WO2011141756A1 - Pyrazolopyridines as inhibitors of the kinase lrrk2 - Google Patents
Pyrazolopyridines as inhibitors of the kinase lrrk2 Download PDFInfo
- Publication number
- WO2011141756A1 WO2011141756A1 PCT/GB2011/050937 GB2011050937W WO2011141756A1 WO 2011141756 A1 WO2011141756 A1 WO 2011141756A1 GB 2011050937 W GB2011050937 W GB 2011050937W WO 2011141756 A1 WO2011141756 A1 WO 2011141756A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- optionally substituted
- heterocycloalkyl
- aryl
- heteroaryl
- Prior art date
Links
- 0 CC(C)CC(CN(*)*)C=O Chemical compound CC(C)CC(CN(*)*)C=O 0.000 description 8
- QWRPRRAVTKEBHO-UHFFFAOYSA-N CCOc1cc(-c2n[nH]c3cc(C)nc(NC4CCOCC4)c23)ncn1 Chemical compound CCOc1cc(-c2n[nH]c3cc(C)nc(NC4CCOCC4)c23)ncn1 QWRPRRAVTKEBHO-UHFFFAOYSA-N 0.000 description 1
- LXQZBPLSOSNWJR-UHFFFAOYSA-N Cc1cc(Cl)c(C(OC)=O)c(Cl)n1 Chemical compound Cc1cc(Cl)c(C(OC)=O)c(Cl)n1 LXQZBPLSOSNWJR-UHFFFAOYSA-N 0.000 description 1
- QUHJCWDZCMZQFW-UHFFFAOYSA-N Cc1cc(Cl)c(C=O)c(Cl)n1 Chemical compound Cc1cc(Cl)c(C=O)c(Cl)n1 QUHJCWDZCMZQFW-UHFFFAOYSA-N 0.000 description 1
- YYRIQTLBJWWQMZ-UHFFFAOYSA-N Cc1cc(Cl)c(CO)c(Cl)n1 Chemical compound Cc1cc(Cl)c(CO)c(Cl)n1 YYRIQTLBJWWQMZ-UHFFFAOYSA-N 0.000 description 1
- XZFRQKCRCWTJFK-UHFFFAOYSA-N Cc1cc([nH]nc2-c3cc(C(NC)=O)ccc3)c2c(OC2CCOCC2)n1 Chemical compound Cc1cc([nH]nc2-c3cc(C(NC)=O)ccc3)c2c(OC2CCOCC2)n1 XZFRQKCRCWTJFK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/437—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/506—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
Definitions
- the present invention relates to pyrazolopyridine compounds that are capable of inhibiting one or more kinases, more particularly, LRRK2.
- the compounds find applications in the treatment of a variety of disorders, including cancer and neurodegenerative diseases such as Parkinson's disease.
- LRRK2 The domain structure of LRRK2 is shown in Figure 1 , which also depicts the mutations that have thus far been reported in patients with PD.
- the defining feature of the LRRK2 enzyme is a Leucine Rich Repeat (LRR) motif (residues 1010-1291), a Ras-like small GTPase (residues 1336-1510), a region of high amino acid conservation that has been termed the C-terminal Of Ras of complex (COR) domain (residues 1511-1878), a protein kinase catalytic domain (residues 1879-2132) and a C-terminal WD40 motif (2231-2276) [6, 7].
- LRR Leucine Rich Repeat
- the protein kinase domain of LRRK2 belongs to the tyrosine-like serine/threonine protein kinases and is most similar to the kinase RIP (Receptor Interacting Protein), which play key roles in innate immunity signalling pathways [8].
- kinase RIP Receptor Interacting Protein
- Gly2019 is located within the conserved DYG-Mg 2+ -binding motif, in subdomain-VII of the kinase domain [2]. Recent reports suggest that this mutation enhances the autophosphorylation of LRRK2, as well as its ability to phosphorylate myelin basic protein 2-3-fold [9, 10], a finding confirmed by the Applicant [11]. These observations suggest that over-activation of LRRK2 predisposes humans to develop PD, implying that drugs which inhibited LRRK2, could be utilised to halt progression or even perhaps reverse symptoms of some forms of PD.
- Moesin is a member of the Ezrin/Radixin/Moesin (ERM) family of proteins which functions to anchor the actin cytoskeleton to the plasma membrane and plays an important role in regulating membrane structure and organization [15, 16]. It was found that LRRK2 phosphorylated moesin at Thr558 [11], a previously characterised physiologically relevant phosphorylation site [15, 16]. LRRK2 also phosphorylated ezrin and radixin at the equivalent Thr residue.
