WO2013081099A1 - 固体電解コンデンサ及びその製造方法 - Google Patents
固体電解コンデンサ及びその製造方法 Download PDFInfo
- Publication number
- WO2013081099A1 WO2013081099A1 PCT/JP2012/081058 JP2012081058W WO2013081099A1 WO 2013081099 A1 WO2013081099 A1 WO 2013081099A1 JP 2012081058 W JP2012081058 W JP 2012081058W WO 2013081099 A1 WO2013081099 A1 WO 2013081099A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive polymer
- polymer layer
- water
- pores
- solid electrolytic
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims abstract description 13
- 239000007784 solid electrolyte Substances 0.000 title abstract description 10
- 150000001412 amines Chemical class 0.000 claims abstract description 73
- 239000011148 porous material Substances 0.000 claims abstract description 61
- 229920001940 conductive polymer Polymers 0.000 claims description 180
- 239000010410 layer Substances 0.000 claims description 122
- 239000007787 solid Substances 0.000 claims description 64
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 33
- 150000001875 compounds Chemical class 0.000 claims description 23
- 239000000243 solution Substances 0.000 claims description 23
- 239000007864 aqueous solution Substances 0.000 claims description 21
- 239000006185 dispersion Substances 0.000 claims description 18
- 238000001035 drying Methods 0.000 claims description 9
- 239000002344 surface layer Substances 0.000 claims description 9
- 238000004140 cleaning Methods 0.000 claims 2
- 238000005530 etching Methods 0.000 abstract description 41
- 229920000642 polymer Polymers 0.000 abstract description 9
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical group OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 abstract 1
- 229910052782 aluminium Inorganic materials 0.000 description 38
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 38
- 239000011888 foil Substances 0.000 description 37
- 238000006116 polymerization reaction Methods 0.000 description 35
- 230000000052 comparative effect Effects 0.000 description 32
- 239000000126 substance Substances 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 239000000178 monomer Substances 0.000 description 18
- 239000010408 film Substances 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 238000007740 vapor deposition Methods 0.000 description 15
- 239000007788 liquid Substances 0.000 description 11
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- -1 octane diamine Chemical class 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000007800 oxidant agent Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 4
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 235000019837 monoammonium phosphate Nutrition 0.000 description 4
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 3
- FLDCSPABIQBYKP-UHFFFAOYSA-N 5-chloro-1,2-dimethylbenzimidazole Chemical compound ClC1=CC=C2N(C)C(C)=NC2=C1 FLDCSPABIQBYKP-UHFFFAOYSA-N 0.000 description 3
- 239000001741 Ammonium adipate Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 235000019293 ammonium adipate Nutrition 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000767 polyaniline Polymers 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000003115 supporting electrolyte Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000002048 anodisation reaction Methods 0.000 description 2
- QVYARBLCAHCSFJ-UHFFFAOYSA-N butane-1,1-diamine Chemical compound CCCC(N)N QVYARBLCAHCSFJ-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000010338 boric acid Nutrition 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229940055237 sodium 1-naphthalenesulfonate Drugs 0.000 description 1
- 229940080299 sodium 2-naphthalenesulfonate Drugs 0.000 description 1
- HIEHAIZHJZLEPQ-UHFFFAOYSA-M sodium;naphthalene-1-sulfonate Chemical compound [Na+].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 HIEHAIZHJZLEPQ-UHFFFAOYSA-M 0.000 description 1
- YWPOLRBWRRKLMW-UHFFFAOYSA-M sodium;naphthalene-2-sulfonate Chemical compound [Na+].C1=CC=CC2=CC(S(=O)(=O)[O-])=CC=C21 YWPOLRBWRRKLMW-UHFFFAOYSA-M 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- WYXIGTJNYDDFFH-UHFFFAOYSA-Q triazanium;borate Chemical compound [NH4+].[NH4+].[NH4+].[O-]B([O-])[O-] WYXIGTJNYDDFFH-UHFFFAOYSA-Q 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0032—Processes of manufacture formation of the dielectric layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0036—Formation of the solid electrolyte layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/025—Solid electrolytes
- H01G9/028—Organic semiconducting electrolytes, e.g. TCNQ
Definitions
- the present invention relates to a solid electrolytic capacitor having a conductive polymer compound as a solid electrolyte and a method for producing the same.
- solid electrolytic capacitors using a conductive polymer as a solid electrolyte are known.
- This type of solid electrolytic capacitor usually uses a porous sintered body obtained by molding and sintering fine powder of valve action metal such as aluminum or tantalum as an anode body, and the inside and outer surfaces of the sintered body Then, a dielectric oxide film is formed by electrochemical anodization or the like, and a conductive polymer compound layer is interposed in close contact with the oxide film in order to draw out a cathode body serving as a counter electrode (see Patent Document 1).
- an etching pit is formed by etching treatment on the surface of the anode body, and a capacitance appears by forming the conductive polymer inside the etching pit.
- the rate is improving.
- the etching pits formed by etching are usually several hundred nanometer level, it is difficult to form a conductive polymer layer deep in the etching pits. For this reason, before forming the conductive polymer layer, the entire surface of the etching pit is coated with a thin water-soluble self-doped conductive polymer in advance, and the electrostatic capacity due to the portion where the conductive polymer cannot enter Attempts have been made to compensate for this decline. After the water-soluble self-doped conductive polymer is formed on the etching pit surface, unnecessary portions of the conductive polymer are washed and removed with water or an aqueous solvent.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a solid electrolytic capacitor capable of increasing capacitance and reducing ESR characteristics, and a method for manufacturing the same. is there.
- the present inventor formed a conductive polymer layer containing amines and a water-soluble self-doped conductive polymer having a sulfonic acid group. As a result, it was found that the self-doped conductive polymer is maintained in a good state inside the pores such as etching pits, the capacitance is increased, and the ESR characteristic is reduced, and the present invention has been completed. .
- the solid electrolytic capacitor of the present invention comprises a dielectric oxide film formed on the surface of an anode body having pores, a water-soluble substance having amines and a sulfonic acid group formed inside the pores. And a conductive polymer layer containing a self-doped conductive polymer.
- the solid electrolytic capacitor of the present invention comprises a dielectric oxide film formed on the surface of an anode body having pores, and a water-soluble self-doped conductivity having a sulfonic acid group formed inside the pores. It is characterized by comprising a polymer layer and an amine-containing layer containing amines formed on the surface layer of the water-soluble self-doped conductive polymer layer.
- the solid electrolytic capacitor of the present invention includes a dielectric oxide film formed on the surface of an anode body having pores, and a water-soluble self-doped conductivity having a sulfonic acid group formed inside the pores.
