[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012039161A1 - 新規血管炎の検査方法および検査用試薬 - Google Patents

新規血管炎の検査方法および検査用試薬 Download PDF

Info

Publication number
WO2012039161A1
WO2012039161A1 PCT/JP2011/060970 JP2011060970W WO2012039161A1 WO 2012039161 A1 WO2012039161 A1 WO 2012039161A1 JP 2011060970 W JP2011060970 W JP 2011060970W WO 2012039161 A1 WO2012039161 A1 WO 2012039161A1
Authority
WO
WIPO (PCT)
Prior art keywords
moesin
vasculitis
antibody
anca
mpo
Prior art date
Application number
PCT/JP2011/060970
Other languages
English (en)
French (fr)
Inventor
和男 鈴木
俊憲 中山
中島 裕史
朋和 長尾
和子 湯村
Original Assignee
国立大学法人 千葉大学
学校法人自治医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学, 学校法人自治医科大学 filed Critical 国立大学法人 千葉大学
Priority to JP2012534948A priority Critical patent/JP5998318B2/ja
Priority to US13/825,445 priority patent/US9244079B2/en
Priority to EP11826607.1A priority patent/EP2620770B1/en
Publication of WO2012039161A1 publication Critical patent/WO2012039161A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/564Immunoassay; Biospecific binding assay; Materials therefor for pre-existing immune complex or autoimmune disease, i.e. systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, rheumatoid factors or complement components C1-C9
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/328Vasculitis, i.e. inflammation of blood vessels