- EEM Ezrin/Radixin/Moesin
- the present invention seeks to provide compounds that are capable of inhibiting one or more kinases, more particularly, LRRK, even more preferably LRRK2.
- a first aspect of the invention relates to a compound of formula la or formula lb, or a pharmaceutically acceptable salt or ester thereof,
- R is selected from:
- aryl, heteroaryl, fused aryl-C 4 _ 7 -heterocycloalkyl and C 4-7 - heterocycloalkyl are each optionally substituted with one or more substituents selected from C 1-6 -alkyl, C 3-7 - cycloalkyl, heteroaryl, C ⁇ -heterocycloalkyl, aryl and a group A, and said C 1-6 -aIkyl, C 3-7 - cycloalkyl, heteroaryl, C 4-7 -heterocycloalkyl, and aryl substituents are in turn each optionally substituted with one or more groups selected from R 11 and a group A;
- R 2 is selected from hydrogen, aryl, C 1-6 -alkyl, C 2-6 -alkenyl, C 3-7 -cycloalkyl, heteroaryl, C 4-7 heterocycloalkyl, fused aryl-C ⁇ -heterocycloalkyl and halogen, wherein said C 1-6 -alkyl, C 2- 6 -alkenyl, aryl, heteroaryl, fused aryl-C 4-7 -heterocycloalkyl and C -7 -heterocycloalkyl are each optionally substituted with one or more substituents selected from R 11 and A;
- Q is a halogen, CN, or is selected from C 1-6 -alkyl, C 3- cycloalkyl, heterocycloalkyl, aryl and heteroaryl, each of which is optionally substituted with one or more substituents A;
- each R 3 is selected from aryl, heteroaryl, C ⁇ -heterocycloalkyl
- R 4 and R 5 are each independently selected from hydrogen, C 3-7 -cycloalkyl, C 1-6 -alkyl-C 3-7 - cycloalkyl, aryl, heteroaryl, C 1-6 -alkyl and a C 3-6 -heterocycIoalkyl ring optionally further containing one or more groups selected from oxygen, sulfur, nitrogen and CO, and optionally substituted by one or more R 10 groups, wherein each C 1-6 -alkyl, heteroaryl and aryl is optionally substituted by one or more substituents selected from C 1-6 -alkyl, halogen, cyano, hydroxyl, aryl, halo-substituted aryl, heteroaryl, -NR S R 9 , -NR 6 R 7 , NR 7 (CO)R 6 , - NR 7 COOR 6 , -NR 7 (S0 2 )R 6 , -COOR 6 , -CONR 8 R 9 ,
- R 4 and R 5 together with the N to which they are attached form a C 3-6 -heterocycloalkyl ring optionally further containing one or more groups selected from oxygen, sulfur, nitrogen and CO, wherein said C 3 _ 6 -heterocycloalkyl ring is saturated or unsaturated and is optionally substituted with one or more groups selected from A, NR 8 R 9 and R 10 ; each R 6 is independently selected from C 1-6 -alkyl, C 3-7 cycloalkyl, C ⁇ -heterocycloalkyl, aryl and heteroaryl, each of which is optionally substituted by one or more substituents selected from R 10 , R and A; each R 7 is selected from hydrogen, Ci_ 6 -alkyl and C 3-7 -cycloalkyl, wherein said C 1-6 -alkyl is optionally substituted by one or more halogens; each of R 8 and R 9 is independently selected from hydrogen and C 1-6 -alkyl, wherein said C 1-B
- a second aspect of the invention relates to a pharmaceutical composition
- a pharmaceutical composition comprising at least one compound as described above and a pharmaceutically acceptable carrier, diluent or excipient.
- a third aspect of the invention relates to a compound as described above for use in medicine.
- a fourth aspect of the invention relates to a compound as described above for use in treating a disorder selected from cancer and neurodegenerative diseases such as Parkinson's Disease.
- a fifth aspect of the invention relates to the use of a compound as described above in the preparation of a medicament for treating or preventing a disorder selected from cancer and neurodegenerative diseases such as Parkinson's Disease.
- a sixth aspect of the invention relates to the use of a compound as described above in the preparation of a medicament for the prevention or treatment of a disorder caused by, associated with or accompanied by any abnormal kinase activity wherein the kinase is preferably LRRK, more preferably LRRK2.
- a seventh aspect of the invention relates to a method of treating a mammal having a disease state alleviated by inhibition of a kinase (preferably LRRK, more preferably LRRK2), wherein the method comprises administering to a mammal a therapeutically effective amount of a compound as described above.
- a kinase preferably LRRK, more preferably LRRK2
- An eighth aspect of the invention relates to the use of a compound as described above in an assay for identifying further candidate compounds capable of inhibition of a kinase, preferably LRRK, more preferably LRRK2.
- a ninth aspect of the invention relates to processes for preparing compounds of formula la and formula lb.
- the present invention relates to pyrazolopyridine compounds that are capable of inhibiting one or more kinases, more particularly LRRK, even more particularly LRRK2. Specifically, the invention relates to substituted pyrazolo[4,3-c]pyridine derivatives.
- Alkyl is defined herein as a straight-chain or branched alkyl radical, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, hexyl.
- Cycloalkyl is defined herein as a monocyclic alkyl ring, such as, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl, or a fused bicyclic ring system such as norbornane.
- Halogen is defined herein as chloro, fluoro, bromo or iodo.
- aryl refers to a C 6-12 aromatic group, which may be benzocondensed, for example, phenyl or naphthyl.
- Heteroaryl is defined herein as a monocyclic or bicyclic C 2- i 2 aromatic ring comprising one or more heteroatoms (that may be the same or different), such as oxygen, nitrogen or sulphur.
- heteroaryl groups examples include thienyl, furanyl, pyrrolyl, pyridinyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl etc. and benzo derivatives thereof, such as benzofuranyl, benzothienyl, benzimidazolyl, indolyl, isoindolyl, indazolyl etc.; or pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl etc.
- Heterocycloalkyl refers to a cyclic aliphatic group containing one or more heteroatoms selected from nitrogen, oxygen and sulphur, which is optionally interrupted by one or more -(CO)- groups in the ring and/or which optionally contains one or more double bonds in the ring.
- the heterocycloalkyl group is a C 3-7 -heterocycloalkyl, more preferably a C 3-6 -heterocycloalkyl.
- the heterocycloalkyl group is a C ⁇ -heterocycloalkyl, more preferably a C 4-6 -heterocycloalkyl.
- Preferred heterocycloalkyl groups include, but are not limited to, piperazinyl, piperidinyl, morpholinyl, thiomorpholinyl, pyrrolidinyl, tetrahydrofuranyl and tetrahydropyranyl.
- the invention relates to compounds of formula la.
- the invention relates to compounds of formula lb.
- R 2 is selected from:
- halogen more preferably bromine
- aryl optionally substituted by one or more substituents selected from R and A;
- C 1-6 -aIkyl optionally substituted by one or more substituents selected from R 11 and A; C -alkenyl optionally substituted by one or more A substituents;
- heteroaryl optionally substituted by one or more substituents selected from R 11 and A; C 4-7 -heterocycloalkyl; and
- R 2 is selected from:
- aryl optionally substituted by one or more substituents selected from -NR 4 COR 5 , - CONR 4 R 5 , OR 6 , halogen, optionally substituted C 1-e -alkyl, CN, C 4 _ 7 -heterocycloalkyl and heteroaryl;
- C 1-6 -alkyl optionally substituted by one or more substituents selected from -NR 4 COR 5 , - CONR R 5 , -NR 4 R 5 , OR 6 , optionally substituted aryl, optionally substituted heteroaryl and C 4 _7-heterocycloalkyl;
- heteroaryl optionally substituted by one or more substituents selected from C 4-7 - heterocycloalkyl, C 1-6 -alkyl, C 3-7 -cycloalkyl, C 1-6 -alkyl-C 3-7 -cycloalkyl and OR 6 ;
- R 2 is selected from:
- a phenyl group optionally substituted by one or more substituents selected from -NHCO- C 1-6 -alkyl, -CONHC 1-6 -alkyl, CO-(N-morpholinyl), CI, F, -OC 1-6 -alkyl, -CONMe 2 , OCF 3 , CN, CF 3 , C 1-6 -alkyl-(A), N-morpholinyl and pyrazolyl;
- heteroaryl group selected from pyridinyl, quinolinyl, pyrazoyi, furanyl and pyrimidinyl, each of which may be optionally substituted by one or more substituents selected from C ⁇ 6-alkyl, aralkyl, OC 1-6 -alkyl, N-morpholinyl;
- a C 1-6 -alkyl group optionally substituted by one or more substituents selected from - CONR 4 R 5 , phenyl, pyridinyl and oxadiazolyl and piperidinyl, wherein said phenyl, pyridinyl and oxadiazolyl and piperidinyl groups are each optionally further substituted by one or more -NR 4 COR 5 , -CONR 4 R 5 , COR 6 , S0 2 R 6 or aryl groups.
- each -CONR 4 R 5 group is independently selected from: -CO(N-morpholinyl), -CO(N-piperidinyl), -CO(N-pyrrolidinyl), -CO-(N-piperazinyl), each of which may be optionally further substituted by one or more substituents selected from aryl, heteroaryl, -OR 6 , CF 3 , aralkyl, -NR 4 COR 5 -CONR 4 R 5 , -NR 4 R S , halogen, C 1-6 -alkyl; and -CONCC L e-alky z, CONH(C 1-6 -alkyl), CON(C 1-6 -alkyl)(aralkyl), CONH(C 3-7 -cycloalkyl), - CONH(aryl), -CONH(heteroaryl), wherein said C 1-6 -alkyl, aralkyl, aryl and heteroaryl
- R 2 is a C 1-6 -alkyl group optionally substituted by one or more substituents selected from -NR COR 5 , -CONR R 5 , -NR 4 R 5 , OR 6 , C ⁇ -heterocycloalkyl, heteroaryl and aryl, wherein said aryl group is optionally substituted by one or more substituents selected from -NR 4 COR 5 and -CONR 4 R 5 .
- R 2 is selected from -CH 2 CH 2 CO-NR 4 R 5 , 6-alkyl, C 3 - 7 cycloalkyl and a heteroaryl selected from furanyl and pyrazolyl, wherein said furanyl and pyrazolyl groups may be optionally substituted by one or more substituents selected from C 1-6 -alkyl, C 3-7 -cycloalkyl and
- R 2 is selected from Me
- R 4 and R 5 together with the N to which they are attached form a C 3-6 - heterocycloalkyl ring optionally further containing one or more groups selected from oxygen, sulfur, nitrogen and CO, wherein said C ⁇ -heterocycloalkyl ring is saturated or unsaturated and is optionally substituted with one or more groups selected from A, NR 8 R 9 and R 10 .
- R 4 and R 5 together with the N to which they are attached form a 6-membered heterocycloalkyi ring that is optionally substituted with one or more groups selected from A, NR 8 R 9 and R 10 .
- R 4 and R 5 together with the N to which they are attached form a saturated 6-membered ring (more preferably, a piperidinyl ring) that is optionally substituted with one or more groups selected from A, NR 8 R 9 and R 10 .
- R 2 is selected from Me,
- R 2 is selected from aryl, C 1-6 -alkyl and heteroaryl, each of which is optionally substituted with one or more substituents selected from R 1 and A.
- R 2 is selected from aryl, C 1-6 -alkyl and heteroaryl, each of which is optionally substituted with one or more substituents selected from CONR 4 R 5 , CF 3 , C 1-6 -alkyl, OR 6 and C 4-7 -heterocycloalkyl.
- R 2 is selected from C -6 -alkyl, phenyl, pyridinyl, pyrimidinyl, pyrazolyl, each of which is optionally substituted by one or more substituents selected from CONR 4 R 5 , CF 3 , C 1-6 -alkyl, OR 6 and C 4-7 -heterocycloalkyl.
- R 2 is selected from C 1-B -alkyl, phenyl, pyridinyl, pyrimidinyl and pyrazolyl, each of which is optionally substituted by one or more substituents selected from CONMe 2 , CF 3 , iso-butyl, iso-propyl, OEt and morpholinyl.
- R 2 is selected from the following: Me
- R 2 is an unsubstituted C 1-6 -alkyl group, more preferably methyl.
- R 1 is selected from:
- aryl, heteroaryl, fused aryl-C 4 _ 7 -heterocycloalkyl and C 4-7 - heterocycloalkyl are each optionally substituted with one or more substituents selected from C 1-6 -alkyl, C 3-7 - cycloalkyl, heteroaryl, C ⁇ -heterocycloalkyl, aryl and a group A, and said C -6 -alkyl, C ⁇ - cycloalkyl, heteroaryl, C 4-7 -heterocycloalkyl, and aryl substituents are in turn each optionally substituted with one or more groups selected from R 11 and a group A.
- R 1 is -NHR 3 and R 3 is selected from:
- C 1-6 -alkyl optionally substituted by one or more -OR 6 , NR 4 COR 5 , heteroaryl, aryl, C _ 7 - heterocycloalkyl, and C ⁇ -cycloalkyl groups, wherein said aryl and heteroaryl groups are each independently optionally further substituted by one or more groups selected from CF 3 , halogen, C 1-6 -alkyl, -OR 6 and -NR 4 R 5 ;
- a phenyl group optionally substituted by one or more substituents selected from -OR 6 , NR 4 COR 5 , -CONR 4 R 5 , aryl, -NR 4 R 5 , C 1-6 -alkyl-heteroaryl, heteroaryl, halogen, -S0 2 R 6 , CN, CF 3 , C 1-B -alkyl, -S0 2 NR 4 R 5 , -NR 4 S0 2 R 5 , wherein said C 1-6 -alkyl, heteroaryl and aryl groups are each independently optionally further substituted by one or more groups selected from CN, CF 3 , halogen, C 1-6 -alkyl, -OR 6 and -NR 4 R 5 ; a heteroaryl group optionally substituted by one or more substituents selected from aryl, C 1-6 -alkyl, and -NR 4 R 5 , wherein said aryl group is optionally further substituted by one or more
- R 1 is -NHR 3 , wherein R 3 is selected from C 1-6 -alkyl, C 3-7 -cycloalkyl, C 4-7 -heterocycloalkyl and aryl, each of which may be optionally substituted by one or more with one or more substituents selected from R 1 and A.
- R 1 is -OR 3 , wherein R 3 is selected from Ci_ 6 -alkyl, C ⁇ -cycloalkyl, C ⁇ -heterocycloalkyl and aryl, each of which may be optionally substituted by one or more with one or more substituents selected from R 11 and A.
- R is -OR 3 , wherein R 3 is C 1-6 -alkyl, C ⁇ - cycloalkyl or C 4-7 -heterocycloalkyl, each of which may be optionally substituted by one or more A substituents.
- R 1 is -O- C 3-7 -cycloalkyl, more preferably, -O-cyclohexyl.
- R 1 is selected from heteroaryl, -NHR 3 and OR 3 , wherein said heteroaryl group is optionally substituted with one or more substituents seleted from the group A.
- R 1 is aryl or heteroaryl, each of which may be optionally substituted by one or more with one or more substituents selected from R 1 and A, more preferably R is furyl.
- R is -NH-C 3- -cycloalkyl or H-C4.7- heterocycloalkyl, each of which may be optionally substituted by one or more A substituents.
- A is halogen or C -6 -alkyl.
- R 3 is cyclohexyl or tetrahydropyranyl, each of which may be optionally substituted by one or more A substituents.
- R 1 is selected from the following:
- R 1 is -OR 3 or NHR 3
- R 3 is cyclohexyl, Me or tetrahydopyran-4-yl.
- R 1 is -NH-cyclohexyl.
- R 1 is -NHR 3 and R 2 is an unsubstituted C 1-6 - alkyl group, more preferably methyl. In one preferred embodiment of the invention, R 1 is -NHR 3 and R 2 is a C 1-6 -alkyl group substituted by one or more -CONR 4 R 5 groups.
- R 1 is -NHR 3 and R 2 is an aryl or heteroaryl group, each of which may be optionally substituted by one or more substituents selected from C 4-7 -heterocycloalkyl, C 1-6 -alkyl, C 3 _ 7 -cycloalkyl, C ⁇ -alkyl-Ca ⁇ -cycloalkyl and OR 6 .
- R 1 is -OR 3 and R 2 is a C 1-6 -alkyl group, more preferably methyl. In one preferred embodiment of the invention, R 1 is selected from:
- R 2 is selected from
- R 4 and R 5 together with the N to which they are attached form a C 3 _ 6 - heterocycloalkyl ring optionally further containing one or more groups selected from oxygen, sulfur, nitrogen and CO, wherein said C 3-6 -heterocycloalkyl ring is saturated or unsaturated and is optionally substituted with one or more groups selected from A, NR 8 R 9 and R 10 .
- R 4 and R 5 together with the N to which they are attached form a 6-membered heterocycloalkyi ring that is optionally substituted with one or more groups selected from A, NR 8 R 9 and R 10 .
- R 4 and R 5 together with the N to which they are attached form a saturated 6-membered ring (more preferably, a piperidinyl ring) that is optionally substituted with one or more groups selected from A, NR 8 R 9 and R 0 .
- R 1 is as defined above and R 2 is selected from Me,
- R 1 is selected from aryl, heteroaryl, C 4-7 -heterocycloalkyl, fused aryl-C 4-7 -heterocycloalkyl and -NHR 3 , wherein said aryl, heteroaryl, fused aryl-C 4-7 -heterocycloalkyl and C ⁇ - heterocycloalkyl are each optionally substituted with one or more substituents selected from C 1-6 -alkyl, C 3-7 -cycloalkyl, heteroaryl, C ⁇ -heterocycloalkyl, aryl and a group A, and said C 1-6 -alkyl, C 3 . 7 -cycloalkyl, heteroaryl, C 4-7 -heterocycloalkyl, and aryl substituents are in turn each optionally substituted with one or more groups selected from R 1 and a group A; and
- R 2 is selected from hydrogen, aryl, C 1-6 -alkyl, C 3 . 7 -cycloalkyl, heteroaryl, C -7 heterocycloalkyi and halogen, wherein said C ⁇ -alkyl, aryl, heteroaryl and C 4 . 7 - heterocycloalkyl are each optionally substituted with one or more substituents selected from R 11 and A.
- R 2 is a C 1-6 -alkyl group optionally substituted with one or more substituents selected from R 11 and A.
- R 3 is selected from C 1-6 -alkyl, morpholinyl, C 3-7 -cycloalkyl, fused aryl-C 4 , 7 - heterocycloalkyl, piperidinyl, tetrahydropyranyl, piperazinyl, phenyl, pyridinyl, indazolyl and pyrazolyl, each of which is optionally substituted by one or more substituents selected from R 1 and A; and
- R 1 is selected from:
- Ci_ 6 -alkyl is optionally substituted by one or more substituents selected from OR 6 , OH, C 4-7 heterocycloalkyi, NR 4 R 5 , heteroaryl, C 3-7 -cycloalkyl, phenyl, wherein said phenyl group is optionally substituted by one or more halo groups, and said C -7 heterocycloalkyi group is optionally substituted by one or more C 1-6 -alkyl groups;
- NH-piperazinyl wherein said piperazinyl is optionally substituted by one or more substituents selected from C 1-5 -alkyl, aryl, C 1-6 -alkyl-aryl and heteroaryl, each of which is optionally further substituted by one or more halo groups; NH-morpholinyl;
- a pyrazolyl group optionally substituted by one or more C -6 -alkyl groups
- phenyl wherein said phenyl is optionally substituted by one or more substituents selected from halo, CF 3 , OH, OR 6 , NR 4 S0 2 R 5 , NR 4 R 5 , C 4-7 heterocycloalkyl, CONR 4 R 5 and -NR COR 5 ;
- pyridinyl wherein said pyridinyl is optionally substituted by one or more substituents selected from C4.7 heterocycloalkyl and aryl, wherein said aryl group is optionally further substituted with one or more halo groups;
- phenyl optionally substituted by one or more substituents selected from halo, OR 6 , - NR 4 S0 2 R 5 , CN, C 4-7 heterocycloalkyl and C 1-6 -alkyl-NR 4 S0 2 R 5 ;
- R 1 is selected from:
- NH-Ci.6-alkyl wherein said C 1-6 -alkyl is optionally substituted by one or more substituents selected from OMe, OH, tetrahydropyranyl, pyrrolidinyl, NEt 2 , imidazolyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, wherein said phenyl group is optionally substituted by one or more chloro groups, and said pyrrolidinyl group is optionally substituted by one or more methyl groups;
- piperazinyl is optionally substituted by one or more substituents selected from methyl, phenyl, CH 2 -phenyl and pyridinyl, wherein the phenyl group is optionally further substituted by one or more F or CI groups;
- NH-morpholinyl NH-cyclopropyl, NH-cyclobutyl, NH-cyclopentyl and NH-cyclohexyl, wherein said cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl groups are optionally substituted by one or more substituents selected from OH and F;
- a pyrazolyl group optionally substituted by one or more methyl groups
- phenyl wherein said phenyl is optionally substituted by one or more substituents selected from F, CI, Br, CF 3 , OH, OEt, NHS0 2 Me, NMe 2 , morpholinyl, CONMe 2 , CONH 2 and -NHCOMe;
- pyridinyl wherein said pyridinyl is optionally substituted by one or more substituents selected from morpholinyl and phenyl wherein said phenyl group is optionally further substituted with one or more CN groups;
- phenyl optionally substituted by one or more substituents selected from F, CI, OMe, - NHSO z Me, CN, morpholinyl and CH 2 -NHS0 2 Me;
- Q is selected from a halogen, CN, C 1-6 - alkyl, C 3-7 -cycloalkyl,and C 4-7 -heterocycloalkyl and heteroaryl, wherein said C 1-6 -alkyl, C 3-7 - cycloalkyl, C ⁇ -heterocycloalkyl and heteroaryl are each independently optionally substituted with one or more substituents from the group A.
- A is halo or Ci -B - alkyl.
- Q is selected from CN, cyclopropyl, CF 3 , chloro, methyl, N-morpholinyl and 1 -methyl pyrazol-4-y I.
- Q is a halogen, or is selected from C 1-B -alkyl, heterocycloalkyl and heteroaryl, each of which is optionally substituted with one or more substituents A. More preferably, Q is selected from chloro, methyl, N-morpholinyl and 1-methylpyrazol-4- yi-
- the compounds of the present invention are capable of inhibiting one or more kinases, preferably, LRRK, even more preferably LRRK2.
- the compound of the invention is capable of inhibiting LRRK2, as measured by the assay described in the accompanying Examples section.
- the compound of the invention exhibits an IC 50 value of less than 10 ⁇ , more preferably less than 5 ⁇ , even more preferably less than 1 ⁇ or less than 0.5 less ⁇ , more preferably still less than 0.1 ⁇ .
- the compound of the invention exhibits a Kl value of less than 10 ⁇ , more preferably less than 5 ⁇ , even more preferably less than 1 ⁇ or less than 0.5 less ⁇ , more preferably still less than 0.1 ⁇ .
- Particularly preferred compounds include the following: [1], [2], [6]-[10] and [11-25].
- a further aspect of the invention relates to a compound as described above for use in medicine.
- Another aspect of the invention relates to a compound as described above for use in treating cancer or a neurodegenerative disorder.
- Another aspect relates to the use of a compound as described above in the preparation of a medicament for treating or preventing a neurodegenerative disorder.
- the neurodegenerative disorder is Parkinson's Disease.
- Another aspect relates to the use of a compound as described above in the preparation of a medicament for treating or preventing a proliferative disorder, for example, cancer.
- the compound is administered in an amount sufficient to inhibit one or more kinases, preferably LRRK, even more preferably LRRK2.
- Yet another aspect relates to the use of a compound of the invention in the preparation of a medicament for the prevention or treatment of a disorder caused by, associated with or accompanied by any abnormal activity against a biological target, wherein the target is a kinase, more preferably LRRK, even more preferably LRRK2.
- the disorder is Parkinson's Disease.
- Another aspect of the invention relates to a method of treating a protein kinase related disease or disorder.
- the method according to this aspect of the present invention is effected by administering to a subject in need thereof a therapeutically effective amount of a compound of the present invention, as described hereinabove, either per se, or, more preferably, as a part of a pharmaceutical composition, mixed with, for example, a pharmaceutically acceptable carrier, as is detailed hereinafter.
- Yet another aspect of the invention relates to a method of treating a mammal having a disease state alleviated by inhibition of a protein kinase, wherein the method comprises administering to a mammal a therapeutically effective amount of a compound according to the invention.
- the disease state is alleviated by the inhibition of the protein kinase LRRK, more preferably LRRK2.
- the mammal is a human.
- administering refers to a method for bringing a compound of the present invention and a protein kinase together in such a manner that the compound can affect the enzyme activity of the protein kinase either directly; i.e., by interacting with the protein kinase itself or indirectly; i.e., by interacting with another molecule on which the catalytic activity of the protein kinase is dependent.
- administration can be accomplished either in vitro, i.e. in a test tube, or in vivo, i.e., in cells or tissues of a living organism.
- treating includes abrogating, substantially inhibiting, slowing or reversing the progression of a disease or disorder, substantially ameliorating clinical symptoms of a disease or disorder or substantially preventing the appearance of clinical symptoms of a disease or disorder.
- preventing refers to a method for barring an organism from acquiring a disorder or disease in the first place.
- terapéuticaally effective amount refers to that amount of the compound being administered which will relieve to some extent one or more of the symptoms of the disease or disorder being treated.
- a therapeutically effective amount can be estimated initially from cell culture assays.
- a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC 50 or the IC 100 as determined in cell culture. Such information can be used to more accurately determine useful doses in humans.
- Initial dosages can also be estimated from in vivo data. Using these initial guidelines one of ordinary skill in the art could determine an effective dosage in humans.
- toxicity and therapeutic efficacy of the compounds described herein can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., by determining the LD 50 and the ED 50 .
- the dose ratio between toxic and therapeutic effect is the therapeutic index and can be expressed as the ratio between LD 50 and ED 50 .
- Compounds which exhibit high therapeutic indices are preferred.
- the data obtained from these cell cultures assays and animal studies can be used in formulating a dosage range that is not toxic for use in human.
- the dosage of such compounds lies preferably within a range of circulating concentrations that include the ED 50 with little or no toxicity.
- the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
- the exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition, (see, e.g., Fingl et al, 1975, In: The Pharmacological Basis of Therapeutics, chapter 1 , page 1).
- Dosage amount and interval may be adjusted individually to provide plasma levels of the active compound which are sufficient to maintain therapeutic effect.
- Usual patient dosages for oral administration range from about 50-2000 mg/kg/day, commonly from about 100-1000 mg/kg/day, preferably from about 150-700 mg/kg/day and most preferably from about 250-500 mg/kg/day.