- the method for producing a solid electrolytic capacitor of the present invention comprises a step of forming a dielectric oxide film on the surface of an anode body having pores, a water-soluble self-doping having amines and sulfonic acid groups inside the pores. And a step of forming a conductive polymer layer containing a type conductive polymer.
- the method for producing a solid electrolytic capacitor of the present invention comprises a step of forming a dielectric oxide film on the surface of an anode body having pores, and a water-soluble self-doped conductive material having a sulfonic acid group inside the pores. And a step of contacting the water-soluble self-doped conductive polymer layer with a solution containing amines.
- an etching foil in which a flat metal foil (for example, a valve action metal foil such as aluminum) is first etched and a dielectric oxide film is formed by chemical conversion treatment can be used.
- a flat metal foil for example, a valve action metal foil such as aluminum
- a dielectric oxide film is formed by chemical conversion treatment.
- fine pores (etching pits) are formed on an aluminum foil of 100 ⁇ m by AC etching, and then chemical conversion treatment is performed in an aqueous solution such as phosphoric acid.
- Such an etching foil has fine pores (etching pits) of at least 100 nm or less in the deep part.
- the pores can also be formed by forming a coating of metal particles on a metal foil such as aluminum by vapor deposition or the like.
- a metal foil such as aluminum by vapor deposition or the like.
- an aluminum layer having a thickness of about 20 ⁇ m can be formed on an aluminum foil by performing resistance heating vapor deposition in an atmosphere of inert gas and oxygen using 99.8% purity aluminum as a vapor deposition source.
- a metal oxide film layer may be formed in advance on the surface of aluminum serving as a deposition source.
- the vapor deposition method in addition to the resistance heating vapor deposition described above, other vapor deposition methods such as an ion plating method, a sputtering method, an ion beam sputtering method, an ion beam assisted vapor deposition method, and the like can be used.
- the obtained deposited foil may be further subjected to chemical conversion treatment in an aqueous solution such as phosphoric acid to form a stable dielectric oxide film layer.
- the aluminum foil formed by such a vapor deposition method has fine pores of at least 50 nm or less in the deep part.
- the pores of the anode body preferably have a diameter in the range of at least 1 to 100 nm in consideration of vapor deposition and etching pits. However, it does not exclude pores having a diameter exceeding 100 nm, and other portions may have pores having a diameter exceeding 100 nm as long as they have a diameter in the range of 1 to 100 nm. .
- the diameter of the pore can be measured by a mercury intrusion method.
- the above-mentioned aluminum etching foil or aluminum vapor deposition foil is cut into a predetermined size (size of 10 ⁇ 10 mm, etc.), and, for example, adipic acid is formed on the surface of the anode body of the flat aluminum etching foil or aluminum vapor deposition foil.
- An aluminum dielectric oxide film is formed by performing a chemical conversion treatment in an aqueous ammonium solution at 5 V for about 30 minutes. Next, this anode body is immersed in a predetermined chemical conversion solution, and a voltage is applied to perform restoration conversion.
- phosphoric acid type chemicals such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate
- boric acid type chemicals such as ammonium borate
- adipic acid type chemicals such as ammonium adipate, etc.
- a liquid can be used, it is preferable to use ammonium dihydrogen phosphate.
- the time for repairing and forming by immersing the aluminum etching foil or the aluminum vapor-deposited foil in a chemical solution and applying a voltage is 5 to 120 minutes.
- a water-soluble self-doped conductive polymer having a sulfonic acid group is applied to or impregnated into the pores of the anode body subjected to restoration conversion, dried at room temperature for 10 minutes, and then at 130 ° C. for 10 minutes. dry.
- a poly (isothianaphthenediyl-sulfonate) compound can be preferably used as the water-soluble self-doped conductive polymer having a sulfonic acid group.
- polyaniline sulfonic acid, polyalkylaniline sulfonic acid, and polyalkylthiophene sulfonic acid can be preferably used.
- a solvent added with amines is applied or impregnated on the water-soluble self-doped conductive polymer layer, left at room temperature for 10 minutes, and then dried at 130 ° C. for 10 minutes.
- bonded with a sulfonic acid group although various amines can be used, an aromatic amine and an alkylamine are mentioned.
- amines ethylenediamine (C 2 H 8 N 2) , butanediamine (C 4 H 12 N 2) , octane diamine (C 8 H 20 N 2) , decane diamine (C 10 H 24 N 2) , Alkyl diamines such as phenyl diamine (C 6 H 8 N 2 ) are preferred, and decane diamine is most preferred.
- solvent to which amines are added water, lower alcohols and a mixed solution thereof are used, and examples of lower alcohols include methanol, ethanol and propanol.
- a poly (isothianaphthenediyl-sulfonate) compound represented by Chemical Formula 1 is used as a water-soluble self-doped conductive polymer having a sulfonic acid group, and decanediamine represented by Chemical Formula 2 is used as an amine.
- the sulfonic acid group of the poly (isothianaphthenediyl-sulfonate) compound is bonded to decanediamine.
- the bond between the sulfonic acid group of the self-doped conductive polymer and the amine is formed in the vicinity of the surface layer of the self-doped conductive polymer layer.
- the sulfonic acid group of the water-soluble self-doped conductive polymer is bonded with amines such as decanediamine, and then washed to remove residual compounds such as unbonded amines at 130 ° C. Dry for 10 minutes.
- aqueous solution in which the conductive polymer compound is dispersed for example, a conductive polymer compound powder made of poly- (3,4-ethylenedioxythiophene) (hereinafter referred to as PEDOT) is dispersed in water of a solvent. Things can be used.
- the concentration of the conductive polymer compound can be 0.1 to 4 wt% with respect to the aqueous solution.
- the solvent of the conductive polymer compound dispersion may be other than water as long as the conductive polymer compound is dispersed.
- Second conductive polymer layer After a mixed solution composed of a dispersion liquid in which the same or different conductive polymer compound as the conductive polymer compound is dispersed and ethylene glycol is applied on the first conductive polymer layer, for example, once, The second conductive polymer layer is formed by heating at 130 ° C. for 10 minutes.
- the dispersion liquid in which the conductive polymer compound is dispersed PEDOT having a concentration of 0.1 to 4 wt% with respect to the aqueous solution is used in the same manner as the dispersion liquid used for forming the first conductive polymer layer.
- a dispersion containing a conductive polymer compound can be used.
- a conductive polymer layer by chemical polymerization or electrolytic polymerization instead of the first and second conductive polymer layers described above, a conductive polymer layer by chemical polymerization or a conductive polymer layer by electrolytic polymerization may be formed.
