Optoelektronisches Bauelement
Die vorliegende Erfindung bezieht sich auf eine optische Kopplungsvorrichtung und ein optoelektronisches Bauelement (z.B. einen elektro/optischen (E/O) Wandler (Sender) und/oder einen optisch/elektrischen (O/E) Wandler (Empfänger) sowie Verfahren zur Herstellung.
Vorzugsweise bezieht sich die Erfindung auf einen optoelektronischen Transceiver (kurz: ein optischer Transceiver), bei dem elektrisch-optische Sendeeinrichtungen (die z.B. als ein optisches Senderelement, ein VCSEL aufweisen) und optisch/elektrische Empfangseinrichtungen (die z. B. als optisches Empfangselement eine Fotodiode aufweisen) verwendet werden. Während bei der Verwendung von elektrischen Transceivern die Sende- und Empfangsinformation zwischen zwei elektrischen Transceivern durch Verwendung elektrischer Wellen bzw. Signale wird, wird bei Verwendung von zwei optischen Transceivern die Sende- und Empfangsinformation durch optische Wellen bzw. Signale übertragen.
In der Empfangsbetriebsart eines Transceivers wandelt dieser die beispielsweise von einem Lichtleiter, z.B. einer Glasfaser, zugeführten auf einer optische Übertragungsstrecke übertragenen optischen Eingangssignale in elektri- sehe Signale um, die dann im optischen Transceiver selbst und/oder in angeschlossenen Schaltungen weiterverarbeitet werden.
In der Sendebetriebsart wandelt der Transceiver elektrische Eingangssignale in optische auf der optischen Übertragungsstrecke zu übertragende Signale um. Dazu weist der optische Transceiver ein als E/O-Wandler arbeitendes optisches Element auf, z. B. einen VCSEL-Laser.
Bei einem optoelektronischen Bauelement, z.B. einem Transceiver besteht die Notwendigkeit, zwischen dem optischen Senderelement und dem Lichtleiter eine hinreichend effiziente optische Kopplung vorzusehen, und zwar speziell zum einen (im Sendefall) zwischen dem die optischen Signale erzeugenden E/O-Wandler und dem Lichtleiter, z.B. zwischen der Eingangsstirnfläche einer Glasfaser, und auch zum anderen (im Empfangsfall) zwischen den aus der Austrittsfläche des Lichtleiters austretenden optischen Signalen, die zu dem die elektrischen Signale erzeugenden optischen Empfangselement (O/E- Wandler) laufen.
Beispielsweise aus dem US-Patent 6 560 385 ist eine optische Kopplungsanordnung bekannt, die ein faseroptisches Prisma 10 verwendet und folgendes aufweist: Ein Substrat 20 mit mindestens einem Lichtelement 24 und mindestens einem Wellenleiter 22, der über einem Substrat 20 liegt, wobei ferner ein faseroptisches Prisma 10 vorgesehen ist. Das faseroptische Prisma 10 empfängt Licht durch die erste Seitenoberfläche 12, reflektiert das empfangene Licht von einer dritten Seitenoberfläche 16 und überträgt das reflektierte Licht von der dritten Seitenoberfläche 16 durch eine zweite Seitenoberfläche 14. Dabei ist gemäß Fig. 3 das faseroptische Prisma 10 derart angeordnet, dass die erste Seitenoberfläche 12 benachbart zum Lichtelement 24 angeordnet ist, und die zweite Seitenoberfläche 14 befindet sich benachbart zu dem Wellenleiter 22. Das Lichtelement 24 kann dabei eine Licht emittierende Vorrichtung wie beispielsweise eine LED aufweisen oder aber einen VCSEL oder aber ei- ne Lichtempfangsvorrichtung, wie beispielsweise eine Fotodiode. Eine alternative Anordnung ist in Fig. 4 des '385-Patents gezeigt.
Dabei ist darauf hinzuweisen, dass das faseroptische Prisma ein separates Bauteil ist, welches gesondert hergestellt werden muss und bei seinem Ein- bau in den Transceiver auch justiert werden muss.
Der vorliegenden Erfindung liegt insbesondere die Aufgabe zugrunde, ein optoelektronisches Bauelement vorzusehen, wobei Kopplungsmittel für einen elektro/optischen Sender und für einen optisch/elektrischen Empfänger sowie insbesondere für einen optoelektronischen Transceiver vorgesehen sind der- 5 art, dass der Justierungsaufwand für die optischen Komponenten, z. B. das optische Element und den Lichtleiter gering ist.
Erfindungsgemäß werden optische Kopplungsmittel bzw. eine Kopplungsvorrichtung vorgesehen, die eine integrierte Lichtleiterausrichtung (vorzugsweise — 1-0 Lichtfaserausrichtung) und integrierte Spiegelstrukturen oder integrierte Spiegeleigenschaften aufweist.
Erfindungsgemäß weisen die optischen Kopplungsmittel sowohl optische als auch mechanische Kopplungsmittel auf. Diese können in der Form einer op-
15 toelektronischen Halbleiterpackung (opto-electronic semiconductor package) ausgebildet sein, d.h. es wird ein optoelektronisches Bauelementgehäuse (Halbleitergehäuse bzw. Gehäuseteil) vorgesehen, das das Merkmal der optischen Faserausrichtung (körperliche oder mechanische Lichtleiterausrichtung) mit dem Merkmal einer Strahlauslenkung, die einen nahezu senkrechten
20 Strahlungseinfall in die Eingangsstirnfläche des Lichtleiters sicherstellt, kombiniert. Vorzugsweise geschieht dies bei der Strahlauslenkung mittels Kolli- mierung.
