parts by mass with respect to 100 parts by mass of the block copolymer
- the block copolymer was A polymer solution was prepared, applied to a silane coupling treated glass substrate, dried, and then subjected to a solvent annealing treatment.
- Corrugated irregularities were generated on the surface of the thin film by the solvent annealing.
- a thin nickel layer of about 20 nm was formed as a current seed layer on the surface of the thin film by sputtering.
- This substrate with a thin film was placed in a nickel sulfamate bath, and was subjected to electroforming (maximum current density 0.05 A / cm 2 ) at a temperature of 50 ° C. to deposit nickel until the thickness reached 250 ⁇ m.
- the substrate with a thin film was mechanically peeled from the nickel electroformed body thus obtained.
- the nickel electroformed body is immersed in a tetrahydrofuran solvent for 2 hours, and then partially coated on the surface of the electroformed body by repeating the application and curing of an acrylic UV curable resin three times.
- the polymer component that had been removed was removed.
- a UV ozone treatment was applied to the nickel electroformed body for 10 minutes.
- the shape of the irregularities on the surface of the nickel electroformed body was analyzed using the atomic force microscope used in Example 1, and an analysis image was obtained.
- the analysis image was observed with an atomic force microscope under the same analysis conditions as in Example 1, and the average height of the unevenness on the thin film surface and the standard deviation of the unevenness depth calculated by E-sweep based on the analysis image were respectively 45.7 and 22.4 nm.
- a resin substrate with an uneven pattern was produced as follows.
- a fluorine-based UV curable resin on a PET substrate (Toyobo Co., Ltd., easy-adhesion PET film, Cosmo Shine A-4100) and irradiating it with UV light at 600 mJ / cm 2 while pressing the mold.
- a fluorine-based UV curable resin was cured.
- the mold was peeled off from the cured resin.
- a resin substrate with a concavo-convex pattern to which the surface shape of the mold was transferred was obtained.
- This resin substrate with a concavo-convex pattern can be used as a diffraction grating as it is, but in this example, the resin substrate with a concavo-convex pattern was used again as a mold (diffraction grating mold) to produce a diffraction grating as follows. .
- TEOS tetraethoxysilane
- MTES methyltriethoxysilane
- This doctor blade was designed to have a coating film thickness of 5 ⁇ m, but an imide tape with a thickness of 35 ⁇ m was attached to the doctor blade so that the coating film thickness was adjusted to 40 ⁇ m. After 60 seconds had elapsed after coating, the diffraction grating mold was pressed against the coating film on the glass plate with a pressing roll by the method described below.
- the surface on which the pattern of the diffraction grating mold was formed was pressed against the coating film on the glass substrate while rotating a press roll at 23 ° C. from one end of the glass substrate toward the other end.
- the substrate was moved onto a hot plate, and the substrate was heated at 100 ° C. (preliminary firing). After heating was continued for 5 minutes, the substrate was removed from the hot plate, and the diffraction grating mold was manually peeled from the edge from the substrate. Peeling was performed so that the angle (peeling angle) of the diffraction grating mold with respect to the substrate was about 30 °.
- the substrate was baked by heating at 300 ° C. for 60 minutes using an oven. In this way, a diffraction grating having a concavo-convex pattern made of a sol-gel material was obtained.
- the obtained transparent electrode was washed with a brush, organic substances and the like were removed with an alkaline detergent and an organic solvent, and then subjected to UV ozone treatment.
- the luminous efficiency of the organic EL device obtained in this example was measured by the following method. A voltage is applied to the obtained organic EL element, and the applied voltage V and the current I flowing through the organic EL element are measured with an applied measuring instrument (manufactured by ADC Co., Ltd., R6244), and the total luminous flux L is measured with Spectra Corp. It measured with the manufactured total luminous flux measuring apparatus.
- FIG. 11 shows a change in current efficiency with respect to luminance applied to the organic EL element.
- FIG. 12 shows the change in power efficiency with respect to the luminance applied to the organic EL element.
- an organic EL element was produced by the same method as described above using a glass substrate (flat substrate) having no unevenness, and current efficiency and power efficiency with respect to voltage were shown in FIG. 11 and FIG. .
- the organic EL device of this example showed a current efficiency of about 1.5 times at a luminance of 1000 cd / m 2 as compared with an organic EL device having no unevenness on the glass substrate.
- the organic EL element of this example showed about 1.7 times the power efficiency at a luminance of 1000 cd / m 2 as compared with the organic EL element having no unevenness on the glass substrate. Therefore, the organic EL device of the present invention has sufficient light extraction efficiency.
- the directivity of light emission of the organic EL element obtained in this example was evaluated by the following method.
- the emitted organic EL element was visually observed from all directions (direction of 360 degrees around the entire circumference). Even when observed from any direction of 360 ° around the entire circumference, a particularly bright place or a particularly dark place was not observed, and uniform brightness was exhibited in all directions. Thus, it was confirmed that the organic EL element of the present invention has sufficiently low directivity of light emission.
- the organic EL element obtained by forming the concave / convex pattern on the substrate through the solvent annealing treatment as described above and using the mold and the diffraction grating has sufficient light extraction efficiency.
- the concavo-convex pattern of the diffraction grating manufactured in this example is formed from a sol-gel material, it has excellent mechanical strength, chemical resistance, and heat resistance. Can withstand the atmosphere and chemicals.
- the organic EL element as a device manufactured by the method of the present invention is excellent in weather resistance, heat resistance and corrosion resistance and has a long life.
- a diffraction grating substrate (optical substrate) has been described as an example of the “substrate having a concavo-convex pattern”, the present invention is not limited to this and can be applied to substrates having various uses.
- optical elements such as microlens arrays, nanoprism arrays, optical waveguides, optical components such as lenses, solar cells, antireflection films, semiconductor chips, patterned media, data storage, electronic paper, LSI manufacturing, paper manufacturing
- the present invention can also be applied to substrates used in applications in the bio field such as food production, immunoassay chips, and cell culture sheets.
- a concave / convex pattern can be formed through self-organization by solvent annealing of a block copolymer, and an etching process is not required. Therefore, a substrate having a concave / convex structure such as a diffraction grating and the like are used.