- the conductive polymer layer formed by chemical polymerization may be prepared by using, for example, 3,4-ethylenedioxythiophene as a polymerizable monomer and an alcohol solution (such as ethanol) of ferric paratoluenesulfonate as an oxidizing agent.
- a solid electrolyte layer is formed by immersing an aluminum etching foil or an aluminum vapor-deposited foil in a liquid mixture of oxidant and an oxidizing agent, and generating a polymerization reaction of the conductive polymer by heating. Further, before and after the heat treatment, a water washing treatment may be performed in which unreacted monomers and excess monomers are removed by water washing.
- the conductive polymer layer formed by electrolytic polymerization forms a conductive polymer layer by electrolytic polymerization on the surface of the self-doped conductive polymer layer.
- the electrolytic polymerization solution a monomer having conductivity by electrolytic polymerization can be used.
- the monomer a thiophene monomer or a pyrrole monomer is preferable.
- an aluminum etching foil or aluminum vapor-deposited foil is impregnated in an aqueous solution for electropolymerization containing a monomer and sodium 1-naphthalenesulfonate as a supporting electrolyte in a stainless steel container, and a predetermined voltage is applied. Apply. Thereby, the electroconductive polymer layer by the water-soluble monomer (for example, thiophene, pyrrole, etc.) by electrolytic polymerization can be formed uniformly.
- cathode conductor layer (Formation of cathode conductor layer) Further, a carbon layer is applied on the second conductive polymer layer or the conductive polymer layer formed by chemical polymerization or electrolytic polymerization, and dried at 160 ° C. for 30 minutes, and then a silver paste layer is applied to 160 A cathode conductor layer is formed by drying at 60 ° C. for 60 minutes to form a solid electrolytic capacitor.
- Capacitor element The manufacturing method of the solid electrolytic capacitor described above uses a flat aluminum etching foil or aluminum vapor deposition foil, and this single plate or a laminated type capacitor element in which these are laminated, or between a flat aluminum etching foil or aluminum vapor deposition foil. It can be applied to a winding type capacitor element that is wound with a separator made of insulating paper or the like interposed therebetween. In the wound type capacitor element, a wound capacitor element is formed, and then the above-mentioned self-doped conductive polymer and amines are formed, and the conductive polymer layers (first and second layers) are formed. It is preferable to form a conductive polymer layer or a conductive polymer layer by chemical polymerization or electrolytic polymerization.
- the water-soluble self-doped conductive polymer layer and the amines are formed by applying a solution containing amines to the water-soluble self-doped conductive polymer layer formed in the pores and drying the solution.
- a conductive polymer layer containing amines and a water-soluble self-doped conductive polymer is formed by contact. This makes it difficult for the water-soluble self-doped conductive polymer to be dissolved by contact with an aqueous solvent or to peel off from the pores.
- amines are contained in the vicinity of the surface layer of the water-soluble self-doped conductive polymer, and the sulfonic acid group and amines of the water-soluble self-doped conductive polymer in the vicinity of the surface layer are combined.
- a thin film with a surface modification is formed. This surface-modified thin film shows hydrophilicity, and water-based solvent suppresses the water-soluble self-doped conductive polymer layer from entering the water-soluble self-doped conductive polymer layer, thereby dissolving the water-soluble self-doped conductive polymer layer. Seems to be limiting.
- a first conductive polymer layer is formed on the water-soluble self-doped conductive polymer layer by applying and drying a dispersed aqueous solution in which a conductive polymer compound is dispersed.
- this dispersed aqueous solution has a conductive polymer layer containing the amines and a water-soluble self-doped conductive polymer having a sulfonic acid group, in the vicinity of the surface layer of the water-soluble self-doped conductive polymer.
- a first conductive polymer layer is formed.
- the etching pit has a pore of a few hundred nm level, but a deep portion has a pore of 100 nm or less.
- the pores obtained by the vapor deposition technique are further finer and are on the order of several tens of nanometers. In this level of pores, even if an attempt is made to form a conductive polymer layer using a dispersion of a conductive polymer, the fine particles of the conductive polymer are on the order of several hundred nanometers. Thus, it is difficult to enter the pores obtained by the above, and therefore it is difficult to extract the capacity of the solid capacitor.
- the water-soluble self-doped conductive polymer of the present invention even if the self-doped conductive polymer has such fine pores, the fine details of the pores are water-soluble.
- the capacity of the solid electrolytic capacitor can be extracted. In particular, it is effective for a deposition foil by a deposition technique having fine pores.
- Example 1 [Verification of etching foil] First, a flat aluminum etching foil having many etching pits was formed in an aqueous solution of ammonium adipate (75 g / L) at 5 V for 30 minutes to form an aluminum dielectric oxide film on the surface. Subsequently, the aluminum etching foil was cut into a plate shape having a size of 10 ⁇ 10 mm, immersed in an aqueous solution of ammonium dihydrogen phosphate (0.5 g / L), and subjected to restoration conversion at 5 V for 40 minutes. When the pore distribution of this etching foil was measured, it was confirmed that pores in the range of at least 30 to 100 nm were present.
- a poly (isothianaphthenediyl-sulfonate) compound as a water-soluble self-doped conductive polymer having a sulfonic acid group is dropped on the etching pit portion, dried at room temperature for 10 minutes, and then 130 Dry at 10 ° C. for 10 minutes.
- decanediamine was used as the amine, and a methanol solution with an amine concentration of 0.5 wt% was prepared, and 1.5 ⁇ L was dropped on the water-soluble self-doped conductive polymer having a sulfonic acid group, Left at room temperature for 10 minutes. Further, shower washing was performed for 1 minute, followed by washing with water for 10 minutes, and finally drying at 130 ° C. for 10 minutes.
- a dispersion liquid having a concentration of 0.4 wt% was prepared by mixing polyethylene dioxythiophene with water as a conductive polymer, and 1.5 ⁇ L of this dispersion liquid was deposited on the self-doped conductive polymer and the oxide film. The solution was added dropwise, allowed to stand at room temperature for 10 minutes, and then dried at 130 ° C. for 10 minutes. This dripping, leaving, and drying were taken as one cycle, and three cycles were repeated to form a first conductive polymer layer. Next, 4 ⁇ L of a mixed solution of ethylene glycol and water in which polyethylene dioxythiophene is dispersed as a conductive polymer is dropped on the first conductive polymer layer, and heated at 130 ° C.
- the conductive polymer layer was formed. Further, a carbon layer is applied on the second conductive polymer layer and dried at 160 ° C. for 30 minutes, and then a silver paste layer is applied and dried at 160 ° C. for 60 minutes to form a cathode conductor layer. The solid electrolytic capacitor was formed.