Definitions

  • the present invention relates to a novel vasculitis test method and test reagent.
  • MPO-ANCA Anti-Neutrophil Cytoplasmic Antibody
  • MPO-ANCA Anti-Neutrophil Cytoplasmic Antibody
  • MPO-ANCA Anti-Neutrophil Cytoplasmic Antibody
  • AGA allergic vasculitis
  • SCS Straus syndrome
  • MPO-ANCA titers in the serum of these patients correlate with disease activity, so MPO-ANCA is used as a specific marker for these diseases in diagnosis and treatment decisions (For example, refer nonpatent literature 1).
  • MPO-ANCA anti-rmMPO antibody
  • mGEC mouse glomerular endothelial cells
  • MPO-ANCA factors involved in the pathogenesis of vasculitis other than MPO-ANCA that is clinically used for the diagnosis of vasculitis, etc.
  • diagnosis and treatment judgment by MPO-ANCA does not necessarily completely reflect the true pathological condition. Therefore, identifying factors other than MPO-ANCA can be performed by MPO-ANCA. It has the potential to provide new clinical markers that complement or replace it, and its clinical significance is extremely important.
  • an object of the present invention is to provide a new marker for vasculitis that replaces MPO-ANCA.
  • MO-ANCA autoantibodies to moesin
  • Protein M described above is moesin.
  • This moesin membrane-organizing extension spike protein
  • cDNA cloning shows that human moesin usually consists of 576 amino acids (Lankes, W. T. et al., Proc. Natl. Acad. Sci. U. S. A., 1991; 88: 8297-8301).
  • an antibody that specifically recognizes moesin is found in the serum of patients with vasculitis.
  • a method for examining vasculitis comprising detecting an antibody specifically recognizing moesin in a biological sample.
  • the biological sample is preferably a serum sample
  • the antibody is preferably an autoantibody against moesin.
  • the test method may further include detecting an antibody (for example, MPO-ANCA) that specifically recognizes myeloperoxidase in the biological sample.
  • an antibody for example, MPO-ANCA
  • vasculitis to be examined by the above examination methods is microscopic polyangiitis (MPA), allergic granulomatous vasculitis (Churg Strauss syndrome (CSS)), Wegener's granulomatosis, Guillain-Barre syndrome Thrombotic thrombocytopenic purpura (TTP), idiopathic thrombocytopenic purpura, IgA nephropathy, rapidly progressive glomerulonephritis, idiopathic interstitial pneumonia, sarcoidosis, diffuse panbronchiolitis, Behcet's disease, Systemic lupus erythematosus (SLE), Sjogren's syndrome, Takayasu disease (aortitis syndrome), Buerger's disease, polyarteritis nodosa, rheumatoid arthritis, temporal arteritis, antiphospholipid syndrome, scleroderma, eosinophilic
  • a reagent for vasculitis examination which contains a substance that detects an antibody specifically recognizing moesin in a biological sample.
  • the substance is preferably moesin and / or a partial peptide thereof.
  • the test reagent further includes a labeled secondary antibody that recognizes the antibody.
  • a new disease state marker for vasculitis can be provided in place of MPO-ANCA.
  • a new vasculitis marker for example, anti-moesin antibody
  • MPO-ANCA which is a conventionally known vasculitis marker
  • the presence or absence of a correlation with the pathology of vasculitis and the marker Based on the information such as the quantitative value, it is possible to subdivide the pathology of vasculitis and determine the treatment effect.
  • an Example it is a figure which shows the result of having performed the Western blotting in order to confirm the expression of moesin in mGEC.
  • the anti-moesin antibody (MO-ANCA) contained in the serum of a patient with ANCA-related vasculitis that is positive for MPO-ANCA recognizes the moesin protein, and the anti-moesin antibody was used as a primary antibody. It is a figure which shows the result confirmed by the western blotting method. In an Example, it is a graph which shows the result of having quantified the anti- moesin antibody (MO-ANCA) and MPO-ANCA in the serum sample extract
  • it is a graph which shows the result of having analyzed about the relationship between the quantitative result of an anti- moesin antibody (MO-ANCA) and the quantitative result of MPO-ANCA in a patient's serum sample.
  • MO-ANCA an anti- moesin antibody
  • it is a graph which shows the result of having analyzed about the relationship between the quantitative result of an anti- moesin antibody (MO-ANCA) and the quantitative result of MPO-ANCA in a patient's serum sample.
  • it is a graph which shows the result of having measured the MPO-ANCA titer and the anti- moesin antibody titer in the plasma of a vasculitis patient by ELISA method, and performing the multiple comparison of them.
  • FIG. 10 is a graph showing the results of comparing the serum creatinine values for each of the four regions shown in FIG. 9.
  • it is a graph which shows the result of having measured the cytokine chemokine production profile from the healthy person neutrophil by the anti-moesin antibody stimulation.
  • it is a graph which shows the result of having measured the cytokine * chemokine production profile from the healthy person monocyte by anti- moesin antibody stimulation.
  • the first aspect of the present invention is a method for examining vasculitis, comprising detecting an antibody specifically recognizing moesin in a biological sample.
  • the subject to which the inspection method of the present invention can be applied is not particularly limited as long as it is an animal, and examples thereof include mammals.
  • Mammals include, for example, primates, laboratory animals, livestock, pets and the like, and are not particularly limited. Specifically, for example, humans, monkeys, rats, mice, rabbits, horses, cows , Goats, sheep, dogs, cats and the like.
  • the target animal is a human.
  • the biological sample that can be used in the method of the present invention is not particularly limited, and examples thereof include animal-derived tissues, cells, cell extract components, body fluids, and the like to be examined.
  • Tissues include spleen, lymph nodes, kidneys, lungs, heart, liver, etc.
  • Cells include spleen cells, lymphocytes, neutrophils, monocytes, macrophages, dendritic cells, antibody-producing cells, etc. as body fluids Examples include blood, serum, plasma, urine, sweat, spinal fluid and the like.
  • the biological sample is preferably a body fluid, particularly serum / plasma or urine.
  • vasculitis There is no particular limitation on the specific form of “vasculitis” examined in the examination method of the present invention, and any disease, symptom, disorder, etc. that can be recognized as “vasculitis” in this technical field can be included.
  • vasculitis include, but are not limited to, microscopic polyangiitis (MPA), Wegener granulomatosis, allergic granulomatous vasculitis (AGA), CSS, and the like.
  • the inspection method of the present invention is an inspection method mainly for microscopic polyangiitis (MPA) and CSS, and more preferably MPA.
  • Moesin recognized by an antibody is a protein belonging to a protein family (Ezrin Radixin Moesin: ERM family) generally bound to the cytoskeleton. In humans, it usually consists of 577 amino acids.
  • the moesin is not particularly limited as long as it is derived from the above-mentioned mammals, but is preferably human-derived moesin. Examples of human moesin include a protein consisting of the amino acid sequence of GenBank accession number NM002444, or a natural allelic variant thereof.
  • the class of the antibody is not particularly limited, and may be any of IgG, IgD, IgE, IgA, sIgA, IgM and the like.
  • Antibody binding fragments Fab, Fab ′, F (ab ′) 2 etc. are also included in the “antibody” as long as they specifically bind to moesin.
  • the antibody detected in the present invention is preferably an autoantibody that specifically recognizes its own moesin.
  • a human antibody that specifically recognizes human moesin is preferably detected.
  • the biological sample is particularly preferably a serum sample.
  • moesin may be part of MPO-ANCA because there are also sequences that cross-react with MPO.
  • a method for detecting an antibody specifically recognizing moesin in a biological sample a method known per se can be used, and is not particularly limited, but a reaction (for example, an antigen-antibody reaction) occurring in a liquid phase or a solid phase is directly performed.
  • a measurement method, a method of measuring inhibition of an immune reaction by adding an inhibitor, and the like can be used.
  • Examples of the method include a method in which moesin or a partial peptide thereof is brought into contact with a biological sample, and specific binding of the antibody in the biological sample to moesin or the partial peptide is detected directly or indirectly.
  • the moesin used in the above method is not particularly limited as long as it can be specifically recognized by the anti-moesin antibody that is an autoantibody of the animal to be examined among the above-mentioned moesin proteins, but preferably derived from the animal to be examined. Moesin.
  • the test subject is human, it is preferable to use human moesin (for example, a protein consisting of the amino acid sequence of GenBank accession number NM002444, or a natural allelic variant thereof).
  • the partial peptide of moesin is not particularly limited as long as it is a partial peptide containing an antigenic determinant recognized by the anti-moesin antibody detected in the present invention.
  • an antigenic determinant of a protein antigen is composed of at least 5 to 6 amino acid residues
  • moesin containing at least 5 or more, preferably 8 or more, more preferably 10 or more amino acid residues can be used in the present invention.
  • Moesin or its partial peptide may be modified.
  • modifications include modifications with phosphoric acid, sugars or sugar chains, phospholipids, lipids, nucleotides, and the like.
  • the moesin or its partial peptide used in the present invention can be obtained from the above-mentioned humans and other animals by a known method.
  • moesin can be purified using a moesin-expressing tissue such as spleen, uterus, kidney or the like, or a cultured cell thereof, or a moesin-expressing cell line such as UT-7.
  • a moesin-expressing tissue such as spleen, uterus, kidney or the like
  • a cultured cell thereof or a moesin-expressing cell line such as UT-7.
  • chromatography such as reverse phase chromatography or ion exchange chromatography. it can.
  • the moesin of the present invention or a partial peptide thereof is obtained by culturing a transformant introduced with an expression vector containing a nucleic acid encoding moesin or a partial peptide thereof to produce moesin or a partial peptide thereof. It can also be produced by separating and purifying the partial peptide.
  • Moesin or a partial peptide thereof used in the present invention can also be produced by a known peptide synthesis method.
  • a peptide synthesis method may be, for example, either a solid phase synthesis method or a liquid phase synthesis method.
  • Moesin or a partial peptide thereof can be produced by condensing a partial peptide or amino acid capable of constituting moesin with the remaining portion and removing the protective group when the product has a protective group.
  • the partial peptide of moesin used in the present invention can also be produced by cleaving moesin obtained by any of the methods described above or below with an appropriate peptidase.
  • Moesin or a partial peptide thereof may be one in which an appropriate tag is linked for the purpose of facilitating purification work and the like.
  • tags include immunoglobulin Fc region, maltose binding protein (MBP), glutathione-S-transferase (GST), c-Myc tag, FLAG tag, HA tag, His tag and the like.
  • An agglutination reaction in which moesin or a partial peptide (antigen) thereof is coated on the surface of blood cells or gelatin particles, and an antigen-antibody reaction is caused by adding a biological sample to form an aggregate.
  • Double immune diffusion in which an extract containing moesin or a partial peptide thereof and a biological sample are diffused in an agar gel to cause a precipitation reaction; (3) After immobilizing purified moesin or its partial peptide on a plate and adding a biological sample to react, i) ELISA method in which a secondary antibody conjugated with an enzyme is further reacted to detect color development of the substrate with a spectrophotometer; ii) a fluorescence immunoassay (FIA) in which a secondary antibody conjugated with a fluorescent dye is further reacted to measure fluorescence development; or iii) a chemiluminescence immunoassay (CLIA) in which a chemiluminescent substance is further reacted with a secondary antibody conjugated with a chemiluminescent substance to measure chemiluminescence; (4) An immunoturbidimetric method in which the surface of latex particles, glass beads, or the like is coated with
  • Immuno-comparison method to measure the scattered light
  • Radioimmunoassay in which moesin or a partial peptide thereof is labeled with a radioisotope and reacted with a biological sample to detect an antigen-antibody reaction
  • a frozen thin section or cell of a tissue containing moesin or a partial peptide thereof is affixed on a glass slide, reacted by dropping a biological sample on the section, and further reacted with a secondary antibody bound to a fluorescent dye.
  • a fluorescent antibody method for detecting fluorescence under a microscope (7) A surface plasmon resonance analysis method for examining affinity by immobilizing moesin or its partial peptide on a chip and flowing a biological sample; (8) Western blotting in which moesin or a partial peptide thereof in a gel separated and developed by electrophoresis is transferred to a nitrocellulose membrane and reacted with a biological sample to detect an antigen-antibody reaction.
  • the detection means is an ELISA method
  • detection and / or quantification can be performed as follows. That is, according to a conventional ELISA method, for example, a biological sample is provided to each well of a multiwell plate coated with moesin or a partial peptide thereof, and an enzyme-labeled secondary antibody is added to each well for reaction, and an enzyme substrate is added. After the addition, the antigen-antibody reaction can be detected and / or quantified by detecting and / or quantifying the product produced by the enzyme.