- a useful device such as an organic EL element can be manufactured with a simple process and high throughput. Therefore, the method of the present invention is excellent in mass productivity and contributes significantly to the development of the optical device industry in Japan.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Inorganic Chemistry (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electroluminescent Light Sources (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
前記塗布された溶液のブロック共重合体を有機溶媒蒸気の存在下で相分離させて表面に凹凸構造を有し且つ内部が水平シリンダ構造のブロック共重合体膜を得る溶媒相分離工程と、
前記ブロック共重合体膜の凹凸構造上にシード層を形成する工程と、
前記シード層上に電鋳により金属層を積層する工程と、
前記金属層から前記凹凸構造を有する基材を剥離する工程を含むことを特徴とするモールドの製造方法が提供される。
本発明に用いるブロック共重合体は、少なくとも、第1のホモポリマーからなる第1のポリマーセグメントと、第1のホモポリマーとは異なる第2のホモポリマーからなる第2のポリマーセグメントとを有する。第2のホモポリマーは、第1のホモポリマーの溶解度パラメーターよりも0.1~10(cal/cm3)1/2高い溶解度パラメーターを有することが望ましい。第1及び第2のホモポリマー溶解度パラメーターの差が0.1(cal/cm3)1/2未満では、ブロック共重合体の規則的なミクロ相分離構造を形成し難たく、前記差が10(cal/cm3)1/2を超える場合はブロック共重合体の均一な溶液を調製することが難しくなる。
HO-(CH2-CH2-O)n-H
[式中、nは10~5000の整数(より好ましくは50~1000の整数、更に好ましくは50~500の整数)を示す。]
で表されるものが好ましい。
本発明のモールドの製造方法に従えば、図1(A)に示すように、上記のように調製したブロック共重合体溶液を基材10上に塗布して薄膜30を形成する。基材10としては特に制限はないが、例えば、ポリイミド、ポリフェニレンスルフィド(PPS)、ポリフェニレンオキシド、ポリエーテルケトン、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリアリレート、トリアセチルセルロース、ポリシクロオレフィン等の樹脂基板;ガラス、オクタデシルジメチルクロロシラン(ODS)処理ガラス、オクタデシルトリクロロシラン(OTS)処理ガラス、オルガノシリケート処理ガラス、シランカップリング剤で処理したガラス、シリコン基板等の無機基板;アルミニウム、鉄、銅等の金属基板が挙げられる。また、基材10は、配向処理等の表面処理を施したものであってもよい。例えば、オルガノシリケート処理ガラスは、メチルトリメトキシシラン(MTMS)と1,2-ビス(トリメトキシシリル)エタン(BTMSE)のメチルイソブチルケトン(MIBK)溶液をガラスに塗布し、熱処理することで作製することができる。オクタデシルジメチルクロロシラン処理ガラス、オクタデシルトリクロロシラン処理ガラスは、それらのシランのヘプタン溶液中にガラスを漬け置きし、未反応分を後で洗い流すという方法で作製することができる。このようにガラスなどの基板表面をオクタデシルジメチルクロロシランやオルガノシリケートなどのプライマー層で表面処理してもよいし、一般的なシランカップリング剤でシランカップリング処理することにより、ブロック共重合体の基板への密着性を向上することができる。密着性が不十分な場合は電鋳化時に剥離してしまい、転写用モールド作製に支障をきたす。
ブロック共重合体溶液よりなる薄膜30を基材10上に塗布した後に、基材10上の薄膜30を乾燥させる。乾燥は、大気雰囲気中で行うことができる。乾燥温度は、薄膜30から溶媒を除去できる温度であれば特に制限はないが、例えば、10~200℃が好ましく、20~100℃がより好ましい。なお、乾燥により、前記ブロック共重合体がミクロ相分離構造を形成し始めることにより薄膜30の表面に凹凸が見られることがある。
乾燥工程後に、薄膜30を有機溶媒蒸気の雰囲気下で溶媒アニール(溶媒相分離)処理して、ブロック共重合体の相分離構造を薄膜30内に形成させる。この溶媒アニール処理によってブロック共重合体の自己組織化が進行し、図1(B)に示すようにブロック共重合体が第1ポリマーセグメント32と第2ポリマーセグメント34の部分にミクロ相分離して水平シリンダ構造となる。ここで、「水平シリンダ構造」とは、ブロック共重合体の溶液が塗布される基材の表面に沿った方向に第1のポリマーセグメントまたは第2のポリマーセグメントがシリンダ状に延在(配向)するように自己組織化することをいう。一方、「垂直シリンダ構造」とは、ブロック共重合体の溶液が塗布される基材の表面とほぼ垂直な方向に第1のポリマーセグメントまたは第2のポリマーセグメントがシリンダ状に延在(配向)するように自己組織化することをいう。これらの構造は、酸化ルテニウムや酸化オスミウムなどでポリマーを染色して断面構造を電子顕微鏡測定などにより観察することにより確認することができる。また、小角X線散乱(SAXS)測定もそれらの配向構造を同定する上で有効である。
上記溶媒アニール工程により得られた薄膜30の凹凸構造に加熱処理を施してもよい。前記溶媒アニール処理で波形の凹凸構造が既に形成されているために、この加熱処理は、形成された凹凸構造をなましたりするが、必ずしも必要ではない。何らかの原因で、前記溶媒アニール処理後の凹凸構造の表面の一部に突起が生じている場合や、凹凸構造の周期や高さを調整する目的のために有効となる場合がある。加熱温度は、例えば、第1及び第2ポリマーセグメント32、34のガラス転移温度以上にすることができ、例えば、それらのホモポリマーのガラス転移温度以上で且つガラス転移温度より70℃高い温度以下にすることができる。加熱処理は、オーブン等を用いて大気雰囲気下で行うことができる。
上記のようにして得られたマスターの波形構造38の表面に、図1(C)に示すように、後続の電鋳処理のための導電層となるシード層40を形成する。シード層40は、無電解めっき、スパッタまたは蒸着により形成することができる。シード層40の厚みとして、後続の電鋳工程における電流密度を均一にして後続の電鋳工程により堆積される金属層の厚みを一定にするために、10nm以上が好ましく、より好ましくは20nm以上である。シード層の材料として、例えば、ニッケル、銅、金、銀、白金、チタン、コバルト、錫、亜鉛、クロム、金・コバルト合金、金・ニッケル合金、ホウ素・ニッケル合金、はんだ、銅・ニッケル・クロム合金、錫ニッケル合金、ニッケル・パラジウム合金、ニッケル・コバルト・リン合金、またはそれらの合金などを用いることができる。
次に、図1(D)に示すように、シード層40上に電鋳(電界メッキ)により金属層50を堆積させる。金属層50の厚みは、例えば、シード層40の厚みを含めて全体で10~3000μmの厚さにすることができる。電鋳により堆積させる金属層50の材料として、シード層40として用いることができる上記金属種のいずれかを用いることができる。モールドとしての耐摩耗性や、剥離性などの観点からは、ニッケルが好ましく、この場合、シード層40についてもニッケルを用いることが好ましい。電鋳における電流密度は、ブリッジを抑制して均一な金属層を形成するとともに、電鋳時間の短縮の観点から、例えば、0.03~10A/cm2にし得る。なお、形成した金属層50は、後続の樹脂層の押し付け、剥離及び洗浄などの処理の容易性からすれば、適度な硬度及び厚みを有することが望ましい。電鋳により形成される金属層の硬度を向上させる目的で、金属層の表面にダイヤモンドライクカーボン(DLC)処理やCrめっき加工処理を実施してもよい。あるいは、金属層をさらに熱処理してその表面硬度を高くしても良い。
上記のようにして得られたシード層を含む金属層50を、凹凸構造を有する基材から剥離してファザーとなるモールドを得る。剥離方法は物理的に剥がしても構わないし、第1ホモポリマー及び残留するブロック共重合体を、それらを溶解する有機溶媒、例えば、トルエン、テトラヒドロフラン(THF)、クロロホルムなどを用いて溶解して除去してもよい。
上記のようにモールドを波形構造38を有する基材10から剥離するときに、図1(E)に示すように、ポリマーの一部60がモールドに残留する場合がある。このような場合には、それらの残留した部分60を洗浄にて除去することができる。洗浄方法としては、湿式洗浄や乾式洗浄を用いることができる。湿式洗浄としてはトルエン、テトラヒドロフラン等の有機溶剤、界面活性剤、アルカリ系溶液での洗浄などにより除去することができる。有機溶剤を用いる場合には、超音波洗浄を行ってもよい。また電解洗浄を行うことにより除去しても良い。乾式洗浄としては、紫外線やプラズマを使用したアッシングにより除去することができる。湿式洗浄と乾式洗浄を組み合わせて用いてもよい。このような洗浄後に、純水や精製水でリンスし、乾燥後にオゾン照射してもよい。こうして、図1(F)に示すような所望の凹凸構造を有するモールド70が得られる。
モールド70を用いてその凹凸構造を樹脂に転写する際に、樹脂からの離型を向上させるためにモールド70に離型処理を行っても良い。離型処理としては、表面エネルギーを下げる処方が一般的であり、特に制限はないが、図2(A)に示すようにフッ素系の材料やシリコーン樹脂等の離型剤72をモールド70の凹凸表面70aにコーティングしたり、フッ素系のシランカップリング剤で処理する方法、ダイヤモンドライクカーボンを表面に成膜することなどが挙げられる。