- Example 2 As the amines, a solid electrolytic capacitor was produced in the same manner as in Example 1 except that Example 2 used ethylenediamine, Example 3 used butanediamine, Example 4 used octanediamine, and Example 5 used phenyldiamine.
- Comparative Example 1 Comparative Example 1
- Comparative Example 2 Comparative Example 1
- a solid electrolytic capacitor was produced in the same manner as in Example 1 except that the water-soluble self-doped conductive polymer having a sulfonic acid group and amines were not applied to the etching pits.
- Comparative Example 2 a solid electrolytic capacitor was produced in the same manner as in Example 1 except that amines were not applied on the self-doped conductive polymer.
- Example 1 using decanediamine among amines shows a good value in ESR characteristics at 120 Hz and 100 kHz.
- Comparative Example 2 in which a self-doped conductive polymer layer is formed without using amines the capacitance and ESR characteristics are lower than those in Examples 1 to 5, and the first conductive high When forming the molecular layer, it was confirmed that a part of the self-doped conductive polymer was peeled off from the etching pit by the dispersion liquid (aqueous solution) of the first conductive polymer layer.
- Example 6 Subsequently, the addition amount of the amine solution was verified.
- the concentration of decanediamine was adjusted to 0.25 wt%
- Example 7 was adjusted to a concentration of 1.0 wt%
- Example 8 was adjusted to a concentration of 2 wt%
- Example 9 was adjusted to a concentration of 3 wt% and the concentration of decanediamine.
- a solid electrolytic capacitor was produced.
- Example 10 In the same manner as in Example 1, a poly (isothianaphthenediyl-sulfonate) compound was formed as a water-soluble self-doped conductive polymer having a sulfonic acid group in the etching pit portion of the aluminum etching foil, and decanediamine was further formed. The amine treatment by was carried out.
- a conductive polymer layer by chemical polymerization was formed as follows. First, an ethanol solution of 3,4-ethylenedioxythiophene monomer as a polymerizable monomer and an ethanol solution of ferric paratoluenesulfonic acid as an oxidizing agent were used, and the polymerizable monomer was added to the oxidizing agent 3 in terms of molar ratio.
- the aluminum etching foil which performed the said process was immersed in the liquid mixture made into 1, and it pulled up. After standing for a predetermined time, excess monomers and unreacted monomers were removed by washing with water. Then, the polymerization reaction of the conductive polymer was generated by heating at 150 ° C. for 1 hour to form a conductive polymer layer by chemical polymerization.
- Example 11 A solid electrolyte capacitor was produced in the same manner as in Example 10 except that a conductive polymer layer formed by electrolytic polymerization was formed instead of the conductive polymer layer formed by chemical polymerization.
- the conductive polymer layer by electrolytic polymerization was formed as follows. First, 3,4-ethylenedioxythiophene monomer is used as a polymerizable monomer, sodium 2-naphthalenesulfonate is used as a supporting electrolyte, and electrolytic polymerization containing polymerizable monomer 1 with respect to supporting electrolyte 2.5 in terms of molar ratio An aqueous solution was prepared. This aqueous solution for electrolytic polymerization was impregnated with the aluminum etching foil subjected to the above treatment in a stainless steel container to perform electrolytic polymerization.
- the wire is brought into contact with the self-doped conductive polymer layer as an anode, and a separate cathode is placed in the aqueous solution for electrolytic polymerization, and electropolymerization is carried out for 30 minutes under the condition of 1.0 mA / piece to obtain polyethylenedioxythiophene.
- a (PEDOT) layer was formed.
- Example 3 A solid electrolytic capacitor was produced in the same manner as in Example 10 except that amines were not applied on the self-doped conductive polymer.
- Example 4 A solid electrolytic capacitor was produced in the same manner as in Example 11 except that amines were not applied on the self-doped conductive polymer.
- the solid electrolytic capacitors of Examples 10 and 11 using amines have a capacitance and ESR characteristics that are higher than those of the solid electrolytic capacitors of Comparative Examples 3 and 4 that do not use amines.
- the value was good.
- Comparative Example 3 in which a conductive polymer layer was formed by chemical polymerization after a self-doped conductive polymer layer was formed without using amines, the electrostatic capacitance was higher than that in Example 10 and Example 11.
- the capacity and ESR characteristics were low, and it was confirmed that a part of the self-doped conductive polymer was peeled off from the etching pits when washed with water.
- Comparative Example 4 in which a conductive polymer layer was formed by electrolytic polymerization after forming a self-doped conductive polymer layer without using amines, the electrostatic capacitance was higher than that in Example 10 and Example 11. As in Comparative Example 3, it was confirmed that a part of the self-doped conductive polymer was peeled off from the etching pit by the water-soluble electrolytic polymerization solution having low capacity and ESR characteristics.
- Example 12 First, on a flat aluminum base material, aluminum particles having a primary particle diameter of aluminum particles distributed in the range of 0.005 to 0.1 ⁇ m and aluminum particles having an oxide film formed on the surface are used. Aluminum fine particles were vapor-deposited so that the thickness of the vapor-deposited layer was 30 ⁇ m in an atmosphere of an inert gas and an oxygen gas at a pressure of 5 ⁇ m. Thereafter, anodization was performed by applying a voltage of 20 V in an aqueous solution of ammonium adipate.
- this deposited foil was cut into a plate shape having a size of 10 ⁇ 10 mm, immersed in an aqueous solution of ammonium dihydrogen phosphate (0.5 g / L), and subjected to restoration conversion at 5 V for 40 minutes.
- ammonium dihydrogen phosphate 0.5 g / L
- Example 2 In the same manner as in Example 1, 0.5 ⁇ L of a poly (isothianaphthenediyl-sulfonate) compound as a water-soluble self-doped conductive polymer having a sulfonic acid group was dropped on the pores, After drying at room temperature for 10 minutes, it was dried at 130 ° C. for 10 minutes. Subsequently, decanediamine was used as the amine, and a methanol solution with an amine concentration of 0.5 wt% was prepared, and 1.5 ⁇ L was dropped on the water-soluble self-doped conductive polymer having a sulfonic acid group, Left at room temperature for 10 minutes. Further, shower washing was performed for 1 minute, followed by washing with water for 10 minutes, and finally drying at 130 ° C. for 10 minutes.
- a poly (isothianaphthenediyl-sulfonate) compound as a water-soluble self-doped conductive polymer having a sulfonic acid group
- a dispersion liquid having a concentration of 0.4 wt% was prepared by mixing polyethylene dioxythiophene with water as a conductive polymer, and 1.5 ⁇ L of this dispersion liquid was deposited on the self-doped conductive polymer and the oxide film.
