WO2013142468A1 - Fully clickable trackpad - Google Patents
Fully clickable trackpad Download PDFInfo
- Publication number
- WO2013142468A1 WO2013142468A1 PCT/US2013/032911 US2013032911W WO2013142468A1 WO 2013142468 A1 WO2013142468 A1 WO 2013142468A1 US 2013032911 W US2013032911 W US 2013032911W WO 2013142468 A1 WO2013142468 A1 WO 2013142468A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- trackpad
- top surface
- cover member
- housing
- side edge
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
- G06F3/03547—Touch pads, in which fingers can move on a surface
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04105—Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
Definitions
- This description relates to an input device for use with a computing device, such as, a trackpad or a touchpad.
- Some computing devices include one or more input devices, such as, for example, a mouse, a keyboard, or a touchscreen.
- Some computing devices include a trackpad or touchpad that can be used in place of or in addition to a mouse to maneuver a curser on a computer screen, or to trigger one or more functions of a computing device.
- Such trackpads or touchpads can be coupled to, or integrated within, the computing device
- trackpads and touchpads that offer a variety of different gesture and/or sensor capabilities.
- Some trackpads and touchpads operate by the user moving or sliding one or more fingers across the surface of the trackpad or touchpad.
- Some trackpads or touchpads can respond to an action initiated by a stylus or other instrument that contacts the trackpad or touchpad.
- Some trackpads or touchpads can also include a "click" feature that allows the user to, for example, perform a right click function.
- the trackpad or touchpad will typically have a specific or limited sensor location or area, referred to as a "sweet spot," on the surface of the trackpad or touchpad in which a user must contact to activate such a clicking function.
- an apparatus includes a trackpad that includes a cover member having a top surface and a switch coupled to the cover member. At least two spring members are coupled to the trackpad and are each disposed at a non-zero distance from each other and are each configured to collectively bias the trackpad in a first position in which the top surface of the cover member is in a first plane.
- the trackpad is movable to a second position in which the top surface of the cover member is in a second plane substantially parallel to the first plane when an input force is exerted on the top surface of the cover member.
- the switch is configured to trigger an electrical signal within a computer when the trackpad is moved to its second position.
- an apparatus includes a housing and a trackpad coupled to the housing.
- the trackpad includes a cover member having a top surface configured to receive an input force and a switch coupled to the cover member.
- the top surface of the cover member has an outer perimeter.
- At least two support members each have a first end coupled to the housing and are disposed outside the outer perimeter of the top surface of the cover member and a second end contacting the trackpad.
- the second end of each of the at least two support members collectively configured to support the trackpad in a first position relative to the housing.
- the trackpad being movable to a second position relative to the housing when an input force is exerted on the top surface of the cover member.
- the switch configured to be actuated when the trackpad is moved to its second position.
- an apparatus includes a housing and a trackpad coupled to the housing.
- the trackpad includes a cover member having a top surface and switch coupled to the cover member.
- the track pad includes at least two pins slidably coupled to the housing to allow slidable movement of the trackpad relative the housing.
- At least two support members are coupled to the trackpad. The at least two support members are collectively configured to bias the trackpad in a first position in which the top surface of the cover member is disposed in a first plane.
- the trackpad being slidably movable in a substantially vertical direction relative to the housing to a second position in which the top surface of the cover member is disposed in a second plane substantially parallel to the first plane when an input force is exerted on the top surface of the trackpad.
- the switch configured to trigger an electrical signal within a computer when the trackpad is moved to its second position.
- FIG. 1 is a block diagram of a computing device including an input device, according to an implementation.
- FIG. 2 is a schematic illustration of a top view of an input device, according to an implementation.
- FIG. 3 is a schematic illustration of a side view of the input device of FIG. 2, shown with at trackpad in a first position.
- FIG. 4 is a schematic illustration of a side view of the input device of FIG. 2 shown with the trackpad in a second position.
- FIG. 5 is an exploded view of an input device according to another implementation.
- FIG. 6 is a perspective view of a trackpad assembly, according to an implementation.
- FIG. 7 is an exploded view of the trackpad assembly of FIG. 6.
- FIG. 8 is a top view of a portion of the trackpad assembly of FIG. 6.
- FIG. 9A is a bottom view of the trackpad assembly of FIG. 6.
- FIG. 9B is an enlarged view showing detail A in FIG. 9 A.
- FIG. 10 is a bottom perspective view of the input device of FIG. 5.
- FIG. 11A is a top perspective view of the input device of FIG. 5.
- FIG. 1 IB is an enlarged view showing detail B in FIG. 11A.
- FIG. 12 is an enlarged bottom perspective view of a portion of the input device of FIG. 5, with the trackpad assembly removed.
- FIG. 13 is a bottom perspective view of an input device according to another implementation.
- FIG. 14 is a perspective view of a computing device incorporating an input device according to an implementation. DETAILED DESCRIPTION
- An input device for use with a computing device is described herein that can be used to communicate with and control operations of a computing device.
- the input devices can be configured to be contacted by a user on a top surface of the input device to trigger an electronic signal within the computing device. For example, a user can slide or move one or more fingers, or a portion of a hand, across the top surface of the input device to move a curser visible on a display of the computing device.
- the input devices can also include a "click" function to allow the user to for example, click or select items on the display, or to actuate a right click function.
- the input devices described herein can allow a user to actuate a click function by exerting or applying a force on a top surface of the input device at any location on the top surface.
- the input device does not have a specific sensor location that the user must find to actuate a click function.
- the input device can also travel a consistent vertical distance and provide a consistent tactile response to the user when the user clicks on any portion of the top surface of the input device.
- a reference to a top view in a figure refers to a view as viewed by a user during use of an input device.
