[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2012024884A1 - 自蔓延无压烧结金属结合剂金刚石砂轮及其制备方法 - Google Patents

自蔓延无压烧结金属结合剂金刚石砂轮及其制备方法 Download PDF

Info

Publication number
WO2012024884A1
WO2012024884A1 PCT/CN2011/000524 CN2011000524W WO2012024884A1 WO 2012024884 A1 WO2012024884 A1 WO 2012024884A1 CN 2011000524 W CN2011000524 W CN 2011000524W WO 2012024884 A1 WO2012024884 A1 WO 2012024884A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
grinding wheel
working layer
self
metal bond
Prior art date
Application number
PCT/CN2011/000524
Other languages
English (en)
French (fr)
Inventor
刘明耀
邵俊永
夏举学
Original Assignee
郑州磨料磨具磨削研究所
郑州三磨超硬材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州磨料磨具磨削研究所, 郑州三磨超硬材料有限公司 filed Critical 郑州磨料磨具磨削研究所
Priority to US13/504,459 priority Critical patent/US9211633B2/en
Publication of WO2012024884A1 publication Critical patent/WO2012024884A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor

Definitions

  • the invention relates to a metal bond diamond grinding wheel and a preparation method thereof, in particular to a metal bond diamond grinding wheel and a self-propagating pressureless sintering preparation method thereof.
  • Diamond grinding wheels are typically manufactured using a metal bond, a ceramic bond or a resin bond.
  • the metal bond grinding wheel has good profile retaining ability, ideal service life and high grinding efficiency, and is widely used in non-metallic materials such as stone, ceramic, refractory, hard alloy, magnetic material, semiconductor material and the like. Processing fields such as non-ferrous materials.
  • Metal bond diamond grinding wheels are usually manufactured by powder metallurgy.
  • the manufacturing processes mainly include: mixing, press forming, sintering, post-processing, and the like.
  • the manufacturing process has a direct impact on the performance of the metal bond diamond wheel.
  • a molding material is pressed into a blank by applying a certain pressure in a steel mold, and after the mold is discharged, pressureless sintering is performed in the furnace.
  • the main disadvantages are: high molding pressure, long sintering time, high energy consumption, poor mechanical properties and poor performance.
  • the sintering holding time is 1 to 2 hours, and the production cycle is long, so this method is generally less used now.
  • the hot press sintering method is generally divided into two methods: medium frequency induction heating and high current resistance heating.
  • the method generally comprises simultaneously heating and pressurizing the molding material in a graphite mold (ie, direct hot pressing sintering), or first pressing the molding material into a blank of a certain density and strength in a steel mold, and then hot pressing in the graphite mold.
  • Sintering its main disadvantages are as follows: 1. The size of the prepared abrasive tool is limited by the graphite mold, and the diameter is generally less than 300mm; 2. The medium frequency induction and high current resistance heating consume a large amount of energy during the heating process; 3. Each sintering Limited products and low production efficiency.
  • the semi-hot pressing sintering method is to pre-press the molding material into a blank having a certain density and strength in a steel mold, and then perform pressureless sintering with the mold or the replacement of the outer mold, and press the furnace after pressing to press the blank to the design density. .
  • This method is generally suitable for the production of larger size abrasive tools.
  • the main disadvantages are: heat preservation for about 30 minutes, and the number of products sintered at one time is about 1-10, which results in a large consumption of energy and reduced production efficiency.
  • the binder system currently used in the production of metal bond diamond grinding wheels by the above method mainly There are: Cu-Sn systems, such as those employed in Japanese Patent Laid-Open No. Sho 58-217271; Ni-Cu-Sn systems, such as those used in Chinese Patent No. 200410031285.1; Al-Cu systems, such as those employed in Chinese Patent No. 200610037510.1.
  • the sintering method adopted by the above binder system is direct hot pressing sintering or semi-hot pressing, and the external heat is supplied to achieve the purpose of sintering. In order to prevent graphitization of diamond, the sintering temperature is generally controlled below 900 °C.
  • the above system binder does not produce an exothermic reaction during sintering, and no carbide can be formed between the binder and the diamond abrasive grains, so that firm bonding cannot be achieved.
  • a strong carbide forming element added to the metal bond may form a carbide layer with the diamond surface to improve the holding of the diamond by the binder, usually the formation of the carbide layer needs to be achieved at a high temperature of 1200 °C. Therefore, under normal sintering conditions, it is difficult for a strong carbide forming element to form a continuous uniform carbide layer with the diamond surface.
  • the object of the present invention is to provide a self-propagating sintered metal bond diamond grinding wheel and a preparation method thereof, which solve the problem of high energy consumption and low production efficiency of the current metal bond diamond grinding wheel sintering process, and at the same time, between the bonding agent and the diamond abrasive
  • the formation of carbides increases the holding power of the metal bond to the diamond.
  • the present invention provides a self-propagating pressureless sintered metal bond diamond grinding wheel, which mainly comprises a working layer and a non-working layer, the working layer is a metal bond and diamond particles, and the non-working layer is a metal bond, wherein
  • the metal bond composition of the working layer and the non-working layer is the same, the metal bond meets the self-propagating pressureless sintering condition, and the composition thereof includes the following metal powder components: Cu, Al, Ti, Ni, Sn, preferably, the metal
  • the binder also contains Co powder.
  • the diamond particles have a particle size of 70/80 to 600/700 and a concentration of 20% to 100%;
  • the diamond particles have a particle size of 80/100 ⁇ 325/400 and a concentration of 75% ⁇ 100%.
  • the diamond particles have a particle size of: 80/100 and a concentration of: 100%.
  • the metal powder has an average particle diameter of not more than 38 ⁇ m.
  • the present invention provides a method of preparing the aforementioned grinding wheel, the method comprising the steps of:
  • the sintering is self-propagating pressureless sintering.