  • the enzyme used for labeling may be any conventional enzyme commonly used in ELISA methods, such as peroxidase, alkaline phosphatase, ⁇ -D-galactosidase, glucose oxidase, luciferase, esterase, ⁇ -D-glucuronidase and the like.
  • Peroxidase or alkaline phosphatase can be used publicly in view of being able to achieve more sensitive and stable detection.
  • the enzyme substrate can be appropriately selected depending on the enzyme used.
  • 3,3 ′, 5,5′-tetramethylbenzidine or the like is used in the case of peroxidase, and paranitrophenyl phosphate in the case of alkaline phosphatase. Sodium or the like is used.
  • the detection and / or quantification of the product produced by the enzyme can be performed by measuring the absorbance of the product. For example, when 3,3 ′, 5,5′-tetramethylbenzidine is used as the enzyme substrate, the absorbance at 655 nm may be measured.
  • the detection means is a fluorescence immunoassay (FIA)
  • fluorescent dye examples include FITC (Fluorescein Isothiocyanate), PE (phycoerythrin), APC (Allophycocyanin), Cy-3, Cy-5, and the like.
  • the detection means is a chemiluminescence immunoassay (CLIA)
  • examples of chemiluminescence include acridinium esters.
  • an antibody that specifically recognizes moesin When an antibody that specifically recognizes moesin is detected in a biological sample, it can be determined that the subject from which the biological sample is derived has a high possibility of developing vasculitis. In this case, the higher the antibody titer that specifically recognizes moesin in the biological sample, the higher the possibility of developing / inducing vasculitis. Conversely, when an antibody that specifically recognizes moesin is not detected in the biological sample, it can be determined that the subject from which the biological sample is derived has a low possibility of developing vasculitis.
  • the judgment criteria are not limited to detection / non-detection of antibodies.
  • an average value of antibody amount 3 ⁇ SD that specifically recognizes moesin in a biological sample derived from a healthy subject is set as a cut-off value, and if the cut-off value is exceeded, the subject develops vasculitis.
  • the subject is less than or equal to the cut-off value, it may be determined that the subject is less likely to develop vasculitis.
  • the test method of the present invention may further include detecting an antibody that specifically recognizes myeloperoxidase (MPO) in a biological sample.
  • MPO myeloperoxidase
  • the above-mentioned antibody includes, for example, MPO-ANCA, and the detection method thereof can be employed in the same manner as described above for the detection of an antibody specifically recognizing moesin. Omitted.
  • vasculitis there is no particular limitation on the vasculitis to be classified, and the above-mentioned and other conventionally known vasculitis can be classified, but as an example, small vasculitis and middle vasculitis Those that merge.
  • Such vasculitis includes, for example, allergic granulomatous vasculitis (Charg Strauss syndrome; CSS), Wegener's granulomatosis (WG), microscopic polyangiitis (MPA), Kawasaki disease, rheumatoid arthritis, SLE , Due to Behcet's disease.
  • each of the two antibodies mentioned above can be achieved by microscopic polyangiitis, allergic granulomatous vasculitis (Charg Strauss syndrome (CSS)), or Wegener's granulomatosis (especially microscopic polyplasia). It is preferably used as a reactive vasculitis disease state marker for the purpose of subdividing the disease state of vasculitis). In particular, it can be effectively used as a disease state marker for determining remission, recurrence, and treatment resistance by treatment for these vasculitis.
  • Cardiovascular disease high blood pressure, cerebral infarction, myocardial infarction, stroke, aneurysm
  • multiple sclerosis Guillain-Barre syndrome
  • chronic inflammatory demyelinating polyneuritis lysosomal disease
  • idiopathic thrombosis thrombotic platelets Reduced purpura (TTP)
  • idiopathic thrombocytopenic purpura IgA nephropathy, rapidly progressive glomerulonephritis, refractory nephrotic syndrome, idiopathic interstitial pneumonia, sarcoidosis, diffuse panbronchiolitis, autoimmunity Hepatitis, Behcet's disease, systemic lupus erythemato
  • an examination reagent for vasculitis containing a substance that detects an antibody that specifically recognizes moesin in a biological sample.
  • the “substance” contained in the test reagent of the present embodiment is not particularly limited as long as it can achieve detection of an antibody that specifically recognizes moesin in the above-described method, but preferably moesin or a partial peptide thereof It is.
  • the anti-moesin antibody detected in the present invention is an antibody group that recognizes a plurality of antigenic determinants, the antibodies specifically recognizing each of the many antigenic determinants present in moesin are exhausted.
  • the substance is preferably moesin (full length of protein).
  • Moesin or a partial peptide thereof may be provided in the form of powder, solution, etc., and blood cells, gelatin particles, plates, latex particles, glass beads, glass slides, chips, microtiter plates, centrifuge tubes, microbeads, membranes, It may be provided in a form supported on an insoluble carrier such as a paper disk. In the carrier on the container, moesin or a partial peptide thereof is carried at the site where the solution held on the carrier comes into contact, for example, in the case of a microtiter plate. It should be noted that moesin or a partial peptide thereof can be supported on an insoluble carrier by a known method.
  • vasculitis can be easily tested by the method described above.
  • the test reagent of the present invention can also be a vasculitis test kit further including a reagent used in the detection method described above.
  • a reagent used in the detection method described above include a buffer for diluting the reagent and biological sample, a fluorescent dye, a reaction vessel, a positive control, a negative control, and an instruction document describing a test protocol. These elements can be mixed in advance if necessary.
  • the test for vasculitis of the present invention is simplified, and it is very useful for early treatment policy determination.
  • mGEC mouse glomerular endothelial cells isolated from C57BL / 6 was used. To maintain the cells, the culture supernatant of confluent cells was removed and washed with PBS, 1 ml of trypsin / PBS (Gibco) was added, warmed for about 5 minutes, and then gently tapped to peel off the cells. Next, the cells were collected, diluted with a culture solution, and cultured in a collagen-coated 10 cm ⁇ culture dish (Iwaki) at 37 ° C. in a 5% CO 2 incubator.
  • Iwaki collagen-coated 10 cm ⁇ culture dish
  • RPMI-1640 (Sigma) [10% inactivated FBS (Sigma), 5 ng / ml vascular endothelial growth factor (VEGF) (Peprotech), 10 ng / ml epidermal growth factor (EGF) (Sigma), 10 ng / ml fibroblast growth factor basic (bFGF) (Sigma), 20 U / ml heparin (Ajinomoto), 1 ⁇ g / ml hydrocortisone (Sigma), 50 U / ml penicillin, 50 ⁇ g / ml streptomycin (Gibco)].
  • VEGF vascular endothelial growth factor
  • EGF epidermal growth factor
  • bFGF fibroblast growth factor basic
  • mice myeloperoxidase antibody (rabbit anti-rmMPO antibody)
  • Escherichia coli is transformed with a plasmid containing the mouse (C57BL / 6) MPO cDNA, cultured according to a conventional method, and then expressed recombinant
  • the protein mouse MPO (rmMPO) was recovered.
  • This rmMPO is composed of the L chain and H chain of mouse MPO labeled with His tag.
  • rabbits were immunized with the purified rmMPO obtained, and the IgG fraction of the obtained polyclonal antibody was isolated from serum using protein A to obtain anti-rmMPO IgG.
  • the control rabbit IgG was obtained by the same method as described above without immunization with rmMPO.
  • the membrane was washed three times with 0.05% Tween 20 / TBS, and then reacted with an HRP-labeled secondary antibody (buffer: 5% BSA / 0.05% Tween 20 / TBS) at room temperature for 1.5 hours. Thereafter, the membrane was washed 3 times with 0.05% Tween 20 / TBS and reacted with ECL (GE healthcare) solution for 1 minute. Finally, the film was exposed to X-ray film (GE healthcare) in a dark room and developed with a developing machine (Fuji Film Co., Ltd.). The result is shown in FIG. As shown in FIG. 1, 68 kDa moesin was detected, and it was confirmed that moesin was expressed in mGEC cells.
  • Two-dimensional electrophoresis 4.1 Preparation of cell lysate
  • the mGEC cells cultured in the above were collected using a cell scraper in PBS and centrifuged to form a pellet.
  • the pelleted cells were washed with PBS, then lysed in RIPA buffer (150 mM NaCl, 10 mM Tris-HCl, 0.1% SDS, 1.0% Triton X-100, 1.0% Sodium deoxycholate, 5 mM EDTA), and the cells were sonicated. Was disrupted to obtain a cell lysate.
  • the membrane was washed three times with 0.05% Tween 20 / TBS, and then reacted with an HRP-labeled secondary antibody (buffer: 5% BSA / 0.05% Tween 20 / TBS) at room temperature for 1.5 hours. Thereafter, the membrane was washed 3 times with 0.05% Tween 20 / TBS and reacted with ECL (GE healthcare) solution for 1 minute. Finally, the film was exposed to X-ray film (GE healthcare) in a dark room and developed with a developing machine (Fuji Film Co., Ltd.). The result of development is shown in FIG. As shown in FIG. 3, a spot was confirmed at a position of molecular weight 67 kDa and pI6.2.
  • the mGEC cells cultured in the above were seeded at a concentration of 4 ⁇ 10 3 cells / well in a collagen-coated 96-well plate (Iwaki). After culturing for one day, the cells were washed with warmed RPMI-1640 (test medium) containing 1% FBS, and the test medium was newly added and cultured for 1 hour. Next, an antibody for stimulating cells and TNF- ⁇ were diluted with a test medium, added to the well, and cultured for 6 hours. The cells were then washed 3 times with PBS and fixed with 0.2% glutaraldehyde at 4 ° C. for 5 minutes.
  • Non-specific binding is caused by Dulbecco's phosphate buffered saline containing bovine serum albumin (BSA)-0.05% Tween 20 (Sigma, code: 30-5450-5) (PBST) (1% BSA / PBST) Blocking was overnight at 4 ° C., followed by addition of 0.5 ⁇ g / ml rat anti-mouse ICAM-1 monoclonal antibody (eBioscience) and reaction at room temperature for 1.5 hours. Subsequently, it was reacted with an HRP-labeled anti-rat IgG antibody (Sigma) for 1.5 hours at room temperature. For color development, 1-Step TM Turbo TMB-ELISA (Pierce) was used, and after the reaction was stopped with 0.5 M sulfuric acid (Wako Pure Chemical Industries), the absorbance was measured at 450 nm and quantified.
  • BSA bovine serum albumin
  • PBST 1% BSA / PBST
  • the following antibodies were used for cell stimulation.
  • Rat anti-mouse moesin monoclonal antibody (Sanko Junyaku) 10 ⁇ g / ml, anti-rmMPO antibody 100 ⁇ g / ml, control rabbit IgG 100 ⁇ g / ml, control rat IgG2a (R & D® systems) 10 ⁇ g / ml.
  • the membrane was washed 3 times with 0.05% Tween 20 / TBS, and then with an HRP-labeled secondary antibody (anti-human IgG antibody: buffer: 5% BSA / 0.05% Tween 20 / TBS) at room temperature for 1.5 hours. Reacted. Thereafter, the membrane was washed 3 times with 0.05% Tween 20 / TBS and reacted with ECL (GE healthcare) solution for 1 minute. Finally, the film was exposed to X-ray film (GE healthcare) in a dark room and developed with a developing machine (Fuji Film Co., Ltd.).
  • the anti-moesin antibody (MO-ANCA) contained in the patient's serum was confirmed to recognize the moesin protein by Western blotting using the anti-moesin antibody as a primary antibody (FIG. 5).
  • Pt A anti-M high / MPO-ANCA low
  • Pt B anti-M low / MPO high
  • the two bars at the right end shown in FIG. 6 correspond to the healthy person control.
  • MPO-ANCA anti-moesin antibody
  • Pt-B anti-moesin antibody
  • MPA anti-moesin antibody
  • a new standard for subclassifying vasculitis such as MPA can be provided by utilizing the knowledge of the present invention and combining it with a test result based on the existing MPO-ANCA.
  • the pathology of vasculitis and the effects of various treatments on this are further refined based on the presence and amount of MO-ANCA and MPO-ANCA in patient serum. Can be classified. Ultimately, it also contributes to better treatment planning and improved patient prognosis.
  • MPO-ANCA titer and anti-moesin antibody titer were determined by the same method (ELISA method) as in 9.1 above. Measured and made multiple comparisons. The results are shown in FIG.
  • the present invention provides a novel vasculitis examination means different from the conventionally used technique using MPO-ANCA, and can be said to be a technique with extremely high clinical advantage.
  • the anti-moesin antibody single positive group showed a significantly higher serum creatinine level than both the negative group and MPO-ANCA single high titer group.
  • neutrophils were isolated from plasma samples of healthy individuals and suspended in 10% FBS / RPMI at 2 ⁇ 10 6 cells / ml.
  • each of neutrophils was seeded in a 96-well plate.
  • 100 ⁇ L each of mouse monoclonal anti-moesin 2287 antibody (20 ⁇ g / ml) was added, and after culturing at 37 ° C. for 24 hours in a CO 2 incubator, the plate was centrifuged at 1000 ⁇ g for 10 minutes at 20 ° C. Qing was recovered.
  • MCP-1 and IL-8 showed high values in the culture supernatant 24 hours after stimulation of neutrophils with anti-moesin antibody. This suggested that the anti-moesin antibody and IL-8 interacted in vivo.
  • IL-8 is a cytokine with neutrophil chemotaxis. It is a cytokine that enhances inflammation through migration of neutrophils to the inflamed area and increased mobilization of neutrophils into the blood. is there. In other words, anti-moesin antibodies have been shown to activate neutrophils and induce the production of inflammatory cytokines.
  • PBMC peripheral blood mononuclear cells
  • mouse monoclonal anti-moesin 2287 antibody 10 ⁇ g / ml was added to each well containing the adherent monocytes obtained above, and cultured at 37 ° C. for 24 hours in a CO 2 incubator. The mixture was centrifuged at 20 ° C. for 10 minutes, and the supernatant was collected.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Rheumatology (AREA)
  • Rehabilitation Therapy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

