WO2012147401A1 - プリプレグ、繊維強化複合材料およびプリプレグの製造方法 - Google Patents
プリプレグ、繊維強化複合材料およびプリプレグの製造方法 Download PDFInfo
- Publication number
- WO2012147401A1 WO2012147401A1 PCT/JP2012/054372 JP2012054372W WO2012147401A1 WO 2012147401 A1 WO2012147401 A1 WO 2012147401A1 JP 2012054372 W JP2012054372 W JP 2012054372W WO 2012147401 A1 WO2012147401 A1 WO 2012147401A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- reinforced composite
- prepreg
- composite material
- fiber
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/37—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/55—Epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/16—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/243—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/249—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/254—Polymeric or resinous material
Definitions
- the present invention relates to a fiber-reinforced composite material excellent in rigidity, strength, and vibration damping properties suitable for sports applications and general industrial applications.
- the present invention also relates to a prepreg suitable for obtaining this fiber-reinforced composite material and a method for producing the same.
- Fiber reinforced composite materials using carbon fibers, aramid fibers, etc. as reinforcing fibers make use of their high specific strength and specific elastic modulus to make structural materials such as aircraft and automobiles, tennis rackets, golf shafts, fishing rods, bicycles, etc. Widely used in sports and general industrial applications. In recent golf clubs, most of the heads are made of metal, and the heads are becoming larger. For this reason, the vibration and hard feeling transmitted to the hand at the time of hitting the ball have increased, and the demand for improving the vibration damping property and the hitting feeling has increased.
- Patent Document 1 discloses a golf club shaft having a vibration damping layer made of braided metal fibers at least in the longitudinal direction of a fiber reinforced resin shaft.
- Patent Document 2 discloses a golf club shaft having one or more polyester films on the inner surface of the innermost layer of the fiber reinforced resin layer or the fiber reinforced resin layer.
- Patent Document 3 discloses a tennis racquet made of a fiber reinforced composite material using an epoxy resin composition containing a specific epoxy resin and rubber particles incompatible with the epoxy resin and polyvinyl formal as a matrix resin.
- rubber particles that are incompatible with the epoxy resin enter the reinforcing fiber bundle, and at the same time, a certain amount of rubber fine particles are filtered by the reinforcing fibers, so that more rubber components are present on the surface than inside the prepreg. For this reason, many rubber components can exist between the layers of a prepreg after lamination.
- This technique can provide a racket having higher vibration damping properties and excellent impact feeling as compared with the case where a rubber component is uniformly present using rubber fine particles soluble in an epoxy resin.
- the matrix resin elastic modulus in the reinforcing fiber bundle decreases, and the rigidity and strength of the racket decrease.
- Patent Document 4 and Patent Document 5 illustrate prepregs that suppress the entry of particles into the reinforcing fiber bundle and have many particles on the prepreg surface.
- core-shell type particles made of epoxy resin and thermoplastic resin and nylon 12 particles are applied.
- Patent Document 6 illustrates a fishing rod having improved vibration damping properties in order to convey a small fish faith with high sensitivity.
- an epoxy elastomer sheet is disposed between fiber reinforced resin layers.
- Patent Document 1 the vibration damping performance is improved, but a metal fiber having a specific gravity larger than that of carbon fiber normally used for a golf shaft is used, so that the mass of the shaft is increased.
- the present invention solves the problems of these conventional techniques and provides a fiber-reinforced composite material that is excellent in rigidity, strength, and vibration damping properties.
- the present invention also provides a prepreg suitable for obtaining the fiber-reinforced composite material and a method for producing the prepreg.
- the prepreg of the present invention includes the following components (A), (B) and (C), and the component (A) is disposed on one or both sides of the layer including the components (B) and (C), 90% by area or more of the component (A) is present at a site from the surface of the prepreg containing the components (A), (B), and (C) to 20% of the prepreg average thickness; (A) Epoxy particles having a tan ⁇ at 10 ° C. of 0.15 or more and having a three-dimensional crosslinked structure; (B) a first epoxy resin composition; (C) Reinforcing fiber.
- the fiber-reinforced composite material of the present invention includes the following constituent elements (E), (F) and (G), and has two or more reinforcing fiber layers including the constituent elements (F) and (G).
- the cross-section of the reinforced composite material 90% by area or more of the component (E) has a component (G) between the reinforced fiber layer and another reinforced fiber layer adjacent to the reinforced fiber layer. Localized in the inter-layer region not included; (E) an epoxy particle having a tan ⁇ at 10 ° C. of 0.15 or more and having a three-dimensional crosslinked structure; (F) a cured product of the third epoxy resin composition; (G) Reinforcing fiber.
- the method for producing a prepreg of the present invention comprises a step of obtaining a prepreg precursor by impregnating the component (B) into the component (C), and a step of attaching the component (A) to the prepreg precursor. It is.
- the method for producing a prepreg of the present invention is a method comprising the following steps (I) to (III): (I) The step of dispersing component (A) in component (D) and making this dispersion into a film; (II) impregnating the component (B) into the component (C) to produce a prepreg precursor; (III) A step of attaching the film obtained in (I) to the prepreg precursor obtained in (II).
- the present invention it is possible to provide a fiber-reinforced composite material having excellent rigidity, strength, and vibration damping properties.
- the prepreg suitable for obtaining this fiber reinforced material and its manufacturing method can be provided. That is, according to the fiber reinforced composite material and the prepreg of the present invention, the fiber reinforced composite material can be obtained by localizing epoxy particles having high vibration damping properties and a three-dimensional crosslinked structure between layers of the fiber reinforced composite material. The vibration damping property can be improved without reducing the rigidity and strength of the steel.
- the present invention is an effective technique for the purpose of improving the shot feeling of a golf shaft, improving the impact absorbability of a tennis racket, improving the sensitivity of a fishing rod, and the like.
- FIG. 1 is a cross-sectional view of a prepreg composed of components (A), (B) and (C), in which component (A) is arranged on one side of a layer composed of components (B) and (C). is there.
- FIG. 2 is a sectional view of a prepreg composed of components (A), (B) and (C), in which component (A) is arranged on both sides of a layer composed of components (B) and (C). is there.
- FIG. 3 consists of components (A), (B), (C) and (P), where components (A) and (P) are on one side of the layer consisting of components (B) and (C). It is sectional drawing of the arrange
- FIG. 4 consists of components (A), (B), (C) and (P), where components (A) and (P) are on both sides of the layer consisting of components (B) and (C).
- FIG. 5 includes components (A), (B), (C), and (D), and the components (B) and (C) with the component (A) included in the components (D).
- FIG. 6 includes components (A), (B), (C), and (D), and the components (B) and (C) with the component (A) included in the components (D).
- FIG. 7 includes components (A), (B), (C), (D), and (P), and is configured in a state where the components (A) and (P) are included in the component (D).
- FIG. 8 includes components (A), (B), (C), (D), and (P), and is configured with the components (A) and (P) included in the component (D).
- FIG. 8 includes components (A), (B), (C), (D), and (P), and is configured with the components (A) and (P) included in the component (D).
- FIG. 9 shows a fiber-reinforced composite comprising components (E), (F) and (G), and the component (E) is present between the layers of the layers composed of the components (F) and (G). It is sectional drawing of material.
- FIG. 10 includes the components (E), (F), (G), and (Q). The components (E) and (E) are disposed between layers of the layers including the components (F) and (G). It is sectional drawing of the fiber reinforced composite material in which Q) exists.
- FIG. 11 shows the constituent elements (E), (F), (G) and (H), and the constituent elements (E) and the constituent elements between the layers of the constituent elements (F) and (G).
- FIG. 12 is composed of the components (E), (F), (G), (H) and (Q), and between the layers of the layers composed of the components (F) and (G), the component ( E), (Q) and the component (H) are present, and the components (E) and (Q) are included in the component (H) in a cross-sectional view of the fiber-reinforced composite material. is there.
- the prepreg of the present invention is a prepreg comprising the following components (A), (B) and (C).
- FIGS. 1 to 8 show sectional views of examples of preferred embodiments of the prepreg of the present invention.
- the component (B) is impregnated into the component (C) to form a layer
- the component (A) is one side of the layer composed of the components (B) and (C). Or it is arranged on both sides.
- the component (A) needs to be an epoxy particle having a three-dimensional crosslinked structure. Since the epoxy particles have a three-dimensional crosslinked structure, a fiber-reinforced composite material having excellent rigidity, strength, and vibration damping properties can be obtained. When there is no three-dimensional crosslinked structure, it becomes easy to melt
- the epoxy particles applied to the present invention consist of at least an epoxy resin and a curing agent, and can be obtained by reacting them.
- the epoxy resin to be used is not particularly limited, and an epoxy obtained by oxidizing a glycidyl ether type epoxy resin, a glycidyl amine type epoxy resin, a glycidyl ester type epoxy resin, and a compound having a plurality of double bonds in the molecule.
- One or more kinds of resins can be selected and used.
- glycidyl obtained by reaction of a polyol such as neopentyl glycol, polyethylene glycol, polypropylene glycol, hexanediol, trimethylolpropane, glycerin, diglycerin, polyglycerin and castor oil with epichlorohydrin in order to obtain a high tan ⁇ value at 10 ° C.
- a polyol such as neopentyl glycol, polyethylene glycol, polypropylene glycol, hexanediol, trimethylolpropane, glycerin, diglycerin, polyglycerin and castor oil with epichlorohydrin in order to obtain a high tan ⁇ value at 10 ° C.
- An ether type epoxy resin is preferably used.
- glycol type epoxy resin As a commercial product of neopentyl glycol type epoxy resin, “Denacol (registered trademark)” EX-211 (manufactured by Nagase ChemteX Corporation) and as a commercial product of polyethylene glycol type epoxy resin, “Denacol (registered trademark)” EX-821, “Denacol (registered trademark)” EX-830, “Denacol (registered trademark)” EX-841, “Denacol (registered trademark)” EX-861 (above, manufactured by Nagase ChemteX Corporation), polypropylene Commercially available glycol type epoxy resins include “Denacol (registered trademark)” EX-941, “Denacol (registered trademark)” EX-931 (above, manufactured by Nagase ChemteX Corporation), and hexanediol type epoxy resin.
- the curing agent to be used is not particularly limited, and amine type, acid anhydride type, phenol resin type, and other mercaptan type, which are usually used as a curing agent for epoxy resin, are used. Of these, amine compounds such as aliphatic amines, aromatic amines, and polyamide amines are particularly preferably used.
- Examples of such commercially available curing agents include dicyandiamide (DICY (manufactured by Mitsubishi Chemical Corporation)), aliphatic amine type ("jER Cure (registered trademark)” (manufactured by Mitsubishi Chemical Corporation)), poly Examples thereof include oxyalkyleneamines (“Jeffamine (registered trademark)” (manufactured by Huntsman), and polyamideamines ("raccamide” (registered trademark) (manufactured by DIC)). Of these, polyamidoamines and aliphatic amines are preferred from the viewpoint of reaction rate.
- an epoxy resin curing catalyst can be used.
- curing catalysts include urea compounds, tertiary amines and salts thereof, imidazoles and salts thereof, Lewis acids, Bronsted acids and salts thereof, and the like.
- a urea compound is preferably used from the balance between storage stability and catalytic ability.
- urea compound examples include N, N-dimethyl-N ′-(3,4-dichlorophenyl) urea, toluenebis (dimethylurea), 4,4′-methylenebis (phenyldimethylurea), 3-phenyl-1, 1-dimethylurea or the like can be used.
- Commercially available products of such urea compounds include DCMU99 (manufactured by Hodogaya Chemical Co., Ltd.), Omicure 24, Omicure 52, Omicure 94 (above Emerald Performance Materials, LLC).
- thermoplastic resin can be added to the epoxy particles as a constituent component.
- thermoplastic resins include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, and phenoxy resins.
- thermoplastic resin having an amide bond examples include polyamide, polyimide, and polyvinylpyrrolidone.
- polyethersulfone can be mentioned as a thermoplastic resin which has a sulfonyl group.
- thermoplastic resins examples include Denkabutyral and “Denka Formal (registered trademark)” (manufactured by Denki Kagaku Kogyo Co., Ltd.) and “Vinylec (registered trademark)” (manufactured by Chisso Corp.).
- grains of this invention from the said compound is demonstrated, it is not limited to these methods.
- grains in this invention are not restricted to spherical shape, The thing of an indefinite shape is also included.
- a first method there is a method in which an epoxy resin and a curing agent are reacted in advance and cured, and then mechanically pulverized using a ball mill, a jet mill or the like to obtain particles.
- a second method there is a method of suspending the mixture in a water-based or water-insoluble liquid to form particles.
- the second method is preferably used in view of the uniformity of particles and the true sphericity. Specific examples of the second method include the following methods, but are not limited thereto.
- the surfactant used is not particularly limited, but is an ether type nonionic surfactant such as polyoxy / ethylene / phenol substituted ether type or polyoxyethylene / polyoxypropylene block / polyether type.
- ether type nonionic surfactant such as polyoxy / ethylene / phenol substituted ether type or polyoxyethylene / polyoxypropylene block / polyether type.
- nonionic surfactants such as ester type nonionic surfactants such as higher fatty acid esters of polyethylene glycol and fatty acid esters of polyhydric alcohols, and alkoxylated rosins.
- protective colloidal substances include polyvinyl alcohol, gum arabic, carboxymethylcellulose, gelatin, sodium alginate and the like, which are generally used.
- an aqueous medium is gradually added to the strongly stirred mixture or solution thereof, or conversely, the mixture or solution thereof is strongly stirred into an aqueous medium.
- a method of gradually adding the solution is common.
- heat curing treatment is performed under normal pressure or under pressure, followed by filtration, centrifugation, washing, etc. to obtain particles.
- the incompatibility between the component (A) and the component (B) is that the cured product of the resin composition comprising the component (A) and the component (B) is stored when dynamic viscoelasticity is measured. This can be confirmed by the glass transition temperature obtained from the elastic modulus curve. That is, by using dynamic viscoelasticity measurement, a cured product of the resin composition composed of the component (A) and the component (B), a plate-shaped molded product composed of only the component (A), and the component (B) The glass transition temperature of the cured resin obtained by curing only the resin is measured. When the component (A) and the component (B) are incompatible, it is obtained by curing only the glass transition temperature of the plate-shaped molded article composed only of the component (A) and the component (B).
- the glass transition temperature of the cured product of the resin composition comprising the component (A) and the component (B) can be seen at the same temperature as the glass transition temperature of the cured resin.
- the same temperature means that the difference in glass transition temperature is in the range of ⁇ 3 to 3 ° C., respectively.
- Preparation of a cured product of the resin composition comprising the component (A) and the component (B) is performed as follows. After kneading the component (A) and the component (B), the obtained resin composition is degassed in vacuum. Thereafter, the resin composition is poured into a mold set to a thickness of 2 mm by a 2 mm-thick “Teflon (registered trademark)” spacer, and is cured under the condition that the component (B) is completely cured. A plate-like cured product having no surface is obtained.
- the condition for completely curing the constituent element (B) is that no residual heat generation is observed when the cured product obtained by curing is subjected to differential scanning calorimetry in the range of room temperature to 350 ° C.
- the glass transition temperature of the component (A) is determined by defoaming a mixture of the epoxy resin, the curing agent and other additives constituting the component (A) in a vacuum, In a mold set to have a thickness of 2 mm with a spacer made of “registered trademark”, a plate-like molded product having no voids can be obtained by curing under a completely curing condition.
- Preparation of the cured resin consisting only of the component (B) is performed as follows. After defoaming the component (B) in a vacuum, the component (B) is completely cured by pouring into a mold set to a thickness of 2 mm with a 2 mm thick “Teflon (registered trademark)” spacer. By curing under the conditions, a plate-like cured product having no voids can be obtained.
- the component (A) needs to have a tan ⁇ at 10 ° C. of 0.15 or more. Preferably it is 0.2 or more. If tan ⁇ is smaller than 0.15, the vibration damping property is not sufficient.
- tan ⁇ at 10 ° C. can be measured by dynamic viscoelasticity measurement of a plate-like cured product composed only of the component (A) produced by the above method.
- the component (A) included in the prepreg including the components (A), (B), and (C) is 100% by area, 90% by area or more thereof is near the surface of the prepreg, that is, the surface of the prepreg. To 20% of the average prepreg thickness.
- the component (A) is distributed on one or both surfaces of the prepreg at a higher concentration than the inside of the prepreg, so that rigidity, strength and control are reduced.
- a fiber-reinforced composite material having excellent vibration properties can be obtained.
- the proportion of the component (A) existing in the region from the surface of the prepreg to 20% of the average prepreg thickness is less than 90% by area, the fiber reinforcement obtained by the epoxy particles entering the reinforcing fiber bundle In addition to a decrease in rigidity and strength of the composite material, the effect of improving damping properties is also reduced.
- the degree of localization of particles in the prepreg can be evaluated by the method disclosed in JP-A-1-104624.
- the prepreg is put in close contact between two smooth support plates, and is cured by gradually raising the temperature over a long period of time. What is important at this time is to make the gel as low as possible. If the temperature is raised before gelation, the resin in the prepreg will flow and the particles will move, making it impossible to accurately evaluate the particle distribution in the original prepreg.
- the prepreg is cured by gradually applying temperature over time. Take a picture by enlarging the cross section of the cured prepreg 200 times or more (see FIGS. 1 to 8).
- the average thickness of the prepreg is determined.
- the thickness of the prepreg is measured at at least five points arbitrarily selected on the photograph, and the average is taken.
- a line (3) is drawn parallel to the surface (2) of the prepreg at a position 20% of the average thickness of the prepreg from the surface (2) of the prepreg that was in contact with both support plates.
- the cross-sectional area of all target particles existing between the surface (2) in contact with the support plate and the 20% parallel line (3) is added to both sides of the prepreg to obtain a total value of 1.
- the “target particle” is a particle for which the degree of localization is to be obtained.
- the target particles straddling the parallel line (3) are included in the total value, assuming that they exist between the surface (2) and the parallel line (3). Further, the total cross-sectional area of all target particles existing over the entire thickness of the prepreg is totaled to be 2.
- the ratio of the total value 1 to the total value 2 total value 1 / total value 2
- the ratio of target particles existing within 20% of the thickness of the prepreg from the prepreg surface that is, the surface localization rate is calculated.
- Quantification of the particle cross-sectional area may be measured using an image analyzer, or may be calculated by cutting out all the particle portions present in a predetermined region from the cross-sectional photograph and measuring the mass thereof.
- Quantification the cross-sectional area of the particles In order to reduce the influence on the localization rate due to the variation in the cross-sectional area, this evaluation is performed over the entire width of the obtained photograph, and the same evaluation is performed for five or more arbitrarily selected photographs. And take the average.
- the target particles are selectively dyed or components other than the target particles are selectively dyed and observed.
- the microscope may be an optical microscope or a scanning electron microscope, and may be properly used depending on the size of the particles and the staining method.
- the ratio of particles localized on the surface of the prepreg is measured by the area ratio, but the mass ratio of the particles is equal to this area ratio, so that the mass ratio is substantially measured. be equivalent to.