  • the self-propagating pressureless sintering step comprises: placing the metal bond diamond grinding wheel compacted by the mixing and press forming in a furnace at 500 to 650 ° C to induce self-propagation. The reaction is then turned off, the external load is applied, and the self-reaction exotherm is used for sintering and densification. Finally, the furnace is cooled to room temperature to obtain a metal bond diamond grinding wheel.
  • the metal binder component comprises the following metal parts by weight: Cu 50 to 80 parts, A 13 to 20 parts, Ti 5 to 20 parts, Ni 5 to 20 parts, Sn 4 to 10 parts, Co0 ⁇ 5 parts; preferred components include: Cu 63 ⁇ 70 parts, A15 ⁇ 10 parts, Ti 10 ⁇ 15 parts, Ni5 ⁇ 12 parts, Sn6 ⁇ 10 parts, Co 3 ⁇ 5 parts; More preferred ingredients include: Cu63 parts, A17 parts, M5 parts, Til5 parts, SnlO parts, Co 3 parts.
  • the self-propagating pressureless sintered metal bond diamond grinding wheel of the present invention mainly comprises a working layer and a non-working layer, the working layer is a metal bond and diamond particles, and the non-working layer is a metal bond.
  • the working layer and the non-working layer have the same metal binder component, and the components thereof include the following parts by weight of metal powder: Cu 50-80 parts, A13-20 parts, Ti5 ⁇ 20 parts, Ni5 ⁇ 20 parts, Sn4 ⁇ 10 Parts, Co 0 ⁇ 5 parts;
  • the composition of the metal bond comprises the following parts by weight of metal powder: Cu 63 ⁇ 70 parts, A15 ⁇ 10 parts, Ti 10 ⁇ 15 parts, Ni5 ⁇ 12 parts, Sn6 ⁇ 10 parts, Co 3 to 5 parts; more preferably, the composition of the metal bond includes the following parts by weight of metal powder: Cu 63 parts, A17 parts, M5 parts, Ti 15 parts, SnlO parts, Co 3 parts.
  • the diamond particles have a particle size of 70/80 to 600 ⁇ 00 and a concentration of 20% to 100%; preferably, the diamond particles have a particle size of 80/100 to 325/400, and the concentration thereof is 75% to 100%; more preferably, the diamond particles have a particle size of 80/100 and a concentration of 100%.
  • the particle size is the size of the mesh of the two adjacent screens through which the abrasive particles can pass and cannot pass, and is represented by the number of mesh holes in the length of 2.54 cm (1 inch), and is referred to as the mesh. See Chinese National Standard GB/ T6406-1996.
  • the concentration is the density of diamond distributed in the working layer of the sintered body (ie the weight of diamond contained in the unit volume).
  • GB/T6409.1-94 specifies that each cubic centimeter of working layer contains 4.4 carats of diamond. At a concentration of 100%, the concentration of the diamond containing 3.3 carats is 75%.
  • the metal powder has an average particle diameter of not more than 38 ⁇ m.
  • the present invention provides a method of preparing the grinding wheel, comprising the steps of mixing, pressing, and sintering, wherein the sintering is self-propagating pressureless sintering.
  • the compounding is carried out in a blender which may be any form of blender known in the art of the abrasives industry.
  • the self-propagating pressureless sintering step comprises: placing a metal bond diamond grinding wheel blank subjected to mixing and press forming in a furnace at 500 to 650 ° C to rapidly heat the compact, igniting the working layer of the grinding wheel and In the non-working layer, the reaction between A1 and Ti and A1 and Ni, when the infrared temperature measurement system shows that the temperature of the compact exceeds 50 °C, the reaction can be determined, then the power is turned off, no external load is applied, The reaction is exothermic for sintering and densification, thereby achieving the purpose of sintering, that is, self-propagating reaction, and finally cooling to room temperature with the furnace to obtain a metal bond diamond grinding wheel.
  • the metal binder component comprises the following metal parts by weight: Cu 50 to 80 parts, A 13 to 20 parts, Ti 5 to 20 parts, Ni 5 to 20 parts, Sn 4 to 10 parts, Co 0 to 5 parts;
  • the composition includes: Cu63 ⁇ 70 parts, A15 ⁇ 10 parts, Til0 ⁇ 15 parts, Ni 5 ⁇ 12 parts, Sn6 ⁇ 10 parts, Co3 ⁇ 5 parts; More preferable ingredients include: Cu 63 parts, A17 parts, M5 parts , Til 5 parts, SnlO parts, Co 3 parts.
  • the sintering method used in the present invention is self-propagating pressureless sintering, the main principle of which is to generate an exothermic chemical reaction by igniting the active component in the binder, and to continue the reaction by releasing the heat while controlling the exothermic temperature and reaction of the reaction. Conditions such as speed, direct sintering of the desired shape and size of the product.
  • the process is as follows: The powder or the compact is directly ignited, the electric power is turned off after ignition, and no external load is applied, and the self-reaction exotherm is used for sintering and densification.
  • the advantages of self-propagating pressureless sintering are as follows:
  • the equipment required for the sintering process is simple, the investment is small; the reaction time is short, the reaction is completed quickly, and the sintering efficiency is high; the whole sintering process can be completed by using only the heat released by itself, without external Provide energy again, energy consumption is small; self-propagating pressureless sintering instantaneously emits high heat, which is conducive to the formation of new substances and improve product purity.
  • the invention mainly utilizes a high temperature furnace to ignite the reaction between the raw materials, and uses the heat released by the reaction to achieve the purpose of sintering.
  • the binder is composed of Cu, Al, Ti, Ni, Sn, Co, wherein the exothermic reaction mainly refers to The reaction between A1 and Ti, Ni uses the heat they emit to maintain the sintering process.
  • the addition of Ti element to the Cu-based metal bond can reduce the contact angle between the carcass and the diamond, and improve the bond strength between the carcass and the diamond.
  • the strong carbide forming element Ti can By chemically forming carbides on the diamond surface, increasing the holding force of the diamond, improving the grinding performance and prolonging the service life of the diamond grinding wheel; Ni can react with A1 to provide more heat for the entire sintering process, and Ni can also
  • the binder acts as a dispersion strengthening agent to increase the strength of the bonding agent, thereby increasing the holding power of the bonding agent to the diamond; the addition of Ni element to the Cu-Ti alloy can further improve the mechanical properties of the material; the Sn element is a low melting point metal, The addition can improve the performance of the Cu-based binder and the bonding force of the bonding agent to the diamond, and adapt to the grinding processing requirements; Co is added to improve the strength of the bonding agent to meet the needs of grinding different workpieces.