Erfindungsgemäß wird ein eine derartige optische Kopplungsvorrichtung ver- 25 wendender optoelektronischer Transceiver vorgesehen, der klein genug gebaut werden kann, um in der USB 1.0, 2.0, 3.0 Steckerverbinder-Technik einsetzbar zu sein.
Erfindungsgemäß werden die kritischen Funktionen der Faserausrichtung so- 30 wie der der Strahlablenkung und Kollimierung in einem einzigen Herstellungsschritt durch Formen des die optische Kopplungsvorrichtung bildenden optoelektronischen Bauelement- bzw. Halbleitergehäuseteils erreicht, wobei kein weiterer aktiver Ausrichtschritt erforderlich ist.
Die erfindungsgemäß als geformter Kunststoffkörper ausgebildete optische Kopplungsvorrichtung bildet einen ersten Gehäuseteil eines Bauelementgehäuses und formt eine Kapselung mit einem ein optisches Element tragenden zweiten Gehäuseteil bzw. Bauteilträger. Erfindungsgemäß wird vorzugsweise der Kunststoffkörper direkt auf dem das optische Element tragenden Bauteil- träger geformt.
In dem Bauelementgehäuse bzw. optoelektronischen Halbleitergehäuse (auch Halbleiterpackung genannt) ist also ein optisches Element z.B. in der Form eines VCSEL für den Treiber (driver; optischer Sender) und/oder ein optisches Element in der Form einer Fotodiode für den Empfänger (receiver) untergebracht, d.h. das optoelektrische Halbleitergehäuse bildet, wenn es einen optischen Sender und/oder einen optischen Empfänger enthält und ggf. auch wei- tere elektrische Schaltungen, ein erfindungsgemäßes optoelektronisches Bauelement, z.B. , und zwar vorzugsweise, einen Transceiver.
Erfindungsgemäß wird das die optische Kopplungsvorrichtung aufweisende optoelektronische Bauelement- bzw. Halbleitergehäuse durch eine effiziente Kopplung zwischen einer optischen Faser (Lichtleiter) und einem optischen Element (Sende- und/oder Empfangselement), vorzugsweise mit einer 90° Strahlablenkung, dadurch erreicht, dass die Kopplungsvorrichtung eine optische Faserausrichtung und Strahlablenkung sowie Fokussierung vorsieht, und zwar durch Vorsehen oder Formen eines geformten, die optische Kopplungs- Vorrichtung (Kopplungsmittel) bildenden hochtransparenten Kunststoffkörpers direkt auf einem Bauteilträger, der das (bzw. die) aktive(n) Elemente trägt. Der Kunststoffkörper bildet die optischen Kopplungsmittel. Vorzugsweise wird die sogenannte„overmold packaging technology" zu Herstellung verwendet. Alternativ können auch andere Kunststoffformprozesse wie z.B. Transfer- Overmolding mit lichtaushärtbarem Kunststoff verwendet werden.
Erfindungsgemäß wird der optoelektronische Gehäuseteil (Halbleitergehäuse) derart ausgebildet, dass der Kunststoff- bzw. das Overmold-Material hochtransparent ist und bei der Ausbildung des Gehäuseteils mit einem weiteren Material eines zweiten Gehäuseteils bzw. Bauteilträgers eine mechanische Verbindung eingeht. Der zweite Gehäuseteil kann, wie erwähnt, ein Bauteilträger sein und trägt ein optisches Element und gegebenenfalls andere Bauteile oder elektrische Schaltungen. Der zweite Bauteilträger ist beispielsweise ein Substrat oder ein Leadframe oder eine Keramik. Bei der Verwendung des die erfindungsgemäßen Kopplungsmittel aufweisenden Halbleitergehäuses bzw. des optischen Bauelementgehäuses, z.B. beim Einbau in einen Steckverbinder, ist dieses beständig.
Erfindungsgemäß bildet der Kunststoff bzw. das Overmold-Kunststoffmaterial, der bzw. das den Gehäuseteil bildet, einen Reflektor bzw. Reflexionsspiegel, der eine Reflexionsgrenzfläche, vorzugsweise eine Totalreflexionsgrenzfläche für das Licht bildet, das zwischen dem auf dem Träger positionierten optischen Element(en) und der Eintrittsstirnfläche des Lichtleiters (und gegebenenfalls umgekehrt) zu übertragenden ist. Vorzugsweise ist der die Reflexionsgrenzfläche bildende Reflexionsspiegel ein interner konischer Totalreflexi- onsspiegel.
Erfindungsgemäß bildet der Kunststoff an seiner Grenzfläche zur umgebenden Luft den Reflexionsspiegel infolge des Übergangs von dem Kunststoffmaterial mit einem höheren Brechungsindex zur Luft mit dem Brechungsindex 1.
Zudem ist vorzugsweise vorgesehen, dass der durch den Kunststoff insbesondere durch Overmolding-Verfahren geformte erste Gehäuseteil bei seiner Formung zusammen mit dem Bauteilträger ein das optische Element umgebendes d.h. ein kapselndes optoelektronisches Bauelementgehäuse bildet, wobei die optische Kopplungsvorrichtung als optische Kopplungsmittel und mechanische Kopplungsmittel wirkt, wobei letztere vorzugsweise als Ausrichtmittel für den Lichtleiter vorgesehen sind. Die Ausrichtmittel werden vor-
zugsweise durch eine V-Nut im Gehäuseteil gebildet. Bevorzugte Ausgestaltungen der Erfindung ergeben sich auch aus den Ansprüchen.
Weitere Vorteile, Ziele und Einzelheiten der Erfindung ergeben sich aus der 5 Beschreibung Ausführungsbeispielen anhand der Zeichnung; in der Zeichnung zeigt:
Fig. 1 eine schematische Seitenansicht eines erfindungsgemäßen optoelektronischen Bauelements mit einem einen ersten und einen zweiten Gehäuseteil 10 aufweisenden optoelektronischen Gehäuse (bzw. einer optoelektronischen Halbleiterpackung) in dem ein optisches Element sowie Kopplungsmittel für Licht zu und/oder von einem Lichtleiter vorgesehen sind;
Fig. 2 schematisch, zwei das Gehäuse des optischen Bauelements der Fig. 1 bildende auseinandergezogen dargestellte Gehäuseteile;
Figi S eine schematische Darstellung ähnlich der Fig. 1 , wobei hier angenommen sei, dass das elektrooptische Bauelement als Ausgestaltung der Erfindung ein optoelektronischer Transceiver ist, bei dem ein durch den ersten aus einem vorzugsweise hochtransparenten Kunststoff gebildeter interner konischer To- talreflektionsspiegel für die optische Verbindung zwischen optischem Emp- 20 fänger/optischem Sender und dem Lichtleiter und ferner Ausrichtmittel für den Lichtleiter vorgesehen sind;
Fig. 4 schematisch einen elektrooptischen Wandler (Sender) mit seinen bevorzugten
Abmessungen, wobei in der Sendebetriebsart ein von einem VCSEL ausgehender Lichtstrahl zu einer Eingangsstirnfläche des Lichtleiters hin durch eine 25 Reflexionsfläche, gebildet durch den ersten Gehäuseteil, reflektiert und kolli- miert wird;
Fig. 5 einen schematischen Querschnitt des optischen Bauelements, speziell des optischen Senders der Fig. 4 und zwar von rechts in Fig. 4 in etwa längs der Linie A-A in Fig. 6, wobei die in Fig. 4 nur angedeuteten Ausrichtmittel gebil- 30 det von dem ersten Gehäuseteil in der Form einer Ausrichtnut für den Lichtleiter gut zu sehen sind;
Fig. 6 eine schematische Draufsicht ähnlich Fig. 1 1 auf ein Bauelement gemäß Fig.
5 auf einem Anschlussblech;
Fig. 7 ein Flussdiagramm des erfindungsgemäßen Verfahrens zur Herstellung eines optoelektronischen Senders oder Empfängers oder Transceivers;
Fig. 8 schematisch und analog zu Fig. 3 einen Transceiver mit seinen schematisch gezeigten Lichtübertragungsstrecken;
Fig .39 ähnlich Fig. 8, aber einen elektrooptischen Sender;
Fig . 10 ähnlich Fig. 8, aber einen elektrooptischen Empfänger;
Fig . 1 1 eine perspektivische Draufsicht auf ein erfindungsgemäß ausgebildetes optoelektronisches Bauelement, beispielsweise ein Sender, ein Empfänger oder ein Transceiver gemäß den Fig. 3 bis 10; und
Figl 0l 2 das Bauelement der Fig. 1 1 aus einer anderen Perspektive;
Fig. 13 und Fig. 14 schematisch die Erfindung mit zwei Reflexionsflächen, gebildet durch das optoelektronische Bauelement bzw. dessen Kopplungsmittel;
Fig . 15 eine schematische Ansicht des Strahlenverlaufs für einen Empfangsstrahl und einen Sendestrahl ähnlich den Fig. 13 und 14;
FigL5l 6 schematische Ansichten ähnlich den Fig. 1 1 und 12, wobei aber hier jeweils zwei Reflexionsflächen, gebildet durch das Bauelementegehäuse, vorgesehen sind.
Fig. 1 zeigt allgemein ein erfindungsgemäßes optoelektronisches Bauelement 20 (kurz: Bauelement) 10 mit einem optoelektronischen Gehäuse, welches auch als Kapsel bezeichnet werden kann, das Gehäuse bzw. die Kapsel 9 mindestens ein optisches Element 17 und ggf. andere einkapselt. Kopplungsmittel 300 sehen eine effiziente Verbindung oder Kopplung zwischen dem optischen Element 17 und einem damit zusammenarbeitenden Lichtleiter (z.B. einer 25 Glasfaser) 12 vor. Erfindungsgemäß werden die Kopplungsmittel 300 durch eine Kopplungsstruktur, insbesondere durch die Form oder Ausbildung des Gehäuses 9, derart vorgesehen, dass gleichzeitig eine optische Kopplung durch optische Kopplungsmittel 301 und eine mechanische Kopplung und Ausrichtung durch mechanische Kopplungs/Ausrichtmittel 302 zwischen dem 30 optischen Element 17 und dem Lichtleiter 12 erreicht wird. Die Kopplungsmittel 300 bewirken eine 90°-Änderung im optischen Pfad und eine passive Ausrichtung aller Elemente, insbesondere des optischen Elements 17 und des Lichtleiters 12 des Bauelements 10.
Das Gehäuse 9 besteht im Wesentlichen aus zwei Gehäuseteilen, einem ersten Gehäuseteil 1 und einem das optische Element 17 tragenden zweiten Gehäuseteil 14. Der erste Gehäuseteil 1 1 bildet im Wesentlichen die Kopp- lungsmittel 300, welche zum einen die optische Verbindung (eine optische Übertragungsstrecke) herstellen zwischen dem Lichtleiter 12 und dem optischen Element 17 (durch die optischen Kopplungsmittel 301) und die Ausrichtung (durch die mechanischen Kopplungs/Ausrichtmittel 302) für den Lichtleiter 12, insbesondere dessen Eintritts/Austrittsoberfläche 24, 25.
Der zweite Gehäuseteil 14 kann ein Träger sein, und zwar vorzugsweise, wie gezeigt, in der Form eines Leadframes (Substrat) 14. Das optische Element 17 ist durch eine Drahtbrücke (wire bonding) 21 mit den Leitern des zweiten Gehäuseteils 14 verbunden, um so, wie in den Figuren 3-6 gezeigt, eine elekt- rische Verbindung beispielsweise mit einem ebenfalls auf dem zweiten Gehäuseteil 14 angeordneten ASIC 13 herzustellen. Man könnte auch den ASIC und eventuell das optische Element 17 mit einem Flip-Chip-Verfahren montieren. Durch ein Verfahren des Einkapseins, insbesondere des Overmoldings (oder ein anderes Verfahren) wird erfindungsgemäß der aus einem hochtransparenten Kunststoffmaterial 30 bestehende erste Gehäuseteil 1 1 gebildet, und durch das Overmolding-Spritzverfahren mit einem anderen Material, nämlich dem Material des zweiten Gehäuseteils 14, verbunden. Der erste Gehäuseteil 1 1 bildet mit dem das optische Element 17 tragenden zweiten Gehäuseteil 14 das optoelektronische Bauelement 10.
Der erste, insbesondere Overmold-Gehäuseteil 1 1 und der zweite Gehäuseteil 14, d.h. das Gehäuse bilden, wenn sie ein optisches Element 17 umfassen, eine Kapsel, d.h. ein optoelektronisches Halbleitergehäuse bzw. eine optoelektronische Halbleiterpackung.
Die Kopplungsmittel 300 bzw. die mechanischen Kopplungs/Ausrichtmittel 302 bilden ferner, wie in Fig. 5 deutlich zu sehen, Lichtleiter- bzw. Faserausrichtnut 20 zur Aufnahme des Lichtleiters 12. Die Nut wird im gezeigten Ausführungsbeispiel durch zwei schräg verlaufende Seitenwände 210, 220 und einer unteren Wand 230 gebildet. Die Faserausrichtnut 20 weist ferner eine Rückwand 240 auf.
Die Figur 1 zeigt also allgemein ein optisches Bauelement 10, welches je nachdem wie das optische Element 17 ausgebildet ist als Transceiver 110 wie in Fig. 8 veranschaulicht, als Sender 120 wie in Fig. 9 veranschaulicht oder als Empfänger 130 wie in Fig. 10 veranschaulicht arbeiten kann, wobei mit den optischen Elementen 170, 171 , 172 zusammenarbeitende elektrische Schaltungen, beispielsweise ein ASIC 13 vorgesehen sein kann. Das ASIC 13 ist durch Drahtbrücken bzw. Verbindungsdrähte 22, 23 mit Leitern in dem zweiten Gehäuseteils 14. verbunden, Auch das optische Element 17 ist mit einem Leiter des zweiten Gehäuseteils 14 verbunden.
Im Fall eines Transceivers 110 (vgl. Fig. 3 und 8) umfasst das optische Element 170 sowohl einen Sender als auch einen Empfänger und steht mit der optischen Faser 12 über eine Sendeübertragungsbahn bzw. Sendestrahlen 1 und eine Empfangsübertragungsbahn bzw. Empfangsstrahlen 2 in Verbindung. Im Fall der Fig. 9 ist das optische Bauelement ein Transmitter oder Sender 120 und weist als optisches Element ein optisches Sendeelement 171 (z.B. einen VCSEL) auf, das über einen Sendestrahl 1 mit dem Lichtleiter 12 verbunden ist. Das optische Bauelement 130 in Fig. 10 ist ein Receiver oder Empfänger 120, wobei das optische Element beispielsweise eine Fotodiode 172 ist, die einen Empfangsstrahl 2 empfängt, der vom Lichtleiter 12 kommt.
Zur Fig. 2 ist noch zu bemerken, dass hier deutlich die beiden Gehäuseteile, d.h. der erste Gehäuseteil 11 und der zweite Gehäuseteil 14 dargestellt sind.
Im folgenden wird nun die Erfindung speziell unter Bezugnahme auf die Figuren 3 bis 7 und 11 und 12 beschrieben, und zwar insbesondere im Hinblick
darauf, dass das optische Bauelement ein Transceiver 110 ist, der vorteilhafterweise in einem erfindungsgemäßen USB 3x-Steckverbinder eingesetzt werden kann, und zwar insbesondere in einer Buchse eines Sende/Empfangsgeräts, der über ein entsprechendes Kabel, welches auch Licht- leiter aufweist mit einem weiteren Gerät in Verbindung steht, welches ebenfalls eine entsprechende Buchse aufweist.
In Fig. 3 erkennt man, dass der erfindungsgemäße Transceiver 1 10 prinzipiell so aufgebaut ist, dass das optische Bauelement 10 gemäß Fig. 1 , hier durch das optische Element 170 ersetzt ist, welches eine Sendeeinrichtung und Empfangeinrichtung umfasst, was nicht im Einzelnen in Figur 3 dargestellt ist.
Ferner bildet, wie im allgemeinen Fall der Fig. 1 , das Kunststoffmaterial speziell das Overmoldmaterial 30 die Kopplungsmittel 300 zwischen dem opti- sehen Element 170 und dem Lichtleiter 12. Die Kopplungsmittel 300 weisen, wie erwähnt, optische Kopplungsmittel 301 und mechanische Kopplungsmittel 302 auf. Die optischen Kopplungsmittel 301 bilden durch das Material 30 an der Grenzfläche zur Luft einen Reflektor mit einer Reflektionsfläche 321 , vorzugsweise in der Form eines konischen Spiegels mit interner Totalreflexion. Die Reflexionsfläche 321 ist derart ausgebildet, dass sowohl die optischen Sendestrahlen als auch die optischen Empfangsstrahlen effizient durch die Reflexionsfläche 321 umgelenkt werden.
Wie in den Figuren 4 und 5 angegeben, hat der erste Gehäuseteil 11 und der zweite Gehäuseteil 14 jeweils eine Längserstreckung in der Größenordnung von 2,5 mm und die Breite beträgt ungefähr 2, 1 mm. Durch diese geringen Abmessungen ist der Einsatz eines erfindungsgemäßen als optoelektronischer Transceiver 110 ausgebildeten Bauelements 10 insbesondere bei der Ausbildung einer Buchse für USB 3x-Verbindungen von Vorteil, da der elekt- rooptische Transceiver zusammen auch mit den bestehenden USB 3,0 Buchsen sowie den USB 2,0 Buchsen verwendet werden kann, die keine optische Übertragung vorsehen (Rückwärtskompatibilität).
Wie in Fig. 4 gezeigt ist, wird die von dem optischen Sende-/Empfangs- Element 170, beispielweise in der Sendebetriebsart von einem VCSEL 170a ausgesandte Strahlung 1 von der durch den ersten Gehäuseteil 30 gebildeten Reflektionsfläche 321 eines durch den Gehäuseteil 11 gebildeten Reflektors reflektiert und dabei kollimiert und trifft sodann auf die Eingangsstirnfläche 24 der Lichtfaser 12 im Wesentlichen senkrecht auf, um von dieser weitergeleitet zu werden. Die Lichtfaser bzw. der Lichtleiter 12 kann ein Single-Mode oder ein Multi-Mode-Lichtleiter sein. Erfindungsgemäß wird also durch den ersten Gehäuseteil zusammen mit dem das optische Element und Schaltungen tragenden zweiten Gehäuseteil das optische Bauelement 10, und im Fall der Fig. 3 - 8 und 11 und 12 der gesamte optoelektronische Transceiver 110 gebildet. Dabei wird die optische Faserausrichtung und die vorzugsweise 90° Strahlablenkung und Kollimierung in integraler Weise durch den ersten Gehäuseteil 11 , vorzeugsweise dem Over- mold-Gehäuseteil und dem zweiten Gehäuseteil 14 des Transceivers 110, erreicht.
Die optoelektronische Halbleiterpackung umfasst also den ersten Gehäuseteil 11 , und den zweiten Gehäuseteil, z.B. den Leadframe 14, wobei dann zusammen mit einem Treiber und/oder einem Empfänger sowie einer ASIC das optische Bauelement 10, im Falle der Fig. 3 der optische Transceiver 110 gebildet wird. Der Leadframe 14 ist typischerweise ein metallisches Stanzteil auf dem die Chips, wie beispielsweise das optische Element 170; 170a und der ASIC 13 durch Die-Bonden 124 befestigt sind und durch Draht-Bonden 21 -23 kontaktiert werden. Nach dem Bonden wird der Leadframe 14 typischerweise noch mit einem Duroplast umspritzt und seine Anschlussbeinchen werden frei ge- stanzt und gegebenenfalls abgewinkelt. Das gesonderte Umspritzen mit einem Duroplast kann erfindungsgemäß entfallen.
Fig. 6 zeigt eine schematische Draufsicht auf die Anordnung gemäß Fig. 4. Bei der anfänglichen Stanzung des Leadframes 14 werden erfindungsgemäß zwei oder mehr Ausrichtöffnungen oder Löcher 50, 51 , 52 nahe dem Befestigungsgebiet des optischen Elements 170 herausgestanzt. Unter Verwendung eines Die-Bonders wird das optische Element 170 mit hoher Genauigkeit an einer vorbestimmten Stelle bezüglich der Ausrichtöffnungen 50-52 angeordnet. Daraufhin wird der als Leadframe 14 ausgebildete Bauteilträger insbesondere„overmolded", d.h. mit dem Overmold-Material 30 des Gehäuseteils 1 1 umspritzt, wodurch das Overmold-Material 30 bzw. der Overmold- Gehäuseteil 1 1 mit dem Bauteilträger 14, vorzugsweise in Form des Leadframes 14, unter Verwendung der Ausrichtöffnungen 50-52 ausgerichtet ist. Es gibt auch mögliche alternative „overmolding" Technologien, z.B. Stam- ping/Embossing, UV Methoden (z.B. ähnlich wie Thin Fusion), aber mit Schwerpunkt auf„Transfer Overmolding".
Die Toleranzkette für den Verlauf der optischen Strahlung zwischen dem optischen Element 170 und dem Lichtleiter bzw. der Lichtfaser 12 ist daher die folgende: Die Platzierungsgenauigkeit (die placement accuracy, Genauigkeit der Platzierung des das optische Element 17 bzw. 170, bzw. 171 bzw. 172 bildenden Chips) und die Ausrichtungsgenauigkeit des Overmoldgehäuseteils 1 1 + Moldmaterialqualität ist zu berücksichtigen.
Da das Faserausrichtmerkmal in dem Overmold-Gehäuseteil (bzw. dem Mold- Material) selbst liegt, beeinflussen nur das Formwerkzeug (mold tooling) die Overmoid-Wiederhoibarkeit (mold repeatability) und die Ausrichtgenauigkeit mit der Reflexionsfläche 32 bzw. 321 im Falle des Transceivers 1 10.
Die erfindungsgemäßen Schritte zur Herstellung des erfindungsgemäßen elektrooptischen Transceivers 1 10 bzw. seiner Kopplungsmittel sind in Fig. 5 dargestellt.
Im Schritt 70 wird der Leadframe 14 bereitgestellt und im Schritt 71 werden die entsprechenden Leiterbahnen gestanzt und der Leadframe 14 wird gege-
benenfalls einem Biegeprozess unterworden. Im Schritt 72 wird der Leadfra- me 14 beispielsweise mit Gold plattiert, wobei dann im Schritt 73 das ASIC 75 durch ein leitendes Epoxyharz mittels Die-Bonding 24 am Leadframe 14 befestigt wird. Im Schritt 76 erfolgt ebenfalls unter Verwendung des leitenden Epoxyharzes die präzise Befestigung des optischen Elementes 170, beispielsweise einer VCSEL, wie in Fig. 4 gezeigt, oder einer nicht gezeigten Fotodiode.
Nach dem Schritt 76 des präzisen Ausrichtens werden im Schritt 77 die Drahtbrücken (wire bonds) z. B. 21 , 22, 23, angebracht.
Der Schritt 81 ist der Overmold-Verfahrensschritt. In diesem Schritt 81 wird das im Schritt 78 verfügbar gehaltene Overmold-Material (mold Compound) über den Leadframe 14 mit darauf angebrachten optischen Element 17 bzw. 170 und ASIC 13 gespritzt, und zwar unter Bildung eines internen Reflexionsspiegels mit der Reflexionsfläche 321 , vorzugsweise eines internen konischen Totalreflexionsspiegels mit der Reflexionsfläche 32.
Im Schritt 84 erfolgt eine Stanz/Biege-Vereinzelung bei Herstellung der Transceiver 110 an einem Transportband.
Im Schritt 85 werden die Funktionen des optischen Transceivers 110 getestet. Im Schritt 86 wird die Endmontage für den im Schritt 79 bereitgestellten Lichtleiter 12 vorgenommen, wobei optional ein zusätzliches im Schritt 80 und 83 verfügbar gemachtes Metallgehäuse im Schritt 86 angebracht wird, wie das ebenfalls bereitgestellte Metall nach den Schritten 82 und 83 bei der Endmontage.
Die Figuren 11 und 12 zeigen Außenansichten des in den Fig. 3 - 7 gezeigten und beschriebenen Transceivers 110.
Es sei bemerkt, dass man statt„overmolding" auch das Wort„Kapselung" benutzen könnte, um auszudrücken, dass auch andere Moldingverfahren verwendet werden können. Auch ist eine bidirektionale Version möglich. Basierend auf den obigen Ausführungen sieht die Erfindung ein optoelektronisches Bauelement 100 vor, welches zusätzlich zu einem Reflektor D einen weiteren ebenfalls durch die optischen Kopplungsmittel 30 gebildeten konischen Reflektor B aufweist. Der in den Fig. 13-17 verkörperte linke Reflektor A ist ein zusätzliches Merkmal dieser Erfindung. Der zusätzliche Reflektor A ist, wie in den Fig. 13-17 gezeigt, dem Reflektor C nachgeordnet. Die Kombination der beiden Reflektoren arbeitet wie im Folgenden erläutert.
Die beiden Reflektoren A, C werden durch den oben beschriebenen ersten Gehäuseteil 1 1 gebildet, der derart geformt ist, dass er die jeweiligen Reflexi- onsflächen x, y bildet.
Man erkennt, dass der Empfänger 172 das durch die optische Faser (optical fiber core) eintretende Licht über die Oberfläche D empfängt. Infolge der internen Totalreflexion wird das Licht an der konischen Oberfläche C wegreflek- tiert und dadurch um 90° gewendet und annähernd kollimiert. Es fällt dann auf die Photodiode bzw. den Photodetektor 672 unterhalb des Reflektors C, und zwar innerhalb des ersten Gehäuseteils 1 1 speziell der Overmoldverbindung oder dem Overmoldkunststoff. Der Emitter 171 andererseits (VCSEL) emittiert das Licht, welches auf die konische Reflektoroberfläche A auftrifft. Der Strahl wird gewendet (um weniger als 90°) und teilweise infolge von interner Totalreflexion kollimiert. Der Strahl tritt aus dem ersten Gehäuseteil 1 1 , speziell dem Overmoldkunststoff, durch die Oberfläche B aus und tritt wieder in den Gehäuseteil 1 1 durch die konische Oberfläche C ein. C und D bilden effektiv eine sphärische plane konvexe Linse.
Eine bemerkenswerte Eigenschaft der Erfindung besteht darin, dass das VCSEL-Photodioden-Nebensprechen im Wesentlichen Null sein sollte, wobei
potentielle Beiträge nur vom Streuen infolge von Oberflächenrauheit auftreten könnten.
Auf die folgenden wichtigen Punkte sei hingewiesen.
Im Stand der Technik ist das„Transparent Transfer Overmoldung" beispielsweise auf dem Gebiet des LED-Packaging bekannt.
Bei der Erfindung ist es vorteilhaft, dass der Overmold eine Schutzfunktion im Sinne eines Gehäuses bietet, und zwar gegenüber mechanischen Kräften sowie Umgebungseinflüssen, wie z. B. Wasser.
Was das Herstellungsverfahren anlangt, so sei bemerkt, dass das„Die Bond" und anschließend„Wire Bond" der ASIC und eventuell auch die OE Bauteile im Flip-Chip-Verfahren monotiert werden könnten. Ferner könnte man also statt eines„Leadframe" auch andere Substratmaterialien wie beispielsweise FR-4 oder Keramik verwenden.
Es sei betont, dass die Erfindung sich nicht nur auf eine Übertragungsrichtung bezieht, sondern, wie erläutert, können auch zwei optoelektronische Bauteile sowie ein oder zwei ASIC's, ferner zwei Spiegel und zwei Fasergräben verwendet werden.
Obwohl der Schwerpunkt auf dem„Transfer Overmolding" liegt, gibt es mögli- che alternative„Overmolding"-Technologien, z. B. Stamping/Embossing sowie UV-Methoden.
Insbesondere zur Erfindung speziell gemäß den Fig. 13 bis 17 sei noch bemerkt, dass durch die Erfindung die Miniaturisierung des optoelektronischen Transceivers erreicht wird und auch die Anzahl und die Größe der Bauelemente in einem optoelektronischen Transceiver reduziert wird. Im wesentlichen umfasst der optische Transceiver einen optischen Sender 171 , einen optischen Empfänger 172 und Kopplungsmittel 300, bestehend aus einer ers-
ten und zweiten optischen Linse, vgl. Fig. 15, zur Veränderung/Umlenkung optischer Pfade von einerseits optischen Ausgangssignalen des optischen Senders 171 zu einem anschließbaren optischen Lichtleiter 12 und andererseits von Eingangssignalen des gleichen Lichtleiters 12 zu dem Empfänger 172, wobei insbesondere erfindungsgemäß die erste Linse eine im Kopplungsmittel 300 inne liegende konkave Reflexionsfläche für Signale des optischen Senders aufweist und die zweite Linse über eine außen liegende konvexe Transmissionsfläche für ausgehende Signale des optischen Senders eine innen liegende konkave Reflexionsfläche für eingehende Signale bildet. Die Position der so gebildeten Linsen zueinander ist derart vorgesehen, dass eine effiziente Übertragung sowohl der Sende- wie auch der Empfangssignale erfolgt. Das die Kopplungsmittel bildende Material besitzt vorzugsweise einen Brechungsindex von >1 ,3. Ferner ist die innere Fläche der zweiten Linse mit einem Krümmungsradius derart ausgebildet, dass die Bedingung der Totalre- flexion erfüllt ist, und zwar in Bezug auf optische Pfade optischer Signale, die aus dem Lichtleiter 12 auf die Grenzfläche treffen. Ferner kann Material mit einem Brechungsindex von >1 ,3 eingesetzt werden, wobei die innere Fläche der ersten Linse mit einem Krümmungsradius ausgebildet ist derart, dass die Bedingung der Totalreflexion erfüllt ist in Bezug auf optische Pfade optischer Signale, die aus dem Sender 171 auf die Grenzfläche treffen.
Bei dem erfindungsgemäßen Herstellungsverfahren wird die Ausrichtung der Photoelemente bereits im Fertigungsprozess sichergestellt, wobei die Ablenkung des Lichts durch die Umspritzung, d.h. das Overmoldmaterial erreicht wird. Auf diese Weise wird eine fertige, in sich geschlossene Einheit erzeugt, bei der der Lichtausfallwinkel unabhängig von der Lage und Position der Leiterplatte immer senkrecht bzw. in Richtung der optischen Achse erfolgt. Darüber hinaus wird der Spiegeleffekt dadurch verstärkt bzw. verbessert, dass die Spiegelkurve, auch als„Conic Mirror" bezeichnet, so ausgebildet ist, dass man keine punktförmigen Lichtstrahlen, sondern eher einen Spot, einen Lichtfleck, erzielt und damit sicher in die Faseroptik einkoppelt.
Zu der insbesondere in den Fig. 13 bis 17 gezeigten Erfindung sei noch bemerkt, dass die zwei Reflektoren wie folgt arbeiten. Zum Empfänger läuft das Licht, welches von einer optischen Faser in das Overmoldmaterial eintritt, durch die Oberfläche D. Infolge der internen Totalreflexion wird das Licht von der konischen Oberfläche C reflektiert und dadurch um 90° abgelenkt und annähernd kollimiert. Es fällt sodann auf eine unterhalb des Reflektors innerhalb des Overmoldmaterials 30 angeordnete Photodiode. Was den Emitter anlangt, so wird das von einem VCSL emittierte Licht auf eine konischen Reflektoroberfläche A auftreffen. Dabei wird der Strahl um (weniger als 90°) gewendet und teilweise kollimiert, und zwar infolge der internen Totalreflexion. Der Strahl tritt dann aus dem Overmoldmaterial durch die Oberfläche B aus und tritt wieder ein, und zwar durch die konische Oberfläche C, und tritt schließlich aus durch die Oberfläche D. Wie bereits erwähnt, bilden C und D in effektiver Weise eine exzentrische asphärische plane konvexe Linse.
Es sei bemerkt, dass man statt„Overmolding" auch das Wort„Kapselung" benutzen könnte, um auszudrücken, dass auch andere Moldingverfahren verwendet werden können. Auch ist eine bidirektionale Version möglich. Basierend auf den obigen Ausführungen sieht die vorliegende Erfindung zusätzlich einen weiteren konischen Reflektor vor neben dem Reflektor wie er in den vorstehenden Ausführungen beschrieben wurde. In den Fig. 13-17 verkörpert der linke Reflektor A das zusätzliche Merkmal dieser Erfindung. Der zusätzliche Reflektor A ist, wie in der Fig. 5 gezeigt, dem Reflektor C nach- geordnet. Die Kombination der beiden Reflektoren arbeitet wie im Folgenden erläutert.
Die beiden Reflektoren werden durch den oben beschriebenen ersten Gehäuseteil gebildet, der derart geformt ist, dass er die jeweiligen Reflexionsflächen X und Y bildet.
Man erkennt, dass der Empfänger das durch die optische Faser (optical fiber core) eintretende Licht über die Oberfläche D empfängt. Infolge der internen
Totalreflexion wird das Licht an der konischen Oberfläche C weg reflektiert und dadurch um 90° gewendet und annähernd kollimiert. Es fällt dann auf die Photodiode bzw. den Photodetektor unterhalb des Reflektors, und zwar innerhalb des ersten Gehäuseteils speziell der Overmoldverbindung oder dem Over- moldkunststoff. Der Emitter andererseits (VCSEL) emittiert das Licht, welches auf die konische Reflektoroberfläche A auftrifft. Der Strahl wird gewendet (um weniger als 90°) und teilweise infolge von interner Totalreflexion kollimiert. Der Strahl tritt aus dem ersten Gehäuseteil, speziell dem Overmoldkunststoff, durch die Oberfläche B aus und tritt wieder ein durch die konische Oberfläche C und tritt schließlich durch die Oberfläche D aus. Wobei C und D effektiv eine sphärische plane konvexe Linse bilden.
Eine bemerkenswerte Eigenschaft der Erfindung besteht darin, dass das VCSEL-Photodioden-Nebensprechen im wesentlichen Null sein sollte, wobei potentielle Beiträge nur vom Streuen infolge von Oberflächenrauheit auftreten könnten. Dies ist nicht notwendigerweise bei anderen Implementierungen der Fall, wo beispielsweise eine Temperaturstabilisierung erforderlich sein kann, um Nebensprechen zu vermeiden. Es sei bemerkt, dass die in der Fig. 15 gezeigte Geometrie nur eine mögliche Implementierung ist. Beispielsweise könnte die Oberfläche A in einigen Fällen als eine flache gekippte Oberfläche ausgebildet sein. Die Oberflächen B und D könnten mit nach außen gerichteten Orientierungen vorgesehen sein, entweder um die Freigabe des geformten ersten Gehäuseteils zu erleichtern oder um als ein optisches Prisma zu wirken.
Die präzise Wahl der Geometrie hängt von dem Kerndurchmesser ab und der numerischen Öffnung der optischen Faser. Genauer gesagt diktiert die numerische Apertur den maximalen Einfallswinkel des Strahls auf der Faser. Daher gilt Folgendes: Je kleiner die numerische Öffnung, umso genauer ist die Steuerung oder Kontrolle der Reflektorgeometrie bei dem Zusammenbau.