[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2013089085A1 - 導電シート及びタッチパネル - Google Patents

導電シート及びタッチパネル Download PDF

Info

Publication number
WO2013089085A1
WO2013089085A1 PCT/JP2012/082030 JP2012082030W WO2013089085A1 WO 2013089085 A1 WO2013089085 A1 WO 2013089085A1 JP 2012082030 W JP2012082030 W JP 2012082030W WO 2013089085 A1 WO2013089085 A1 WO 2013089085A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
electrode
electrode pattern
electrode terminal
pattern
Prior art date
Application number
PCT/JP2012/082030
Other languages
English (en)
French (fr)
Inventor
博重 中村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011276069A external-priority patent/JP5777251B2/ja
Priority claimed from JP2011276070A external-priority patent/JP5509186B2/ja
Priority claimed from JP2011281926A external-priority patent/JP5748647B2/ja
Priority to KR1020147011920A priority Critical patent/KR101451075B1/ko
Priority to CN201280053290.5A priority patent/CN103907082B/zh
Priority to KR1020147011932A priority patent/KR101645828B1/ko
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP12857606.3A priority patent/EP2765490B1/en
Priority to EP14171329.7A priority patent/EP2781996B1/en
Priority to BR112014010102A priority patent/BR112014010102A8/pt
Publication of WO2013089085A1 publication Critical patent/WO2013089085A1/ja
Priority to US14/264,879 priority patent/US9055680B2/en
Priority to US14/271,512 priority patent/US9078364B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09245Crossing layout