- the average particle size of the component (A) is preferably 5 ⁇ m or more.
- the average particle size referred to here is a volume average particle size, and according to Nanotrack particle size distribution measuring device (manufactured by Nikkiso Co., Ltd.) or JISK5600-9-3 (2006), LMS-24 (Seisin Corporation) Can be used.
- Nanotrack particle size distribution measuring device manufactured by Nikkiso Co., Ltd.
- JISK5600-9-3 (2006), LMS-24 (Seisin Corporation) Can be used.
- the component (A) is filtered by the reinforcing fiber bundle of the component (C), and tends to exist on the surface.
- the average particle diameter of a component (A) is 20 micrometers or less. If the average particle size exceeds 20 ⁇ m, the fiber-reinforced composite material obtained by laminating and curing the prepreg of the present invention has a large interlayer region, and voids are likely to occur in the interlayer region. In that case, if the epoxy resin composition is increased in order to suppress the generation of voids, a fiber-reinforced composite material having a low reinforcing fiber content tends to be obtained, and the rigidity and strength tend to decrease.
- region is an area
- the reinforcing fiber layer is a layer formed of a resin composition containing the constituent elements (B) and (C).
- the component (A) is preferably contained in the prepreg in an amount of 2 to 20% by mass. More preferably, it is 2 to 10% by mass.
- the content is less than 2% by mass, the resulting fiber-reinforced composite material is excellent in rigidity and strength, but tends to have low vibration damping properties.
- the content exceeds 20% by mass, the resulting fiber-reinforced composite material is excellent in vibration damping properties, but the rigidity and strength tend to be too low.
- the constituent element (A) is preferably spherical. Due to the spherical shape, the thickness between the reinforcing fiber layers of the fiber-reinforced composite material obtained from the prepreg of the present invention can be easily controlled from the average particle diameter and the blending ratio of the component (A), and the rigidity of the fiber-reinforced composite material Easy to adjust the strength and vibration control.
- the glass transition temperature of the component (A) of the present invention is preferably not in the range of greater than ⁇ 10 ° C. and less than 100 ° C.
- the glass transition temperature exists in this temperature range, when the obtained fiber reinforced composite material is applied to a golf shaft, a tennis racket, a fishing rod, a ski, or the like, the strength thereof may vary depending on the use environment.
- the first epoxy resin composition of the component (B) is not particularly limited as long as it is an epoxy resin composition, and is composed of an epoxy resin and a curing agent, and may contain a curing catalyst or the like as necessary. it can.
- component (B) epoxy resin examples include bisphenol type epoxy resin, amine type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, resorcinol type epoxy resin, phenol aralkyl type epoxy resin, dicyclopentadiene type
- component (B) epoxy resin examples include bisphenol type epoxy resin, amine type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, resorcinol type epoxy resin, phenol aralkyl type epoxy resin, dicyclopentadiene type
- examples thereof include an epoxy resin, an epoxy resin having a biphenyl skeleton, a urethane-modified epoxy resin, and an isocyanate-modified epoxy resin. One or more of these can be selected and used.
- the bisphenol type epoxy resin is obtained by glycidylation of two phenolic hydroxyl groups of a bisphenol compound, and includes a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol AD type epoxy resin, and a bisphenol S type epoxy resin. Or halogen-substituted products, alkyl-substituted products, hydrogenated products, and the like. Moreover, not only a monomer but the high molecular weight body which has several repeating units can also be used conveniently.
- bisphenol A type epoxy resins include “jER (registered trademark)” 825, “jER (registered trademark)” 828, “jER (registered trademark)” 834, “jER (registered trademark)” 1001, “jER ( (Registered trademark) "1002,” jER (registered trademark) "1003,” jER (registered trademark) "1003F,” jER (registered trademark) "1004,” jER (registered trademark) "1004AF,” jER (registered trademark) "1005F , “JER (registered trademark)” 1006FS, “jER (registered trademark)” 1007, “jER (registered trademark)” 1009, “jER (registered trademark)” 1010 (above, manufactured by Mitsubishi Chemical Corporation), etc.
- Brominated bisphenol A type epoxy resins include “jER (registered trademark)” 505, “jER (registered trademark)” 5050, “jER (registered trademark)” 5051, “jER (registered trademark)” 5054, “jER (registered trademark)”. Trademark) "5057 (above, manufactured by Mitsubishi Chemical Corporation).
- Examples of commercially available hydrogenated bisphenol A type epoxy resins include ST5080, ST4000D, ST4100D, and ST5100 (manufactured by Nippon Steel Chemical Co., Ltd.).
- Examples of the bisphenol S-type epoxy resin include “Epiclon (registered trademark)” EXA-154 (manufactured by DIC Corporation).
- bisphenol A type epoxy resin or bisphenol F type epoxy resin is preferable because of a good balance of elastic modulus, toughness, and heat resistance.
- amine type epoxy resin examples include tetraglycidyldiaminodiphenylmethane, triglycidylaminofel, triglycidylaminocresol, tetraglycidylxylylenediamine, halogens thereof, alkynol-substituted products, and hydrogenated products.
- tetraglycidyldiaminodiphenylmethane examples include “Sumiepoxy (registered trademark)” ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH434L (manufactured by Nippon Steel Chemical Co., Ltd.), and “jER (registered trademark)” 604 (Mitsubishi Chemical Corporation). ), “Araldide (registered trademark)” MY720, MY721 (manufactured by Huntsman Advanced Materials Co., Ltd.), and the like.
- triglycidylaminophenol or triglycidylaminocresol As triglycidylaminophenol or triglycidylaminocresol, “Sumiepoxy (registered trademark)” ELM100 (manufactured by Sumitomo Chemical Co., Ltd.), “Araldide (registered trademark)” MY0500, MY0510, MY0600 (above, Huntsman Advanced Materials) And “jER (registered trademark)” 630 (manufactured by Mitsubishi Chemical Corporation). Examples of tetraglycidylxylylenediamine and hydrogenated products thereof include TETRAD-X and TETRAD-C (manufactured by Mitsubishi Gas Chemical Co., Inc.).
- phenol novolac type epoxy resin examples include “jER (registered trademark)” 152, “jER (registered trademark)” 154 (manufactured by Mitsubishi Chemical Corporation), “Epicron (registered trademark)” N-740, N -770, N-775 (above, manufactured by DIC Corporation).
- cresol novolac epoxy resins examples include “Epiclon (registered trademark)” N-660, N-665, N-670, N-673, N-695 (above, manufactured by DIC Corporation), EOCN-1020.
- EOCN-102S, EOCN-104S Nippon Kayaku Co., Ltd.
- resorcinol type epoxy resin examples include “Denacol (registered trademark)” EX-201 (manufactured by Nagase ChemteX Corporation).
- dicyclopentadiene type epoxy resins include “Epicron (registered trademark)” HP7200, HP7200L, HP7200H, HP7200HH (above, manufactured by DIC Corporation), “Tactix (registered trademark)” 558 (Huntsman Advanced Material ( And XD-1000-1L, XD-1000-2L (Nippon Kayaku Co., Ltd.) and the like.
- Examples of commercially available epoxy resins having a biphenyl skeleton include “jER (registered trademark)” YX4000H, YX4000, YL6616 (manufactured by Mitsubishi Chemical Corporation), NC-3000 (manufactured by Nippon Kayaku Co., Ltd.), and the like. It is done.
- Examples of commercially available urethane and isocyanate-modified epoxy resins include AER4152 (produced by Asahi Kasei Epoxy Co., Ltd.) having an oxazolidone ring and ACR1348 (produced by ADEKA Co., Ltd.).
- an epoxy resin having an epoxy equivalent of 800 to 5500 is preferably used because it improves the adhesion with the epoxy particles and gives excellent vibration damping properties. More preferably, it is an epoxy resin having an epoxy equivalent of 800 to 2500. If the epoxy equivalent is less than 800, the effect of improving adhesiveness may not be sufficient. When the epoxy equivalent is larger than 5500, the viscosity of the resulting epoxy resin composition becomes high, and it may be difficult to produce a prepreg. Furthermore, a bisphenol type epoxy resin having an epoxy equivalent of 800 to 5500 is more preferable from the balance of vibration damping properties and toughness, and a bisphenol A type epoxy resin and an bisphenol F type epoxy resin having an epoxy equivalent of 800 to 5500 are more preferable.
- the curing agent for the component (B) is not particularly limited, but dicyandiamide or a derivative thereof, diaminosiphenylsulfone is preferably used because of good storage stability.
- amines such as aromatic amines and alicyclic amines, acid anhydrides, polyaminoamides, organic acid hydrazides, and isocyanates may be used.
- Examples of commercially available dicyandiamide include DICY-7 and DICY-15 (above, manufactured by Mitsubishi Chemical Corporation).
- the total amount of the curing agent preferably includes an amount in which the active hydrogen groups are in the range of 0.6 to 1.2 equivalents with respect to 1 equivalent of epoxy groups of all epoxy resin components. More preferably, the amount is in the range of 0.7 to 1.0 equivalent.
- the active hydrogen group means a functional group capable of reacting with the epoxy group of the curing agent component.
- the reaction rate, heat resistance and elastic modulus of the cured product may be decreased, and the glass transition temperature and strength of the fiber reinforced composite material may be decreased.
- the active hydrogen group exceeds 1.2 equivalents, the reaction rate, glass transition temperature, and elastic modulus of the cured product are sufficient, but the plastic deformation ability is reduced, so that the impact resistance of the fiber-reinforced composite material is reduced. May decrease.
- the curing catalyst of component (B) can also be used.
- the curing catalyst include urea compounds, tertiary amines and salts thereof, imidazole and salts thereof, Lewis acids, Bronsted acids and salts thereof, and the like.
- a urea compound is preferably used from the balance between storage stability and catalytic ability.
- urea compound examples include N, N-dimethyl-N ′-(3,4-dichlorophenyl) urea, toluenebis (dimethylurea), 4,4′-methylenebis (phenyldimethylurea), 3-phenyl-1, 1-dimethylurea or the like can be used.
- examples of commercially available urea compounds include DCMU99 (manufactured by Hodogaya Chemical Co., Ltd.), Omicure 24, Omicure 52, Omicure 94 (above, Emerald Performance Materials, LLC).
- the compounding amount of the urea compound is preferably 1 to 4 parts by mass with respect to 100 parts by mass of all epoxy resin components. More preferred is 1.5 to 3 parts by mass.
- reaction may not fully advance and the elasticity modulus and heat resistance of hardened
- the compounding quantity of a urea compound exceeds 4 mass parts, since the self-polymerization reaction of an epoxy resin inhibits reaction with an epoxy resin and a hardening
- the glass transition temperature of the cured product when the component (B) is cured is 100 ° C. or higher.
- the glass transition temperature of the cured product is less than 100 ° C., warpage or distortion may occur during molding of the fiber reinforced composite material, and deformation may occur during use in a high temperature environment.
- the curing of the component (B) can be performed by heating at 130 ° C. for 90 minutes, for example.
- thermoplastic resin other than the constituent element (A), inorganic particles, inorganic filler, and the like can be added to the constituent element (B) as long as the effects of the present invention are not lost.
- a thermoplastic resin a thermoplastic resin soluble in an epoxy resin, organic particles such as rubber particles and thermoplastic resin particles, and the like can be blended.
- a thermoplastic resin soluble in the epoxy resin a thermoplastic resin having a hydrogen bondable functional group that can be expected to improve the adhesion between the resin and the reinforcing fiber is preferably used.
- thermoplastic resin having an alcoholic hydroxyl group examples include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, and phenoxy resins.
- thermoplastic resin having an amide bond examples include polyamide, polyimide, and polyvinylpyrrolidone.
- An example of the thermoplastic resin having a sulfonyl group is polysulfone.
- Polyamide, polyimide and polysulfone may have a functional group such as an ether bond and a carbonyl group in the main chain.
- the polyamide may have a substituent on the nitrogen atom of the amide group.
- thermoplastic resins that are soluble in epoxy resins and have hydrogen bonding functional groups
- examples of commercially available thermoplastic resins that are soluble in epoxy resins and have hydrogen bonding functional groups include, as polyvinyl acetal resins, Denkabutyral and “Denka Formal (registered trademark)” (manufactured by Denki Kagaku Kogyo Co., Ltd.), “Vinylec (registered trademark)” (manufactured by Chisso), “UCAR (registered trademark)” PKHP (manufactured by Union Carbide) as phenoxy resin, “Macromelt (registered trademark)” (Henkel Hakusui) as polyamide resin ), “Amilan (registered trademark)” CM4000 (manufactured by Toray Industries, Inc.), “Ultem (registered trademark)” (manufactured by General Electric Co., Ltd.), “Matrimid (registered trademark)” 5218 (pol
- the acrylic resin is highly compatible with the epoxy resin and is suitably used for controlling viscoelasticity.
- examples of commercially available acrylic resins include “Dianal (registered trademark)” BR series (manufactured by Mitsubishi Rayon Co., Ltd.), “Matsumoto Microsphere (registered trademark)” M, M100, M500 (Matsumoto Yushi Seiyaku Co., Ltd.) And “Nanostrength (registered trademark)” E40F, M22N, M52N (manufactured by Arkema Co., Ltd.), and the like.
- Rubber particles can also be blended.
- As the rubber particles, cross-linked rubber particles, and core-shell rubber particles obtained by graft polymerization of a different polymer on the surface of the cross-linked rubber particles are preferably used from the viewpoint of handleability and the like.
- crosslinked rubber particles include FX501P (manufactured by Nippon Synthetic Rubber Industry Co., Ltd.) consisting of a crosslinked product of carboxyl-modified butadiene-acrylonitrile copolymer, and CX-MN series (Nippon Shokubai Co., Ltd.) consisting of fine acrylic rubber particles.
- YR-500 series manufactured by Nippon Steel Chemical Co., Ltd. and the like can be used.
- core-shell rubber particles include, for example, “Paraloid (registered trademark)” EXL-2655 (manufactured by Kureha Chemical Industry Co., Ltd.), acrylic ester / methacrylic ester consisting of butadiene / alkyl methacrylate / styrene copolymer.
- STAPHYLOID (registered trademark) AC-3355 made of a copolymer, TR-2122 (manufactured by Takeda Pharmaceutical Co., Ltd.), "PARARAID (registered trademark)” made of a butyl acrylate / methyl methacrylate copolymer "EXL-2611, EXL-3387 (manufactured by Rohm & Haas)", “Kane Ace (registered trademark)” MX series (manufactured by Kaneka Corporation), and the like can be used.
- thermoplastic resin particles polyamide particles and polyimide particles are preferably used.
- polyamide particles SP-500 (manufactured by Toray Industries, Inc.), “Orgasol (registered trademark)” (manufactured by Arkema Co., Ltd.) Etc. can be used.
- inorganic particles and inorganic fillers carbon black, clay, carbon nanotubes, fullerenes, graphene, hollow carbon fibers, and metal fine particles can be used.
- the reinforcing fiber is not particularly limited, and glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like are used. Two or more of these fibers may be mixed and used. Among these, it is preferable to use carbon fibers from which a lightweight and highly rigid fiber-reinforced composite material can be obtained.
- carbon fibers having a tensile modulus of 230 to 450 GPa are preferable because not only a lighter and more rigid fiber-reinforced composite material is obtained, but also vibration damping properties are excellent.
- the tensile modulus is less than 230 GPa, the resulting fiber-reinforced composite material tends to have low rigidity and vibration damping properties.
- the tensile modulus exceeds 450 GPa, the adhesive properties of carbon fiber and epoxy resin tend to be reduced, and the vibration control of the resulting fiber reinforced composite material is improved by energy conversion by frictional heat between carbon fiber and epoxy resin.
- the strength may decrease. From the balance between mechanical properties and vibration damping properties of the obtained fiber-reinforced composite material, carbon fibers having a tensile modulus of 230 to 300 GPa are more preferably used.
- the form of the reinforcing fiber is not particularly limited.
- long fibers aligned in one direction tows, woven fabrics, mats, knits, braids, short fibers chopped to a length of less than 10 mm, and the like are used.
- long fibers refer to single fibers or fiber bundles that are substantially continuous for 10 mm or more.
- the short fiber is a fiber bundle cut to a length of less than 10 mm.
- an array in which reinforcing fiber bundles are aligned in a single direction is most suitable for applications that require high specific strength and specific elastic modulus. From the viewpoint of easy handling, a cloth-like arrangement is also suitable for the present invention.
- the prepreg of the present invention preferably contains a component (P) that is a particle having a Young's modulus of 2 GPa or more and an average particle diameter of 5 to 100 ⁇ m.
- a component (P) that is a particle having a Young's modulus of 2 GPa or more and an average particle diameter of 5 to 100 ⁇ m.
- the Young's modulus is 2 GPa or more, a decrease in rigidity of the interlayer region due to the blending of the component (A) can be suppressed, and a decrease in elastic modulus and strength of the fiber-reinforced composite material can be suppressed.
- the Young's modulus is 3 GPa or more.
- the Young's modulus is less than 2 GPa, the Young's modulus of the matrix resin in the fiber-reinforced composite material is lower, and the rigidity of the interlayer region may be reduced.
- 90% by area or more of the constituent elements (P) contained in the prepreg is preferably present in the region from the surface of the prepreg to 20% of the average prepreg thickness. That is, assuming that the entire component (P) contained in the prepreg containing the components (A), (B), (C) and (P) is 100% by area, 90% by area or more thereof is near the surface of the prepreg, That is, it is preferably present at a site between the surface of the prepreg and 20% of the average prepreg thickness. As shown in the cross-sectional views of the prepreg in FIGS. 3, 4, 7, and 8, the component (P) is distributed on one or both surfaces of the prepreg at a higher concentration than the inside of the prepreg.
- the degree of localization of the particles of the constituent element (P) in the prepreg can be evaluated by the same method as that of the constituent element (A) by the method disclosed in JP-A-1-104624.
- the average particle diameter of the constituent element (P) is preferably 5 ⁇ m or more.
- the average particle size referred to here is a volume average particle size, and according to Nanotrack particle size distribution measuring device (manufactured by Nikkiso Co., Ltd.) or JISK5600-9-3 (2006), LMS-24 (Seisin Corporation) Can be used.
- the constituent element (P) is filtered by the reinforcing fiber bundle of the constituent element (C), and is easily present on the surface.
- the average particle diameter of a component (P) is 100 micrometers or less.
- the average particle size exceeds 100 ⁇ m, in the fiber reinforced composite material obtained by laminating and curing the prepreg of the present invention, the thickness of the interlayer region is increased, and voids are likely to be generated in the interlayer region. In that case, if the epoxy resin composition is increased in order to suppress the generation of voids, a fiber-reinforced composite material having a low reinforcing fiber content tends to be obtained, and the rigidity and strength tend to decrease.
- Examples of such a component (P) include carbon particles, silica particles, metal particles, thermoplastic resin particles, particles made of an inorganic material or an inorganic material coated with a conductive substance.