- a top view can refer to a view of the input device as disposed within a computing device such that the user can contact the top surface of the input device to initiate an action within the computing device.
- a reference to a bottom view of the input device refers to a view from underneath or below the input device and that is typically not viewable by a user during use of the input device.
- FIG. 1 is a block diagram of a computing device 100 that can be used in conjunction with an implementation of an input device 130.
- the input device 130 can be used by a user of the computing device 100 to communicate with, control, and/or actuate one or more functions on the computing device 100.
- the input device 130 can be used to move a curser on a display screen of the computing device 100.
- the input device 130 can be for example a trackpad or touchpad as described in more detail below.
- the input device 130 can be, for example, a touch (e.g., contact) sensitive device, such as, for example, an electrostatic device, a resistive device, a surface acoustic wave (SAW) device, a capacitive device, a pressure sensitive device, a surface capacitive device, a projected capacitive touch (PCT) device, and/or so forth.
- the input device 130 can be integrated with the computing device 100 or couplable to the computing device 100.
- the input device 130 can have a wired connection to the computing device 100 or a wireless connection (e.g., wi-fi enabled).
- the computing device 100 can include, for example, a display 120, one or more processors 122, one or more memory components 124, and/or a keyboard 126 and/or other touchscreen (not shown).
- the computing device 100 can be, for example, a wired device and/or a wireless device (e.g., wi-fi enabled device).
- the computing device 100 can be, for example, a computing entity (e.g., a personal computing device, such as, a laptop computer, a desktop computer, a netbook computer, a tablet, a touchpad, etc.), a server device (e.g., a web server), a mobile phone, a personal digital assistant (PDA), e-reader, and/or so forth.
- the computing device 100 can be configured to operate based on one or more platforms (e.g., one or more similar or different platforms) that can include one or more types of hardware, software, firmware, operating systems, runtime libraries, and/or so forth.
- the computing device 100 can represent a cluster of devices.
- the functionality and processing of the computing device 100 e.g., the one or more processors 122 of the computing device 100
- one or more portions of the components of computing device 100 can be, or can include, a hardware-based module (e.g., a digital signal processor (DSP), a field programmable gate array (FPGA), a memory), a firmware module, and/or a software-based module (e.g., a module of computer code, a set of computer-readable instructions that can be executed at a computer).
- a hardware-based module e.g., a digital signal processor (DSP), a field programmable gate array (FPGA), a memory
- firmware module e.g., a module of computer code, a set of computer-readable instructions that can be executed at a computer.
- a software-based module e.g., a module of computer code, a set of computer-readable instructions that can be executed at a computer.
- the functionality of the components can be included in different modules and/or components not shown in FIG. 1.
- the components of the computing device 100 can be configured to operate within an environment that includes an operating system
- the computing device 100 can be included in a network.
- the network can include multiple computing devices (such as computing device 100) and/or multiple server devices (not shown).
- the computing device 100 can be configured to function within various types of network environments.
- the network can be, or can include, a local area network (LAN), a wide area network (WAN), and/or so forth.
- the network can be, or can include, a wireless network and/or wireless network implemented using, for example, gateway devices, bridges, switches, and/or so forth.
- the network can include one or more segments and/or can be have portions based on various protocols such as Internet Protocol (IP) and/or a proprietary protocol.
- IP Internet Protocol
- the network can include at least a portion of the Internet.
- the display 120 of the computing device 100 can be, for example, a liquid crystal display (LCD), a liquid emitting diode (LED) display, or other type of display device.
- the one or more memory component 124 can be any type of memory device such as a random-access memory (RAM) component or a disk drive memory. As shown in FIG. 1, a memory component 124 can be a local memory included in the computing device 100. Although not shown, in some implementations, the memory component(s) 124 can be implemented as more than one memory component 124 (e.g., more than one RAM component or disk drive memory) within the computing device 100.
- the memory component(s) 124 can be, or can include, a non-local memory (e.g., a memory not physically included within the computing device 100) within a network (not shown).
- the memory component(s) 124 can be, or can include, a memory shared by multiple computing devices (not shown) within a network.
- the memory component(s) 124 can be associated with a server device (not shown) on a client side of a network and configured to serve several computing devices on the client side of the network.
- the input device 130 can be configured to be contacted by a user on a top surface of the input device 130 to trigger an electronic signal within the computing device 100. For example, a user can slide or move one or more fingers, or a portion of a hand, across the top surface of the input device 130 to move a curser visible on the display 120.
- the input device 130 can also include a "click" function to allow the user to click or select items on the display 120 or to actuate a function to be performed by the computing device 100.
- the input device 130 can be used to perform a "right click" function to bring up a drop-down menu on the display 120.
- the input device 130 is configured to allow the user to click on any portion of the top surface of the input device 130. Thus, the user can receive a consistent tactile response when clicking on any portion of the top surface of the input device 130.
- Such functionality can provide an easier and more efficient computing experience for the user.
- the input device 130 can include an enclosure or housing 132, a trackpad assembly 134 (also referred to as "trackpad"), and one or more support members 136.
- the housing 132 of the input device 130 can be a housing of the computing device 100.
- the enclosure or housing of the input device 130 is integral with the housing of the computing device 100.
- the housing 132 of the input device 130 can be a separate housing component.
- the input device 130 can be couplable to the computing device 100.
- the input device 130 is physically coupled to the computing device 100 and in some implementations the input device 130 is not physically coupled to the computing device 100.
- the input device 130 may communicate with the computing device 100 with a wireless connection.
- the trackpad 134 can include a cover member 150, a sensor 154 and a base member 158.
- the cover member 154 can include a top surface 138 configured to be contacted by a user to actuate and trigger an electrical response within the computing device 100.
- the sensor 154 can be activated when a user enters an input (e.g., a touch or a click) on the top surface 138 of the cover member 150.