得られたモールド70を用いて、モールドの凹凸構造(パターン)を樹脂のような有機材料またはゾルゲル材料のような無機材料からなる凹凸形成材料層に転写することで凹凸構造が転写された基板(または母型)を製造する。なお、転写に際してモールド70の形状を、転写に適した形状に変形させてもよい。例えば、ロール転写を行う場合には、モールド70を円柱体の外周に巻き付けてロール状のモールドにすることができる(ロール状のモールドを使った転写プロセスは後述する)。
次に、上記のようにして得られた樹脂フィルムまたはゾルゲル構造体である回折格子を用いて有機EL素子を製造する方法について説明する。ここでは、ゾルゲル材料による凹凸パターンが表面に形成された回折格子を用いて有機EL素子を製造する方法について例示するが、樹脂フィルム構造体100からなる回折格子を用いて有機EL素子を製造する場合も同様のプロセスである。図6を用いて説明したロールプロセスを経てゾルゲル材料層142からなるパターンが形成された基板140を用意する。先ず、基板140に付着している異物などを除去するために、ブラシなどで洗浄し、アルカリ性洗浄剤および有機溶剤で有機物等を除去する。次いで、図7に示すように、基板140のゾルゲル材料層142上に、透明電極93を、ゾルゲル材料層(塗膜)142の表面に形成されている凹凸構造が維持されるようにして積層する。透明電極93の材料としては、例えば、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、金、白金、銀、銅が用いられる。これらの中でも、透明性と導電性の観点から、ITOが好ましい。透明電極93の厚みは20~500nmの範囲であることが好ましい。厚みが前記下限未満では、導電性が不十分となり易く、前記上限を超えると、透明性が不十分となり発光したEL光を十分に外部に取り出せなくなる可能性がある。透明電極93を積層する方法としては、蒸着法、スパッタ法、スピンコート法等の公知の方法を適宜採用することができる。これらの方法の中でも、密着性を上げるという観点から、スパッタ法が好ましく、その後、フォトレジストを塗布して電極用マスクパターンで露光した後、現像液でエッチングして所定のパターンの透明電極を得る。なお、スパッタ時には基板が300℃程度の高温に曝されることになる。得られた透明電極をブラシで洗浄し、アルカリ性洗浄剤および有機溶剤で有機物等を除去した後、UVオゾン処理することが望ましい。
150mgのブロック共重合体1およびポリエチレンオキシドとして37.5mgのAldrich製ポリエチレングリコール2050(平均Mn=2050)に、トルエンを、総量が15gになるように加えて溶解させた。ブロック共重合体1(以下、適宜、BCP-1と略する)の物性は表1に示す通りである。
測定モード:ダイナミックフォースモード
カンチレバー:SI-DF40P2(材質:Si、レバー幅:40μm、チップ先端の直径:10nm)
測定雰囲気:大気中
測定温度:25℃。
回折格子の任意の3μm角(縦3μm、横3μm)の測定領域を測定して上記のようにして凹凸解析画像を求める。得られた凹凸解析画像に対し、1次傾き補正を含むフラット処理を施した後に、2次元高速フーリエ変換処理を施すことによりフーリエ変換像を得た。得られたフーリエ変換像を図9(C)に示す。図9(C)に示す結果からも明らかなように、フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円環状の模様を示しており、且つ前記円環状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。
回折格子の任意の3μm角(縦3μm、横3μm)の測定領域を測定して上記のようにして凹凸解析画像を求める。かかる凹凸解析画像中における、任意の隣り合う凸部同士又は隣り合う凹部同士の間隔を100点以上測定し、その平均を算出して凹凸の平均ピッチとする。この例で得られた解析画像より凹凸パターンの平均ピッチは73.5nmであった。
薄膜の任意の3μm角(縦3μm、横3μm)の測定領域を測定して凹凸解析画像を求める。その際に測定領域内の16384点(縦128点×横128点)以上の測定点における凹凸高さのデータをナノメートルスケールでそれぞれ求める。この実施例で用いたE-sweepでは、3μm角の測定領域内において65536点(縦256点×横256点)の測定(256×256ピクセルの解像度での測定)を行った。このようにして測定される凹凸高さ(nm)に関して、先ず、全測定点のうち、基板の表面からの高さが最も高い測定点Pを求める。そして、かかる測定点Pを含み且つ基板の表面と平行な面を基準面(水平面)として、その基準面からの深さの値(測定点Pにおける基板からの高さの値から各測定点における基板からの高さを差し引いた差分)を凹凸深さのデータとして求める。なお、このような凹凸深さデータは、E-sweep中のソフトにより自動的に計算して求めることが可能であり、このような自動的に計算して求められた値を凹凸深さのデータとして利用できる。このようにして、各測定点における凹凸深さのデータを求めた後、凹凸の深さ分布の平均値(m)は、前述の式(I)を用いて計算することにより求めることができる。この例で得られた回折格子の凹凸の深さ分布の平均値(m)は、20.6nmであった。
上述の凹凸の深さ分布の平均値(m)の測定方法と同様にして3μm角の測定領域内の16384点(縦128点×横128点)以上の測定点において凹凸深さのデータを求める。この例では、65536点(縦256点×横256点)での測定点を採用した。その後、各測定点の凹凸深さのデータに基づいて凹凸の深さ分布の平均値(m)と凹凸深さの標準偏差(σ)を計算する。なお、凹凸の深さ分布の平均値(m)は、上述のように、上記式(I)を計算して求めることができる。一方、凹凸深さの標準偏差(σ)は、下記式(II):
を計算して求めることができ、上記薄膜の凹凸深さの標準偏差(σ)は18.2nmであった。
上述と同様にして3μm角の測定領域内の16384点(縦128点×横128点)以上の測定点において凹凸深さのデータを求める。この例では、65536点(縦256点×横256点)での測定点を採用した。各測定点の凹凸深さのデータに基づいて凹凸の深さ分布の平均値(m)と凹凸深さの標準偏差(σ)を前述と同様にして計算する。このようにして求められた凹凸の深さ分布の平均値(m)及び凹凸深さの標準偏差(σ)の値に基づいて、尖度(k)は、下記式(III):
を計算することにより求めることができる。
この実施例では、ブロック共重合体の数平均分子量(Mn)とブロック共重合体を構成するPS部分とPMMA部分の比率を変化させることで溶媒アニール処理後の薄膜の凹凸構造がどのように変化するかについて観測した。ブロック共重合体として、表1に示すような物性のブロック共重合体1(BCP-1)~11(BCP-11)を用い、ポリエチレンオキシドの添加量をブロック共重合体100質量部に対して30質量部に変更した以外は、実施例1と同様にして、ブロック共重合体溶液をシランカップリング処理ガラス基材に塗布し、乾燥し、次いで溶媒アニール処理を行った。溶媒アニール処理した後の薄膜の表面の凹凸形状を、実施例1と同様の解析条件で原子間力顕微鏡により解析画像を観察した。用いたブロック共重合体1(BCP-1)~11(BCP-11)の物性は表1に示す通りであり、各ブロック共重合体を用いて得られた薄膜の観察結果を以下に示す。
ブロック共重合体1は実施例1と同様であるが、ブロック共重合体溶液中のポリエチレンオキシドの含有量が実施例1よりも高い。溶媒アニール処理により得られた薄膜断面近傍の凹凸解析画像(不図示)からすれば、凹凸の形状は実施例1に比べてより明瞭になっていることが分かった。ポリエチレンオキシドの含有量の相違によるものであると考えられるが、ポリエチレンオキシドの含有量の凹凸高さに対する影響については、実施例5にて詳述する。凹凸解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値は78.1nmであり、凹凸の平均ピッチは305nmであり、凹凸深さの標準偏差は24.7nmであった。フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円環状の模様を示しており、且つ前記円環状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。凹凸の尖度は-0.63であった。
ブロック共重合体2の数平均分子量(Mn)は500,000を超えているものの、ブロック共重合体2を構成するPS部分とPMMA部分の数平均分子量(Mn)は実施例1に比べてかなり低く、それぞれ270,000及び289,000であり、また、PS部分とPMMA部分の比率PS:PMMAは51:49である。溶媒アニール処理により得られた薄膜表面近傍の断面の凹凸解析画像(不図示)からすれば、凹凸の高さはブロック共重合体1の場合に比べてかなり低いことが分かった。凹凸解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値は22.5nmであり、凹凸の平均ピッチは162nmであり、凹凸深さの標準偏差は10.1nmであった。フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円環状の模様を示しており、且つ前記円環状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。凹凸の尖度は-1.01であった。