- Examples of the carbon particles include “Bellepearl (registered trademark)” C-600, C-800, C-2000 (manufactured by Air Water Co., Ltd.), “NICABEADS (registered trademark)” ICB, PC, MC (Nippon Carbon Co., Ltd.). Glassy carbon (manufactured by Tokai Carbon Co., Ltd.), high purity artificial graphite SG series, SGB series, SN series (manufactured by SEC Carbon Co., Ltd.), true spherical carbon (manufactured by Gunei Chemical Industry Co., Ltd.) ) And the like.
- any metal particles may be used, but platinum, gold, silver, copper, tin, nickel, or titanium is preferably used because of high stability.
- these metals may be used independently and may be used as an alloy which has these metals as a main component.
- the metal particles include “Bright (registered trademark)” GNM-Ni (manufactured by Nippon Chemical Industry Co., Ltd.).
- the conductive substance used when the inorganic material core or the organic material core is coated to form conductive particles only needs to contain a substance that is an electrically good conductor.
- metals such as platinum, gold, silver, copper, nickel, titanium, cobalt, palladium, tin, zinc, iron, chromium, aluminum, polyacetylene, polyaniline, polypyrrole, polythiophene, polyisothianaphthene, polyethylenedioxythiophene, etc.
- Carbon such as conductive polymer, carbon black such as channel black, thermal black, furnace black, ketjen black, carbon such as carbon nanotube, fullerene, graphene, hollow carbon fiber can be used.
- thermoplastic resin as the organic material and adopt particles in which the core of the thermoplastic resin is coated with the conductive substance, because the resulting fiber-reinforced composite material can realize excellent impact resistance.
- Such particles include particles “Micropearl (registered trademark)” AU215, AU225, CU215, NI215 (manufactured by Sekisui Chemical Co., Ltd.), etc., obtained by metal coating on divinylbenzene polymer particles.
- thermoplastic resin particles examples include polyamide particles, polyamideimide particles, polyethersulfone particles, polyetherimide particles, polyacetylene particles, polyaniline particles, polypyrrole particles, polythiophene particles, polyisothianaphthene particles, polyethylene dioxythiophene particles, and the like. Is mentioned.
- the particle shape of the constituent element [P] may be any of spherical, non-spherical, porous, needle-like, whisker-like or flake-like, but spherical is preferred. If the shape is spherical, the flow characteristics of the thermosetting resin are not deteriorated, so that the impregnation property to the carbon fiber is excellent. Moreover, when it is spherical, delamination caused by a local impact during a falling weight impact (or local impact) on the carbon fiber reinforced composite material is further reduced, and the impact resistance of the fiber reinforced composite material is increased. This is because the delamination portion becomes a starting point of fracture due to stress concentration when stress is applied to the carbon fiber reinforced composite material after impact.
- the prepreg of the present invention further includes a component (D), and this component (D) is disposed on one or both sides of the layer composed of the components (B) and (C). It is preferable that the component (A) exists in the state of being included in the component (D). Further, when the prepreg of the present invention also includes the component (P), the components (A) and (P) are present in the component (D) as shown in FIGS. It is preferable.
- Component (D) is a second epoxy resin composition that is incompatible with component (A).
- the component (D) is not particularly limited as long as it is an epoxy resin composition, and is composed of an epoxy resin and a curing agent, and may contain a curing catalyst and the like as necessary.
- the epoxy resin, curing agent, curing catalyst, and the like of the component (D) those exemplified for the component (B) can be used.
- the component (D) (2nd epoxy resin composition) may differ from a component (B) (1st epoxy resin composition), it is more preferable that it is the same.
- being the same means that the types of the epoxy resin, the curing agent and the curing catalyst constituting the component (B) are the same, and the difference in the content of each component is within 5% by mass. .
- the glass transition temperature of the cured product when the component (D) is cured is preferably 100 ° C. or higher. When the temperature is less than 100 ° C., warpage or distortion may occur during molding of the fiber reinforced composite material, and deformation may occur during use in a high temperature environment.
- the component (D) can be cured by heating at 130 ° C. for 90 minutes, for example.
- the manufacturing method of the prepreg of this invention is not specifically limited, It can manufacture suitably by the method of either the following (1) or (2).
- (1) A method for producing a prepreg comprising a step of impregnating a component (B) into a component (C) to obtain a prepreg precursor, and a step of attaching the component (A) to the prepreg precursor.
- (2) A method for producing a prepreg comprising the following steps (I), (II) and (III).
- a prepreg when a prepreg also contains the component (P), it can be suitably manufactured by any one of the following methods (3) or (4).
- (3) A method for producing a prepreg comprising the steps of obtaining a prepreg precursor by impregnating the component (B) into the component (B), and attaching the components (A) and (P) to the prepreg precursor .
- a method for producing a prepreg comprising the following steps (I ′), (II ′) and (III ′): (I ′) Component (A) and (P) are dispersed in Component (D), and this dispersion is converted into a film (II ′) Component (B) is impregnated in Component (C), A step of applying the film obtained in steps (III ′) and (I ′) for producing the prepreg precursor to the prepreg precursor obtained in (II ′).
- the epoxy resin composition is dissolved in a solvent such as methyl ethyl ketone and methanol to lower the viscosity, and the wet method to impregnate, and the viscosity is reduced by heating to impregnate.
- a solvent such as methyl ethyl ketone and methanol
- the wet method to impregnate and the viscosity is reduced by heating to impregnate.
- a hot melt method dry method
- the wet method is a method in which a reinforcing fiber is immersed in a solution of an epoxy resin composition, then pulled up, and the solvent is evaporated using an oven or the like.
- the hot melt method is a method in which an epoxy resin composition whose viscosity has been reduced by heating is directly impregnated into a fiber substrate made of reinforcing fibers, or a film in which an epoxy resin composition is once coated on release paper or the like is prepared. Then, the film is laminated on both sides or one side of the fiber base made of the reinforcing fiber, and the fiber base made of the reinforcing fiber is impregnated with resin by heating and pressing.
- the hot melt method is preferable because substantially no solvent remains in the prepreg.
- the prepreg precursor obtained by impregnating the component (B) into the component (C) preferably has a reinforcing fiber amount of 50 to 300 g / m 2 per unit area.
- the upper limit of the amount of reinforcing fibers is more preferably 200 g / m 2 or less.
- the amount of reinforcing fibers is less than 50 g / m 2, it is necessary to increase the number of laminated layers in order to obtain a predetermined thickness when forming a fiber-reinforced composite material, and the work may be complicated.
- the amount of reinforcing fibers exceeds 300 g / m 2 , the prepreg drapability tends to deteriorate.
- the content of the reinforcing fiber in the prepreg precursor is preferably 60 to 90% by mass. More preferably, it is 65 to 85% by mass, and still more preferably 70 to 80% by mass.
- the amount of the resin is too large to obtain the advantages of the fiber-reinforced composite material excellent in specific strength and specific elastic modulus, or cured when producing the fiber-reinforced composite material. Sometimes the amount of heat generated becomes too high.
- the content rate of a reinforced fiber exceeds 90 mass%, the impregnation defect of resin will arise and there exists a possibility that the fiber reinforced composite material obtained may be a thing with many voids.
- the component (A) and the method of spraying the component (P) on the prepreg precursor by a spraying device, on the prepreg precursor After the component (A) and the component (P) are dispersed, the method of allowing the prepreg precursor to pass through a gap having a predetermined interval, the component (A) by a dispersing device on the release paper or the release film, After spraying the component (P), a method of integrating the release paper or release film with the prepreg precursor by pressure bonding, the component (A), the component (P), the component (A) and the configuration
- the element (P) is preliminarily dispersed in a liquid that does not dissolve, and after the dispersion is adhered to the prepreg precursor, the liquid is dried and removed, and the component (A , And a method for component (P) is attached to the prepreg precursor.
- the component (A) As a method for dispersing the component (A) and the component (P) in the component (D), the component (A) using a kneader, three rolls, a bead mill, a planetary mixer, a twin screw extruder, etc. A method of kneading the component (P) and the component (D) is preferably used.
- the resin composition As a method of processing the resin composition in which the component (A) and the component (P) are dispersed in the component (D) into a film, the resin composition is coated on a release paper or the like to form a film. A method is mentioned.
- the fiber-reinforced composite material of the present invention includes the following constituent elements (E), (F) and (G), and has two or more reinforcing fiber layers including the constituent elements (F) and (G).
- the cross section of the reinforced composite material 90% by area or more of the component (E) is localized in an interlayer region between the reinforced fiber layer and another reinforced fiber layer adjacent to the reinforced fiber layer.
- (E) Epoxy particles having a tan ⁇ at 10 ° C. of 0.15 or more and having a three-dimensional crosslinked structure
- F Cured product of the third epoxy resin composition
- Reinforced fiber Such fiber reinforced composite Cross-sectional views of examples of preferred embodiments of the material are shown in FIGS.
- the component (E) used in the present invention is required to be an epoxy particle having a three-dimensional crosslinked structure.
- a fiber-reinforced composite material that is incompatible with the third epoxy resin composition and has excellent rigidity, strength, and vibration damping properties can be provided.
- the epoxy particles do not have a three-dimensional crosslinked structure, the epoxy particles are easily dissolved in the third epoxy resin composition before curing.
- the fiber reinforced composite material has low rigidity, strength, and glass transition temperature, and the vibration damping effect is not sufficient.
- the glass transition temperature of the cured product of the resin composition comprising the component (E) and the third epoxy resin composition is found at the same temperature as the glass transition temperature of the cured resin product obtained in this manner.
- the same temperature means that the difference in glass transition temperature is in the range of ⁇ 3 to 3 ° C., respectively.
- Cured resin composition comprising component (E) and third epoxy resin composition, plate-shaped molded product comprising component (E), and resin obtained by curing only third epoxy resin composition
- a glass transition temperature can be calculated
- tan ⁇ at 10 ° C. of the component (E) needs to be 0.15 or more. Preferably it is 0.2 or more. If tan ⁇ is smaller than 0.15, the vibration damping property is not sufficient.
- tan ⁇ at 10 ° C. can be obtained by measuring the dynamic viscoelasticity of the plate-like cured product produced by the above method by the above method.
- the component (E) is preferably contained in the fiber-reinforced composite material in an amount of 2 to 20% by mass. More preferably, it is 2 to 10% by mass.
- the content is less than 2% by mass, the resulting fiber-reinforced composite material is excellent in rigidity and strength, but tends to have low vibration damping properties.
- the content exceeds 20% by mass, the resulting fiber-reinforced composite material has excellent vibration damping properties, but the rigidity and strength tend to be too low.
- component (E) those exemplified in the component (A) can be used.
- the interlayer region is a region that does not include reinforcing fibers between the reinforcing fiber layer and another reinforcing fiber layer adjacent to the reinforcing fiber layer in the fiber-reinforced composite material.
- a reinforced fiber layer is a layer formed with the resin composition containing component (F) and (G).
- the epoxy resin enters the reinforcing fiber bundle so that the matrix resin elastic modulus in the reinforcing fiber bundle decreases, and the rigidity and In addition to a decrease in strength, the effect of improving vibration damping is also reduced.
- the degree of localization of the particles in the fiber reinforced composite material can be evaluated by the following method. That is, a photograph (see FIGS. 9 to 12) is taken by enlarging the cross section of the fiber reinforced composite material by 200 times or more. Using this cross-sectional photograph, first, an average boundary line (4) between the layer composed of the components (F) and (G) and the layer where the component (G) does not exist is drawn. Here, how to draw the average boundary line (4) is as follows. First, five or more points are selected on one of the boundary lines between the layer composed of the components (F) and (G) and the layer where the component (G) does not exist on the photograph. When the fiber reinforced composite material is a laminated board, it is sufficient to select any five or more points.
- the fiber reinforced composite material has a cylindrical shape or a complicated shape
- the distance between the points is as small as possible to reflect the shape.
- the average center thickness line (5) of the layer composed of the components (F) and (G) is drawn.
- the average center thickness line refers to the layer consisting of one component (F) and (G), and the average boundary line (4) on both sides is drawn as described above, and the two average boundary lines. It is the line that is just the center.
- a line is drawn from the two average boundary lines so as to be exactly equidistant from each other so as to be parallel to the average boundary line to obtain an average center thickness line.
- the region between the two average boundary lines where the component (G) does not exist is the interlayer region.
- the sum of the cross-sectional areas of all the target particles existing in the interlayer region is obtained and set to a total value of 3.
- the “target particle” is a particle for which the degree of localization is to be obtained.
- the component (G) From the average center thickness line (5) of the layer composed of the components (F) and (G) adjacent to the layer where the component (G) does not exist, the component (G)
- the region up to the average center thickness line (5) of the layer composed of the components (F) and (G) adjacent to the opposite side across the layer in which no is present is defined as the entire region in the measurement of the cross-sectional area of the particles.
- the sum of the cross-sectional areas of all the target particles existing in the entire region is obtained and set to a total value of 4.
- the ratio of target particles existing in the interlayer region is calculated.
- the quantification of the particle cross-sectional area may be performed by an image analyzer or by cutting out all the particle portions existing in a predetermined region from the cross-sectional photograph and measuring the mass thereof.
- some particles may be observed in a state where the cross-section does not pass through the center and is smaller than the actual particle size. Quantify the cross-sectional area of the particles.
- the target particles are selectively dyed or components other than the target particles are selectively dyed and observed.
- the microscope may be an optical microscope or a scanning electron microscope, and may be properly used depending on the size of the particles and the staining method.
- the ratio of the particles present in the interlayer region is measured by the area ratio, but the mass ratio of the particles is equal to the area ratio, and thus is substantially equivalent to the measurement of the mass ratio. .
- the component (F) is obtained by curing the third epoxy resin composition.
- the third epoxy resin composition is composed of an epoxy resin and a curing agent, and may contain a curing catalyst or the like as necessary.
- the epoxy resin, curing agent, curing catalyst and the like those exemplified in the component (B) can be used.
- Component (G) Reinforcing fibers are used for the component (G).
- the reinforcing fiber those exemplified in the component (C) can be used.
- the fiber-reinforced composite material of the present invention preferably contains a component (Q) that is a particle having a Young's modulus of 2 GPa or more and an average particle diameter of 5 to 100 ⁇ m.
- a component (Q) that is a particle having a Young's modulus of 2 GPa or more and an average particle diameter of 5 to 100 ⁇ m.
- the Young's modulus is 2 GPa or more, a decrease in rigidity of the interlayer region due to the blending of the component (E) can be suppressed, and a decrease in elastic modulus and strength of the fiber-reinforced composite material can be suppressed.
- the Young's modulus is 3 GPa or more.
- the Young's modulus is less than 2 GPa, the Young's modulus of the matrix resin in the fiber-reinforced composite material is lower, and the rigidity of the interlayer region may be reduced.
- the fiber reinforced composite material of the present invention it is preferable that 90% by area or more of the constituent elements (Q) included in the fiber reinforced composite material are localized in the interlayer region when the cross section is observed. That is, it is preferable that 90% by area or more of the constituent elements (Q) contained in the fiber-reinforced composite material is present in the interlayer region with 100% by area.
- the ratio of the constituent element (Q) existing in the interlayer region is less than 90 area%, the rigidity and strength of the resulting fiber reinforced composite material are reduced by the constituent element (Q) entering the reinforcing fiber bundle. Tend to.
- the degree of localization of the particles in the fiber-reinforced composite material can be measured by the same method as in the previous structural component (E).
- the average particle size of the component (Q) is preferably 5 ⁇ m or more.
- the average particle size referred to here is a volume average particle size, and according to Nanotrack particle size distribution measuring device (manufactured by Nikkiso Co., Ltd.) or JISK5600-9-3 (2006), LMS-24 (Seisin Corporation) Can be used.
- Nanotrack particle size distribution measuring device manufactured by Nikkiso Co., Ltd.
- JISK5600-9-3 (2006), LMS-24 Seisin Corporation
- the average particle diameter of a component (Q) is 100 micrometers or less.
- the average particle size exceeds 100 ⁇ m, the thickness of the interlayer region is increased in the fiber-reinforced composite material of the present invention, and voids are likely to be generated in the interlayer region.
- the epoxy resin composition is increased in order to suppress the generation of voids, a fiber-reinforced composite material having a low reinforcing fiber content tends to be obtained, and the rigidity and strength tend to decrease.
- the component (Q) those exemplified for the component (P) can be used.
- the fiber-reinforced composite material of the present invention further includes a component (H) as shown in FIG. 11, and the component (E) is preferably present in a state where it is included in the component (H). Further, when the fiber-reinforced composite material of the present invention also includes the component (Q), the components (E) and (Q) are present in the component (H) as shown in FIG. It is preferable.
- Component (H) is a cured product of the fourth epoxy resin composition in which component (E) is incompatible.
- the fourth epoxy resin composition is composed of an epoxy resin and a curing agent, and may contain a curing catalyst or the like as necessary.
- a curing catalyst or the like as necessary.
- the epoxy resin, curing agent, curing catalyst and the like of the component (H) those exemplified in the component (B) can be used.
- the method for producing the fiber-reinforced composite material of the present invention is not particularly limited, but includes a prepreg lamination molding method, a resin transfer molding method, a resin film infusion method, a hand layup method, a sheet molding compound method, and a filament winding method. , Pultrusion method, etc.
- the prepreg laminate molding method using the prepreg of the present invention is preferable because the fiber-reinforced composite material is excellent in rigidity and strength.
- the prepreg laminate molding method is a method in which after shaping and / or laminating a prepreg, the resin is heated and cured while applying pressure to the shaped product and / or laminate.
- a method for applying heat and pressure a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, or the like can be appropriately used.
- the autoclave molding method is a method in which a prepreg is laminated on a tool plate having a predetermined shape, covered with a bagging film, and cured by pressurizing and heating while degassing the inside of the laminate.
- the fiber orientation can be precisely controlled and the generation of voids is small, so that a molded article having excellent mechanical properties and high quality can be obtained.
- the wrapping tape method is a method of forming a tubular body made of a fiber reinforced composite material by winding a prepreg around a mandrel or the like.
- the wrapping tape method is a suitable method for producing rod-shaped bodies such as golf shafts and fishing rods. More specifically, a prepreg is wound around a mandrel, a wrapping tape made of a thermoplastic film is wound around the outside of the prepreg to fix the prepreg, and after the resin is heated and cured in an oven, the core metal This is a method for extracting a tube to obtain a tubular body.
- the internal pressure molding method is to set a preform in which a prepreg is wound on an internal pressure applying body such as a tube made of a thermoplastic resin in a mold, and then introduce a high pressure gas into the internal pressure applying body to apply pressure. At the same time, the mold is heated and molded.
- This method is preferably used when molding a complicated shape such as a golf shaft, a bad, a racket such as tennis or badminton.
- the optimum temperature and time vary depending on the type and amount of the selected curing agent and curing catalyst. From the viewpoint of heat resistance after curing, it is preferable to cure at a temperature of 120 to 220 ° C. for 0.5 to 8 hours. A temperature rising rate of 0.1 to 10 ° C./min is preferably used. When the rate of temperature increase is less than 0.1 ° C./min, the time required to reach the target curing temperature becomes very long and workability may be reduced. On the other hand, if the rate of temperature rise exceeds 10 ° C./min, a temperature difference occurs in various portions of the reinforcing fibers, so that a uniform cured product may not be obtained.