【課題】MPO-ANCAに代わる血管炎の新たな病態マーカーを提供する。 【解決手段】本発明の一形態によれば、生体試料中の、モエシンを特異的に認識する抗体を検出することを含む、血管炎の検査方法が提供される。また、本発明の他の形態によれば、生体試料中の、モエシンを特異的に認識する抗体を検出する物質を含む、血管炎の検査用試薬が提供される。

Description

新規血管炎の検査方法および検査用試薬
 本発明は、新規な血管炎の検査方法および検査用試薬に関する。
 ミエロペルオキシダーゼ(myeloperoxidase:MPO)に対する好中球自己抗体(MPO-ANCA(Anti-Neutrophil Cytoplasmic Antibody))は、半月体形成腎炎や顕微鏡的多発血管炎(MPA)、アレルギー性血管炎(AGA、Churg-Straus症候群(CSS))などの難治性血管炎に関連している。そして、これらの患者の血清中のMPO-ANCAの力価は疾患の活動性と相関していることから、MPO-ANCAはこれらの疾患の特異的マーカーとして、診断や治療判定に用いられている(例えば、非特許文献1を参照)。
 しかしながら、MPO-ANCAをマーカーとして用いた場合であっても、血清中のMPO-ANCAの力価と病態とが必ずしも一致しない場合がある。このことから、MPO-ANCAのみが好中球に作用して血管炎を誘発したり血管炎の発症後に関与しているわけではなく、他の血管炎の誘発分子や機構が存在することが示唆されている。そして近年、好中球のMPO以外にも自己抗体の標的分子が存在する可能性について議論されている。その結果、Lamp2などのいくつかの標的分子の関与も報告されている(非特許文献2および3を参照)。また、血管炎の発症や病態の進展のメカニズムとして、MPO-ANCAをはじめとする自己抗体による血管内皮細胞の活性化機構の解明が試みられ、これまで、自己抗体陽性の血管炎患者の血清がヒト臍静脈内皮細胞(HUVEC)のICAM-1の発現を誘導すること(非特許文献4を参照)や、Wegener肉芽腫症患者の抗プロテイナーゼ-3自己抗体(PR3-ANCA)が、ICAM-1、VCAM-1それぞれの発現を誘導すること(非特許文献5および6を参照)が報告されている。しかしながら、血管内皮細胞に対するMPO-ANCAの直接的な効果については報告されていない。したがって、MPO-ANCAやLamp2抗体以外の分子が血管炎の病態に関与しているか否かは依然として不明である。また、MPO欠損マウスでも同様に抗マウスMPO抗体(rmMPO抗体)による反応が見られることから、血管内皮細胞においてMPO以外の分子が標的となっていることが示唆されている。さらに、血管炎患者の血清や自己抗体がHUVECを活性化することが報告されてきたが、その病因性や反応する分子は明らかとなっていない。
 また、本発明者らは、抗rmMPO抗体(MPO-ANCA)がマウス糸球体内皮細胞(mGEC)を活性化することを報告している。しかしながら、MPO-ANCAやLamp2抗体の他に血管炎の病態に対する因子については、依然として不明のままであった。
 このように、血管炎の診断等に臨床的に用いられているMPO-ANCA以外にも血管炎の病態に関与している因子の存在が示唆されつつも、その本態が明らかとはなっていないのが現状である。上述したようにMPO-ANCAによる診断や治療判定も必ずしも真の病態を完全に反映したものであるとは限らないことから、MPO-ANCA以外の因子を同定することは、MPO-ANCAによる診断等を補完する、またはこれに代わる新たな臨床マーカーを提供できる可能性を秘めており、その臨床上の意義はきわめて重大である。なお、発明者らはMPO-ANCA以外の因子として、ProteinMを見出した。
Goeken JA. Antineutrophil cytoplasmic antibody-A useful serological marker for vasculitis. J Clin Immunol 1991; 11: 61-74 Kallenberg CG, Stegeman CA, Heeringa P. Autoantibodies vex the vasculature. Nat. Med. 2008 Oct;14(10):1018-9. Kain R, Exner M, Brandes R, Ziebermayr R, Cunningham D, Alderson CA, Davidovits A, Raab I, Jahn R, Ashour O, Spitzauer S, Sunder-Plassmann G, Fukuda M, Klemm P, Rees AJ, Kerjaschki D. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat. Med. 2008 Oct;14(10):1088-96. Epub 2008 Oct 5. Johnson PA, Alexander HD, McMillan SA, Maxwell AP. Up-regulation of the endothelial cell adhesion molecule intercellular adhesion molecule-1 (ICAM-1) by autoantibodies in autoimmune vasculitis. Clin Exp Immunol, 1997; 108: 234-242 Mayet WJ, Schwarting A, Orth T, Duchmann R, Meyer zum Buschenfelde KH. Antibodies to proteinase 3 mediate expression of vascular cell adhesion molecule-1 (VCAM-1). Clin Exp Immunol 1996; 103: 259-267 De Bandt M, Meyer O, Hakim J, Pasquier C. Antibodies to proteinase-3 mediate expression of intercellular adhesion molecule-1 (ICAM-1, CD 54). Br J Rheumatol 1997; 36: 839-846
 上述したような従来技術に鑑み、本発明は、MPO-ANCAに代わる血管炎の新たな病態マーカーを提供することを目的とする。
 本発明者らは、上述した課題を解決することを目指して、鋭意研究を行なった。その結果、驚くべきことに、モエシンに対する自己抗体(以下、「MO-ANCA」とも称する)が糸球体内皮細胞のモエシンに作用して当該細胞を活性化することにより、炎症を誘導することを見出した。そして、この知見に基づいて、血管炎患者の血清中に存在するMO-ANCAの反応性を解析したところ、その反応性はMPO-ANCAの反応性と完全に相関せず、むしろ、するものではなかったことから、血清中のMO-ANCAの反応性に基づき血管炎を細分類することが可能となることを見出し、本発明を完成させるに至った。
 このようにして、本発明者らの研究によれば、先に述べたProteinMはモエシンであることが同定されたのである。このモエシン(moesin;membrane-organizing extension spike protein)は、ウシの子宮より分離されたタンパク質であり、ヘパラン硫酸の受容体タンパク質としての可能性が示唆されている(Lankes, W. T. et al., The Biochemical Journal 1988; 251: 831-842)。また、cDNAクローニングにより、ヒトモエシンは通常、577アミノ酸からなることが示されている(Lankes, W. T. et al., Proc. Natl. Acad. Sci. U. S. A., 1991; 88: 8297-8301)。ただし、このモエシンを特異的に認識する抗体が血管炎の患者の血清中に見られることは全く知られていない。
 すなわち、本発明の第1の形態によれば、生体試料中の、モエシンを特異的に認識する抗体を検出することを含む、血管炎の検査方法が提供される。当該検査方法において、生体試料が血清試料であり、抗体がモエシンに対する自己抗体であることが好ましい。
 また、上記検査方法は、上記生体試料中の、ミエロペルオキシダーゼを特異的に認識する抗体(例えば、MPO-ANCA)を検出することをさらに含んでもよい。
 さらに、上記検査方法が検査の対象とする血管炎は、顕微鏡的多発血管炎(MPA)、アレルギー性肉芽腫性血管炎(チャーグ・ストラウス症候群(CSS))、ウェゲナー肉芽腫症、ギラン・バレー症候群、血栓性血小板減少性紫斑病(TTP)、特発性血小板減少性紫斑病、IgA腎症、急速進行性糸球体腎炎、特発性間質性肺炎、サルコイドーシス、びまん性汎細気管支炎、ベーチェット病、全身性エリテマトーデス(SLE)、シェーグレン症候群、高安病(大動脈炎症候群)、バージャー病、結節性多発動脈炎、悪性関節リウマチ、側頭動脈炎、抗リン脂質抗体症候群、強皮症、好酸球性筋膜炎、または天疱瘡であることが好ましく、顕微鏡的多発血管炎(MPA)、アレルギー性肉芽腫性血管炎(チャーグ・ストラウス症候群(CSS))、またはウェゲナー肉芽腫症であることがより好ましく、最も好ましくはMPAである。
 また、本発明の第2の形態によれば、生体試料中の、モエシンを特異的に認識する抗体を検出する物質を含む、血管炎の検査用試薬が提供される。当該検査用試薬において、当該物質は、モエシンおよび/またはその部分ペプチドであることが好ましい。また、当該検査用試薬は、上記抗体を認識する標識化二次抗体をさらに含むことが好ましい。
 本発明によれば、MPO-ANCAに代わる血管炎の新たな病態マーカーが提供されうる。さらに例えば、本発明により提供される新たな血管炎マーカー(例えば、抗モエシン抗体)を従来公知の血管炎マーカーであるMPO-ANCAと組み合わせて用いれば、血管炎の病態との相関の有無やマーカーの定量値などの情報に基づいて、血管炎の病態を細分類したり、その治療効果を判定したりすることが可能となる。
実施例において、mGECにおけるモエシンの発現を確認することを目的としてウェスタンブロッティングを行なった結果を示す図である。 実施例において、二次元電気泳動を行なった後にゲルをCBB染色した結果を示す図である。 実施例において、二次元電気泳動を行なった後にウェスタンブロッティングを行なった結果を示す図である。 実施例において、図2に示すCBB染色後に切り出したスポット(ゲル)についてTOF-MS解析を行なった結果を示す図である。 実施例において、MPO-ANCA陽性を呈するANCA関連血管炎の患者の血清中に含まれる抗モエシン抗体(MO-ANCA)がモエシンタンパク質を認識することを、当該抗モエシン抗体を一次抗体として用いたウェスタンブロッティング法により確認した結果を示す図である。 実施例において、MPO-ANCA陽性を呈するANCA関連血管炎の患者から採取した血清試料中の抗モエシン抗体(MO-ANCA)およびMPO-ANCAを定量した結果を示すグラフである。 実施例において、患者の血清試料における、抗モエシン抗体(MO-ANCA)の定量結果とMPO-ANCAの定量結果との関連について解析を行なった結果を示すグラフである。 実施例において、患者の血清試料における、抗モエシン抗体(MO-ANCA)の定量結果とMPO-ANCAの定量結果との関連について解析を行なった結果を示すグラフである。 実施例において、ELISA法により、血管炎患者の血漿中のMPO-ANCA力価および抗モエシン抗体価を測定し、それらの多重比較を行なった結果を示すグラフである。 実施例において、MPO-ANCA力価および抗モエシン抗体価と各種臨床検査値との関係を調べる中で、MPO-ANCA力価および抗モエシン抗体価を測定した血管炎患者について、血清中のクレアチニン値を測定し、図9に示す4つの領域ごとに血清クレアチニン値を比較した結果を示すグラフである。 実施例において、抗モエシン抗体刺激による健常者好中球からのサイトカイン・ケモカイン産生プロファイルを測定した結果を示すグラフである。 実施例において、抗モエシン抗体刺激による健常者単球からのサイトカイン・ケモカイン産生プロファイルを測定した結果を示すグラフである。
 本発明の第1の形態は、生体試料中の、モエシンを特異的に認識する抗体を検出することを含む、血管炎の検査方法である。
 本発明の検査方法を適用することができる対象としては、動物であれば特に限定されないが、例えば、哺乳動物等が挙げられる。哺乳動物としては、例えば、霊長類、実験用動物、家畜、ペット等が挙げられ特に限定されるものではないが、具体的には、例えば、ヒト、サル、ラット、マウス、ウサギ、ウマ、ウシ、ヤギ、ヒツジ、イヌ、ネコなどが挙げられる。好ましくは、対象動物はヒトである。
 本発明の方法に用いられうる生体試料としては、特に限定されないが、例えば、検査対象である動物由来の組織、細胞、細胞抽出成分、体液等が挙げられる。組織としては、脾臓、リンパ節、腎臓、肺、心臓、肝臓等が、細胞としては、脾細胞、リンパ細胞、好中球、単球、マクロファージ、樹状細胞、抗体産生細胞等が、体液としては、血液、血清、血漿、尿、汗、脊髄液等が挙げられる。検出の容易性などを考慮すると、生体試料としては体液、特に血清・血漿、尿が好ましい。
 本発明の検査方法において検査される「血管炎」の具体的な形態について特に制限はなく、本技術分野において「血管炎」として認識されうるすべての疾患、症状、障害などがいずれも包含されうる。血管炎の一例としては、例えば、顕微鏡的多発血管炎(MPA)、Wegener肉芽腫症、アレルギー性肉芽腫性血管炎(AGA)、CSSなどが挙げられるが、これらには限定されない。ただし、本発明の検査方法は、顕微鏡的多発血管炎(MPA)およびCSSを主とした検査方法であり、さらに好ましくはMPAである。
 本発明の検査方法において検出される抗体(以下、「抗モエシン抗体」という場合もある)により認識されるモエシンとは、一般に細胞骨格に結合したタンパク質ファミリー(Ezrin Radixin Moesin:ERMファミリー)に属するタンパク質であり、ヒトでは通常577アミノ酸からなる。モエシンとしては、上述の哺乳動物由来のものであれば特に限定されないが、好ましくはヒト由来のモエシンである。ヒトモエシンとしては、例えば、GenBank登録番号NM002444のアミノ酸配列からなるタンパク質、またはその天然のアレル変異体等が挙げられる。
 抗体としては、特にそのクラスは限定されず、IgG、IgD、IgE、IgA、sIgA、IgM等のいずれのものであってもよい。また、抗体の結合性断片(Fab、Fab’、F(ab’)等)等も、モエシンに対して特異的に結合する限り、「抗体」に含まれる。
 本発明で検出される抗体は、自己のモエシンを特異的に認識する自己抗体であることが好ましい。例えば、生体試料がヒト由来である場合には、好ましくは、ヒトのモエシンを特異的に認識するヒト抗体が検出される。この際、生体試料は血清試料であることが特に好ましい。場合によっては、モエシンがMPOと交差反応する配列部分もあるため、MPO-ANCAの一部であることもある。
 生体試料中のモエシンを特異的に認識する抗体を検出する方法としては、自体公知の方法を用いることができ、特に限定されないが、液相または固相で起こる反応(例えば抗原抗体反応)を直接測定する方法や、阻害物質を加えることにより免疫反応の阻害を測定する方法などを利用することができる。
 上記方法としては、例えば、モエシンまたはその部分ペプチドを生体試料と接触させ、生体試料中の抗体のモエシンまたはその部分ペプチドに対する特異的結合を、直接的または間接的に検出する方法が挙げられる。
 上記方法に用いられるモエシンは、上述のモエシンタンパク質のうち、検査対象動物の自己抗体である抗モエシン抗体により特異的に認識されうるものであれば特に限定されないが、好ましくは検査対象動物由来のモエシンである。例えば、検査対象がヒトであれば、ヒトモエシン(例えば、GenBank登録番号NM002444のアミノ酸配列からなるタンパク質、またはその天然のアレル変異体等)を用いることが好ましい。
 また、本発明においてモエシンの部分ペプチドとしては、本発明で検出される抗モエシン抗体が認識する抗原決定基を含む部分ペプチドであれば特にその長さは限定されない。一般的にタンパク質抗原の抗原決定基は、少なくとも5~6個のアミノ酸残基により構成されるため、少なくとも5個以上、好ましくは8個以上、より好ましくは10個以上のアミノ酸残基を含むモエシンの部分ペプチドを、本発明では用いることができる。
 モエシンまたはその部分ペプチドは修飾されていてもよい。このような修飾としては、例えば、リン酸、糖または糖鎖、リン脂質、脂質、ヌクレオチド等による修飾などが挙げられる。