ブロック共重合体3の数平均分子量(Mn)は1,010,000であり、ブロック共重合体3を構成するPS部分とPMMA部分の数平均分子量(Mn)は、それぞれ510,000及び500,000であり、また、PS部分とPMMA部分の比率PS:PMMAは実施例1と同じ54:46である。溶媒アニール処理により得られた薄膜表面近傍の断面の凹凸解析画像(不図示)からすれば、表面の凹凸は実施例1と同様に滑らかであることが分かった。凹凸解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値は47.1nmであり、凹凸の平均ピッチは258nmであり、凹凸深さの標準偏差は18.0nmであった。フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円環状の模様を示しており、且つ前記円環状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。凹凸の尖度は-0.95であった。
ブロック共重合体4の数平均分子量(Mn)は1,160,000であり、ブロック共重合体4を構成するPS部分とPMMA部分の数平均分子量(Mn)は、それぞれ590,000及び570,000であり、また、PS部分とPMMA部分の比率PS:PMMAは実施例1と同じ54:46である。溶媒アニール処理により得られた薄膜表面近傍の断面の凹凸解析画像(不図示)からすれば、表面の凹凸は一部突出した部分があるものの概ね滑らかであることが分かった。凹凸解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値は80.1nmであり、凹凸の平均ピッチは278nmであり、凹凸深さの標準偏差は31.2nmであった。フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円環状の模様を示しており、且つ前記円環状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。凹凸の尖度は-1.06であった。
ブロック共重合体5の数平均分子量(Mn)は1,600,000であり、ブロック共重合体5を構成するPS部分とPMMA部分の数平均分子量(Mn)は、それぞれ700,000及び900,000であり、また、PS部分とPMMA部分の比率PS:PMMAは47:53である。溶媒アニール処理により得られた薄膜表面近傍の断面の凹凸解析画像(不図示)からすれば、表面の凹凸は滑らかであることが分かった。凹凸解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値は53.7nmであり、凹凸の平均ピッチは315nmであり、凹凸深さの標準偏差は18.0nmであった。フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円環状の模様を示しており、且つ前記円環状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。凹凸の尖度は-0.33であった。
ブロック共重合体6の数平均分子量(Mn)は1,725,000であり、ブロック共重合体6を構成するPS部分とPMMA部分の数平均分子量(Mn)は、それぞれ868,000及び857,000であり、また、PS部分とPMMA部分の比率PS:PMMAは53:47である。溶媒アニール処理により得られた薄膜表面近傍の断面の凹凸解析画像(不図示)からすれば、表面の凹凸は滑らかであることが分かった。凹凸解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値は72.9nmであり、凹凸の平均ピッチは356nmであり、凹凸深さの標準偏差は19.9nmであった。フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円環状の模様を示しており、且つ前記円環状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。凹凸の尖度は-0.09であった。
ブロック共重合体7の数平均分子量(Mn)は1,120,000であり、ブロック共重合体7を構成するPS部分とPMMA部分の数平均分子量(Mn)は、それぞれ700,000及び420,000であり、また、PS部分とPMMA部分の比率PS:PMMAは65:35である。溶媒アニール処理により得られた薄膜表面近傍の断面の凹凸解析画像(不図示)からすれば、表面の凹凸は殆ど現れていなかった。凹凸解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値は5.0nmと極めて低く、凹凸深さの標準偏差は1.4nmであった。凹凸の平均ピッチは測定不能であった。フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円状の模様を示しており、且つ前記円状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。凹凸の尖度は-0.33であった。
ブロック共重合体8の数平均分子量(Mn)は1,350,000であり、ブロック共重合体8を構成するPS部分とPMMA部分の数平均分子量(Mn)は、それぞれ1,200,000及び150,000であり、また、PS部分とPMMA部分の比率PS:PMMAは90:10である。溶媒アニール処理により得られた薄膜表面近傍の断面の凹凸解析画像(不図示)からすれば、薄膜の表面には凹凸がわずかに表れていた。凹凸解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値は36.9nmであり、凹凸深さの標準偏差は5.6nmであった。凹凸の平均ピッチは測定不能であった。フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円状の模様を示しており、且つ前記円状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。凹凸の尖度は2.29であった。
ブロック共重合体9の数平均分子量(Mn)は1,700,000であり、ブロック共重合体9を構成するPS部分とPMMA部分の数平均分子量(Mn)は、それぞれ556,000及び120,000であり、また、PS部分とPMMA部分の比率PS:PMMAは、34:66である。溶媒アニール処理により得られた薄膜表面近傍の断面の凹凸解析画像(不図示)からすれば、薄膜の表面には凹凸がわずかに表れていた。凹凸解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値は35.7nmであり、凹凸深さの標準偏差は14.5nmであった。凹凸の平均ピッチは測定不能であった。フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円状の模様を示しており、且つ前記円状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。凹凸の尖度は0.03であった。
ブロック共重合体10の数平均分子量(Mn)は995,000であり、ブロック共重合体10を構成するPS部分とPMMA部分の数平均分子量(Mn)は、それぞれ315,000及び680,000であり、また、PS部分とPMMA部分の比率PS:PMMAは、34:66である。溶媒アニール処理により得られた薄膜表面近傍の断面の凹凸解析画像(不図示)からすれば、薄膜の表面には凹凸がわずかに表れていた。凹凸解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値は31.3nmであり、凹凸深さの標準偏差は8.5nmであった。凹凸の平均ピッチは測定不能であった。フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円状の模様を示しており、且つ前記円状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。凹凸の尖度は-0.13であった。
ブロック共重合体11の数平均分子量(Mn)は263,000であり、ブロック共重合体10を構成するPS部分とPMMA部分の数平均分子量(Mn)は、それぞれ133,000及び139,000であり、また、PS部分とPMMA部分の比率PS:PMMAは、54:46である。溶媒アニール処理により得られた薄膜表面近傍の断面の凹凸解析画像(不図示)からすれば、表面の凹凸は小さいことが分かった。凹凸解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値は17.7nmであり、凹凸の平均ピッチは87nmであり、凹凸深さの標準偏差は4.8nmであった。薄膜の表面には凹凸が表れていない。フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円環状の模様を示しており、且つ前記円環状の模様が波数の絶対値が15μm-1以下の範囲内となる領域内に存在することが確認された。凹凸の尖度は1.4であった。
この実施例では、溶媒アニールの処理時間を変更することにより薄膜の凹凸構造がどのように変化するかについて観測した。ブロック共重合体は、実施例1で用いたブロック共重合体1(BCP-1)を用い、処理時間を1時間、3時間、6時間、12時間、48時間及び168時間に変更した以外は、実施例1と同様にして、ブロック共重合体溶液をシランカップリング処理ガラス基材に塗布し、乾燥し、次いでクロロホルムによる溶媒アニール処理を行った。溶媒アニール処理した後の薄膜の表面の凹凸形状を、実施例1と同様の解析条件で原子間力顕微鏡により解析画像を観察した。これらの解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値(凹凸平均)、凹凸深さの標準偏差及び尖度を表2に示す。フーリエ変換像は、いずれの処理時間の膜も、波数の絶対値が0μm-1である原点を略中心とする円環状の模様を示しており、且つ前記円環状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。なお、凹凸の深さ分布の平均値からすれば、6~168時間が好ましい。