- the fiber-reinforced composite material of the present invention has a loss factor of 130% or more with respect to the loss factor of the same fiber-reinforced composite material as that of the fiber-reinforced composite material except that the components (E) and (Q) are not included. It is preferable that If it is less than 130%, when a golf shaft, fishing rod, tennis racket or the like is molded, the effect of improving the feel at impact and the effect of reducing elbow fatigue tend to be low.
- “the same fiber-reinforced composite material as the fiber-reinforced composite material except that it does not include the constituent elements (E) and (Q)” means that the constituent elements (E) and (Q) are omitted.
- a fiber-reinforced composite material is produced at the same composition ratio and exactly the same production conditions as the target fiber-reinforced composite material and used as a control sample for measuring physical properties.
- the same composition ratio means that the difference in the content of each component is within 5% by mass.
- the fiber reinforced composite material of the present invention has a bending strength of 90 with respect to the bending strength of the same fiber reinforced composite material as that of the fiber reinforced composite material except that it does not contain the components (E) and (Q). % Or more is preferable.
- the bending strength refers to a value converted to a fiber content of 60% by volume. When the bending strength is less than 90%, the strength when molding a golf shaft, fishing rod, tennis racket or the like is not sufficient, and weight may increase if sufficient strength is obtained.
- the 0 degree bending elastic modulus of the fiber reinforced composite material of the present invention is 90% relative to the 0 degree bending elastic modulus of the same fiber reinforced composite material as that of the fiber reinforced composite material except that the component (E) is not included. % Or more is preferable.
- the 0-degree bending elastic modulus is less than 90%, the rigidity when molding a golf shaft, fishing rod, tennis racket, or the like is not sufficient, and when trying to obtain sufficient rigidity, the weight may increase.
- the fiber reinforced composite material of the present invention preferably has no glass transition temperature between 10 and 90 ° C. If there is a glass transition temperature in this temperature range, there is a risk of deformation in the coating process or polishing process of the fiber reinforced composite material.
- the fiber reinforced composite material obtained by curing the prepreg of the present invention and the fiber reinforced composite material of the present invention are suitably used for sports applications, general industrial applications, and aerospace applications. More specifically, for sports applications, golf club shafts, golf club heads, fishing rods, tennis and badminton rackets, hockey sticks, bicycle parts, bicycle frames, bicycle wheels, bicycle rims, tents It is used for stanchions, skis, snowboards, and ski poles. In general industrial applications, structural materials for moving objects such as automobiles, ships, and railway vehicles, drive shafts, leaf springs, windmill blades, pressure vessels, flywheels, paper rollers, roofing materials, cables, pipes, and repair reinforcement materials Used for etc.
- the components (A) or (E) used in the examples and comparative examples are as follows: (A-1): Three-dimensional cross-linked epoxy particles (average particle size: 15 ⁇ m, tan ⁇ at 10 ° C .: 1 .08, glass transition temperature: ⁇ 10 ° C.) (A-2): Three-dimensional cross-linked epoxy particles (average particle size: 7 ⁇ m, tan ⁇ at 10 ° C .: 1.08, glass transition temperature: ⁇ 10 ° C.) (A-3): Three-dimensional cross-linked epoxy particles (average particle size: 13 ⁇ m, tan ⁇ at 10 ° C .: 0.22, glass transition temperature: ⁇ 2 ° C.) (A-4): Non-crosslinked epoxy particles (average particle size: 17 ⁇ m, tan ⁇ at 10 ° C .: 0.18, glass transition temperature: ⁇ 67 ° C.) (A-5): Three-dimensional crosslinked epoxy particles (average particle size: 15 ⁇ m, tan ⁇ at 10
- B-16 Dicyandiamide (DICY7, manufactured by Mitsubishi Chemical Corporation, active hydrogen equivalent: 12)
- B-17 4,4′-diaminodiphenylsulfone (“Seika Cure (registered trademark)” S, manufactured by Wakayama Seika Kogyo Co., Ltd., active hydrogen equivalent: 62)
- C-1 Carbon fiber (“Torayca (registered trademark)” T700S, manufactured by Toray Industries, Inc., tensile elastic modulus: 230 GPa, tensile strength: 4900 MPa)
- C-2 Carbon fiber woven fabric (“Torayca cloth (registered trademark)” BT70-30, manufactured by Toray Industries, Inc., carbon fiber: “Torayca (registered trademark)” T700, woven structure: plain weave, basis weight: 300 g / m 2 )
- C-3 Carbon fiber (“Torayca (registered trademark)” T800S, manufactured by Toray Industries, Inc., tensile elastic modulus: 294 GPa, tensile strength: 5880 MPa)
- C-4 Carbon fiber (“Torayca (registered trademark)” M40J, manufactured by Toray Industries, Inc., tensile elastic modulus: 377 GPa,
- the constituent elements (P) or (Q) used in the examples and comparative examples are as follows.
- P-1) Carbon particles “NICABEADS (registered trademark)” ICB-2020 (manufactured by Nippon Carbon Co., Ltd.)
- P-2) Metal-coated polymer particles “Micropearl (registered trademark)” CU215 (manufactured by Sekisui Chemical Co., Ltd.) Young's modulus 4.8 GPa, average particle size 15 ⁇ m.
- raw materials other than the above are as follows: Polyvinyl formal ("Vinylec (registered trademark)” E, manufactured by Chisso Corporation) SBM copolymer (“Nanostrength (registered trademark)” E40F, manufactured by Arkema Co., Ltd., S is styrene, B is 1,4-butadiene, M is methyl methacrylate) -Polyethersulfone ("Sumika Excel (registered trademark)” PES5003P, manufactured by Sumitomo Chemical Co., Ltd.).
- Component (A) Method for producing epoxy particles Using the epoxy resin, curing agent and curing catalyst listed in Table 1, the epoxy resin, curing agent and curing catalyst are added and dissolved in a mixed solvent of methylene chloride and methanol. Thus, a viscous polymer solution was obtained. While stirring this solution at room temperature, a 5% strength aqueous polyvinyl alcohol solution was continuously added in 15 minutes, and finally an oil-in-water emulsion was obtained from the initial water-in-oil emulsion. Next, the emulsion was heated to 60 ° C. while stirring to volatilize and remove methylene chloride and methanol. Further, this emulsion was heat-treated in an autoclave at 85 ° C. for 2.5 hours and subsequently at 150 ° C. for 2 hours to cure the epoxy resin. The mixture was cooled to room temperature and filtered to obtain particles ((A-1) to (A-5)).
- volume average particle diameter is measured by laser diffraction / scattering method using LMS-24 (manufactured by Seishin Enterprise Co., Ltd.) according to JIS K5600-9-3 (2006). did.
- the cut surface was magnified 200 times or more with an optical microscope, and a photograph was taken with the upper and lower surfaces of the cured product falling within the field of view.
- the thickness of arbitrary five places was measured from the photographed photograph, and the average value thereof was defined as the prepreg average thickness.
- two lines parallel to the surface of the cured product were drawn from the surface of the cured product at a position where the thickness was 20% deep.
- the total area 1 of all target particles existing between the surface of the cured product and the line indicating the position where the thickness is 20% depth, and the target particles existing over the thickness of the cured product in the measurement range All the total areas 2 were determined.
- the “target particle” is a particle for which the degree of localization is to be obtained.
- total value 1 / total value 2 surface localization rate
- the particle part is cut out from the cross-sectional photograph, and from the mass, the total value 4 of the cross-sectional areas of all target particles existing in the entire region
- the ratio of the total value 3 of the cross-sectional areas of all target particles existing in the interlayer region was determined.
- the target particles were discriminated using means for staining the components or dyeing components other than the target particles.
- the fiber reinforced composite material was cut out to have a thickness of 2 mm, a width of 15 mm, and a length of 100 mm.
- Reference Examples 1 to 9 and 21 to 27 had good glass transition temperatures of 100 ° C. or higher.
- Reference Example 20 was less than 100 ° C.
- the cured product of any reference example showed no exothermic peak and was completely cured.
- Comparative Example 1 The constituent element (B) obtained in Reference Example 1 was applied onto a release paper using a reverse roll coater to prepare a resin film. Next, the two resin films were overlapped from both sides of (C-1) aligned in one direction in a sheet shape and pressed with a hot press roll to impregnate the resin composition of Reference Example 1, and per unit area A unidirectional prepreg precursor having a fiber mass of 125 g / m 2 and a fiber mass content of 68% was prepared. Next, the 20 layers of this unidirectional prepreg precursor were laminated with the fiber direction aligned in one direction, and then cured by heating and pressing at the temperature and time described in Reference Example 1 at a pressure of 0.3 MPa in an autoclave. Then, a fiber reinforced composite material was produced. The loss factor, 90 ° bending strength, 0 ° bending modulus and strength, and Tg were measured. The loss factor was low, which was not preferable.
- Example 1 The unidirectional prepreg is uniformly dispersed on one side of the unidirectional prepreg precursor obtained in Comparative Example 1 as a component (A), and sandwiched between release papers and passed through a heating press roll. Got. The surface localization rate was good at 98%. Next, 19 layers of this unidirectional prepreg were laminated so that the fiber direction was aligned in one direction and the surface on which the component (A) was dispersed was laminated, and then the unidirectional prepreg precursor obtained in Comparative Example 1 was further obtained. One layer of the body was laminated, and a fiber-reinforced composite material was produced in the same manner as in Comparative Example 1. Interlayer localization was good at 96%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 188%, 98%, 101% and 100%, respectively, better than those of Comparative Example 1. Tg was also good.
- Comparative Example 2 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the component (B) was changed to Reference Example 2. The loss factor was low, which was not preferable.
- Example 2 A unidirectional prepreg was obtained in the same manner as in Example 1, except that the component (A-2) was uniformly dispersed on one side of the unidirectional prepreg precursor obtained in Comparative Example 2. .
- the surface localization rate was good although the particle size of the constituent element (A) was smaller than that of Example 1, and was slightly lower than that of Example 1.
- a fiber-reinforced composite material was produced in the same manner as in Example 1.
- the interlayer localization rate was slightly lower than that in Example 1, but was good.
- the loss coefficient, 90 ° bending strength, 0 ° bending modulus and strength are slightly inferior to those of Example 1 because the interlayer localization rate of the component (A) is decreased, but compared with Comparative Example 2. 176%, 92%, 98% and 99%, respectively. Tg was also good.
- Example 3 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the component (A-3) was used as the component (A). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 96%. Further, since tan ⁇ at 10 ° C. of the component (A-3) is lower than that of (A-1), the loss factor is slightly inferior to that of Example 1, but 145% in comparison with Comparative Example 1. 98%, 100%, and 100%, and Tg was lower than that of Example 1, but good.
- Example 4 A unidirectional prepreg was obtained in the same manner as in Example 2 except that the component (A) was changed to (A-1) and the blending amount was changed to 7% by mass. The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 95%. Further, the loss coefficient, 90 ° bending strength, 0 ° bending modulus and strength were 210%, 93%, 99% and 100%, respectively, as compared with Comparative Example 1. Tg was also good. Compared to Example 1, the loss factor was greatly improved.
- Example 5 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the amount of component (A) was changed to 15% by mass. The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 96%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 250%, 91%, 96% and 98%, respectively, as compared with Comparative Example 1. Moreover, Tg was also favorable. Compared with Example 1, the loss factor was greatly improved, but the bending strength and the 0 ° bending elastic modulus were reduced.
- Comparative Example 3 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the resin composition of Reference Example 3 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 6 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the component (B) was changed to Reference Example 3. The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 97%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 180%, 98%, 96% and 100%, respectively, better than Comparative Example 3, and 1.0 equivalent of the curing agent. As a result, the bending strength was slightly improved as compared with Example 1. Moreover, Tg was also favorable.
- Comparative Example 4 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 1, except that the resin composition of Reference Example 4 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 7 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 4 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 97%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 174%, 98%, 100% and 100%, respectively, as compared with Comparative Example 4, and 0.8 equivalent of curing agent. As a result, the bending strength was slightly improved as compared with Example 1. Moreover, Tg was also favorable.
- Example 8 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 2 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 97%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were good at 180%, 98%, 97% and 101%, respectively, as compared with Comparative Example 2, and in the component (B) By setting the curing catalyst to 2% by mass, the bending strength was slightly improved as compared with Example 1. Tg was also good.
- Comparative Example 5 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the resin composition of Reference Example 5 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 9 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 5 was used as the constituent element (B). The surface localization rate was good at 98%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 97%. Further, the loss coefficient, 90 ° bending strength, 0 ° bending modulus and strength were 184%, 99%, 100% and 100%, respectively, as compared with Comparative Example 5. Tg was also good. Compared with Example 1, bending strength and Tg were improved by using a phenol novolac type epoxy resin as a part of the epoxy resin of the component (B).
- Comparative Example 6 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 1, except that the resin composition of Reference Example 20 was used as the constituent element (B). The loss factor and Tg were low, which was not preferable.
- Example 10 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 20 was used as the constituent element (B). The surface localization rate was good at 98%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 95%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 196%, 98%, 100% and 99%, respectively, better than those of Comparative Example 6. However, by using a bisphenol F type epoxy resin for the epoxy resin of the component (B), Tg was lowered as compared with Example 1.
- Comparative Example 7 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the resin composition of Reference Example 6 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 11 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 6 was used as the constituent element (B). The surface localization rate was good at 98%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 96%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 172%, 99%, 104% and 99%, respectively, better than those of Comparative Example 7. By using a dicyclopentadiene type epoxy resin for the epoxy resin of the component (B), Tg was greatly improved as compared with Example 1.
- Comparative Example 8 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the resin composition of Reference Example 7 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 12 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 7 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 97%. The loss factor, 90 ° bending strength, 0 ° bending elastic modulus and strength were 176%, 98%, 99% and 101%, respectively, which were better than those of Comparative Example 8. By using a polyfunctional amine type epoxy resin for the epoxy resin of the component (B), the bending strength and Tg were greatly improved as compared with Example 1.
- Comparative Example 9 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the resin composition of Reference Example 8 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 13 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 8 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 95%. The loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 174%, 98%, 105% and 99%, respectively, which were better than those of Comparative Example 9. By using an epoxy resin having a biphenyl skeleton as the epoxy resin of the component (B), the bending strength and Tg were greatly improved as compared with Example 1.
- Comparative Example 10 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the resin composition of Reference Example 9 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 14 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 9 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 96%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 182%, 97%, 99% and 101%, respectively, which were better than those of Comparative Example 10. By using an isocyanate-modified epoxy resin as the epoxy resin of the component (B), the bending strength was slightly reduced as compared with Example 1, but the Tg was improved.
- Comparative Example 11 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 1, except that the resin composition of Reference Example 10 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 15 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 10 was used as the constituent element (B). The surface localization rate was good at 98%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 95%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 180%, 98%, 98% and 101%, respectively, which were better than those of Comparative Example 11. By using 4,4′-diaminodiphenylsulfone as the curing agent for the component (B), Tg was improved as compared with Example 13.
- Comparative Example 12 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Comparative Example 1, except that the resin composition of Reference Example 12 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 16 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 12 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 95%. Further, the loss factor, 90 ° bending strength, 0 ° bending elastic modulus and strength were good at 176%, 99%, 100% and 100%, respectively, as compared with Comparative Example 12. Tg was also good.
- Comparative Example 13 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the resin composition of Reference Example 13 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 17 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 13 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 96%. In addition, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were good at 176%, 99%, 103% and 99%, respectively, as compared with Comparative Example 13. Tg was also good.
- Comparative Example 14 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 11 except that the resin composition of Reference Example 14 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 18 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 14 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 96%. Further, the loss factor, 90 ° bending strength, 0 ° bending elastic modulus, and strength were good at 184%, 99%, 103%, and 98%, respectively, as compared with Comparative Example 14. Tg was also good.
- Comparative Example 15 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Comparative Example 11 except that the resin composition of Reference Example 15 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 19 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 15 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 96%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 180%, 99%, 103% and 98%, respectively, in comparison with Comparative Example 14. Tg was also good.
- Comparative Example 16 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the resin composition of Reference Example 16 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 20 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 16 was used as the constituent element (B). The surface localization rate was good at 98%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 97%. Further, the loss coefficient, 90 ° bending strength, 0 ° bending modulus and strength were 174%, 98%, 96% and 100%, respectively, better than those of Comparative Example 16. Tg was also good.
- Comparative Example 18 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 11, except that the resin composition of Reference Example 18 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 21 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 18 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 96%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 183%, 99%, 100% and 101%, respectively, better than those of Comparative Example 18. Tg was also good. By adding carbon particles to the epoxy resin of the component (B), the elastic modulus and strength were improved as compared with Example 18.
- Comparative Example 19 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 11 except that the resin composition of Reference Example 19 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 22 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 19 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 96%. The loss factor, 90 ° bending strength, 0 ° bending modulus and strength were good at 176%, 98%, 100% and 101%, respectively, as compared with Comparative Example 19. Tg was also good. By adding metal-coated polymer particles to the epoxy resin of the component (B), the elastic modulus and strength were improved as compared with Example 19.
- Comparative Example 17 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the resin composition of Reference Example 17 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 23 The resin composition of Reference Example 17 and (A-1) were kneaded in the same manner as in Reference Example 51 to obtain a resin composition.
- This resin composition and the epoxy resin composition of Reference Example 1 were each applied on a release paper using a reverse coater to prepare respective resin films.
- a unidirectional prepreg precursor having a fiber mass per unit area of 125 g / m 2 and a fiber mass content of 76% was obtained in the same manner as in Comparative Example 1. .
- the resin composition of Reference Example 17 and the resin film obtained from the above (A-1) were applied under pressure with a hot press roll to obtain a unidirectional prepreg.
- the surface localization rate was good at 99%.
- a fiber-reinforced composite material was obtained by the method described in Example 1. Interlayer localization was good at 96%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 176%, 98% and 176%, 98% and 98%, respectively, compared with Comparative Example 1, respectively. , 100%. Tg was also good.
- Example 24 The epoxy resin composition of Reference Example 17 and the above (A-1) were kneaded in the same manner as in Reference Example 51 to obtain a resin composition.
- This resin composition and the epoxy resin composition of Reference Example 17 were each applied onto release paper using a reverse coater to prepare respective resin films.
- a unidirectional prepreg precursor having a fiber mass of 125 g / m 2 per unit area and a fiber mass content of 76% in the same manner as in Comparative Example 1 Got the body.
- the resin composition of Reference Example 17 and the resin film obtained from the above (A-1) were applied under pressure with a hot press roll to obtain a unidirectional prepreg.
- the surface localization rate was good at 98%.
- a fiber-reinforced composite material was obtained by the method described in Example 1. Interlayer localization was good at 95%. Further, the loss factor, 90 ° bending strength, 0 ° bending elastic modulus and strength were good at 178%, 98%, 102% and 99%, respectively, as compared with Comparative Example 17. Tg was also good.