 本発明で用いられるモエシンまたはその部分ペプチドは、上述したヒトやその他の動物から公知の方法によって得ることができる。例えば、脾臓、子宮、腎臓等のようなモエシン発現組織またはその培養細胞、またはUT-7等のモエシン発現細胞株などを用いて、モエシンを精製することができる。具体的には、当該動物の組織または細胞をホモジナイズした後、酸等で抽出を行い、当該抽出液を逆相クロマトグラフィー、イオン交換クロマトグラフィー等のクロマトグラフィーを組み合わせることにより精製単離することができる。
 本発明のモエシンまたはその部分ペプチドは、モエシンまたはその部分ペプチドをコードする核酸を含有する発現ベクターを導入した形質転換体を培養してモエシンまたはその部分ペプチドを生成し、得られる培養物からモエシンまたはその部分ペプチドを分離・精製することによっても製造できる。
 本発明で用いられるモエシンまたはその部分ペプチドは、公知のペプチド合成法により製造することもできる。このようなペプチド合成法としては、例えば、固相合成法、液相合成法のいずれであってもよい。モエシンを構成しうる部分ペプチドまたはアミノ酸と残余部分とを縮合し、生成物が保護基を有する場合は保護基を脱離することにより、モエシンまたはその部分ペプチドを製造することができる。
 本発明で用いられるモエシンの部分ペプチドは、上述または後述のいずれかの方法により得られるモエシンを、適当なペプチダーゼで切断することによっても製造することができる。
 モエシンまたはその部分ペプチドは、精製作業等を容易にすることを目的に、適当なタグが連結されたものであってもよい。このようなタグとしては、イムノグロブリンFc領域、マルトース結合タンパク質(MBP)、グルタチオン-S-トランスフェラーゼ(GST)、c-Mycタグ、FLAGタグ、HAタグ、Hisタグ等が挙げられる。
 抗体を検出するための検出方法としては、特に限定されないが、より具体的には以下の方法が挙げられる。
(1)血球やゼラチン粒子の表面に、モエシンまたはその部分ペプチド(抗原)を被覆し、生体試料を加えることにより抗原抗体反応を起こさせ、凝集塊を作らせる凝集反応;
(2)モエシンまたはその部分ペプチドを含む抽出液と生体試料とを寒天ゲル内で拡散させて沈降反応を起こさせる二重免疫拡散法(DID:double immune diffusion:オクタロニー法);
(3)精製したモエシンまたはその部分ペプチドをプレートに固相化し、生体試料を加えて反応させた後、
i)酵素と結合した二次抗体をさらに反応させて、基質の発色を分光光度計で検出するELISA法;
ii)蛍光色素と結合した二次抗体をさらに反応させて、蛍光発色を測定する蛍光免疫測定法(FIA);または、
iii)化学発光物質と結合した二次抗体をさらに反応させて、化学蛍光(ケミルミネッセンス)を測定する化学発光免疫測定法(CLIA);
(4)ラテックス粒子やガラスビーズなどの表面をモエシンまたはその部分ペプチドで被覆し、当該粒子が抗体と遭遇したときに起こる凝集反応液に光をあて、その透過光を測定する免疫比濁法またはその散乱光を測定する免疫比朧法(ネフロメトリー法);
(5)モエシンまたはその部分ペプチドを放射性同位元素で標識し、生体試料と反応させ抗原抗体反応を検出するラジオイムノアッセイ;
(6)モエシンまたはその部分ペプチドを含む組織の凍結薄切片または細胞をスライドガラス上に貼り付け、生体試料を切片上に滴下することにより反応させ、蛍光色素と結合した二次抗体とさらに反応させて、蛍光を顕微鏡下で検出する蛍光抗体法;
(7)モエシンまたはその部分ペプチドをチップ上に固定して生体試料を流すことにより親和性をみる表面プラズモン共鳴解析法;
(8)電気泳動により分離展開したゲル内のモエシンまたはその部分ペプチドを、ニトロセルロース膜等に転写し、生体試料と反応させ抗原抗体反応を検出するウェスタンブロッティング法。
 例えば検出手段がELISA法の場合、具体的には、下記のように検出および/または定量を行なうことができる。すなわち、慣用のELISAの手法に従い、例えば、モエシンまたはその部分ペプチドで被覆したマルチウェルプレートの各ウェルに生体試料を供し、各ウェルに酵素標識した二次抗体を添加して反応させ、酵素基質を添加した後、当該酵素により生じた産物を検出および/または定量することにより、抗原抗体反応の検出および/または定量を行なうことができる。
 上述したELISA法の場合、標識に用いられる酵素としては、通常ELISA法に用いられる慣用の酵素であればよく、例えば、ペルオキシダーゼ、アルカリホスファターゼ、β-D-ガラクトシダーゼ、グルコースオキシダーゼ、ルシフェラーゼ、エステラーゼ、β-D-グルクロニダーゼなどが挙げられる。より高感度で安定な検出を達成することが可能であるという観点からは、ペルオキシダーゼまたはアルカリホスファターゼが公的に用いられうる。また、酵素基質は、用いる酵素により適宜選択することができ、例えば、ペルオキシダーゼの場合、3,3’,5,5’-テトラメチルベンジジンなどが用いられ、アルカリホスファターゼの場合、パラニトロフェニルリン酸ナトリウムなどが用いられる。
 酵素により生じた産物の検出および/または定量は、当該産物の吸光度を測定することにより行なうことができる。例えば、酵素基質として、3,3’,5,5’-テトラメチルベンジジンを用いた場合には、655nmにおける吸光度を測定すればよい。
 例えば、検出手段が蛍光免疫測定法(FIA)の場合、蛍光色素としては、FITC(Fluorescein Isothiocyanate)、PE(phycoerythrin)、APC(Allophycocyanin)、Cy-3、Cy-5等が挙げられる。
 また、例えば、検出手段が化学発光免疫測定法(CLIA)の場合、化学蛍光(ケミルミネッセンス)としては、アクリジニウムエステル等が挙げられる。
 生体試料中にモエシンを特異的に認識する抗体が検出された場合、当該生体試料の由来する対象は、血管炎を発症する/している可能性が高いと判断することができる。この場合、生体試料中のモエシンを特異的に認識する抗体価が高いほど血管炎を発症する/している可能性が高いとすることもできる。逆に、生体試料中にモエシンを特異的に認識する抗体が検出されない場合、当該生体試料の由来する対象は、血管炎を発症する/している可能性が低いと判断することができる。
 上述した発症可能性を判断する場合、その判断基準は抗体の検出・未検出のみに限定されるわけでない。例えば、健常対象由来の生体試料中のモエシンを特異的に認識する抗体量の平均値±3SD等をカットオフ値と設定し、カットオフ値以上であれば対象は血管炎を発症する/している可能性が高いと判断し、逆にカットオフ値以下であれば対象は血管炎を発症する/している可能性が低いと判断してもよい。
 また、血液中のMPO-ANCAの存在の有無やその存在量その他の指標によって血管炎を発症していることが判明している患者において、本発明の検査方法により、モエシンを特異的に認識する抗体が検出された場合、当該患者は血管炎を発症、再発、治療効果の弱さを示している可能性が高いと判定することができる。言い換えると、本発明の第1の形態の検査方法は、生体試料中の、ミエロペルオキシダーゼ(MPO)を特異的に認識する抗体を検出することをさらに含んでもよいということもできる。なお、上記抗体としては、例えば、MPO-ANCAが挙げられ、その検出方法については、モエシンを特異的に認識する抗体の検出について上述した形態が同様に採用されうるため、ここでは詳細な説明を省略する。
 上述したようにモエシンを特異的に認識する抗体(モエシンに対する自己抗体)とミエロペルオキシダーゼ(MPO)を特異的に認識する抗体(MPOに対する自己抗体(MPO-ANCA))とをそれぞれ検出することで、血管炎の病態を細分類することが可能である。すなわち、本発明によれば、「血管炎の細分類のために、モエシンに対する自己抗体とミエロペルオキシダーゼを特異的に認識する抗体を、それぞれ検出することを特徴とする、モエシンに対する自己抗体の反応性の血管炎病態マーカーとしての使用」もまた、提供されうる。ここで、細分類の対象とされる血管炎について特に制限はなく、上述したものやその他従来公知の血管炎が細分類の対象とされうるが、一例として、小血管炎と中血管炎とを合併するものが挙げられる。かような血管炎としては、例えば、アレルギー性肉芽腫性血管炎(チャーグ・ストラウス症候群;CSS)、ウェゲナー肉芽腫症(WG)、顕微鏡的多発血管炎(MPA)、川崎病、関節リウマチ、SLE、ベーチェット病によるものが挙げられる。なかでも、上述した2つのそれぞれの抗体を検出することは、顕微鏡的多発血管炎、アレルギー性肉芽腫性血管炎(チャーグ・ストラウス症候群(CSS))、またはウェゲナー肉芽腫症(特に、顕微鏡的多発血管炎)の病態を細分類する目的で、反応性の血管炎病態マーカーとして用いられることが好ましい。とりわけ、これらの血管炎への治療による寛解、再発、治療抵抗性を判定するための病態マーカーとしても有効に用いられうる。
 さらに、モエシンを特異的に認識する抗体が検出された場合には、以下のような血管炎由来の症状、疾患が疑われ、より詳細な因果関係等が解明されれば、該症状や疾患の治療による寛解、再発、治療抵抗性を判定するための病態マーカーとして非常に有用である:
循環器病疾患(高血圧、脳梗塞、心筋梗塞、脳卒中、動脈瘤)、多発性硬化症、ギラン・バレー症候群、慢性炎症性脱髄性多発神経炎、ライソゾーム病、特発性血栓症、血栓性血小板減少性紫斑病(TTP)、特発性血小板減少性紫斑病、IgA腎症、急速進行性糸球体腎炎、難治性ネフローゼ症候群、特発性間質性肺炎、サルコイドーシス、びまん性汎細気管支炎、自己免疫性肝炎、ベーチェット病、全身性エリテマトーデス(SLE)、シェーグレン症候群、高安病(大動脈炎症候群)、バージャー病、結節性多発動脈炎、悪性関節リウマチ、側頭動脈炎、抗リン脂質抗体症候群、強皮症、好酸球性筋膜炎、天疱瘡。
 また、本発明の第2の形態によれば、生体試料中のモエシンを特異的に認識する抗体を検出する物質を含む、血管炎の検査用試薬が提供される。
 本形態の検査用試薬に含まれる上記「物質」としては、上述の方法においてモエシンを特異的に認識する抗体の検出を達成しうるものであれば特に限定されないが、好ましくはモエシンまたはその部分ペプチドである。また、本発明で検出される抗モエシン抗体が、複数の抗原決定基を認識する抗体群である場合、モエシン中に存在する多くの抗原決定基に、それぞれ特異的に認識する抗体を網羅的に検出させることにより、検出感度を向上させるという観点から、当該物質はモエシン(タンパク質の全長)であることが好ましい。
 モエシンまたはその部分ペプチドは、粉末、溶液等の形態で提供されてもよく、血球、ゼラチン粒子、プレート、ラテックス粒子、ガラスビーズ、スライドガラス、チップ、マイクロタイタープレート、遠心管、マイクロビーズ、メンブレン、ペーパーディスク等の不溶性担体に担持された形で提供されてもよい。なお、容器上の担体においては、当該担体に保持される溶液が接触する部位、例えばマイクロタイタープレートの場合には、ウェルの部位にモエシンまたはその部分ペプチドが担持される。なお、モエシンまたはその部分ペプチドの不溶性担体への担持は、公知の方法により行なうことができる。
 本発明の検査用試薬を用いれば、上述の方法により、容易に血管炎を検査することができる。
 本発明の検査用試薬はまた、上述の検出方法で使用される試薬等をさらに含む、血管炎検査用キットとすることもできる。上記試薬等として具体的には、試薬や生体試料を希釈するための緩衝液、蛍光色素、反応容器、陽性対照、陰性対照、検査プロトコールを記載した指示書等が挙げられる。これらの要素は、必要に応じて予め混合しておくこともできる。このキットを使用することにより、本発明の血管炎の検査が簡便となり、早期の治療方針決定に非常に有用である。
 以下、実施例を用いて本発明を詳述するが、本発明は以下の実施例に限定されるものではない。
 1.マウス糸球体内皮細胞(mouse glomerular endothelial cell:mGEC)の培養
 C57BL/6から単離したmGECを用いた。細胞の維持のため、コンフルエントの状態の細胞の培養上清を取り除いてPBSで洗浄した後、トリプシン/PBS(Gibco)を1ml加えて、約5分間温めたのち、軽く叩いて細胞を剥がした。次に細胞を回収し、培養液で希釈してコラーゲンコート10cmφ培養皿(Iwaki)で、37℃、5%COインキュベーターにて培養した。なお、培養液には、RPMI-1640(Sigma)[10%非働化FBS(Sigma)、5ng/ml vascular endothelial growth factor(VEGF)(Peprotech)、10ng/ml epidermal growth factor(EGF)(Sigma)、10ng/ml fibroblast growth factor basic(bFGF)(Sigma)、20U/ml ヘパリン(味の素)、1μg/ml ハイドロコルチゾン(Sigma)、50U/ml ペニシリン、50μg/ml ストレプトマイシン(Gibco)を含む]を用いた。
 2.ウサギ抗組換えマウスミエロペルオキシダーゼ抗体(ウサギ抗rmMPO抗体)の調製
 マウス(C57BL/6)のMPO cDNAを含むプラスミドを用いて大腸菌(Escherichia coli)を形質転換させ、常法に従って培養後、発現組換えタンパク質であるマウスMPO(rmMPO)を回収した。このrmMPOは、Hisタグ標識したマウスMPOのL鎖-H鎖からなる。次いで、得られたrmMPOを精製したものを用いてウサギを免疫し、得られたポリクローナル抗体のIgGフラクションをプロテインAを用いて血清から単離することにより、抗rmMPO IgGを得た。なお、コントロール用のウサギIgGは、rmMPOで免疫せずに上記と同様の手法により得た。
 3.抗rmMPO抗体と反応するmGECの細胞分子のバンドの検出
 3.1 細胞溶解液の調製
 上記1.で培養したmGEC細胞を、PBS中でセルスクレイパーを用いて回収し、遠心してペレット状にした。このペレット状の細胞をPBSで洗浄した後、RIPA buffer(150mM NaCl、10mM Tris-HCl、0.1% SDS、1.0% Triton X-100、1.0% Sodium deoxycholate、 5mM EDTA)に溶解し、超音波によって細胞を破砕して細胞溶解液を得た。
 3.2.ブロッティング
 上記3.1で得られたニトロセルロースメンブレンを0.05% Tween 20/TBS[50mM Tris-HCl/150mM NaCl(pH7.6)]で軽く洗浄した後、5%BSA/0.05% Tween 20/TBSを用いて4℃にて一晩ブロッキングを行なった。次に、メンブレンを、室温にて1.5時間、一次抗体(バッファー:5%BSA/0.05% Tween 20/TBS)と反応させた。その後、メンブレンを0.05% Tween 20/TBSで3回洗浄し、次いで室温にて1.5時間、HRP標識二次抗体(バッファー:5% BSA/0.05% Tween 20/TBS)と反応させた。その後、メンブレンを0.05% Tween 20/TBSで3回洗浄し、ECL(GE healthcare)液に1分間反応させた。最後に、暗室においてX線フィルム(GE healthcare)に感光させ、現像機(富士フィルム株式会社)により現像を行なった。その結果を図1に示す。図1に示すように、68kDaのモエシンが検出され、mGEC細胞でモエシンが発現していることが確認された。
 4.二次元電気泳動
 4.1 細胞溶解液の調製
 上記1.で培養したmGEC細胞を、PBS中でセルスクレイパーを用いて回収し、遠心してペレット状にした。このペレット状の細胞をPBSで洗浄した後、RIPA buffer(150mM NaCl、10mM Tris-HCl、0.1% SDS、1.0% Triton X-100、1.0% Sodium deoxycholate、 5mM EDTA)に溶解し、超音波によって細胞を破砕して細胞溶解液を得た。
 4.2 一次元目等電点電気泳動
 上記3.1で得た細胞溶解液に、終濃度50%となるようにサンプルバッファー(Invitrogen)を加えた。ゲルとしては、IEFゲルpH3-10(Invitrogen)を用いた。このゲルを泳動槽(Invitrogen)に装填した後、下層に陽極バッファー(Invitrogen)、上層に陰極バッファー(Invitrogen)を注ぎ、サンプルを15μlアプライした。等電点電気泳動は、100Vで1時間、200Vで1時間、500Vで30分間行なった。なお、マーカーとしては、IEFマーカー(SERVA)を用いた。
 4.3 二次元目SDS-PAGE