この実施例では、溶媒アニール処理に用いる溶媒の種類による凹凸の形状の変化について観察した。溶媒としてクロロホルムに代えて二硫化炭素とアセトン(75:25)の混合溶媒を用いた以外は実施例1と同様にしてブロック共重合体溶液(ブロック共重合体BCP-1)をシランカップリング処理ガラス基材に塗布し、乾燥し、次いで溶媒アニール処理を行った。溶媒アニール処理した後の薄膜の表面の凹凸形状を、実施例1と同様の解析条件で原子間力顕微鏡により解析画像を観察した。解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値、及び凹凸深さの標準偏差は、それぞれ、50.5nm及び20.0nmであった。フーリエ変換像は波数の絶対値が0μm-1である原点を略中心とする円環状の模様を示しており、且つ前記円環状の模様が波数の絶対値が10μm-1以下の範囲内となる領域内に存在することが確認された。凹凸の尖度は-0.27であった。
この実施例では、ブロック共重合体溶液に加えたポリエチレンオキシド(PEO)の添加量を変化させたときの溶媒アニール処理後の凹凸の形状の変化について観察した。ブロック共重合体100質量部に対するポリエチレンオキシドの質量部(%表記)を0%、5%、15%、25%、30%、35%、及び70%に変更して、実施例1と同様にしてブロック共重合体溶液(ブロック共重合体BCP-1)をシランカップリング処理ガラス基材に塗布し、乾燥し、次いで溶媒アニール処理を行った。溶媒アニール処理した後の薄膜の表面の凹凸形状を、実施例1と同様の解析条件で原子間力顕微鏡により解析画像を観察した。これらの凹凸解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値(及び凹凸深さの標準偏差)を求めた。それらの結果を尖度と共に表3に示す。
この実施例では、溶媒アニール処理後の熱処理(熱なまし)の有無と加熱温度により凹凸形状の変化に付いて観察した。ブロック共重合体として、ブロック共重合体1(BCP-1)を用い、ポリエチレンオキシドのブロック共重合体に対する含有量を30%に変更した以外は、実施例1と同様にして、ブロック共重合体溶液をシランカップリング処理ガラス基材に塗布し、乾燥し、次いで溶媒アニール処理を行った。溶媒アニール処理後、加熱しなかった試料、40℃で1時間加熱処理した試料、50℃で1時間加熱処理した試料、60℃で1時間加熱処理した試料を作製した。それらの試料について、薄膜の表面の凹凸解析画像を、実施例1と同様の解析条件で原子間力顕微鏡により解析画像を観察した。凹凸解析画像に基づいてE-sweepにより算出した薄膜表面の凹凸の深さ分布の平均値及び凹凸深さの標準偏差並びに尖度を、下記表に記した。
実施例1と同様にして、150mgのブロック共重合体1およびポリエチレンオキシドとして37.5mgのAldrich製ポリエチレングリコール2050(平均Mn=2050)に、トルエンを、総量が15gになるように加えて溶解させた。このブロック共重合体溶液を実施例1と同様にしてろ過してブロック共重合体溶液を得た。得られたブロック共重合体溶液を、実施例1でと同様にして調製したシランカップリング処理ガラス(基材)上に、スピンコートにより実施例1と同様の条件で塗布した。
この実施例では、本発明の方法に従ってモールドを製造し、そのモールドを使って回折格子を製造するとともに、得られた回折格子を用いて有機EL素子を製造するものとする。
ブロック共重合体としてブロック共重合体1(BCP-1)を用い、ポリエチレンオキシドをブロック共重合体100質量部に対して30質量部で用いた以外は、実施例1と同様にして、ブロック共重合体溶液を調製し、シランカップリング処理ガラス基材に塗布し、乾燥し、次いで溶媒アニール処理を行った。
上記のようにして得られた回折格子としてのゾルゲル材料層よりなるパターンが形成されたガラス基板について、付着している異物などを除去するために、ブラシで洗浄したのち、次いで、アルカリ性洗浄剤および有機溶剤で有機物等を除去した。こうして洗浄した前記基板上に、ITOをスパッタ法で300℃にて厚み120nmに成膜し、フォトレジスト塗布して電極用マスクパターンで露光した後、現像液でエッチングして所定のパターンの透明電極を得た。得られた透明電極をブラシで洗浄し、アルカリ性洗浄剤および有機溶剤で有機物等を除去した後、UVオゾン処理した。このように処理された透明電極上に、正孔輸送層(4,4’,4’ ’トリス(9-カルバゾール)トリフェニルアミン、厚み:35nm)、発光層(トリス(2-フェニルピリジナト)イリジウム(III)錯体をドープした4,4’,4’ ’トリス(9-カルバゾール)トリフェニルアミン、厚み15nm、トリス(2-フェニルピリジナト)イリジウム(III)錯体をドープした1,3,5-トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼン、厚み15nm)、電子輸送層(1,3,5-トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼン、厚み:65nm)、フッ化リチウム層(厚み:1.5nm)を蒸着法で積層し、さらに金属電極(アルミニウム、厚み:50nm)を蒸着法により形成した。こうして、図7に示すように、基板140上に、塗膜(ゾルゲル材料層)142と、透明電極93と、有機層94(正孔輸送層95、発光層96及び電子輸送層97)と、金属電極98とをこの順で有する有機EL素子200を得た。
この実施例で得られた有機EL素子の発光効率を以下の方法で測定した。得られた有機EL素子に電圧を印加し、印加電圧V及び有機EL素子に流れる電流Iを印加測定器(株式会社エーディーシー社製、R6244)にて、また全光束量Lをスペクトラ・コープ社製の全光束測定装置にて測定した。このようにして得られた印加電圧V、電流I及び全光束量Lの測定値から輝度値L’を算出し、電流効率については、下記計算式(F1):
電流効率=(L’/I)×S・・・(F1)
電力効率については、下記計算式(F2):
電力効率=(L’/I/V)×S・・・(F2)
をそれぞれ用いて、有機EL素子の電流効率及び電力効率を算出した。上記式において、Sは素子の発光面積である。なお、輝度L’の値は、有機EL素子の配光特性がランバート則にしたがうものと仮定し、下記計算式(F3):
L’=L/π/S・・・(F3)
で換算した。
この実施例で得られた有機EL素子の発光の指向性を以下の方法で評価した。発光させた有機EL素子を全ての方向(全周囲360°の方向)から目視により観察した。全周囲360°のいずれの方向から観察しても、特に明るい場所、又は特に暗い場所は観察されず、全ての方向に均等な明るさを呈していた。このように、本発明の有機EL素子は、発光の指向性が十分に低いことが確認された。
Claims (27)
- 微細パターン転写用のモールドの製造方法であって、基材の表面に、少なくとも第1及び第2のポリマーセグメントからなるブロック共重合体とポリアルキレンオキシドとを含む溶液を塗布する工程と、
前記塗布された溶液のブロック共重合体を有機溶媒蒸気の存在下で相分離させて表面に凹凸構造を有し且つ内部が水平シリンダ構造のブロック共重合体膜を得る溶媒相分離工程と、
前記ブロック共重合体膜の凹凸構造上にシード層を形成する工程と、
前記シード層上に電鋳により金属層を積層する工程と、
前記金属層から前記凹凸構造を有する基材を剥離する工程とを含むことを特徴とするモールドの製造方法。 - 前記ブロック共重合体における前記第1ポリマーと前記第2ポリマーとの体積比が4:6~6:4であることを特徴とする請求項1に記載のモールドの製造方法。
- 前記ポリアルキレンオキシドが、該ブロック共重合体100質量部に対して5~70質量部含まれることを特徴とする請求項1に記載のモールドの製造方法。
- 前記ブロック共重合体の数平均分子量が、500,000以上であることを特徴とする請求項1~3のいずれか一項に記載のモールドの製造方法。
- 前記溶媒相分離処理の後にエッチング処理を行わないことを特徴とする請求項1~4のいずれか一項に記載のモールドの製造方法。
- 前記ブロック共重合体を構成する第1ポリマーがポリスチレンであり、第2ポリマーがポリメチルメタクリレートであることを特徴とする請求項1~5のいずれか一項に記載のモールドの製造方法。
- 前記有機溶媒が、クロロホルム、アセトン、ジクロロメタン、及び二硫化炭素/アセトン混合溶媒からなる群から選ばれる一種である請求項1~6のいずれか一項に記載のモールドの製造方法。
- 前記ブロック共重合体を有機溶媒蒸気の存在下で相分離させる時間が、6~168時間であることを特徴とする請求項1~7の記載のいずれか一項に記載のモールドの製造方法。
- 前記シリンダ構造において第1または第2のポリマーセグメントが一段または2段に形成されていることを特徴とする請求項1~8のいずれか一項に記載のモールドの製造方法。
- 前記凹凸の深さ分布の平均値が30~150nmの範囲であること、及び、凹凸深さの標準偏差が10~50nmであることを特徴とする請求項1~9のいずれか一項に記載のモールドの製造方法。
- 前記基材の表面に、少なくとも第1及び第2のポリマーセグメントからなるブロック共重合体とポリアルキレンオキシドとを含む溶液を塗布する前に、プライマー層を形成することを特徴とする請求項1~10のいずれか一項に記載のモールドの製造方法。
- 前記ブロック共重合体の分子量分布(Mw/Mn)が1.5以下であることを特徴とする請求項1~11のいずれか一項に記載のモールドの製造方法。
- 第1ポリマーと第2ポリマーの溶解度パラメーターの差が、0.1~10(cal/cm3)1/2であることを特徴とする請求項1~12のいずれか一項に記載のモールドの製造方法。
- 請求項1に記載のモールドの製造方法で得られたモールドを、凹凸形成材料が塗布された基板上に押し付けて前記凹凸形成材料を硬化させ、モールドを取り外すことにより基板上に凹凸構造を有する回折格子を形成する回折格子の製造方法。