Definitions

  • the present invention relates to a conductive sheet and a touch panel, for example, a conductive sheet and a touch panel used in a projected capacitive touch panel.
  • the touch panel is attracting attention.
  • the touch panel is mainly applied to a small size such as a PDA (personal digital assistant) or a mobile phone, but it is considered that the touch panel will be increased in size by being applied to a display for a personal computer.
  • PDA personal digital assistant
  • ITO indium tin oxide
  • ITO has a problem that the resistance increases and the transmission speed of the current between the electrodes decreases as the application size increases, and the response speed (the time from when the fingertip is touched until the position is detected) is delayed.
  • Patent Documents 3 to 9 are known as touch panels using metal fine wires as electrodes.
  • the sensing electrode of the touch panel has an electrode pattern in which at least a touch area is formed of a thin metal wire, and an electrode terminal electrically connected to an end portion of the electrode pattern.
  • the electrode terminal is a thick terminal (solid terminal) in order to have high conductivity. Therefore, when the display and the touch panel are operated in combination, in the sensing area (electrode pattern), since the electrode terminal blocks the light emitted from the display, a darkened portion appears in the vicinity of the electrode terminal in the sensing area, making it difficult to see the display. Sometimes.
  • the present invention has been made in consideration of such problems, and an object thereof is to provide a conductive sheet and a touch panel that do not impair visibility in the vicinity of electrode terminals in a sensing region.
  • the first conductive sheet of the present invention is a conductive sheet having an electrode pattern composed of fine metal wires and an electrode terminal electrically connected to an end portion of the electrode pattern, and transmitting the electrode pattern
  • the transmittance is 83% or more and the transmittance of the electrode pattern is expressed as a%
  • the transmittance of the electrode terminal is (a-20)% or more and (a-3)% or less.
  • a first conductive sheet according to another aspect of the present invention is a conductive sheet having an electrode pattern composed of a thin metal wire and an electrode terminal electrically connected to an end of the electrode pattern,
  • the aperture ratio of the electrode pattern is 90% or more and the aperture ratio of the electrode pattern is expressed as b%
  • the aperture ratio of the electrode terminal is (b-20)% or more and (b-0.1)% or less. is there.
  • the electrode terminal includes a mesh shape made of a grid composed of fine metal wires, the fine metal wires have a line width of 30 ⁇ m or less, and the fine metal wires are opaque materials. Consists of.
  • the first touch panel of the present invention includes an electrode pattern provided in a sensing area and configured by a thin metal wire, and an electrode terminal provided outside the sensing area and electrically connected to an end of the electrode pattern.
  • the transmittance of the electrode pattern is 83% or more, and when the transmittance of the electrode pattern is expressed as a%, the transmittance of the electrode terminal is (a -20)% or more and (a-3)% or less.
  • a first touch panel is provided in a sensing region, and is provided with an electrode pattern composed of a thin metal wire, and provided outside the sensing region, and is electrically connected to an end of the electrode pattern.
  • the electrode terminal has a conductive sheet provided with an opening ratio of the electrode pattern when the opening ratio of the electrode pattern is 90% or more and the opening ratio of the electrode pattern is expressed as b%. The rate is not less than (b-20)% and not more than (b-0.1)%.
  • the second conductive sheet of the present invention is a conductive sheet having an electrode pattern composed of fine metal wires, and an electrode terminal electrically connected to an end of the electrode pattern, the electrode terminal comprising: Includes a frame shape made of fine metal wires.
  • the line width of the thin line of the electrode pattern is a ( ⁇ m)
  • the line width b ( ⁇ m) of the frame shape of the electrode terminal is b ⁇ 2a, Or, b ⁇ a + 5 ( ⁇ m) is satisfied.
  • the line width a ( ⁇ m) of the thin line of the electrode pattern is preferably 30 ⁇ m or less.
  • a mesh shape including a lattice shape constituted by the fine metal wires is further provided inside the frame shape constituted by the fine metal wires of the electrode terminals.
  • the second touch panel of the present invention is provided with an electrode pattern provided in a sensing region and configured by a fine metal wire, and an electrode terminal provided outside the sensing region and electrically connected to an end of the electrode pattern.
  • the electrode terminal includes a frame shape made of a thin metal wire.
  • the third conductive sheet of the present invention is a conductive sheet having an electrode pattern composed of fine metal wires and an electrode terminal electrically connected to an end of the electrode pattern, the electrode terminal being a metal It includes a mesh shape consisting of a grid composed of fine lines.
  • the electrode pattern has a mesh shape made of a lattice
  • the mesh-shaped pitch made of the electrode terminal lattice has a mesh shape made of the electrode pattern lattice. It is denser than the pitch.
  • the mesh-shaped pitch formed of the electrode terminal lattice is more preferably 3/4 or less, further preferably 2/3 or less, and more preferably 1/2 of the mesh-shaped pitch formed of the electrode pattern lattice.
  • the pitch of the mesh shape of a specific electrode terminal is 50 ⁇ m or more and 300 ⁇ m or less, and more preferably 50 ⁇ m or more and 250 ⁇ m or less.
  • the electrode terminal is provided with a frame shape made of a fine metal wire on a mesh-shaped outer frame made of a lattice of the electrode terminals.
  • the third conductive sheet of the present invention preferably has a surface resistance value of the electrode terminal of 4 ⁇ / sq. Or more and 80 ⁇ / sq. Or less.
  • the third touch panel of the present invention is provided with an electrode pattern provided in a sensing area and configured by a thin metal wire, and an electrode terminal provided outside the sensing area and electrically connected to an end of the electrode pattern.
  • the electrode terminal includes a mesh shape made of a grid made of fine metal wires.
  • the conductive sheet and the touch panel of the present invention visibility can be prevented from being impaired in the vicinity of the electrode terminals in the sensing region.
  • the disassembled perspective view which omits and shows the conductive sheet for touch panels partially (the 1).
  • FIG. 4 is a plan view showing an example of a second electrode pattern formed on the second conductive sheet.
  • indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
  • the conductive sheet 10 for the first touch panel includes an electrode pattern 16A (16B) made of fine metal wires and end portions of the electrode pattern 16A (16B).
  • the electrode terminal 60A (60B) electrically connected with the electrode pattern 16A (16B) has a transmittance of 83% or more.
  • the transmittance of 16A (16B) is expressed as a%
  • the transmittance of the electrode terminal 60A (60B) is configured to be (a-20)% or more and (a-3)% or less.
  • the conductive sheet 10 for the first touch panel is electrically connected to the electrode pattern 16A (16B) made of fine metal wires, and the end of the electrode pattern 16A (16B).
  • the aperture ratio of the electrode pattern 16A (16B) is 90% or more, and the electrode pattern 16A (16B) ) Is expressed as b%, the electrode terminal 60A (60B) is configured so that the aperture ratio is (b-20)% or more and (b-0.1)% or less.
  • the conductive sheet 10 for the second touch panel includes an electrode pattern 16A (16B) made up of fine metal wires, and end portions of the electrode pattern 16A (16B).
  • the conductive sheet 12A (12B) having the electrode terminal 60A (60B) electrically connected to the electrode terminal 60A (60B), and the electrode terminal 60A (60B) is configured to include a frame shape 64 made of a thin metal wire.
  • the conductive sheet 10 for the third touch panel includes an electrode pattern 16A (16B) composed of fine metal wires and an end portion of the electrode pattern 16A (16B).
  • the conductive sheet 10 for touch panels which concerns on this Embodiment is comprised by laminating
  • the first conductive sheet 12A has a first electrode pattern 16A formed on one main surface of the first transparent substrate 14A (see FIG. 5A), as shown in FIGS. 4A, 4B and 6A.
  • the first electrode pattern 16A is composed of a number of grids made of fine metal wires.
  • Each of the first electrode patterns 16A extends in the first direction (x direction) and is arranged in a second direction (y direction) perpendicular to the first direction, and each of the two or more first conductive patterns 18A, A first non-conductive pattern 20A that electrically isolates the first conductive pattern 18A.
  • a plurality of disconnected portions 22A are formed in addition to the intersections of the fine metal wires.
  • Each first conductive pattern 18A is electrically separated by the plurality of disconnected portions 22A.
  • the fine metal wires constituting the first electrode pattern 16A have a line width of 30 ⁇ m or less, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, more preferably 9 ⁇ m or less, and even more preferably 7 ⁇ m or less.
  • the lower limit of the line width is preferably 1 ⁇ m.
  • the first conductive pattern 18A and the first non-conductive pattern 20A have substantially the same line width. In FIG. 6A, the first conductive pattern 18A and the first non-conductive pattern 20A are shown in order to clarify the first conductive pattern 18A and the first non-conductive pattern 20A.
  • the line width of the conductive pattern 18A is widened, and the line width of the first non-conductive pattern 20A is narrowed and exaggerated.
  • the line width of the first conductive pattern 18A and the line width of the first non-conductive pattern 20A may be the same or different. Preferably, both line widths are the same. The reason is that the visibility may deteriorate if the line width is different.
  • the fine metal wires of the first electrode pattern 16A are made of a metal material such as gold, silver, copper, or a conductive material such as a metal oxide, and are made of an opaque conductive material.
  • the first electrode pattern 16A includes a plurality of grids 24A composed of intersecting fine metal wires.
  • the lattice 24A includes an opening region surrounded by fine metal wires.
  • the grating 24A has a grating pitch Pa of 300 ⁇ m to 800 ⁇ m, preferably 400 ⁇ m to 600 ⁇ m.
  • the grid 24A of the first conductive pattern 18A and the grid 24A of the first non-conductive pattern 20A have substantially the same size.
  • the grid 24A of the first non-conductive pattern 20A has a broken portion 22A in addition to the intersecting portion of the fine metal wires. It is not necessary for all the grids 24A constituting the first non-conductive pattern 20A to have the disconnection portions 22A. It is only necessary that the first non-conductive pattern 20A can achieve electrical separation between the adjacent first conductive patterns 18A.
  • the length of the disconnection portion 22A is preferably 60 ⁇ m or less.
  • the lower limit of the length of the disconnection portion 22A is preferably 10 ⁇ m, more preferably 15 ⁇ m, and even more preferably 20 ⁇ m.
  • the upper limit value of the length of the disconnected portion 22A is preferably 50 ⁇ m, more preferably 40 ⁇ m, and even more preferably 30 ⁇ m.
  • a preferable range is 10 ⁇ m or more and 50 ⁇ m or less, and 15 ⁇ m or more and 30 ⁇ m or less.
  • the range in which the disconnection portion 22A is formed can be expressed by, for example, variation in linear density.
  • the variation of the line density is the variation of the total fine line length in the unit small lattice, and can be defined as ⁇ (total line length maximum value ⁇ total line length minimum value) / total line length average value / 2 (%).
  • the range in which the disconnection portion 22A is formed is preferably ⁇ 15%, more preferably ⁇ 10%, due to variations in cotton density.
  • the grid 24A has a substantially rhombus shape.
  • the substantially rhombus shape means a parallelogram whose diagonal lines are substantially orthogonal.
  • other polygonal shapes may be used.
  • the shape of one side may be a curved shape or a circular arc shape in addition to a linear shape.
  • an arc shape for example, two opposing sides may be outwardly convex arc shapes, and the other two opposing sides may be inwardly convex arc shapes.
  • the shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous.
  • the shape of each side may be a sine curve.
  • Each of the first conductive patterns 18A is a so-called diamond pattern having wide portions and narrow portions alternately arranged along the first direction (x direction).
  • each first non-conductive pattern 20A includes wide portions and narrow portions that are alternately arranged along the first direction (x direction).
  • the order of the wide portion and the narrow portion of the first conductive pattern 18A is opposite to the order of the wide portion and the narrow portion of the first non-conductive pattern 20A.
  • Each first conductive pattern 18A is not limited to the diamond pattern, but may be a strip shape having a predetermined width (stripe shape), a zigzag shape having a predetermined width, or the like. Examples of the patterning include an electrode shape applied with an existing ITO transparent conductive film.
  • each first conductive pattern 18A is electrically connected to the first external wiring 62A via the first electrode terminal 60A.
  • the other end of each first conductive pattern 18A is an open end.
  • the other end portion of each first conductive pattern 18A may have a pattern shape or a shape having a terminal similar to the one end portion, except that it is not electrically connected to the external wiring.
  • the second conductive sheet 12B has a second electrode pattern 16B formed on one main surface of the second transparent base 14B (see FIG. 5A).
  • the second electrode pattern 16B is composed of a number of grids made of fine metal wires.
  • Each of the second electrode patterns 16B extends in the second direction (y direction) and is arranged in a first direction (x direction) orthogonal to the second direction.
  • a second non-conductive pattern 20B that electrically isolates the second conductive pattern 18B.
  • a plurality of disconnected portions 22B are formed in addition to the intersections of the fine metal wires.
  • the second conductive patterns 18B are electrically separated by the plurality of disconnected portions 22B.
  • the fine metal wires constituting the second electrode pattern 16B have substantially the same line width as the fine metal wires constituting the first electrode pattern 16A.
  • the second conductive pattern 18B and the second non-conductive pattern 20B have substantially the same line width.
  • the second conductive pattern 18B and the second non-conductive pattern 20B are shown in order to clarify the second conductive pattern 18B and the second non-conductive pattern 20B.
  • the line width of the conductive pattern 18B is widened and the line width of the second non-conductive pattern 20B is narrowed and exaggerated.
  • the line width of the second conductive pattern 18B and the line width of the second non-conductive pattern 20B may be the same or different. Preferably, both line widths are the same. The reason is that the visibility may deteriorate if the line width is different.
  • the fine metal wire of the second electrode pattern 16B is made of the same conductive material as the fine metal wire of the first electrode pattern 16A.
  • the second electrode pattern 16B includes a plurality of grids 24B made up of intersecting fine metal wires.
  • the lattice 24B includes an opening region surrounded by fine metal wires.
  • the grating 24B has a grating pitch Pb of 300 ⁇ m or more and 800 ⁇ m or less, preferably 400 ⁇ m or more and 600 ⁇ m or less.
  • the grid 24B of the second conductive pattern 18B and the grid 24B of the second non-conductive pattern 20B have substantially the same size.
  • the grid 24B of the second non-conductive pattern 20B has a disconnected portion 22B in addition to the intersecting portion of the thin metal wires. It is not necessary for all the lattices 24B constituting the second non-conductive pattern 20B to have the disconnected portion 22B. It is only necessary that the second non-conductive pattern 20B can achieve electrical separation between the adjacent second conductive patterns 18B.
  • the length of the disconnected portion 22B is preferably 60 ⁇ m or less.
  • the lower limit of the length of the disconnection portion 22A is preferably 10 ⁇ m, more preferably 15 ⁇ m, and even more preferably 20 ⁇ m.
  • the upper limit value of the length of the disconnected portion 22A is preferably 50 ⁇ m, more preferably 40 ⁇ m, and even more preferably 30 ⁇ m.
  • a preferable range is 10 ⁇ m or more and 50 ⁇ m or less, and 15 ⁇ m or more and 30 ⁇ m or less.
  • the range in which the disconnection portion 22B is formed can be expressed by, for example, variation in linear density.
  • the variation of the line density is the variation of the total fine line length in the unit small lattice, and can be defined as ⁇ (total line length maximum value ⁇ total line length minimum value) / total line length average value / 2 (%).
  • the range in which the disconnection portion 22B is formed is preferably ⁇ 15%, more preferably ⁇ 10%, due to variations in cotton density.
  • the lattice 24B has a substantially rhombus shape.
  • the substantially rhombus shape means a parallelogram whose diagonal lines are substantially orthogonal.
  • other polygonal shapes may be used.
  • the shape of one side may be a curved shape or a circular arc shape in addition to a linear shape.
  • an arc shape for example, two opposing sides may be outwardly convex arc shapes, and the other two opposing sides may be inwardly convex arc shapes.
  • the shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous.
  • the shape of each side may be a sine curve.
  • Each second conductive pattern 18B includes wide portions and narrow portions that are alternately arranged along the second direction (y direction).
  • each second non-conductive pattern 20B includes wide portions and narrow portions that are alternately arranged along the second direction (y direction).
  • the order of the wide portion and the narrow portion of the second conductive pattern 18B is opposite to the order of the wide portion and the narrow portion of the second non-conductive pattern 20B.
  • each second conductive pattern 18B is electrically connected to the second external wiring 62B through the second electrode terminal 60B.
  • the other end of each second conductive pattern 18B is an open end.
  • the first electrode pattern 16A and the second electrode pattern 16B overlap as shown in FIG. Not arranged.
  • the narrow portion of the first conductive pattern 18A and the narrow portion of the second conductive pattern 18B face each other, and the narrow portion of the first conductive pattern 18A and the second conductive pattern 18B intersect.
  • the first electrode pattern 16A and the second electrode pattern 16B are disposed.
  • the combination pattern 70 is formed by the first electrode pattern 16A and the second electrode pattern 16B. Note that the line widths of the first electrode pattern 16A and the second electrode pattern 16B are substantially the same.
  • the sizes of the lattice 24A and the lattice 24B are substantially the same.
  • the line width of the first electrode pattern 16A is displayed wider than the line width of the second electrode pattern 16B. is doing.
  • a small lattice is formed by the lattice 24A and the lattice 24B in a top view. That is, the intersection of the grating 24A is arranged in the opening area of the grating 24B.
  • the small lattice has a lattice pitch Ps of 150 ⁇ m or more and 400 ⁇ m or less, preferably 200 ⁇ m or more and 300 ⁇ m or less, which is half of the lattice pitches Pa and Pb of the lattice 24A and the lattice 24B.
  • the disconnected portion 22A of the first non-conductive pattern 20A is formed at a portion other than the intersection of the lattice 24A
  • the disconnected portion 22B of the second non-conductive pattern 20B is formed at a portion other than the intersection of the lattice 24B.
  • the fine metal wires of the second conductive pattern 18B are arranged at positions facing the disconnection portion 22A.
  • a fine metal wire of the first conductive pattern 18A is disposed at a position facing the disconnection portion 22B.
  • the fine metal wire of the second conductive pattern 18B masks the disconnection portion 22A, and the fine metal wire of the first conductive pattern 18A masks the disconnection portion 22B. Therefore, in the combination pattern 70, the disconnection portion 22A and the disconnection portion 22B are hardly visually recognized in a top view, and thus visibility can be improved.
  • the length of the disconnected portion 22A and the line width of the thin metal wire of the second conductive pattern 18B satisfy the relational expression of line width ⁇ 1 ⁇ disconnected portion ⁇ line width ⁇ 10.
  • the length of the disconnection portion 22B and the line width of the thin metal wire of the first conductive pattern 18A satisfy the relational expression of line width ⁇ 1 ⁇ disconnection portion ⁇ line width ⁇ 10.
  • the first external wiring 62A derived from a large number of first conductive patterns 18A of the first conductive sheet 12A and the second external wiring 62B derived from a large number of second conductive patterns 18B of the second conductive sheet 12B include, for example, It is connected to an IC circuit that controls scanning.
  • each connection portion between the first conductive pattern 18A and the first external wiring 62A is preferably linear so that the area of the outer peripheral region that is removed from the display screen of the liquid crystal display device is minimized.
  • the connecting portions between the second conductive pattern 18B and the second external wiring 62B are arranged in a straight line.
  • the capacitance between the first conductive pattern 18A and the second conductive pattern 18B facing the fingertip changes.
  • the IC circuit detects the amount of change and calculates the position of the fingertip based on the amount of change. This calculation is performed between the first conductive pattern 18A and the second conductive pattern 18B. Therefore, it is possible to detect the position of each fingertip even if two or more fingertips are brought into contact with each other at the same time.
  • the response speed can be increased because the surface resistance is small.
  • the touch panel can be increased in size.
  • the electrode terminals 60A and 60B are thick terminals (solid terminals) because they have high conductivity.
  • the sensing region electrode pattern
  • the electrode terminal blocks the light emitted from the display, a darkened portion appears in the vicinity of the electrode terminal in the sensing region, and the display at that portion may be difficult to see.
  • the present invention has been made to be conductive sheets for the first to third touch panels described below.
  • the conductive sheet for the first touch panel according to the present invention includes an electrode pattern 16A (16B) made of fine metal wires, and an electrode terminal 60A (60B) electrically connected to the end of the electrode pattern 16A (16B).
  • the transmittance of the electrode pattern 16A (16B) is 83% or more, and the transmittance of the electrode pattern 16A (16B) is expressed as a%.
  • the transmittance of the electrode terminal 60A (60B) was set to be (a-20)% or more and (a-3)% or less. More preferably, it is (a-15)% or more and (a-3)% or less, more preferably (a-10) or more and (a-3) or less, and most preferably (a-5). ) To (a-3).
  • the electrode pattern 16A (16B) made of fine metal wires and the end of the electrode pattern 16A (16B) were electrically connected.
  • the aperture ratio of the electrode pattern 16A (16B) is 90% or more, and the aperture ratio of the electrode pattern 16A (16B). Is expressed as b%, the aperture ratio of the electrode terminal 60A (60B) is set to be (b-20)% or more and (b-0.1)% or less. More preferably, it is not less than (b-10) and not more than (b-0.3), and more preferably not less than (b-5) and not more than (b-0.3).
  • FIG. 1 shows a case where the electrode terminal 60A (60B) has a frame shape 64 made of fine metal wires.
  • the line width of the thin line of the electrode pattern 16A (16B) is A ( ⁇ m)
  • the frame-shaped line width B ( ⁇ m) of the electrode terminal 60A (60B) is B ⁇ 2A or B ⁇ A + 5. ( ⁇ m) is preferably satisfied.
  • the line width a ( ⁇ m) of the thin line of the electrode pattern is preferably 30 ⁇ m or less.
  • the electrode terminal 60A (60B) has a frame shape 64 made of fine metal wires, whereby the transmittance of the electrode pattern 16A (16B) is 83% or more, and the electrode pattern 16A (16B) When the transmittance is expressed as a%, the transmittance of the electrode terminal 60A (60B) can be set to be (a-20)% or more and (a-3)% or less.
  • the aperture ratio of the electrode pattern 16A (16B) is 90% or more, and the aperture ratio of the electrode pattern 16A (16B) is b %,
  • the aperture ratio of the electrode terminal 60A (60B) can be (b-20)% or more and (b-0.1)% or less.
  • the electrode terminal 60A (60B) into a frame shape 64 composed of fine metal wires, unlike the conventional thick terminal (solid terminal), the electrode terminal emits light emitted from the display in the sensing area (electrode pattern) of the touch panel. Since it is difficult to shield the light, a darkened portion does not appear near the electrode terminal in the sensing region. Therefore, the visibility is not impaired near the electrode terminals in the sensing region.
  • FIG. 2 shows that the electrode terminal 60A (60B) has a mesh shape 66 composed of a lattice 68 made of fine metal wires.
  • the pitch of the mesh shape 66 of the electrode terminal 60A (60B) is preferably denser than the pitch of the electrode pattern 16A (16B), more preferably 3/4 or less of the pitch of the electrode pattern 16A (16B). 2/3 or less is more preferable, and 1/2 is more preferable.
  • the pitch of the mesh shape 66 of the specific electrode terminal 60A (60B) is 50 ⁇ m or more and 300 ⁇ m or less, and more preferably 50 ⁇ m or more and 250 ⁇ m or less. Note that the pitch of the electrode patterns 16A (16B) is substantially equal to the length of one side of the lattice 24A (24B).
  • the electrode terminal 60A (60B) is made into a mesh shape 66 composed of a lattice 68 in which the electrode terminal 60A (60B) is made of a thin metal wire, so that the transmittance of the electrode pattern 16A (16B) is 83%.
  • the transmittance of the electrode pattern 16A (16B) is expressed as a%
  • the transmittance of the electrode terminal 60A (60B) is set to be (a-20)% or more and (a-3)% or less. be able to.
  • the aperture ratio of the electrode pattern 16A (16B) is 90% or more,
  • the aperture ratio of the electrode terminal 60A (60B) is set to be (b-20)% or more and (b-0.1)% or less. it can.
  • the electrode terminal 60A (60B) into a mesh shape 66 composed of thin metal wires, unlike the conventional thick terminal (solid terminal), the electrode terminal emits light emitted from the display in the sensing area (electrode pattern) of the touch panel. Since it is difficult to shield the light, a darkened portion does not appear near the electrode terminal in the sensing region. Therefore, the visibility is not impaired near the electrode terminals in the sensing region.
  • FIG. 3 shows that the electrode terminal 60A (60B) is composed of a frame shape 64 made up of fine metal wires and a mesh shape 66 made up of a lattice 68 made up of fine metal wires.
  • the electrode terminal 60A (60B) is composed of a frame shape 64 made up of fine metal wires and a mesh shape 66 made up of a grid 68 made up of fine metal wires, so that the electrode pattern 16A (16B).
  • the transmittance of the electrode pattern 16A (16B) is expressed as a%
  • the transmittance of the electrode terminal 60A (60B) is (a-20)% or more (a-3)%. It can be as follows.
  • the electrode terminal 60A (60B) is composed of a frame shape 64 made of fine metal wires and a mesh shape 66 made of a lattice 68 made of fine metal wires, so that the aperture ratio of the electrode pattern 16A (16B) is increased.
  • the aperture ratio of the electrode pattern 16A (16B) is expressed as b%
  • the aperture ratio of the electrode terminal 60A (60B) is (b-20)% or more and (b-0.1)% or less. Can be.
  • the electrode terminal 60A (60B) is composed of a frame shape 64 made of fine metal wires and a mesh shape 66 made of a lattice 68 made of fine metal wires, which is different from a conventional thick terminal (solid terminal).
  • the electrode terminals are less likely to block the light emitted from the display, so that a darkened portion does not appear near the electrode terminals in the sensing area. Therefore, the visibility is not impaired near the electrode terminals in the sensing region.
  • the lattice 68 has a substantially rhombus shape.
  • the substantially rhombus shape means a parallelogram whose diagonal lines are substantially orthogonal.
  • other polygonal shapes may be used.
  • the shape of one side may be a curved shape or a circular arc shape in addition to a linear shape.
  • two opposing sides may be outwardly convex arc shapes, and the other two opposing sides may be inwardly convex arc shapes.
  • the shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous.
  • the shape of each side may be a sine curve.
  • the resistance between the part electrically connected to the electrode pattern and the external wiring 62A (62B) is preferably in the range of 1 to 100 ⁇ . 2 and 3, when the electrode terminal 60A (60B) includes the mesh shape 66, the surface resistance value of the electrode terminal 60A (60B) is in the range of 4 ⁇ / sq. To 80 ⁇ / sq. Preferably, it is in the range of 10 ⁇ / sq. To 40 ⁇ / sq.
  • the aperture ratio is the ratio of the translucent portion of the electrode terminal 60A (60B) excluding the thin metal wires to the whole.
  • the aperture ratio of the square lattice 68 having a line width of 15 ⁇ m and a pitch of 300 ⁇ m is 90%. It is.
  • the conductive sheet for the second touch panel according to the present invention includes an electrode pattern 16A (16B) made of a fine metal wire, and an electrode terminal 60A (60B) electrically connected to the end of the electrode pattern 16A (16B).
  • the electrode terminal 60A (60B) includes a frame shape 64 made of a thin metal wire.
  • FIG. 1 shows a case where the electrode terminal 60A (60B) has a frame shape 64 made of fine metal wires.
  • the frame-shaped line width B ( ⁇ m) of the electrode terminal 60A (60B) is B ⁇ 2A or B ⁇ A + 5. ( ⁇ m) is preferably satisfied. More preferably, the range is 50 ⁇ m ⁇ B ⁇ 10 ⁇ m, and still more preferably the range is 30 ⁇ m ⁇ B ⁇ 15 ⁇ m.
  • the frame shape 64 has a substantially rectangular shape, and its horizontal width is substantially the same as the maximum horizontal width of the electrode pattern, but may be smaller than the maximum horizontal width of the electrode pattern. In addition, since electrical resistance will become large if it is too smaller than the maximum width of an electrode pattern, the width is preferably 1/3 or more of the maximum width of an electrode pattern, and more preferably 1/2 or more.
  • the electrode terminal 60A 60B
  • the electrode terminal 60A 60B
  • the electrode terminal 60A 60B
  • the electrode terminal 60A 60B
  • the electrode terminal 60A 60B
  • the frame shape 64 made of fine metal wires, so that a display is emitted in the sensing area (electrode pattern) of the touch panel, unlike the conventional thick terminal (solid terminal). Since it becomes difficult for the electrode terminal to block light, a darkened portion does not appear near the electrode terminal in the sensing region. Therefore, the visibility is not impaired near the electrode terminals in the sensing region.
  • FIG. 3 shows that the electrode terminal 60A (60B) is composed of a frame shape 64 made up of fine metal wires and a mesh shape 66 made up of a lattice 68 made up of fine metal wires.
  • the pitch of the mesh shape 66 of the electrode terminal 60A (60B) is preferably denser than the pitch of the electrode pattern 16A (16B), more preferably 3/4 or less of the pitch of the electrode pattern 16A (16B). 2/3 or less is more preferable, and 1/2 is more preferable.
  • the pitch of the mesh shape 66 of the specific electrode terminal 60A (60B) is 50 ⁇ m or more and 300 ⁇ m or less, and more preferably 50 ⁇ m or more and 250 ⁇ m or less. Note that the pitch of the electrode patterns 16A (16B) is substantially equal to the length of one side of the lattice 24A (24B).
  • the electrode terminal 60A (60B) is composed of a frame shape 64 made up of fine metal wires and a mesh shape 66 made up of a grid 68 made up of fine metal wires.
  • the electrode terminal in the sensing area (electrode pattern) of the touch panel, the electrode terminal does not easily shield the light emitted from the display, so that a darkened portion does not appear in the vicinity of the electrode terminal in the sensing area. Therefore, the visibility is not impaired near the electrode terminals in the sensing region.
  • the lattice 68 has a substantially rhombus shape.
  • the substantially rhombus shape means a parallelogram whose diagonal lines are substantially orthogonal.
  • other polygonal shapes may be used.
  • the shape of one side may be a curved shape or a circular arc shape in addition to a linear shape.
  • two opposing sides may be outwardly convex arc shapes, and the other two opposing sides may be inwardly convex arc shapes.
  • the shape of each side may be a wavy shape in which an outwardly convex arc and an inwardly convex arc are continuous.
  • the shape of each side may be a sine curve.
  • the resistance between the part electrically connected to the electrode pattern and the external wiring 62A (62B) is preferably in the range of 1 to 100 ⁇ .
  • the surface resistance value of the electrode terminal 60A (60B) may be in the range of 4 ⁇ / sq. Or more and 80 ⁇ / sq. Preferably, it is in the range of 10 ⁇ / sq. Or more and 40 ⁇ / sq. Or less.
  • the aperture ratio is the ratio of the translucent portion of the electrode terminal 60A (60B) excluding the thin metal wires to the whole.
  • the aperture ratio of the square lattice 68 having a line width of 15 ⁇ m and a pitch of 300 ⁇ m is 90%. It is.
  • the electrode terminal 60A (60B) when the transmittance of the electrode pattern 16A (16B) is 83% or more and the transmittance of the electrode pattern 16A (16B) is expressed as a%, the electrode terminal 60A (60B)
  • the transmittance is preferably (a-20)% or more and (a-3)% or less.
  • the electrode terminal 60A (60B) ) Is preferably (b-20)% or more and (b-0.1)% or less.
  • the aperture ratio is the ratio of the translucent portion of the electrode terminal 60A (60B) excluding the thin metal wires to the whole.
  • the aperture ratio of the square lattice 68 having a line width of 15 ⁇ m and a pitch of 300 ⁇ m is 90%.
  • the conductive sheet for the third touch panel includes an electrode pattern 16A (16B) made of fine metal wires, and an electrode terminal 60A (60B) electrically connected to the end of the electrode pattern 16A (16B).
  • the electrode terminal 60A (60B) includes a mesh shape 66 composed of a lattice 68 made of fine metal wires.
  • FIG. 2 shows that the electrode terminal 60A (60B) has a mesh shape 66 composed of a lattice 68 made of fine metal wires.
  • the pitch of the mesh shape 66 of the electrode terminal 60A (60B) is preferably denser than the pitch of the electrode pattern 16A (16B), more preferably 3/4 or less of the pitch of the electrode pattern 16A (16B). 2/3 or less is more preferable, and 1/2 is more preferable.
  • the pitch of the mesh shape 66 of the specific electrode terminal 60A (60B) is 50 ⁇ m or more and 300 ⁇ m or less, and more preferably 50 ⁇ m or more and 250 ⁇ m or less. Note that the pitch of the electrode patterns 16A (16B) is substantially equal to the length of one side of the lattice 24A (24B).
  • the electrode terminal 60A (60B) is changed to a mesh shape 66 composed of a lattice 68 in which the electrode terminal 60A (60B) is made of a thin metal wire, so that a touch panel is different from a conventional thick terminal (solid terminal).
  • a touch panel is different from a conventional thick terminal (solid terminal).
  • the sensing region electrode pattern
  • a darkened portion does not appear near the electrode terminal in the sensing region. Therefore, the visibility is not impaired near the electrode terminals in the sensing region.