- the solution was added dropwise, allowed to stand at room temperature for 10 minutes, and then dried at 130 ° C. for 10 minutes. The dripping, leaving, and drying were taken as one cycle, and three cycles were repeated to form a conductive polymer layer.
- a carbon layer is applied on this conductive polymer layer and dried at 160 ° C. for 30 minutes, then a silver paste layer is applied and dried at 160 ° C. for 60 minutes to form a cathode conductor layer, A solid electrolytic capacitor was produced.
- Example 13 A solid electrolyte capacitor was fabricated in the same manner as in Example 12 except that a conductive polymer layer formed by chemical polymerization was formed instead of the conductive polymer layer formed of a dispersion of polyethylene dioxythiophene. The chemical polymerization was prepared in the same manner as in Example 10.
- Example 14 A solid electrolyte capacitor was fabricated in the same manner as in Example 12 except that a conductive polymer layer formed by electrolytic polymerization was formed instead of the conductive polymer layer formed from a dispersion of polyethylene dioxythiophene. The electrolytic polymerization was prepared in the same manner as in Example 11.
- Example 5 A solid electrolytic capacitor was produced in the same manner as in Example 12 except that amines were not applied on the self-doped conductive polymer.
- Example 6 A solid electrolytic capacitor was produced in the same manner as in Example 12 except that the water-soluble self-doped conductive polymer having a sulfonic acid group and amines were not applied to the pores.
- Example 7 A solid electrolytic capacitor was produced in the same manner as in Example 13 except that amines were not applied on the self-doped conductive polymer.
- Example 8 A solid electrolytic capacitor was produced in the same manner as in Example 14 except that amines were not applied on the self-doped conductive polymer.
- or Example 14 the solid electrolytic capacitor produced in Comparative Example 5 thru
- the electrostatic capacity (120 Hz) and ESR (after carrying out a heat test at 170 degreeC for 22 hours) 120 Hz and 100 kHz).
- Table 4 shows the measurement results of capacitance (120 Hz) ESR, (120 Hz and 100 kHz).
- Comparative Example 7 in which the conductive polymer layer was formed by chemical polymerization after the self-doped conductive polymer layer was formed without using amines, the self-doped conductive polymer layer was washed with water. It was confirmed that a part was peeled from the pores. Furthermore, in Comparative Example 8 in which a conductive polymer layer was formed by electrolytic polymerization after forming a self-doped conductive polymer layer without using amines, the self-doped conductive polymer layer was formed with a water-soluble electrolytic polymerization solution. It was confirmed that a part of the polymer peeled from the pores.
- Example 15 A solid electrolytic capacitor was produced in the same manner as in Example 1 except that polyaniline sulfonic acid was used as the self-doped conductive polymer.
- Example 9 A solid electrolytic capacitor was produced in the same manner as in Example 15 except that amines were not applied on the self-doped conductive polymer.
- Example 16 A solid electrolytic capacitor was produced in the same manner as in Example 12 except that polyaniline sulfonic acid was used as the self-doped conductive polymer.
- Example 10 A solid electrolytic capacitor was produced in the same manner as in Example 16 except that amines were not applied on the self-doped conductive polymer.
- Example 15 and Example 16 and the solid electrolytic capacitor produced in Comparative Example 9 and Comparative Example 10 the electrostatic capacity (120 Hz) and ESR ( 120 Hz and 100 kHz).
- Table 5 shows the measurement results of capacitance (120 Hz) ESR, (120 Hz and 100 kHz).
- the solid electrolytic capacitor of Example 15 using amines has a capacitance and ESR characteristics as compared with the solid electrolytic capacitor of Comparative Example 9 that does not use amines. The value was good.
- Comparative Example 9 in which the self-doped conductive polymer layer was formed without using amines when the conductive polymer layer was formed, the dispersion (aqueous solution) of this conductive polymer layer was It was confirmed that a part of the self-doped conductive polymer peeled off from the etching pit.