- 請求項1に記載のモールドの製造方法で得られたモールドを、凹凸形成材料が塗布された基板上に押し付けて前記凹凸形成材料を硬化させ、モールドを取り外すことにより基板上に凹凸構造を有する構造体を作製し、該構造体をゾルゲル材料が塗布された基板上に押しつけてゾルゲル材料を硬化させ、該構造体を取り外すことによりゾルゲル材料からなる凹凸構造を有する回折格子を形成する回折格子の製造方法。
- 請求項14または15に記載の前記回折格子の製造方法により製造された回折格子の凹凸構造上に、透明電極、有機層及び金属電極を、順次積層して有機EL素子を製造する有機EL素子の製造方法。
- 請求項1に記載の製造方法によって製造された微細パターン転写用のモールド。
- 請求項14または15に記載の製造方法により製造され、表面に凹凸構造を有する回折格子。
- 前記凹凸構造の凹凸の平均ピッチが100~1500nmであることを特徴とする請求項18に記載の回折格子。
- 前記凹凸構造の断面形状が波形であり、該凹凸構造の平面形状が、原子間力顕微鏡を用いて解析して得られる凹凸解析画像に2次元高速フーリエ変換処理を施してフーリエ変換像を得た場合において、前記フーリエ変換像が、波数の絶対値が0μm-1である原点を略中心とする円環状の模様を示しており、且つ、円環状の模様が波数の絶対値が10μm-1以下となる領域に存在することを特徴とする請求項18または19に記載の回折格子。
- 前記凹凸構造の断面形状の尖度が-1.2以上であることを特徴とする請求項18~20のいずれか一項に記載の回折格子。
- 前記凹凸構造の断面形状の尖度が-1.2~1.2であることを特徴とする請求項21に記載の回折格子。
- 請求項16に記載の製造方法により製造された有機EL素子。
- 請求項1に記載のモールドの製造方法で得られたモールドを、凹凸形成材料が塗布された基板上に押し付けて前記凹凸形成材料を硬化させ、モールドを取り外すことにより凹凸構造を有する基板を形成する凹凸構造を有する基板の製造方法。
- 請求項1に記載のモールドの製造方法で得られたモールドを、凹凸形成材料が塗布された基板上に押し付けて前記凹凸形成材料を硬化させ、モールドを取り外すことにより基板上に凹凸構造を有する構造体を作製し、該構造体をゾルゲル材料が塗布された基板上に押しつけてゾルゲル材料を硬化させ、該構造体を取り外すことによりゾルゲル材料からなる凹凸構造を有する基板を形成する凹凸構造を有する基板の製造方法。
- 請求項24または25に記載の製造方法により製造される表面に凹凸構造を有する基板。
- 前記凹凸構造の凹凸の平均ピッチが100~1500nmであることを特徴とする請求項26に記載の凹凸構造を有する基板。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380021957.8A CN104254438B (zh) | 2012-04-26 | 2013-03-19 | 微细图案转印用模具的制造方法以及使用该模具的具有凹凸结构的基板的制造方法、以及具备具有该凹凸结构的基板的有机电致发光元件的制造方法 |
EP13781178.2A EP2842721B1 (en) | 2012-04-26 | 2013-03-19 | Method for producing mold for transferring fine pattern, method for producing substrate having uneven structure using same, and method for producing organic el element having said substrate having uneven structure |
IN9101DEN2014 IN2014DN09101A (ja) | 2012-04-26 | 2013-03-19 | |
JP2014512423A JP5695799B2 (ja) | 2012-04-26 | 2013-03-19 | 微細パターン転写用のモールドの製造方法及びそれを用いた凹凸構造を有する基板の製造方法、並びに該凹凸構造を有する基板を有する有機el素子の製造方法 |
AU2013253941A AU2013253941B2 (en) | 2012-04-26 | 2013-03-19 | Method for producing mold for transferring fine pattern, method for producing substrate having uneven structure using same, and method for producing organic el element having said substrate having uneven structure |
CA2870426A CA2870426C (en) | 2012-04-26 | 2013-03-19 | Method for producing mold for transferring fine pattern, method for producing substrate having uneven structure using same, and method for producing organic el element having saidsubstrate having uneven structure |
KR1020147019842A KR20140106704A (ko) | 2012-04-26 | 2013-03-19 | 미세 패턴 전사용 몰드의 제조 방법 및 이것을 사용한 요철 구조를 가지는 기판의 제조 방법, 및 상기 요철 구조를 가지는 기판을 가지는 유기 el 소자의 제조 방법 |
US14/513,622 US20150028325A1 (en) | 2012-04-26 | 2014-10-14 | Method for producing mold for transferring fine pattern, method for producing substrate having concave-convex structure using same, and method for producing organic el element having said substrate having concave-convex structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-101065 | 2012-04-26 | ||
JP2012101065 | 2012-04-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/513,622 Continuation US20150028325A1 (en) | 2012-04-26 | 2014-10-14 | Method for producing mold for transferring fine pattern, method for producing substrate having concave-convex structure using same, and method for producing organic el element having said substrate having concave-convex structure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013161454A1 true WO2013161454A1 (ja) | 2013-10-31 |
Family
ID=49482791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057851 WO2013161454A1 (ja) | 2012-04-26 | 2013-03-19 | 微細パターン転写用のモールドの製造方法及びそれを用いた凹凸構造を有する基板の製造方法、並びに該凹凸構造を有する基板を有する有機el素子の製造方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US20150028325A1 (ja) |
EP (1) | EP2842721B1 (ja) |
JP (1) | JP5695799B2 (ja) |
KR (1) | KR20140106704A (ja) |
CN (1) | CN104254438B (ja) |
AU (1) | AU2013253941B2 (ja) |
CA (1) | CA2870426C (ja) |
IN (1) | IN2014DN09101A (ja) |
TW (1) | TWI574812B (ja) |
WO (1) | WO2013161454A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015098401A1 (ja) | 2013-12-27 | 2015-07-02 | Jx日鉱日石エネルギー株式会社 | 発光素子 |
CN104812503A (zh) * | 2013-11-25 | 2015-07-29 | 东京毅力科创株式会社 | 图案形成方法和加热装置 |
WO2015174391A1 (ja) * | 2014-05-14 | 2015-11-19 | Jx日鉱日石エネルギー株式会社 | 凹凸構造を有するフィルム部材 |
WO2016003246A1 (ko) * | 2014-07-04 | 2016-01-07 | 고려대학교 산학협력단 | 태양전지용 유리기판 텍스처링 방법 |
WO2016021533A1 (ja) * | 2014-08-04 | 2016-02-11 | Jx日鉱日石エネルギー株式会社 | 凹凸パターンを有する部材の製造方法 |
JP2016071306A (ja) * | 2014-10-02 | 2016-05-09 | 大日本印刷株式会社 | ワイヤーグリッド偏光子の製造用部材の修正方法とワイヤーグリッド偏光子の製造方法および露光方法 |