- Example 25 The epoxy resin composition of Reference Example 18 and the above (A-1) were kneaded in the same manner as in Reference Example 52 to obtain a resin composition.
- the resin composition and the epoxy resin composition of Reference Example 14 were each applied on release paper using a reverse coater to prepare respective resin films.
- a unidirectional prepreg precursor having a fiber mass of 125 g / m 2 per unit area and a fiber mass content of 76% in the same manner as in Comparative Example 1 Got the body.
- the resin composition of Reference Example 18 and the resin film obtained from the above (A-1) were applied with pressure with a hot press roll to obtain a unidirectional prepreg.
- the surface localization rate was good at 99%.
- a fiber-reinforced composite material was obtained by the method described in Example 1. Interlayer localization was good at 97%. Further, the loss factor, 90 ° bending strength, 0 ° bending elastic modulus and strength were good at 185%, 99%, 101% and 101%, respectively, as compared with Comparative Example 18. Tg was also good.
- Example 26 The unidirectional prepreg is dispersed uniformly on both surfaces of the unidirectional prepreg precursor obtained in Comparative Example 1 as a component (A), and sandwiched between release papers and passed through a heated press roll. Got. The surface localization rate was good at 99%. After laminating 18 layers of this unidirectional prepreg, the fiber reinforced composite material was prepared in the same manner as in Comparative Example 1 except that the unidirectional prepreg precursor obtained in Comparative Example 1 was further laminated one layer at a time. Produced. Interlayer localization was good at 96%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 170%, 99%, 100% and 101%, respectively, better than those of Comparative Example 1. Tg was also good.
- Comparative Example 20 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the resin composition of Reference Example 21 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 27 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 21 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 96%. Further, the loss factor, 90 ° bending strength, 0 ° bending elastic modulus and strength were good at 188%, 98%, 103% and 100%, respectively, as compared with Comparative Example 20. Tg was also good. The loss factor was improved as compared with Example 1 by blending the epoxy resin of component (B) with a bisphenol A type epoxy resin having an epoxy equivalent of 810.
- Comparative Example 21 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 1, except that the resin composition of Reference Example 22 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 28 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 22 was used as the constituent element (B). The surface localization rate was good at 98%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 97%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were good at 188%, 98%, 93% and 101%, respectively, as compared with Comparative Example 21. Tg was also good. The loss factor was improved as compared with Example 1 by blending the epoxy resin of component (B) with a bisphenol A type epoxy resin having an epoxy equivalent of 1930.
- Comparative Example 22 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the resin composition of Reference Example 23 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 29 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 23 was used as the constituent element (B). The surface localization rate was good at 98%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 95%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 192%, 99%, 100% and 100%, respectively, better than those of Comparative Example 22. Tg was also good. The loss factor was improved as compared with Example 1 by blending the epoxy resin of component (B) with a bisphenol A type epoxy resin having an epoxy equivalent of 4000.
- Comparative Example 23 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 1, except that the resin composition of Reference Example 24 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 30 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 24 was used as the constituent element (B). The surface localization rate was good at 97%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 98%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 190%, 98%, 103% and 100%, respectively, better than those of Comparative Example 23. Tg was also good. Compared with Example 1, the strength was improved by blending the bisphenol F type epoxy resin with the epoxy resin of the component (B).
- Comparative Example 24 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Comparative Example 1, except that the resin composition of Reference Example 25 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 31 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 25 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 97%. Further, the loss factor, 90 ° bending strength, 0 ° bending elastic modulus and strength were good at 186%, 98%, 96% and 99%, respectively, as compared with Comparative Example 24. Tg was also good. The loss factor was improved as compared with Example 30 by blending the epoxy resin of component (B) with a bisphenol F type epoxy resin having an epoxy equivalent of 800.
- Comparative Example 25 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the resin composition of Reference Example 26 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 32 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 26 was used as the constituent element (B). The surface localization rate was good at 99%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 97%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 192%, 98%, 96% and 100%, respectively, better than those of Comparative Example 25. Tg was also good. The loss factor was improved as compared with Example 30 by blending the epoxy resin of component (B) with a bisphenol F type epoxy resin having an epoxy equivalent of 2270.
- Comparative Example 26 A unidirectional prepreg precursor and a fiber reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the resin composition of Reference Example 27 was used as the constituent element (B). The loss factor was low, which was not preferable.
- Example 33 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the resin composition of Reference Example 27 was used as the constituent element (B). The surface localization rate was good at 98%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 97%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 190%, 100%, 97% and 100%, respectively, better than those of Comparative Example 26. Tg was also good. The loss factor was improved as compared with Example 30 by blending the epoxy resin of component (B) with a bisphenol F type epoxy resin having an epoxy equivalent of 4400.
- Comparative Example 27 The unidirectional prepreg was adhered to one side of the unidirectional prepreg precursor obtained in Comparative Example 1 by pasting (A-9) as a component (A), sandwiched between release papers, and passed through a hot press roll. Obtained. The surface localization rate was 100% and good. Using this unidirectional prepreg, a fiber-reinforced composite material was obtained by the method described in Example 1. Interlayer localization was good at 100%. Further, the loss factor was also good as 580% compared with Comparative Example 1, but the bending strength was as low as 82%, and a part of the component (A) was dissolved in the component (B). Tg decreased.
- Example 28 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Example 1 except that the component (A) was changed to (A-4). Since (A-4) was dissolved in Reference Example 1, the surface localization rate could not be measured. Using this unidirectional prepreg, a fiber-reinforced composite material was obtained by the method described in Example 1. Interlayer localization rate could not be measured. The loss factor and bending strength were 112% and 85%, respectively, which were not preferable as compared with Comparative Example 1. Also, Tg was not preferable.
- Example 29 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Example 1 except that the component (A) was changed to (A-5). The surface localization rate was good at 97%. Using this unidirectional prepreg, a fiber-reinforced composite material was obtained by the method described in Example 1. Interlayer localization was good at 95%. Moreover, compared with the comparative example 1, although bending strength was as favorable as 99%, the loss factor was as low as 110%. Tg was good.
- Example 30 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Example 1 except that the component (A) was changed to (A-6). The surface localization rate was inadequate at 88%. Using this unidirectional prepreg, a fiber-reinforced composite material was obtained by the method described in Example 1. The interlayer localization rate was insufficient at 83%. Moreover, compared with Example 1, the loss coefficient and bending strength were also insufficient.
- Example 31 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Example 1 except that the component (A) was changed to (A-7). The surface localization rate was as good as 100%. Using this unidirectional prepreg, a fiber-reinforced composite material was obtained by the method described in Example 1. The interlayer localization rate was 99%, and the loss factor was 142% as good as that of Comparative Example 1. However, the bending strength was not preferable as 88% as compared with Comparative Example 1.
- Example 32 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Example 1 except that the component (A) was changed to (A-8). The surface localization rate was as good as 93%. Using this unidirectional prepreg, a fiber-reinforced composite material was obtained by the method described in Example 1. Interlayer localization was good at 91%. Further, compared with Comparative Example 1, the bending strength was as good as 100%, but the loss factor was as low as 104%. Tg was good.
- Comparative Example 33 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the component (C) was changed to (C-3). The loss factor was low, which was not preferable.
- Example 34 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the component (C) was changed to (C-3). The surface localization rate was good at 98%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 98%. Further, the loss factor, 90 ° bending strength, 0 ° bending modulus and strength were 142%, 98%, 99% and 100%, respectively, better than those of Comparative Example 33. Tg was also good. By using (C-3) as the component (C), the balance of loss coefficient, elastic modulus and strength was good as in Example 1.
- Comparative Example 34 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the component (C) was changed to (C-4). The loss factor was low, which was not preferable.
- Example 35 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the component (C) was changed to (C-4). The surface localization rate was good at 97%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 98%. Further, the loss coefficient, 90 ° bending strength, 0 ° bending modulus and strength were 132%, 98%, 101% and 101%, respectively, better than those of Comparative Example 34. Tg was also good.
- Comparative Example 35 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the component (C) was changed to (C-5). The loss factor was low, which was not preferable.
- Example 36 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the component (C) was changed to (C-5). The surface localization rate was good at 98%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 96%. Further, the loss factor, 90 ° bending strength, 0 ° bending elastic modulus and strength were good at 138%, 97%, 100% and 101%, respectively, as compared with Comparative Example 35. Tg was also good.
- Comparative Example 36 A unidirectional prepreg precursor and a fiber-reinforced composite material were obtained in the same manner as in Comparative Example 1 except that the component (C) was changed to (C-6). The loss factor was low, which was not preferable.
- Example 37 A unidirectional prepreg was obtained in the same manner as in Example 1 except that the component (C) was changed to (C-6). The surface localization rate was good at 97%. Next, a fiber-reinforced composite material was produced in the same manner as in Example 1. Interlayer localization was good at 97%. Further, the loss factor, 90 ° bending strength, 0 ° bending elastic modulus and strength were good at 136%, 95%, 100% and 101%, respectively, as compared with Comparative Example 36. Tg was also good.