  • the metal powder of the non-working layer is consistent with the working layer metal powder system, mainly considering that the working layer and the non-working layer are consistent in the process of sintering during the sintering process, and the non-working layer does not occur due to the heat release of the working layer.
  • the exothermic reaction absorbs the heat released from the working layer, resulting in incomplete sintering; and the shrinkage expansion ratio of the working layer and the non-working layer is consistent to prevent the shape of the grinding tool from changing.
  • the self-propagating reaction sintering provided by the invention has the advantages of energy saving and high production efficiency, and can reduce investment and production cost; in addition, the metal element in the binder significantly improves the bonding agent pair.
  • the holding power of the diamond and the mechanical properties of the grinding wheel increase the grinding efficiency and extend the service life of the grinding wheel.
  • the working layer material and the non-working layer material obtained in the step 1) are respectively put into the cavity reserved for the mold, scraped flat, and placed in a press to be press-formed to obtain a compact of the diamond grinding wheel;
  • the compact is rapidly placed in a muffle furnace heated to 550 ° C, causing the self-propagation reaction of the green body, free sintering in the air, then turning off the power supply, without external load, sintering and densification by self-reaction exotherm Finally, the furnace is cooled to room temperature to obtain a metal bond diamond grinding wheel.
  • the specifications of the obtained metal bond diamond grinding wheel are:
  • Example 2 60mm 5mm (grinding wheel thickness) lOmm (inner hole) 5mm (working layer ring width); diamond concentration: 100%.
  • Example 2 60mm 5mm (grinding wheel thickness) lOmm (inner hole) 5mm (working layer ring width); diamond concentration: 100%.
  • the working layer material and the non-working layer material obtained in the step 1) are respectively put into the cavity reserved for the mold, scraped flat, and placed in a press to be press-formed to obtain a compact of the diamond grinding wheel;
  • the compact is rapidly placed in a muffle furnace heated to 500 °C, causing the self-propagating reaction of the green body to be freely sintered in the air, then the power is turned off, no external load is applied, and the self-reaction exotherm is used for sintering and densification. Finally, the furnace is cooled to room temperature to obtain a metal bond diamond grinding wheel.
  • the specifications of the obtained metal bond diamond grinding wheel are:
  • Example 3 100mm 5mm (grinding wheel thickness) lOmm (inner hole) 5mm (working layer ring width); Diamond concentration: 75%.
  • Example 3 100mm 5mm (grinding wheel thickness) lOmm (inner hole) 5mm (working layer ring width); Diamond concentration: 75%.
  • the working layer material and the non-working layer material obtained in the step 1) are respectively put into the cavity reserved for the mold, scraped flat, and placed in a press to be press-formed to obtain a compact of the diamond grinding wheel;
  • the compact is quickly placed in a muffle furnace heated to 600 °C, causing the self-propagating reaction of the green body to be freely sintered in the air, then the power is turned off, no external load is applied, and the self-reaction exotherm is used for sintering and densification. Finally, the furnace is cooled to room temperature to obtain a metal bond diamond grinding wheel.
  • the specifications of the obtained metal bond diamond grinding wheel are:
  • Example 4 60mmx3mm (grinding wheel thickness) lOmm (inner hole) 5mm (working layer ring width); diamond concentration: 75%.
  • Example 4 60mmx3mm (grinding wheel thickness) lOmm (inner hole) 5mm (working layer ring width); diamond concentration: 75%.
  • the working layer material and the non-working layer material obtained in the step 1) are respectively put into the cavity reserved for the mold, scraped flat, and placed in a press to be press-formed to obtain a compact of the diamond grinding wheel;
  • the specifications of the obtained metal bond diamond grinding wheel are:
  • the working layer material and the non-working layer material obtained in the step 1) are respectively put into the cavity reserved for the mold, scraped flat, and placed in a press to be press-formed to obtain a compact of the diamond grinding wheel;
  • the compact is rapidly placed in a muffle furnace heated to 580 ° C, causing the self-propagation reaction of the green body to be freely sintered in the air, then the power is turned off, no external load is applied, and the self-reaction exotherm is used for sintering and densification. Finally, the furnace is cooled to room temperature to obtain a metal bond diamond grinding wheel.
  • the specifications of the obtained metal bond diamond grinding wheel are:
  • Example 6 80mm 6mm (grinding wheel thickness) 20mm (inner hole) 5mm (working layer ring width); Diamond concentration: 50%.
  • Example 6 80mm 6mm (grinding wheel thickness) 20mm (inner hole) 5mm (working layer ring width); Diamond concentration: 50%.
  • the working layer material and the non-working layer material obtained in the step 1) are respectively put into the cavity reserved for the mold, scraped flat, and placed in a press to be press-formed to obtain a compact of the diamond grinding wheel;
  • the compact is rapidly placed in a muffle furnace heated to 620 ° C, causing the self-propagating reaction of the green body to be freely sintered in the air, then the power is turned off, no external load is applied, and the self-reaction exotherm is used for sintering and densification. Finally, the furnace is cooled to room temperature to obtain a metal bond diamond grinding wheel.
  • the specifications of the obtained metal bond diamond grinding wheel are:
  • the working layer material and the non-working layer material obtained in the step 1) are respectively put into the cavity reserved for the mold, scraped flat, and placed in a press to be press-formed to obtain a compact of the diamond grinding wheel;
  • the compact is rapidly placed in a muffle furnace heated to 650 ° C, causing the self-propagating reaction of the green body to be freely sintered in the air, then the power is turned off, no external load is applied, and the self-reaction exotherm is used for sintering and densification. Finally, the furnace is cooled to room temperature to obtain a metal bond diamond grinding wheel.
  • the specifications of the obtained metal bond diamond grinding wheel are:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