CN106133926A (zh) * | 2014-03-26 | 2016-11-16 | 捷客斯能源株式会社 | 磊晶成长用基板及使用其的发光组件 |
JP2016219341A (ja) * | 2015-05-25 | 2016-12-22 | Jxエネルギー株式会社 | 発光素子 |
WO2018212359A1 (ja) | 2017-05-19 | 2018-11-22 | Jxtgエネルギー株式会社 | 反射防止部材 |
WO2018221593A1 (ja) | 2017-05-31 | 2018-12-06 | Jxtgエネルギー株式会社 | 防曇部材 |
WO2021079740A1 (ja) * | 2019-10-21 | 2021-04-29 | 王子ホールディングス株式会社 | 三次元成形用フィルム、凹凸構造付き三次元構造体、その製造方法及び電鋳型の製造方法 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105027259A (zh) * | 2013-03-06 | 2015-11-04 | 吉坤日矿日石能源株式会社 | 具有凹凸构造的构件的制造方法以及通过该制造方法制造出的具有凹凸构造的构件 |
JP6609402B2 (ja) * | 2014-06-19 | 2019-11-20 | デクセリアルズ株式会社 | 光学フィルム及びその製造方法 |
TWI556002B (zh) * | 2014-08-05 | 2016-11-01 | 群創光電股份有限公司 | 抗反射結構及電子裝置 |
WO2016052769A1 (ko) * | 2014-09-29 | 2016-04-07 | (주) 마이크로핏 | 마이크로 반구체 어레이 플레이트의 제조방법, 마이크로 반구체 어레이 플레이트를 포함하는 미세유체소자 및 이를 이용한 세포 집합체의 배양방법 |
DE102016200793B4 (de) * | 2015-02-11 | 2024-04-04 | Heidelberger Druckmaschinen Ag | Verfahren zum Herstellen einer Werkzeugplatte zum Bearbeiten von Bedruckstoff |
JP2016201257A (ja) * | 2015-04-10 | 2016-12-01 | 株式会社ジャパンディスプレイ | 表示装置の製造方法 |
KR102502784B1 (ko) * | 2015-05-13 | 2023-02-22 | 도판 인사츠 가부시키가이샤 | 요철 패턴 형성체의 제조 방법, 그 제조 장치, 및 시일 |
US20180311877A1 (en) * | 2015-10-27 | 2018-11-01 | Agency For Science, Technology And Research | Nanoinjection molding |
JP6784487B2 (ja) | 2015-10-30 | 2020-11-11 | デクセリアルズ株式会社 | 光学体、および表示装置 |
KR102222873B1 (ko) * | 2016-06-05 | 2021-03-03 | 각코호진 오키나와가가쿠기쥬츠다이가쿠인 다이가쿠가쿠엔 | 제어된 핀홀 형성에 기반한 나노규모 패턴화 방법 |
WO2018166896A1 (en) * | 2017-03-16 | 2018-09-20 | Universite D'aix-Marseille | Nanoimprint lithography process and patterned substrate obtainable therefrom |
CN110418988B (zh) * | 2017-03-30 | 2021-08-13 | 日本瑞翁株式会社 | 光学膜、光学膜的制造方法、偏振片及液晶显示装置 |
JP6918631B2 (ja) * | 2017-08-18 | 2021-08-11 | 浜松ホトニクス株式会社 | 光検出素子 |
JP6393384B1 (ja) * | 2017-10-06 | 2018-09-19 | 日本ペイント・オートモーティブコーティングス株式会社 | 防眩ハードコート層の形成方法 |
US11717991B2 (en) * | 2018-03-20 | 2023-08-08 | Sharklet Technologies, Inc. | Molds for manufacturing textured articles, methods of manufacturing thereof and articles manufactured therefrom |
TWI688832B (zh) * | 2018-08-22 | 2020-03-21 | 鋆洤科技股份有限公司 | 精細金屬遮罩的製法 |
CN109597278A (zh) * | 2019-02-01 | 2019-04-09 | 集美大学 | 光功能织构薄膜的压印装置及压印方法 |
US10482192B1 (en) * | 2019-02-12 | 2019-11-19 | SmileDirectClub LLC | Systems and methods for selecting and marking a location on a dental aligner |
KR102286438B1 (ko) * | 2020-04-01 | 2021-08-05 | 연세대학교 산학협력단 | 패턴화된 금속 나노구 어레이층의 제조방법, 이를 포함하는 전자 소자의 제조방법 및 이에 의해 제조된 전자 소자 |
TWI726779B (zh) * | 2020-07-29 | 2021-05-01 | 光群雷射科技股份有限公司 | 轉印滾輪的製造方法、及滾輪母膜與其製造方法 |
CN115723461A (zh) * | 2021-08-30 | 2023-03-03 | 苏州苏大维格科技集团股份有限公司 | 一种光学转移材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010017865A (ja) | 2008-07-08 | 2010-01-28 | Fuji Electric Device Technology Co Ltd | ナノインプリント用モールドの製造方法 |
JP2010056256A (ja) | 2008-08-28 | 2010-03-11 | Hitachi Ltd | 微細構造を有する高分子薄膜およびパターン基板の製造方法 |
WO2011007878A1 (ja) | 2009-07-16 | 2011-01-20 | Jx日鉱日石エネルギー株式会社 | 回折格子及びそれを用いた有機el素子、並びにそれらの製造方法 |
JP2011035233A (ja) * | 2009-08-04 | 2011-02-17 | Toshiba Corp | パターン形成方法及び半導体装置の製造方法 |
JP2011045838A (ja) * | 2009-08-27 | 2011-03-10 | Fujifilm Corp | 高分子膜の製造方法 |
JP2011243308A (ja) * | 2010-05-14 | 2011-12-01 | Jx Nippon Oil & Energy Corp | 有機el素子用のマイクロレンズ、それを用いた有機el素子、及びそれらの製造方法 |
JP2012001787A (ja) * | 2010-06-18 | 2012-01-05 | Toppan Printing Co Ltd | 微細構造体の製造方法、複合体 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9028859B2 (en) * | 2006-07-07 | 2015-05-12 | Advanced Cardiovascular Systems, Inc. | Phase-separated block copolymer coatings for implantable medical devices |
CN101205054B (zh) * | 2007-12-11 | 2011-03-30 | 山东大学 | 一种微型金属镍模具制作方法 |
KR20130040172A (ko) * | 2010-03-26 | 2013-04-23 | 제이엑스 닛코 닛세키 에네루기 가부시키가이샤 | 연료 전지 시스템, 개질기 시스템, 및 연료 전지 시스템의 운전 방법 |
-
2013
- 2013-03-19 CN CN201380021957.8A patent/CN104254438B/zh not_active Expired - Fee Related
- 2013-03-19 AU AU2013253941A patent/AU2013253941B2/en not_active Ceased
- 2013-03-19 EP EP13781178.2A patent/EP2842721B1/en not_active Not-in-force
- 2013-03-19 CA CA2870426A patent/CA2870426C/en not_active Expired - Fee Related
- 2013-03-19 IN IN9101DEN2014 patent/IN2014DN09101A/en unknown
- 2013-03-19 KR KR1020147019842A patent/KR20140106704A/ko active Search and Examination
- 2013-03-19 JP JP2014512423A patent/JP5695799B2/ja not_active Expired - Fee Related
- 2013-03-19 WO PCT/JP2013/057851 patent/WO2013161454A1/ja active Application Filing