 上記3.2で得られた等電点電気泳動のゲルを12% TCAで30分間固定した。次に、ゲルをDDWで2回洗浄した後、SimplyBlueTM SafeStain(Invitrogen)の手順に従い、Coomassie Brilliant Blue(CBB)染色を行なった。染色したゲルをDDWで洗浄した後、2回、20%エタノールでそれぞれ10分間振盪した。次に、ゲルのサンプルを流したレーンを切り取り、20%エタノール/2×サンプルバッファーで5分間振盪した。次に、ゲルをrunning buffer(Invitrogen)で軽く洗浄し、SDS-PAGEのゲルのウェルに装填し、SDS-PAGEを200Vで約1時間15分行なった。なお、マーカーとしては、Novex(登録商標) Sharp Protein Standard(Invitrogen)を用いた。CBB染色の結果を図2に示す。図2に丸印で囲んで示すスポットを、後述するウェスタンブロッティングの現像後にメスを用いて切り出し、後述するPMF解析に用いた。
 5.ウェスタンブロッティング
 5.1 SDS-PAGEからニトロセルロースメンブレンへのトランスファー
 上記3.2で得られたSDS-PAGE後のゲルを、ニトロセルロースメンブレン(GE healthcare)とともにトランスファー装置(Invitrogen)に装填し、30Vにて1時間、トランスファーを行なった
 5.2.1 ブロッティング
 上記5.1で得られたニトロセルロースメンブレンを0.05% Tween 20/TBS[50mM Tris-HCl/150mM NaCl(pH7.6)]で軽く洗浄した後、5%BSA/0.05% Tween 20/TBSを用いて4℃にて一晩ブロッキングを行なった。次に、メンブレンを、室温にて1.5時間、一次抗体(バッファー:5%BSA/0.05% Tween 20/TBS)と反応させた。その後、メンブレンを0.05% Tween 20/TBSで3回洗浄し、次いで室温にて1.5時間、HRP標識二次抗体(バッファー:5% BSA/0.05% Tween 20/TBS)と反応させた。その後、メンブレンを0.05% Tween 20/TBSで3回洗浄し、ECL(GE healthcare)液に1分間反応させた。最後に、暗室においてX線フィルム(GE healthcare)に感光させ、現像機(富士フィルム株式会社)により現像を行なった。現像の結果を図3に示す。図3に示すように、分子量67kDa、pI6.2の位置にスポットが確認された。
 なお、本実施例を通して、各種抗体としては、以下のものを使用した。
 一次抗体:抗rmMPO抗体 5μg/ml、コントロールウサギIgG 5μg/ml、ウサギ抗ヒトモエシンモノクローナル抗体(Abcam) 1μg/ml、ウサギ抗ヒトモエシンポリクローナル抗体(Upstate) 1μg/ml
 二次抗体:HRP標識抗ウサギIgG抗体(Sigma) 1/20000希釈。
 6.PMF(Peptide Mass Fingerprint)解析およびアミノ酸配列のホモロジー解析
 6.1 抗rmMPO抗体と反応したmGECの細胞分子の同定
 4.3の二次元電気泳動でのゲルをCBB染色後に切り出したスポット(ゲル)を、TOF-MS解析した。その結果を図4に示す。図4に示す結果から、得られたスポットに含まれるタンパク質は、モエシンであると同定された。
 6.2 抗rmMPO抗体とモエシンとの分子結合を推定
 次いで、抗rmMPO抗体とモエシンとの分子結合を推定するために、モエシンおよびMPOのアミノ酸配列について、Protein BLASTによってホモロジー検索を行なった。検索の結果、5つの類似配列が見られた。また、最も類似性の高い配列では、同じ6つのアミノ酸を有する配列であった。
 7.抗モエシン抗体による血管内皮細胞のシグナル伝達に対する影響(Cell ELISA)
 続いて、以下の手法(Cell ELISA法)により、抗モエシン抗体が抗rmMPO抗体(MPO-ANCA)と同様に血管内皮細胞のICAM-1発現を促進する効果を有するのではないかとの仮説を検証した。
 すなわち、上記1.で培養したmGEC細胞を、コラーゲンコート96穴プレート(Iwaki)に4×103cells/ウェルの濃度で播種した。一日培養した後、温めた1%FBSを含むRPMI-1640(試験培地)で細胞を洗浄した後、新たに試験培地を加えて1時間培養した。次に、細胞を刺激するための抗体とTNF-αとを試験培地で希釈し、ウェルに加えて6時間培養した。その後、細胞をPBSで3回洗浄し、0.2%グルタルアルデヒドにより、4℃にて5分間固定した。非特異的結合は、ウシ血清アルブミン(BSA)を含むダルベッコリン酸緩衝生理食塩水-0.05% Tween 20(シグマ社製、code:30-5450-5)(PBST)(1%BSA/PBST)により、4℃にて一晩ブロッキングし、続いて0.5μg/mlのラット抗マウスICAM-1モノクローナル抗体(eBioscience)を加えて1.5時間、室温で反応させた。次いで、HRP標識抗ラットIgG抗体(Sigma)と1.5時間室温で反応させた。発色には、1-StepTM Turbo TMB-ELISA(Pierce)を用い、0.5M硫酸(和光純薬)にて反応停止後に450nmで吸光度を測定し、定量した。
 なお、細胞の刺激には以下の抗体を用いた。
 ラット抗マウスモエシンモノクローナル抗体(三光純薬)10μg/ml、抗rmMPO抗体 100μg/ml、コントロールウサギIgG 100μg/ml、コントロールラットIgG2a(R&D systems) 10μg/ml。
 上記試験の結果、抗モエシン抗体によるICAM-1発現の促進が確認され、上記仮説は実証された。
 8.血管炎患者血清中に抗モエシン抗体が存在することの確認
 ヒト肺上皮細胞A549細胞溶解液中のモエシンと反応する抗体が抗モエシン抗体であることを、以下の手法(ウェスタンブロッティング法)により確認した。
 8.1 ウェスタンブロッティング
 ヒト肺上皮細胞A549細胞溶解液を用い、上記3.1と同様にで得られたニトロセルロースメンブレンを0.05% Tween 20/TBS[50mM Tris-HCl/150mM NaCl(pH7.6)]で軽く洗浄した後、5%BSA/0.05% Tween 20/TBSを用いて4℃にて一晩ブロッキングを行なった。次に、メンブレンを、室温にて1.5時間、バッファー:5%BSA/0.05% Tween 20/TBS で50倍希釈した患者血漿と反応させた。その後、メンブレンを0.05% Tween 20/TBSで3回洗浄し、次いで室温にて1.5時間、HRP標識二次抗体(抗ヒトIgG抗体:バッファー:5% BSA/0.05% Tween 20/TBS)と反応させた。その後、メンブレンを0.05% Tween 20/TBSで3回洗浄し、ECL(GE healthcare)液に1分間反応させた。最後に、暗室においてX線フィルム(GE healthcare)に感光させ、現像機(富士フィルム株式会社)により現像を行なった。その結果、ヒトモエシンタンパク質に相当するバンドが確認され、血管炎患者血清中に抗モエシン抗体が存在することが確認された。なお、患者の血清中に含まれる抗モエシン抗体(MO-ANCA)がモエシンタンパク質を認識することを、当該抗モエシン抗体を一次抗体として用いたウェスタンブロッティング法により確認した(図5)。
 9.血管炎患者の血清中の抗モエシン抗体の定量
 以下の手法(ELISA法)によりMPO-ANCA関連血管炎である難治性血管炎患者の血漿を用いて解析した。
 9.1 ELISA法による血管炎患者の血漿中の抗モエシン抗体の定量
 組換えヒトモエシンを、炭酸緩衝液で0.2 μg/ウェル(50μL、2mg/ml)の濃度に希釈し、96穴プレートのウェルにコーティングした。一日培養した後、PBST(PBS-0.1%Tween20)で2回洗浄した後、1% BSA/PBST 100 μLで1.5時間ブロッキングし、PBSTで2回洗浄した。1% BSA/PBSTで50倍に希釈した患者または健常者の血漿を加え、1.5時間室温で放置し、PBSTで2回洗浄した後、AP-標識抗ヒトIgG抗体でさらに1.5時間室温で放置した。PBSTで2回洗浄した後、AP基質緩衝液と反応させ、405~650nmにて吸光度を測定し、定量を行なった。結果を図6に示す。図6に示すように、MPO-ANCA関連血管炎に罹患した患者の血清中には、抗モエシン抗体(MO-ANCA)が存在した。なお、上記と同様の手法により、「MPO-ANCA」の定量も同時に行ない、結果は図6に併せて示されている。ここで、図6において「Pt A:anti-M high/MPO-ANCA low」とあるのは左の2つのバーで示される2人の患者(A1、A2)に対応し、抗モエシン抗体の量が多くMPO-ANCAの量が少なかった患者である。一方、図6において「Pt B:anti-M low/MPO high」とあるのは、その右のバーで示される1人の患者に対応し、抗モエシン抗体の量が少なくMPO-ANCAの量が多かった患者である。なお、図6に示す右端の2つのバーは健常者コントロールに対応する。
 10.MO-ANCAおよびMPO-ANCAによる血管炎の細分類
 患者の血清試料における、抗モエシン抗体(MO-ANCA)の定量結果とMPO-ANCAの定量結果との関連について解析を行なった。その結果、上述した図6、並びに、図7および図8に示すように、それぞれの定量結果に基づいて、血管炎の病態が、(1)抗モエシン抗体(MO-ANCA)とMPO-ANCAとの間に正の相関のある病態(図7)、(2)抗モエシン抗体(MO-ANCA)とMPO-ANCAとの間に負の相関のある病態(図8)、(3)抗モエシン抗体(MO-ANCA)が高値(陽性)で、MPO-ANCAが低値(陰性)の病態(図6のPt-A)、(4)MPO-ANCAが高値だが、抗モエシン抗体(MO-ANCA)が低値の病態(図6のPt-B)、の4つの群に分類されうることが判明した。このことから、本発明の知見を利用し、これを従来存在するMPO-ANCAに基づく検査結果と組み合わせることで、MPAなどの血管炎を細分類するための新たな基準が提供されうる。そして、このような細分類基準を用いることで、患者血清中のMO-ANCAおよびMPO-ANCAの存在の有無およびその存在量に基づき、血管炎の病態やこれに対する種々の治療の効果をより精密に分類することができる。そして、最終的には、よりよい治療計画の策定や患者の予後の改善にも資するものである。
 11.MPO-ANCA力価および抗モエシン抗体価による多重比較
 上記9.1と同様の手法(ELISA法)により、血管炎患者(n=76)の血漿中のMPO-ANCA力価および抗モエシン抗体価を測定し、それらの多重比較を行なった。結果を図9に示す。
 図9に示すように、MPO-ANCA高力価または抗モエシン抗体陽性を示す患者のほとんどはこれらのいずれか一方のみについて高力価/陽性を示しており、MPO-ANCA高力価かつ抗モエシン抗体陽性を示した患者は4例のみであった。このことから、抗モエシン抗体とMPO-ANCAとの交差反応は、非常に弱い可能性が示唆された。このように、本発明は、従来用いられているMPO-ANCAを利用する技術とは異なる新規な血管炎の検査手段を提供するものであり、臨床上きわめて優位性の高い技術であると言える。
 12.MPO-ANCA力価および抗モエシン抗体価と各種臨床検査値との関係
 上記11.においてMPO-ANCA力価および抗モエシン抗体価を測定した血管炎患者について、常法により、血清中のクレアチニン値を測定した。そして、図9に示す4つの領域ごとに、血清クレアチニン値を比較した。結果を図10に示す。
 図10に示すように、抗モエシン抗体単独陽性群では、両陰性群およびMPO-ANCA単独高力価群のそれぞれと比較して有意に高い血清クレアチニン値を示した。
 同様に、上記11.においてMPO-ANCA力価および抗モエシン抗体価を測定した血管炎患者のうち、MPO-ANCA単独高力価群および抗モエシン抗体単独陽性群について、常法により、血清中のアスパルテートアミノトランスフェラーゼ(AST)、尿素窒素(BUN)および乳酸脱水素酵素(LDH)の値を測定した。そして、測定された値を2つの群間で比較し、Kruskal-wallis検定およびTukey検定により統計的に処理した。結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、抗モエシン抗体単独陽性群では、MPO-ANCA単独高力価群と比較して、血清中のASTおよびBUNの値が有意に高く、一方で血清中のLDHの値は有意に低かった。上述した血清クレアチニン値の測定結果も合わせて見ると、抗モエシン抗体は血管炎患者における腎機能の低下に関与していることが示唆された。
 13.抗モエシン抗体刺激による健常者好中球からのサイトカイン・ケモカイン産生測定
 抗モエシン抗体が好中球と反応することが認められたことから、抗モエシン抗体によって好中球を刺激したときのサイトカイン・ケモカインの産生プロファイルを測定し、抗モエシン抗体による好中球刺激に対する反応をin vitroで分析した。
 まず、健常者の血漿試料から好中球を単離し、2×106 cells/mlで10%FBS/RPMIに懸濁した。
 続いて、96穴プレートに、好中球を100μLずつ播種した。次いで、マウスモノクローナル抗モエシン2287抗体(20μg/ml)を100μLずつ添加し、CO2インキュベーター中で37℃にて24時間培養した後、プレートを1000×gで20℃にて10分間遠心し、上清を回収した。
 このようにして回収した上清を用い、各種サイトカイン・ケモカインの産生量をmultiple cytokine assay(Bio-Plex)にて測定した。なお、コントロール群として、マウスモノクローナル抗モエシン2287抗体に代えてマウスモノクローナル抗体IgG2aを用いて同様の実験を行った。結果を図11に示す。
 図11に示すように、好中球を抗モエシン抗体で刺激して24時間後の培養上清において、MCP-1およびIL-8が高値を示した。このことから、生体内において抗モエシン抗体とIL-8とが相互作用していることが示唆された。なお、IL-8は、好中球走化性を有するサイトカインであり、炎症局所への好中球の遊走や、血中への好中球の動員の増加を介して炎症を増強させるサイトカインである。つまり、抗モエシン抗体は、好中球を活性化させ、炎症性サイトカインの産生を誘導することが示されたのである。
 14.抗モエシン抗体刺激による健常者単球からのサイトカイン・ケモカイン産生測定
 抗モエシン抗体が単球と反応することが認められたことから、上記と同様に、抗モエシン抗体によって単球を刺激したときのサイトカイン・ケモカインの産生プロファイルを測定し、抗モエシン抗体による単球刺激に対する反応をin vitroで分析した。
 まず、PBMC(末梢血単核球)を単離し、2×106 cells/mlで10%FBS/RPMIに懸濁した。
 続いて、96穴プレートに、PBMCを100μLずつ播種した。次いで、CO2インキュベーター中で37℃にて2時間培養した後にPBMCを2回洗浄し、ウェルに残っている細胞群を接着性単球として以下の実験に用いた。
 上記で得られた接着性単球を含むウェルに、マウスモノクローナル抗モエシン2287抗体(10μg/ml)を200μLずつ添加し、CO2インキュベーター中で37℃にて24時間培養した後、プレートを1000×gで20℃にて10分間遠心し、上清を回収した。
 このようにして回収した上清を用い、各種サイトカイン・ケモカインの産生量をmultiple cytokine assay(Bio-Plex)にて測定した。なお、コントロール群として、マウスモノクローナル抗モエシン2287抗体に代えてマウスモノクローナル抗体IgG2aを用いて同様の実験を行った。結果を図12に示す。
 図12に示すように、単球を抗モエシン抗体で刺激して24時間後の培養上清において、抗モエシン抗体陽性患者群において有意に高値であったサイトカインを含め、GM-CSF、TNF-α、IL-6、IL-8、MCP-1などの多数の炎症性サイトカインの増加が見られた。このことから、生体内において抗モエシン抗体は数多くの炎症性サイトカインと相互作用し、それによって各種の炎症誘導に関与しているものと考えられた。このことから、血管炎患者において、生体試料中の抗モエシン抗体(自己抗体)の存在またはその量を検出するだけでなく、抗モエシン抗体による各種サイトカイン・ケモカインの産生プロファイルを測定することで、血管炎をさらに別の観点から細分類することもできると考えられる。すなわち、本発明のさらに他の形態によれば、単球および/または好中球を抗モエシン抗体で刺激することにより得られる、サイトカインおよび/またはケモカインの前記単球および/または好中球における産生プロファイルの血管炎の再分類への使用もまた、提供される。これにより、本発明により提供される血管炎の検査手段の特異性のさらなる向上がもたらされ、血管炎の診断手法としてきわめて優位性の高い技術が提供されることになる。