  • FIG. 3 shows that the electrode terminal 60A (60B) of FIG. 2 has a mesh shape 66 made of a grid 68 made of fine metal wires, and an outer frame of the mesh shape 66 made of a grid 68 of electrode terminals, A frame shape 64 composed of thin lines is provided. That is, the electrode terminal 60A (60B) is shown to have a frame shape 64 made of fine metal wires and a mesh shape 66 made of a lattice 68 made of fine metal wires.
  • the line width of the thin line of the electrode pattern 16A (16B) is A ( ⁇ m)
  • the line width B ( ⁇ m) of the frame shape 64 of the electrode terminal 60A (60B) is B ⁇ 2A or B ⁇ It is preferable to satisfy A + 5 ( ⁇ m).
  • the electrode terminal 60A (60B) is composed of a frame shape 64 made up of fine metal wires and a mesh shape 66 made up of a grid 68 made up of fine metal wires.
  • the sensing region electrode pattern
  • the lattice 68 has a substantially rhombus shape.
  • the substantially rhombus shape means a parallelogram whose diagonal lines are substantially orthogonal.
  • the resistance between the part electrically connected to the electrode pattern and the external wiring 62A (62B) is preferably in the range of 1 to 100 ⁇ .
  • the surface resistance value of the electrode terminal 60A (60B) is preferably in the range of 4 ⁇ / sq. To 80 ⁇ / sq. More preferably, it is in the range of 40 ⁇ / sq.
  • the transmittance of the electrode pattern 16A (16B) when the transmittance of the electrode pattern 16A (16B) is 83% or more and the transmittance of the electrode pattern 16A (16B) is expressed as a%, the transmittance of the electrode terminal 60A (60B) is ( It is preferable that the content is a-20)% or more and (a-3)% or less.
  • the aperture ratio of the electrode terminal 60A (60B) is It is preferably (b-20)% or more and (b-0.1)% or less.
  • the aperture ratio is the ratio of the translucent portion of the electrode terminal 60A (60B) excluding the thin metal wires to the whole.
  • the aperture ratio of the square lattice 68 having a line width of 15 ⁇ m and a pitch of 300 ⁇ m is 90%.
  • the present invention it is possible to prevent a darkened portion from appearing in the vicinity of the electrode terminal in the sensing region.
  • the conductive sheet 12A (12B) is manufactured by a method by exposure described below. In this case, there is an effect that it is possible to prevent the metal thin wire near the electrode terminal in the sensing region from becoming thicker than the intended line width.
  • the conventional electrode terminal is a thick terminal (solid terminal) in order to have high conductivity, a large amount of light is irradiated to the part that becomes the electrode terminal by exposure.
  • the line width of the electrode pattern is very small and is transmitted to the portion that becomes the electrode pattern in the vicinity of the electrode terminal, and the fine metal wire in the vicinity of the electrode terminal becomes thicker than the intended line width.
  • the transmittance or aperture ratio of the electrode terminal 60A (60B) as in the present invention, a portion that becomes the electrode terminal by exposure is not irradiated with a large amount of light, and in the vicinity of the electrode terminal in the sensing region. It is possible to prevent the metal fine wire from becoming thicker than the intended line width.
  • the touch panel using the conductive sheet according to the present invention When the touch panel using the conductive sheet according to the present invention is operated by touching with a finger, the response speed is fast and the detection sensitivity is excellent. In addition, even if two or more points are touched and operated, good results can be obtained in the same manner, and multi-touch can be handled.
  • the first conductive sheet 12A and the second conductive sheet 12B When manufacturing the first conductive sheet 12A and the second conductive sheet 12B, for example, a photosensitive material having an emulsion layer containing a photosensitive silver halide salt on the first transparent substrate 14A and the second transparent substrate 14B is exposed.
  • the first electrode pattern 16A and the second electrode pattern 16B are formed by forming a metal silver portion (metal fine line) and a light transmissive portion (opening region) in the exposed portion and the unexposed portion, respectively. You may do it. In addition, you may make it carry
  • the photoresist film on the copper foil formed on the first transparent substrate 14A and the second transparent substrate 14B is exposed and developed to form a resist pattern, and the copper foil exposed from the resist pattern is etched.
  • the first electrode pattern 16A and the second electrode pattern 16B may be formed.
  • the first electrode pattern 16A and the second electrode pattern 16B are formed by printing a paste containing metal fine particles on the first transparent substrate 14A and the second transparent substrate 14B and performing metal plating on the paste. Also good.
  • the present invention prevents the metal thin wire near the electrode terminal in the sensing region from becoming thicker than the intended line width. There is also an effect that it is possible.
  • the first electrode pattern 16A and the second electrode pattern 16B may be printed and formed on the first transparent substrate 14A and the second transparent substrate 14B by a screen printing plate or a gravure printing plate. Alternatively, the first electrode pattern 16A and the second electrode pattern 16B may be formed by inkjet on the first transparent substrate 14A and the second transparent substrate 14B.
  • the first electrode pattern 16A is formed on one main surface of the first transparent substrate 14A and the second electrode pattern 16B is formed on the other main surface of the first transparent substrate 14A
  • a normal manufacturing method is used. Accordingly, if a method of exposing one principal surface first and then exposing the other principal surface is employed, the first electrode pattern 16A and the second electrode pattern 16B having a desired pattern may not be obtained. .
  • the following production method can be preferably employed.
  • the photosensitive silver halide emulsion layer formed on both surfaces of the first transparent substrate 14A is collectively exposed to form the first electrode pattern 16A on one main surface of the first transparent substrate 14A.
  • a second electrode pattern 16B is formed on the other main surface of the transparent substrate 14A.
  • the photosensitive material includes a first transparent substrate 14A, a photosensitive silver halide emulsion layer (hereinafter referred to as a first photosensitive layer) formed on one main surface of the first transparent substrate 14A, and the other of the first transparent substrate 14A.
  • a light-sensitive silver halide emulsion layer (hereinafter referred to as a second photosensitive layer) formed on the main surface.
  • the photosensitive material is exposed.
  • the first photosensitive layer is irradiated with light toward the first transparent substrate 14A to expose the first photosensitive layer along the first exposure pattern
  • the second photosensitive layer is exposed.
  • a second exposure process is performed in which light is irradiated toward the first transparent substrate 14A to expose the second photosensitive layer along the second exposure pattern (double-sided simultaneous exposure).
  • the first photosensitive layer is irradiated with the first light (parallel light) through the first photomask
  • the second photosensitive layer is irradiated with the second light (parallel light).
  • the first light is obtained by converting the light emitted from the first light source into parallel light by the first collimator lens in the middle
  • the second light is obtained by converting the light emitted from the second light source in the middle of the first light. It is obtained by being converted into parallel light by a two-collimator lens.
  • the case where two light sources (the first light source and the second light source) are used is shown, but the light emitted from one light source is divided through the optical system, and the first light and the second light are divided.
  • the first photosensitive layer and the second photosensitive layer may be irradiated as light.
  • the exposed photosensitive material is developed to produce a touch panel conductive sheet 10 as shown in FIG. 4B, for example.
  • the touch panel conductive sheet 10 includes a first transparent substrate 14A, a first electrode pattern 16A along a first exposure pattern formed on one main surface of the first transparent substrate 14A, and the other of the first transparent substrate 14A. And a second electrode pattern 16B along the second exposure pattern formed on the main surface.
  • the preferable numerical range should be determined unconditionally. However, the exposure time and the development time are adjusted so that the development rate becomes 100%.
  • the first exposure process includes, for example, arranging a first photomask on the first photosensitive layer in close contact with the first light source arranged opposite to the first photomask.
  • the first photosensitive layer is exposed by irradiating the first light toward one photomask.
  • the first photomask is composed of a glass substrate formed of transparent soda glass and a mask pattern (first exposure pattern) formed on the glass substrate. Accordingly, the first exposure process exposes a portion of the first photosensitive layer along the first exposure pattern formed on the first photomask.
  • a gap of about 2 ⁇ m or more and 10 ⁇ m or less may be provided between the first photosensitive layer and the first photomask 146a.
  • a second photomask is disposed in close contact with the second photosensitive layer, and the second light source disposed opposite to the second photomask is secondly directed toward the second photomask.
  • the second photosensitive layer is exposed by irradiating light.
  • the second photomask is composed of a glass substrate made of transparent soda glass and a mask pattern (second exposure pattern) formed on the glass substrate. Therefore, the second exposure process exposes a portion of the second photosensitive layer along the second exposure pattern formed on the second photomask. In this case, a gap of about 2 ⁇ m or more and 10 ⁇ m or less may be provided between the second photosensitive layer and the second photomask.
  • the emission timing of the first light from the first light source and the emission timing of the second light from the second light source may be made simultaneously or different from each other.
  • the first photosensitive layer and the second photosensitive layer can be exposed simultaneously by one exposure process, and the processing time can be shortened.
  • the manufacturing method of the first conductive sheet 12A and the second conductive sheet 12B according to the present embodiment includes the following three modes depending on the type of photosensitive material and the development process.
  • a photosensitive silver halide black-and-white photosensitive material that does not contain physical development nuclei and an image-receiving sheet having a non-photosensitive layer that contains physical development nuclei are overlapped and transferred to develop a non-photosensitive image-receiving sheet. Form formed on top.
  • the above aspect (1) is an integrated black-and-white development type, and a light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material.
  • the resulting developed silver is chemically developed silver or heat developed silver, and is highly active in the subsequent plating or physical development process in that it is a filament with a high specific surface.
  • the light-transmitting conductive film such as a light-transmitting conductive film is formed on the photosensitive material by dissolving silver halide grains close to the physical development nucleus and depositing on the development nucleus in the exposed portion.
  • a characteristic film is formed.
  • This is also an integrated black-and-white development type. Although the development action is precipitation on the physical development nuclei, it is highly active, but developed silver is a sphere with a small specific surface.
  • the silver halide grains are dissolved and diffused in the unexposed area and deposited on the development nuclei on the image receiving sheet, whereby a light transmitting conductive film or the like is formed on the image receiving sheet.
  • a conductive film is formed. This is a so-called separate type in which the image receiving sheet is peeled off from the photosensitive material.
  • either negative development processing or reversal development processing can be selected (in the case of the diffusion transfer method, negative development processing is possible by using an auto-positive type photosensitive material as the photosensitive material).
  • first transparent substrate 14A and the second transparent substrate 14B examples include a plastic film, a plastic plate, and a glass plate.
  • PET is preferable from the viewpoints of light transmittance and processability.
  • the silver salt emulsion layer that becomes the first electrode pattern 16A of the first conductive sheet 12A and the second electrode pattern 16B of the second conductive sheet 12B contains additives such as a solvent and a dye in addition to the silver salt and the binder.
  • Examples of the silver salt used in the present embodiment include inorganic silver salts such as silver halide and organic silver salts such as silver acetate. In the present embodiment, it is preferable to use silver halide having excellent characteristics as an optical sensor.
  • Silver coating amount of silver salt emulsion layer is preferably from 1 g / m 2 or more 30 g / m 2 or less in terms of silver, 1 g / m, more preferably 2 or more 25 g / m 2 or less, 5g / M 2 or more and 20 g / m 2 or less is more preferable.
  • amount of coated silver in the above range, a desired surface resistance can be obtained when the conductive sheet 10 for a touch panel is used.
  • binder used in this embodiment examples include gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch and other polysaccharides, cellulose and derivatives thereof, polyethylene oxide, polyvinyl amine, chitosan, polylysine, and polyacryl.
  • PVA polyvinyl alcohol
  • PVP polyvinyl pyrrolidone
  • starch and other polysaccharides, cellulose and derivatives thereof, polyethylene oxide, polyvinyl amine, chitosan, polylysine, and polyacryl.
  • acid polyalginic acid, polyhyaluronic acid, carboxycellulose and the like. These have neutral, anionic, and cationic properties depending on the ionicity of the functional group.
  • the content of the binder contained in the silver salt emulsion layer of the present embodiment is not particularly limited and can be appropriately determined as long as dispersibility and adhesion can be exhibited.
  • the binder content in the silver salt emulsion layer is preferably 1 ⁇ 4 or more, more preferably 1 ⁇ 2 or more in terms of the silver / binder volume ratio.
  • the silver / binder volume ratio is preferably 100/1 or less, and more preferably 50/1 or less. Further, the silver / binder volume ratio is more preferably 1/1 or more and 4/1 or less. Most preferably, it is 1/1 to 3/1.
  • the silver / binder volume ratio is converted from the amount of silver halide / binder amount (weight ratio) of the raw material to the amount of silver / binder amount (weight ratio), and the amount of silver / binder amount (weight ratio) is further converted to the amount of silver. / It can obtain
  • the solvent used for forming the silver salt emulsion layer is not particularly limited.
  • water organic solvents (for example, alcohols such as methanol, ketones such as acetone, amides such as formamide, dimethyl sulfoxide, etc. Sulphoxides such as, esters such as ethyl acetate, ethers, etc.), ionic liquids, and mixed solvents thereof.
  • the content of the solvent used in the silver salt emulsion layer of the present embodiment is in the range of 30 to 90% by mass with respect to the total mass of silver salt and binder contained in the silver salt emulsion layer, and 50 to 80%. It is preferably in the range of mass%.
  • the various additives used in the present embodiment are not particularly limited, and known ones can be preferably used.
  • a protective layer (not shown) may be provided on the silver salt emulsion layer.
  • the “protective layer” means a layer made of a binder such as gelatin or a high molecular polymer, and is provided on a silver salt emulsion layer having photosensitivity in order to exhibit the effect of preventing scratches and improving mechanical properties. It is formed.
  • the thickness is preferably 0.5 ⁇ m or less.
  • the coating method and forming method of the protective layer are not particularly limited, and a known coating method and forming method can be appropriately selected.
  • An undercoat layer for example, can be provided below the silver salt emulsion layer.
  • This embodiment includes the case where the first electrode pattern 16A and the second electrode pattern 16B are applied by a printing method, but the first electrode pattern 16A and the second electrode pattern 16B are formed by exposure and development, etc., except for the printing method.
  • exposure is performed on a photosensitive material having a silver salt-containing layer provided on the first transparent substrate 14A and the second transparent substrate 14B or a photosensitive material coated with a photolithography photopolymer.
  • the exposure can be performed using electromagnetic waves. Examples of the electromagnetic wave include light such as visible light and ultraviolet light, and radiation such as X-rays.
  • a light source having a wavelength distribution may be used for exposure, or a light source having a specific wavelength may be used.
  • a method through a glass mask or a pattern exposure method by laser drawing is preferable.
  • development processing is further performed.
  • the development processing can be performed by a normal development processing technique used for silver salt photographic film, photographic paper, printing plate-making film, photomask emulsion mask, and the like.
  • the development process in the present embodiment can include a fixing process performed for the purpose of removing and stabilizing the silver salt in the unexposed part.
  • a fixing process technique used for silver salt photographic film, photographic paper, film for printing plate making, emulsion mask for photomask, and the like can be used.
  • the light-sensitive material that has been subjected to development and fixing processing is preferably subjected to a film hardening process, a water washing process, and a stabilization process.
  • the mass of the metallic silver contained in the exposed portion after the development treatment is preferably a content of 50% by mass or more, and 80% by mass or more with respect to the mass of silver contained in the exposed portion before exposure. More preferably. If the mass of silver contained in the exposed portion is 50% by mass or more based on the mass of silver contained in the exposed portion before exposure, it is preferable because high conductivity can be obtained.
  • the conductive sheet is obtained through the above steps, but the surface resistance of the obtained conductive sheet is 100 ohm / sq.
  • the following is preferable, and 80 ohm / sq.
  • the following is more preferable, and 60 ohm / sq.
  • the following is more preferable, and 40 ohm / sq.
  • the lower limit of the surface resistance is preferably as low as possible, but is generally 0.01 ohm / sq. Is sufficient, 0.1 ohm / sq. And 1 ohm / sq. However, it can be used depending on the application.
  • the position can be detected even with a large touch panel having an area of 10 cm ⁇ 10 cm or more.
  • the conductive sheet after the development process may be further subjected to a conductivity improving process such as a calendar process or a steam process, and the desired surface resistance can be adjusted by the calendar process.
  • the conductive metal particles may be supported on the metallic silver portion by only one of physical development and plating treatment, or the conductive metal particles are supported on the metallic silver portion by combining physical development and plating treatment. May be.
  • the thing which performed the physical development and / or the plating process to the metal silver part is called "conductive metal part".
  • Oxidation treatment it is preferable to subject the metallic silver portion after the development treatment and the conductive metal portion formed by physical development and / or plating treatment to oxidation treatment.
  • oxidation treatment for example, when a metal is slightly deposited on the light transmissive portion, the metal can be removed and the light transmissive portion can be made almost 100% transparent.
  • the line width of the fine metal wires of the first electrode pattern 16A and the second electrode pattern 16B of the present embodiment can be selected from 30 ⁇ m or less.
  • the lower limit of the thin metal wire width The value is preferably 0.7 ⁇ m, more preferably 1 ⁇ m, still more preferably 2 ⁇ m.
  • the upper limit of the line width of the fine metal wire is preferably 15 ⁇ m, more preferably 9 ⁇ m, and even more preferably 7 ⁇ m.
  • a conventional electrode terminal is a thick terminal (solid terminal) in order to have high conductivity, and a large amount of light is irradiated to a portion that becomes an electrode terminal by exposure.
  • the line width of the electrode pattern is very small as described above, and may be affected by the large amount of light. In particular, when the line width is 9 ⁇ m or less, further 7 ⁇ m or less, the influence becomes remarkable, and there is a problem that the metal thin wire near the electrode terminal becomes thicker than the intended line width.
  • the line spacing is preferably 100 ⁇ m or more and 400 ⁇ m or less, more preferably 200 ⁇ m or more and 300 ⁇ m or less. Further, the thin metal wire may have a portion wider than 200 ⁇ m for the purpose of ground connection or the like.
  • the “light transmissive part” in the present embodiment means a part having translucency other than the first electrode pattern 16A and the second electrode pattern 16B in the first conductive sheet 12A and the second conductive sheet 12B.
  • the transmittance in the light transmissive portion is the transmission indicated by the minimum value of the transmittance in the wavelength region of 380 to 780 nm excluding the contribution of light absorption and reflection of the first transparent substrate 14A and the second transparent substrate 14B.
  • the rate is 83% or more, preferably 85% or more, more preferably 90% or more, still more preferably 93% or more, and most preferably 99% or more.
  • the thickness of the first transparent substrate 14A and the second transparent substrate 14B in the first conductive sheet 12A and the second conductive sheet 12B according to the present embodiment is preferably 5 ⁇ m or more and 350 ⁇ m or less, and is 30 ⁇ m or more and 150 ⁇ m or less. More preferably. If it is in the range of 5 ⁇ m or more and 350 ⁇ m or less, a desired visible light transmittance can be obtained and handling is easy.
  • the thickness of the metallic silver portion provided on the first transparent substrate 14A and the second transparent substrate 14B depends on the coating thickness of the silver salt-containing layer coating applied on the first transparent substrate 14A and the second transparent substrate 14B. Can be determined as appropriate.
  • the thickness of the metallic silver part can be selected from 0.001 mm or more and 0.2 mm or less, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and 0.01 ⁇ m or more and 9 ⁇ m or less. More preferably, it is 0.05 ⁇ m or more and 5 ⁇ m or less.
  • a metal silver part is pattern shape.
  • the metallic silver part may be a single layer or a multilayer structure of two or more layers.
  • the metallic silver portion When the metallic silver portion is patterned and has a multilayer structure of two or more layers, different color sensitivities can be imparted so as to be sensitive to different wavelengths. Thereby, when the exposure wavelength is changed and exposed, a different pattern can be formed in each layer.
  • the thickness of the conductive metal part is preferably as the thickness of the touch panel is thinner because the viewing angle of the display panel is wider, and a thin film is also required for improving the visibility.
  • the thickness of the layer made of the conductive metal carried on the conductive metal part is preferably less than 9 ⁇ m, more preferably 0.1 ⁇ m or more and less than 5 ⁇ m, and more preferably 0.1 ⁇ m or more. More preferably, it is less than 3 ⁇ m.
  • the thickness of the layer made of conductive metal particles is formed by controlling the coating thickness of the silver salt-containing layer described above to form a metallic silver portion having a desired thickness, and further by physical development and / or plating treatment. Therefore, even the first conductive sheet 12A and the second conductive sheet 12B having a thickness of less than 5 ⁇ m, preferably less than 3 ⁇ m can be easily formed.
  • the conductive sheet and the touch panel according to the present invention are not limited to the above-described embodiments, but can of course have various configurations without departing from the gist of the present invention. Further, it can be used in appropriate combination with the techniques disclosed in JP 2011-113149, JP 2011-129501, JP 2011-129112, JP 2011-134311, JP 2011-175628, and the like.
  • the transmittance or aperture ratio was measured to evaluate the visibility.
  • K 3 Rh 2 Br 9 and K 2 IrCl 6 were added so as to have a concentration of 10 ⁇ 7 (mol / mol silver), and silver bromide grains were doped with Rh ions and Ir ions. .
  • the coating amount of silver was 10 g / m 2.
  • the coating was applied on the first transparent substrate 12A and the second transparent substrate 12B (both here are polyethylene terephthalate (PET)). At this time, the volume ratio of Ag / gelatin was 2/1.
  • a 30 cm wide PET support was applied for 20 m in a width of 25 cm, and both ends were cut off by 3 cm so as to leave a central portion of the coating, and a roll-shaped silver halide photosensitive material was obtained.
  • the pattern of exposure is the pattern shown in FIGS. 1 and 3 for the first conductive sheet 12A, the pattern shown in FIGS. 4A, 4B, and 6B for the second conductive sheet 12B, and is A4 size (210 mm ⁇ 297 mm). It went to the first transparent substrate 14A and the second transparent substrate 14B.
  • the exposure was performed using parallel light using a high-pressure mercury lamp as a light source through the photomask having the above pattern.
  • the electrode terminals 60A and the electrode terminals 60B of the first conductive sheet 12A and the second conductive sheet 12B were respectively prepared with all the patterns shown in FIGS.
  • Example 1 (Sample 1-1)
  • Example The transmittance of the conductive portions (the first electrode pattern 16A and the second electrode pattern 16B) of the manufactured first conductive sheet 12A and second conductive sheet 12B is 83%.
  • the electrode terminal 60A and the electrode terminal 60B of the produced first conductive sheet 12A and second conductive sheet 12B have the pattern shown in FIG. 1, and the transmittance is 63%.
  • Example 1-2 Example The same procedure as in Sample 1-1 was performed, except that the transmittance of the electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 80%.
  • Example 1-3 Comparative Example Same as Sample 1-1, except that the transmittance of the electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 60%.
  • Example 1-4 Comparative Example Samples were manufactured in the same manner as Sample 1-1 except that the transmittance of the electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 83%.
  • Example 1-5 Example The transmittance of the conductive portions (the first electrode pattern 16A and the second electrode pattern 16B) of the produced first conductive sheet 12A and second conductive sheet 12B is 90%.
  • the electrode terminal 60A and the electrode terminal 60B of the produced first conductive sheet 12A and second conductive sheet 12B have the pattern shown in FIG. 1, and the transmittance is 70%.
  • Example A sample was manufactured in the same manner as Sample 1-5 except that the transmittance of the electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 87%.
  • Example 1--7 Comparative Example Samples were manufactured in the same manner as Sample 1-5 except that the transmittances of the electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B were 67%.
  • Example 1-8 Comparative Example Sample 1-8 was manufactured in the same manner as Sample 1-5 except that the transmittance of electrode terminal 60A and electrode terminal 60B of first conductive sheet 12A and second conductive sheet 12B was 90%.
  • Example 1 Example The transmittance of the conductive portions (the first electrode pattern 16A and the second electrode pattern 16B) of the produced first conductive sheet 12A and second conductive sheet 12B is 83%.
  • the electrode terminals 60A and the electrode terminals 60B of the produced first conductive sheet 12A and second conductive sheet 12B have the pattern shown in FIG. 2, and the transmittance is 63%.
  • Example A sample was manufactured in the same manner as Sample 1-9 except that the transmittances of the electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B were 80%.
  • Example 1-11 Comparative Example Samples were manufactured in the same manner as Sample 1-9 except that the transmittance of electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 60%.
  • Example 1-12 Comparative Example Sample 1-12 was made the same as Sample 1-9 except that the transmittance of electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 83%.
  • Example 1-13 Example The transmittance of the conductive portions (the first electrode pattern 16A and the second electrode pattern 16B) of the manufactured first conductive sheet 12A and second conductive sheet 12B is 83%.
  • the electrode terminal 60A and the electrode terminal 60B of the manufactured first conductive sheet 12A and second conductive sheet 12B have the pattern of FIG. 3, and the transmittance is 63%.
  • Example A sample was manufactured in the same manner as Sample 1-13 except that the transmittances of the electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B were 80%.
  • Example 1-15 Comparative Example Samples were manufactured in the same manner as Sample 1-7, except that the transmittance of electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 60%.
  • Example 1-16 Comparative Example Samples were manufactured in the same manner as Sample 1-13, except that the transmittances of electrode terminals 60A and 60B of manufactured first conductive sheet 12A and second conductive sheet 12B were 83%.
  • the total light transmittance of the first conductive sheet 12A and the second conductive sheet 12B was measured using a photometer.
  • the photometer was measured using TC-HIIIDPK manufactured by Tokyo Denshoku.
  • a projected capacitive touch panel was produced using each of the laminated conductive sheets according to the samples described above.
  • the touch panel was installed on a rotating disk and the liquid crystal display device was driven to display white, it was confirmed with the naked eye whether a shadow (a darkened portion) could be confirmed in the vicinity of the electrode terminal in the sensing area.
  • reaction rate was evaluated as A, the reaction rate as good as B, the practicality as the response speed was not a problem as C, and the response speed as slow as the detection sensitivity was evaluated as D.
  • Example 2 (Sample 2-1)
  • the aperture ratio of the conductive portions (the first electrode pattern 16A and the second electrode pattern 16B) of the manufactured first conductive sheet 12A and second conductive sheet 12B is 90%.
  • the electrode terminals 60A and electrode terminals 60B of the produced first conductive sheet 12A and second conductive sheet 12B have the pattern shown in FIGS. 5A and 5B, and the aperture ratio is 70%.
  • Example 2-2 Example Same as Sample 2-1, except that the aperture ratio of the electrode terminal 60A and the electrode terminal 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 89.9%. did.
  • Example 2-3 Comparative Example Samples were made in the same manner as Sample 2-1, except that the aperture ratios of the electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B were set to 68%.
  • Example 2-4 Comparative Example Same as Sample 2-1, except that the transmittance of electrode terminal 60A and electrode terminal 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 90%.
  • Example 2-5 Example The aperture ratio of the conductive portions (the first electrode pattern 16A and the second electrode pattern 16B) of the manufactured first conductive sheet 12A and second conductive sheet 12B is 97%.
  • the electrode terminals 60A and electrode terminals 60B of the produced first conductive sheet 12A and second conductive sheet 12B have the pattern shown in FIGS. 5A and 5B, and the aperture ratio is 77%.
  • Example 2-6 Example Same as Sample 2-5 except that the aperture ratio of the electrode terminal 60A and the electrode terminal 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 96.9%. did.
  • Example 2--7 Comparative Example Samples were manufactured in the same manner as Sample 2-5, except that the aperture ratio of electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 75%.
  • Example 2-8 Comparative Example Samples were manufactured in the same manner as Sample 2-5 except that the aperture ratios of the electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B were set to 97%.
  • Example 2-9 Example The aperture ratio of the conductive portions (the first electrode pattern 16A and the second electrode pattern 16B) of the manufactured first conductive sheet 12A and second conductive sheet 12B is 90%.
  • the electrode terminals 60A and electrode terminals 60B of the produced first conductive sheet 12A and second conductive sheet 12B have the pattern shown in FIGS. 6A and 6B, and the aperture ratio is 70%.
  • Example 2-10 Example Same as Sample 2-9 except that the aperture ratio of the electrode terminal 60A and the electrode terminal 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 89.9%. did.
  • Example 2-11 Comparative Example Samples were manufactured in the same manner as Sample 2-9 except that the aperture ratios of the electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B were 68%.
  • Example 2-12 Comparative Example Samples were manufactured in the same manner as Sample 2-9, except that the transmittance of electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 90%.
  • Example 2-13 Example The aperture ratio of the conductive portions (the first electrode pattern 16A and the second electrode pattern 16B) of the manufactured first conductive sheet 12A and second conductive sheet 12B is 90%.
  • the electrode terminal 60A and the electrode terminal 60B of the produced first conductive sheet 12A and second conductive sheet 12B have the pattern of FIG. 7, and the aperture ratio is 70%.
  • Example 2-14 Example Same as Sample 2-13, except that the aperture ratio of the electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 89.9%. did.
  • Example 2-15) Comparative Example Samples were manufactured in the same manner as Sample 2-13 except that the aperture ratios of electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B were 68%.
  • Example 2-16 Comparative Example Samples were manufactured in the same manner as Sample 2-13, except that the transmittance of electrode terminals 60A and 60B of the produced first conductive sheet 12A and second conductive sheet 12B was 90%.
  • the first conductive sheet 12A and the second conductive sheet 12B were measured under the condition of 3000 times using a microscope VHX-200 manufactured by Keyence Corporation.
  • a projected capacitive touch panel was produced using each of the laminated conductive sheets according to the samples described above.
  • the touch panel was installed on a rotating disk and the liquid crystal display device was driven to display white, it was confirmed with the naked eye whether a shadow (a darkened portion) could be confirmed in the vicinity of the electrode terminal in the sensing area.
  • reaction rate was evaluated as A, the reaction rate as good as B, the practicality as the response speed was not a problem as C, and the response speed as slow as the detection sensitivity was evaluated as D.
  • the conductive sheet and the touch panel according to the present invention are not limited to the above-described embodiments, but can of course have various configurations without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Position Input By Displaying (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 センシング領域の電極端子近傍において視認性を損なわない導電シート及びタッチパネルを提供する。金属細線で構成された電極パターン16A(16B)と、電極パターン16A(16B)の端部と電気的に接続された電極端子60A(60B)と、を有する導電シート12A(12B)において、電極パターン16A(16B)の透過率が83%以上であり、電極パターン16A(16B)の透過率をa%と表したとき、電極端子60A(60B)の透過率が(a-20)%以上(a-3)%以下であるようにする。