- Example 38 In a mold cavity having a plate-like cavity of length 300 mm ⁇ width 300 mm ⁇ thickness 2 mm, the above (A-1) is uniformly dispersed between the layers, and six (C-2) are laminated. The mold was clamped with a press device. Next, the inside of the mold held at 100 ° C. (molding temperature) was reduced to atmospheric pressure ⁇ 0.1 MPa by a vacuum pump, and the epoxy resin of Reference Example 11 previously heated to 50 ° C. was cured. The mixture of the agent and the curing catalyst was mixed with a resin injection machine and injected at a pressure of 0.2 MPa.
- the mold was opened in 30 minutes (curing time), and the obtained reinforcing material composite material precursor was demolded.
- the obtained fiber reinforced composite material precursor was post-cured in an oven preheated to 130 ° C. for 1 hour to obtain a fiber reinforced composite material.
- the interlayer localization rate of the fiber reinforced composite material was 95%, which was good.
- the loss factor and the bending strength were good at 178% and 98%, respectively, as compared with Comparative Example 37.
- Tg was also good.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Textile Engineering (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
(A)10℃におけるtanδが0.15以上であって、かつ、3次元架橋構造を有するエポキシ粒子;
(B)第1のエポキシ樹脂組成物;
(C)強化繊維。
(E)10℃におけるtanδが0.15以上であって、かつ、3次元架橋構造を有するエポキシ粒子;
(F)第3のエポキシ樹脂組成物の硬化物;
(G)強化繊維。
(I)構成要素(A)を構成要素(D)に分散させ、この分散体をフィルムにする工程;
(II)構成要素(B)を構成要素(C)に含浸させ、プリプレグ前駆体を作製する工程;
(III)(I)で得られたフィルムを(II)で得られたプリプレグ前駆体に貼付する工程。
以下、本発明をさらに詳細に説明する。本発明のプリプレグは、次の構成要素(A)、(B)および(C)を含むプリプレグである。
(A)10℃におけるtanδが0.15以上であって、かつ、3次元架橋構造を有するエポキシ粒子
(B)第1のエポキシ樹脂組成物
(C)強化繊維。
構成要素(A)は、3次元架橋構造を有するエポキシ粒子であることが必要である。エポキシ粒子が3次元架橋構造を有することで、優れた剛性、強度および制振性を有する繊維強化複合材料を得ることができる。3次元架橋構造がない場合、エポキシ粒子が後述する構成要素(B)である第一のエポキシ樹脂組成物に溶解しやすくなる。その場合、得られる繊維強化複合材料は、剛性、強度およびガラス転移温度が低い上に、制振性の向上効果もあまり期待できない。同じ理由から、構成要素(A)と構成要素(B)とが非相溶であることが好ましい。
(1)上記混合物またはその溶液を霧状に飛散させ乾燥させる(スプレードライ法)、
(2)上記混合物またはその溶液を貧溶媒中に霧状に投入し、沈殿させる(スプレー再沈法)、
(3)上記混合物またはその溶液を、界面活性剤を用いて乳化する方法、
(4)保護コロイド性物質を含む水性液体で上記混合物またはその溶液を乳化する方法。
構成要素(B)の第1のエポキシ樹脂組成物は、エポキシ樹脂組成物であれば特に限定されるものではなく、エポキシ樹脂および硬化剤から構成され、必要に応じて硬化触媒等を含むこともできる。
構成要素(C)として、強化繊維が用いられる。強化繊維は特に限定されるものではなく、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等が用いられる。これらの繊維を2種以上混合して用いても構わない。この中で、軽量かつ高剛性な繊維強化複合材料が得られる炭素繊維を用いることが好ましい。
本発明のプリプレグは、ヤング率が2GPa以上で、平均粒径が5~100μmの粒子である構成要素(P)を含むことが好ましい。ヤング率が2GPa以上であることで、構成要素(A)を配合することによる層間領域の剛性低下を抑えることができ、繊維強化複合材料の弾性率や強度の低下を抑制することができる。より好ましくはヤング率が3GPa以上である。ヤング率が2GPa未満の場合、繊維強化複合材料中のマトリックス樹脂のヤング率より低くなり、層間領域の剛性が低下してしまう可能性がある。
本発明のプリプレグは、図5および6に示すように、構成要素(D)をさらに含み、この構成要素(D)が、構成要素(B)および(C)からなる層の片面または両面に配置されており、かつ、構成要素(A)が構成要素(D)に含まれた状態で存在していることが好ましい。さらに、本発明のプリプレグが構成要素(P)も含む場合には、図7および8に示すように、構成要素(A)および(P)が構成要素(D)に含まれた状態で存在していることが好ましい。構成要素(D)は、構成要素(A)と相溶しない第2のエポキシ樹脂組成物である。構成要素(A)および構成要素(P)を構成要素(D)に含まれた状態にしておくことにより、プリプレグを積層および硬化して繊維強化複合材料を得る際に発生するボイドを抑制することができる。構成要素(D)は、エポキシ樹脂組成物であれば特に限定されるものではなく、エポキシ樹脂および硬化剤から構成され、必要に応じて硬化触媒等を含むこともできる。構成要素(D)のエポキシ樹脂、硬化剤、硬化触媒等は、構成要素(B)で例示されたものを用いることができる。また、構成要素(D)(第2のエポキシ樹脂組成物)は、構成要素(B)(第1のエポキシ樹脂組成物)と異なっていてもよいが、同一であることがより好ましい。ここで同一であるとは、構成要素(B)を構成するエポキシ樹脂、硬化剤および硬化触媒の種類が同じであり、それぞれの成分の含有量の差が5質量%以内であることを意味する。
本発明のプリプレグの製造方法は、特に限定されるものではないが、下記の(1)または(2)のいずれかの方法で好適に製造することができる。
(1)構成要素(B)を構成要素(C)に含浸させてプリプレグ前駆体を得る工程と、このプリプレグ前駆体に構成要素(A)を貼付する工程を含むプリプレグの製造方法。
(2)下記(I)、(II)および(III)の工程を含むプリプレグの製造方法。
(I)構成要素(A)を構成要素(D)に分散させ、この分散体をフィルムにする工程
(II)構成要素(B)を構成要素(C)に含浸させ、プリプレグ前駆体を作製する工程
(III)(I)で得られたフィルムを(II)で得られたプリプレグ前駆体に貼付する工程。
(3)構成要素(B)を構成要素(C)に含浸させてプリプレグ前駆体を得る工程と、このプリプレグ前駆体に構成要素(A)および(P)を貼付する工程を含むプリプレグの製造方法。
(4)下記(I’)、(II’)および(III’)の工程を含むプリプレグの製造方法。
(I’)構成要素(A)および(P)を構成要素(D)に分散させ、この分散体をフィルムにする工程
(II’)構成要素(B)を構成要素(C)に含浸させ、プリプレグ前駆体を作製する工程
(III’)(I’)で得られたフィルムを(II’)で得られたプリプレグ前駆体に貼付する工程。
本発明の繊維強化複合材料は、下記構成要素(E)、(F)および(G)を含み、構成要素(F)および(G)を含む強化繊維層を2層以上有しており、繊維強化複合材料の断面を観察した際に、構成要素(E)の90面積%以上が、強化繊維層と、その強化繊維層に隣接する他の強化繊維層との間の層間領域に局在化している。
(E)10℃におけるtanδが0.15以上であって、かつ、3次元架橋構造を有するエポキシ粒子
(F)第3のエポキシ樹脂組成物の硬化物
(G)強化繊維
このような繊維強化複合材料の好ましい態様の例の断面図を図9~12に示す。
本発明で用いる構成要素(E)は、3次元架橋構造を有するエポキシ粒子であることが必要である。エポキシ粒子が3次元架橋構造を有することで、第3のエポキシ樹脂組成物に非相溶となり、優れた剛性、強度および制振性を有する繊維強化複合材料を与えることができる。エポキシ粒子が3次元架橋構造を有さない場合、硬化前の第3のエポキシ樹脂組成物に溶解しやすくなる。エポキシ粒子が第3のエポキシ樹脂組成物に溶解すると、繊維強化複合材料は、剛性、強度およびガラス転移温度が低くなる上に、制振性の効果が十分ではない。
構成要素(F)は第3のエポキシ樹脂組成物を硬化させたものである。第3のエポキシ樹脂組成物は、エポキシ樹脂および硬化剤から構成され、必要に応じて硬化触媒等を含むこともできる。エポキシ樹脂、硬化剤、硬化触媒等は、前記構成要素(B)で例示されたものを用いることができる。
構成要素(G)には、強化繊維が用いられる。強化繊維としては、前記構成要素(C)で例示されたものを用いることができる。
本発明の繊維強化複合材料は、ヤング率が2GPa以上で、平均粒径が5~100μmの粒子である構成要素(Q)を含むことが好ましい。ヤング率が2GPa以上であることで、構成要素(E)を配合することによる層間領域の剛性低下を抑えることができ、繊維強化複合材料の弾性率や強度の低下を抑制することができる。より好ましくはヤング率が3GPa以上である。ヤング率が2GPa未満の場合、繊維強化複合材料中のマトリックス樹脂のヤング率より低くなり、層間領域の剛性が低下してしまう可能性がある。
本発明の繊維強化複合材料は、図11に示すように構成要素(H)をさらに含み、構成要素(E)が構成要素(H)に含まれた状態で存在していることが好ましい。さらに、本発明の繊維強化複合材料が構成要素(Q)も含む場合には、図12に示すように、構成要素(E)および(Q)が構成要素(H)に含まれた状態で存在していることが好ましい。構成要素(H)は、構成要素(E)が非相溶である第4のエポキシ樹脂組成物の硬化物である。構成要素(E)および構成要素(Q)を構成要素(H)に含まれた状態にしておくことにより、積層および硬化して繊維強化複合材料を得る際に発生するボイドを抑制することができる。
本発明の繊維強化複合材料の製造方法は、特に限定されるものではないが、プリプレグ積層成形法、レジントランスファーモールディング法、レジンフィルムインフュージョン法、ハンドレイアップ法、シートモールディングコンパウンド法、フィラメントワインディング法、プルトルージョン法、などにより製造することができる。なかでも上記本発明のプリプレグを用いたプリプレグ積層成形法が、繊維強化複合材料の剛性、強度に優れているため好ましい。
(A-1):3次元架橋型エポキシ粒子(平均粒径:15μm、10℃におけるtanδ:1.08、ガラス転移温度:-10℃)
(A-2):3次元架橋型エポキシ粒子(平均粒径:7μm、10℃におけるtanδ:1.08、ガラス転移温度:―10℃)
(A-3):3次元架橋型エポキシ粒子(平均粒径:13μm、10℃におけるtanδ:0.22、ガラス転移温度:―2℃)
(A-4):非架橋型エポキシ粒子(平均粒径:17μm、10℃におけるtanδ:0.18、ガラス転移温度:-67℃)
(A-5):3次元架橋型エポキシ粒子(平均粒径:15μm、10℃におけるtanδ:0.05、ガラス転移温度:118℃)
(A-6):ポリプロピレン粒子(“プライムポリプロ(登録商標)”J105G((株)プライムポリマー製)を冷凍粉砕した、平均粒径:3μm、10℃におけるtanδ:0.07、ガラス転移温度:-3℃、不定形)
(A-7):ポリプロピレン粒子(“プライムポリプロ(登録商標)”J105G((株)プライムポリマー製)を冷凍粉砕した、平均粒径:40μm、10℃におけるtanδ:0.07、ガラス転移温度:-3℃、不定形)
(A-8):ナイロン12粒子(SP-500(東レ(株)製))、平均粒径:5μm、10℃におけるtanδ:0.03、ガラス転移温度:40℃)
(A-9):エポキシフィルム(tanδ:1.08、ガラス転移温度:-10℃、フィルム厚み:30μm)30μmのスペーサーを設置したステンレス板に(A-1)を構成するエポキシ樹脂、硬化剤の混合物を配置し、150℃、圧力50kg/cm2で30分間かけてプレス成形した。
<エポキシ樹脂>
(B-1):ビスフェノールA型エポキシ樹脂(“jER(登録商標)”1001、三菱化学(株)製、エポキシ当量:475)
(B-2):ビスフェノールA型エポキシ樹脂(“jER(登録商標)”828、三菱化学(株)製、エポキシ当量:189)
(B-3):ビスフェノールF型エポキシ樹脂(“エポトート(登録商標)”YDF2001、新日鐵化学(株)製、エポキシ当量475)
(B-4):ビスフェノールF型エポキシ樹脂(“jER(登録商標)”807、三菱化学(株)製、エポキシ当量170)
(B-5):フェノールノボラック型エポキシ樹脂(“jER(登録商標)”154、三菱化学(株)製、エポキシ当量:178)
(B-6):ジシクロペンタジエン型エポキシ樹脂(“エピクロン(登録商標)”HP7200H、DIC(株)製、エポキシ当量:283)
(B-7):多官能アミン型エポキシ樹脂(“スミエポキシ(登録商標)”ELM434、住友化学(株)製、エポキシ当量:120)
(B-8):ビフェニル骨格を有するエポキシ樹脂(“jER(登録商標)”YX4000、三菱化学(株)製、エポキシ当量:186)
(B-9):イソシアネート変性エポキシ樹脂(AER4152、旭化成エポキシ(株)製、エポキシ当量:340)
(B-10):ビスフェノールA型エポキシ樹脂(“jER(登録商標)”1004FS、三菱化学(株)製、エポキシ当量:810)
(B-11):ビスフェノールA型エポキシ樹脂(“jER(登録商標)”1007、三菱化学(株)製、エポキシ当量:1930)
(B-12):ビスフェノールA型エポキシ樹脂(“jER(登録商標)”1010、三菱化学(株)製、エポキシ当量:4000)
(B-13):ビスフェノールF型エポキシ樹脂(“jER(登録商標)”4004P、三菱化学(株)製、エポキシ当量:800)
(B-14):ビスフェノールF型エポキシ樹脂(“jER(登録商標)”4007、三菱化学(株)製、エポキシ当量:2270)
(B-15):ビスフェノールF型エポキシ樹脂(“jER(登録商標)”4010、三菱化学(株)製、エポキシ当量:4400)。
(B-16):ジシアンジアミド(DICY7、三菱化学(株)製、活性水素当量:12)
(B-17):4,4’-ジアミノジフェニルスルホン(“セイカキュア(登録商標)”S、和歌山精化工業(株)製、活性水素当量:62)
(B-18):メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30(質量比)の混合物(“リカシッド(登録商標)”MH700、新日本理化(株)製、活性水素当量:163)。
(B-19):ウレア化合物(DCMU99、保土ヶ谷化学工業(株)製)
(B-20):トリフェニルホスフィン(TPP、北興化学工業(株)製)。
<強化繊維>
(C-1):炭素繊維(“トレカ(登録商標)”T700S、東レ(株)製、引張弾性率:230GPa、引張強度:4900MPa)
(C-2):炭素繊維織物(“トレカクロス(登録商標)”BT70-30、東レ(株)製、炭素繊維:“トレカ(登録商標)”T700、織り組織:平織、目付:300g/m2)
(C-3):炭素繊維(“トレカ(登録商標)”T800S、東レ(株)製、引張弾性率:294GPa、引張強度:5880MPa)
(C-4):炭素繊維(“トレカ(登録商標)”M40J、東レ(株)製、引張弾性率:377GPa、引張強度:4400MPa)
(C-5):炭素繊維(“トレカ(登録商標)”M46J、東レ(株)製、引張弾性率:436GPa、引張強度:4200MPa)
(C-6):炭素繊維(“トレカ(登録商標)”M50J、東レ(株)製、引張弾性率:475GPa、引張強度:4120MPa)。
(P-1):カーボン粒子“NICABEADS(登録商標)”ICB-2020(日本カーボン(株)製)ヤング率35GPa 平均粒径20μm
(P-2):金属被覆ポリマー粒子“ミクロパール(登録商標)”CU215(積水化学(株)製)ヤング率4.8GPa、平均粒径15μm。
・ポリビニルホルマール(“ビニレック(登録商標)”E、チッソ(株)製)
・S-B-M共重合体(“Nanostrength(登録商標)” E40F、アルケマ(株)製、Sがスチレン、Bが1,4-ブタジエン、Mがメタクリル酸メチル)
・ポリエーテルスルホン(“スミカエクセル(登録商標)”PES5003P、住友化学(株)製)。
表1に記載のエポキシ樹脂、硬化剤、硬化触媒を用い、エポキシ樹脂、硬化剤、硬化触媒を塩化メチレンとメタノールの混合溶媒中に添加、溶解して粘稠なポリマー溶液を得た。この溶液を室温で攪拌しながら、5%濃度のポリビニルアルコール水溶液を15分間で連続的に添加し、初期の油中水滴型乳化液から最終的に水中油滴型乳化液を得た。次に、この乳化液を攪拌しながら60℃に昇温し、塩化メチレンおよびメタノールを揮発除去した。さらに、この乳化液をオートクレーブ中85℃で2.5時間、続いて150℃で2時間加熱処理しエポキシ樹脂を硬化させた。室温まで冷却して濾過し、粒子を得た((A-1)~(A-5))。
粉砕機(PULVERIZER、ホソカワミクロン(株)製)を用いて、ドライアイスで樹脂ペレットをガラス転移温度以下まで冷却しながら冷凍粉砕した。
体積平均粒径は、JIS K5600-9-3(2006)に従い、LMS-24((株)セイシン企業製)を用いて、レーザー回析・散乱法で測定した。
微小圧縮試験機MCTM-500((株)島津製作所製)を用いて、圧縮速度2.6mN/secの条件で粒子を圧縮した。このときの10%変位時の荷重値(N)及び圧縮変位(mm)を測定し、得られた値からヤング率を下記式により算出した。
E=(3/√2)×F×L-3/2×D-1/2
E:ヤング率
F:10%変位時圧縮荷重(N)
L:10%変位時圧縮変位(mm)
D:粒子径(mm)。
構成要素(A)を構成するエポキシ樹脂、硬化剤および他の添加物との混合物を、真空中で脱泡する。この脱泡した混合物を、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中に注入する。そして、完全に硬化する条件で混合物を硬化することでボイドのない板状成形物が得られる。
構成要素(B)を真空中で脱泡した後、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中に注入する。そして、各参考例に記載の条件で、完全に構成要素(B)を硬化させた。
構成要素(A)(構成要素(A)および(P))と構成要素(B)を混練した後、得られた樹脂組成物を真空中で脱泡する。この脱泡した樹脂組成物を、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中注入した。そして、(5)と同じ条件で完全に構成要素(B)を硬化させた。
樹脂硬化物、または板状成形物をダイヤモンドカッターで幅13mm、長さ35mmに切り出しサンプルとした。このサンプルを動的粘弾性測定装置(DMAQ800:ティー・エイ・インスツルメンツ社製)を用い、-70℃~250℃まで昇温速度5℃/分で昇温し、周波数1.0Hzの曲げモードで貯蔵弾性率とtanδの測定を行った。このときの貯蔵弾性率のオンセット温度をガラス転移温度とした。
樹脂硬化物の任意の場所から、約10mgのサンプルを切り出した。このサンプルを、示差走査熱量測定装置(DSC2910:ティー・エイ・インスツルメンツ社製)を用い、昇温速度10℃/分で室温から350℃まで昇温した。このとき、発熱ピークが認められない場合を完全硬化していると判断した。
プリプレグを2枚の平滑な“テフロン(登録商標)”製樹脂板の間に挟んで密着させた。この状態で、2℃/hの昇温速度で、各実施例および比較例に記載の最高温度まで昇温することにより、プリプレグをゲル化および硬化させた。得られたプリプレグの硬化物を、“テフロン(登録商標)”製樹脂板との密着面と垂直な方向から鋭利なカッターで切断した。なお、切断面が平滑でない場合は、切断面を研磨した。切断面を光学顕微鏡で200倍以上に拡大し、かつ、硬化物の上下面が視野内に納まるようにして、写真を撮影した。次に、撮影した写真から、任意の5ヶ所の厚みを測定し、それらの平均値をプリプレグ平均厚みとした。
この硬化物の両面について、硬化物の表面から、厚さが20%深さの位置に、硬化物の表面と平行な線を2本引いた。次に、硬化物の表面と上記厚さが20%深さの位置を示す線との間に存在する対象粒子全ての合計面積1と、測定範囲の硬化物の厚みに渡って存在する対象粒子全ての合計面積2を求めた。なお、「対象粒子」とは、局在化の程度を求める対象としている粒子のことである。そして、合計面積2に対する合計面積1の比率(合計値1/合計値2:表面局在化率)を計算した。これら粒子の合計面積は、断面写真から粒子部分を刳り抜き、その質量から換算して求めた。この測定は、プリプレグの硬化物から5ヶ所を任意に選択して行い、平均値を算出した。マトリックス樹脂中に分散する対象粒子の写真撮影後の判別が困難な場合は、対象粒子を染色するか、対象粒子以外の成分を染色する手段を用いて判別した。
繊維強化複合材料を、表面と垂直の方向からダイヤモンドカッターを用い切断した。なお、硬化物の切断面が平滑でない場合は、切断面を研磨した。
この断面を光学顕微鏡で200倍以上に拡大し、かつ、繊維強化複合材料の少なくともいずれか一方の表面が視野内に収まるように、写真を撮影した。この断面写真を用い、本文中に記載した繊維強化複合材料中の粒子の分布状態を測定する手法に従い、1枚の写真から5ヶ所を任意に選択し、平均境界線および平均中心厚み線を引いた。本文中に記載した繊維強化複合材料中の粒子の分布状態を測定する手法に従い、断面写真から粒子部分を刳り抜き、その質量から、全領域に存在する対象粒子全ての断面積の合計値4に対する、層間領域に存在する対象粒子全ての断面積の合計値3の比(合計値3/合計値4:層間局在化率)を求めた。分散する対象粒子の写真撮影後の判別が困難な場合は、対象粒子を染色するか、対象粒子以外の成分を染色する手段を用いて判別した。
繊維強化複合材料から、ダイヤモンドカッターを用いて、幅10mm、長さ200mmのサンプルを切り出した。このとき、一方向材の場合は、長手方向が繊維と平行になるように切りだし、織物材の場合は、長手方向にどちらか一方の繊維が平行になるように切り出した。このサンプルの長さ方向の端から35mmまでをクランプで把持し、195mmの位置を3cm下方にたわませ、この撓みを解放したときの振動を、50mmの位置に貼付したひずみゲージで測定し、得られた波形から損失係数を求めた。
繊維強化複合材料の曲げ強度の指標として、一方向材の場合は、繊維強化複合材料の0°および90°曲げ強度を測定し、織物の場合は、どちらか一方の繊維方向に平行になる方向の曲げ強度を測定した。一方向材の90°曲げ強度および織物材の曲げ強度は、以下の方法で測定した。繊維強化複合材料を、厚み2mm、幅15mm、長さ60mmとなるように切り出した。インストロン万能試験機(インストロン社製)を用い、クロスヘッド速度1.0mm/分、スパン40mm、圧子径10mm、支点径4mmで測定を行ない、曲げ強度を計算した。また、一方向材の0°曲げ弾性率および曲げ弾性率、ならびに、織物の曲げ弾性率は、次の方法で測定した。繊維強化複合材料を、厚み2mm、幅15mm、長さ100mmとなるように切り出した。インストロン万能試験機(インストロン社製)を用い、クロスヘッド速度5.0mm/分、支点スパン81mm、圧子スパン27mm、支点径4mm、圧子径10mmで4点曲げ測定を行ない、曲げ強度と5N~50Nのデータから曲げ弾性率を計算した。なお、試験片からJIS7075(1991)に記載の燃焼法に基づいて、実Vfを求めた後、得られた曲げ強度をVf60%に換算した。
繊維強化複合材料を用いて、上記(8)と同様の方法で測定した。
表2,3,5~7に記載の参考例1~9、20~27に示すエポキシ樹脂を、加熱溶融混練したのち、60℃まで冷却し、硬化剤および硬化触媒を加えることにより、エポキシ樹脂組成物を調製した。この樹脂組成物を真空中で脱泡した後、2mm厚のテフロン(登録商標)製スペーサーにより厚み2mmになるように設定したモールドに注入した。そして、各参考例に記載の条件で硬化させ、厚さ2mmの樹脂硬化物を得た。この樹脂硬化物のガラス転移温度を各表に示す。参考例1~9、および21~27は、ガラス転移温度が100℃以上であり、良好であった。参考例20は100℃未満であった。また、DSCによる測定の結果、いずれの参考例の硬化物も発熱ピークは認められず、完全硬化していた。
表10の参考例10に示すエポキシ樹脂を溶融混練したのち、80℃まで冷却し、硬化剤を加えることにより、エポキシ樹脂組成物を調製した。この樹脂組成物から、硬化条件を180℃×2時間にした以外は参考例1と同様の方法で樹脂硬化物を得た。硬化物のガラス転移温度、発熱ピークとも良好であった。
表10の参考例11に示す硬化剤に硬化触媒を加え、50℃で溶解させた後、室温まで冷却し、エポキシ樹脂を加えることにより、エポキシ樹脂組成物を調製した。この樹脂組成物から、参考例1に記載の方法で樹脂硬化物を得た。硬化物のガラス転移温度、発熱ピークとも良好であった。
表3~5の参考例12、13、16、17に示すエポキシ樹脂を溶融混練したのち、ポリビニルホルマールまたはS-B-M共重合体を加え、170℃で1時間かけて溶解させた。次に、60℃まで冷却し、硬化剤および硬化触媒を加えることにより、エポキシ樹脂組成物を調製した。この樹脂組成物から、参考例1に記載の方法で樹脂硬化物を得た硬化物のガラス転移温度、発熱ピークとも良好であった。
表4の参考例14、15に示すエポキシ樹脂を溶融混練したのち、ポリエーテルスルホンを加え、170℃で1時間かけて溶解させた。次に、80℃まで冷却し、硬化剤を加えることにより、エポキシ樹脂組成物を調製した。硬化物のガラス転移温度、発熱ピークとも良好であった。
表5の参考例18,19に示すエポキシ樹脂を溶融混練したのち、カーボン粒子または金属被覆ポリマー粒子を加え、混練、分散させた。次に、80℃まで冷却し、硬化剤を加えることにより、エポキシ樹脂組成物を調製した。硬化物のガラス転移温度、発熱ピークとも良好であった。
表8,9,11に記載の参考例28~43、および54~61に示すエポキシ樹脂を、加熱溶融混練したのち、60℃まで冷却し、構成要素(A)または(E)を加えて混練した後、同じ温度で硬化剤および硬化触媒を加えることにより、エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物から参考例1と同様の方法で樹脂硬化物を得た。参考例31は、エポキシ樹脂組成物に(A-4)が溶解したため、(A-4)のガラス転移温度が消失した。参考例28~30、32~43、54~61では、構成要素(A)または(E)のエポキシ樹脂組成物への溶解は認められなかった。
表10の参考例44に示すエポキシ樹脂を溶融混練したのち、80℃まで冷却し、構成要素(A)または(E)を加え混練した後、硬化剤を加えることにより、エポキシ樹脂組成物を調製した。この樹脂組成物から、参考例10と同様の方法で樹脂硬化物を得た。この樹脂組成物から参考例10に記載の方法で樹脂硬化物を得た。この樹脂硬化物のガラス転移温度、発熱ピークとも良好であった。
表10の参考例45に示す硬化剤に硬化触媒を加え、50℃で溶解させた後、室温まで冷却した。一方で、エポキシ樹脂に室温で構成要素(A)または(E)を混練した。これらを室温で混練してエポキシ樹脂組成物を調製した。この樹脂組成物から、参考例1に記載の方法で樹脂硬化物を得た。樹脂硬化物のガラス転移温度、発熱ピークとも良好であった。
表10の参考例46、47、50、51に示すエポキシ樹脂を溶融混練したのち、ポリビニルホルマールまたはS-B-M共重合体を加え、170℃で1時間かけて溶解させた。次に、60℃まで冷却し、構成要素(A)または(E)を加え混練した後、硬化剤および硬化触媒を加えることにより、エポキシ樹脂組成物を調製した。この樹脂組成物から、参考例1に記載の方法で樹脂硬化物を得た。この樹脂硬化物のガラス転移温度、発熱ピークとも良好であった。
表10の参考例48、49に示すエポキシ樹脂を溶融混練したのち、ポリエーテルスルホンを加え、170℃で1時間かけて溶解させた。次に、80℃まで冷却し、構成要素(A)または(E)を加え混練した後、硬化剤を加えることにより、エポキシ樹脂組成物を調製した。この樹脂組成物から、参考例10と同様の方法で樹脂硬化物を得た。硬化物のガラス転移温度、発熱ピークとも良好であった。