- the solid electrolytic capacitor of Example 16 using amines has a capacitance, ESR compared to the solid electrolytic capacitor of Comparative Example 10 that does not use amines.
- the value of the characteristic was good.
- Comparative Example 10 in which the self-doped conductive polymer layer was formed without using amines when the conductive polymer layer was formed, the dispersion (aqueous solution) of this conductive polymer layer was It was confirmed that a part of the self-doped conductive polymer peeled off from the pores.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
(細孔を有する陽極体の形成)
細孔を有する陽極体としては、まず、平板状の金属箔(例えば、アルミニウムなどの弁作用金属箔)をエッチング処理し、さらに化成処理により誘電体酸化皮膜を形成したエッチング箔を用いることができる。例えば、100μmのアルミニウム箔を交流エッチングにより微細な細孔(エッチングピット)を形成し、その後リン酸などの水溶液中で化成処理を行う。このようなエッチング箔は、その深部に、少なくとも100nm以下の微細な細孔(エッチングピット)を有している。
以上のことにより、陽極体の細孔は、蒸着による場合とエッチングピットの場合を考慮して、少なくとも1~100nmの範囲の直径を有することが好ましいと考えられる。ただし、100nmを超える直径の細孔を排除するものではなく、一部に1~100nmの範囲の直径を有していれば、それ以外の部分に100nmを超える直径の細孔があっても良い。細孔の直径は、水銀圧入法によって測定することができる。
前述のアルミニウムエッチング箔又はアルミニウム蒸着箔を、所定の大きさに(10×10mm等の大きさ)に切断し、この平板状のアルミニウムエッチング箔又はアルミニウム蒸着箔の陽極体表面に、例えば、アジピン酸アンモニウム水溶液中で5V、30分間程度の化成処理を行うことにより、アルミニウム誘電体酸化皮膜を形成する。次に、この陽極体を所定の化成液に浸漬し、電圧印加して修復化成を行う。
次に、修復化成を行った陽極体の細孔の部分に、スルホン酸基を有する水溶性の自己ドープ型導電性高分子を塗布又は含浸し、室温で10分乾燥後、130℃で10分乾燥する。ここで、スルホン酸基を有する水溶性の自己ドープ型導電性高分子としては、例えば、ポリ(イソチアナフテンジイルースルホネート)化合物を好適に用いることができる。他にも、ピロール(C4H5N)、アニリン(C6H5NH2)、チオフィン(C4H4S)、フラン(C4H4O)等を単位とするポリマー骨格やそれらの誘導体にスルホン酸基を導入したものを用いても良い。具体的には、ポリアニリンスルホン酸、ポリアルキルアニリンスルホン酸、ポリアルキルチオフェンスルホン酸を好適に用いることができる。
次に、誘電体酸化皮膜及び自己ドープ型導電性高分子上に、導電性高分子化合物を分散させた分散水溶液を塗布し、室温で10分放置した後、130℃で10分間加熱する工程を1サイクルとし、これを数サイクル繰り返して第1の導電性高分子層を形成する。
次いで、前記導電性高分子化合物と同一又は異なる導電性高分子化合物を分散させた分散液とエチレングリコールとからなる混合溶液を第1の導電性高分子層上に、例えば1回塗布した後、130℃で10分間加熱することで第2の導電性高分子層を形成する。導電性高分子化合物を分散させた分散液としては、第1の導電性高分子層を形成する際に用いた分散液と同様に、水溶液に対して0.1~4wt%の濃度のPEDOTからなる導電性高分子化合物を含んだ分散液を用いることができる。
上述した第1及び第2の導電性高分子層に代えて、化学重合による導電性高分子層又は電解重合による導電性高分子層を形成してもよい。
さらに、この第2の導電性高分子層や化学重合又は電解重合による導電性高分子層の上にカーボン層を塗布して160℃で30分間乾燥し、次いで、銀ペースト層を塗布して160℃で60分間乾燥することにより陰極導電体層を形成し、固体電解コンデンサを形成する。
上述した固体電解コンデンサの製造方法は、平板状のアルミニウムエッチング箔やアルミニウム蒸着箔を用い、この単板やこれらを重ねた積層タイプのコンデンサ素子や、平板状のアルミニウムエッチング箔やアルミニウム蒸着箔の間に絶縁紙などからなるセパレータを介在して巻回した巻回タイプのコンデンサ素子などに適用できる。なお、巻回タイプのコンデンサ素子においては、巻回したコンデンサ素子を形成し、その後に前述の自己ドープ型導電性高分子、アミン類の形成、さらに導電性高分子層(第1、第2の導電性高分子層や化学重合又は電解重合による導電性高分子層)を形成することが好ましい。
スルホン酸基を有する水溶性の自己ドープ型導電性高分子層を細孔に形成後、水による洗浄や水系の溶媒との接触する工程が含まれる場合は、水溶性の導電性高分子が水に溶解し、細孔内に留めることが困難となる。しかし、スルホン酸基を有する水溶性の自己ドープ型導電性高分子にアミン類を含有させることで、水溶性の導電性高分子が水に不溶化すると推定される。このため、洗浄後においても細孔内部に良好な状態で保持されるため、容量出現率やESR特性が向上すると考えられる。
(実施例1)
[エッチング箔についての検証]
まず、平板状で多数のエッチングピットを有するアルミニウムエッチング箔を、アジピン酸アンモニウム(75g/L)の水溶液中で5V、30分間化成し、その表面にアルミニウム誘電体酸化皮膜を形成した。続いて、このアルミニウムエッチング箔を大きさが10×10mmの平板状に切断し、リン酸二水素アンモニウム(0.5g/L)の水溶液に浸漬し、5V,40分間修復化成を行った。このエッチング箔の細孔分布を測定したところ、少なくとも30~100nmの範囲の細孔が存在することを確認できた。
アミン類として、実施例2はエチレンジアミン、実施例3はブタンジアミン、実施例4はオクタンジアミン、実施例5はフェニルジアミンをそれぞれ用いた以外は実施例1と同様にして固体電解コンデンサを作製した。
比較例1は、スルホン酸基を有する水溶性の自己ドープ型導電性高分子及びアミン類をそれぞれエッチングピットに塗布しないこと以外は、実施例1と同様にして固体電解コンデンサを作製した。比較例2は、アミン類を自己ドープ型導電性高分子上に塗布しないこと以外は、実施例1と同様にして固体電解コンデンサを作製した。
続いて、アミン溶液の添加量について検証した。アミン類としてデカンジアミンを用いた実施例1の固体電解コンデンサにおいて、そのデカンジアミンのメタノール溶液におけるデカンジアミンの添加量を、それぞれ変化させたものを用い、その他は実施例1と同様にして固体電解コンデンサを作製した。実施例6は、デカンジアミンの濃度を0.25wt%、実施例7は濃度1.0wt%、実施例8は濃度2wt%、実施例9は濃度3wt%とデカンジアミンの濃度をそれぞれ調整して固体電解コンデンサを作製した。
実施例1と同様にしてアルミニウムエッチング箔のエッチングピットの部分に、スルホン酸基を有する水溶性の自己ドープ型導電性高分子としてポリ(イソチアナフテンジイルースルホネート)化合物を形成し、さらにデカンジアミンによるアミン処理を行った。
化学重合による導電性高分子層の代わりに電解重合による導電性高分子層を形成した以外は、実施例10と同様にして固体電解質コンデンサを作製した。
アミン類を自己ドープ型導電性高分子上に塗布しないこと以外は、実施例10と同様にして固体電解コンデンサを作製した。
アミン類を自己ドープ型導電性高分子上に塗布しないこと以外は、実施例11と同様にして固体電解コンデンサを作製した。
(実施例12)
まず、平板状のアルミニウム基材に、アルミニウム粒子の一次粒子の粒子径が0.005~0.1μmの範囲で分布したアルミニウム粒子及び表面に酸化皮膜が形成されたアルミニウム粒子を用い、0.6Paの圧力の不活性ガスと酸素ガスの雰囲気内で、蒸着層の厚みが30μmとなるようにアルミニウム微粒子を蒸着した。その後、アジピン酸アンモニウム水溶液中で20V電圧印加によって陽極化成を行った。続いて、この蒸着箔を大きさが10×10mmの平板状に切断し、リン酸二水素アンモニウム(0.5g/L)の水溶液に浸漬し、5V,40分間修復化成を行った。この蒸着箔の細孔分布を測定したところ、少なくとも1~50nmの範囲の細孔が存在することを確認できた。
ポリエチレンジオキシチオフェンの分散液による導電性高分子層の代わりに化学重合による導電性高分子層を形成した以外は、実施例12と同様にして固体電解質コンデンサを作製した。化学重合については、実施例10と同様にして作成した。
ポリエチレンジオキシチオフェンの分散液による導電性高分子層の代わりに電解重合による導電性高分子層を形成した以外は、実施例12と同様にして固体電解質コンデンサを作製した。電解重合については、実施例11と同様にして作成した。
アミン類を自己ドープ型導電性高分子上に塗布しないこと以外は、実施例12と同様にして固体電解コンデンサを作製した。
スルホン酸基を有する水溶性の自己ドープ型導電性高分子及びアミン類をそれぞれ細孔に塗布しないこと以外は、実施例12と同様にして固体電解コンデンサを作製した。