Description

導電シート及びタッチパネル
 本発明は、導電シート及びタッチパネルに関し、例えば、投影型静電容量方式のタッチパネルに用いる導電シート及びタッチパネルに関する。
 金属細線を用いた透明導電膜については、例えば、特許文献1及び2で開示されているように、研究が継続されている。
 近時、タッチパネルが注目されている。タッチパネルは、PDA(携帯情報端末)や携帯電話等の小サイズへの適用が主となっているが、パソコン用ディスプレイ等への適用による大サイズ化が進むと考えられる。
 このような将来の動向において、従来の電極は、ITO(酸化インジウムスズ)を用いている。ITOは抵抗が大きく、適用サイズが大きくなるにつれて、電極間の電流の伝達速度が遅くなり、応答速度(指先を接触してからその位置を検出するまでの時間)が遅くなるという問題がある。
 そこで、金属細線にて構成した電極により、表面抵抗を低下させることが考えられる。金属細線を電極に用いたタッチパネルとしては、例えば、特許文献3~9が知られている。
米国特許出願公開第2004/0229028号明細書 国際公開第2006/001461号パンフレット 特開平5-224818号公報 米国特許第5113041号明細書 国際公開第1995/27334号パンフレット 米国特許出願公開第2004/0239650号明細書 米国特許第7202859号明細書 国際公開第1997/18508号パンフレット 特開2003-099185号公報
 ところで、タッチパネルのセンシング電極は、少なくともタッチ領域が金属細線で構成された電極パターンと、電極パターンの端部と電気的に接続された電極端子と、を有する。電極端子は、高い導電性を備えるために太い端子(ベタ端子)となっている。そのため、ディスプレイとタッチパネルを組み合わせて作動させる場合には、センシング領域(電極パターン)では、ディスプレイが発する光を電極端子が遮光するためセンシング領域の電極端子近傍において暗くなる部分が現れ、ディスプレイが見づらくなることがある。
 本発明はこのような課題を考慮してなされたものであり、センシング領域の電極端子近傍において視認性を損なわない導電シート及びタッチパネルを提供することを目的とする。
 本発明の第一の導電シートは、金属細線で構成された電極パターンと、該電極パターンの端部と電気的に接続された電極端子と、を有する導電シートであって、前記電極パターンの透過率が83%以上であり、前記電極パターンの透過率をa%と表したとき、前記電極端子の透過率が(a-20)%以上(a-3)%以下である。
 本発明の別の態様の第一の導電シートは、金属細線で構成された電極パターンと、該電極パターンの端部と電気的に接続された電極端子と、を有する導電シートであって、前記電極パターンの開口率が90%以上であり、前記電極パターンの開口率をb%と表したとき、前記電極端子の開口率が(b-20)%以上(b-0.1)%以下である。
 上記本発明の第一の導電シートは、好ましくは、前記電極端子は金属細線で構成された格子からなるメッシュ形状を含み、また金属細線は30μm以下の線幅であり、金属細線は不透明な材料で構成される。
 本発明の第一のタッチパネルは、センシング領域に設けられ、金属細線で構成された電極パターンと、前記センシング領域の外側に設けられ、該電極パターンの端部と電気的に接続された電極端子と、が設けられた導電シートを有するタッチパネルであって、前記電極パターンの透過率が83%以上であり、前記電極パターンの透過率をa%と表したとき、前記電極端子の透過率が(a-20)%以上(a-3)%以下である。
 本発明の別の態様の第一のタッチパネルは、センシング領域に設けられ、金属細線で構成された電極パターンと、前記センシング領域の外側に設けられ、該電極パターンの端部と電気的に接続された電極端子と、が設けられた導電シートを有するタッチパネルであって、前記電極パターンの開口率が90%以上であり、前記電極パターンの開口率をb%と表したとき、前記電極端子の開口率が(b-20)%以上(b-0.1)%以下である。
 本発明の第二の導電シートは、金属細線で構成された電極パターンと、該電極パターンの端部と電気的に接続された電極端子と、を有する導電シートであって、前記電極端子は、金属細線で構成された枠形状を含む。
 上記本発明の第二の導電シートは、好ましくは、前記電極パターンの細線の線幅をa(μm)としたとき、前記電極端子の枠形状の線幅b(μm)は、b≧2a、又は、b≧a+5(μm)を満たす。前記電極パターンの細線の線幅a(μm)は、30μm以下が好ましい。
 上記本発明の第二の導電シートは、好ましくは、前記電極端子の金属細線で構成された枠形状の内部には、さらに、金属細線で構成された格子形状からなるメッシュ形状が設けられている。
 本発明の第二のタッチパネルは、センシング領域に設けられ、金属細線で構成された電極パターンと、前記センシング領域の外側に設けられ、該電極パターンの端部と電気的に接続された電極端子と、が設けられた導電シートを有するタッチパネルであって、前記電極端子は、金属製の細線で構成された枠形状を含む。
 本発明の第三の導電シートは、金属細線で構成された電極パターンと、該電極パターンの端部と電気的に接続された電極端子と、を有する導電シートであって、前記電極端子は金属細線で構成された格子からなるメッシュ形状を含む。
 上記本発明の第三の導電シートは、好ましくは、前記電極パターンは、格子からなるメッシュ形状であるとともに、前記電極端子の格子からなるメッシュ形状のピッチは、前記電極パターンの格子からなるメッシュ形状のピッチよりも密である。前記電極端子の格子からなるメッシュ形状のピッチは、前記電極パターンの格子からなるメッシュ形状のピッチの3/4以下がより好ましく、2/3以下がさらに好ましく、1/2がより好ましい。具体的な電極端子のメッシュ形状のピッチは、50μm以上300μm以下であり、50μm以上250μm以下がより好ましい。
 上記本発明の第三の導電シートは、好ましくは、前記電極端子には、前記電極端子の格子からなるメッシュ形状の外枠に、さらに、金属細線で構成された枠形状が設けられている。
 上記本発明の第三の導電シートは、好ましくは、前記電極端子の表面抵抗値が4Ω/sq.以上80Ω/sq.以下である。
 本発明の第三のタッチパネルは、センシング領域に設けられ、金属細線で構成された電極パターンと、前記センシング領域の外側に設けられ、該電極パターンの端部と電気的に接続された電極端子と、が設けられた導電シートを有するタッチパネルであって、前記電極端子は金属細線で構成された格子からなるメッシュ形状を含む。
 本発明の導電シート及びタッチパネルによれば、センシング領域の電極端子近傍において視認性を損なわないようにすることができる。
タッチパネル用導電シートの電極端子の一例を示す平面図。 タッチパネル用導電シートの電極端子の他の一例を示す平面図。 タッチパネル用導電シートの電極端子の他の一例を示す平面図。 タッチパネル用導電シートを一部省略して示す分解斜視図(その1)。 タッチパネル用導電シートを一部省略して示す分解斜視図(その2)。 タッチパネル用導電シートの一例を一部省略して示す断面図。 タッチパネル用導電シートの他の例を一部省略して示す断面図。 第1導電シートに形成される第1電極パターンの例を示す平面図。 は第2導電シートに形成される第2電極パターンの例を示す平面図。 第1導電シートと第2導電シートを組み合わせてタッチパネル用導電シートとした例を一部省略して示す平面図。
 以下、添付図面に従って本発明の好ましい実施の形態について説明する。本発明は以下の好ましい実施の形態により説明されるが、本発明の範囲を逸脱することなく、多くの手法により変更を行うことができ、本実施の形態以外の他の実施の形態を利用することができる。したがって、本発明の範囲内における全ての変更が特許請求の範囲に含まれる。
 以下、本実施形態に係る導電シート及びタッチパネルについて図1~図7を参照しながら説明する。なお、本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。
 本実施の形態に係る第一のタッチパネル用の導電シート10は、図1~図3に示すように、金属細線で構成された電極パターン16A(16B)と、電極パターン16A(16B)の端部と電気的に接続された電極端子60A(60B)と、が基体14Aに設けられた上記の導電シート12A(12B)において、電極パターン16A(16B)の透過率が83%以上であり、電極パターン16A(16B)の透過率をa%と表したとき、電極端子60A(60B)の透過率が(a-20)%以上(a-3)%以下であるように構成される。また、別の態様として、本実施の形態に係る第一のタッチパネル用の導電シート10は、金属細線で構成された電極パターン16A(16B)と、電極パターン16A(16B)の端部と電気的に接続された電極端子60A(60B)と、が基体14Aに設けられた上記の導電シート12A(12B)において、電極パターン16A(16B)の開口率が90%以上であり、電極パターン16A(16B)の開口率をb%と表したとき、電極端子60A(60B)の開口率が(b-20)%以上(b-0.1)%以下であるように構成される。
 本実施の形態に係る第二のタッチパネル用の導電シート10は、図1及び図2に示すように、金属細線で構成された電極パターン16A(16B)と、電極パターン16A(16B)の端部と電気的に接続された電極端子60A(60B)と、を有する導電シート12A(12B)であって、電極端子60A(60B)は、金属細線で構成された枠形状64を含むように構成される。
 本実施の形態に係る第三のタッチパネル用の導電シート10は、図1及び図2に示すように、金属細線で構成された電極パターン16A(16B)と、電極パターン16A(16B)の端部と電気的に接続された電極端子60A(60B)と、を有する導電シート12A(12B)であって、電極端子60A(60B)は金属細線で構成された格子68からなるメッシュ形状66を含むように構成される。
 そして、本実施の形態に係るタッチパネル用の導電シート10は、図4A又は図4B、及び図5Aに示すように、第1導電シート12Aと第2導電シート12Bとが積層されて構成される。
 第1導電シート12Aは、図4A、図4B及び図6Aに示すように、第1透明基体14A(図5A参照)の一主面上に形成された第1電極パターン16Aを有する。第1電極パターン16Aは、金属細線による多数の格子にて構成される。第1電極パターン16Aは、それぞれ第1方向(x方向)に延在し、且つ、第1方向と直交する第2方向(y方向)に配列された2以上の第1導電パターン18Aと、各第1導電パターン18Aを電気的に分離する第1非導電パターン20Aとを有する。第1非導電パターン20Aには金属細線の交差点以外に複数の断線部22Aが形成される。複数の断線部22Aにより各第1導電パターン18Aが電気的に分離される。
 第1電極パターン16Aを構成する金属細線は30μm以下、好ましくは15μm以下、さらに好ましくは10μm以下、さらに好ましくは9μm以下、さらに好ましくは7μm以下の線幅を有する。線幅の下限値は、1μmが好ましい。なお、第1導電パターン18Aと第1非導電パターン20Aとは実質的に同じ線幅を有するが、図6Aでは第1導電パターン18Aと第1非導電パターン20Aとを明確にするため、第1導電パターン18Aの線幅を太く、第1非導電パターン20Aの線幅を細くして誇張して図示している。第1導電パターン18Aの線幅と第1非導電パターン20Aの線幅は、同じでもよく、異なっていてもよい。好ましくは、両者の線幅は同じである。その理由は、線幅が異なると視認性が悪化することがあるからである。第1電極パターン16Aの金属細線は、金、銀、銅などの金属材料や金属酸化物等の導電材料で構成され、不透明な導電材料で構成される。
 第1電極パターン16Aは交差する金属細線で構成される複数の格子24Aを含んでいる。格子24Aは金属細線で囲まれる開口領域を含んでいる。格子24Aは300μm以上800μm以下、好ましくは400μm以上600μm以下の格子ピッチPaを有する。第1導電パターン18Aの格子24Aと第1非導電パターン20Aの格子24Aとは実質的に同じ大きさを有する。
 第1非導電パターン20Aの格子24Aは金属細線の交差部以外に断線部22Aを有する。第1非導電パターン20Aを構成する全ての格子24Aが断線部22Aを有する必要はない。第1非導電パターン20Aが、隣り合う第1導電パターン18A間の電気的な分離を達成できればよい。断線部22Aの長さは、好ましくは、60μm以下である。断線部22Aの長さの下限値は、10μmが好ましく、15μmがより好ましく、20μmがさらに好ましい。断線部22Aの長さの上限値は、50μmが好ましく、40μmがより好ましく、30μmがさらに好ましい。好ましい範囲としては10μm以上50μm以下であり、15μm以上30μm以下である。また、断線部22Aを形成する範囲について、例えば、線密度のバラツキで表現することができる。ここで、線密度のバラツキとは単位小格子中の総細線長のバラツキであり、±(総線長最大値-総線長最小値)/総線長平均値/2(%)と定義できる。断線部22Aを形成する範囲は、好ましくは、綿密度のバラツキで±15%であり、より好ましくは、±10%である。
 上述のタッチパネル用導電シート10では、格子24Aは略ひし形の形状を有している。ここで略ひし形の形状とは、対角線が実質的に直交する平行四辺形を意味する。但し、その他、多角形状としてもよい。また、一辺の形状を直線状の他、湾曲形状でもよいし、円弧状にしてもよい。円弧状とする場合は、例えば対向する2辺については、外方に凸の円弧状とし、他の対向する2辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。
 各第1導電パターン18Aは、第1方向(x方向)に沿って、交互に配置された幅広部分と幅狭部分とを備えた、いわゆるダイヤモンドパターンである。同様に各第1非導電パターン20Aは、第1方向(x方向)に沿って、交互に配置された幅広部分と幅狭部分とを備えている。第1導電パターン18Aの幅広部分と幅狭部分の順序は、第1非導電パターン20Aの幅広部分と幅狭部分の順序と逆になっている。なお、各第1導電パターン18Aは、上記ダイヤモンドパターンに限定されず、所定の幅の帯状の形状(ストライプ形状)や所定の幅のジグザグ形状などでもよい。パターニングとしては、既存のITO透明導電膜で施されている電極形状が挙げられる。
 各第1導電パターン18Aの一方の端部は、第1電極端子60Aを介して第1外部配線62Aに電気的に接続される。一方、各第1導電パターン18Aの他方の端部は、開放端となっている。なお、各第1導電パターン18Aの他方の端部は、外部配線に電気的に接続されない以外は一方の端部と同様のパターン形状や端子を有する形状としてもよい。
 第2導電シート12Bは、図4A、図4B及び図6Bに示すように、第2透明基体14B(図5A参照)の一主面上に形成された第2電極パターン16Bを有する。第2電極パターン16Bは、金属細線による多数の格子にて構成される。第2電極パターン16Bは、それぞれ第2方向(y方向)に延在し、且つ、第2方向と直交する第1方向(x方向)に配列された2以上の第2導電パターン18Bと、各第2導電パターン18Bを電気的に分離する第2非導電パターン20Bとを有する。第2非導電パターン20Bには金属細線の交差点以外に複数の断線部22Bが形成される。複数の断線部22Bにより各第2導電パターン18Bが電気的に分離される。
 第2電極パターン16Bを構成する金属細線は第1電極パターン16Aを構成する金属細線と実質的に同じ線幅を有する。なお、第2導電パターン18Bと第2非導電パターン20Bとは実質的に同じ線幅を有するが、図6Bでは第2導電パターン18Bと第2非導電パターン20Bとを明確にするため、第2導電パターン18Bの線幅を太く、第2非導電パターン20Bの線幅を細くして誇張して図示している。第2導電パターン18Bの線幅と第2非導電パターン20Bの線幅は、同じでもよく、異なっていてもよい。好ましくは、両者の線幅は同じである。その理由は、線幅が異なると視認性が悪化することがあるからである。
 第2電極パターン16Bの金属細線は、第1電極パターン16Aの金属細線と同じ導電材料で構成される。
 第2電極パターン16Bは交差する金属細線で構成される複数の格子24Bを含んでいる。格子24Bは金属細線で囲まれる開口領域を含んでいる。格子24Bは300μm以上800μm以下、好ましくは400μm以上600μm以下の格子ピッチPbを有する。第2導電パターン18Bの格子24Bと第2非導電パターン20Bの格子24Bとは実質的に同じ大きさを有する。
 第2非導電パターン20Bの格子24Bは金属細線の交差部以外に断線部22Bを有する。第2非導電パターン20Bを構成する全ての格子24Bが断線部22Bを有する必要はない。第2非導電パターン20Bが、隣り合う第2導電パターン18B間の電気的な分離を達成できればよい。断線部22Bの長さは、好ましくは、60μm以下である。断線部22Aの長さの下限値は、10μmが好ましく、15μmがより好ましく、20μmがさらに好ましい。断線部22Aの長さの上限値は、50μmが好ましく、40μmがより好ましく、30μmがさらに好ましい。好ましい範囲としては10μm以上50μm以下であり、15μm以上30μm以下である。また、断線部22Bを形成する範囲について、例えば、線密度のバラツキで表現することができる。ここで、線密度のバラツキとは単位小格子中の総細線長のバラツキであり、±(総線長最大値-総線長最小値)/総線長平均値/2(%)と定義できる。断線部22Bを形成する範囲は、好ましくは、綿密度のバラツキで±15%であり、より好ましくは、±10%である。
 上述のタッチパネル用導電シート10では、格子24Bは略ひし形の形状を有している。ここで略ひし形の形状とは、対角線が実質的に直交する平行四辺形を意味する。但し、その他、多角形状としてもよい。また、一辺の形状を直線状の他、湾曲形状でもよいし、円弧状にしてもよい。円弧状とする場合は、例えば対向する2辺については、外方に凸の円弧状とし、他の対向する2辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。
 各第2導電パターン18Bは、第2方向(y方向)に沿って、交互に配置された幅広部分と幅狭部分とを備えている。同様に各第2非導電パターン20Bは、第2方向(y方向)に沿って、交互に配置された幅広部分と幅狭部分とを備えている。第2導電パターン18Bの幅広部分と幅狭部分の順序は、第2非導電パターン20Bの幅広部分と幅狭部分の順序と逆になっている。
 各第2導電パターン18Bの一方の端部は、第2電極端子60Bを介して第2外部配線62Bに電気的に接続される。一方、各第2導電パターン18Bの他方の端部は、開放端となっている。
 そして、例えば第2導電シート12B上に第1導電シート12Aを積層してタッチパネル用導電シート10としたとき、図7に示すように、第1電極パターン16Aと第2電極パターン16Bとが重なり合わないよう配置される。このとき、第1導電パターン18Aの幅狭部と第2導電パターン18Bの幅狭部とが対向し、且つ第1導電パターン18Aの幅狭部と第2導電パターン18Bとが交差するように、第1電極パターン16Aと第2電極パターン16Bとが配置される。この結果、第1電極パターン16Aと第2電極パターン16Bとにより、組合せパターン70が形成される。なお、第1電極パターン16Aと第2電極パターン16Bの各線幅は実質的に同じである。また、格子24Aと格子24Bとは各大きさは実質的に同じである。但し、図6A及び図6Bでは、第1電極パターン16Aと第2電極パターン16Bとの位置関係を明確にするため、第1電極パターン16Aの線幅を第2電極パターン16Bの線幅より太く表示している。
 組合せパターン70において、上面視で、格子24Aと格子24Bとにより小格子が形成される。つまり、格子24Aの交差部が格子24Bの開口領域に配置される。なお、小格子は、格子24A及び格子24Bの格子ピッチPa,Pbの半分の150μm以上400μm以下、好ましくは200μm以上300μm以下の格子ピッチPsを有する。
 第1非導電パターン20Aの断線部22Aは格子24Aの交差部以外に形成され、第2非導電パターン20Bの断線部22Bは格子24Bの交差部以外に形成される。その結果、組合せパターン70において、断線部22Aと断線部22Bに起因する視認性の劣化を防止できる。
 特に、断線部22Aに対向する位置に、第2導電パターン18Bの金属細線が配置される。また、断線部22Bに対向する位置に、第1導電パターン18Aの金属細線が配置される。第2導電パターン18Bの金属細線が断線部22Aをマスクし、第1導電パターン18Aの金属細線が断線部22Bをマスクすることになる。したがって、組合せパターン70において、上面視で、断線部22Aと断線部22Bとが視認され難くなるので、視認性を向上することができる。視認性向上を考慮すると、断線部22Aの長さと、第2導電パターン18Bの金属細線の線幅とは、線幅×1<断線部<線幅×10の関係式を満たすことが好ましい。同様に、断線部22Bの長さと、第1導電パターン18Aの金属細線の線幅とは、線幅×1<断線部<線幅×10の関係式を満たすことが好ましい。
 そして、このタッチパネル用導電シート10をタッチパネルとして使用する場合は、第1導電シート12A上に保護層(不図示)が形成される。第1導電シート12Aの多数の第1導電パターン18Aから導出された第1外部配線62Aと、第2導電シート12Bの多数の第2導電パターン18Bから導出された第2外部配線62Bとが、例えばスキャンをコントロールするIC回路に接続される。
 タッチパネル用導電シート10のうち、液晶表示装置の表示画面から外れた外周領域の面積が極力小さくなるように、好ましくは、第1導電パターン18Aと第1外部配線62Aとの各接続部が直線状に配列され、第2導電パターン18Bと第2外部配線62Bとの各接続部が直線状に配列される。
 指先を保護層上に接触させることで、指先に対向する第1導電パターン18Aと第2導電パターン18B間の静電容量が変化する。IC回路はこの変化量を検出し、この変化量に基づいて指先の位置を演算する。この演算をそれぞれの第1導電パターン18Aと第2導電パターン18Bとの間にて行う。したがって、同時に2つ以上の指先を接触させても、各指先の位置を検出することが可能となる。
 このように、タッチパネル用導電シート10においては、該タッチパネル用導電シート10を用いて例えば投影型静電容量方式のタッチパネルに適用した場合に、その表面抵抗が小さいことから応答速度を速めることができ、タッチパネルの大サイズ化を促進させることができる。
 しかしながら、従来の金属細線を電極に用いたタッチパネルは、電極端子60A、60Bは高い導電性を備えるために太い端子(ベタ端子)となっているため、ディスプレイとタッチパネルを組み合わせて作動させる場合、タッチパネルのセンシング領域(電極パターン)では、ディスプレイが発する光を電極端子が遮光するためセンシング領域の電極端子近傍において暗くなる部分が現れ、その箇所のディスプレイが見づらくなることがある。
 そこで、本発明は、以下に説明する第一~第三のタッチパネル用の導電シートにすることにした。
(第一のタッチパネル用の導電シート)
 本発明に係る第一のタッチパネル用の導電シートは、金属細線で構成された電極パターン16A(16B)と、電極パターン16A(16B)の端部と電気的に接続された電極端子60A(60B)と、が基体14Aに設けられた上記の導電シート12A(12B)において、電極パターン16A(16B)の透過率が83%以上であり、電極パターン16A(16B)の透過率をa%と表したとき、電極端子60A(60B)の透過率が(a-20)%以上(a-3)%以下であるようにした。なお、より好ましくは、(a-15)%以上(a-3)%以下であり、さらに好ましくは、(a-10)以上(a-3)以下であり、最も好ましくは、(a-5)以上(a-3)以下の範囲である。
 また、本発明に係る第一のタッチパネル用の導電シートの別の態様として、金属細線で構成された電極パターン16A(16B)と、電極パターン16A(16B)の端部と電気的に接続された電極端子60A(60B)と、が基体14Aに設けられた上記の導電シート12A(12B)において、電極パターン16A(16B)の開口率が90%以上であり、電極パターン16A(16B)の開口率をb%と表したとき、電極端子60A(60B)の開口率が(b-20)%以上(b-0.1)%以下であるようにした。なお、より好ましくは、(b-10)以上(b-0.3)以下であり、さらに好ましくは、(b-5)以上(b-0.3)以下の範囲である。
 図1は、電極端子60A(60B)が金属細線で構成された枠形状64であるものを示したものである。ここで、電極パターン16A(16B)の細線の線幅をA(μm)としたとき、電極端子60A(60B)の枠形状の線幅B(μm)は、B≧2A、又は、B≧A+5(μm)を満たすことが好ましい。前記電極パターンの細線の線幅a(μm)は、30μm以下が好ましい。
 図1のように、電極端子60A(60B)を金属細線で構成された枠形状64とすることで、電極パターン16A(16B)の透過率が83%以上であり、電極パターン16A(16B)の透過率をa%と表したとき、電極端子60A(60B)の透過率が(a-20)%以上(a-3)%以下であるようにすることができる。