自蔓延无压烧结金属结合剂金刚石砂轮及其制备方法
技术领域
本发明涉及一种金属结合剂金刚石砂轮及其制备方法,尤其涉及一种金 属结合剂金刚石砂轮及其自蔓延无压烧结制备方法。 背景技术
金刚石砂轮通常采用金属结合剂、陶瓷结合剂或树脂结合剂制造。其中, 金属结合剂砂轮具有良好的型面保持能力、理想的使用寿命和较高的磨削效 率, 广泛用于石材、 陶瓷、 耐火材料、 硬质合金、 磁性材料、 半导体材料等 非金属材料及有色金属材料等加工领域。
金属结合剂金刚石砂轮通常采用粉末冶金法制造, 其制造工艺主要包 括: 混料、 压制成型、 烧结、 后加工等。 制造工艺对金属结合剂金刚石砂轮 的使用性能具有直接的影响。 现有金属结合剂砂轮毛坯的生产方法, 主要有 以下三种: 冷压成型-烧结法、 热压烧结法和半热压烧结法。
冷压成型-烧结法是将成型料在钢模具中施加一定压力压制成毛坯, 卸 模后在炉中进行无压烧结。 其主要缺点是: 成型压力大、 烧结时间长、 能耗 高、 力学性能和使用性能差。 特别是, 无压烧结过程中需要提供大量能源使 坯体达到烧结的目的, 烧结保温时间在 1至 2小时, 生产周期长, 所以现在 一般较少采用这种方法。
热压烧结法通常分为中频感应加热和大电流电阻加热两种方式。此方法 一般是在石墨模具中将成型料同时加热和加压(即直接热压烧结), 或先将 成型料在钢模具中冷压成一定密度和强度的毛坯, 然后在石墨模具中热压烧 结, 其主要缺点为: 1、 制备的磨具大小受到石墨模具的限制, 一般直径在 300mm以下; 2、 采用中频感应和大电流电阻加热升温过程中消耗大量的能 源; 3、 每次烧结的产品有限, 生产效率较低。
半热压烧结法是先在钢模具中将成型料预压制成具有一定密度和强度 的毛坯, 然后随模具或更换外模进行无压烧结, 烧结结束后出炉加压, 将毛 坯压制到设计密度。 此法一般适合生产较大尺寸的磨具, 其主要缺点为: 需 要保温加热 30分钟左右, 并且一次烧结的产品数量在 1-10个左右, 这就造 成能源的大量消耗, 生产效率减低。
目前以上述方法生产金属结合剂金刚石砂轮所采用的结合剂体系, 主要 有: Cu-Sn体系, 例如日本专利特开昭 58-217271所采用的; Ni-Cu-Sn体系, 例如中国专利号 200410031285.1 所采用的; Al-Cu体系, 例如中国专利号 200610037510.1所采用的。上述结合剂体系采用的烧结方法为直接热压烧结 或半热压, 都是外部提供热量达到烧结的目的。 为防止金刚石的石墨化, 烧 结温度一般控制在 900°C以下。 烧结过程中上述体系结合剂不能产生放热反 应,并且结合剂与金刚石磨粒之间不能形成碳化物,因而不能实现牢固结合。 虽然在金属结合剂中添加的强碳化物形成元素,有可能与金刚石表面形成碳 化物层,提高结合剂对金刚石的把持,但通常碳化物层的形成需要在 1200°C 的高温下才能实现。 所以, 在通常的烧结条件下, 强碳化物形成元素与金刚 石表面很难形成连续均匀的碳化物层。 发明内容
本发明的目的是提供一种自蔓延烧结金属结合剂金刚石砂轮及其制备 方法, 解决目前金属结合剂金刚石砂轮烧结工艺能量消耗大、 生产效率低的 问题, 同时通过使结合剂与金刚石磨料之间形成碳化物, 提高金属结合剂对 金刚石的把持力。
本发明的目的是通过以下技术方案实现的:
一方面, 本发明提供一种自蔓延无压烧结金属结合剂金刚石砂轮, 主要 包括工作层和非工作层, 工作层为金属结合剂和金刚石颗粒, 非工作层为金 属结合剂, 其中, 所述工作层和非工作层的金属结合剂成分相同, 所述金属 结合剂满足自蔓延无压烧结条件, 其组成包括以下金属粉末成分: Cu、 Al、 Ti、 Ni、 Sn, 优选地, 所述金属结合剂还包含 Co粉末。
根据前述的金属结合剂, 优选地, 所述各金属粉末成分的重量份数配比 为: Cu: Al: Ti: Ni: Sn: Co = 50 ~ 80: 3 ~ 20: 5 ~ 20: 5 ~ 20: 4 ~ 10: 0 ~ 进一步优选地, 所述各金属粉末成分的重量份数配比为: Cu: Al: Ti: Ni: Sn: Co = 63 ~ 70: 5 ~ 10: 10 ~ 15: 5 - 12: 6 ~ 10: 3 ~ 5。
最优选地, 所述各金属粉末成分的重量份数配比为: Cu: Al: Ti: Ni: Sn: Co = 63: 7: 5: 15: 10: 3。
根据如前所述的砂轮, 优选地, 所述金刚石颗粒的粒度为: 70/80 ~ 600/700, 其浓度为: 20% ~ 100%;
更优选地,所述金刚石颗粒的粒度为: 80/100 ~ 325/400,其浓度为 75% ~ 100%。
最优选地, 所述金刚石颗粒的粒度为: 80/100, 其浓度为: 100%。
根据如前所述的砂轮, 优选地, 所述金属粉末的平均粒径不超过 38微 米。
再一方面, 本发明提供一种制备前述砂轮的方法, 所述方法包括以下步 骤:
混料;
压制成型; 和
烧结;
其中, 所述烧结为自蔓延无压烧结。
根据如前所述的方法, 优选地, 所述自蔓延无压烧结步骤包括: 将经过 混料和压制成型的金属结合剂金刚石砂轮压坯置于 500~650°C的炉中,引发 自蔓延反应, 然后关闭电源, 不加外来载荷, 凭自身反应放热进行烧结和致 密化, 最后随炉冷却至室温, 即得到金属结合剂金刚石砂轮。
根据如前所述的方法, 其中, 所述金属结合剂成分包括以下重量份的金 属粉末: Cu50~80份、 A13~20份、 Ti5~20份、 Ni5~20份、 Sn4~ 10 份、 Co0~5份; 优选的成分包括: Cu63~70份、 A15~10份、 Ti 10~ 15 份、 Ni5~12份、 Sn6~10份、 Co 3 ~ 5份; 更优选的成分包括: Cu63份、 A17份、 M5份、 Til5份、 SnlO份、 Co 3份。
根据本发明一个优选的实施方案, 本发明的自蔓延无压烧结金属结合剂 金刚石砂轮, 主要包括工作层和非工作层, 工作层为金属结合剂和金刚石颗 粒, 非工作层为金属结合剂, 其中, 所述工作层和非工作层的金属结合剂成 分相同, 其成分包括以下重量份的金属粉末: Cu50~80份、 A13-20份、 Ti5~20份、 Ni5~20份、 Sn4~10份、 Co 0 ~ 5份; 优选地, 所述金属结 合剂的成分包括以下重量份的金属粉末: Cu 63 ~ 70份、 A15 ~ 10份、 Ti 10 ~ 15份、 Ni5~12份、 Sn6~10份、 Co 3 ~ 5份; 更优选地, 所述金属结合剂 的成分包括以下重量份的金属粉末: Cu63份、 A17份、 M5份、 Ti 15份、 SnlO份、 Co 3份。
进一步, 所述金刚石颗粒的粒度为: 70/80~600〃00, 其浓度为: 20%~ 100%;优选地,所述金刚石颗粒的粒度为: 80/100 ~ 325/400,其浓度为 75% ~ 100%; 更优选地, 所述金刚石颗粒的粒度为: 80/100, 其浓度为: 100%。 其中, 粒度为磨料颗粒可以通过和不能通过的两个相邻筛网的筛孔尺 寸, 以 2.54厘米(1英寸)长度中的筛孔数目表示, 并筒称为目, 参见中国 国家标准 GB/T6406-1996。 浓度为金刚石在烧结后的工作层胎体中分布的密 度(即单位体积内所含金刚石的重量) , 国标 GB/T6409.1-94规定, 每立方 厘米工作层胎体中含 4.4克拉的金刚石时, 其浓度为 100%, 含 3.3克拉的金 刚石时, 其浓度为 75%。
进一步, 所述金属粉末的平均粒径不超过 38微米。
另一方面, 本发明还提供了一种制备所述砂轮的方法, 包括混料、 压制 成型和烧结的步骤, 其中, 所述烧结为自蔓延无压烧结。 此外, 混料是在混 料机中进行的,所述混料机可以是磨料磨具行业现有技术中已知的任何形式 的混料机。
进一步, 所述自蔓延无压烧结步骤包括: 将经过混料和压制成型的金属 结合剂金刚石砂轮压坯置于 500 ~650°C的炉中,使压坯快速升温, 引燃砂轮 工作层和非工作层中 A1与 Ti以及 A1与 Ni之间的反应, 当红外测温系统显 示压坯温度超过炉温 50°C时, 即可以判定反应开始, 然后关闭电源, 不加外 来载荷, 凭自身反应放热进行烧结和致密化, 进而达到烧结的目的, 即自蔓 延反应, 最后随炉冷却至室温, 得到金属结合剂金刚石砂轮。
更进一步, 所述金属结合剂成分包括以下重量份的金属粉末: Cu 50~ 80份、 A13~20份、 Ti5~20份、 Ni5~20份、 Sn4~10份、 Co 0 ~ 5份; 优选的成分包括: Cu63~70份、 A15~10份、 Til0~15份、 Ni 5 ~ 12份、 Sn6~10份、 Co3~5份; 更优选的成分包括: Cu 63份、 A17份、 M5份、 Til5份、 SnlO份、 Co 3份。
本发明采用的烧结方法为自蔓延无压烧结, 其主要原理是通过引燃结合 剂中的活性成分产生放热化学反应, 并依靠放出的热量继续反应, 同时通过 控制反应的放热温度、 反应速度等条件, 直接完成所需形状和尺寸的产品的 烧结。 其过程为: 将粉末或压坯直接点燃, 点燃后断电, 不加外来载荷, 凭 自身反应放热进行烧结和致密化。 自蔓延无压烧结的优点主要有: 烧结过程 所需设备筒单, 投资少; 反应时间短, 反应完成快, 烧结效率高; 整个烧结 过程只需点燃即可利用自身放出的热量完成, 无需外界再提供能量, 能量消 耗很少; 自蔓延无压烧结瞬间放出的热量高, 有利于形成新物质和提高产物 纯度。 本发明主要是利用高温装炉来点燃原材料之间的反应, 利用反应放出的 热量来达到烧结的目的, 结合剂由 Cu、 Al、 Ti、 Ni、 Sn、 Co组成, 其中放 热反应主要是指 A1与 Ti、 Ni之间的反应, 利用他们放出的热量来维持烧结 的进行。 此外, Cu基金属结合剂中加入 Ti元素能够降低胎体与金刚石的接 触角, 改善胎体与金刚石的粘接强度; 由于自蔓延无压烧结过程中瞬间产生 高温, 强碳化物形成元素 Ti能通过化学作用在金刚石表面生成碳化物, 提 高对金刚石的把持力, 提高金刚石砂轮的磨削性能和延长其使用寿命; Ni 能够与 A1发生反应, 为整个烧结过程提供更多的热量, Ni还能够对结合剂 起到弥散强化的作用,提高结合剂强度,从而提高结合剂对金刚石的把持力; Ni元素加入到 Cu-Ti合金中能够进一步提高材料的机械性能; Sn元素为低 熔点金属, 它的加入能够改善 Cu基结合剂自身性能以及结合剂对金刚石的 把持力, 适应磨削加工要求; Co 的加入是为了提高结合剂的强度, 以满足 磨削加工不同工件的需要。
非工作层的金属粉末与工作层金属粉末体系一致, 主要是考虑到使磨具 在烧结过程中工作层和非工作层在反应过程中放热一致,避免因工作层放热 非工作层不发生放热反应而吸收工作层放出的热量, 从而导致烧结不彻底; 并且使工作层与非工作层收缩膨胀率一致, 防止磨具形状发生变化。
综上所述,本发明提供的自蔓延无压烧结金属结合剂金刚石砂轮及其制 备方法的有益效果如下:
本发明提供的自蔓延反应烧结与现有技术的烧结工艺相比, 具有节约能 源, 生产效率高的优点, 能够降氏投资和生产成本; 另外, 结合剂中的金属 元素显著提高了结合剂对金刚石的把持力和砂轮的机械性能,从而提高了砂 轮的磨削效率和延长了其使用寿命。 实施发明的最佳方式
以下实施例是对本发明的进一步说明, 但本发明并不局限于此。 如无特 别说明, 各实施例中采用的试剂、 材料、 方法和设备均为市售产品或本技术 领域内的常规产品和方法。 实施例 1:
制备自蔓延无压烧结金属结合剂金刚石砂轮的步骤:
1 ) 混料: 按照如下质量比例称量结合剂中各种金属粉末: Cu 63份、 A1 7份、 5 份、 Ti l5份、 Sn lO份,放入三维混料机中, 加入液体石蜡湿润剂混合均匀, 时间为 40分钟, 得到金属结合剂, 取该结合剂 21.68克作为工作层结合剂, 加入粒度为 70/80的金刚石颗粒 19克拉,在混料机中充分混合均匀, 时间为 30分钟, 得到工作层料, 再取结合剂 63.12克作为非工作层结合剂, 得到非 工作层料;
2 )压制成型:
将步骤 1 )得到的工作层料和非工作层料分别均勾地投入到模具预留的 模腔中, 刮平, 置于压机中压制成型, 得到金刚石砂轮的压坯;
3 )烧结:
将压坯迅速置于升温至 550°C的马弗炉中, 引发坯体发生自蔓延反应, 在空气中自由烧结, 然后关闭电源, 不加外来载荷, 凭自身反应放热进行烧 结和致密化, 最后随炉冷却至室温, 即得到金属结合剂金刚石砂轮。
所得金属结合剂金刚石砂轮的规格为:
60mm 5mm (砂轮厚度) lOmm (内孔) 5mm (工作层环宽) ; 金刚石浓度: 100%。 实施例 2:
制备自蔓延无压烧结金属结合剂金刚石砂轮的步骤:
1 ) 混料:
按照如下质量比例称量结合剂中各种金属粉末: Cu 69份、 A1 5份、 Ni 10 份、 Ti 5份、 Sn 8份、 Co 3份, 放入三维混料机中, 加入液体石蜡湿润剂混 合均匀, 时间为 40分钟, 得到金属结合剂, 取该结合剂 45.65克作为工作层 结合剂, 加入粒度为 140/170的金刚石颗粒 24.6克拉, 在混料机中充分混合 均匀, 时间为 30分钟, 得到工作层料, 再取结合剂 236.58克作为非工作层 结合剂, 得到非工作层料;
2 )压制成型:
将步骤 1 )得到的工作层料和非工作层料分别均勾地投入到模具预留的 模腔中, 刮平, 置于压机中压制成型, 得到金刚石砂轮的压坯;
3 )烧结:
将压坯迅速置于升温至 500 °C的马弗炉中, 引发坯体发生自蔓延反应, 在空气中自由烧结, 然后关闭电源, 不加外来载荷, 凭自身反应放热进行烧 结和致密化, 最后随炉冷却至室温, 即得到金属结合剂金刚石砂轮。
所得金属结合剂金刚石砂轮的规格为:
100mm 5mm (砂轮厚度) lOmm (内孔) 5mm (工作层环宽) ; 金刚石浓度: 75%。 实施例 3:
制备自蔓延无压烧结金属结合剂金刚石砂轮的步骤:
1 ) 混料:
按照如下质量比例称量结合剂中各种金属粉末: Cu 66份、 A1 10份、 Ni 6份、 Ti l2份、 Sn 6份, 放入三维混料机中, 加入液体石蜡湿润剂混合 均匀, 时间为 40分钟, 得到金属结合剂, 取该结合剂 13.77克作为工作层结 合剂, 加入粒度为 80/100的金刚石颗粒 8.55克拉, 在混料机中充分混合均 匀, 时间为 30分钟, 得到工作层料, 再取结合剂 36.98克作为非工作层结合 剂, 得到非工作层料;
2 )压制成型:
将步骤 1 )得到的工作层料和非工作层料分别均勾地投入到模具预留的 模腔中, 刮平, 置于压机中压制成型, 得到金刚石砂轮的压坯;
3 )烧结:
将压坯迅速置于升温至 600 °C的马弗炉中, 引发坯体发生自蔓延反应, 在空气中自由烧结, 然后关闭电源, 不加外来载荷, 凭自身反应放热进行烧 结和致密化, 最后随炉冷却至室温, 即得到金属结合剂金刚石砂轮。
所得金属结合剂金刚石砂轮的规格为:
60mmx3mm (砂轮厚度) lOmm (内孔) 5mm (工作层环宽) ; 金刚石浓度: 75%。 实施例 4:
制备自蔓延无压烧结金属结合剂金刚石砂轮的步骤:
1 ) 混料:
按照如下质量比例称量结合剂中各种金属粉末: Cu 67份、 A1 7份、 Ni 10 份、 Ti 10份、 Sn 6份, 放入三维混料机中, 加入液体石蜡湿润剂混合均匀, 时间为 40分钟, 得到金属结合剂, 取该结合剂 5.49克作为工作层结合剂, 加入粒度为 325/400的金刚石颗粒 4.6克拉, 在混料机中充分混合均匀, 时 间为 30分钟, 得到工作层料, 再取结合剂 13.19克作为非工作层结合剂, 得 到非工作层料;
2 )压制成型:
将步骤 1 )得到的工作层料和非工作层料分别均勾地投入到模具预留的 模腔中, 刮平, 置于压机中压制成型, 得到金刚石砂轮的压坯;
3 )烧结: 将压坯迅速置于升温至 650°C的马弗炉中, 引发坯体发生自蔓延反应, 在空气中自由烧结, 然后关闭电源, 不加外来载荷, 凭自身反应放热进行烧 结和致密化, 最后随炉冷却至室温, 即得到金属结合剂金刚石砂轮。
所得金属结合剂金刚石砂轮的规格为:
40mmx3mm (砂轮厚度) lOmm (内孔) 3mm (工作层环宽) ; 金刚石浓度: 100%。 实施例 5:
制备自蔓延无压烧结金属结合剂金刚石砂轮的步骤:
1 ) 混料:
按照如下质量比例称量结合剂中各种金属粉末: Cu 51份、 A1 15份、 Ni l8份、 Ti l2份、 Sn 4份, 放入三维混料机中, 加入液体石蜡湿润剂混合 均匀, 时间为 40分钟, 得到金属结合剂, 取该结合剂 37.41克作为工作层结 合剂, 加入粒度为 450/500的金刚石颗粒 15.54克拉, 在混料机中充分混合 均匀, 时间为 30分钟, 得到工作层料, 再取结合剂 91.22克作为非工作层结 合剂, 得到非工作层料;
2 )压制成型:
将步骤 1 )得到的工作层料和非工作层料分别均勾地投入到模具预留的 模腔中, 刮平, 置于压机中压制成型, 得到金刚石砂轮的压坯;
3 )烧结:
将压坯迅速置于升温至 580°C的马弗炉中, 引发坯体发生自蔓延反应, 在空气中自由烧结, 然后关闭电源, 不加外来载荷, 凭自身反应放热进行烧 结和致密化, 最后随炉冷却至室温, 即得到金属结合剂金刚石砂轮。
所得金属结合剂金刚石砂轮的规格为:
80mm 6mm (砂轮厚度) 20mm (内孔) 5mm (工作层环宽) ; 金刚石浓度: 50%。 实施例 6:
制备自蔓延无压烧结金属结合剂金刚石砂轮的步骤:
1 ) 混料:
按照如下质量比例称量结合剂中各种金属粉末: Cu 74份、 A1 10份、 Ni 5份、 Ti 7份、 Sn 4份, 放入三维混料机中, 加入液体石蜡湿润剂混合均 匀, 时间为 40分钟, 得到金属结合剂, 取该结合剂 34.58克作为工作层结合 剂,加入粒度为 270/325的金刚石颗粒 5.96克拉,在混料机中充分混合均匀, 时间为 30分钟,得到工作层料,再取结合剂 133.18克作为非工作层结合剂, 得到非工作层料;
2 )压制成型:
将步骤 1 )得到的工作层料和非工作层料分别均勾地投入到模具预留的 模腔中, 刮平, 置于压机中压制成型, 得到金刚石砂轮的压坯;
3 )烧结:
将压坯迅速置于升温至 620°C的马弗炉中, 引发坯体发生自蔓延反应, 在空气中自由烧结, 然后关闭电源, 不加外来载荷, 凭自身反应放热进行烧 结和致密化, 最后随炉冷却至室温, 即得到金属结合剂金刚石砂轮。
所得金属结合剂金刚石砂轮的规格为:
120mmx3mm (砂轮厚度) 25.4mm (内孔) 5mm (工作层环宽) ; 金刚石浓度: 25%。 实施例 7
制备自蔓延无压烧结金属结合剂金刚石砂轮的步骤:
1 ) 混料:
按照如下质量比例称量结合剂中各种金属粉末: Cu 58份、 A1 6份、 Ni 10 份、 Ti l8份、 Sn 5份、 Co 3份, 放入三维混料机中, 加入液体石蜡湿润剂 混合均匀, 时间为 40分钟, 得到金属结合剂, 取该结合剂 26.30克作为工作 层结合剂, 加入粒度为 500/600的金刚石颗粒 9.84克拉, 在混料机中充分混 合均匀, 时间为 30分钟, 得到工作层料, 再取结合剂 94.93克作为非工作层 结合剂, 得到非工作层料;
2 )压制成型:
将步骤 1 )得到的工作层料和非工作层料分别均勾地投入到模具预留的 模腔中, 刮平, 置于压机中压制成型, 得到金刚石砂轮的压坯;
3 )烧结:
将压坯迅速置于升温至 650°C的马弗炉中, 引发坯体发生自蔓延反应, 在空气中自由烧结, 然后关闭电源, 不加外来载荷, 凭自身反应放热进行烧 结和致密化, 最后随炉冷却至室温, 即得到金属结合剂金刚石砂轮。
所得金属结合剂金刚石砂轮的规格为:
100mmx3mm (砂轮厚度) 20mm (内孔) 5mm (工作层环宽) ; 金刚石浓度: 50%。

Claims

权 利 要 求
1. 一种自蔓延无压烧结金属结合剂金刚石砂轮, 主要包括工作层和非 工作层,工作层为金属结合剂和金刚石颗粒,非工作层为金属结合剂,其中, 所述工作层和非工作层的金属结合剂成分相同, 其特征在于, 其成分包括以 下金属粉末成分: Cu、 Al、 Ti、 Ni、 Sn, 优选地, 所述金属结合剂还包含 Co粉末。
2. 根据权利要求 1所述的砂轮,其特征在于,所述金属结合剂满足自蔓 延无压烧结条件, 各金属粉末成分的重量份数配比为: Cu: Al: Ti: Ni: Sn: Co =50 ~ 80: 3 ~ 20: 5 ~ 20: 5 ~ 20: 4 ~ 10: 0 ~ 5。
3. 根据权利要求 2所述的砂轮,其特征在于,所述各金属粉末成分的重 量份数配比为: Cu: Al: Ti: Ni: Sn: Co = 63 ~ 70: 5 ~ 10: 10 ~ 15: 5 - 12: 6 ~ 10: 3 ~ 5。
4. 根据权利要求 3所述的砂轮,其特征在于,所述各金属粉末成分的重 量份数配比为: Cu: Al: Ti: Ni: Sn: Co = 63: 7: 5: 15: 10: 3。
5. 根据权利要求 1-4任一项所述的砂轮, 其特征在于, 所述金刚石颗粒 的粒度为: 70/80 ~ 600/700, 其浓度为: 20% ~ 100%。
6. 根据权利要求 5所述的砂轮,其特征在于,所述金刚石颗粒的粒度为: 80/100 ~ 325/400, 其浓度为 75% ~ 100%。
7. 根据权利要求 6所述的砂轮,其特征在于,所述金刚石颗粒的粒度为: 80/100, 其浓度为: 100%。
8. 根据权利要求 1~6任一项所述的砂轮,其特征在于,所述金属粉末的 平均粒径不超过 38微米。
9. 一种制备权利要求 1~8任一项所述砂轮的方法,其特征在于,所述方 法包括以下步骤:
混料;
压制成型; 和
烧结;
其中, 所述烧结为自蔓延无压烧结。
10. 根据权利要求 9所述的方法, 其特征在于, 所述自蔓延无压烧结步 骤包括: 将经过混料和压制成型的金属结合剂金刚石砂轮压坯置于 500 ~ 650°C的炉中, 引发自蔓延反应, 然后关闭电源, 不加外来载荷, 凭自身反 应放热进行烧结和致密化, 最后随炉冷却至室温, 即得到金属结合剂金刚石 砂轮。
11. 根据权利要求 10所述的方法,其特征在于,所述金属结合剂金刚石 砂轮中的金属结合剂包括以下重量份的金属粉末: Cu 50~80份、 A13 ~ 20 份、 Ti5~20份、 Ni5~20份、 Sn4~10份、 Co 0 ~ 5份; 优选为, Cu 63 - 70份、 A15~10份、 Til0~15份、 Ni 5 ~ 12份、 Sn6~10份、 Co 3 ~ 5份; 更优选为 Cu 63份、 A17份、 Ni 5份、 Ti 15份、 Sn 10份、 Co 3份。
PCT/CN2011/000524 2010-08-26 2011-03-28 自蔓延无压烧结金属结合剂金刚石砂轮及其制备方法 WO2012024884A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/504,459 US9211633B2 (en) 2010-08-26 2011-03-28 Metal-bonded diamond grinding wheel prepared by self-propagating pressure-less sintering and a preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010263648XA CN101934501B (zh) 2010-08-26 2010-08-26 自蔓延烧结金属结合剂金刚石砂轮及其制备方法
CN201010263648.X 2010-08-26

Publications (1)

Publication Number Publication Date
WO2012024884A1 true WO2012024884A1 (zh) 2012-03-01

Family

ID=43388198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000524 WO2012024884A1 (zh) 2010-08-26 2011-03-28 自蔓延无压烧结金属结合剂金刚石砂轮及其制备方法

Country Status (3)

Country Link
US (1) US9211633B2 (zh)
CN (1) CN101934501B (zh)
WO (1) WO2012024884A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114260446A (zh) * 2021-12-30 2022-04-01 郑州机械研究所有限公司 一种金刚石磨具用胎体粉、金刚石磨具用双组份胎体粉、陶瓷干磨用磨轮

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934501B (zh) * 2010-08-26 2012-07-25 郑州磨料磨具磨削研究所 自蔓延烧结金属结合剂金刚石砂轮及其制备方法
CN102554807A (zh) * 2011-12-28 2012-07-11 福建万龙金刚石工具有限公司 金刚石整平轮及生产工艺
CN103128675B (zh) * 2013-01-22 2015-07-08 锑玛(苏州)精密工具有限公司 一种金刚石砂轮工作层材料及其制备方法
CN103072093B (zh) * 2013-01-29 2015-07-29 河南新源超硬材料有限公司 青铜结合剂及其制作的金刚石磨轮和磨轮的制备方法
CN103521751A (zh) * 2013-09-26 2014-01-22 秦皇岛星晟科技有限公司 一种金属基薄壁金刚石钻头的加工方法
CN103521774A (zh) * 2013-10-22 2014-01-22 吴海勇 一种自蔓延制备金刚石节块工具的方法
CN103600308B (zh) * 2013-11-26 2016-03-02 常熟市巨力砂轮有限责任公司 复合结合剂金刚石砂轮的制备方法
CN103692371B (zh) * 2013-12-30 2016-04-20 长沙市萨普新材料有限公司 一种金属陶瓷结合剂金刚石砂轮及其制备方法
CN105773446B (zh) * 2016-05-26 2018-06-26 郑州磨料磨具磨削研究所有限公司 金属结合剂及用其制成的蓝玻璃红外截止滤光片切割砂轮
CN106041089B (zh) * 2016-06-29 2018-05-22 沈阳昌普超硬精密工具有限公司 漫渗燃烧Ti-Al-Cu-Sn-Ni微孔金刚石砂轮的制造方法
CN106378715B (zh) * 2016-10-10 2019-10-29 江苏韦尔博新材料科技有限公司 一种自蔓延金刚石雕刻磨头的制造方法
CN106392907A (zh) * 2016-10-27 2017-02-15 南昌大学 一种基于自蔓延反应快速制备致密超硬磨具与钻具的方法
CN108687350B (zh) * 2017-04-10 2020-10-02 江苏锋泰工具有限公司 自蔓延反应制备金刚石刀头的方法及金刚石刀头
EP3814052A4 (en) * 2018-06-29 2022-07-13 Saint-gobain Abrasives, Inc ABRASIVE ARTICLES AND FORMING METHOD THEREOF
EP3814053A4 (en) 2018-06-29 2022-04-06 Saint-gobain Abrasives, Inc ABRASIVE ARTICLES AND FORMING METHOD THEREOF
CN108818336B (zh) * 2018-08-23 2023-10-03 武汉华美高新材料有限公司 一种钨电极磨削用砂轮及其制备方法
CN110052973A (zh) * 2019-05-09 2019-07-26 华侨大学 一种铝硅合金结合剂金刚石砂轮及其制造方法
CN111558720B (zh) * 2020-06-19 2022-05-13 郑州机械研究所有限公司 金属粉末材料、青铜基金刚石砂轮及其制备方法
CN113561074B (zh) * 2021-07-29 2022-03-25 惠州捷姆复合材料有限公司 一种金刚石磨头的制备方法和装置及其基材
CA3241680A1 (en) * 2021-12-23 2023-06-29 Jerome Cuomo Low temperature synthesis, growth and doping methods and resulting materials
CN114406910A (zh) * 2022-01-25 2022-04-29 长沙市萨普新材料有限公司 一种用于蓝宝石薄片减薄的金刚石砂轮盘及其制备方法
CN115056155A (zh) * 2022-07-11 2022-09-16 河北锟洲科技有限公司 一种多孔金属结合剂砂轮的制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1013379A1 (en) * 1997-07-16 2000-06-28 The Ishizuka Research Institute, Ltd. Diamond-containing stratified composite material and method of manufacturing the same
RU2184644C2 (ru) * 1997-07-16 2002-07-10 Дзе Исизука Рисерч Инститьют, Лтд. Алмазосодержащий слоистый композит и способ его получения
CN101342686A (zh) * 2008-07-04 2009-01-14 佛山市南海丹灶劲刚工模具有限公司 自蔓延高温合成制备金刚石磨块的方法
CN101934501A (zh) * 2010-08-26 2011-01-05 郑州磨料磨具磨削研究所 自蔓延烧结金属结合剂金刚石砂轮及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985051A (en) * 1984-08-24 1991-01-15 The Australian National University Diamond compacts
US5123935A (en) * 1989-02-22 1992-06-23 Kabushiki Kaisha Kobe Seiko Sho Al2 o3 composites, process for producing them and throw-away tip made of al2 o3 composites
US6171709B1 (en) * 1995-09-27 2001-01-09 The Ishizuka Research Institute, Ltd. Super-abrasive grain-containing composite material and method of making
DE19741418A1 (de) * 1997-09-19 1999-04-01 Treibacher Schleifmittel Ag Hartstofflegierung auf Basis von Titancarbid, Verfahren zu deren Herstellung sowie deren Verwendung
US6123612A (en) * 1998-04-15 2000-09-26 3M Innovative Properties Company Corrosion resistant abrasive article and method of making
US6200208B1 (en) * 1999-01-07 2001-03-13 Norton Company Superabrasive wheel with active bond
US7632434B2 (en) * 2000-11-17 2009-12-15 Wayne O. Duescher Abrasive agglomerate coated raised island articles
CN1810420A (zh) * 2005-01-27 2006-08-02 广东工业大学 单层超硬磨料工具的制造方法
US7384329B2 (en) * 2006-05-23 2008-06-10 Saint-Gobain Abrasives Technology Company Coolant delivery system for grinding tools
US20090017736A1 (en) * 2007-07-10 2009-01-15 Saint-Gobain Abrasives, Inc. Single-use edging wheel for finishing glass
US8894731B2 (en) * 2007-10-01 2014-11-25 Saint-Gobain Abrasives, Inc. Abrasive processing of hard and /or brittle materials
MY151755A (en) * 2007-12-28 2014-06-30 Shinetsu Chemical Co Outer blade cutting wheel and making method
WO2010075091A2 (en) * 2008-12-15 2010-07-01 Saint-Gobain Abrasives, Inc. Bonded abrasive article and method of use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1013379A1 (en) * 1997-07-16 2000-06-28 The Ishizuka Research Institute, Ltd. Diamond-containing stratified composite material and method of manufacturing the same
RU2184644C2 (ru) * 1997-07-16 2002-07-10 Дзе Исизука Рисерч Инститьют, Лтд. Алмазосодержащий слоистый композит и способ его получения
CN101342686A (zh) * 2008-07-04 2009-01-14 佛山市南海丹灶劲刚工模具有限公司 自蔓延高温合成制备金刚石磨块的方法
CN101934501A (zh) * 2010-08-26 2011-01-05 郑州磨料磨具磨削研究所 自蔓延烧结金属结合剂金刚石砂轮及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114260446A (zh) * 2021-12-30 2022-04-01 郑州机械研究所有限公司 一种金刚石磨具用胎体粉、金刚石磨具用双组份胎体粉、陶瓷干磨用磨轮
CN114260446B (zh) * 2021-12-30 2024-01-26 郑州机械研究所有限公司 一种金刚石磨具用胎体粉、金刚石磨具用双组份胎体粉、陶瓷干磨用磨轮

Also Published As

Publication number Publication date
CN101934501A (zh) 2011-01-05
US20130143476A1 (en) 2013-06-06
US9211633B2 (en) 2015-12-15
CN101934501B (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
WO2012024884A1 (zh) 自蔓延无压烧结金属结合剂金刚石砂轮及其制备方法
CN107663607B (zh) 一种高熵合金把持磨料颗粒的复合材料及其制备方法和应用
CN108257925A (zh) 一种硅化金刚石/SiC复合材料的制备方法
CN103231064B (zh) 一种新型镍基钎料钎焊单层金刚石砂轮的制作方法
CN102229122A (zh) 陶瓷结合剂磨钻石专用金刚石砂轮
CN105624505B (zh) 一种金属基超硬复合材料及其制备方法
CN103521774A (zh) 一种自蔓延制备金刚石节块工具的方法
CN106216687B (zh) 一种梯度碳化钨基微纳复合刀具材料及其制备方法
Zhang et al. Improvement of thermal stability of diamond by adding Ti powder during sintering of diamond/borosilicate glass composites
CN101342686A (zh) 自蔓延高温合成制备金刚石磨块的方法
CN103951436B (zh) 双辊薄带连铸用陶瓷侧封板及其制备方法
CN103395009B (zh) 一种陶瓷空心球多层钎焊金刚石节块及其制作方法
CN102114617B (zh) 一种Ti3SiC2基陶瓷结合剂金刚石磨削工具及制备方法
CN101538661A (zh) 一种制备高导热金刚石/Al复合材料方法
CN111778436B (zh) 一种冷压-热压烧结制备wc-y2o3无粘结相硬质合金的方法
CN107866754A (zh) 一种基于石墨烯复合结合剂的多孔立方氮化硼砂轮工作层及其制备方法
CN111266573B (zh) 一种聚晶立方氮化硼复合片的制备方法
CN110078511B (zh) 一种Ti3AlC2基陶瓷结合剂金刚石钻进工具刀头的制备方法
CN108214331A (zh) 一种cbn砂轮及其制备方法
CN106553136A (zh) 熔浸法制备金属结合剂金刚石砂轮
US3717694A (en) Hot pressing a refractory article of complex shape in a mold of simple shape
CN106747468A (zh) 用于气雾化钛及钛合金粉末的导液管材料及其制备方法
CN107175593B (zh) 不含纯铜粉的金刚石磨轮的制作方法
CN109227411A (zh) 一种环保树脂钹型砂轮
CN102643094B (zh) 一种碳化硅磨具的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819259

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13504459

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819259

Country of ref document: EP

Kind code of ref document: A1