アミン類を自己ドープ型導電性高分子上に塗布しないこと以外は、実施例13と同様にして固体電解コンデンサを作製した。
アミン類を自己ドープ型導電性高分子上に塗布しないこと以外は、実施例14と同様にして固体電解コンデンサを作製した。
(実施例15)
自己ドープ型導電性高分子としてポリアニリンスルホン酸を使用したこと以外は、実施例1と同様にして固体電解コンデンサを作製した。
アミン類を自己ドープ型導電性高分子上に塗布しないこと以外は、実施例15と同様にして固体電解コンデンサを作製した。
自己ドープ型導電性高分子としてポリアニリンスルホン酸を使用したこと以外は、実施例12と同様にして固体電解コンデンサを作製した。
アミン類を自己ドープ型導電性高分子上に塗布しないこと以外は、実施例16と同様にして固体電解コンデンサを作製した。
Claims (8)
- 細孔を有する陽極体の表面に形成された誘電体酸化皮膜と、
前記細孔内部に形成されると共に、アミン類と、スルホン酸基を有する水溶性の自己ドープ型導電性高分子とを含む導電性高分子層と、
を備えたことを特徴とする固体電解コンデンサ。 - 細孔を有する陽極体の表面に形成された誘電体酸化皮膜と、
前記細孔内部に形成される、スルホン酸基を有する水溶性の自己ドープ型導電性高分子層と、
前記水溶性の自己ドープ型導電性高分子層の表層に形成される、アミン類を含むアミン類含有層と、
を備えたことを特徴とする固体電解コンデンサ。 - 細孔を有する陽極体の表面に形成された誘電体酸化皮膜と、
前記細孔内部に形成される、スルホン酸基を有する水溶性の自己ドープ型導電性高分子層と、
前記水溶性の自己ドープ型導電性高分子層の表層に形成される、前記水溶性の自己ドープ型導電性高分子の前記スルホン酸基とアミン類とが結合した結合層と、
を備えたことを特徴とする固体電解コンデンサ。 - 1~100nmの細孔の直径を有することを特徴とする請求項1乃至3のいずれか1項記載の固体電解コンデンサ。
- 細孔を有する陽極体の表面に誘電体酸化皮膜を形成する工程と、
前記細孔内部に、アミン類と、スルホン酸基を有する水溶性の自己ドープ型導電性高分子とを含む導電性高分子層を形成する工程と、
を備えたことを特徴とする固体電解コンデンサの製造方法。 - 細孔を有する陽極体の表面に誘電体酸化皮膜を形成する工程と、
前記細孔内部に、スルホン酸基を有する水溶性の自己ドープ型導電性高分子層を形成する工程と、
前記水溶性の自己ドープ型導電性高分子層にアミン類を含む溶液を接触させる工程と、
を備えたことを特徴とする固体電解コンデンサの製造方法。 - 前記導電性高分子層を形成する工程又は水溶性の自己ドープ型導電性高分子層にアミン類を含む溶液を接触させる工程の後に、洗浄によりアミン類の残留化合物を除去する洗浄工程を備えることを特徴とする請求項5又は6記載の固体電解コンデンサの製造方法。
- さらに、前記陽極体上に、水溶液に導電性高分子化合物を分散させた分散液を塗布した後、乾燥して導電性高分子層を形成する工程を備えたことを特徴とする請求項5乃至7のいずれか1項記載の固体電解コンデンサの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013547230A JP6079636B2 (ja) | 2011-12-01 | 2012-11-30 | 固体電解コンデンサ及びその製造方法 |
CN201280058967.4A CN103959414B (zh) | 2011-12-01 | 2012-11-30 | 固体电解电容器及其制造方法 |
US14/362,123 US9583275B2 (en) | 2011-12-01 | 2012-11-30 | Solid electrolytic capacitor and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011263340 | 2011-12-01 | ||
JP2011-263340 | 2011-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013081099A1 true WO2013081099A1 (ja) | 2013-06-06 |
Family
ID=48535547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/081058 WO2013081099A1 (ja) | 2011-12-01 | 2012-11-30 | 固体電解コンデンサ及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9583275B2 (ja) |
JP (1) | JP6079636B2 (ja) |
CN (1) | CN103959414B (ja) |
TW (1) | TWI559348B (ja) |
WO (1) | WO2013081099A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016125484A1 (ja) * | 2015-02-04 | 2016-08-11 | パナソニックIpマネジメント株式会社 | 電解コンデンサおよびその製造方法 |
JP2017079322A (ja) * | 2015-05-29 | 2017-04-27 | エイブイエックス コーポレイション | 超高キャパシタンスを有する固体電解キャパシタ |
WO2019026961A1 (ja) | 2017-08-04 | 2019-02-07 | 綜研化学株式会社 | 固体電解コンデンサ及び固体電解コンデンサの製造方法 |
US11189430B2 (en) | 2017-06-22 | 2021-11-30 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor and method for producing same |
WO2022185999A1 (ja) * | 2021-03-03 | 2022-09-09 | パナソニックIpマネジメント株式会社 | 固体電解コンデンサおよびその製造方法 |
US12073999B2 (en) | 2020-01-31 | 2024-08-27 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor and method for producing same |
JP7544654B2 (ja) | 2021-04-09 | 2024-09-03 | ニチコン株式会社 | 電解コンデンサおよび電解コンデンサの製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016157768A1 (ja) * | 2015-03-31 | 2016-10-06 | パナソニックIpマネジメント株式会社 | 電解コンデンサおよび導電性高分子分散体 |
US11152161B2 (en) * | 2019-09-03 | 2021-10-19 | Kemet Electronics Corporation | Aluminum polymer capacitor with enhanced internal conductance and breakdown voltage capability |
CN114496577B (zh) * | 2020-10-26 | 2023-10-20 | 丰宾电子科技股份有限公司 | 一种导电性高分子混合型铝电解电容及其制造方法 |
CN115621048A (zh) * | 2021-07-14 | 2023-01-17 | 株式会社东金 | 固体电解电容器及制造固体电解电容器的方法 |
JP2023032518A (ja) * | 2021-08-27 | 2023-03-09 | サン電子工業株式会社 | 固体電解コンデンサ及び固体電解コンデンサの製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10321474A (ja) * | 1997-05-22 | 1998-12-04 | Nichicon Corp | 固体電解コンデンサ及びその製造方法 |
JP2002313684A (ja) * | 2001-02-08 | 2002-10-25 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサの製造方法および固体電解コンデンサ |
JP2006294843A (ja) * | 2005-04-11 | 2006-10-26 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサ及びその製造方法 |
JP2007096284A (ja) * | 2005-08-29 | 2007-04-12 | Nec Tokin Corp | 固体電解コンデンサ |
JP2007110074A (ja) * | 2005-06-27 | 2007-04-26 | Showa Denko Kk | 固体電解コンデンサ及びその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3202668B2 (ja) | 1997-10-21 | 2001-08-27 | 富山日本電気株式会社 | 固体電解コンデンサの製造方法 |
US6239965B1 (en) | 1998-05-22 | 2001-05-29 | Matsushita Electric Industrial Co., Ltd. | Electrolytic capacitor and method of producing the same |
JP4360680B2 (ja) * | 2003-11-10 | 2009-11-11 | 昭和電工株式会社 | コンデンサ用ニオブ粉、ニオブ焼結体及びコンデンサ |