 また、電極端子60A(60B)を金属細線で構成された枠形状64とすることで、電極パターン16A(16B)の開口率が90%以上であり、電極パターン16A(16B)の開口率をb%と表したとき、電極端子60A(60B)の開口率が(b-20)%以上(b-0.1)%以下であるようにすることができる。
 したがって、電極端子60A(60B)を金属細線で構成された枠形状64とすることで、従来の太い端子(ベタ端子)と異なり、タッチパネルのセンシング領域(電極パターン)ではディスプレイが発する光を電極端子が遮光しにくくなるため、センシング領域の電極端子近傍において暗くなる部分が現れなくなる。したがって、センシング領域の電極端子近傍において視認性は損なわれない。
 図2は、電極端子60A(60B)が金属細線で構成された格子68からなるメッシュ形状66であるものを示したものである。ここで、電極端子60A(60B)のメッシュ形状66のピッチは、電極パターン16A(16B)のピッチよりも密であることが好ましく、電極パターン16A(16B)のピッチの3/4以下がより好ましく、2/3以下がさらに好ましく、1/2がより好ましい。電極端子のメッシュ形状のピッチを電極パターンよりも小さくすることで、電極端子の電気特性を向上させることができ、信号検出の安定性を維持することができる。具体的な電極端子60A(60B)のメッシュ形状66のピッチは、50μm以上300μm以下であり、50μm以上250μm以下がより好ましい。なお、電極パターン16A(16B)のピッチは、格子24A(24B)の一辺の長さと略等しい値である。
 図2のように、電極端子60A(60B)を電極端子60A(60B)が金属細線で構成された格子68からなるメッシュ形状66にすることで、電極パターン16A(16B)の透過率が83%以上であり、電極パターン16A(16B)の透過率をa%と表したとき、電極端子60A(60B)の透過率が(a-20)%以上(a-3)%以下であるようにすることができる。
 また、電極端子60A(60B)を電極端子60A(60B)が金属細線で構成された格子68からなるメッシュ形状66にすることで、電極パターン16A(16B)の開口率が90%以上であり、電極パターン16A(16B)の開口率をb%と表したとき、電極端子60A(60B)の開口率が(b-20)%以上(b-0.1)%以下であるようにすることができる。
 したがって、電極端子60A(60B)を金属細線で構成されたメッシュ形状66とすることで、従来の太い端子(ベタ端子)と異なり、タッチパネルのセンシング領域(電極パターン)ではディスプレイが発する光を電極端子が遮光しにくくなるため、センシング領域の電極端子近傍において暗くなる部分が現れなくなる。したがって、センシング領域の電極端子近傍において視認性は損なわれない。
 図3は、電極端子60A(60B)が金属細線で構成された枠形状64と金属製の細線で構成された格子68からなるメッシュ形状66とからなるものを示したものである。
 図3のように、電極端子60A(60B)が金属細線で構成された枠形状64と金属製の細線で構成された格子68からなるメッシュ形状66とからなることで、電極パターン16A(16B)の透過率が83%以上であり、電極パターン16A(16B)の透過率をa%と表したとき、電極端子60A(60B)の透過率が(a-20)%以上(a-3)%以下であるようにすることができる。
 また、電極端子60A(60B)が金属細線で構成された枠形状64と金属製の細線で構成された格子68からなるメッシュ形状66とからなることで、電極パターン16A(16B)の開口率が90%以上であり、電極パターン16A(16B)の開口率をb%と表したとき、電極端子60A(60B)の開口率が(b-20)%以上(b-0.1)%以下であるようにすることができる。
 したがって、電極端子60A(60B)が金属細線で構成された枠形状64と金属製の細線で構成された格子68からなるメッシュ形状66とからなることで、従来の太い端子(ベタ端子)と異なり、タッチパネルのセンシング領域(電極パターン)ではディスプレイが発する光を電極端子が遮光しにくくなるため、センシング領域の電極端子近傍において暗くなる部分が現れなくなる。したがって、センシング領域の電極端子近傍において視認性は損なわれない。
 なお、図2、図3のメッシュ形状66は、格子68は略ひし形の形状を有している。ここで略ひし形の形状とは、対角線が実質的に直交する平行四辺形を意味する。但し、その他、多角形状としてもよい。また、一辺の形状を直線状の他、湾曲形状でもよいし、円弧状にしてもよい。円弧状とする場合は、例えば対向する2辺については、外方に凸の円弧状とし、他の対向する2辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。
 本発明に係る電極端子60A(60B)において、電極パターンと電気的に接続された部分と外部配線62A(62B)との間の抵抗は、1~100Ωの範囲になることが好ましい。また、図2、図3のように電極端子60A(60B)がメッシュ形状66を含む場合には、電極端子60A(60B)の表面抵抗値は4Ω/sq.以上80Ω/sq.以下の範囲になることが好ましく、10Ω/sq.以上40Ω/sq.以下の範囲になることがさらに好ましい。
 なお、開口率とは、電極端子60A(60B)の金属細線を除いた透光性部分が全体に占める割合であり、例えば、線幅15μm、ピッチ300μmの正方形の格子68の開口率は90%である。
(第二のタッチパネル用の導電シート)
 本発明に係る第二のタッチパネル用の導電シートは、金属細線で構成された電極パターン16A(16B)と、電極パターン16A(16B)の端部と電気的に接続された電極端子60A(60B)と、が基体14Aに設けられた上記の導電シート12A(12B)において、電極端子60A(60B)は、金属細線で構成された枠形状64を含むようにした。
 図1は、電極端子60A(60B)が金属細線で構成された枠形状64であるものを示したものである。
 ここで、電極パターン16A(16B)の細線の線幅をA(μm)としたとき、電極端子60A(60B)の枠形状の線幅B(μm)は、B≧2A、又は、B≧A+5(μm)を満たすことが好ましい。より好ましくは、50μm≧B≧10μmの範囲であり、さらに好ましくは、30μm≧B≧15μmの範囲である。また枠形状64はほぼ長方形状であり、その横幅は電極パターンの最大横幅と略同じ長さであるが、電極パターンの最大横幅よりも小さくてもよい。なお、電極パターンの最大横幅よりも小さすぎると、電気抵抗が大きくなるため、その横幅は電極パターンの最大横幅の1/3以上が好ましく、1/2以上がより好ましい。
 図1のように、電極端子60A(60B)を金属細線で構成された枠形状64にすることで、従来の太い端子(ベタ端子)と異なり、タッチパネルのセンシング領域(電極パターン)ではディスプレイが発する光を電極端子が遮光しにくくなるため、センシング領域の電極端子近傍において暗くなる部分が現れなくなる。したがって、センシング領域の電極端子近傍において視認性は損なわれない。また、このような形状を採用する場合には、電気信号のノイズを増やすことなく、構成材料の使用量を低減することができ、導電膜の製造コストを低減できるという効果もある。
 図3は、電極端子60A(60B)が金属細線で構成された枠形状64と金属製の細線で構成された格子68からなるメッシュ形状66とからなるものを示したものである。ここで、電極端子60A(60B)のメッシュ形状66のピッチは、電極パターン16A(16B)のピッチよりも密であることが好ましく、電極パターン16A(16B)のピッチの3/4以下がより好ましく、2/3以下がさらに好ましく、1/2がより好ましい。電極端子のメッシュ形状のピッチを電極パターンよりも小さくすることで、電極端子の電気特性を向上させることができ、信号検出の安定性を維持することができる。具体的な電極端子60A(60B)のメッシュ形状66のピッチは、50μm以上300μm以下であり、50μm以上250μm以下がより好ましい。なお、電極パターン16A(16B)のピッチは、格子24A(24B)の一辺の長さと略等しい値である。
 図3のように、電極端子60A(60B)が金属細線で構成された枠形状64と金属製の細線で構成された格子68からなるメッシュ形状66とからなることで、従来の太い端子(ベタ端子)と異なり、タッチパネルのセンシング領域(電極パターン)ではディスプレイが発する光を電極端子が遮光しにくくなるため、センシング領域の電極端子近傍において暗くなる部分が現れなくなる。したがって、センシング領域の電極端子近傍において視認性は損なわれない。
 なお、図3のメッシュ形状66は、格子68は略ひし形の形状を有している。ここで略ひし形の形状とは、対角線が実質的に直交する平行四辺形を意味する。ただし、その他、多角形状としてもよい。また、一辺の形状を直線状のほか、湾曲形状でもよいし、円弧状にしてもよい。円弧状とする場合は、例えば対向する2辺については、外方に凸の円弧状とし、他の対向する2辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。
 本発明に係る電極端子60A(60B)において、電極パターンと電気的に接続された部分と外部配線62A(62B)との間の抵抗は、1~100Ωの範囲になることが好ましい。また、図3のように電極端子60A(60B)がメッシュ形状66を含む場合には、電極端子60A(60B)の表面抵抗値は4Ω/sq.以上80Ω/sq.以下の範囲になることが好ましく、10Ω/sq.以上40Ω/sq.以下の範囲になることがさらに好ましい。
 なお、開口率とは、電極端子60A(60B)の金属細線を除いた透光性部分が全体に占める割合であり、例えば、線幅15μm、ピッチ300μmの正方形の格子68の開口率は90%である。
 また、本発明において、図3の場合、電極パターン16A(16B)の透過率が83%以上であり、電極パターン16A(16B)の透過率をa%と表したとき、電極端子60A(60B)の透過率が(a-20)%以上(a-3)%以下であることが好ましい。
 さらに、本発明においては、図3の場合、電極パターン16A(16B)の開口率が90%以上であり、電極パターン16A(16B)の開口率をb%と表したとき、電極端子60A(60B)の開口率が(b-20)%以上(b-0.1)%以下であることが好ましい。なお、ここで開口率とは、電極端子60A(60B)の金属細線を除いた透光性部分が全体に占める割合であり、例えば、線幅15μm、ピッチ300μmの正方形の格子68の開口率は90%である。
(第三のタッチパネル用の導電シート)
 本発明に係る第三のタッチパネル用の導電シートは、金属細線で構成された電極パターン16A(16B)と、電極パターン16A(16B)の端部と電気的に接続された電極端子60A(60B)と、が基体14Aに設けられた上記の導電シート12A(12B)において、電極端子60A(60B)は金属細線で構成された格子68からなるメッシュ形状66を含むようにした。
 図2は、電極端子60A(60B)が金属細線で構成された格子68からなるメッシュ形状66であるものを示したものである。
 ここで、電極端子60A(60B)のメッシュ形状66のピッチは、電極パターン16A(16B)のピッチよりも密であることが好ましく、電極パターン16A(16B)のピッチの3/4以下がより好ましく、2/3以下がさらに好ましく、1/2がより好ましい。電極端子のメッシュ形状のピッチを電極パターンよりも小さくすることで、電極端子の電気特性を向上させることができ、信号検出の安定性を維持することができる。具体的な電極端子60A(60B)のメッシュ形状66のピッチは、50μm以上300μm以下であり、50μm以上250μm以下がより好ましい。なお、電極パターン16A(16B)のピッチは、格子24A(24B)の一辺の長さと略等しい値である。
 図3のように、電極端子60A(60B)を電極端子60A(60B)が金属細線で構成された格子68からなるメッシュ形状66にすることで、従来の太い端子(ベタ端子)と異なり、タッチパネルのセンシング領域(電極パターン)ではディスプレイが発する光を電極端子が遮光しにくくなるため、センシング領域の電極端子近傍において暗くなる部分が現れなくなる。したがって、センシング領域の電極端子近傍において視認性は損なわれない。
 図3は、図2の電極端子60A(60B)が金属細線で構成された格子68からなるメッシュ形状66であるものに、電極端子の格子68からなるメッシュ形状66の外枠に、さらに、金属細線で構成された枠形状64が設けられている。即ち、電極端子60A(60B)が金属細線で構成された枠形状64と金属細線で構成された格子68からなるメッシュ形状66とからなるものを示したものである。
 ここで、電極パターン16A(16B)の細線の線幅をA(μm)としたとき、電極端子60A(60B)の枠形状64の線幅B(μm)は、B≧2A、又は、B≧A+5(μm)を満たすことが好ましい。
 図3のように、電極端子60A(60B)が金属細線で構成された枠形状64と金属製の細線で構成された格子68からなるメッシュ形状66とからなることで、従来の太い端子(ベタ端子)と異なり、タッチパネルのセンシング領域(電極パターン)では電極端子で光が乱反射することを防ぐことができるので、センシング領域の電極端子近傍において暗くなる部分が現れるのを防ぐことができる。
 なお、図2、図3のメッシュ形状66は、格子68は略ひし形の形状を有している。ここで略ひし形の形状とは、対角線が実質的に直交する平行四辺形を意味する。
 本発明に係る電極端子60A(60B)において、電極パターンと電気的に接続された部分と外部配線62A(62B)との間の抵抗は、1~100Ωの範囲になることが好ましい。また、図2、図3のような電極端子60A(60B)において、電極端子60A(60B)の表面抵抗値は4Ω/sq.以上80Ω/sq.以下の範囲になることが好ましく、10Ω/sq.以上40Ω/sq.以下の範囲になることがさらに好ましい。
 また、本発明において、電極パターン16A(16B)の透過率が83%以上であり、電極パターン16A(16B)の透過率をa%と表したとき、電極端子60A(60B)の透過率が(a-20)%以上(a-3)%以下であることが好ましい。
 さらに、本発明においては、電極パターン16A(16B)の開口率が90%以上であり、電極パターン16A(16B)の開口率をb%と表したとき、電極端子60A(60B)の開口率が(b-20)%以上(b-0.1)%以下であることが好ましい。なお、ここで開口率とは、電極端子60A(60B)の金属細線を除いた透光性部分が全体に占める割合であり、例えば、線幅15μm、ピッチ300μmの正方形の格子68の開口率は90%である。
 上記のとおり、本発明により、センシング領域の電極端子近傍において暗くなる部分が現れるのを防ぐことができるが、その他の効果として、以下に説明する露光による方法により導電シート12A(12B)を製造する場合、センシング領域の電極端子近傍の金属細線が目的とする線幅よりも太くなってしまうのを防ぐことができるという効果もある。
 従来の電極端子は高い導電性を備えるために太い端子(ベタ端子)となっているため、露光により電極端子となる部分には大量の光が照射される。電極パターンの線幅は非常に小さく、その電極端子近傍の電極パターンとなる部分にも伝達され、電極端子近傍の金属細線が目的とする線幅よりも太くなるという問題があった。
 即ち、本発明のように電極端子60A(60B)の透過率又は開口率を設定することで、露光により電極端子となる部分に大量の光が照射されることがなくなり、センシング領域の電極端子近傍の金属細線が目的とする線幅よりも太くなってしまうのを防ぐことができる。
 なお、本発明に係る導電シートを用いたタッチパネルを指で触れて操作したところ、応答速度が速く、検出感度に優れる。また2点以上をタッチして操作しても、同様に良好な結果が得られ、マルチタッチにも対応できる。
 次に、第1導電シート12Aや第2導電シート12Bを製造する方法について説明する。
 第1導電シート12Aや第2導電シート12Bを製造する場合は、例えば第1透明基体14A上及び第2透明基体14B上に感光性ハロゲン化銀塩を含有する乳剤層を有する感光材料を露光し、現像処理を施すことによって、露光部及び未露光部にそれぞれ金属銀部(金属細線)及び光透過性部(開口領域)を形成して第1電極パターン16A及び第2電極パターン16Bを形成するようにしてもよい。なお、さらに金属銀部に物理現像及び/又はめっき処理を施すことによって金属銀部に導電性金属を担持させるようにしてもよい。
 あるいは、第1透明基体14A及び第2透明基体14B上に形成された銅箔上のフォトレジスト膜を露光、現像処理してレジストパターンを形成し、レジストパターンから露出する銅箔をエッチングすることによって、第1電極パターン16A及び第2電極パターン16Bを形成するようにしてもよい。
 あるいは、第1透明基体14A及び第2透明基体14B上に金属微粒子を含むペーストを印刷し、ペーストに金属めっきを行うことによって、第1電極パターン16A及び第2電極パターン16Bを形成するようにしてもよい。
 上記2つの露光による方法で第1電極パターン16A及び第2電極パターン16Bを形成する場合、本発明によりセンシング領域の電極端子近傍の金属細線が目的とする線幅よりも太くなってしまうのを防ぐことができるという効果もある。
 第1透明基体14A及び第2透明基体14B上に、第1電極パターン16A及び第2電極パターン16Bをスクリーン印刷版又はグラビア印刷版によって印刷形成するようにしてもよい。あるいは、第1透明基体14A及び第2透明基体14B上に、第1電極パターン16A及び第2電極パターン16Bをインクジェットにより形成するようにしてもよい。
 図5Bに示すように、第1透明基体14Aの一主面に第1電極パターン16Aを形成し、第1透明基体14Aの他主面に第2電極パターン16Bを形成する場合、通常の製法に則って、最初に一主面を露光し、その後に、他主面を露光する方法を採用すると、所望のパターンを有する第1電極パターン16A及び第2電極パターン16Bを得ることができない場合がある。
 そこで、以下に示す製造方法を好ましく採用することができる。
 すなわち、第1透明基体14Aの両面に形成された感光性ハロゲン化銀乳剤層に対して一括露光を行って、第1透明基体14Aの一主面に第1電極パターン16Aを形成し、第1透明基体14Aの他主面に第2電極パターン16Bを形成する。
 この製造方法の具体例を説明する。
 最初に、長尺の感光材料を作製する。感光材料は、第1透明基体14Aと、第1透明基体14Aの一方の主面に形成された感光性ハロゲン化銀乳剤層(以下、第1感光層という)と、第1透明基体14Aの他方の主面に形成された感光性ハロゲン化銀乳剤層(以下、第2感光層という)とを有する。
 次に、感光材料を露光する。この露光処理では、第1感光層に対し、第1透明基体14Aに向かって光を照射して第1感光層を第1露光パターンに沿って露光する第1露光処理と、第2感光層に対し、第1透明基体14Aに向かって光を照射して第2感光層を第2露光パターンに沿って露光する第2露光処理とが行われる(両面同時露光)。
 例えば、長尺の感光材料を一方向に搬送しながら、第1感光層に第1光(平行光)を第1フォトマスクを介して照射すると共に、第2感光層に第2光(平行光)を第2フォトマスクを介して照射する。第1光は、第1光源から出射された光を途中の第1コリメータレンズにて平行光に変換されることにより得られ、第2光は、第2光源から出射された光を途中の第2コリメータレンズにて平行光に変換されることにより得られる。
 上記の説明では、2つの光源(第1光源及び第2光源)を使用した場合を示しているが、1つの光源から出射した光を光学系を介して分割して、第1光及び第2光として第1感光層及び第2感光層に照射してもよい。
 次いで、露光後の感光材料を現像処理することで、例えば図4Bに示すように、タッチパネル用導電性シート10が作製される。タッチパネル用導電性シート10は、第1透明基体14Aと、第1透明基体14Aの一方の主面に形成された第1露光パターンに沿った第1電極パターン16Aと、第1透明基体14Aの他方の主面に形成された第2露光パターンに沿った第2電極パターン16Bとを有する。なお、第1感光層及び第2感光層の露光時間及び現像時間は、第1光源及び第2光源の種類や現像液の種類等で様々に変化するため、好ましい数値範囲は一概に決定することができないが、現像率が100%となる露光時間及び現像時間に調整されている。
 そして、本実施の形態の製造方法では、第1露光処理は、第1感光層上に第1フォトマスクを例えば密着配置し、該第1フォトマスクに対向して配置された第1光源から第1フォトマスクに向かって第1光を照射することで、第1感光層を露光する。第1フォトマスクは、透明なソーダガラスで形成されたガラス基板と、該ガラス基板上に形成されたマスクパターン(第1露光パターン)とで構成されている。したがって、この第1露光処理によって、第1感光層のうち、第1フォトマスクに形成された第1露光パターンに沿った部分が露光される。第1感光層と第1フォトマスク146aとの間に2μm以上10μm以下程度の隙間を設けてもよい。
 同様に、第2露光処理は、第2感光層上に第2フォトマスクを例えば密着配置し、該第2フォトマスクに対向して配置された第2光源から第2フォトマスクに向かって第2光を照射することで、第2感光層を露光する。第2フォトマスクは、第1フォトマスクと同様に、透明なソーダガラスで形成されたガラス基板と、該ガラス基板上に形成されたマスクパターン(第2露光パターン)とで構成されている。したがって、この第2露光処理によって、第2感光層のうち、第2フォトマスクに形成された第2露光パターンに沿った部分が露光される。この場合、第2感光層と第2フォトマスクとの間に2μm以上10μm以下程度の隙間を設けてもよい。
 第1露光処理及び第2露光処理は、第1光源からの第1光の出射タイミングと、第2光源からの第2光の出射タイミングを同時にしてもよいし、異ならせてもよい。同時であれば、1度の露光処理で、第1感光層及び第2感光層を同時に露光することができ、処理時間の短縮化を図ることができる。
 次に、本実施の形態に係る第1導電シート12A及び第2導電シート12Bにおいて、特に好ましい態様であるハロゲン化銀写真感光材料を用いる方法を中心にして述べる。
 本実施の形態に係る第1導電シート12A及び第2導電シート12Bの製造方法は、感光材料と現像処理の形態によって、次の3通りの形態が含まれる。
 (1) 物理現像核を含まない感光性ハロゲン化銀黒白感光材料を化学現像又は熱現像して金属銀部を該感光材料上に形成させる態様。
 (2) 物理現像核をハロゲン化銀乳剤層中に含む感光性ハロゲン化銀黒白感光材料を溶解物理現像して金属銀部を該感光材料上に形成させる態様。
 (3) 物理現像核を含まない感光性ハロゲン化銀黒白感光材料と、物理現像核を含む非感光性層を有する受像シートを重ね合わせて拡散転写現像して金属銀部を非感光性受像シート上に形成させる態様。
 上記(1)の態様は、一体型黒白現像タイプであり、感光材料上に光透過性導電膜等の透光性導電性膜が形成される。得られる現像銀は化学現像銀又は熱現像銀であり、高比表面のフィラメントである点で後続するめっき又は物理現像過程で活性が高い。
 上記(2)の態様は、露光部では、物理現像核近縁のハロゲン化銀粒子が溶解されて現像核上に沈積することによって感光材料上に光透過性導電性膜等の透光性導電性膜が形成される。これも一体型黒白現像タイプである。現像作用が、物理現像核上への析出であるので高活性であるが、現像銀は比表面の小さい球形である。
 上記(3)の態様は、未露光部においてハロゲン化銀粒子が溶解されて拡散して受像シート上の現像核上に沈積することによって受像シート上に光透過性導電性膜等の透光性導電性膜が形成される。いわゆるセパレートタイプであって、受像シートを感光材料から剥離して用いる態様である。
 いずれの態様もネガ型現像処理及び反転現像処理のいずれの現像を選択することもできる(拡散転写方式の場合は、感光材料としてオートポジ型感光材料を用いることによってネガ型現像処理が可能となる)。
 ここで、本実施の形態に係る第1導電シート12A及び第2導電シート12Bの各層の構成について、以下に詳細に説明する。
 [第1透明基体14A、第2透明基体14B]
 第1透明基体14A及び第2透明基体14Bとしては、プラスチックフィルム、プラスチック板、ガラス板等を挙げることができる。特に、光透過性や加工性等の観点から、PETが好ましい。
 [銀塩乳剤層]
 第1導電シート12Aの第1電極パターン16A及び第2導電シート12Bの第2電極パターン16Bとなる銀塩乳剤層は、銀塩とバインダーの他、溶媒や染料等の添加剤を含有する。
 本実施の形態に用いられる銀塩としては、ハロゲン化銀等の無機銀塩及び酢酸銀等の有機銀塩が挙げられる。本実施の形態においては、光センサーとしての特性に優れるハロゲン化銀を用いることが好ましい。
 銀塩乳剤層の塗布銀量(銀塩の塗布量)は、銀に換算して1g/m以上30g/m以下が好ましく、1g/m以上25g/m以下がより好ましく、5g/m以上20g/m以下がさらに好ましい。この塗布銀量を上記範囲とすることで、タッチパネル用導電シート10とした場合に所望の表面抵抗を得ることができる。
 本実施の形態に用いられるバインダーとしては、例えば、ゼラチン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、澱粉等の多糖類、セルロース及びその誘導体、ポリエチレンオキサイド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース等が挙げられる。これらは、官能基のイオン性によって中性、陰イオン性、陽イオン性の性質を有する。
 本実施の形態の銀塩乳剤層中に含有されるバインダーの含有量は、特に限定されず、分散性と密着性を発揮し得る範囲で適宜決定することができる。銀塩乳剤層中のバインダーの含有量は、銀/バインダー体積比で1/4以上が好ましく、1/2以上がより好ましい。銀/バインダー体積比は、100/1以下が好ましく、50/1以下がより好ましい。また、銀/バインダー体積比は1/1以上4/1以下であることがさらに好ましい。1/1~3/1であることが最も好ましい。銀塩乳剤層中の銀/バインダー体積比をこの範囲にすることで、塗布銀量を調整した場合でも抵抗値のばらつきを抑制し、均一な表面抵抗を有するタッチパネル用導電シートを得ることができる。なお、銀/バインダー体積比は、原料のハロゲン化銀量/バインダー量(重量比)を銀量/バインダー量(重量比)に変換し、さらに、銀量/バインダー量(重量比)を銀量/バインダー量(体積比)に変換することで求めることができる。
 <溶媒>
 銀塩乳剤層の形成に用いられる溶媒は、特に限定されるものではないが、例えば、水、有機溶媒(例えば、メタノール等のアルコール類、アセトン等のケトン類、ホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、酢酸エチル等のエステル類、エーテル類等)、イオン性液体、及びこれらの混合溶媒を挙げることができる。
 本実施の形態の銀塩乳剤層に用いられる溶媒の含有量は、銀塩乳剤層に含まれる銀塩、バインダー等の合計の質量に対して30~90質量%の範囲であり、50~80質量%の範囲であることが好ましい。
 <その他の添加剤>
 本実施の形態に用いられる各種添加剤に関しては、特に制限はなく、公知のものを好ましく用いることができる。
 [その他の層構成]
 銀塩乳剤層の上に図示しない保護層を設けてもよい。本実施の形態において「保護層」とは、ゼラチンや高分子ポリマーといったバインダーからなる層を意味し、擦り傷防止や力学特性を改良する効果を発現するために感光性を有する銀塩乳剤層上に形成される。その厚みは0.5μm以下が好ましい。保護層の塗布方法及び形成方法は特に限定されず、公知の塗布方法及び形成方法を適宜選択することができる。また、銀塩乳剤層よりも下に、例えば下塗り層を設けることもできる。
 次に、第1導電シート12A及び第2導電シート12Bの作製方法の各工程について説明する。
 [露光]
 本実施の形態では、第1電極パターン16A及び第2電極パターン16Bを印刷方式によって施す場合を含むが、印刷方式以外は、第1電極パターン16A及び第2電極パターン16Bを露光と現像等によって形成する。すなわち、第1透明基体14A及び第2透明基体14B上に設けられた銀塩含有層を有する感光材料又はフォトリソグラフィ用フォトポリマーを塗工した感光材料への露光を行う。露光は、電磁波を用いて行うことができる。電磁波としては、例えば、可視光線、紫外線等の光、X線等の放射線等が挙げられる。さらに露光には波長分布を有する光源を利用してもよく、特定の波長の光源を用いてもよい。
 露光方法に関しては、ガラスマスクを介した方法やレーザー描画によるパターン露光方式が好ましい。
 [現像処理]
 本実施の形態では、乳剤層を露光した後、さらに現像処理が行われる。現像処理は、銀塩写真フイルムや印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる通常の現像処理の技術を用いることができる。
 本実施の形態での現像処理は、未露光部分の銀塩を除去して安定化させる目的で行われる定着処理を含むことができる。本発明における定着処理は、銀塩写真フイルムや印画紙、印刷製版用フイルム、フォトマスク用エマルジョンマスク等に用いられる定着処理の技術を用いることができる。
 現像、定着処理を施した感光材料は、硬膜処理、水洗処理や安定化処理を施されるのが好ましい。
 現像処理後の露光部に含まれる金属銀の質量は、露光前の露光部に含まれていた銀の質量に対して50質量%以上の含有率であることが好ましく、80質量%以上であることがさらに好ましい。露光部に含まれる銀の質量が露光前の露光部に含まれていた銀の質量に対して50質量%以上であれば、高い導電性を得ることができるため好ましい。
 以上の工程を経て導電シートは得られるが、得られた導電シートの表面抵抗は100オーム/sq.以下が好ましく、80オーム/sq.以下がより好ましく、60オーム/sq.以下がさらに好ましく、40オーム/sq.以下がよりさらに好ましい。表面抵抗の下限値は、低ければ低いほどよいが、一般的には0.01オーム/sq.であれば十分であり、0.1オーム/sq.や1オーム/sq.であっても用途によっては使用可能である。
 このような範囲に表面抵抗を調整することで、面積が10cm×10cm以上の大型のタッチパネルでも位置検出を行うことができる。また、現像処理後の導電シートに対しては、さらにカレンダー処理や蒸気処理などの導電性向上処理を行ってもよく、カレンダー処理により所望の表面抵抗に調整することができる。
 [物理現像及びめっき処理]
 本実施の形態では、前記露光及び現像処理により形成された金属銀部の導電性を向上させる目的で、前記金属銀部に導電性金属粒子を担持させるための物理現像及び/又はめっき処理を行ってもよい。本発明では物理現像又はめっき処理のいずれか一方のみで導電性金属粒子を金属性銀部に担持させてもよく、物理現像とめっき処理とを組み合わせて導電性金属粒子を金属銀部に担持させてもよい。なお、金属銀部に物理現像及び/又はめっき処理を施したものを含めて「導電性金属部」と称する。
 [酸化処理]
 本実施の形態では、現像処理後の金属銀部、並びに、物理現像及び/又はめっき処理によって形成された導電性金属部には、酸化処理を施すことが好ましい。酸化処理を行うことにより、例えば、光透過性部に金属が僅かに沈着していた場合に、該金属を除去し、光透過性部の透過性をほぼ100%にすることができる。
 [電極パターン]
 本実施の形態の第1電極パターン16A及び第2電極パターン16Bの金属細線の線幅は、30μm以下から選択可能であるが、タッチパネルの材料としての用途である場合、金属細線の線幅の下限値は0.7μmが好ましく、1μmがより好ましく、2μmがさらに好ましい。金属細線の線幅の上限値は15μmが好ましく、9μmがより好ましく、7μmがさらに好ましい。
 従来の電極端子は高い導電性を備えるために太い端子(ベタ端子)となっており、露光により電極端子となる部分には大量の光が照射される。電極パターンの線幅は上述のように非常に小さく、その大量の光の影響を受けることがある。特に、線幅が9μm以下、さらには7μm以下となる場合には、その影響が顕著となり、電極端子近傍の金属細線が目的とする線幅よりも太くなるという問題があった。
 線間隔(格子ピッチ)は100μm以上400μm以下であることが好ましく、さらに好ましくは200μm以上300μm以下である。また、金属細線は、アース接続等の目的においては、200μmより広い部分を有していてもよい。
 [光透過性部]
 本実施の形態における「光透過性部」とは、第1導電シート12A及び第2導電シート12Bのうち第1電極パターン16A及び第2電極パターン16B以外の透光性を有する部分を意味する。光透過性部における透過率は、前述のとおり、第1透明基体14A及び第2透明基体14Bの光吸収及び反射の寄与を除いた380~780nmの波長領域における透過率の最小値で示される透過率が83%以上、好ましくは85%以上、さらに好ましくは90%以上であり、さらにより好ましくは93%以上であり、最も好ましくは99%以上である。
 [第1導電シート12A及び第2導電シート12B]
 本実施の形態に係る第1導電シート12A及び第2導電シート12Bにおける第1透明基体14A及び第2透明基体14Bの厚さは、5μm以上350μm以下であることが好ましく、30μm以上150μm以下であることがさらに好ましい。5μm以上350μm以下の範囲であれば所望の可視光の透過率が得られ、且つ、取り扱いも容易である。
 第1透明基体14A及び第2透明基体14B上に設けられる金属銀部の厚さは、第1透明基体14A及び第2透明基体14B上に塗布される銀塩含有層用塗料の塗布厚みに応じて適宜決定することができる。金属銀部の厚さは、0.001mm以上0.2mm以下から選択可能であるが、30μm以下であることが好ましく、20μm以下であることがより好ましく、0.01μm以上9μm以下であることがさらに好ましく、0.05μm以上5μm以下であることが最も好ましい。また、金属銀部はパターン状であることが好ましい。金属銀部は1層でもよく、2層以上の重層構成であってもよい。金属銀部がパターン状であり、且つ、2層以上の重層構成である場合、異なる波長に感光できるように、異なる感色性を付与することができる。これにより、露光波長を変えて露光すると、各層において異なるパターンを形成することができる。
 導電性金属部の厚さは、タッチパネルの用途としては、薄いほど表示パネルの視野角が広がるため好ましく、視認性の向上の点でも薄膜化が要求される。このような観点から、導電性金属部に担持された導電性金属からなる層の厚さは、9μm未満であることが好ましく、0.1μm以上5μm未満であることがより好ましく、0.1μm以上3μm未満であることがさらに好ましい。
 本実施の形態では、上述した銀塩含有層の塗布厚みをコントロールすることにより所望の厚さの金属銀部を形成し、さらに物理現像及び/又はめっき処理により導電性金属粒子からなる層の厚みを自在にコントロールできるため、5μm未満、好ましくは3μm未満の厚みを有する第1導電シート12A及び第2導電シート12Bであっても容易に形成することができる。
 本発明に係る導電シート及びタッチパネルは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。また、特開2011-113149、特開2011-129501、特開2011-129112、特開2011-134311、特開2011-175628などに開示の技術と適宜組み合わせて使用することができる。
 以下に、本発明の実施例を挙げて本発明をさらに具体的に説明する。なお、以下の実施例に示される材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 サンプルに係る積層導電性シートについて、透過率又は開口率を測定し、視認性を評価した。
 (ハロゲン化銀感光材料)
 水媒体中のAg150gに対してゼラチン10.0gを含む、球相当径平均0.1μmの沃臭塩化銀粒子(I=0.2モル%、Br=40モル%)を含有する乳剤を調製した。
 また、この乳剤中にはKRhBr及びKIrClを濃度が10-7(モル/モル銀)になるように添加し、臭化銀粒子にRhイオンとIrイオンをドープした。この乳剤にNaPdClを添加し、さらに塩化金酸とチオ硫酸ナトリウムを用いて金硫黄増感を行った後、ゼラチン硬膜剤と共に、銀の塗布量が10g/mとなるように第1透明基体12A及び第2透明基体12B(ここでは、共にポリエチレンテレフタレート(PET))上に塗布した。この際、Ag/ゼラチン体積比は2/1とした。
 幅30cmのPET支持体に25cmの幅で20m分塗布を行い、塗布の中央部24cmを残すように両端を3cmずつ切り落としてロール状のハロゲン化銀感光材料を得た。
 (露光)
 露光のパターンは、第1導電シート12Aについては図1及び図3に示すパターンで、第2導電シート12Bについては図4A、図4B及び図6Bに示すパターンで、A4サイズ(210mm×297mm)の第1透明基体14A及び第2透明基体14Bに行った。露光は上記パターンのフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて露光した。なお、第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bは、図1~3に示した全てのパターンでそれぞれサンプルを作成した。
 (現像処理)
 ・現像液1L処方
   ハイドロキノン            20 g
   亜硫酸ナトリウム           50 g
   炭酸カリウム             40 g
   エチレンジアミン・四酢酸        2 g
   臭化カリウム              3 g
   ポリエチレングリコール2000     1 g
   水酸化カリウム             4 g
   pH              10.3に調整
 ・定着液1L処方
   チオ硫酸アンモニウム液(75%)  300 ml
   亜硫酸アンモニウム・1水塩      25 g
   1,3-ジアミノプロパン・四酢酸    8 g
   酢酸                  5 g
   アンモニア水(27%)         1 g
   pH               6.2に調整
 上記処理剤を用いて露光済み感材を、富士フイルム社製自動現像機 FG-710PTSを用いて処理条件:現像35℃ 30秒、定着34℃ 23秒、水洗 流水(5L/分)の20秒処理で行った。
 [実験1]
 (サンプル1-1)実施例
 作製した第1導電シート12A及び第2導電シート12Bの導電部(第1電極パターン16A、第2電極パターン16B)の透過度は83%である。作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bは図1のパターンであり、透過度は63%である。
 (サンプル1-2)実施例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を80%とした点以外は、サンプル1-1と同様にした。
 (サンプル1-3)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を60%とした点以外は、サンプル1-1と同様にした。
 (サンプル1-4)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を83%とした点以外は、サンプル1-1と同様にした。
 (サンプル1-5)実施例
 作製した第1導電シート12A及び第2導電シート12Bの導電部(第1電極パターン16A、第2電極パターン16B)の透過度は90%である。作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bは図1のパターンであり、透過度は70%である。
 (サンプル1-6)実施例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を87%とした点以外は、サンプル1-5と同様にした。
 (サンプル1-7)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を67%とした点以外は、サンプル1-5と同様にした。
 (サンプル1-8)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を90%とした点以外は、サンプル1-5と同様にした。
 (サンプル1-9)実施例
 作製した第1導電シート12A及び第2導電シート12Bの導電部(第1電極パターン16A、第2電極パターン16B)の透過度は83%である。作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bは図2のパターンであり、透過度は63%である。
 (サンプル1-10)実施例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を80%とした点以外は、サンプル1-9と同様にした。
 (サンプル1-11)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を60%とした点以外は、サンプル1-9と同様にした。
 (サンプル1-12)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を83%とした点以外は、サンプル1-9と同様にした。
 (サンプル1-13)実施例
 作製した第1導電シート12A及び第2導電シート12Bの導電部(第1電極パターン16A、第2電極パターン16B)の透過度は83%である。作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bは図3のパターンであり、透過度は63%である。
 (サンプル1-14)実施例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を80%とした点以外は、サンプル1-13と同様にした。
 (サンプル1-15)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端
子60Bの透過度を60%とした点以外は、サンプル1-7と同様にした。
 (サンプル1-16)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を83%とした点以外は、サンプル1-13と同様にした。
 <透過率の測定>
 第1導電シート12A及び第2導電シート12Bを、測光機を用いて全光線透過率を測定した。測光機は、東京電色社製のTC-HIIIDPKを用いて計測した。
 <視認性の評価>
 上述したサンプルに係る積層導電性シートを用いてそれぞれ投影型静電容量方式のタッチパネルを作製した。タッチパネルを回転盤に設置し、液晶表示装置を駆動して白色を表示させた際に、センシング領域の電極端子近傍において影(暗くなる部分)が確認できるかどうかを肉眼で確認した。
 視認性が優れるものをA、視認性が良好なものをB、実用上視認性に影響しないものをC、視認性が悪いものをDと評価した。
 <反応速度の評価>
 反応速度が優れるものをA、反応速度が良好なものをB、実用性上応答速度で問題にならないものをC、応答速度が遅く検出感度が悪いものをDと評価した。
Figure JPOXMLDOC01-appb-T000001
 <結果1>
 表1からわかるように、サンプル1-1~16のうち本発明に係る透過度の範囲にあるものにおいては、視認性が良好であった。また、サンプル1-1~16のうち本発明に係る透過度の範囲にあるものにおいては、タッチパネルを指で触れて操作したところ、応答速度が速く、検出感度に優れることがわかった。また2点以上をタッチして操作したところ、同様に良好な結果が得られ、マルチタッチにも対応できることが確認できた。
 [実験2]
 (サンプル2-1)実施例
 作製した第1導電シート12A及び第2導電シート12Bの導電部(第1電極パターン16A、第2電極パターン16B)の開口率は90%である。作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bは図5A及び図5Bに示すパターンであり、開口率は70%である。
 (サンプル2-2)実施例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの開口率を89.9%とした点以外は、サンプル2-1と同様にした。
 (サンプル2-3)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの開口率を68%とした点以外は、サンプル2-1と同様にした。
 (サンプル2-4)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を90%とした点以外は、サンプル2-1と同様にした。
 (サンプル2-5)実施例
 作製した第1導電シート12A及び第2導電シート12Bの導電部(第1電極パターン16A、第2電極パターン16B)の開口率は97%である。作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bは図5A及び図5Bに示すパターンであり、開口率は77%である。
 (サンプル2-6)実施例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの開口率を96.9%とした点以外は、サンプル2-5と同様にした。
 (サンプル2-7)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの開口率を75%とした点以外は、サンプル2-5と同様にした。
 (サンプル2-8)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの開口率を97%とした点以外は、サンプル2-5と同様にした。
 (サンプル2-9)実施例
 作製した第1導電シート12A及び第2導電シート12Bの導電部(第1電極パターン16A、第2電極パターン16B)の開口率は90%である。作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bは図6A及び図6Bに示すパターンであり、開口率は70%である。
 (サンプル2-10)実施例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの開口率を89.9%とした点以外は、サンプル2-9と同様にした。
 (サンプル2-11)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの開口率を68%とした点以外は、サンプル2-9と同様にした。
 (サンプル2-12)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を90%とした点以外は、サンプル2-9と同様にした。
 (サンプル2-13)実施例
 作製した第1導電シート12A及び第2導電シート12Bの導電部(第1電極パターン16A、第2電極パターン16B)の開口率は90%である。作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bは図7のパターンであり、開口率は70%である。
 (サンプル2-14)実施例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの開口率を89.9%とした点以外は、サンプル2-13と同様にした。
 (サンプル2-15)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの開口率を68%とした点以外は、サンプル2-13と同様にした。
 (サンプル2-16)比較例
 作製した第1導電シート12A及び第2導電シート12Bの電極端子60A及び電極端子60Bの透過度を90%とした点以外は、サンプル2-13と同様にした。
 <開口率の測定>
 第1導電シート12A及び第2導電シート12Bを、キーエンス社製のマイクロスコープVHX-200を用い、3000倍の条件で計測した。
 <視認性の評価>
 上述したサンプルに係る積層導電性シートを用いてそれぞれ投影型静電容量方式のタッチパネルを作製した。タッチパネルを回転盤に設置し、液晶表示装置を駆動して白色を表示させた際に、センシング領域の電極端子近傍において影(暗くなる部分)が確認できるかどうかを肉眼で確認した。
 視認性が優れるものをA,視認性が良好なものをB、実用上視認性に影響しないものをC、視認性が悪いものをDと評価した。
 <反応速度の評価>
 反応速度が優れるものをA、反応速度が良好なものをB、実用性上応答速度で問題にならないものをC、応答速度が遅く検出感度が悪いものをDと評価した。
Figure JPOXMLDOC01-appb-T000002
 <結果2>
 表2からわかるように、サンプル2-1~16のうち本発明に係る開口率の範囲にあるものにおいては、視認性が良好であった。また、サンプル2-1~16のうち本発明に係る開口率の範囲にあるものにおいては、タッチパネルを指で触れて操作したところ、応答速度が速く、検出感度に優れることがわかった。また2点以上をタッチして操作したところ、同様に良好な結果が得られ、マルチタッチにも対応できることが確認できた。
 本発明に係る導電シート及びタッチパネルは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
 10…(タッチパネル用)導電シート、12A…(第1)導電シート、12B…(第2)導電シート、14A…(第1)透明基体、14B…(第2)透明基体、16A…(第1)電極パターン、16B…(第2)電極パターン、18A…(第1)導電パターン、18B…(第2)導電パターン、20A…(第1)非導電パターン、20B…(第2)非導電パターン、22A…断線部、22B…断線部、24A…格子、24B…格子、60A…(第1)電極端子、60B…(第2)電極端子、62A…(第1)外部配線、62B…(第2)外部配線、64…枠形状、66…メッシュ形状、68…格子、70…組合せパターン