表10,11の参考例52、53に示すエポキシ樹脂を溶融混練したのち、ポリエーテルスルホンを加え、170℃で1時間かけて溶解させた。次に、80℃まで冷却し、構成要素(A)または(E)およびカーボン粒子または金属被覆ポリマー粒子を加え、混練した後、硬化剤を加えることにより、エポキシ樹脂組成物を調製した。この樹脂組成物から、参考例10と同様の方法で樹脂硬化物を得た。硬化物のガラス転移温度、発熱ピークとも良好であった。
参考例1で得られた構成要素(B)をリバースロールコーターを使用して離型紙上に塗布し、樹脂フィルムを作製した。次に、この樹脂フィルム2枚を、シート状に一方向に整列させた(C-1)の両面から重ね、加熱プレスロールで加圧して参考例1の樹脂組成物を含浸させ、単位面積当たりの繊維質量125g/m2、繊維質量含有率68%の一方向プリプレグ前駆体を作製した。次に、この一方向プリプレグ前駆体20層を、繊維方向を一方向に揃えて積層した後、オートクレープ内で、参考例1に記載の温度および時間、圧力0.3MPaで加熱加圧して硬化し、繊維強化複合材料を作製した。損失係数、90°曲げ強度、0°曲げ弾性率および強度、Tgを測定した。損失係数が低く、好ましくなかった。
比較例1で得られた一方向プリプレグ前駆体の片面に、構成要素(A)として前記(A-1)を均一に散布し、離型紙に挟んで加熱プレスロールを通すことにより、一方向プリプレグを得た。表面局在化率は98%で良好であった。次に、この一方向プリプレグを、繊維方向を一方向に揃え、構成要素(A)を散布した面が上になるように19層積層した後、さらに比較例1で得られた一方向プリプレグ前駆体を1層積層し、比較例1と同様の方法で繊維強化複合材料を作製した。層間局在化率は96%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例1に比べて、それぞれ188%、98%、101%、100%と良好であった。Tgも良好であった。
構成要素(B)を参考例2にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
比較例2で得られた一方向プリプレグ前駆体の片面に、構成要素(A)として前記(A-2)を均一に散布した以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は、実施例1に比べて構成要素(A)の粒径が小さくなったため、実施例1に比べて若干低下したが良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は、実施例1に比べて若干低下したが、良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、構成要素(A)の層間局在化率が低下したため、実施例1に比べて若干劣るが、比較例2と比べて、それぞれ176%、92%、98%、99%で良好であった。Tgも良好であった。
構成要素(A)として前記(A-3)を用いた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は96%で良好であった。また、構成要素(A-3)の10℃でのtanδが(A-1)に比べて低いため、損失係数は実施例1に比べて若干劣るが、比較例1と比べて、それぞれ145%、98%、100%、100%で良好であり、Tgも実施例1に比べて、低下したが良好であった。
構成要素(A)を(A-1)、配合量を7質量%にかえた以外は、実施例2と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は95%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例1と比べて、それぞれ210%、93%、99%、100%であった。Tgも良好であった。実施例1と比較すると、損失係数が大きく向上した。
構成要素(A)の配合量を15質量%にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は96%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例1と比べて、それぞれ250%、91%、96%、98%で良好であった。また、Tgも良好であった。実施例1と比較すると、損失係数が大きく向上したが、曲げ強度および0°曲げ弾性率が低下した。
構成要素(B)を参考例3の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例3にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は97%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例3と比べて、それぞれ180%、98%、96%、100%で良好であり、硬化剤を1.0当量にすることにより、実施例1に比べて、曲げ強度が若干向上した。また、Tgも良好であった。
構成要素(B)を参考例4の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例4の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は97%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例4と比べて、それぞれ174%、98%、100%、100%で良好であり、硬化剤を0.8当量にすることにより、実施例1に比べて、曲げ強度が若干向上した。また、Tgも良好であった。
構成要素(B)を参考例2の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は97%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例2と比べて、それぞれ180%、98%、97%、101%で良好であり、構成要素(B)中の硬化触媒を2質量%にすることにより、実施例1に比べて、曲げ強度が若干向上した。Tgも良好であった。
構成要素(B)を参考例5の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例5の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は98%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は97%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例5と比べて、それぞれ184%、99%、100%、100%であった。Tgも良好であった。実施例1に比べて、構成要素(B)のエポキシ樹脂の一部にフェノールノボラック型エポキシ樹脂を用いることにより、曲げ強度とTgが向上した。
構成要素(B)を参考例20の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数とTgが低く、好ましくなかった。
構成要素(B)を参考例20の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は98%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は95%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例6と比べて、それぞれ196%、98%、100%、99%で、良好であった。しかし、構成要素(B)のエポキシ樹脂にビスフェノールF型エポキシ樹脂を用いることにより、実施例1に比べて、Tgが低下した。
構成要素(B)を参考例6の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例6の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は98%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は96%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例7と比べて、それぞれ172%、99%、104%、99%で、良好であった。構成要素(B)のエポキシ樹脂にジシクロペンタジエン型エポキシ樹脂を用いることにより、実施例1に比べて、Tgが大きく向上した。
構成要素(B)を参考例7の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例7の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は97%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例8と比べて、それぞれ176%、98%、99%、101%で、良好であった。構成要素(B)のエポキシ樹脂に多官能アミン型エポキシ樹脂を用いることにより、実施例1に比べて、曲げ強度とTgが大きく向上した。
構成要素(B)を参考例8の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例8の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は95%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例9と比べて、それぞれ174%、98%、105%、99%で、良好であった。構成要素(B)のエポキシ樹脂にビフェニル骨格を有するエポキシ樹脂を用いることにより、実施例1に比べて、曲げ強度とTgが大きく向上した。
構成要素(B)を参考例9の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例9の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は96%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例10と比べて、それぞれ182%、97%、99%、101%で、良好であった。構成要素(B)のエポキシ樹脂にイソシアネート変性エポキシ樹脂を用いることにより、実施例1に比べて、曲げ強度が若干低下したが、Tgが向上した。
構成要素(B)を参考例10の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例10の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は98%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は95%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例11と比べて、それぞれ180%、98%、98%、101%で、良好であった。構成要素(B)の硬化剤に4,4’-ジアミノジフェニルスルホンを用いることにより、実施例13に比べて、Tgが向上した。
構成要素(B)を参考例12の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例12の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は95%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例12と比べて、それぞれ176%、99%、100%、100%で良好であった。Tgも良好であった。
構成要素(B)を参考例13の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例13の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は96%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例13と比べて、それぞれ176%、99%、103%、99%で良好であった。Tgも良好であった。
構成要素(B)を参考例14の樹脂組成物にかえた以外は、比較例11と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例14の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は96%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例14と比べて、それぞれ184%、99%、103%、98%で良好であった。Tgも良好であった。
構成要素(B)を参考例15の樹脂組成物にかえた以外は、比較例11と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例15の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は96%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例14と比べて、それぞれ180%、99%、103%、98%で良好であった。Tgも良好であった。
構成要素(B)を参考例16の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例16の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は98%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は97%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例16と比べて、それぞれ174%、98%、96%、100%で良好であった。Tgも良好であった。
構成要素(B)を参考例18の樹脂組成物にかえた以外は、比較例11と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例18の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は96%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例18と比べて、それぞれ183%、99%、100%、101%で良好であった。Tgも良好であった。構成要素(B)のエポキシ樹脂に、カーボン粒子を配合することにより、実施例18に比べて、弾性率、強度が向上した。
構成要素(B)を参考例19の樹脂組成物にかえた以外は、比較例11と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例19の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は96%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例19と比べて、それぞれ176%、98%、100%、101%で良好であった。Tgも良好であった。構成要素(B)のエポキシ樹脂に、金属被覆ポリマー粒子を配合することにより、実施例19に比べて、弾性率、強度が向上した。
構成要素(B)を参考例17の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
参考例17の樹脂組成物と前記(A-1)を、参考例51と同様の方法で混練し、樹脂組成物を得た。この樹脂組成物および参考例1のエポキシ樹脂組成物を、それぞれリバースコーターを使用して離型紙上に塗布し、それぞれの樹脂フィルムを作製した。次に、参考例1から得られた樹脂フィルムを用いて、比較例1と同様の方法で単位面積当たりの繊維質量125g/m2、繊維質量含有率76%の1方向プリプレグ前駆体を得た。この一方向プリプレグ前駆体の片面に、参考例17の樹脂組成物と前記(A-1)から得られた樹脂フィルムを、加熱プレスロールで加圧して貼付し、一方向プリプレグを得た。表面局在化率は、99%で良好であった。この一方向プリプレグを用いて、実施例1に記載の方法で繊維強化複合材料を得た。層間局在化率は96%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例1と比べて、それぞれ176%、98%および、比較例17と比べて、それぞれ176%、98%、98%、100%で良好であった。Tgも良好であった。
参考例17のエポキシ樹脂組成物と前記(A-1)を、参考例51と同様の方法で混練し、樹脂組成物を得た。この樹脂組成物および参考例17のエポキシ樹脂組成物を、それぞれリバースコーターを使用して離型紙上に塗布し、それぞれの樹脂フィルムを作製した。次に、参考例17の樹脂組成物から得られた樹脂フィルムを用いて、比較例1と同様の方法で単位面積当たりの繊維質量125g/m2、繊維質量含有率76%の一方向プリプレグ前駆体を得た。この一方向プリプレグ前駆体の片面に、参考例17の樹脂組成物と前記(A-1)から得られた樹脂フィルムを、加熱プレスロールで加圧して貼付し、一方向プリプレグを得た。表面局在化率は、98%で良好であった。この一方向プリプレグを用いて、実施例1に記載の方法で繊維強化複合材料を得た。層間局在化率は95%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例17と比べて、それぞれ178%、98%、102%、99%で良好であった。Tgも良好であった。
参考例18のエポキシ樹脂組成物と前記(A-1)を、参考例52と同様の方法で混練し、樹脂組成物を得た。この樹脂組成物および参考例14のエポキシ樹脂組成物を、それぞれリバースコーターを使用して離型紙上に塗布し、それぞれの樹脂フィルムを作製した。次に、参考例14の樹脂組成物から得られた樹脂フィルムを用いて、比較例1と同様の方法で単位面積当たりの繊維質量125g/m2、繊維質量含有率76%の一方向プリプレグ前駆体を得た。この一方向プリプレグ前駆体の片面に、参考例18の樹脂組成物と前記(A-1)から得られた樹脂フィルムを、加熱プレスロールで加圧して貼付し、一方向プリプレグを得た。表面局在化率は、99%で良好であった。この一方向プリプレグを用いて、実施例1に記載の方法で繊維強化複合材料を得た。層間局在化率は97%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例18と比べて、それぞれ185%、99%、101%、101%で良好であった。Tgも良好であった。
比較例1で得られた一方向プリプレグ前駆体の両面に、構成要素(A)として前記(A-1)を均一に散布し、離型紙に挟んで加熱プレスロールを通すことにより、一方向プリプレグを得た。表面局在化率は99%で良好であった。この一方向プリプレグを18層積層した後、さらにこれの両面に比較例1で得られた一方向プリプレグ前駆体を1層ずつ積層した以外は、比較例1と同様の方法で繊維強化複合材料を作製した。層間局在化率は96%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例1に比べて、それぞれ170%、99%、100%、101%と良好であった。Tgも良好であった。
構成要素(B)を参考例21の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例21の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は96%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例20と比べて、それぞれ188%、98%、103%、100%で良好であった。Tgも良好であった。構成要素(B)のエポキシ樹脂に、エポキシ当量が810であるビスフェノールA型エポキシ樹脂を配合することにより、実施例1に比べて、損失係数が向上した。
構成要素(B)を参考例22の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例22の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は98%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は97%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例21と比べて、それぞれ188%、98%、93%、101%で良好であった。Tgも良好であった。構成要素(B)のエポキシ樹脂に、エポキシ当量が1930であるビスフェノールA型エポキシ樹脂を配合することにより、実施例1に比べて、損失係数が向上した。
構成要素(B)を参考例23の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例23の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は98%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は95%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例22と比べて、それぞれ192%、99%、100%、100%で良好であった。Tgも良好であった。構成要素(B)のエポキシ樹脂に、エポキシ当量が4000であるビスフェノールA型エポキシ樹脂を配合することにより、実施例1に比べて、損失係数が向上した。
構成要素(B)を参考例24の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例24の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は97%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は98%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例23と比べて、それぞれ190%、98%、103%、100%で良好であった。Tgも良好であった。構成要素(B)のエポキシ樹脂に、ビスフェノールF型エポキシ樹脂を配合することにより、実施例1に比べて、強度が向上した。
構成要素(B)を参考例25の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例25の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は97%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例24と比べて、それぞれ186%、98%、96%、99%で良好であった。Tgも良好であった。構成要素(B)のエポキシ樹脂に、エポキシ当量が800のビスフェノールF型エポキシ樹脂を配合することにより、実施例30に比べて、損失係数が向上した。
構成要素(B)を参考例26の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例26の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は99%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は97%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例25と比べて、それぞれ192%、98%、96%、100%で良好であった。Tgも良好であった。構成要素(B)のエポキシ樹脂に、エポキシ当量が2270のビスフェノールF型エポキシ樹脂を配合することにより、実施例30に比べて、損失係数が向上した。
構成要素(B)を参考例27の樹脂組成物にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(B)を参考例27の樹脂組成物にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は98%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は97%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例26と比べて、それぞれ190%、100%、97%、100%で良好であった。Tgも良好であった。構成要素(B)のエポキシ樹脂に、エポキシ当量が4400のビスフェノールF型エポキシ樹脂を配合することにより、実施例30に比べて、損失係数が向上した。
比較例1で得られた一方向プリプレグ前駆体の片面に、構成要素(A)として前記(A-9)を貼付し、離型紙に挟んで、加熱プレスロールを通すことにより、一方向プリプレグを得た。表面局在化率は100%で良好であった。この一方向プリプレグを用いて、実施例1に記載の方法で繊維強化複合材料を得た。層間局在化率は100%で良好であった。また、損失係数も比較例1と比べて、580%と良好であったが、曲げ強度が82%と低く、さらに構成要素(A)の一部が構成要素(B)に溶解したため、高温側のTgが低下した。
構成要素(A)を前記(A-4)にかえた以外は、実施例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。(A-4)が参考例1に溶解したため、表面局在化率は測定できなかった。この一方向プリプレグを用いて、実施例1に記載の方法で繊維強化複合材料を得た。層間局在化率は測定できなかった。損失係数と曲げ強度は、比較例1と比べて、それぞれ112%、85%と好ましくなかった。また、Tgも好ましくなかった。
構成要素(A)を前記(A-5)にかえた以外は、実施例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。表面局在化率は97%で良好であった。この一方向プリプレグを用いて、実施例1に記載の方法で繊維強化複合材料を得た。層間局在化率は95%で良好であった。また、比較例1と比べて、曲げ強度は99%と良好であったが、損失係数が110%と低かった。Tgは良好であった。
構成要素(A)を前記(A-6)にかえた以外は、実施例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。表面局在化率は88%と不十分であった。この一方向プリプレグを用いて、実施例1に記載の方法で繊維強化複合材料を得た。層間局在化率は83%と不十分であった。また、実施例1と比べて、損失係数や曲げ強度も不十分であった。
構成要素(A)を前記(A-7)にかえた以外は、実施例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。表面局在化率は100%と良好であった。この一方向プリプレグを用いて、実施例1に記載の方法で繊維強化複合材料を得た。層間局在化率は99%であり、損失係数は比較例1と比べて、142%と良好であった。しかし、曲げ強度は、比較例1と比べて、88%と好ましくなかった。
構成要素(A)を前記(A-8)にかえた以外は、実施例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。表面局在化率は93%と良好であった。この一方向プリプレグを用いて、実施例1に記載の方法で繊維強化複合材料を得た。層間局在化率は91%で良好であった。また、比較例1と比べて、曲げ強度は100%と良好であったが、損失係数が104%と低かった。Tgは良好であった。
構成要素(C)を前記(C-3)にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(C)を前記(C-3)にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は98%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は98%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例33と比べて、それぞれ142%、98%、99%、100%で良好であった。Tgも良好であった。構成要素(C)に(C-3)を用いることで、実施例1と同様に損失係数、弾性率と強度のバランスが良好であった。
構成要素(C)を前記(C-4)にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(C)を前記(C-4)にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は97%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は98%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例34と比べて、それぞれ132%、98%、101%、101%で良好であった。Tgも良好であった。
構成要素(C)を前記(C-5)にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(C)を前記(C-5)にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は98%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は96%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例35と比べて、それぞれ138%、97%、100%、101%で良好であった。Tgも良好であった。