US20100103590A1 (en) | 2005-06-27 | 2010-04-29 | Showa Denko K.K. | Solid electrolytic capacitor and production method thereof |
US7268997B2 (en) | 2005-08-29 | 2007-09-11 | Takeshi Saitou | Solid electrolytic capacitor |
TWI404090B (zh) | 2006-02-21 | 2013-08-01 | Shinetsu Polymer Co | 電容器及電容器之製造方法 |
JP2010116441A (ja) * | 2008-11-11 | 2010-05-27 | Mitsubishi Rayon Co Ltd | コンデンサ電極用導電性組成物 |
JP2011003827A (ja) | 2009-06-22 | 2011-01-06 | Panasonic Corp | 電子部品 |
US9023186B1 (en) * | 2009-06-26 | 2015-05-05 | Applied Materials, Inc. | High performance titania capacitor with a scalable processing method |
-
2012
- 2012-11-30 US US14/362,123 patent/US9583275B2/en active Active
- 2012-11-30 CN CN201280058967.4A patent/CN103959414B/zh active Active
- 2012-11-30 TW TW101145047A patent/TWI559348B/zh active
- 2012-11-30 WO PCT/JP2012/081058 patent/WO2013081099A1/ja active Application Filing
- 2012-11-30 JP JP2013547230A patent/JP6079636B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10321474A (ja) * | 1997-05-22 | 1998-12-04 | Nichicon Corp | 固体電解コンデンサ及びその製造方法 |
JP2002313684A (ja) * | 2001-02-08 | 2002-10-25 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサの製造方法および固体電解コンデンサ |
JP2006294843A (ja) * | 2005-04-11 | 2006-10-26 | Matsushita Electric Ind Co Ltd | 固体電解コンデンサ及びその製造方法 |
JP2007110074A (ja) * | 2005-06-27 | 2007-04-26 | Showa Denko Kk | 固体電解コンデンサ及びその製造方法 |
JP2007096284A (ja) * | 2005-08-29 | 2007-04-12 | Nec Tokin Corp | 固体電解コンデンサ |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016125484A1 (ja) * | 2015-02-04 | 2016-08-11 | パナソニックIpマネジメント株式会社 | 電解コンデンサおよびその製造方法 |
JPWO2016125484A1 (ja) * | 2015-02-04 | 2017-11-16 | パナソニックIpマネジメント株式会社 | 電解コンデンサおよびその製造方法 |
US10453619B2 (en) | 2015-02-04 | 2019-10-22 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor with conductive polymer layer |
JP2017079322A (ja) * | 2015-05-29 | 2017-04-27 | エイブイエックス コーポレイション | 超高キャパシタンスを有する固体電解キャパシタ |
US11189430B2 (en) | 2017-06-22 | 2021-11-30 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor and method for producing same |
WO2019026961A1 (ja) | 2017-08-04 | 2019-02-07 | 綜研化学株式会社 | 固体電解コンデンサ及び固体電解コンデンサの製造方法 |
US11062853B2 (en) | 2017-08-04 | 2021-07-13 | Soken Chemical & Engineering Co., Ltd. | Solid electrolytic capacitor, and method for producing solid electrolytic capacitor |
US12073999B2 (en) | 2020-01-31 | 2024-08-27 | Panasonic Intellectual Property Management Co., Ltd. | Electrolytic capacitor and method for producing same |
WO2022185999A1 (ja) * | 2021-03-03 | 2022-09-09 | パナソニックIpマネジメント株式会社 | 固体電解コンデンサおよびその製造方法 |
JP7544654B2 (ja) | 2021-04-09 | 2024-09-03 | ニチコン株式会社 | 電解コンデンサおよび電解コンデンサの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013081099A1 (ja) | 2015-04-27 |
US9583275B2 (en) | 2017-02-28 |
JP6079636B2 (ja) | 2017-02-15 |
US20140328007A1 (en) | 2014-11-06 |
TWI559348B (zh) | 2016-11-21 |
CN103959414B (zh) | 2017-03-08 |
CN103959414A (zh) | 2014-07-30 |
TW201340150A (zh) | 2013-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6079636B2 (ja) | 固体電解コンデンサ及びその製造方法 | |
US9728338B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP7153557B2 (ja) | 導電性高分子組成物、導電性高分子含有多孔質体及びその製造方法並びに固体電解コンデンサ及びその製造方法 | |
JP6735448B2 (ja) | 電解コンデンサの製造方法 | |
JP6550595B2 (ja) | 電解コンデンサおよびその製造方法 | |
JP2009016770A (ja) | 電解コンデンサの製造方法及び電解コンデンサ | |
TW200945389A (en) | Method for manufacturing solid electrolytic condenser | |
TW201609613A (zh) | 作爲用於導電聚合物的黏合底漆的單官能胺 | |
JP6528087B2 (ja) | 電解コンデンサの製造方法 | |
US10236130B2 (en) | Electrolytic capacitor and method for manufacturing same | |
JP6796755B2 (ja) | 電解コンデンサおよびその製造方法 | |
WO2018235434A1 (ja) | 電解コンデンサおよびその製造方法 | |
WO2015166842A1 (ja) | 固体電解コンデンサ及びその製造方法 | |
CN107430938A (zh) | 电解电容器及其制造方法 | |
JP5828588B2 (ja) | 固体電解コンデンサの製造方法 | |
KR101813316B1 (ko) | 고체 전해 콘덴서 및 그의 제조 방법 | |
JP2001110683A (ja) | コンデンサの製造方法 | |
JP6702186B2 (ja) | 電解コンデンサおよびその製造方法 | |
JP2011187935A (ja) | 固体電解コンデンサの製造方法 | |
TWI606475B (zh) | 固體電解電容器及其製造方法 | |
WO2024095984A1 (ja) | 固体電解コンデンサ及び製造方法 | |
JP2007305684A (ja) | 固体電解コンデンサ及びその製造方法 | |
JP2021073720A (ja) | 電解コンデンサ | |
JPH1012498A (ja) | 固体電解コンデンサの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12853905 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013547230 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14362123 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12853905 Country of ref document: EP Kind code of ref document: A1 |