Claims (19)

  1.  金属細線で構成された電極パターンと、該電極パターンの端部と電気的に接続された電極端子と、を有する導電シートであって、
     前記電極パターンの透過率が83%以上であり、前記電極パターンの透過率をa%と表したとき、前記電極端子の透過率が(a-20)%以上(a-3)%以下である導電シート。
  2.  金属細線で構成された電極パターンと、該電極パターンの端部と電気的に接続された電極端子と、を有する導電シートであって、
     前記電極パターンの開口率が90%以上であり、前記電極パターンの開口率をb%と表したとき、前記電極端子の開口率が(b-20)%以上(b-0.1)%以下である導電シート。
  3.  前記電極端子は金属細線で構成された格子からなるメッシュ形状を含む請求項1又は2に記載の導電シート。
  4.  前記金属細線は30μm以下の線幅である請求項3に記載の導電シート。
  5.  前記金属細線は不透明な材料で構成される請求項3又は4に記載の導電シート。
  6.  センシング領域に設けられ、金属細線で構成された電極パターンと、前記センシング領域の外側に設けられ、該電極パターンの端部と電気的に接続された電極端子と、が設けられた導電シートを有するタッチパネルであって、
     前記電極パターンの透過率が83%以上であり、前記電極パターンの透過率をa%と表したとき、前記電極端子の透過率が(a-20)%以上(a-3)%以下であるタッチパネル。
  7.  センシング領域に設けられ、金属細線で構成された電極パターンと、前記センシング領域の外側に設けられ、該電極パターンの端部と電気的に接続された電極端子と、が設けられた導電シートを有するタッチパネルであって、
     前記電極パターンの開口率が90%以上であり、前記電極パターンの開口率をb%と表したとき、前記電極端子の開口率が(b-20)%以上(b-0.1)%以下であるタッチパネル。
  8.  金属細線で構成された電極パターンと、該電極パターンの端部と電気的に接続された電極端子と、を有する導電シートであって、
     前記電極端子は、金属細線で構成された枠形状を含む導電シート。
  9.  前記電極パターンの細線の線幅をa(μm)としたとき、前記電極端子の枠形状の線幅b(μm)は、b≧2a、又は、b≧a+5(μm)を満たす請求項8に記載の導電シート。
  10.  前記電極パターンの細線の線幅a(μm)は、30μm以下である請求項9に記載の導電シート。
  11.  前記電極端子の金属細線で構成された枠形状の内部には、さらに、金属細線で構成された格子形状からなるメッシュ形状が設けられている請求項9又は10に記載の導電シート。
  12.  センシング領域に設けられ、金属細線で構成された電極パターンと、前記センシング領域の外側に設けられ、該電極パターンの端部と電気的に接続された電極端子と、が設けられた導電シートを有するタッチパネルであって、
     前記電極端子は、金属製の細線で構成された枠形状を含むタッチパネル。
  13.  金属細線で構成された電極パターンと、該電極パターンの端部と電気的に接続された電極端子と、を有する導電シートであって、
     前記電極端子は金属細線で構成された格子からなるメッシュ形状を含む導電シート。
  14.  前記電極パターンは、格子からなるメッシュ形状であるとともに、
     前記電極端子の格子からなるメッシュ形状のピッチは、前記電極パターンの格子からなるメッシュ形状のピッチよりも密である請求項13に記載の導電シート。
  15.  前記電極端子の格子からなるメッシュ形状のピッチは、前記電極パターンの格子からなるメッシュ形状のピッチの3/4以下である請求項14に記載の導電シート。
  16.  前記電極端子の格子からなるメッシュ形状のピッチは、50μm以上300μm以下である請求項13~15の何れか1に記載の導電シート。
  17.  前記電極端子には、前記電極端子の格子からなるメッシュ形状の外枠に、さらに、金属細線で構成された枠形状が設けられている請求項13~16の何れか1に記載の導電シート。
  18.  前記電極端子の表面抵抗値が4Ω/sq.以上80Ω/sq.以下である請求項13~17の何れか1に記載の導電シート。
  19.  センシング領域に設けられ、金属細線で構成された電極パターンと、前記センシング領域の外側に設けられ、該電極パターンの端部と電気的に接続された電極端子と、が設けられた導電シートを有するタッチパネルであって、
     前記電極端子は金属細線で構成された格子からなるメッシュ形状を含むタッチパネル。
PCT/JP2012/082030 2011-12-16 2012-12-11 導電シート及びタッチパネル WO2013089085A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112014010102A BR112014010102A8 (pt) 2011-12-16 2012-12-11 folha eletrocondutora e painel de toque
EP14171329.7A EP2781996B1 (en) 2011-12-16 2012-12-11 Conductive sheet and touch panel
EP12857606.3A EP2765490B1 (en) 2011-12-16 2012-12-11 Conductive sheet and touch panel
CN201280053290.5A CN103907082B (zh) 2011-12-16 2012-12-11 导电片以及触摸面板
KR1020147011932A KR101645828B1 (ko) 2011-12-16 2012-12-11 도전 시트 및 터치 패널
KR1020147011920A KR101451075B1 (ko) 2011-12-16 2012-12-11 도전 시트 및 터치 패널
US14/264,879 US9055680B2 (en) 2011-12-16 2014-04-29 Electroconductive sheet and touch panel
US14/271,512 US9078364B2 (en) 2011-12-16 2014-05-07 Electroconductive sheet and touch panel