- 2013-04-03 TW TW102112033A patent/TWI574812B/zh not_active IP Right Cessation
-
2014
- 2014-10-14 US US14/513,622 patent/US20150028325A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010017865A (ja) | 2008-07-08 | 2010-01-28 | Fuji Electric Device Technology Co Ltd | ナノインプリント用モールドの製造方法 |
JP2010056256A (ja) | 2008-08-28 | 2010-03-11 | Hitachi Ltd | 微細構造を有する高分子薄膜およびパターン基板の製造方法 |
WO2011007878A1 (ja) | 2009-07-16 | 2011-01-20 | Jx日鉱日石エネルギー株式会社 | 回折格子及びそれを用いた有機el素子、並びにそれらの製造方法 |
JP2011035233A (ja) * | 2009-08-04 | 2011-02-17 | Toshiba Corp | パターン形成方法及び半導体装置の製造方法 |
JP2011045838A (ja) * | 2009-08-27 | 2011-03-10 | Fujifilm Corp | 高分子膜の製造方法 |
JP2011243308A (ja) * | 2010-05-14 | 2011-12-01 | Jx Nippon Oil & Energy Corp | 有機el素子用のマイクロレンズ、それを用いた有機el素子、及びそれらの製造方法 |
JP2012001787A (ja) * | 2010-06-18 | 2012-01-05 | Toppan Printing Co Ltd | 微細構造体の製造方法、複合体 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104812503A (zh) * | 2013-11-25 | 2015-07-29 | 东京毅力科创株式会社 | 图案形成方法和加热装置 |
WO2015098401A1 (ja) | 2013-12-27 | 2015-07-02 | Jx日鉱日石エネルギー株式会社 | 発光素子 |
AU2014371573B2 (en) * | 2013-12-27 | 2017-09-21 | Jx Nippon Oil & Energy Corporation | Light-emitting element |
JPWO2015098401A1 (ja) * | 2013-12-27 | 2017-03-23 | Jxエネルギー株式会社 | 発光素子 |
CN106133926A (zh) * | 2014-03-26 | 2016-11-16 | 捷客斯能源株式会社 | 磊晶成长用基板及使用其的发光组件 |
WO2015174391A1 (ja) * | 2014-05-14 | 2015-11-19 | Jx日鉱日石エネルギー株式会社 | 凹凸構造を有するフィルム部材 |
JP2015219972A (ja) * | 2014-05-14 | 2015-12-07 | Jx日鉱日石エネルギー株式会社 | 凹凸構造を有するフィルム部材 |
WO2016003246A1 (ko) * | 2014-07-04 | 2016-01-07 | 고려대학교 산학협력단 | 태양전지용 유리기판 텍스처링 방법 |
CN106660260A (zh) * | 2014-08-04 | 2017-05-10 | 捷客斯能源株式会社 | 具有凹凸图案的构件的制造方法 |
JPWO2016021533A1 (ja) * | 2014-08-04 | 2017-05-18 | Jxエネルギー株式会社 | 凹凸パターンを有する部材の製造方法 |
WO2016021533A1 (ja) * | 2014-08-04 | 2016-02-11 | Jx日鉱日石エネルギー株式会社 | 凹凸パターンを有する部材の製造方法 |
JP2016071306A (ja) * | 2014-10-02 | 2016-05-09 | 大日本印刷株式会社 | ワイヤーグリッド偏光子の製造用部材の修正方法とワイヤーグリッド偏光子の製造方法および露光方法 |
JP2016219341A (ja) * | 2015-05-25 | 2016-12-22 | Jxエネルギー株式会社 | 発光素子 |
WO2018212359A1 (ja) | 2017-05-19 | 2018-11-22 | Jxtgエネルギー株式会社 | 反射防止部材 |
WO2018221593A1 (ja) | 2017-05-31 | 2018-12-06 | Jxtgエネルギー株式会社 | 防曇部材 |
JPWO2018221593A1 (ja) * | 2017-05-31 | 2020-04-02 | Jxtgエネルギー株式会社 | 防曇部材 |
US11112540B2 (en) | 2017-05-31 | 2021-09-07 | Eneos Corporation | Antifogging member |
WO2021079740A1 (ja) * | 2019-10-21 | 2021-04-29 | 王子ホールディングス株式会社 | 三次元成形用フィルム、凹凸構造付き三次元構造体、その製造方法及び電鋳型の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2842721A1 (en) | 2015-03-04 |
IN2014DN09101A (ja) | 2015-05-22 |
US20150028325A1 (en) | 2015-01-29 |
EP2842721A4 (en) | 2015-09-16 |
CN104254438B (zh) | 2016-11-09 |
AU2013253941A1 (en) | 2014-11-27 |
CN104254438A (zh) | 2014-12-31 |
EP2842721B1 (en) | 2017-01-04 |
CA2870426C (en) | 2016-07-05 |
CA2870426A1 (en) | 2013-10-31 |
TWI574812B (zh) | 2017-03-21 |
JP5695799B2 (ja) | 2015-04-08 |
TW201402297A (zh) | 2014-01-16 |
JPWO2013161454A1 (ja) | 2015-12-24 |
KR20140106704A (ko) | 2014-09-03 |
AU2013253941B2 (en) | 2015-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5695799B2 (ja) | 微細パターン転写用のモールドの製造方法及びそれを用いた凹凸構造を有する基板の製造方法、並びに該凹凸構造を有する基板を有する有機el素子の製造方法 | |
JP5755662B2 (ja) | 微細パターン転写用のモールドの製造方法及びそれを用いた回折格子の製造方法、並びに該回折格子を有する有機el素子の製造方法 | |
JP5680742B2 (ja) | 凹凸構造を有する基板の製造方法及びそれを用いた有機el素子の製造方法 | |
JP5680800B2 (ja) | 有機el素子及びその製造方法 | |
WO2013136844A1 (ja) | フィルム状モールドを用いた凹凸パターンを有する光学基板の製造方法及び製造装置、並びにその光学基板を備えたデバイスの製造方法 | |
WO2013073434A1 (ja) | 有機el素子 | |
KR101604664B1 (ko) | 졸겔법을 이용한 요철 기판의 제조 방법, 이에 사용하는 졸 용액, 및 이를 사용한 유기 el 소자의 제조 방법과 이로부터 얻어진 유기 el 소자 | |
JP6013945B2 (ja) | 凹凸パターンを有する基板を備えたデバイスの製造方法 | |
TW201513422A (zh) | 具有凹凸構造之基板的製造方法 | |
JP5695608B2 (ja) | ゾルゲル法を用いた凹凸基板の製造方法、それに用いるゾル溶液、及びそれを用いた有機el素子の製造方法並びにそれから得られた有機el素子 | |
JP5695607B2 (ja) | ゾルゲル法を用いた凹凸基板の製造方法、それに用いるゾル溶液、及びそれを用いた有機el素子の製造方法並びにそれから得られた有機el素子 | |
JP5763506B2 (ja) | 有機el素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13781178 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147019842 Country of ref document: KR Kind code of ref document: A Ref document number: 2014512423 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2870426 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2013781178 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013781178 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2013253941 Country of ref document: AU Date of ref document: 20130319 Kind code of ref document: A |