Claims (14)

  1.  生体試料中の、モエシンを特異的に認識する抗体を検出することを含む、血管炎の検査方法。
  2.  前記生体試料が血清試料であり、前記抗体がモエシンに対する自己抗体である、請求項1に記載の検査方法。
  3.  前記生体試料中の、ミエロペルオキシダーゼを特異的に認識する抗体を検出することをさらに含む、請求項1または2に記載の検査方法。
  4.  前記血管炎が顕微鏡的多発血管炎、アレルギー性肉芽腫性血管炎(チャーグ・ストラウス症候群)、ウェゲナー肉芽腫症、ギラン・バレー症候群、血栓性血小板減少性紫斑病(TTP)、特発性血小板減少性紫斑病、IgA腎症、急速進行性糸球体腎炎、特発性間質性肺炎、サルコイドーシス、びまん性汎細気管支炎、ベーチェット病、全身性エリテマトーデス(SLE)、シェーグレン症候群、高安病(大動脈炎症候群)、バージャー病、結節性多発動脈炎、悪性関節リウマチ、側頭動脈炎、抗リン脂質抗体症候群、強皮症、好酸球性筋膜炎、または天疱瘡である、請求項1~3のいずれか1項に記載の検査方法。
  5.  前記血管炎が顕微鏡的多発血管炎である、請求項1~4のいずれか1項に記載の検査方法。
  6.  生体試料中の、モエシンを特異的に認識する抗体を検出する物質を含む、血管炎の検査用試薬。
  7.  前記物質がモエシンおよび/またはその部分ペプチドである、請求項6に記載の検査用試薬。
  8.  前記血管炎が顕微鏡的多発血管炎、アレルギー性肉芽腫性血管炎(チャーグ・ストラウス症候群)、またはウェゲナー肉芽腫症である、請求項6または7に記載の検査用試薬。
  9.  前記血管炎が顕微鏡的多発血管炎である、請求項6または7に記載の検査用試薬。
  10.  血管炎の細分類のために、モエシンに対する自己抗体とミエロペルオキシダーゼを特異的に認識する抗体を、それぞれ検出することを特徴とする、モエシンに対する自己抗体の反応性の血管炎病態マーカーとしての使用。
  11.  前記血管炎が小血管炎と中血管炎とを合併するものである、請求項10記載のモエシンに対する自己抗体の反応性の血管炎病態マーカーとしての使用。
  12.  前記血管炎が顕微鏡的多発血管炎、アレルギー性肉芽腫性血管炎(チャーグ・ストラウス症候群)、またはウェゲナー肉芽腫症である、請求項10または11に記載のモエシンに対する自己抗体の反応性の血管炎病態マーカーとしての使用。
  13.  顕微鏡的多発血管炎の細分類のために、モエシンに対する自己抗体とミエロペルオキシダーゼを特異的に認識する抗体を、それぞれ検出することを特徴とする、モエシンに対する自己抗体の反応性の血管炎病態マーカーとしての使用。
  14.  単球および/または好中球を抗モエシン抗体で刺激することにより得られる、サイトカインおよび/またはケモカインの前記単球および/または好中球における産生プロファイルの血管炎の再分類への使用。
PCT/JP2011/060970 2010-09-22 2011-05-12 新規血管炎の検査方法および検査用試薬 WO2012039161A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012534948A JP5998318B2 (ja) 2010-09-22 2011-05-12 新規血管炎の検査方法および検査用試薬
US13/825,445 US9244079B2 (en) 2010-09-22 2011-05-12 Testing method and testing reagent for angiitis
EP11826607.1A EP2620770B1 (en) 2010-09-22 2011-05-12 Novel testing method for angiitis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-212756 2010-09-22
JP2010212756 2010-09-22