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-276069 2011-12-16
JP2011276069A JP5777251B2 (ja) 2011-12-16 2011-12-16 タッチパネル用導電シート及びタッチパネル
JP2011276070A JP5509186B2 (ja) 2011-12-16 2011-12-16 タッチパネル及びタッチパネル用導電シート
JP2011-276070 2011-12-16
JP2011-281926 2011-12-22
JP2011281926A JP5748647B2 (ja) 2011-12-22 2011-12-22 導電シート及びタッチパネル

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/264,879 Continuation US9055680B2 (en) 2011-12-16 2014-04-29 Electroconductive sheet and touch panel

Publications (1)

Publication Number Publication Date
WO2013089085A1 true WO2013089085A1 (ja) 2013-06-20

Family

ID=48612532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082030 WO2013089085A1 (ja) 2011-12-16 2012-12-11 導電シート及びタッチパネル

Country Status (7)

Country Link
US (2) US9055680B2 (ja)
EP (2) EP2781996B1 (ja)
KR (2) KR101451075B1 (ja)
CN (2) CN103984461B (ja)
BR (1) BR112014010102A8 (ja)
TW (2) TWI537779B (ja)
WO (1) WO2013089085A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781996A2 (en) 2011-12-16 2014-09-24 Fujifilm Corporation Conductive sheet and touch panel
WO2015060059A1 (ja) * 2013-10-22 2015-04-30 富士フイルム株式会社 導電性フイルム、タッチパネル及び表示装置
CN105453000A (zh) * 2013-07-16 2016-03-30 Lg伊诺特有限公司 触摸窗
JP2018196992A (ja) * 2018-06-12 2018-12-13 コニカミノルタ株式会社 機能性細線パターン、透明導電膜付き基材、デバイス及び電子機器
US10303292B2 (en) * 2014-01-13 2019-05-28 Lg Innotek Co., Ltd. Touch window and touch device including the same

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2950187A4 (en) * 2013-01-25 2016-10-19 Toppan Printing Co Ltd TOUCH PANEL, AND DISPLAY DEVICE
US20140251672A1 (en) * 2013-03-05 2014-09-11 Ronald Steven Cok Micro-channel connection pad
TWI498799B (zh) * 2013-03-27 2015-09-01 Innolux Corp 觸控元件及使用此觸控元件的電子裝置
WO2014185388A1 (ja) * 2013-05-16 2014-11-20 三菱製紙株式会社 導電性パターン及び単層静電容量方式タッチパネルの電極パターン
EP3130992A4 (en) 2014-04-08 2018-01-17 Fujikura, Ltd. Wiring body and wiring substrate
KR102258037B1 (ko) * 2014-06-02 2021-05-27 가부시키가이샤 브이티에스 터치센서 터치 센서용 전극, 터치 패널 및, 표시 장치
CN106662939B (zh) * 2014-06-10 2020-07-28 富士胶片株式会社 触控面板用导电性层积体、触控面板、透明导电性层积体
KR102256461B1 (ko) * 2014-10-10 2021-05-26 삼성디스플레이 주식회사 터치 센서 및 이를 포함하는 표시 장치
CN107148607A (zh) * 2014-10-28 2017-09-08 柯尼卡美能达株式会社 图案、带图案的基材及触摸面板
JP6422762B2 (ja) * 2014-12-16 2018-11-14 三菱製紙株式会社 光透過性導電材料
US10394398B2 (en) 2015-02-27 2019-08-27 Fujikura Ltd. Wiring body, wiring board, wiring structure, and touch sensor
WO2016136967A1 (ja) 2015-02-27 2016-09-01 株式会社フジクラ 配線体、配線基板、及びタッチセンサ
KR102255415B1 (ko) * 2015-03-30 2021-05-21 동우 화인켐 주식회사 터치 센서
KR102255445B1 (ko) * 2015-03-30 2021-05-21 동우 화인켐 주식회사 터치 센서
KR102372334B1 (ko) 2015-04-14 2022-03-08 삼성디스플레이 주식회사 터치 패널
JP2016206754A (ja) * 2015-04-16 2016-12-08 凸版印刷株式会社 タッチセンサ用電極、タッチパネル、および、表示装置
KR102286210B1 (ko) * 2015-05-04 2021-08-05 엘지이노텍 주식회사 터치 패널
US10534483B2 (en) 2015-05-04 2020-01-14 Lg Innotek Co., Ltd. Touch panel
JP6421077B2 (ja) * 2015-05-19 2018-11-07 富士フイルム株式会社 アンテナの製造方法およびタッチセンサ
TWI610206B (zh) 2015-06-22 2018-01-01 Fujikura Ltd 配線體、配線基板及觸控感測器
JP6755000B2 (ja) * 2016-03-28 2020-09-16 パナソニックIpマネジメント株式会社 タッチパネルセンサー用部材及びタッチパネル
JP6744169B2 (ja) * 2016-04-04 2020-08-19 株式会社ジャパンディスプレイ 検出装置及び表示装置
US10126899B2 (en) 2016-04-04 2018-11-13 Japan Display Inc. Detection device and display device
WO2018146963A1 (ja) * 2017-02-09 2018-08-16 コニカミノルタ株式会社 タッチスクリーン及びタッチスクリーンの製造方法
CN109558024B (zh) 2017-09-27 2024-05-17 京东方科技集团股份有限公司 显示装置、触控面板及其制造方法、驱动方法
JP6886907B2 (ja) * 2017-10-31 2021-06-16 日本航空電子工業株式会社 タッチパネル及びタッチパネルの生産方法
CN109976566B (zh) * 2018-03-23 2021-05-18 京东方科技集团股份有限公司 触控结构、触控基板及其制作方法、显示装置
JP7115036B2 (ja) * 2018-05-25 2022-08-09 ウシオ電機株式会社 エキシマランプ
CN108897463B (zh) * 2018-07-06 2021-08-06 广州国显科技有限公司 触控装置及显示器件
WO2021159299A1 (zh) * 2020-02-12 2021-08-19 京东方科技集团股份有限公司 触控显示基板及触控显示装置
US11157122B1 (en) * 2020-06-03 2021-10-26 Futuretech Capital, Inc. Method to design low visibility metal mesh touch sensor

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113041A (en) 1990-12-28 1992-05-12 At&T Bell Laboratories Information processing
JPH05224818A (ja) 1992-02-10 1993-09-03 Matsushita Electric Ind Co Ltd タッチパネル装置
WO1995027334A1 (en) 1994-04-05 1995-10-12 Ronald Peter Binstead Multiple input proximity detector and touchpad system
WO1997018508A1 (en) 1995-11-13 1997-05-22 Synaptics, Inc. Pressure sensitive scrollbar feature
JP2003099185A (ja) 2001-09-20 2003-04-04 Alps Electric Co Ltd 入力装置
US20040229028A1 (en) 2002-12-27 2004-11-18 Fuji Photo Film Co., Ltd. Method for producing light-transmitting electromagnetic wave-shielding film, light-transmitting electromagnetic wave-shielding film and plasma display panel using the shielding film
US20040239650A1 (en) 2003-06-02 2004-12-02 Mackey Bob Lee Sensor patterns for a capacitive sensing apparatus
WO2006001461A1 (ja) 2004-06-23 2006-01-05 Fuji Photo Film Co., Ltd. 透光性電磁波シールド膜およびその製造方法
US7202859B1 (en) 2002-08-09 2007-04-10 Synaptics, Inc. Capacitive sensing pattern
JP2009129295A (ja) * 2007-11-27 2009-06-11 Gunze Ltd タッチパネルおよび該タッチパネルを使用したタッチパネル装置
WO2009108765A2 (en) * 2008-02-28 2009-09-03 3M Innovative Properties Company Touch screen sensor having varying sheet resistance
EP2113827A2 (en) * 2008-04-30 2009-11-04 TPO Displays Corp. Touch input device
JP2010251230A (ja) * 2009-04-20 2010-11-04 Fujifilm Corp 電熱窓ガラス
JP2011113149A (ja) 2009-11-24 2011-06-09 Fujifilm Corp 導電シート、導電シートの使用方法及び静電容量方式タッチパネル
JP2011129501A (ja) 2009-11-20 2011-06-30 Fujifilm Corp 導電シート、導電シートの使用方法及び静電容量方式タッチパネル
JP2011134311A (ja) 2009-11-24 2011-07-07 Fujifilm Corp 導電シート、導電シートの使用方法及び静電容量方式タッチパネル
JP2011175628A (ja) 2010-01-28 2011-09-08 Fujifilm Corp 導電シート、導電シートの使用方法及び静電容量方式タッチパネル
JP2011175967A (ja) * 2010-01-28 2011-09-08 Fujifilm Corp 導電シート、導電シートの使用方法及び静電容量方式タッチパネル

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1522060A4 (en) * 2002-07-12 2006-01-04 Sharp Kk Wiring structure, display device and active component
JP4610416B2 (ja) * 2005-06-10 2011-01-12 日本写真印刷株式会社 静電容量型タッチパネル
US8264466B2 (en) * 2006-03-31 2012-09-11 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
WO2009108771A2 (en) * 2008-02-28 2009-09-03 3M Innovative Properties Company Methods of patterning a conductor on a substrate
US8284332B2 (en) * 2008-08-01 2012-10-09 3M Innovative Properties Company Touch screen sensor with low visibility conductors
KR101727444B1 (ko) * 2008-02-28 2017-04-14 쓰리엠 이노베이티브 프로퍼티즈 컴파니 터치 스크린 센서
JP5253288B2 (ja) * 2009-05-08 2013-07-31 グンゼ株式会社 面状体及びタッチスイッチ
EP2511806A3 (en) * 2008-07-31 2013-01-02 Gunze Limited Capacitive touch switch
US9244568B2 (en) 2008-11-15 2016-01-26 Atmel Corporation Touch screen sensor
KR100909265B1 (ko) * 2009-02-23 2009-07-27 (주)이엔에이치테크 정전용량 방식의 터치스크린 패널의 제조방법
DE102009014757A1 (de) 2009-03-27 2010-10-07 Polyic Gmbh & Co. Kg Elektrische Funktionsschicht, Herstellungsverfahren und Verwendung dazu
CN102369108B (zh) * 2009-03-30 2015-09-09 琳得科株式会社 透明导电膜
EP2415597A4 (en) * 2009-03-31 2014-12-31 Teijin Ltd TRANSPARENT CONDUCTIVE LAMINATE AND TRANSPARENT TOUCH PANEL
US20110007011A1 (en) * 2009-07-13 2011-01-13 Ocular Lcd Inc. Capacitive touch screen with a mesh electrode
US8692445B2 (en) * 2009-07-16 2014-04-08 Lg Chem, Ltd. Electrical conductor and a production method therefor
JP5298352B2 (ja) * 2009-09-16 2013-09-25 株式会社トプコン 光構造像観察装置及び内視鏡装置
CN102574388B (zh) * 2009-11-11 2014-05-14 东丽株式会社 导电层合体及其制造方法
JP2012014669A (ja) * 2009-11-20 2012-01-19 Fujifilm Corp 導電シート、導電シートの使用方法及び静電容量方式タッチパネル
US8432678B2 (en) * 2010-01-06 2013-04-30 Apple Inc. Component assembly
JP5613448B2 (ja) 2010-04-30 2014-10-22 富士フイルム株式会社 タッチパネル及び導電シート
KR101726623B1 (ko) 2010-03-16 2017-04-14 엘지디스플레이 주식회사 터치 패널
JP5248653B2 (ja) * 2010-05-27 2013-07-31 富士フイルム株式会社 導電シート及び静電容量方式タッチパネル
TWI404996B (zh) * 2010-12-31 2013-08-11 Au Optronics Corp 觸控面板的製造方法以及觸控面板
TWM415361U (en) * 2011-04-22 2011-11-01 Young Lighting Technology Corp Touch device
BR112014010102A8 (pt) 2011-12-16 2017-06-20 Fujifilm Corp folha eletrocondutora e painel de toque

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113041A (en) 1990-12-28 1992-05-12 At&T Bell Laboratories Information processing
JPH05224818A (ja) 1992-02-10 1993-09-03 Matsushita Electric Ind Co Ltd タッチパネル装置
WO1995027334A1 (en) 1994-04-05 1995-10-12 Ronald Peter Binstead Multiple input proximity detector and touchpad system
WO1997018508A1 (en) 1995-11-13 1997-05-22 Synaptics, Inc. Pressure sensitive scrollbar feature
JP2003099185A (ja) 2001-09-20 2003-04-04 Alps Electric Co Ltd 入力装置
US7202859B1 (en) 2002-08-09 2007-04-10 Synaptics, Inc. Capacitive sensing pattern
US20040229028A1 (en) 2002-12-27 2004-11-18 Fuji Photo Film Co., Ltd. Method for producing light-transmitting electromagnetic wave-shielding film, light-transmitting electromagnetic wave-shielding film and plasma display panel using the shielding film
US20040239650A1 (en) 2003-06-02 2004-12-02 Mackey Bob Lee Sensor patterns for a capacitive sensing apparatus
WO2006001461A1 (ja) 2004-06-23 2006-01-05 Fuji Photo Film Co., Ltd. 透光性電磁波シールド膜およびその製造方法
JP2009129295A (ja) * 2007-11-27 2009-06-11 Gunze Ltd タッチパネルおよび該タッチパネルを使用したタッチパネル装置
WO2009108765A2 (en) * 2008-02-28 2009-09-03 3M Innovative Properties Company Touch screen sensor having varying sheet resistance
EP2113827A2 (en) * 2008-04-30 2009-11-04 TPO Displays Corp. Touch input device
JP2010251230A (ja) * 2009-04-20 2010-11-04 Fujifilm Corp 電熱窓ガラス
JP2011129501A (ja) 2009-11-20 2011-06-30 Fujifilm Corp 導電シート、導電シートの使用方法及び静電容量方式タッチパネル
JP2011129112A (ja) 2009-11-20 2011-06-30 Fujifilm Corp 導電シート、導電シートの使用方法及び静電容量方式タッチパネル
JP2011113149A (ja) 2009-11-24 2011-06-09 Fujifilm Corp 導電シート、導電シートの使用方法及び静電容量方式タッチパネル
JP2011134311A (ja) 2009-11-24 2011-07-07 Fujifilm Corp 導電シート、導電シートの使用方法及び静電容量方式タッチパネル
JP2011175628A (ja) 2010-01-28 2011-09-08 Fujifilm Corp 導電シート、導電シートの使用方法及び静電容量方式タッチパネル
JP2011175967A (ja) * 2010-01-28 2011-09-08 Fujifilm Corp 導電シート、導電シートの使用方法及び静電容量方式タッチパネル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2765490A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781996A2 (en) 2011-12-16 2014-09-24 Fujifilm Corporation Conductive sheet and touch panel
CN105453000A (zh) * 2013-07-16 2016-03-30 Lg伊诺特有限公司 触摸窗
EP3000017A4 (en) * 2013-07-16 2017-01-25 LG Innotek Co., Ltd. Touch window
US10156944B2 (en) 2013-07-16 2018-12-18 Lg Innotek Co., Ltd. Touch window
WO2015060059A1 (ja) * 2013-10-22 2015-04-30 富士フイルム株式会社 導電性フイルム、タッチパネル及び表示装置
US10528193B2 (en) 2013-10-22 2020-01-07 Fujifilm Corporation Touch panel electrode comprising a base, two or more first electrode patterns, and two or more second electrode patterns, touch panel, and display device
US10606426B2 (en) 2013-10-22 2020-03-31 Fujifilm Corporation Touch panel electrode comprising a base, two or more first electrode patterns, and two or more second electrode patterns, touch panel, and display device
US11179915B2 (en) 2013-10-22 2021-11-23 Fujifilm Corporation Touch panel electrode comprising two or more first electrode patterns, and two or more second electrode patterns, touch panel, and display device
US10303292B2 (en) * 2014-01-13 2019-05-28 Lg Innotek Co., Ltd. Touch window and touch device including the same
US20190235697A1 (en) * 2014-01-13 2019-08-01 Lg Innotek Co., Ltd. Touch window and touch device including the same
US10521048B2 (en) 2014-01-13 2019-12-31 Lg Innotek Co., Ltd. Touch window and touch device including the same
JP2018196992A (ja) * 2018-06-12 2018-12-13 コニカミノルタ株式会社 機能性細線パターン、透明導電膜付き基材、デバイス及び電子機器

Also Published As

Publication number Publication date
TW201327315A (zh) 2013-07-01
EP2781996A3 (en) 2015-03-04
KR101451075B1 (ko) 2014-10-15
BR112014010102A2 (pt) 2017-06-13
TW201432527A (zh) 2014-08-16
EP2765490A4 (en) 2015-05-06
BR112014010102A8 (pt) 2017-06-20
US9078364B2 (en) 2015-07-07
EP2765490B1 (en) 2017-06-07
EP2781996A2 (en) 2014-09-24
US9055680B2 (en) 2015-06-09
CN103907082A (zh) 2014-07-02
KR20140063900A (ko) 2014-05-27
US20140231120A1 (en) 2014-08-21
CN103984461A (zh) 2014-08-13
KR101645828B1 (ko) 2016-08-04
EP2781996B1 (en) 2019-12-04
CN103907082B (zh) 2016-09-21
KR20140090176A (ko) 2014-07-16
US20140238730A1 (en) 2014-08-28
TWI585631B (zh) 2017-06-01
EP2765490A1 (en) 2014-08-13
TWI537779B (zh) 2016-06-11
CN103984461B (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
WO2013089085A1 (ja) 導電シート及びタッチパネル
JP5748647B2 (ja) 導電シート及びタッチパネル
JP7544786B2 (ja) タッチパネル用導電性フィルム及びそれを用いたタッチパネル
JP5318998B2 (ja) 導電シート及びタッチパネル
JP5638027B2 (ja) 導電シート及び静電容量方式タッチパネル
JP5509186B2 (ja) タッチパネル及びタッチパネル用導電シート
JP5676225B2 (ja) 導電シート、導電シートの使用方法及び静電容量方式タッチパネル
JP5822395B2 (ja) 導電シート及びその検査方法並びに製造方法
JP5839541B2 (ja) 導電シート及びタッチパネル
JP5345980B2 (ja) 透明導電性基板、タッチパネル用導電シート及びタッチパネル
WO2012157557A1 (ja) 導電シート及びタッチパネル
WO2012157559A1 (ja) 導電シート及びタッチパネル
JP5638459B2 (ja) タッチパネル及び導電シート
WO2012157556A1 (ja) 導電シート及びタッチパネル
JP2011113149A (ja) 導電シート、導電シートの使用方法及び静電容量方式タッチパネル
JP5850967B2 (ja) タッチパネル用導電シート及びタッチパネル
WO2014061591A1 (ja) 導電シート及びタッチパネル
JP5777251B2 (ja) タッチパネル用導電シート及びタッチパネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857606

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012857606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012857606

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147011920

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014010102

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014010102

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140428