- the sensor 154 can be, for example, a flame-retardant class-4 (FR4) printed circuit board.
- the trackpad 134 can also include a switch 140 that can be used to trigger a response to a click function input by a user.
- the switch 140 can be electrically coupled to the sensor 154 such that when a user applies or exerts an input force on the top surface 138 of the cover member 150, the switch 140 can be actuated and communicate an electronic signal to the sensor 154.
- the switch 140 can be, for example, a dome switch.
- the switch 140 can include electronic components commonly used in such switches such that the switch 140 can electrically communicate with the sensor 154.
- the switch 140 can be formed at least in part, with, for example, a metallic material, such as a stainless steel (e.g., SUS301) and can include a flexible portion that can be flexed or compressed when an actuated.
- the switch 140 can be pressed against an actuation member 144 of the input device 130 when the trackpad 134 is actuated as described in more detail below.
- the actuation member 144 can be, for example a set screw.
- the actuation member 144 can be threadably coupled to an arm member 142 that is coupled to the housing 132.
- the one or more support members 136 can be coupled to the housing 132 and can be configured to bias the trackpad 134 into a first position relative to the housing 132, as shown in FIG. 3.
- the support members 136 can include a first end portion 172 that is fixedly coupled to the housing 132 with, for example, screws or other suitable fasteners, and a second end portion 174 (see FIGS. 3 and 4) that is disposed below the trackpad 134 and contacts a bottom surface 159 of the trackpad 134.
- the second end portion 174 can be, for example, cantilevered from the first end portion 172 such that it is "free-floating.” As shown in FIG.
- the cover member 150 has a first side edge 135, a second side edge 137 opposite the first side edge 135, and a third side edge 139 opposite a fourth side edge 141.
- the side edges 135, 137, 139, 141 define an outer perimeter portion P of the cover member 150.
- the first end portion 172 of the support members 136 can be coupled to the housing 132 at a location outside of the perimeter portion P (see FIGS. 2-4)
- the trackpad 134 can be moved to a second position, as shown in FIG. 4, when a user exerts an input force on the top surface 138 to initiate a clicking function.
- the support members 136 can have a first configuration in which they are configured to support and maintain (e.g., bias) the trackpad 134 in its first position relative to housing 132.
- the support members 136 can be configured to bend or flex such that when the trackpad 134 is moved to its second position as mentioned above, the trackpad 134 will exert a force on the second end portion of the support members 136 and move (e.g., bend or flex) the support members 136 to a second configuration.
- the second end portion of the support members 136 can bend or flex relative to the first end portion of the support members 136.
- the support members 136 can be, for example, spring members.
- the support members 136 can be flat springs.
- the input device 130 can include, for example, two, three, four or more support members 136.
- the support members 136 can be on any side (side, top, and/or bottom) of the trackpad 134, can be at different (e.g., opposite) corners of the trackpad 134, can be on opposite sides of the trackpad 134, can be paired and directly across from one another (as shown in FIG. 2), can be at staggered positions on opposite sides (side, top, and/or bottom) of the trackpad 134, and so forth.
- the trackpad 134 can move from its first position to its second position by slidably moving relative to the housing 132 in a substantially vertical direction such that the top surface 138 of the support member 150 is moved from a first plane to a second plane that is substantially parallel to the first plane. In other words, the entire top surface 138 is moved vertically a distance D (see FIG. 4) when the trackpad 134 is moved from its first position to its second position.
- the distance D can be between 0.15 to 0.25 millimeters (mm) (e.g., 0.22 mm, 0.2 mm).
- the distance D can be greater than 0.25 mm (e.g., 0.3 mm, 0.4 mm) or less than 0.15 mm (e.g., 0.1 mm). In some embodiments, the variation in distance D across the trackpad 134 can be approximately ⁇ 20%. In some embodiments, the variation in distance D across the trackpad 134 can be greater than 20% (e.g., 25%, 30%), or less than 20% (e.g., 10%, 5%). Said another way, the top surface 138 is disposed at a distance di relative to a bottom wall 131 of the housing 132, as shown in FIG. 3, and is moved to a distance d2 relative to the bottom wall of the housing 132, as shown in FIG. 4. Thus, the outer perimeter portion P of the cover member 150 is moved substantially an equal distance when the trackpad 134 is moved from its first position to its second position.
- the trackpad 134 can be slidably coupled to the housing 132 with one or more alignment pins 146 that can be slidably received within a corresponding opening(s) defined in the housing 132.
- the one or more alignment pins can be slidably received within a corresponding bushing(s) (not shown in FIGS. 1-4) coupled to the housing 132.
- the bushings can be, for example, Delrin bushings.
- the touchpad 134 incudes two alignment pins.
- the alignment pins 146 can also be used to help align the trackpad 134 to the housing 132. For example, such alignment can be useful to maintain a desired tolerance of a gap 143 defined between the outer perimeter portion P of the cover member 150 and the housing 132 as shown in FIG. 3.
- FIGS. 5-12 illustrate an implementation of an input device 230.
- the input device 230 includes a housing 232, a trackpad assembly 234 and support members 236.
- the housing 232 can be coupled to a computing device (e.g., computing device 100 described above) or can be used as a separate component that communicates with the computing device 100 using a wireless connection.
- the input device 230 can be, for example, a touch (e.g., contact) sensitive device, such as, for example, an electrostatic device, a resistive device, a surface acoustic wave (SAW) device, a capacitive device, a pressure sensitive device, a surface capacitive device, a projected capacitive touch (PCT) device, and/or so forth.
- a touch sensitive device such as, for example, an electrostatic device, a resistive device, a surface acoustic wave (SAW) device, a capacitive device, a pressure sensitive device, a surface capacitive device, a projected capacitive touch (PCT) device, and/or so forth.