構成要素(C)を前記(C-6)にかえた以外は、比較例1と同様に、一方向プリプレグ前駆体と繊維強化複合材料を得た。損失係数が低く、好ましくなかった。
構成要素(C)を前記(C-6)にかえた以外は、実施例1と同様の方法で一方向プリプレグを得た。表面局在化率は97%で良好であった。次に、実施例1と同様の方法で、繊維強化複合材料を作製した。層間局在化率は97%で良好であった。また、損失係数、90°曲げ強度、0°曲げ弾性率および強度は、比較例36と比べて、それぞれ136%、95%、100%、101%で良好であった。Tgも良好であった。
長さ300mm×幅300mm×厚み2mmの板状キャビティーを持つ金型のキャビティー内に、前記(C-2)を6枚積層し、プレス装置で型締めを行った。次に、100℃(成形温度)に保持した金型内を、真空ポンプにより、大気圧-0.1MPaに減圧し、あらかじめ50℃に加温しておいた参考例11のエポキシ樹脂を、硬化剤および硬化触媒の混合液と樹脂注入機を用いて混合し、0.2MPaの圧力で注入した。エポキシ樹脂組成物の注入開始後、30分(硬化時間)で金型を開き、得られた維強強化複合材料前駆体を脱型した。得られた維強強化複合材料前駆体を、130℃に予熱したオーブンで1時間、後硬化を行い、維強強化複合材料を得た。繊維強化複合材料の損失係数は不十分であった。
長さ300mm×幅300mm×厚み2mmの板状キャビティーを持つ金型のキャビティー内に、前記(A-1)を層間に均一に散布しつつ、前記(C-2)を6枚積層し、プレス装置で型締めを行った。次に、100℃(成形温度)に保持した金型内を、真空ポンプにより、大気圧-0.1MPaに減圧し、あらかじめ50℃に加温しておいた参考例11のエポキシ樹脂を、硬化剤および硬化触媒の混合液と樹脂注入機を用いて混合し、0.2MPaの圧力で注入した。エポキシ樹脂組成物の注入開始後、30分(硬化時間)で金型を開き、得られた維強強化複合材料前駆体を脱型した。得られた維強強化複合材料前駆体を、130℃に予熱したオーブンで1時間、後硬化を行い、維強強化複合材料を得た。繊維強化複合材料の層間局在化率は95%で良好であった。また、損失係数、曲げ強度は、比較例37と比べて、それぞれ178%、98%で良好であった。さらに、Tgも良好であった。
2 支持板に接していた面
3 プリプレグ厚みの20%の平行線
4 平均境界線
5 平均中心厚み線
A 構成要素(A)
B 構成要素(B)
C 構成要素(C)
D 構成要素(D)
E 構成要素(E)
F 構成要素(F)
G 構成要素(G)
H 構成要素(H)
P 構成要素(P)
Q 構成要素(Q)
Claims (24)
- 下記構成要素(A)、(B)および(C)を含むプリプレグであって、
前記構成要素(A)が、前記構成要素(B)および(C)を含む層の片面または両面に配置され、
前記構成要素(A)の90面積%以上が、前記プリプレグの表面からプリプレグ平均厚みの20%までの部位に存在する、プリプレグ;
(A)10℃におけるtanδが0.15以上であって、かつ、3次元架橋構造を有するエポキシ粒子;
(B)第1のエポキシ樹脂組成物;
(C)強化繊維。 - 前記構成要素(A)が前記構成要素(B)に非相溶である、請求項1のプリプレグ。
- 前記構成要素(A)の平均粒径が5~20μmである、請求項1または2のプリプレグ。
- 前記構成要素(A)がプリプレグ中に2~20質量%含まれている、請求項1~3のいずれかのプリプレグ。
- 前記構成要素(B)が、少なくともエポキシ当量が800~5500のエポキシ樹脂を含むエポキシ樹脂組成物である、請求項1~4のいずれかのプリプレグ。
- 前記構成要素(C)が炭素繊維である、請求項1~5のいずれかのプリプレグ。
- 前記構成要素(C)が、引張弾性率が230~550GPaの炭素繊維である、請求項6のプリプレグ。
- 下記構成要素(D)をさらに含み、
前記構成要素(D)が、前記構成要素(B)および(C)を含む層の片面または両面に配置され、
前記構成要素(A)が前記構成要素(D)に含まれた状態で存在している、請求項1~7のいずれかのプリプレグ;
(D)前記構成要素(A)と相溶しない第2のエポキシ樹脂組成物。 - 前記構成要素(D)が前記構成要素(B)と同一である、請求項8のプリプレグ。
- 下記構成要素(P)をさらに含み、
前記構成要素(P)が、前記構成要素(B)および(C)を含む層の片面または両面に配置され、
前記構成要素(P)の90面積%以上が、前記プリプレグの表面からプリプレグ平均厚みの20%までの部位に存在する、請求項1~7のいずれかのプリプレグ;
(P)ヤング率が2GPa以上で、平均粒径が5~100μmの粒子。 - 下記構成要素(D)をさらに含み、
前記構成要素(D)が、前記構成要素(B)および(C)を含む層の片面または両面に配置され
前記構成要素(A)および(P)が前記構成要素(D)に含まれた状態で存在している、請求項10のプリプレグ;
(D)前記構成要素(A)と相溶しない第2のエポキシ樹脂組成物。 - 前記構成要素(D)が前記構成要素(B)と同一である、請求項11のプリプレグ。
- 請求項1~7のいずれかのプリプレグを製造する方法であって、
前記構成要素(B)を前記構成要素(C)に含浸させてプリプレグ前駆体を得る工程と、
前記プリプレグ前駆体に前記構成要素(A)を貼付する工程と、を含むプリプレグの製造方法。 - 請求項10のプリプレグを製造する方法であって、
前記構成要素(B)を前記構成要素(C)に含浸させてプリプレグ前駆体を得る工程と、
前記プリプレグ前駆体に前記構成要素(A)および(P)を貼付する工程と、を含むプリプレグの製造方法。 - 請求項8または9のプリプレグを製造する方法であって、下記(I)、(II)および(III)の工程を含むプリプレグの製造方法;
(I)前記構成要素(A)を前記構成要素(D)に分散させ、この分散体をフィルムにする工程;
(II)前記構成要素(B)を前記構成要素(C)に含浸させ、プリプレグ前駆体を作製する工程;
(III)(I)で得られたフィルムを(II)で得られたプリプレグ前駆体に貼付する工程。 - 請求項11または12のプリプレグを製造する方法であって、下記(I’)、(II’)および(III’)の工程を含むプリプレグの製造方法;
(I’)前記構成要素(A)および(P)を前記構成要素(D)に分散させ、この分散体をフィルムにする工程;
(II’)前記構成要素(B)を前記構成要素(C)に含浸させ、プリプレグ前駆体を作製する工程;
(III’)(I’)で得られたフィルムを(II’)で得られたプリプレグ前駆体に貼付する工程。 - 下記構成要素(E)、(F)および(G)を含む繊維強化複合材料であって、
前記構成要素(F)および(G)を含む強化繊維層を2層以上有しており、
前記繊維強化複合材料の断面を観察した際に、構成要素(E)の90面積%以上が、強化繊維層と、その強化繊維層に隣接する他の強化繊維層との間の構成要素(G)を含まない層間領域に局在化している、繊維強化複合材料;
(E)10℃におけるtanδが0.15以上であって、かつ、3次元架橋構造を有するエポキシ粒子;
(F)第3のエポキシ樹脂組成物の硬化物;
(G)強化繊維。 - 下記構成要素(H)をさらに含み、前記構成要素(E)が前記構成要素(H)に含まれた状態で存在している、請求項17の繊維強化複合材料;
(H)第4のエポキシ樹脂組成物の硬化物。 - 前記繊維強化複合材料の損失係数が、前記構成要素(E)を含まない以外は前記繊維強化複合材料と同一の繊維強化複合材料の損失係数に対して、130%以上である、請求項17または18の繊維強化複合材料。
- 前記繊維強化複合材料の曲げ強度が、前記構成要素(E)を含まない以外は前記繊維強化複合材料と同一の繊維強化複合材料の曲げ強度に対して、90%以上である、請求項17~19のいずれかの繊維強化複合材料。
- 下記構成要素(Q)をさらに含み、前記繊維強化複合材料の断面を観察した際に、前記構成要素(Q)の90面積%以上が前記層間領域に局在化している、請求項17の繊維強化複合材料;
(Q)ヤング率が2GPa以上で、平均粒径が5~100μmの粒子 - 下記構成要素(H)をさらに含み、前記構成要素(E)および(Q)が前記構成要素(H)に含まれた状態で存在している、請求項21の繊維強化複合材料;
(H)第4のエポキシ樹脂組成物の硬化物。 - 前記繊維強化複合材料の損失係数が、前記構成要素(E)および(Q)を含まない以外は前記繊維強化複合材料と同一の繊維強化複合材料の損失係数に対して、130%以上である、請求項21または22の繊維強化複合材料。
- 前記繊維強化複合材料の曲げ強度が、前記構成要素(E)および(Q)を含まない以外は前記繊維強化複合材料と同一の繊維強化複合材料の曲げ強度に対して、90%以上である、請求項21~23のいずれかの繊維強化複合材料。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/111,328 US20140037939A1 (en) | 2011-04-27 | 2012-02-23 | Prepreg and fiber reinforced composite material, and process for producing prepreg |
JP2012511852A JP5354095B2 (ja) | 2011-04-27 | 2012-02-23 | プリプレグ、繊維強化複合材料およびプリプレグの製造方法 |
EP12776016.3A EP2703432A4 (en) | 2011-04-27 | 2012-02-23 | PREPREG, FIBER-REINFORCED COMPOSITE MATERIAL AND METHOD FOR PREPARING THE PREPREGMENT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-099007 | 2011-04-27 | ||
JP2011099007 | 2011-04-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012147401A1 true WO2012147401A1 (ja) | 2012-11-01 |
Family
ID=47071929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054372 WO2012147401A1 (ja) | 2011-04-27 | 2012-02-23 | プリプレグ、繊維強化複合材料およびプリプレグの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140037939A1 (ja) |
EP (1) | EP2703432A4 (ja) |
JP (1) | JP5354095B2 (ja) |
WO (1) | WO2012147401A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2516274A (en) * | 2013-07-17 | 2015-01-21 | Gurit Uk Ltd | Prepreg for manufacturing composite materials |
WO2016060062A1 (ja) * | 2014-10-17 | 2016-04-21 | 東レ株式会社 | 繊維強化複合材料の製造方法、樹脂基材およびプリフォーム |
JP2017132878A (ja) * | 2016-01-27 | 2017-08-03 | 東邦テナックス株式会社 | プリプレグの製造方法 |
JP2018518989A (ja) * | 2015-06-02 | 2018-07-19 | ジー−ロッズ インターナショナル リミティド ライアビリティ カンパニー | グラフェンを有するフィッシングロッド及び製造方法 |
WO2019087877A1 (ja) | 2017-11-02 | 2019-05-09 | 日鉄ケミカル&マテリアル株式会社 | エポキシ樹脂組成物及びその硬化物 |
EP3628701A1 (en) | 2018-09-28 | 2020-04-01 | NIPPON STEEL Chemical & Material Co., Ltd. | Prepreg and molding product thereof |
WO2021117460A1 (ja) * | 2019-12-11 | 2021-06-17 | 東レ株式会社 | プリプレグ、積層体および一体化成形品 |
WO2021132464A1 (ja) * | 2019-12-27 | 2021-07-01 | 三菱ケミカル株式会社 | プリプレグ、繊維強化複合材料、繊維強化複合材料の製造方法 |
WO2021200453A1 (ja) * | 2020-03-31 | 2021-10-07 | 東レ株式会社 | プリプレグおよび繊維強化複合材料 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9396480B2 (en) * | 2014-08-21 | 2016-07-19 | Verizon Patent And Licensing Inc. | Providing on-demand audience based on network |
CN106916282B (zh) * | 2015-12-28 | 2019-07-26 | 广东生益科技股份有限公司 | 一种环氧树脂组合物以及使用其的预浸料和层压板 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63170428A (ja) | 1987-01-07 | 1988-07-14 | Toray Ind Inc | プリプレグの製造方法 |
JPS6426651A (en) * | 1987-01-06 | 1989-01-27 | Toray Industries | Production of prepreg |
JPH01104624A (ja) * | 1987-10-16 | 1989-04-21 | Toray Ind Inc | 樹脂微粒子を用いたプリプレグ |
JPH04207139A (ja) | 1990-11-30 | 1992-07-29 | Toray Ind Inc | 釣竿 |
JPH0741577A (ja) * | 1993-07-30 | 1995-02-10 | Toray Ind Inc | プリプレグおよび繊維強化プラスチック |
JP2003012889A (ja) | 2001-06-27 | 2003-01-15 | Mitsubishi Rayon Co Ltd | エポキシ樹脂組成物及びそれを用いたテニスラケット |
JP2004149979A (ja) * | 2002-10-31 | 2004-05-27 | Toho Tenax Co Ltd | 炭素繊維ストランド |
JP2006052385A (ja) * | 2004-07-13 | 2006-02-23 | Toray Ind Inc | 繊維強化複合材料用エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料 |
JP2006077202A (ja) * | 2004-09-13 | 2006-03-23 | Toray Ind Inc | 難燃性プリプレグ |
JP2008237373A (ja) | 2007-03-26 | 2008-10-09 | Mrc Composite Products Co Ltd | ゴルフクラブシャフトとそのシャフトの製造方法 |
JP2009261473A (ja) | 2008-04-22 | 2009-11-12 | Yokohama Rubber Co Ltd:The | ゴルフクラブシャフト |
JP2010116484A (ja) | 2008-11-13 | 2010-05-27 | Toray Ind Inc | 樹脂微粒子およびその製造方法、樹脂微粒子を含むプリプレグ、炭素繊維強化複合材料 |
WO2011122631A1 (ja) * | 2010-03-30 | 2011-10-06 | 東レ株式会社 | プリプレグ、繊維強化複合材料およびプリプレグの製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6261675B1 (en) * | 1999-03-23 | 2001-07-17 | Hexcel Corporation | Core-crush resistant fabric and prepreg for fiber reinforced composite sandwich structures |
US8080313B2 (en) * | 2009-05-28 | 2011-12-20 | Cytec Technology Corp. | Particle-toughened fiber-reinforced polymer composites |
-
2012
- 2012-02-23 WO PCT/JP2012/054372 patent/WO2012147401A1/ja active Application Filing
- 2012-02-23 JP JP2012511852A patent/JP5354095B2/ja not_active Expired - Fee Related
- 2012-02-23 US US14/111,328 patent/US20140037939A1/en not_active Abandoned
- 2012-02-23 EP EP12776016.3A patent/EP2703432A4/en not_active Withdrawn
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6426651A (en) * | 1987-01-06 | 1989-01-27 | Toray Industries | Production of prepreg |
JPS63170428A (ja) | 1987-01-07 | 1988-07-14 | Toray Ind Inc | プリプレグの製造方法 |
JPH01104624A (ja) * | 1987-10-16 | 1989-04-21 | Toray Ind Inc | 樹脂微粒子を用いたプリプレグ |
JPH04207139A (ja) | 1990-11-30 | 1992-07-29 | Toray Ind Inc | 釣竿 |
JPH0741577A (ja) * | 1993-07-30 | 1995-02-10 | Toray Ind Inc | プリプレグおよび繊維強化プラスチック |
JP2003012889A (ja) | 2001-06-27 | 2003-01-15 | Mitsubishi Rayon Co Ltd | エポキシ樹脂組成物及びそれを用いたテニスラケット |
JP2004149979A (ja) * | 2002-10-31 | 2004-05-27 | Toho Tenax Co Ltd | 炭素繊維ストランド |
JP2006052385A (ja) * | 2004-07-13 | 2006-02-23 | Toray Ind Inc | 繊維強化複合材料用エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料 |
JP2006077202A (ja) * | 2004-09-13 | 2006-03-23 | Toray Ind Inc | 難燃性プリプレグ |
JP2008237373A (ja) | 2007-03-26 | 2008-10-09 | Mrc Composite Products Co Ltd | ゴルフクラブシャフトとそのシャフトの製造方法 |
JP2009261473A (ja) | 2008-04-22 | 2009-11-12 | Yokohama Rubber Co Ltd:The | ゴルフクラブシャフト |
JP2010116484A (ja) | 2008-11-13 | 2010-05-27 | Toray Ind Inc | 樹脂微粒子およびその製造方法、樹脂微粒子を含むプリプレグ、炭素繊維強化複合材料 |
WO2011122631A1 (ja) * | 2010-03-30 | 2011-10-06 | 東レ株式会社 | プリプレグ、繊維強化複合材料およびプリプレグの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2703432A4 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2516274A (en) * | 2013-07-17 | 2015-01-21 | Gurit Uk Ltd | Prepreg for manufacturing composite materials |
GB2516274B (en) * | 2013-07-17 | 2016-12-28 | Gurit (Uk) Ltd | Prepreg for manufacturing composite materials |
WO2016060062A1 (ja) * | 2014-10-17 | 2016-04-21 | 東レ株式会社 | 繊維強化複合材料の製造方法、樹脂基材およびプリフォーム |
JP2016078451A (ja) * | 2014-10-17 | 2016-05-16 | 東レ株式会社 | 繊維強化複合材料の製造方法、樹脂基材およびプリフォーム |
JP2016078450A (ja) * | 2014-10-17 | 2016-05-16 | 東レ株式会社 | 繊維強化複合材料の製造方法、樹脂基材およびプリフォーム |
JP2016078452A (ja) * | 2014-10-17 | 2016-05-16 | 東レ株式会社 | 繊維強化複合材料の製造方法、樹脂基材およびプリフォーム |
US11225037B2 (en) | 2014-10-17 | 2022-01-18 | Toray Industries, Inc. | Method of producing fiber-reinforced composite material, resin base material and preform |
US20170239895A1 (en) * | 2014-10-17 | 2017-08-24 | Toray Industries, Inc. | Method of producing fiber-reinforced composite material, resin base material and preform |
JP2018518989A (ja) * | 2015-06-02 | 2018-07-19 | ジー−ロッズ インターナショナル リミティド ライアビリティ カンパニー | グラフェンを有するフィッシングロッド及び製造方法 |
JP2017132878A (ja) * | 2016-01-27 | 2017-08-03 | 東邦テナックス株式会社 | プリプレグの製造方法 |
WO2019087877A1 (ja) | 2017-11-02 | 2019-05-09 | 日鉄ケミカル&マテリアル株式会社 | エポキシ樹脂組成物及びその硬化物 |
US11396597B2 (en) | 2017-11-02 | 2022-07-26 | Nippon Steel Chemical & Material Co., Ltd. | Epoxy resin composition and cured object obtained therefrom |
EP3628701A1 (en) | 2018-09-28 | 2020-04-01 | NIPPON STEEL Chemical & Material Co., Ltd. | Prepreg and molding product thereof |
JP2020050833A (ja) * | 2018-09-28 | 2020-04-02 | 日鉄ケミカル&マテリアル株式会社 | プリプレグ及びその成形物 |
US11059949B2 (en) | 2018-09-28 | 2021-07-13 | Nippon Steel Chemical & Material Co., Ltd. | Prepreg and molding product thereof |
WO2021117460A1 (ja) * | 2019-12-11 | 2021-06-17 | 東レ株式会社 | プリプレグ、積層体および一体化成形品 |
WO2021132464A1 (ja) * | 2019-12-27 | 2021-07-01 | 三菱ケミカル株式会社 | プリプレグ、繊維強化複合材料、繊維強化複合材料の製造方法 |
WO2021200453A1 (ja) * | 2020-03-31 | 2021-10-07 | 東レ株式会社 | プリプレグおよび繊維強化複合材料 |
Also Published As
Publication number | Publication date |
---|---|
JP5354095B2 (ja) | 2013-11-27 |
EP2703432A4 (en) | 2014-12-03 |
JPWO2012147401A1 (ja) | 2014-07-28 |
EP2703432A1 (en) | 2014-03-05 |
US20140037939A1 (en) | 2014-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5354095B2 (ja) | プリプレグ、繊維強化複合材料およびプリプレグの製造方法 | |
JP4973808B2 (ja) | プリプレグ、繊維強化複合材料およびプリプレグの製造方法 | |
JP4985877B2 (ja) | プリプレグ、繊維強化複合材料およびプリプレグの製造方法 | |
JP5800031B2 (ja) | エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料 | |
KR101096855B1 (ko) | 섬유 강화 복합 재료용 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료 | |
JP5321464B2 (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JP5780367B2 (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JP5648679B2 (ja) | 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JP6394610B2 (ja) | エポキシ樹脂組成物、プリプレグ、繊維強化プラスチック材料、および繊維強化プラスチック材料の製造方法 | |
KR20140127868A (ko) | 섬유강화 복합 재료 | |
JP2010059225A (ja) | 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料 | |
JP6131593B2 (ja) | プリプレグおよび繊維強化複合材料 | |
KR20140127869A (ko) | 섬유강화 복합 재료 | |
JP2011162619A (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
KR20140127867A (ko) | 섬유강화 복합 재료 | |
JP2012196921A (ja) | 繊維強化複合材料、およびその製造方法 | |
JP2016169381A (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
KR20210022664A (ko) | 프리프레그 및 그 제조 방법, 슬릿 테이프 프리프레그, 탄소섬유강화 복합재료 | |
JP2016132709A (ja) | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 | |
JP2010095557A (ja) | プリプレグおよび繊維強化複合材料 | |
JP2005194456A (ja) | プリフォーム作製用バインダー組成物、強化繊維基材、プリフォームおよび繊維強化複合材料の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012511852 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12776016 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012776016 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14111328 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |