[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012026535A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2012026535A1
WO2012026535A1 PCT/JP2011/069203 JP2011069203W WO2012026535A1 WO 2012026535 A1 WO2012026535 A1 WO 2012026535A1 JP 2011069203 W JP2011069203 W JP 2011069203W WO 2012026535 A1 WO2012026535 A1 WO 2012026535A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
voltage
semiconductor switching
period
switching element
Prior art date
Application number
PCT/JP2011/069203
Other languages
English (en)
French (fr)
Inventor
山田 隆二
三野 和明
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to EP11819998.3A priority Critical patent/EP2575250B1/en
Priority to JP2012530713A priority patent/JP5429388B2/ja
Priority to US13/809,589 priority patent/US9071166B2/en
Priority to CN201180034403.2A priority patent/CN102986128B/zh
Publication of WO2012026535A1 publication Critical patent/WO2012026535A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current

Definitions

  • the present invention relates to a power converter that makes it possible to suppress a surge voltage generated due to a switching operation of a semiconductor switching element.
  • the voltage of the DC power source is converted into a pulse voltage sequence equivalent to a sine wave by a voltage-type PWM inverter (a waveform that becomes a sine wave when components above the switching frequency are removed), and this PWM modulation is performed.
  • a sinusoidal voltage is applied to the motor.
  • FIG. 8 is a schematic configuration diagram of a system for driving an electric motor in such a manner.
  • 1 is a DC power supply
  • 2 is a three-phase voltage type PWM inverter (hereinafter referred to as an inverter) connected to the DC power supply
  • 3 is a control circuit for controlling the inverter 2
  • 3a is a control circuit 3.
  • the PWM modulation unit 4 is an electric motor driven by the inverter 2.
  • the inverter 2 is composed of a three-phase bridge composed of a U phase in which semiconductor switching elements Su and Sx are connected in series, a V phase in which Sv and Sy are connected in series, and a W phase in which Sw and Sz are connected in series. Yes.
  • the inverter 2 and the electric motor 4 are connected by wiring, and a resistance component and an inductance component exist in this wiring. Furthermore, stray capacitance exists between the wirings of each phase between the inverter 2 and the electric motor 4 and between the wirings of each phase and the ground.
  • Ls indicates the inductance of the wiring between the inverter 2 and the electric motor 4
  • Cs indicates the stray capacitance between the wiring of each phase and the ground or the reference potential. Note that the resistance component of each phase wiring is omitted.
  • the positive terminal of the DC power supply 1 is P
  • the negative terminal is N
  • a connection midpoint between the semiconductor switching elements Su and Sx of the inverter 2 is U
  • a connection midpoint between Sv and Sy is V
  • a connection midpoint between Sw and Sz is W.
  • the three-phase input terminals of the motor 4 are U1, V1, and W1, respectively.
  • the control circuit 3 uses the PWM (pulse width) modulation calculation to compare the magnitude of the sine wave (modulation signal) and the triangular wave (carrier signal) in the PWM modulation unit 3a. Signals for on / off control of the switching elements Su to Sw and Sx to Sz are generated.
  • the inverter 2 switches on / off states of the semiconductor switching elements Su to Sw and Sx to Sz in accordance with the control signal generated by the control circuit 3, and converts the voltage of the DC power source 1 into a PWM-modulated pulse-shaped rectangular wave voltage. Convert.
  • the PWM-modulated pulse-shaped rectangular wave voltage is output between the output terminals U, V, and W of the inverter 2 and is applied to the input terminals U1, V1, and W1 of the electric motor 4 through the wiring.
  • an inductance Ls and a stray capacitance Cs exist in the wiring between the inverter 2 and the electric motor 4.
  • a PWM-modulated pulse-like rectangular wave voltage is applied to an LC circuit composed of the inductance Ls and the stray capacitance Cs, a resonance phenomenon occurs between the inverter 2 and the LC circuit.
  • FIG. 9 is a diagram showing a resonance voltage generated between the input terminals U1-V1 of the electric motor 4 when the semiconductor switching element Su of the inverter 2 is turned on / off.
  • the potential reference point of each terminal is N point in FIG.
  • the semiconductor switching element Su When the control signal of the semiconductor switching element Su changes from Low to High, the semiconductor switching element Su changes from the off state to the on state.
  • the semiconductor switching element Su changes from the OFF state to the ON state, the U terminal voltage of the inverter 2 changes from 0 [V] to the DC power supply voltage Ed [V].
  • the U terminal voltage of the inverter 2 is applied to the input terminal U1 of the electric motor 4.
  • LC resonance occurs between the inverter 2, the inductance Ls, and the stray capacitance Cs, and a resonance voltage is applied between the U1-V1 terminals of the electric motor 4.
  • This resonance voltage is a surge voltage that attenuates and oscillates with time due to a resistance component (not shown) of the wiring between the inverter 2 and the electric motor 4, and the maximum value is the voltage Ed [ V] is approximately doubled. It is known that this excessive surge voltage and its time change rate dv / dt cause dielectric breakdown of the electric motor 4.
  • a surge voltage suppressor comprising a rectifier constituted by a diode bridge at the input terminal of the motor and a capacitor and a resistor connected in parallel at both ends of the DC terminal
  • a surge voltage suppression device has been proposed in which a current flowing through a resistor connected to a DC terminal of a rectifier is controlled by a semiconductor switching element (see, for example, Patent Document 2).
  • a surge voltage suppression method has been proposed in which the DC terminal of the rectifier is connected to the input terminal of the inverter and the energy of the surge voltage is regenerated to the power source (see, for example, Patent Document 3).
  • the present invention seeks to solve the problems of such a conventional surge voltage suppressor, and its purpose is to add no special parts or a minimum number of parts. It is providing the power converter device which can suppress the surge voltage applied to an electric motor.
  • a first problem-solving means includes a semiconductor switching element and a control circuit that controls on / off of the semiconductor switching element, converts electric power received from a power source, and supplies the converted power to a load.
  • the power conversion device that has the following configuration.
  • the control circuit includes a first on signal and a second on signal as a control signal for turning on the semiconductor switching element. Further, an off period of approximately the same time as the period of the first on signal is provided between the first on signal and the second on signal. A period during which the first ON signal of the control signal is output and an OFF period provided between the first ON signal and the second ON signal are provided between the semiconductor switching element and the load. The time is approximately 1/6 of the resonance period of the existing impedance.
  • the second problem-solving means includes a semiconductor switching element and a control circuit that controls on / off of the semiconductor switching element, and converts the power received from the power source and supplies the load to the load. It has the following configuration.
  • the power converter includes an inductor connected between the semiconductor switching element and the load, and a capacitor connected between a terminal of the inductor connected to the load side and one end of the power source.
  • LC circuit consisting of
  • control circuit includes a first on signal and a second on signal as a control signal for turning on the semiconductor switching element. Further, an off period of approximately the same time as the period of the first on signal is provided between the first on signal and the second on signal. A period during which the first ON signal of the control signal is output and an OFF period provided between the first ON signal and the second ON signal are provided between the semiconductor switching element and the load. The time is approximately 1/6 of the resonance period of the LC circuit.
  • the semiconductor switching element When the semiconductor switching element is turned on by the first or second problem solving means, the first on signal rises (first step), the first on signal falls (second step), and the second Since LC resonance can be generated at each step of the rising edge of the ON signal (third step), the LC resonance voltage generated from the first step to the third step is superimposed on the input terminal portion of the motor, and the surge The voltage can be canceled out.
  • the third problem-solving means includes a semiconductor switching element and a control circuit that controls on / off of the semiconductor switching element, and converts the power received from the power source to supply the load to the load. It has the following configuration.
  • the control circuit includes a first off signal and a second off signal as a control signal for turning off the semiconductor switching element. Further, an on period of approximately the same time as the period of the first off signal is provided between the first off signal and the second off signal. A period during which the first off signal of the control signal is output and an on period provided between the first off signal and the second off signal are provided between the semiconductor switching element and the load. The time is approximately 1/6 of the resonance period of the existing impedance.
  • a fourth problem-solving means includes a semiconductor switching element and a control circuit that controls on / off of the semiconductor switching element, and converts power received from a power source to supply the load to a load. It has the following configuration.
  • the power converter includes an inductor connected between the semiconductor switching element and the load, and a capacitor connected between a terminal of the inductor connected to the load side and one end of the power source.
  • LC circuit consisting of
  • control circuit includes a first off signal and a second off signal as a control signal for turning off the semiconductor switching element. Further, an on period of approximately the same time as the period of the first off signal is provided between the first off signal and the second off signal. A period during which the first off signal of the control signal is output and an on period provided between the first off signal and the second off signal are provided between the semiconductor switching element and the load. The time is approximately 1/6 of the resonance period of the LC circuit.
  • the semiconductor switching element When the semiconductor switching element is turned off by the third or fourth problem solving means, the first off signal falls (first step), the first off signal rises (second step), and the second Since LC resonance can be generated at each step of the fall of the off signal (third step), the LC resonance voltage generated from the first step to the third step is superimposed on the input terminal portion of the motor, Surge voltage can be canceled out.
  • the figure which shows one Example of the power converter device which concerns on this invention The figure explaining the suppression principle of the motor terminal part surge voltage generated at the time of ON of a semiconductor switching element.
  • produces at the time of OFF of a semiconductor switching element.
  • (A) The figure which shows an example of the surge voltage suppression process part which produces
  • FIG. 1 The figure which shows the further another Example of the power converter device which concerns on this invention.
  • FIGS. 1 to 7 the same reference numerals are given to the same components as those in the conventional motor drive system shown in FIG. 8, and the description thereof is omitted.
  • FIG. 1 is a circuit configuration diagram showing an electric motor drive system using a power converter according to the present invention.
  • the DC power source 1, the inverter 2, the electric motor 4, the wiring inductance Ls, and the stray capacitance Cs are the same as the circuit configuration diagram showing the electric motor drive system according to the prior art shown in FIG. 8.
  • the electric motor 4 driven by the inverter 2 includes an induction generator, a synchronous generator, in addition to an induction motor and a synchronous motor.
  • the control circuit 3 in FIG. 1 includes the same PWM modulation unit 3a as the circuit configuration diagram showing the electric motor drive system according to the prior art shown in FIG. 8, and further includes a surge voltage suppression processing unit 3b.
  • the surge voltage suppression processing unit 3b generates a control signal for on / off control of the semiconductor switching elements Su to Sw and Sx to Sz of the inverter 2 from the signal generated by the PWM modulation unit 3a.
  • the semiconductor switching element Su among the plurality of semiconductor switching elements constituting the inverter 2 will be described as an example, but other semiconductor switching elements Sv, Sw, Sx, Sy, Sz are also described. Although the explanation is omitted, the same control as Su is performed.
  • FIG. 2 is a diagram showing the principle of suppressing the surge voltage when the semiconductor switching element Su of the inverter 2 is turned on in the motor drive system shown in FIG.
  • the potential reference point of each terminal is the N point in FIG.
  • the PWM modulation unit 3a of the control circuit 3 generates the PWM modulation signal Psu of the semiconductor switching element Su.
  • the PWM modulation signal Psu is obtained by comparing the magnitude of a sine wave (modulation signal) and a triangular wave (carrier signal), as in the prior art shown in FIG.
  • the surge voltage suppression processing unit 3b outputs the first on signal G11 during the period T11, starting from the timing when the PWM modulation signal Psu rises from Low (semiconductor switching element is off) to High (semiconductor switching element is on). To do. After that, after outputting the off signal during the same period T11, the second on signal G12 is outputted until the PWM modulation signal Psu becomes Low.
  • a signal including the first on signal G11, the second on signal G12, and the off period T11 provided between these signals constitutes a control signal Gsu for turning on the semiconductor switching element Su.
  • the timing at which the first on signal G11 rises is defined as the first timing
  • the timing at which the first on signal G11 falls is defined as the second timing
  • the timing at which the second on signal rises is defined as the third timing.
  • the semiconductor switching element Su sequentially shifts from the off state to the on state at the first timing, the off state at the second timing, and the on state at the third timing in accordance with the control signal Gsu.
  • the voltage between the U and V terminals of the inverter 2 changes from 0 [V] ⁇ Ed [V] ⁇ 0 [V] ⁇ Ed [V] corresponding to the control signal Gsu (see FIG. 2).
  • voltage changes at the first, second, and third timings are defined as a first step, a second step, and a third step, respectively.
  • the voltage output between the terminals U and V of the inverter 2 includes a first step voltage and a third step voltage that change to amplitude Ed [V] at the first and third timings as shown in the figure, It can be regarded as a composite voltage of three step voltages (changes from 0 [V]) of the second step voltage that changes to amplitude ⁇ Ed [V] at the second timing.
  • the first step voltage is a rectangular wave voltage having a positive amplitude Ed [V] at the first timing from the initial voltage 0 [V].
  • the second step voltage is a rectangular wave voltage having a negative amplitude ⁇ Ed [V] at the second timing from the initial voltage 0 [V].
  • the third step voltage is a rectangular wave voltage having a positive amplitude Ed [V] at the third timing from the initial voltage 0 [V].
  • the step change of the voltage at the first to third timing causes resonance of the LC circuit composed of the wiring inductance Ls and the stray capacitance Cs shown in FIG. That is, as shown in FIG. 2, the resonance voltage Vr11 generated by the first step voltage has an initial voltage of 0 [V], and a center voltage Ed [V] and an amplitude Ed [V] generated at the first timing. Is a sine wave voltage.
  • the resonance voltage Vr12 generated by the second step voltage is a sine wave voltage having an initial voltage of 0 [V] and a center voltage ⁇ Ed [V] and an amplitude Ed [V] generated at the second timing.
  • the resonance voltage Vr13 generated by the third step voltage is a sine wave voltage having an initial voltage of 0 [V] and a center voltage Ed [V] and an amplitude Ed [V] generated at the third timing.
  • the period T of the resonance voltages Vr11 to Vr13 generated by the first to third step voltages is any if the inductance value of the wiring inductance Ls is Lsx [H] and the capacitance value of the stray capacitance Cs is Csx [F]. Is also 1 / [2 ⁇ (LsxCsx)] [s]. Therefore, the resonance frequency f is 1 / T [Hz], and the angular frequency ⁇ is 2 ⁇ f [rad / s].
  • the resonance voltages Vr12 and Vr13 generated by the second step voltage and the third step voltage are generated by the first step voltage.
  • the phases of the resonance voltage Vr11 are “(4/3) ⁇ [rad] delay” and “(2/3) ⁇ [rad] delay”, respectively.
  • the voltage generated at the U1-V1 terminal of the electric motor 4 from the first timing to the third timing is the resonance voltage Vr11 generated by the first step voltage and the resonance voltage generated by the second step voltage. This is a voltage obtained by combining Vr12. Therefore, the voltage generated at the U1-V1 terminal of the electric motor 4 during this period is a voltage having a more gradual rise than the resonance voltage shown in FIG. Further, the voltage after the third timing is a voltage obtained by synthesizing the resonance voltages Vr11, Vr12, and Vr13. Therefore, the voltage generated at the U1-V1 terminal of the electric motor 4 after the third timing is a direct current whose magnitude is Ed [V].
  • the voltage between the U1 and V1 terminals of the electric motor 4 gradually rises from 0 [V] to the DC voltage Ed [V] by the function of the surge voltage suppression processing unit according to the present invention, and rises sharply. It is not a surge voltage. As a result, the insulation of the motor winding can be prevented.
  • the PWM modulation unit 3a of the control circuit 3 generates the PWM modulation signal Psu of the semiconductor switching element Su.
  • the PWM modulation signal Psu is obtained by comparing the magnitude of a sine wave (modulation signal) and a triangular wave (carrier signal), as in the prior art shown in FIG.
  • the surge voltage suppression processing unit 3b outputs the first off signal G21 during the period T21 starting from the timing when the PWM modulation signal Psu falls from High (semiconductor switching element is on) to Low (semiconductor switching element is off). To do. Then, after outputting an ON signal during the same period T21, the second OFF signal G22 is output until the PWM modulation signal Psu becomes High. A signal composed of the first OFF signal G21, the second OFF signal G22, and the ON signal of the ON period T21 provided between these signals generates a control signal Gsu for turning off the semiconductor switching element Su. Constitute.
  • the timing at which the first off signal G21 falls is the first timing
  • the timing at which the first off signal G21 rises is the second timing
  • the timing at which the second off signal falls is the third timing.
  • the semiconductor switching element Su sequentially shifts from the on state to the off state at the first timing, the on state at the second timing, and the off state at the third timing in accordance with the control signal Gsu.
  • the voltage between the U and V terminals of the inverter 2 changes from Ed [V] ⁇ 0 [V] ⁇ Ed [V] ⁇ 0 [V] corresponding to the control signal Gsu.
  • voltage changes at the first, second, and third timings are defined as a first step, a second step, and a third step, respectively.
  • the voltage output between the terminals U and V of the inverter 2 includes a first step voltage and a third step voltage that change from Ed [V] to 0 [V] at the first and third timings, respectively. It can be regarded as a composite voltage of three step voltages of the second step voltage that changes from -Ed [V] to 0 [V] at the second timing.
  • the first step voltage is a rectangular wave voltage that becomes 0 [V] at the first timing from the initial voltage Ed [V].
  • the second step voltage is a rectangular wave voltage that becomes 0 [V] at the second timing from the initial voltage -Ed [V].
  • the third step voltage is a rectangular wave voltage that becomes 0 [V] at the third timing from the initial voltage Ed [V].
  • the resonance voltage Vr21 generated by the first step voltage is a sine wave voltage having an initial voltage of Ed [V] and a center voltage of 0 [V] and an amplitude of Ed [V] generated at the first timing.
  • the resonance voltage Vr22 generated by the second step voltage is a sine wave voltage having an initial value of -Ed [V] and a center voltage 0 [V] and an amplitude Ed [V] generated at the second timing.
  • the resonance voltage Vr23 generated by the third step voltage is a sine wave voltage having an initial voltage of Ed [V] and a center voltage of 0 [V] and an amplitude of Ed [V] generated at the third timing.
  • the period T of the resonance voltages Vr21 to Vr23 generated by the first to third step voltages is 1 / [2 ⁇ (LsxCsx)] [s]. Therefore, the resonance frequency f is 1 / T [Hz], and the angular frequency ⁇ is 2 ⁇ f [rad / s].
  • the resonance voltages Vr22 and Vr23 generated by the second step voltage and the third step voltage are generated by the first step voltage.
  • the phase of the resonance voltage Vr21 is (4/3) ⁇ [rad] delayed and (2/3) ⁇ [rad] delayed, respectively.
  • the voltage generated at the U1-V1 terminal of the electric motor 4 from the first timing to the third timing is the resonance voltage Vr21 generated by the first step voltage and the resonance voltage generated by the second step voltage.
  • a voltage obtained by synthesizing Vr22. Therefore, the voltage generated at the U1-V1 terminal of the electric motor 4 during this period is a voltage having a more gradual fall than the resonance voltage shown in FIG.
  • the voltage after the third timing is a voltage obtained by synthesizing the resonance voltages Vr21, Vr22, and Vr23. Therefore, the voltage generated at the U1-V1 terminal of the electric motor 4 after the third timing is a direct current with a magnitude of 0 [V].
  • the voltage between the U1-V1 terminals of the electric motor 4 becomes a voltage that gently falls from the DC voltage Ed to 0V by the action of the surge voltage suppression processing unit 3b according to the present invention, and the surge voltage that falls sharply Must not. As a result, the insulation of the motor winding can be prevented.
  • FIG. 4A is an example in which a surge voltage suppression processing unit 3b for generating a control signal for the semiconductor switching element Su is represented by a block diagram.
  • FIG. 4B is a timing chart showing the relationship between the input and output signals of each block in FIG.
  • 31 is a Gu1 generation unit
  • 32 is a Gu2 generation unit
  • 33 is an exclusive logic operation unit XOR.
  • the output of this exclusive logic operation part XOR becomes the control signal Gsu of the semiconductor switching element.
  • the Gu1 generation unit 31 receives the PWM modulation signal Psu generated by the PWM modulation unit 3a shown in FIG. 1, and when this input signal Psu changes from Low to High, as shown in FIG. 4B. At time T11, a signal Gu1 that is High is output. Further, when the input signal Psu changes from High to Low, the Gu1 generation unit 31 outputs a signal Gu1 that becomes High for a time T21 as shown in FIG. 4B.
  • the Gu2 generation unit 32 also receives the PWM modulation signal Psu, and when this input signal Psu changes from Low to High, changes from Low to High with a delay of time T12 as shown in FIG. 4B.
  • the signal Gu2 to be output is output.
  • the Gu2 generation unit 32 outputs a signal Gu2 that changes from High to Low with a delay of time T22 as shown in FIG. 4B.
  • the exclusive logic operation unit 33 performs an exclusive OR operation using the control signals Gu1 and Gu2 output from the Gu1 generation unit 31 and the Gu2 generation unit 32 as inputs, and becomes High only when any one input is High.
  • a control signal Gsu is output. Therefore, the control signal Gsu becomes High during the time T11 when the PWM signal Psu changes from Low to High, and then becomes Low, and then becomes High again after the time (T12-T11) has elapsed. Further, when the PWM signal Psu changes from High to Low, the control signal Gsu becomes Low for a time T21, then becomes High, and then becomes Low again after the time (T22-T21) has elapsed.
  • the control signal Gsu shown in FIGS. 2 and 3 can be obtained.
  • the surge voltage suppression processing unit 3b according to the present invention can be configured using an electronic circuit in the subsequent stage of the PWM modulation unit 3a of the prior art, the power converter is not increased in size.
  • the surge voltage suppression processing unit 3b shown in FIG. 4 is an example of logic for obtaining the control signal Gsu, and if the control signal Gsu shown in FIGS. 2 and 3 can be obtained by other logic, the present invention will be described. It is clear that the effect concerning can be exhibited. Therefore, the surge voltage suppression processing unit 3b according to the present invention is not limited to the block diagram shown in FIG.
  • FIG. 5 is a circuit configuration diagram of an electric motor drive system showing another embodiment of the present invention.
  • This embodiment is different from the embodiment of FIG. 1 in that an LC filter including an inductor Lf and a capacitor Cf is provided between the inverter 2 and the electric motor 4.
  • the inductor Lf of the LC filter is inserted between the terminals U, V, W of the inverter 2 and the input terminals U1, V1, W1 of the electric motor 4.
  • the LC filter capacitor Cf has one end connected between the inductor Lf and the input terminals U1, V1 and W1 of the motor 4, and the other end connected to the N terminal side of the DC power supply 1 at once. Is done.
  • the inductance value of the inductor Lf and the capacitance value of the capacitor Cf are selected to be approximately 10 times or more than the inductance value of the wiring inductance Ls and the capacitance value of the stray capacitance Cs, the inductor Ls and the stray capacitance are selected.
  • the rise and fall of the voltage applied to the LC circuit composed of Cs becomes gentle.
  • the resonance of the LC circuit composed of the inductor Ls and the stray capacitance Cs can be suppressed.
  • the times T11 and T21 of the surge voltage suppression processing unit 3b in FIG. 5 are set to 1/6 of the resonance period T of the LC filter.
  • FIG. 6 is a circuit configuration diagram of an electric motor drive system showing still another embodiment using the power conversion device according to the present invention.
  • the present embodiment is different from the embodiment shown in FIG. 5 in that the other ends of the capacitors Cf are collectively connected to the P terminal side of the DC power supply 1.
  • the inductance value of the inductor Lf, the capacitance value of the capacitor Cf, and the times T11 and T21 in the surge voltage suppression processing unit 3b are the same as those in the embodiment shown in FIG.
  • the resonance of the LC filter can be suppressed as in the embodiment shown in FIG.
  • the surge voltage generated at the input terminal of the electric motor 4 can be suppressed, and the dielectric breakdown of the electric motor 4 can be prevented.
  • FIG. 7 is a circuit configuration diagram of an electric motor drive system showing still another embodiment using the power conversion device according to the present invention.
  • the difference from the embodiment shown in FIG. 5 is that a DC power supply 1a and a DC power supply 1b are connected in series to form a DC power supply, and the other ends of the capacitors Cf are collectively connected to the DC power supply. 1a and the DC power supply 1b are connected to the series connection point.
  • the inductance value of the inductor Lf, the capacitance value of the capacitor Cf, and the times T11 and T21 in the surge voltage suppression processing unit 3b are the same as those in the embodiment shown in FIG.
  • the resonance of the LC filter can be suppressed as in the embodiment shown in FIG.
  • the surge voltage generated at the input terminal of the electric motor 4 can be suppressed, and the dielectric breakdown of the electric motor 4 can be prevented.
  • the electrical components added to suppress the surge voltage are an inductor Lf and a capacitor Cf, and a resistor that further consumes the energy of the surge voltage as in the prior art. There is no need to add a diode bridge circuit or the like. Therefore, an increase in size and cost of the power conversion device can be suppressed.
  • the operation and effect of the present invention have been described by taking an example of an electric motor drive system using a three-phase voltage type PWM inverter.
  • the load of the inverter is not limited to the electric motor, and an electric circuit other than the electric motor or Even an inverter that uses an electrical component as a load can exhibit the same operations and effects.
  • the inverter is not limited to a three-phase inverter, and may be a single-phase or a multi-phase inverter having three or more phases. Further, the inverter is not limited to a two-level inverter, and may be a multi-level inverter having three or more levels.
  • the modulation method is not limited to PWM modulation, and any method may be used as long as a rectangular wave voltage is output to the load.
  • the power conversion device when the semiconductor switching element shifts to an on state or an off state, the power is switched from on to off in a time of 1/6 of the resonance period of the impedance between the semiconductor switching element and the load. Since the on operation or the off-> on-> off operation is performed, the generation of a surge voltage can be suppressed by the superposition effect of the resonance voltage generated by each switching operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 インバータ2と電動機4との間にLC回路が存在する電動機駆動システムにおいて、インバータ2を構成する半導体スイッチング素子Su~Sw,Sx~Szを、第1のオン信号と第2のオン信号とこれらの間に設けた第1のオン信号と同時間のオフ期間とからなるオン信号と、第1のオフ信号と第2のオフ信号とこれらの間に設けた第1のオフ信号と同時間のオン期間とからなるオフ信号とでスイッチング制御し、第1のオン信号の時間と第2のオフ信号の時間とをLC回路固有の共振周期の1/6にすることで、電動機4の入力端子に印加されるサージ電圧を抑制する。

Description

電力変換装置
 本発明は、半導体スイッチング素子のスイッチング動作に起因して生じるサージ電圧を抑制することを可能にする電力変換装置に関する。
 一般に、交流電動機を駆動する場合、直流電源の電圧を電圧型PWMインバータで正弦波と等価なパルス電圧列(スイッチング周波数以上の成分を取り除くと正弦波となる波形)に変換し、このPWM変調された正弦波状の電圧が電動機に印加される。
 図8は、このような方式で電動機を駆動するシステムの概略構成図である。図8中、1は直流電源、2は直流電源1に接続された3相電圧型PWMインバータ(以下インバータとする。)、3はインバータ2を制御するための制御回路、3aは制御回路3が備えるPWM変調部、4はインバータ2で駆動される電動機である。
 インバータ2は、半導体スイッチング素子SuとSxを直列に接続したU相、SvとSyを直列に接続したV相およびSwとSzを直列に接続したW相とからなる3相のブリッジで構成されている。
 インバータ2と電動機4とは配線で接続され、この配線には抵抗成分とインダクタンス成分とが存在する。さらに、インバータ2と電動機4と間の各相の配線間および各相の配線と大地間との間には浮遊容量が存在する。図8において、Lsはインバータ2と電動機4との間の配線のインダクタンスを示し、Csは各相の配線と大地または基準電位間の浮遊容量を示す。なお、各相の配線などが有する抵抗成分はその記載を省略している。
 ここで、直流電源1の正側端子をP、負側端子をNとする。また、インバータ2の半導体スイッチング素子SuとSxの接続中点をU、SvとSyの接続中点をV、SwとSzの接続中点をWとする。また、電動機4の3相入力端子をそれぞれU1,V1,W1とする。
 このような電動機駆動システムにおいて、制御回路3は、PWM変調部3aにおいて、正弦波(変調信号)と三角波(キャリア信号)との大小比較をするPWM(パルス幅)変調演算によりインバータ2内の半導体スイッチング素子Su~Sw,Sx~Szをオン/オフ制御するための信号を生成する。インバータ2は、制御回路3により生成された制御信号に従って半導体スイッチング素子Su~Sw,Sx~Szのオン/オフ状態を切り換えて、直流電源1の電圧をPWM変調されたパルス状の矩形波電圧に変換する。PWM変調されたパルス状の矩形波電圧は、インバータ2の出力端子U,V,W間に出力され、配線を介して電動機4の入力端子U1,V1,W1に印加される。
 ところで、図8に示すようにインバータ2と電動機4との間の配線には、インダクタンスLsと浮遊容量Csが存在する。PWM変調されたパルス状の矩形波電圧がこのインダクタンスLsと浮遊容量Csとで構成されるLC回路に印加されると、インバータ2とLC回路との間で共振現象が生じる。
 図9は、インバータ2の半導体スイッチング素子Suがオン/オフ動作をしたときの電動機4の入力端子U1-V1間に生じる共振電圧を示した図である。以下、各端子の電位基準点は、図8のN点とする。
 半導体スイッチング素子Suの制御信号がLowからHighに変化すると、半導体スイッチング素子Suがオフ状態からオン状態に変化する。半導体スイッチング素子Suがオフ状態からオン状態に変化すると、インバータ2のU端子電圧が0[V]から直流電源の電圧Ed[V]に変化する。このインバータ2のU端子電圧は、電動機4の入力端子U1に印加される。このとき、インバータ2とインダクタンスLsと浮遊容量Csの間でLC共振が発生し、電動機4のU1-V1端子間には共振電圧が印加される。
 この共振電圧は、インバータ2と電動機4との間の配線などが有する抵抗成分(図示せず。)により時間とともに減衰振動するサージ電圧となるが、その最大値は、直流電源1の電圧Ed[V]の約2倍に達する。そして、この過大なサージ電圧およびその時間変化率dv/dtは、電動機4の絶縁破壊を引き起こすことが知られている。
 このような過大なサージ電圧による電動機の絶縁破壊を防止する方策として、電動機の入力端子部にダイオードブリッジで構成した整流器とその直流端子の両端にコンデンサと抵抗を並列接続してなるサージ電圧抑制装置が提案されている(例えば特許文献1参照。)。また、これを改良したものとして、整流器の直流端子に接続した抵抗に流れる電流を半導体スイッチング素子で制御するサージ電圧抑制装置が提案されている(例えば特許文献2参照。)。また、整流器の直流端子をインバータの入力端子に接続してサージ電圧のエネルギーを電源に回生するサージ電圧抑制方式などが提案されている(例えば特許文献3参照。)。また、インバータと電動機との間にリアクトルを接続し、このリアクトルに抵抗とコンデンサの直列体を並列接続するサージ電圧抑制方法が提案されている(例えば特許文献4参照。)。
特開平8-23682号公報 特開2006-115667号公報 特開2010-136564号公報 特開2007-166708号公報
 しかしながら、前記方策では、サージ電圧を抑制するために整流器、抵抗、コンデンサなどからなるサージ電圧抑制装置や、リアクトル、抵抗、コンデンサからなるサージ電圧抑制回路を追加する必要があり、装置の大型化、高価格化を招くことになる。
 本発明は、このような従来のサージ電圧抑制装置が有していた問題を解決しようとするものであり、その目的は、特別な部品を追加することなく、または最小限の部品の追加により、電動機に印加されるサージ電圧を抑制することができる電力変換装置を提供することである。
 上記目的を達成するために、第1の課題解決手段は、半導体スイッチング素子と、前記半導体スイッチング素子のオン/オフを制御する制御回路とを備え、電源から受電した電力を変換して負荷に供給する電力変換装置において、以下の構成を有するものである。
 すなわち、前記制御回路は、前記半導体スイッチング素子をオン状態にするための制御信号を、第1のオン信号と第2のオン信号とで構成する。更に、これら第1のオン信号と第2のオン信号との間に、第1のオン信号の期間と略同じ時間のオフ期間を設ける。そして、前記制御信号の第1のオン信号が出力される期間と、第1のオン信号と第2のオン信号との間に設けられるオフ期間とを、前記半導体スイッチング素子と負荷との間に存在するインピーダンスが有する共振周期の略1/6の時間とするものである。
 また、第2の課題解決手段は、半導体スイッチング素子と、前記半導体スイッチング素子のオン/オフを制御する制御回路とを備え、電源から受電した電力を変換して負荷に供給する電力変換装置において、以下の構成を有するものである。
 すなわち、前記電力変換装置は、前記半導体スイッチング素子と前記負荷との間に接続したインダクタと、前記インダクタの端子のうち前記負荷側に接続される端子と前記電源の一端との間に接続したコンデンサとからなるLC回路とを備える。
 また、前記制御回路は、前記半導体スイッチング素子をオン状態にするための制御信号を、第1のオン信号と第2のオン信号とで構成する。更に、これら第1のオン信号と第2のオン信号との間に、第1のオン信号の期間と略同じ時間のオフ期間を設ける。そして、前記制御信号の第1のオン信号が出力される期間と、第1のオン信号と第2のオン信号との間に設けられるオフ期間とを、半導体スイッチング素子と負荷との間に設けた前記LC回路が有する共振周期の略1/6の時間とするものである。
 上記第1または第2の課題解決手段により、半導体スイッチング素子がオンするときに第1のオン信号の立ち上がり(第1ステップ)、第1のオン信号の立下り(第2ステップ)および第2のオン信号の立ち上がり(第3ステップ)の各ステップでLC共振を発生させることができるため、電動機の入力端子部において前記第1ステップから第3ステップで発生させたLC共振の電圧が重畳され、サージ電圧を打ち消すことができる。
 また、第3の課題解決手段は、半導体スイッチング素子と、前記半導体スイッチング素子のオン/オフを制御する制御回路とを備え、電源から受電した電力を変換して負荷に供給する電力変換装置において、以下の構成を有するものである。
 すなわち、前記制御回路は、前記半導体スイッチング素子をオフ状態にするための制御信号を、第1のオフ信号と第2のオフ信号とで構成する。更に、これら第1のオフ信号と第2のオフ信号との間に、第1のオフ信号の期間と略同じ時間のオン期間を設ける。そして、前記制御信号の第1のオフ信号が出力される期間と、第1のオフ信号と第2のオフ信号との間に設けられるオン期間とを、前記半導体スイッチング素子と負荷との間に存在するインピーダンスが有する共振周期の略1/6の時間とするものである。
 また、第4の課題解決手段は、半導体スイッチング素子と、前記半導体スイッチング素子のオン/オフを制御する制御回路とを備え、電源から受電した電力を変換して負荷に供給する電力変換装置において、以下の構成を有するものである。
 すなわち、前記電力変換装置は、前記半導体スイッチング素子と前記負荷との間に接続したインダクタと、前記インダクタの端子のうち前記負荷側に接続される端子と前記電源の一端との間に接続したコンデンサとからなるLC回路とを備える。
 また、前記制御回路は、前記半導体スイッチング素子をオフ状態にするための制御信号を、第1のオフ信号と第2のオフ信号とで構成する。更に、これら第1のオフ信号と第2のオフ信号との間に、第1のオフ信号の期間と略同じ時間のオン期間を設ける。そして、前記制御信号の第1のオフ信号が出力される期間と、第1のオフ信号と第2のオフ信号との間に設けられるオン期間とを、半導体スイッチング素子と負荷との間に設けた前記LC回路が有する共振周期の略1/6の時間とするものである。
 上記第3または第4の課題解決手段により、半導体スイッチング素子がオフするときに第1のオフ信号の立下り(第1ステップ)、第1のオフ信号の立ち上がり(第2ステップ)および第2のオフ信号の立下り(第3ステップ)の各ステップでLC共振を発生させることができるため、電動機の入力端子部において前記第1ステップから第3ステップで発生させたLC共振の電圧が重畳され、サージ電圧を打ち消すことができる。
本発明に係る電力変換装置の一実施例を示す図。 半導体スイッチング素子のオン時に発生する電動機端子部サージ電圧の抑制原理を説明する図。 半導体スイッチング素子のオフ時に発生する電動機端子部サージ電圧の抑制原理を説明する図。 (a)本発明に係る電力変換装置において半導体スイッチング素子の制御信号を生成するサージ電圧抑制処理部の一例を示す図、(b)同図(a)の各ブロックの入出信号の関係を示すタイミングチャート。 本発明に係る電力変換装置の他の実施例を示す図。 本発明に係る電力変換装置のさらに他の実施例を示す図。 本発明に係る電力変換装置のさらに他の実施例を示す図。 従来技術に係る電力変換装置を用いた電動機駆動システムを示す図。 図8に示す電力変換装置で電動機を駆動したときの電動機入力端子に発生するサージ電圧を説明する図。
 以下、本発明の実施の形態を図1~図7に基づいて詳細に説明する。なお、図1~図7において、図8に示した従来の電動機駆動システムと共通する構成要素には同符号を付し、その説明を省略する。
 図1は本発明に係る電力変換装置を用いた電動機駆動システムを示す回路構成図である。図1において、直流電源1、インバータ2、電動機4、配線のインダクタンスLsおよび浮遊容量Csは、図8に示した従来技術に係る電動機駆動システムを示す回路構成図と同じである。また、インバータ2により駆動される電動機4には、誘導電動機、同期電動機のほか誘導発電機、同期発電機などが含まれる。
 図1の制御回路3は、図8に示した従来技術に係る電動機駆動システムを示す回路構成図と同じPWM変調部3aを備えるとともに、さらにサージ電圧抑制処理部3bを備えている。サージ電圧抑制処理部3bは、PWM変調部3aが生成した信号からインバータ2の半導体スイッチング素子Su~Sw,Sx~Szをオン/オフ制御するための制御信号を生成する。
 尚、以下の説明では、インバータ2を構成する複数の半導体スイッチング素子のうち、半導体スイッチング素子Suを例にして説明するが、他の半導体スイッチング素子Sv、Sw、Sx、Sy、Szに対しても、説明は省略するが、Suと略同様の制御が行われることになる。
 図2は、図1に示した電動機駆動システムにおいて、インバータ2の半導体スイッチング素子Suがオン状態に移行するときにサージ電圧を抑制する原理を示す図である。各端子の電位基準点は図1のN点である。
 まず、制御回路3のPWM変調部3aで半導体スイッチング素子SuのPWM変調信号Psuを生成する。PWM変調信号Psuは、図8に示した従来技術と同様、正弦波(変調信号)と三角波(キャリア信号)との大小比較をすることにより得られる。
 サージ電圧抑制処理部3bは、PWM変調信号PsuがLow(半導体スイッチング素子がオフ)からHigh(半導体スイッチング素子がオン)に立ち上がるタイミングを起点にして期間T11の間、第1のオン信号G11を出力する。その後、同じ期間T11の間オフ信号を出力した後、PWM変調信号PsuがLowになるまで第2のオン信号G12を出力する。第1のオン信号G11と第2のオン信号G12およびこれらの信号の間に設けられたオフ期間T11とからなる信号が、半導体スイッチング素子Suをオン状態にするための制御信号Gsuを構成する。
 ここで、第1のオン信号G11が立ち上がるタイミングを第1のタイミング、第1のオン信号G11が立ち下がるタイミングを第2のタイミング、第2のオン信号が立ち上がるタイミングを第3のタイミングとする。
 半導体スイッチング素子Suは、オフ状態から、上記制御信号Gsuにしたがって、第1のタイミングでオンの状態、第2のタイミングでオフの状態、第3のタイミングでオンの状態に順次移行する。その結果、インバータ2のU-V端子間電圧は、制御信号Gsuに対応して、0[V]→Ed[V]→0[V]→Ed[V]と変化する(図2参照。)。ここで、第1,第2,第3のタイミングにおける電圧の変化を、それぞれ第1ステップ、第2ステップ、第3ステップとする。
 このインバータ2の端子U-V間に出力される電圧は、図示のように第1,第3のタイミングでそれぞれ振幅Ed[V]に変化する第1のステップ電圧、第3のステップ電圧と、第2のタイミングで振幅-Ed[V]に変化する第2のステップ電圧の3つのステップ電圧(何れも0[V]からの変化)の合成電圧として捉えることができる。上記第1のステップ電圧は、初期電圧0[V]から第1のタイミングで正側振幅Ed[V]となる矩形波電圧である。第2のステップ電圧は、初期電圧0[V]から第2のタイミングで負側振幅-Ed[V]となる矩形波電圧である。第3のステップ電圧は、初期電圧0[V]から第3タイミングで正側振幅Ed[V]となる矩形波電圧である。
 ところで、第1から第3のタイミングにおける電圧のステップ変化は、図1に示した配線インダクタンスLsおよび浮遊容量CsとからなるLC回路の共振を引き起こす。すなわち、図2に示すように、第1のステップ電圧によって生じる共振電圧Vr11は、初期電圧を0[V]とし、第1のタイミングで生じる、中心電圧Ed[V]、振幅Ed[V]となる正弦波電圧である。第2のステップ電圧によって生じる共振電圧Vr12は、初期電圧を0[V]とし、第2のタイミングで生じる、中心電圧-Ed[V]、振幅Ed[V]となる正弦波電圧である。第3のステップ電圧によって生じる共振電圧Vr13は、初期電圧を0[V]とし、第3のタイミングで生じる、中心電圧Ed[V]、振幅Ed[V]となる正弦波電圧である。
 また、第1から第3のステップ電圧によって生じる共振電圧Vr11~Vr13の周期Tは、配線インダクタンスLsのインダクタンス値をLsx[H]、浮遊容量Csのキャパシタンス値をCsx[F]とすれば、いずれも1/[2π√(LsxCsx)][s]である。したがって、共振周波数fは1/T[Hz]であり、角周波数ωは2πf[rad/s]となる。
 ここで、期間T11の時間をVr11~Vr13の周期Tの1/6に設定すれば、第2のステップ電圧と第3のステップ電圧によって生じる共振電圧Vr12,Vr13は、第1のステップ電圧によって生じる共振電圧Vr11に対して、それぞれ位相が“(4/3)π[rad]遅れ”、“(2/3)π[rad]遅れ”の関係になる。
 したがって、第1から第3のステップ電圧によって生じる共振電圧Vr11~Vr13は、
 Vr11=Ed+Ed・sin[ωt]、Vr12=-Ed+Ed・sin[ωt-(4π/3)]、Vr13=Ed+Ed・sin[ωt-(2π/3)]で表される。
 上記から、第1のタイミングから第3のタイミングまでの間に電動機4のU1-V1端子に生じる電圧は、第1のステップ電圧によって生じた共振電圧Vr11と第2のステップ電圧によって生じた共振電圧Vr12とを合成した電圧となる。したがって、この期間に電動機4のU1-V1端子に生じる電圧は、図9に示した共振電圧よりも緩やかな立ち上がりを有する電圧となる。また、第3のタイミング以降は、共振電圧Vr11とVr12とVr13とを合成した電圧である。したがって、第3のタイミング以降に電動機4のU1-V1端子に生じる電圧は、その大きさがEd[V]である直流となる。
 以上述べたことから、本発明に係るサージ電圧抑制処理部の機能により、電動機4のU1-V1端子間電圧は0[V]から直流電圧Ed[V]まで緩やかに立ち上がる電圧となり、急峻に立ち上がるサージ電圧とはならない。その結果、電動機巻線の絶縁を防止することができる。
 次に、図3により、図1に示した電動機駆動システムにおいて、インバータ2の半導体スイッチング素子Suがオフ状態に移行するときにサージ電圧を抑制する原理を説明する。各端子の電位基準点は、図2の場合と同様、図1のN点である。
 まず、制御回路3のPWM変調部3aで半導体スイッチング素子SuのPWM変調信号Psuを生成する。PWM変調信号Psuは、図8に示した従来技術と同様、正弦波(変調信号)と三角波(キャリア信号)との大小比較をすることにより得られる。
 サージ電圧抑制処理部3bは、PWM変調信号PsuがHigh(半導体スイッチング素子がオン)からLow(半導体スイッチング素子がオフ)に立ち下がるタイミングを起点に期間T21の間、第1のオフ信号G21を出力する。その後、同じ期間T21の間オン信号を出力した後、PWM変調信号PsuがHighになるまで第2のオフ信号G22を出力する。第1のオフ信号G21と第2のオフ信号G22およびこれらの信号の間に設けられたオン期間T21のオン信号とからなる信号が、半導体スイッチング素子Suをオフ状態にするための制御信号Gsuを構成する。
 ここで、第1のオフ信号G21が立ち下がるタイミングを第1のタイミング、第1のオフ信号G21が立ち上がるタイミングを第2のタイミング、第2のオフ信号が立ち下がるタイミングを第3のタイミングとする。
 半導体スイッチング素子Suは、オン状態から、上記制御信号Gsuにしたがって、第1のタイミングでオフの状態、第2のタイミングでオンの状態、第3のタイミングでオフの状態に順次移行する。その結果、インバータ2のU-V端子間電圧は、制御信号Gsuに対応して、Ed[V]→0[V]→Ed[V]→0[V]と変化する。(図3参照。)。ここで、第1,第2,第3のタイミングにおける電圧の変化を、それぞれ第1ステップ、第2ステップ、第3ステップとする。
 このインバータ2の端子U-V間に出力される電圧は、第1,第3のタイミングでそれぞれEd[V]から0[V]に変化する第1のステップ電圧、第3のステップ電圧と、第2のタイミングで-Ed[V]から0[V]に変化する第2のステップ電圧の3つのステップ電圧の合成電圧として捉えることができる。
 第1のステップ電圧は、初期電圧Ed[V]から第1のタイミングで0[V]となる矩形波電圧である。第2のステップ電圧は、初期電圧-Ed[V]から第2のタイミングで0[V]となる矩形波電圧である。第3のステップ電圧は、初期電圧Ed[V]から第3タイミングで0[V]となる矩形波電圧である。
 そして、第1から第3のタイミングにおける電圧のステップ変化は、図1に示した配線インダクタンスLsおよび浮遊容量CsとからなるLC回路の共振を引き起こす。第1のステップ電圧によって生じる共振電圧Vr21は、初期電圧をEd[V]とし、第1のタイミングで生じる、中心電圧0[V]、振幅Ed[V]となる正弦波電圧である。第2のステップ電圧によって生じる共振電圧Vr22は、初期値を-Ed[V]とし、第2のタイミングで生じる、中心電圧0[V]、振幅Ed[V]となる正弦波電圧である。第3のステップ電圧によって生じる共振電圧Vr23は、初期電圧をEd[V]とし、第3のタイミングで生じる、中心電圧0[V]、振幅Ed[V]となる正弦波電圧である。
 また、第1から第3のステップ電圧によって生じる共振電圧Vr21~Vr23の周期Tは、いずれも1/[2π√(LsxCsx)][s]である。したがって、共振周波数fは1/T[Hz]であり、角周波数ωは2πf[rad/s]となる。
 ここで、期間T21の時間をVr21~Vr23の周期Tの1/6に設定すれば、第2のステップ電圧と第3のステップ電圧によって生じる共振電圧Vr22,Vr23は、第1のステップ電圧によって生じる共振電圧Vr21に対し、それぞれ位相が(4/3)π[rad]遅れ、(2/3)π[rad]遅れの関係になる。
 したがって、第1から第3のステップ電圧によって生じる共振電圧Vr21~Vr23は、
 Vr21=Ed・sin[ωt]、Vr22=Ed・sin[ωt-(4π/3)]、Vr23=Ed・sin[ωt-(2π/3)]で表される。
 上記から、第1のタイミングから第3のタイミングまでの間に電動機4のU1-V1端子に生じる電圧は、第1のステップ電圧によって生じた共振電圧Vr21と第2のステップ電圧によって生じた共振電圧Vr22を合成した電圧となる。したがって、この期間に電動機4のU1-V1端子に生じる電圧は、図9に示した共振電圧よりも緩やかな立ち下がりを有する電圧となる。また、第3のタイミング以降は、共振電圧Vr21とVr22とVr23とを合成した電圧である。したがって、第3のタイミング以降に電動機4のU1-V1端子に生じる電圧は、その大きさが0[V]の直流となる。
 以上述べたことから、本発明に係るサージ電圧抑制処理部3bの働きにより、電動機4のU1-V1端子間電圧は直流電圧Edから0Vまで緩やかに立ち下がる電圧となり、急峻に立ち下がるサージ電圧とはならない。その結果、電動機巻線の絶縁を防止することができる。
 次に、本発明に係るサージ電圧抑制処理部3bについて、図4(a)および図4(b)を用いて説明する。図4(a)は、半導体スイッチング素子Suの制御信号を生成するためのサージ電圧抑制処理部3bをブロック図で表した一例である。また、図4(b)は、図4(a)の各ブロックの入出力信号の関係をタイミングチャートで表したものである。
 図4(a)において、31はGu1生成部、32はGu2生成部、33は排他的論理演算部XORである。この排他的論理演算部XORの出力が半導体スイッチング素子の制御信号Gsuとなる。
 まず、Gu1生成部31は、図1に示したPWM変調部3aで生成されたPWM変調信号Psuを入力とし、この入力信号PsuがLowからHighに変化したとき、図4(b)に示すように時間T11の間Highとなる信号Gu1を出力する。また、Gu1生成部31は、入力信号PsuがHighからLowに変化したとき、図4(b)に示すように時間T21の間Highとなる信号Gu1を出力する。
 次に、Gu2生成部32は、同じくPWM変調信号Psuを入力とし、この入力信号PsuがLowからHighに変化したとき、図4(b)に示すように時間T12だけ遅れてLowからHighに変化する信号Gu2を出力する。また、Gu2生成部32は、入力信号PsuがHighからLowに変化したとき、図4(b)に示すように時間T22だけ遅れてHighからLowに変化する信号Gu2を出力する。尚、Gu2生成部32は、単なる遅延回路であってもよいが、その場合にはPsu信号を所定時間分遅らせて出力するだけなので、必然的に「時間T12=時間T22」となることになる。
 排他的論理演算部33は、Gu1生成部31およびGu2生成部32が出力した制御信号Gu1とGu2とを入力として排他的論理和演算を行い、いずれか1つの入力がHighのときのみHighとなる制御信号Gsuを出力する。したがって、制御信号Gsuは、PWM信号PsuがLowからHighに変化したとき、時間T11の間Highとなり、その後Lowとなって、時間(T12-T11)を経過した後に再度Highとなる。また、制御信号Gsuは、PWM信号PsuがHighからLowに変化したとき、時間T21の間Lowとなり、その後Highとなって、時間(T22-T21)を経過した後に再度Lowとなる。
 ここで、時間T12を時間T11の2倍の時間とし、時間T22を時間T21の2倍の時間とすれば、図2および図3に示した制御信号Gsuを得ることができる。
 なお、本発明に係るサージ電圧抑制処理部3bは、従来技術のPWM変調部3aの後段に、電子回路を用いて構成することができるので、電力変換装置の大型化を招くことはない。
 また、図4に示したサージ電圧抑制処理部3bは制御信号Gsuを得るための論理の一例であり、他の論理によって図2および図3に示した制御信号Gsuを得ることができれば、本発明に係る効果を発揮することができるのは明らかである。したがって、本発明に係るサージ電圧抑制処理部3bは、図4に示したブロック図に限定されるものではない。
 次に、図5は、本発明の他の実施例を示す電動機駆動システムの回路構成図である。本実施例が図1の実施例と異なる点は、インバータ2と電動機4との間にインダクタLfとコンデンサCfとからなるLCフィルタを設けているところである。LCフィルタのインダクタLfは、インバータ2の端子U,V,Wと電動機4の入力端子U1,V1,W1との間に挿入される。また、LCフィルタのコンデンサCfは、その各一端がインダクタLfと電動機4の入力端子U1、V1,W1との間に接続され、それぞれの他端は一括して直流電源1のN端子側に接続される。
 ここで、インダクタLfのインダクタンス値およびコンデンサCfのキャパシタンス値を、配線のインダクタンスLsのインダクタンス値および浮遊容量Csのキャパシタンス値の概ね10倍の値またはこれ以上の値に選べば、インダクタLsと浮遊容量Csとで構成されるLC回路に印加される電圧の立ち上がりと立ち下がりは緩やかになる。その結果、インダクタLsと浮遊容量Csとで構成されるLC回路の共振を抑制することができる。
 しかし、挿入したLCフィルタとインバータ2との間で共振が発生することが考えられる。LCフィルタの共振周期Tは、インダクタLfのインダクタンス値Lfx[H]およびコンデンサCfのキャパシタンス値Cfx[F]で定まり、T=1/[2π√(LfxCfx)[s]である。
 そこで、挿入したLCフィルタの共振を抑制するため、図5のサージ電圧抑制処理部3bの時間T11とT21を、LCフィルタの共振周期Tの1/6とする。このように時間T11とT21を設定することにより、図2および図3で示した原理と同様の原理でLCフィルタの共振を抑制することができる。その結果、電動機4の入力端子に生じるサージ電圧を抑制し、電動機4の絶縁破壊を防止することができる。
 次に、図6は、本発明に係る電力変換装置を用いたさらに他の実施例を示す電動機駆動システムの回路構成図である。本実施例において、図5で示した実施例と異なる点は、コンデンサCfのそれぞれの他端を一括して直流電源1のP端子側に接続しているところである。インダクタLfのインダクタンス値、コンデンサCfのキャパシタンス値およびサージ電圧抑制処理部3bにおける時間T11とT21は、図5で示した実施例と同じである。
 このようにLCフィルタを接続しても、図5で示した実施例と同様、LCフィルタの共振を抑制することができる。その結果、電動機4の入力端子に生じるサージ電圧を抑制し、電動機4の絶縁破壊を防止することができる。
 次に、図7は、本発明に係る電力変換装置を用いたさらに他の実施例を示す電動機駆動システムの回路構成図である。本実施例において、図5で示した実施例と異なる点は、直流電源1aと直流電源1bとを直列に接続して直流電源を構成し、コンデンサCfのそれぞれの他端を一括して直流電源1aと直流電源1bの直列接続点に接続しているところである。インダクタLfのインダクタンス値、コンデンサCfのキャパシタンス値およびサージ電圧抑制処理部3bにおける時間T11とT21は、図5で示した実施例と同じである。
 このようにLCフィルタを接続しても、図5で示した実施例と同様、LCフィルタの共振を抑制することができる。その結果、電動機4の入力端子に生じるサージ電圧を抑制し、電動機4の絶縁破壊を防止することができる。
 また、図5~図6に示した実施例において、サージ電圧を抑制するために追加する電気部品は、インダクタLfおよびコンデンサCfであり、従来技術のように、さらにサージ電圧のエネルギーを消費する抵抗や、ダイオードブリッジ回路などを追加する必要はない。したがって、電力変換装置の大型化、高価格化を抑制することができる。
 なお、上述した本発明の実施例では、3相電圧型PWMインバータによる電動機駆動システムを例にとって本発明の作用および効果を説明したが、インバータの負荷は電動機に限られず、電動機以外の電気回路または電気部品を負荷とするインバータであっても、同様の作用および効果を発揮することができる。また、インバータは3相インバータに限られず、単相または3相以上の多相インバータであってもよい。また、2レベルのインバータに限られず、3レベル以上の多レベルのインバータであってもよい。
 さらに、変調方式もPWM変調に限られず、矩形波状の電圧を負荷に対して出力する方式であればよい。
 本発明に係る電力変換装置は、半導体スイッチング素子がオン状態またはオフ状態に移行するときに、半導体スイッチング素子と負荷との間のインピーダンスが有する共振周期の1/6の時間で、オン→オフ→オンの動作またはオフ→オン→オフの動作をさせるようにしたので、各スイッチング動作によって生じた共振電圧の重畳効果によりサージ電圧の発生を抑制することができる。

Claims (4)

  1.  半導体スイッチング素子と、
     前記半導体スイッチング素子のオン/オフを制御する制御回路と
    を備え、電源から受電した電力を変換して負荷に供給する電力変換装置において、
     前記制御回路は、
     前記半導体スイッチング素子をオン状態にするための制御信号を第1のオン信号と第2のオン信号とで構成し、
     前記制御信号の第1のオン信号と第2のオン信号との間に、第1のオン信号の期間と略等しい時間のオフ期間を設け、
     前記制御信号の第1のオン信号が出力される期間と、第1のオン信号と第2のオン信号との間に設けられるオフ期間とを、前記半導体スイッチング素子と負荷との間に存在するインピーダンスが有する共振周期の略1/6の時間とする
    ことを特徴とする電力変換装置。
  2.  半導体スイッチング素子と、
     前記半導体スイッチング素子のオン/オフを制御する制御回路と
    を備え、電源から受電した電力を変換して負荷に供給する電力変換装置において、
     前記電力変換装置は、
     前記半導体スイッチング素子と前記負荷との間に接続したインダクタと、
     前記インダクタの端子のうち前記負荷側に接続される端子と前記電源の一端との間に接続したコンデンサと
    からなるLC回路を備え、
     前記制御回路は、
     前記半導体スイッチング素子をオン状態にするための制御信号を第1のオン信号と第2のオン信号とで構成し、
     前記制御信号の第1のオン信号と第2のオン信号との間に、第1のオン信号の期間と略等しい時間のオフ期間を設け、
     前記制御信号の第1のオン信号が出力される期間と、第1のオン信号と第2のオン信号との間に設けられるオフ期間とを、半導体スイッチング素子と負荷との間に設けた前記LC回路が有する共振周期の略1/6の時間とする
    ことを特徴とする電力変換装置。
  3.  半導体スイッチング素子と、
     前記半導体スイッチング素子のオン/オフを制御する制御回路と
    を備え、電源から受電した電力を変換して負荷に供給する電力変換装置において、
     前記制御回路は、
     前記半導体スイッチング素子をオフ状態にするための制御信号を第1のオフ信号と第2のオフ信号とで構成し、
     前記制御信号の第1のオフ信号と第2のオフ信号との間に、第1のオフ信号の期間と略等しい時間のオン期間を設け、
     前記制御信号の第1のオフ信号が出力される期間と、第1のオフ信号と第2のオフ信号との間に設けられるオン期間とを、前記半導体スイッチング素子と負荷との間に存在するインピーダンスが有する共振周期の略1/6の時間とする
    ことを特徴とする電力変換装置。
  4.  半導体スイッチング素子と、
     前記半導体スイッチング素子のオン/オフを制御する制御回路と
    を備え、電源から受電した電力を変換して負荷に供給する電力変換装置において、
     前記電力変換装置は、
     前記半導体スイッチング素子と前記負荷との間に接続したインダクタと、
     前記インダクタの端子のうち前記負荷側に接続される端子と前記電源の一端との間に接続したコンデンサと
    からなるLC回路を備え、
     前記制御回路は、
     前記半導体スイッチング素子をオフ状態にするための制御信号を第1のオフ信号と第2のオフ信号とで構成し、
     前記制御信号の第1のオフ信号と第2のオフ信号との間に、第1のオフ信号の期間と略等しい時間のオン期間を設け、
     前記制御信号の第1のオフ信号が出力される期間と、第1のオフ信号と第2のオフ信号との間に設けられるオン期間とを、半導体スイッチング素子と負荷との間に設けた前記LC回路が有する共振周期の略1/6の時間とする
    ことを特徴とする電力変換装置。
PCT/JP2011/069203 2010-08-25 2011-08-25 電力変換装置 WO2012026535A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11819998.3A EP2575250B1 (en) 2010-08-25 2011-08-25 Power converter
JP2012530713A JP5429388B2 (ja) 2010-08-25 2011-08-25 電力変換装置
US13/809,589 US9071166B2 (en) 2010-08-25 2011-08-25 Power converter with surge voltage suppression
CN201180034403.2A CN102986128B (zh) 2010-08-25 2011-08-25 功率转换器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-187733 2010-08-25
JP2010187733 2010-08-25

Publications (1)

Publication Number Publication Date
WO2012026535A1 true WO2012026535A1 (ja) 2012-03-01

Family

ID=45723526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069203 WO2012026535A1 (ja) 2010-08-25 2011-08-25 電力変換装置

Country Status (5)

Country Link
US (1) US9071166B2 (ja)
EP (1) EP2575250B1 (ja)
JP (1) JP5429388B2 (ja)
CN (1) CN102986128B (ja)
WO (1) WO2012026535A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005586A (ja) * 2011-06-16 2013-01-07 Fuji Electric Co Ltd 電力変換装置
JP2014075694A (ja) * 2012-10-04 2014-04-24 Renesas Electronics Corp ゲートドライバ、及びスイッチング方法
TWI506959B (zh) * 2012-12-18 2015-11-01 Ind Tech Res Inst 調變方法以及應用該調變方法之控制裝置
JP2016005364A (ja) * 2014-06-17 2016-01-12 株式会社デンソー 電気回路装置
WO2019225835A1 (ko) * 2018-05-23 2019-11-28 서울대학교산학협력단 인버터와 전동기 사이 전력 네트워크를 포함하는 전동기 구동 시스템
WO2024225088A1 (ja) * 2023-04-26 2024-10-31 パナソニックIpマネジメント株式会社 電力変換装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536258B (zh) * 2014-07-18 2018-09-28 三菱电机株式会社 车辆用辅助电源装置
CN105141117B (zh) * 2015-10-16 2018-11-06 珠海格力电器股份有限公司 开关电源的控制电路和方法
CN106208641B (zh) * 2016-09-18 2020-02-21 北京机械设备研究所 一种交直流复用的电路
FR3077938B1 (fr) * 2018-02-14 2020-01-10 Schneider Toshiba Inverter Europe Sas Procede de commande d'un convertisseur connecte a une machine electrique
WO2020059262A1 (ja) * 2018-09-19 2020-03-26 パナソニックIpマネジメント株式会社 突入電流抑制装置及びモータ駆動装置
DE102021214405B4 (de) * 2021-12-15 2023-11-16 Zf Friedrichshafen Ag Wechselrichtervorrichtung für ein Fahrzeug und Verfahren zum Betreiben einer Wechselrichtervorrichtung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823682A (ja) 1994-07-05 1996-01-23 Yaskawa Electric Corp サージ電圧抑制装置
JPH11164562A (ja) * 1997-09-24 1999-06-18 Toshiba Corp 電力変換装置及びこれを用いた空気調和機
JP2003209973A (ja) * 2002-01-11 2003-07-25 Meidensha Corp 電力変換装置
JP2006115667A (ja) 2004-10-18 2006-04-27 Fuji Electric Fa Components & Systems Co Ltd サージ電圧抑制装置
JP2007166708A (ja) 2005-12-09 2007-06-28 Hitachi Ltd 電力変換装置とそのサージ電圧抑制方法および風力発電システム
JP2010119184A (ja) * 2008-11-12 2010-05-27 Toyota Motor Corp 半導体駆動装置
JP2010136564A (ja) 2008-12-08 2010-06-17 Oki Electric Cable Co Ltd サージエネルギー回生型サージ電圧抑制方式

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633793A (en) * 1995-01-23 1997-05-27 Center For Innovative Technology Soft switched three-phase boost rectifiers and voltage source inverters
TW364049B (en) 1997-09-24 1999-07-11 Toshiba Corp Power conversion apparatus and air conditioner using the same
EP1134878A1 (fr) * 2000-03-13 2001-09-19 Alstom Belgium S.A. Procédé et dispositif de réduction d'harmonique dans les convertisseurs de puissance
JP2003020997A (ja) 2001-07-10 2003-01-24 Walbro Japan Inc 膜型気化器
CN100466431C (zh) * 2006-07-31 2009-03-04 湖南大学 有源电力滤波器逆变器谐波域死区效应的补偿方法
WO2009004582A1 (en) * 2007-07-04 2009-01-08 Nxp B.V. Standby operation of a resonant power converter
US20110115417A1 (en) * 2008-06-27 2011-05-19 Merstech Inc. Pm motor drive power supply apparatus
JP5338909B2 (ja) * 2009-07-01 2013-11-13 株式会社安川電機 モータドライブ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823682A (ja) 1994-07-05 1996-01-23 Yaskawa Electric Corp サージ電圧抑制装置
JPH11164562A (ja) * 1997-09-24 1999-06-18 Toshiba Corp 電力変換装置及びこれを用いた空気調和機
JP2003209973A (ja) * 2002-01-11 2003-07-25 Meidensha Corp 電力変換装置
JP2006115667A (ja) 2004-10-18 2006-04-27 Fuji Electric Fa Components & Systems Co Ltd サージ電圧抑制装置
JP2007166708A (ja) 2005-12-09 2007-06-28 Hitachi Ltd 電力変換装置とそのサージ電圧抑制方法および風力発電システム
JP2010119184A (ja) * 2008-11-12 2010-05-27 Toyota Motor Corp 半導体駆動装置
JP2010136564A (ja) 2008-12-08 2010-06-17 Oki Electric Cable Co Ltd サージエネルギー回生型サージ電圧抑制方式

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013005586A (ja) * 2011-06-16 2013-01-07 Fuji Electric Co Ltd 電力変換装置
JP2014075694A (ja) * 2012-10-04 2014-04-24 Renesas Electronics Corp ゲートドライバ、及びスイッチング方法
TWI506959B (zh) * 2012-12-18 2015-11-01 Ind Tech Res Inst 調變方法以及應用該調變方法之控制裝置
JP2016005364A (ja) * 2014-06-17 2016-01-12 株式会社デンソー 電気回路装置
WO2019225835A1 (ko) * 2018-05-23 2019-11-28 서울대학교산학협력단 인버터와 전동기 사이 전력 네트워크를 포함하는 전동기 구동 시스템
KR20190133428A (ko) * 2018-05-23 2019-12-03 서울대학교산학협력단 인버터와 전동기 사이 전력 네트워크를 포함하는 전동기 구동 시스템
US11711041B2 (en) 2018-05-23 2023-07-25 Seoul National University R&Db Foundation Motor drive system comprising power network between inverter and motor
WO2024225088A1 (ja) * 2023-04-26 2024-10-31 パナソニックIpマネジメント株式会社 電力変換装置

Also Published As

Publication number Publication date
JPWO2012026535A1 (ja) 2013-10-28
EP2575250A1 (en) 2013-04-03
US20130170268A1 (en) 2013-07-04
EP2575250A4 (en) 2017-11-08
CN102986128A (zh) 2013-03-20
EP2575250B1 (en) 2020-03-25
CN102986128B (zh) 2016-05-04
JP5429388B2 (ja) 2014-02-26
US9071166B2 (en) 2015-06-30

Similar Documents

Publication Publication Date Title
JP5429388B2 (ja) 電力変換装置
US9013906B2 (en) Power system-interconnected inverter device
JP4707740B2 (ja) 電力変換装置
JP6391897B1 (ja) 直列多重インバータ
JP2007295786A (ja) 電力変換装置
JP6208089B2 (ja) 3レベル三相インバータの駆動制御装置
JP5800133B2 (ja) 電力変換装置およびこれを用いたインバータ装置
EP2717458A1 (en) Ac conversion circuit, ac conversion method, and recording medium
US9397582B2 (en) Power converter, and inverter device including the power converter
JP6176495B2 (ja) 3レベルインバータの制御方法及び制御装置
JP5121755B2 (ja) 電力変換装置
EP3051685A1 (en) Dc-to-ac conversion apparatus and method of operating the same
EP2882088A1 (en) 3-level inverter
JP5910001B2 (ja) 電力変換装置
JP2019129585A (ja) 電力変換装置の制御回路、及び、電力変換装置
JP5446804B2 (ja) ハーフブリッジ形電力変換装置
JP5811618B2 (ja) 電力変換装置
CN113302831A (zh) 电力变换装置
JP5894031B2 (ja) 電力変換装置
JP7055620B2 (ja) 電力変換装置
JP2012065515A (ja) 電力変換装置のスイッチング方法
JP2018102116A (ja) インバータ制御装置
JP6575865B2 (ja) 3レベルインバータの制御方法及び制御装置
Patel et al. Cascaded H-bridge 5-level Inverter on Hybrid PWM Technique with Voltage Boosting Ability
KR102013722B1 (ko) 인버터 제어회로 및 그 구동방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180034403.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011819998

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012530713

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13809589

Country of ref document: US