- FIG. 6 is a perspective view of the trackpad assembly 234 and FIG. 7 is an exploded view of the trackpad assembly 234 (also referred to as "trackpad).
- the trackpad 234 includes a cover member 250, a first adhesive sheet 252, a sensor (e.g., a printed circuit board) 254, a dome switch 240, a second adhesive sheet 256 and a base member 258.
- the cover member 250 can be formed with, for example, an electrostatic glass material.
- the cover member 250 has a top surface 238, which is the top surface of the trackpad 234 and is configured to receive inputs (e.g., a touch or click) by a user.
- the sensor 254 can be activated, for example, when a user touches or applies a force on the top surface 238 of the cover member 250, and can communicate electronic signals within the computing device 100.
- the sensor 254 can be, for example, a flame-retardant class-4 (FR4) printed circuit board.
- the first adhesive sheet 252 can be adhered to a bottom surface (not shown) of the cover member 250 and used to adhesively couple the sensor 254 thereto.
- the first adhesive layer can be, for example, a pressure sensitive adhesive (PSA).
- PSA pressure sensitive adhesive
- a cable 260 can be coupled to the sensor 254.
- the cable 260 can be, for example, a flat flex cable (FFC) or a flexible printed circuit (FPC).
- the cable 260 can be coupled to a connector 261 disposed on a bottom surface 255 of the sensor 254, as shown in FIG. 9A.
- the connector 261 can be, for example, a zero insertion force (ZIF) connector.
- An end of the cable 260 can be inserted into the connector 261 with contacts (not shown) of the cable 260 facing down, as shown in FIG. 9A.
- the second adhesive sheet 256 can be adhered to a top surface 262 of the base member 258 such that the openings 263, 265, and 267 defined in the adhesive sheet 256 align with corresponding openings 264, 266 and 268 defined in the base member 258.
- the second adhesive sheet 256 can be, for example, a pressure sensitive adhesive (PSA).
- PSA pressure sensitive adhesive
- the second adhesive sheet 256 can be used to couple the base member 258 to the bottom surface 255 of the sensor 254.
- the dome switch 240 can also be adhesively coupled to the bottom surface 255 of the sensor 254 such that the dome switch 240 can extend through the opening 265 of the second adhesive sheet 256 and the opening 266 in the base member 258, as best shown in the bottom views of FIGS. 9A and 9B. Also shown in FIG. 9A, when the trackpad 234 is assembled, a portion of the cable 260 can extend through the openings 263 and 264.
- the base member 258 includes four legs 270 that can be used to support and couple the trackpad 234 to the housing 232. Although four legs 270 are shown, it should be understood that a different number of legs can alternatively be used. In addition, in alternative implementations, the legs 270 can be disposed at different locations on the base member 258.
- the base member 258 also includes two alignment pins 246 disposed on or coupled to two of the legs 270. In this implementation, the alignment pins 246 are disposed on legs 270 on opposite corners of the base member 258. As described above and as described in more detail below, the alignment pins 246 can be used to align and slidably couple the trackpad 234 to the housing 232.
- the base member 258 can include three legs 270 and each can include an alignment pin 246.
- the three legs 270 can be located along the perimeter of the base member 258 in a spaced relationship to each other such that the legs 270 can consistently support the base member 258 during actuation of the input device 230.
- the dome switch 240 can be electrically coupled to the sensor 254 such that when the dome switch 240 is actuated, the dome switch 240 can communicate an electronic signal to the sensor 254.
- the dome switch 240 can include electronic components commonly used in such switches that can electrically communicate with the sensor 254.
- the dome switch 240 can include a flexible or compressible portion that can be flexed or compressed when actuated. For example, the dome switch 240 can be pressed against an actuation member 244 (described below) when a user applies an input force on the top surface 238 of the cover member 250 to initiate a click function.
- the input device 230 also incudes an arm member 242 that can be coupled to the housing 232 and the actuation member 244 can be coupled to the arm member 242.
- the actuation member 244 is a set screw.
- the dome switch 240 can be compressed against the actuation member 244 to trigger an electronic signal within a computing device (e.g., computing device 100) (e.g., via the sensor 254).
- a height of the actuation member 244 can be adjusted by threadably turning the actuation member 244 (e.g., set screw) until a head of the actuation member 244 (e.g., a head of the set screw on which the dome switch 240 is compressed during actuation) is at a desired height or location relative to the housing 232 and/or the dome switch 240.
- actuation member 244 e.g., set screw
- the input device 230 includes four support members 236 configured to support the trackpad 234 in a first position relative to the housing 232.
- the support members 236 can be, for example, spring members.
- the support members 236 can be, for example, flat springs.
- the support members 236 can be formed with for example, a stainless steel material such as SUS 301.
- four support members 236 are included in this implementation, it should be understood that a different number of support members can alternatively be used. For example, three support members or less can be used. In some implementations, more than four support members 236 can be used.
- the support members 236 include a first end portion 272 fixedly coupled to the housing 232 and a second end portion 274 that is free-floating and disposed beneath and contacting a bottom surface 259 of the base member 258 of the trackpad 234.
- the second end portion 274 is free-floating in that it is cantilevered from the first end portion 272.
- the second end portion 274 can also include a bump or raised portion 275 on which the base member 258 can rest.
- the first end portion 272 is disposed outside an outer perimeter portion P of the cover member 250 (see FIG. 8).
- the support members 236 can have a first configuration in which the support members 236 bias and support the trackpad 234 in its first position and can be moved (e.g., bend or flex) to a second configuration when the trackpad 234 is moved to a second position relative to the housing 232.
- the trackpad 234 will be moved downward (e.g., in a vertical direction) to its second position and exert a force on the support members 236.
- the second end portion 274 of the support members 236 can bend or flex relative to the first end portion 272 of the support members 236 when a force exerted on the top surface 238 of the trackpad 234.
- the trackpad 234 can be slidably coupled to the housing 232 with the alignment pins 246 on the base member 258.
- bushings 276 can be disposed within channels 278 defined in the housing 232 (FIG. 12 illustrates an enlarged portion of the input device 230 with the trackpad 234 removed for illustration purposes).
- FIGS. 11A and 11B the enclosure 232, legs 270 and bushings 276 are shown transparent in FIGS. 11A and 11B for illustration purposes
- the alignment pins 246 can be slidably received within the bushings 276.
- the alignment pins 246 may be slidably received within a mating channel defined in the housing 232 (e.g., without the bushings 276).
- the alignment pins 246 can provide a slidable coupling of the trackpad 234 to the housing 232 and can also help align the trackpad 234 to the housing 232 during assembly of the input device 230.
- the alignment pins 246 can also provide for consistent vertical movement of the trackpad 234 when it is actuated (e.g., when a user exerts a force on the top surface of the trackpad) as described in more detail below.
- the slidable coupling of the trackpad 234 to the housing 232 together with the support members 236 and the alignment pins 246 allows the trackpad 234 to move from its first position to its second position upon actuation by a user (e.g., an input force exerted on the top surface 238) such that the top surface 238 of the cover member 250 is moved from a first plane to a second plane that is substantially parallel to the first plane.
- a user e.g., an input force exerted on the top surface 2308
- the entire top surface 238 of the cover member 250 is disposed in a first plane when the trackpad 234 is in its first position and the entire top surface 238 of the cover member 250 is in a second plane substantially parallel to the first plane when the trackpad 234 is in its second position.
- the outer perimeter P see FIG.
- the trackpad 234 When the user exerts an input force on the top surface 238 of the cover member 250, the trackpad 234 will be moved from its first position to a second position, which will actuate the dome switch 240 and trigger an electronic signal within the computing device 100 as described above. Specifically, the dome switch 240 will move with the trackpad 234 such that it is compressed against the actuation member 244 (e.g., the set screw), which will trigger an electronic signal from the dome switch 240 to the sensor 256 and to the computing device 100.
- the actuation member 244 e.g., the set screw
- FIG. 13 is a bottom perspective view of an input device 330 according to another implementation.
- the input device 330 can be, for example, a touch (e.g., contact) sensitive device, such as, for example, an electrostatic device, a resistive device, a surface acoustic wave (SAW) device, a capacitive device, a pressure sensitive device, a surface capacitive device, a projected capacitive touch (PCT) device, and/or so forth as with above-described implementations.
- a touch (e.g., contact) sensitive device such as, for example, an electrostatic device, a resistive device, a surface acoustic wave (SAW) device, a capacitive device, a pressure sensitive device, a surface capacitive device, a projected capacitive touch (PCT) device, and/or so forth as with above-described implementations.
- SAW surface acoustic wave
- PCT projected capacitive touch
- the input device 330 includes a housing 332, a touchpad assembly 334 and support members 336.
- the housing 332 is an integral component of a computing device 300, shown in FIG. 14.
- the computing device 300 can be configured the same as or similar to the computing device 100 described above.
- the computing device 300 includes a base portion 304 and a display portion 302.
- the base portion 304 can include, among other components, the housing 332, the trackpad 334 and a keyboard portion 380. As shown in FIG.
- the housing 332 can define multiple openings 382 for the keys of the keyboard portion 380
- the display portion 302 of the computing device 300 includes a display 320 that can be, for example, a liquid crystal display (LCD), a light emitting diode (LED) display, or other type of display device.
- LCD liquid crystal display
- LED light emitting diode
- the trackpad 334 can be configured the same as or similar to (e.g., include the same components) and can perform the same as or similar functions as the trackpad 134 and the trackpad 234 described above.
- the trackpad 334 can include a cover member 350 (shown in FIG. 14), first and second adhesive sheets (not shown), a sensor (e.g., a printed circuit board) 354, a dome switch (not shown), and a base member 358.
- the cover member 350 can be formed with, for example, an electrostatic glass material.
- the cover member 350 can include a top surface 338 (shown in FIG. 14) configured to receive inputs (e.g., a touch or click) by a user.
- the sensor 354 can be activated when a user enters an input on the top surface 338 of the cover member 350 and can communicate electronic signals within the computing device 300.
- the sensor 354 can be, for example, a flame-retardant class-4 (FR4) printed circuit board.
- the first and second adhesive sheets can each be, for example, a pressure sensitive adhesive (PSA).
- PSA pressure sensitive adhesive
- the first adhesive sheet can be adhered to a bottom surface (not shown) of the cover member 350 and used to adhesively couple the sensor 354 thereto.
- a cable (not shown) can be coupled to a connector 361 (e.g., a ZIF connector) disposed on a bottom surface 355 of the sensor 354.
- the cable can be, for example, a flat flex cable (FFC) or a flexible printed circuit (FPC).
- the second adhesive sheet can be adhered to a top surface (not shown) of the base member 358 such that openings (not shown) defined in the second adhesive sheet align with corresponding openings 364 and 368 defined in the base member 358.
- the second adhesive sheet can be used to couple the base member 358 to the bottom surface 355 of the sensor 354.
- the dome switch can also be adhesively coupled to the bottom surface 355 of the sensor 354 such that the dome switch can extend through an opening (not shown) of the second adhesive sheet and an opening (not shown) defined in the base member 358.
- the base member 358 includes four legs 370 that can be used to support and couple the trackpad 334 to the housing 332. Although four legs 370 are shown, it should be understood that a different number of legs can alternatively be used.
- the base member 358 also includes two alignment pins 346 disposed on or coupled to two of the legs 370. As with above-described implementations, the alignment pins 346 can be used to align and slidably couple the trackpad 334 to the housing 332.
- the dome switch can be electrically coupled to the sensor 354 such that when the dome switch is actuated, the dome switch can communicate an electronic signal to the sensor 354.
- the dome switch can include electronic components commonly used in such switches that can electrically communicate with the sensor 354.
- the dome switch can include a flexible or compressible portion that can be flexed or compressed when actuated. For example, the dome switch can be pressed against an actuation member (not shown) when a user applies an input force on the top surface of the cover member 350 to initiate a click function.
- the input device 330 also incudes an arm member 342 that can be coupled to the housing 332 and the actuation member (e.g., a set screw) can be coupled to the arm member 342.
- the actuation member e.g., a set screw
- the dome switch can be compressed against the actuation member to trigger an electronic signal within the computing device 300 via the sensor 354.
- the four support members 336 are each configured to support the trackpad 334 in a first position relative to the housing 332.
- the support members 336 can be, for example, spring members. Although four support members 336 are included in this implementation, it should be understood that a different number of support members can alternatively be used.
- the support members 336 include a first end portion 372 fixedly coupled to the housing 332 with, for example screws, or other mechanical fasteners, and a second end portion 374 that is free-floating and disposed beneath and contacting a bottom surface 359 of the base member 358.
- the support members 336 can have a first configuration in which the support members 336 bias and support the trackpad 334 in a first position relative to the housing 332 and can be moved (e.g., bend or flex) to a second configuration when the trackpad 334 is moved to a second position relative to the housing 332.
- the trackpad 334 will be moved downward (e.g., in a vertical direction) to its second position and exert a force on the support members 336.
- the second end portion 374 of the support members 336 can bend or flex relative to the first end portion 372 of the support members 336 when a force is exerted on the top surface 338 of the cover member 350.
- the trackpad 334 can be slidably coupled to the housing 332 with the alignment pins 346 on the base member 358 as described for input device 130 and input device 230.
- the alignment pins 346 can be slidably received within bushings (not shown) coupled to the housing 332 or can be slidably received within openings or channels (not shown) defined in the housing 332.
- the slidable coupling of the trackpad 334 to the housing 332 together with the support members 336 allows the trackpad 334 to move from its first position to its second position such that the top surface 338 of the cover member 350 is moved from a first plane to a second plane that is substantially parallel to the first plane.
- an outer perimeter of the support member 350 is moved a substantially equal distance (e.g., in a vertical direction) when the trackpad 334 is moved from its first position to its second position.
- a user can actuate a clicking function by exerting an input force at any location on the top surface 338 of the cover member 350 of the trackpad 334.
- the components of the input devices can be formed with a variety of different materials such as plastic, metallic, glass, ceramic, etc. used for such components.
- the cover member e.g., 250
- base member e.g., 258
- support members e.g., 136, 236, 342
- the switch e.g., 140, 240
- the arm member e.g., 242
- the housing e.g., 132, 232, 332
- various materials such as, an aluminum alloy (e.g., A15052).
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
- Switches With Compound Operations (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2867498A CA2867498C (en) | 2012-03-20 | 2013-03-19 | Fully clickable trackpad |
EP13764653.5A EP2828728A4 (en) | 2012-03-20 | 2013-03-19 | Fully clickable trackpad |
CN201380015815.0A CN104272226B (en) | 2012-03-20 | 2013-03-19 | Fully clickable trackpad |
BR112014023397A BR112014023397A8 (en) | 2012-03-20 | 2013-03-19 | FULLY CLICKABLE TRACKPAD |
AU2013235252A AU2013235252B2 (en) | 2012-03-20 | 2013-03-19 | Fully clickable trackpad |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/424,817 US9069394B2 (en) | 2012-03-20 | 2012-03-20 | Fully clickable trackpad |
US13/424,817 | 2012-03-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013142468A1 true WO2013142468A1 (en) | 2013-09-26 |
Family
ID=49223297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/032911 WO2013142468A1 (en) | 2012-03-20 | 2013-03-19 | Fully clickable trackpad |
Country Status (7)
Country | Link |
---|---|
US (2) | US9069394B2 (en) |
EP (1) | EP2828728A4 (en) |
CN (2) | CN104272226B (en) |
AU (1) | AU2013235252B2 (en) |
BR (1) | BR112014023397A8 (en) |
CA (1) | CA2867498C (en) |
WO (1) | WO2013142468A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9069394B2 (en) | 2012-03-20 | 2015-06-30 | Google Inc. | Fully clickable trackpad |