Publications (1)

Publication Number Publication Date
WO2012039161A1 true WO2012039161A1 (ja) 2012-03-29

Family

ID=45873659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060970 WO2012039161A1 (ja) 2010-09-22 2011-05-12 新規血管炎の検査方法および検査用試薬

Country Status (4)

Country Link
US (1) US9244079B2 (ja)
EP (1) EP2620770B1 (ja)
JP (1) JP5998318B2 (ja)
WO (1) WO2012039161A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035448A (ja) * 2014-07-31 2016-03-17 株式会社A−Clip研究所 難治性血管炎の病態を特定する新規なmpo−anca検査法
US9345765B2 (en) 2010-10-08 2016-05-24 Shanghai Kexin Biotech Co., Ltd. Diagnostic and therapeutic uses of moesin fragments
US9345764B2 (en) 2010-10-08 2016-05-24 Shanghai Kexin Biotech Co., Ltd. Moesin modulators and uses thereof
US9354241B2 (en) 2010-10-08 2016-05-31 Shanghai Kexin Biotech Co., Ltd. Moesin fragments associated with aplastic anemia
JP2017146271A (ja) * 2016-02-19 2017-08-24 国立大学法人 千葉大学 血管炎の検査方法
KR20190108152A (ko) 2017-01-27 2019-09-23 가부시키가이샤 에이클립켄규쇼 감염성 질환 또는 염증성 질환의 예방 및/또는 치료제
WO2024090571A1 (ja) * 2022-10-28 2024-05-02 慶應義塾 Mmp12を指標とした免疫介在性炎症性疾患の診断、及びmmp12阻害による免疫介在性炎症性疾患の治療用医薬

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9347950B2 (en) * 2010-10-08 2016-05-24 Shanghai Kexin Biotech Co., Ltd. Moesin fragments associated with immune thrombocytopenia
KR101641756B1 (ko) 2010-10-08 2016-07-21 상하이 켁신 바이오테크 씨오., 엘티디. 모에신 단편 및 그의 용도
WO2020035123A1 (en) * 2018-08-11 2020-02-20 Baerlecken Niklas Autoantibodies binding to negative elongation factor e (nelf-e) for diagnosing sarcoidosis
CN114910650A (zh) * 2022-05-07 2022-08-16 浙江大学 检测抗膜突蛋白-IgG抗体的试剂在制备检测血管内皮损伤的试剂盒中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526107A (ja) * 2007-05-03 2010-07-29 メディミューン,エルエルシー 自己免疫疾患の自己抗体マーカー

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3399295A (en) 1994-09-08 1996-03-27 Hoechst Pharmaceuticals & Chemicals K.K. Method of detecting autoantibody present in the serum of reumatic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526107A (ja) * 2007-05-03 2010-07-29 メディミューン,エルエルシー 自己免疫疾患の自己抗体マーカー
JP2010527917A (ja) * 2007-05-03 2010-08-19 メディミューン,エルエルシー インターフェロンα誘導性薬力学的マーカー

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
DE BANDT M; MEYER 0; HAKIM J; PASQUIER C.: "Antibodies to proteinase-3 mediate expression of intercellular adhesion molecule-1 (ICAM-1, CD 54).", BR J RHEUMATOL, vol. 36, 1997, pages 839 - 846
GOEKEN JA.: "Antineutrophil cytoplasmic antibody - A useful serological marker for vasculitis", J CLIN IMMUNOL, vol. 11, 1991, pages 61 - 74
HIDEO YOSHIDA: "Zenshinsei Kekkan'en to Samazama na Jiko Kotai", GEKKAN KOKYUKIKA, vol. 14, no. 4, 2008, pages 327 - 333 *
HIROSHI HASHIMOTO: "Rheumatic Disease Men'eki to Ensho to sono Seigyo Rheumatic Disease Chiryo no Saishin Chiken Kekkan'en Shokogun no Saikin no Shinpo", NAIKA, vol. 86, no. 2, 2000, pages 332 - 337 *
JOHNSON PA; ALEXANDER HD; MCMILLAN SA; MAXWELL AP: "Up-regulation of the endothelial cell adhesion molecule intercellular adhesion molecule-1 (ICAM-1) by autoantibodies in autoimmune vasculitis.", CLIN EXP IMMUNOL, vol. 108, 1997, pages 234 - 242
KAINR; EXNER M; BRANDES R; ZIEBERMAYR R; CUNNINGHAM D; ALDERSON CA; DAVIDOVITS A; RAAB I; JAHN R; ASHOUR 0: "Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis", NAT. MED., vol. 14, no. 10, 5 October 2008 (2008-10-05), pages 1088 - 96
KALLENBERG CG; STEGEMAN CA; HEERINGA P.: "Autoantibodies vex the vasculature", NAT. MED., vol. 14, no. 10, October 2008 (2008-10-01), pages 1018 - 9
LANKES, W.T. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 88, 1991, pages 8297 - 8301
LANKES, W.T. ET AL., THE BIOCHEMICAL JOURNAL, vol. 251, 1988, pages 831 - 842
MAYET WJ; SCHWARTING A; ORTH T; DUCHMANN R: "Meyer zum Buschenfelde KH. Antibodies to proteinase 3 mediate expression of vascular cell adhesion molecule-1 (VCAM-1).", CLIN EXP IMMUNOL, vol. 103, 1996, pages 259 - 267
RYUZO SAITO: "Temoto ni Okitai Shindan Kijun to sono Kaisetsu Kenbikyoteki Tahatsu Kekkan'en", HIFUKA NO RINSHO, vol. 46, no. 10, 2004, pages 1436 - 1441 *
See also references of EP2620770A4
SHIGETO KOBAYASHI ET AL.: "Kekkan'en no Bunrui ni Kansuru Sekaiteki Doko", THE JOURNAL OF JAPANESE COLLEGE OF ANGIOLOGY, vol. 49, 2009, pages S94 *
TAMIHIRO KAWAKAMI: "Men'ekigakuteki Kensa 4) Ko Kochukyu Saiboshitsu Kotai(ANCA)", HIFUKA NO RINSHO, vol. 48, no. 10, 2006, pages 1273 - 1277 *
YUKI ISHIKAWA ET AL.: "Steroid ga Choko shita Ko Moesin Kotai/Ko Ribosome Kotai Yosei Kotsuban Nai Nikugashusei Kekkan'en no Ichi Rei", JAPAN COLLEGE OF RHEUMATOLOGY SOKAI ? GAKUJUTSU SHUKAI ? KOKUSAI RHEUMATISM SYMPOSIUM PROGRAM - SHOROKUSHU, vol. 54TH TO, 19 March 2010 (2010-03-19), pages 709 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9345765B2 (en) 2010-10-08 2016-05-24 Shanghai Kexin Biotech Co., Ltd. Diagnostic and therapeutic uses of moesin fragments
US9345764B2 (en) 2010-10-08 2016-05-24 Shanghai Kexin Biotech Co., Ltd. Moesin modulators and uses thereof
US9354241B2 (en) 2010-10-08 2016-05-31 Shanghai Kexin Biotech Co., Ltd. Moesin fragments associated with aplastic anemia
JP2016035448A (ja) * 2014-07-31 2016-03-17 株式会社A−Clip研究所 難治性血管炎の病態を特定する新規なmpo−anca検査法
JP2017146271A (ja) * 2016-02-19 2017-08-24 国立大学法人 千葉大学 血管炎の検査方法
KR20190108152A (ko) 2017-01-27 2019-09-23 가부시키가이샤 에이클립켄규쇼 감염성 질환 또는 염증성 질환의 예방 및/또는 치료제
WO2024090571A1 (ja) * 2022-10-28 2024-05-02 慶應義塾 Mmp12を指標とした免疫介在性炎症性疾患の診断、及びmmp12阻害による免疫介在性炎症性疾患の治療用医薬

Also Published As

Publication number Publication date
JPWO2012039161A1 (ja) 2014-02-03
US9244079B2 (en) 2016-01-26
JP5998318B2 (ja) 2016-09-28
EP2620770A4 (en) 2014-03-19
US20130244259A1 (en) 2013-09-19
EP2620770A1 (en) 2013-07-31
EP2620770B1 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5998318B2 (ja) 新規血管炎の検査方法および検査用試薬
US11199549B2 (en) MEl'hods and means for diagnosing spondylarthritis using autoantibody markers
JP6105678B2 (ja) 自閉症を診断及び治療する方法
EP2239576A1 (en) Composition and method for diagnosis or detection of gastric cancer
AU2023210591A1 (en) Markers of endometrial cancer
US20150185226A1 (en) Method for Diagnosing Scleroderma
US9347950B2 (en) Moesin fragments associated with immune thrombocytopenia
CA2814026A1 (en) Moesin fragments associated with aplastic anemia
US9915667B2 (en) Methods and means for diagnosing vasculitis
CN107110848B (zh) 以脱氧羟腐胺缩赖氨酸合酶基因作为指标使用的动脉硬化及癌的检测方法
JP7546255B2 (ja) 癌を検出する方法および検出試薬
EP2235540A2 (en) New method for diagnosing sjogren's syndrome
JP7306661B2 (ja) 消化管間質腫瘍を検出する方法および検出試薬
US20220120744A1 (en) Assessing and treating germ cell tumors and paraneoplastic autoimmunity
JP6607436B2 (ja) 難治性血管炎の病態を特定する新規なmpo−anca検査法
WO2013008930A1 (ja) 皮膚筋炎の検査方法
WO2023168534A1 (en) Diagnosis of congenital heart block
WO2023275235A1 (en) Method and means for diagnosis of spondyloarthritis
JP2012224594A (ja) 環状シトルリン化グルコース−6−リン酸イソメラーゼペプチドおよび関節リウマチ症診断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012534948

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011826607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011826607

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13825445

Country of ref document: US