WO2015136348A1 (en) * | 2014-03-11 | 2015-09-17 | Toyota Jidosha Kabushiki Kaisha | Operating device for vehicle |
EP3067785A1 (en) * | 2015-03-10 | 2016-09-14 | Acer Incorporated | Electronic device |
US9632602B2 (en) | 2014-11-04 | 2017-04-25 | Microsoft Technology Licensing, Llc | Fabric laminated touch input device |
WO2020180289A1 (en) * | 2019-03-04 | 2020-09-10 | Google Llc | Trackpad with force sensing circuitry |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203070249U (en) * | 2013-01-28 | 2013-07-17 | 致伸科技股份有限公司 | Touch control input device with key function |
US9619044B2 (en) * | 2013-09-25 | 2017-04-11 | Google Inc. | Capacitive and resistive-pressure touch-sensitive touchpad |
WO2016076820A1 (en) | 2014-11-10 | 2016-05-19 | Hewlett Packard Development Company, L.P. | Touch pad adjustment |
KR102393185B1 (en) * | 2014-11-21 | 2022-05-02 | 엘지전자 주식회사 | Electronic device |
TWI535366B (en) * | 2014-12-02 | 2016-05-21 | 和碩聯合科技股份有限公司 | Supporting device of touch pad |
US9785339B2 (en) | 2014-12-04 | 2017-10-10 | Microsoft Technology Licensing, Llc | Touch input device in a circuit board |
CN107850923B (en) * | 2015-07-02 | 2021-03-12 | 瑟克公司 | Method and system for providing mechanical movement of a surface of a touch sensor |
US20170249013A1 (en) * | 2016-02-25 | 2017-08-31 | Cirque Corporation | Touchpad system with multiple tracking methods: mechanical force positional sensor integrated with capacitive location tracking |
US10261550B2 (en) * | 2016-09-12 | 2019-04-16 | Quanta Computer Inc. | Touchpad supporting structure for supporting touchpad |
US10331178B2 (en) | 2017-08-04 | 2019-06-25 | Microsoft Technology Licensing, Llc | Rigidly bonded trackpad with structural stiffener |
TWI663533B (en) * | 2018-02-02 | 2019-06-21 | 致伸科技股份有限公司 | Touch pad module and computer using the same |
TWI663504B (en) * | 2018-06-15 | 2019-06-21 | 致伸科技股份有限公司 | Touch pad module |
CN110825162B (en) * | 2018-08-14 | 2022-07-01 | 致伸科技股份有限公司 | Surface-mounted switch, touch pad module with surface-mounted switch and electronic computer |
TWI674527B (en) * | 2018-10-12 | 2019-10-11 | 致伸科技股份有限公司 | Touch pad module and computer using the same |
TWI689858B (en) * | 2019-02-27 | 2020-04-01 | 群光電子股份有限公司 | Touch-control electronic apparatusand touch pacel device thereof |
CN111722732B (en) * | 2019-03-22 | 2022-08-12 | 致伸科技股份有限公司 | Touch control panel module |
WO2020231433A1 (en) * | 2019-05-16 | 2020-11-19 | Hewlett-Packard Development Company, L.P. | Compressible interfaces for electronic devices |
CN113143313A (en) | 2020-01-07 | 2021-07-23 | 通用电气精准医疗有限责任公司 | Depressible touch panel and ultrasonic imaging system |
US11511186B2 (en) * | 2020-02-14 | 2022-11-29 | Valve Corporation | Controller with sensor-rich controls |
US11429157B2 (en) * | 2020-02-21 | 2022-08-30 | Apple Inc. | Parallel motion trackpad |
TWI741703B (en) * | 2020-07-29 | 2021-10-01 | 和碩聯合科技股份有限公司 | Pressing module |
TWI755095B (en) * | 2020-10-13 | 2022-02-11 | 群光電子股份有限公司 | Touchpad device |
TWI756960B (en) * | 2020-12-02 | 2022-03-01 | 群光電子股份有限公司 | Touch pad module |
TWI773237B (en) * | 2021-04-08 | 2022-08-01 | 群光電子股份有限公司 | Touchpad device |
US11893156B2 (en) | 2021-10-25 | 2024-02-06 | Dell Products L.P. | Information handling system touchpad with mechanical uniform touch response |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070273671A1 (en) * | 2003-08-18 | 2007-11-29 | Zadesky Stephen P | Movable touch pad with added functionality |
US20100079404A1 (en) * | 2008-09-30 | 2010-04-01 | Apple Inc. | Movable Track Pad with Added Functionality |
US20100177042A1 (en) * | 2009-01-09 | 2010-07-15 | Stephen Chen | Method for aiding control of cursor movement through a trackpad |
US20100289751A1 (en) * | 2009-05-13 | 2010-11-18 | Stephen Chen | Operation method for a trackpad equipped with pushbutton function |
US20110222233A1 (en) * | 2010-03-15 | 2011-09-15 | Ying-Jia Lu | Computer device with a movable pad |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6429846B2 (en) * | 1998-06-23 | 2002-08-06 | Immersion Corporation | Haptic feedback for touchpads and other touch controls |
US6243080B1 (en) * | 1998-07-14 | 2001-06-05 | Ericsson Inc. | Touch-sensitive panel with selector |
US6281887B1 (en) * | 1999-09-20 | 2001-08-28 | Mitac International Corp. | Touchpad assembly |
US6757002B1 (en) | 1999-11-04 | 2004-06-29 | Hewlett-Packard Development Company, L.P. | Track pad pointing device with areas of specialized function |
US20060181517A1 (en) | 2005-02-11 | 2006-08-17 | Apple Computer, Inc. | Display actuator |
JP4386429B2 (en) | 2004-06-23 | 2009-12-16 | ヤマハ発動機株式会社 | Surface mount machine |
US8139035B2 (en) * | 2006-06-21 | 2012-03-20 | Nokia Corporation | Touch sensitive keypad with tactile feedback |
GB2446702A (en) * | 2007-02-13 | 2008-08-20 | Qrg Ltd | Touch Control Panel with Pressure Sensor |
CN101296588A (en) | 2007-04-24 | 2008-10-29 | 鸿富锦精密工业(深圳)有限公司 | Electronic apparatus |
US20090174679A1 (en) * | 2008-01-04 | 2009-07-09 | Wayne Carl Westerman | Selective Rejection of Touch Contacts in an Edge Region of a Touch Surface |
JP2009199537A (en) * | 2008-02-25 | 2009-09-03 | Toshiba Corp | Electronic apparatus and method of controlling same |
JP5238586B2 (en) * | 2009-04-09 | 2013-07-17 | アルプス電気株式会社 | Input device |
US20100300772A1 (en) | 2009-05-28 | 2010-12-02 | Synaptics Incorporated | Depressable touch sensor |
CN101930304A (en) * | 2009-06-24 | 2010-12-29 | 鸿富锦精密工业(深圳)有限公司 | Touch-control board |
TW201104523A (en) * | 2009-07-22 | 2011-02-01 | Wistron Corp | Modular touch control assembly and electronic device having the same |
US9069394B2 (en) | 2012-03-20 | 2015-06-30 | Google Inc. | Fully clickable trackpad |
-
2012
- 2012-03-20 US US13/424,817 patent/US9069394B2/en active Active
-
2013
- 2013-03-19 AU AU2013235252A patent/AU2013235252B2/en not_active Ceased
- 2013-03-19 WO PCT/US2013/032911 patent/WO2013142468A1/en active Application Filing
- 2013-03-19 CN CN201380015815.0A patent/CN104272226B/en not_active Expired - Fee Related
- 2013-03-19 CA CA2867498A patent/CA2867498C/en not_active Expired - Fee Related
- 2013-03-19 CN CN201710123126.1A patent/CN107102767B/en active Active
- 2013-03-19 EP EP13764653.5A patent/EP2828728A4/en not_active Withdrawn
- 2013-03-19 BR BR112014023397A patent/BR112014023397A8/en not_active Application Discontinuation
-
2015
- 2015-06-26 US US14/752,098 patent/US9477328B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070273671A1 (en) * | 2003-08-18 | 2007-11-29 | Zadesky Stephen P | Movable touch pad with added functionality |
US20100079404A1 (en) * | 2008-09-30 | 2010-04-01 | Apple Inc. | Movable Track Pad with Added Functionality |
US20100177042A1 (en) * | 2009-01-09 | 2010-07-15 | Stephen Chen | Method for aiding control of cursor movement through a trackpad |
US20100289751A1 (en) * | 2009-05-13 | 2010-11-18 | Stephen Chen | Operation method for a trackpad equipped with pushbutton function |
US20110222233A1 (en) * | 2010-03-15 | 2011-09-15 | Ying-Jia Lu | Computer device with a movable pad |
Non-Patent Citations (1)
Title |
---|
See also references of EP2828728A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9069394B2 (en) | 2012-03-20 | 2015-06-30 | Google Inc. | Fully clickable trackpad |
US9477328B2 (en) | 2012-03-20 | 2016-10-25 | Google Inc. | Fully clickable trackpad |
WO2015136348A1 (en) * | 2014-03-11 | 2015-09-17 | Toyota Jidosha Kabushiki Kaisha | Operating device for vehicle |
US10025402B2 (en) | 2014-03-11 | 2018-07-17 | Toyota Jidosha Kabushiki Kaisha | Operating device for vehicle |
US9632602B2 (en) | 2014-11-04 | 2017-04-25 | Microsoft Technology Licensing, Llc | Fabric laminated touch input device |
EP3067785A1 (en) * | 2015-03-10 | 2016-09-14 | Acer Incorporated | Electronic device |
US9465416B2 (en) | 2015-03-10 | 2016-10-11 | Acer Incorporated | Electronic device |
WO2020180289A1 (en) * | 2019-03-04 | 2020-09-10 | Google Llc | Trackpad with force sensing circuitry |
US11604531B2 (en) | 2019-03-04 | 2023-03-14 | Google Llc | Trackpad with force sensing circuitry |
Also Published As
Publication number | Publication date |
---|---|
US9477328B2 (en) | 2016-10-25 |
US20150293617A1 (en) | 2015-10-15 |
BR112014023397A2 (en) | 2017-06-27 |
CN104272226B (en) | 2017-04-12 |
CN107102767B (en) | 2018-11-13 |
CN107102767A (en) | 2017-08-29 |
CA2867498C (en) | 2018-02-27 |
US9069394B2 (en) | 2015-06-30 |
AU2013235252A1 (en) | 2014-09-25 |
EP2828728A1 (en) | 2015-01-28 |
BR112014023397A8 (en) | 2018-01-02 |
EP2828728A4 (en) | 2015-09-30 |
CN104272226A (en) | 2015-01-07 |
CA2867498A1 (en) | 2013-09-26 |
US20140139442A1 (en) | 2014-05-22 |
AU2013235252B2 (en) | 2016-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9477328B2 (en) | Fully clickable trackpad | |
US10254851B2 (en) | Keyboard key employing a capacitive sensor and dome | |
JP6907005B2 (en) | Selective rejection of touch contact in the edge area of the touch surface | |
JP6814723B2 (en) | Selective input signal rejection and correction | |
US8803852B2 (en) | Touch input device and electronic device | |
TWI622074B (en) | Electronic equipment | |
EP2498171A1 (en) | Touchpad assembly | |
JP2006244490A (en) | Hybrid pointing device | |
US12013992B2 (en) | Touchpad module having elastic members connected to fixing platform through cantilever beams and electronic apparatus using touchpad module thereof | |
TW202001478A (en) | Touch pad module | |
US20110079450A1 (en) | Small Device | |
CN110119218B (en) | Touch module and electronic calculator with same | |
JP5238586B2 (en) | Input device | |
US20130342499A1 (en) | Touch-and-play input device and operating method thereof | |
TWI725751B (en) | Touch pad module and computer device using the same | |
CN110609587A (en) | Touch control module | |
US10643806B1 (en) | Touchpad module and computing device using same | |
CN220509408U (en) | Touch device, touch panel and electronic equipment | |
WO2024152362A1 (en) | Touch apparatus, touch panel, and electronic device | |
WO2018151710A1 (en) | Input modules associated with multiple input interfaces | |
CN114637377A (en) | Touch device and electronic equipment | |
TWM487582U (en) | Keyswitch mechanism with microphone function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13764653 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2867498 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2013235252 Country of ref document: AU Date of ref document: 20130319 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013764653 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014023397 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014023397 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140919 |