- therapeutically effective serum levels will be achieved by administering multiple doses each day.
- the effective local concentration of the drug may not be related to plasma concentration.
- One skilled in the art will be able to optimize therapeutically effective local dosages without undue experimentation.
- kinase related disease or disorder refers to a disease or disorder characterized by inappropriate kinase activity or over-activity of a kinase as defined herein. Inappropriate activity refers to either; (i) kinase expression in cells which normally do not express said kinase; (ii) increased kinase expression leading to unwanted cell proliferation, differentiation and/or growth; or, (iii) decreased kinase expression leading to unwanted reductions in cell proliferation, differentiation and/or growth.
- Over-activity of kinase refers to either amplification of the gene encoding a particular kinase or production of a level of kinase activity, which can correlate with a cell proliferation, differentiation and/or growth disorder (that is, as the level of the kinase increases, the severity of one or more of the symptoms of the cellular disorder increases). Over activity can also be the result of ligand independent or constitutive activation as a result of mutations such as deletions of a fragment of a kinase responsible for ligand binding.
- Preferred diseases or disorders that the compounds described herein may be useful in preventing include cancer and neurodegenerative disorders such as Parkinson's Disease.
- the present invention further provides use of compounds as defined herein for the manufacture of medicaments for the treatment of diseases where it is desirable to inhibit LRRK2. Such diseases include Parkinson's Disease.
- the compounds or physiologically acceptable salt, ester or other physiologically functional derivative thereof, described herein may be presented as a pharmaceutical formulation, comprising the compounds or physiologically acceptable salt, ester or other physiologically functional derivative thereof, together with one or more pharmaceutically acceptable carriers therefore and optionally other therapeutic and/or prophylactic ingredients.
- the carrier(s) must be acceptable in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
- the pharmaceutical compositions may be for human or animal usage in human and veterinary medicine. Examples of such suitable excipients for the various different forms of pharmaceutical compositions described herein may be found in the "Handbook of Pharmaceutical Excipients, 2 nd Edition, (1994), Edited by A Wade and PJ Weller.
- Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985).
- suitable carriers include lactose, starch, glucose, methyl cellulose, magnesium stearate, mannitol, sorbitol and the like.
- suitable diluents include ethanol, glycerol and water. The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice.
- compositions may comprise as, or in addition to, the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s), buffer(s), flavouring agent(s), surface active agent(s), thickener(s), preservative(s) (including anti-oxidants) and the like, and substances included for the purpose of rendering the formulation isotonic with the blood of the intended recipient.
- any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s), buffer(s), flavouring agent(s), surface active agent(s), thickener(s), preservative(s) (including anti-oxidants) and the like and substances included for the purpose of rendering the formulation isotonic with the blood of the intended recipient.
- Suitable binders include starch, gelatin, natural sugars such as glucose, anhydrous lactose, free-flow lactose, beta-lactose, corn sweeteners, natural and synthetic gums, such as acacia, tragacanth or sodium alginate, carboxymethyl cellulose and polyethylene glycol.
- Suitable lubricants include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like.
- Preservatives, stabilizers, dyes and even flavoring agents may be provided in the pharmaceutical composition.
- preservatives include sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid.
- Antioxidants and suspending agents may be also used.
- compositions include those suitable for oral, topical (including dermal, buccal and sublingual), rectal or parenteral (including subcutaneous, intradermal, intramuscular and intravenous), nasal and pulmonary administration e.g., by inhalation.
- the formulation may, where appropriate, be conveniently presented in discrete dosage units and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing into association an active compound with liquid carriers or finely divided solid carriers or both and then, if necessary, shaping the product into the desired formulation.
- compositions suitable for oral administration wherein the carrier is a solid are most preferably presented as unit dose formulations such as boluses, capsules or tablets each containing a predetermined amount of active compound.
- a tablet may be made by compression or moulding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing in a suitable machine an active compound in a free-flowing form such as a powder or granules optionally mixed with a binder, lubricant, inert diluent, lubricating agent, surface-active agent or dispersing agent.
- Moulded tablets may be made by moulding an active compound with an inert liquid diluent. Tablets may be optionally coated and, if uncoated, may optionally be scored.
- Capsules may be prepared by filling an active compound, either alone or in admixture with one or more accessory ingredients, into the capsule shells and then sealing them in the usual manner.
- Cachets are analogous to capsules wherein an active compound together with any accessory ingredient(s) is sealed in a rice paper envelope.
- An active compound may also be formulated as dispersible granules, which may for example be suspended in water before administration, or sprinkled on food. The granules may be packaged, e.g., in a sachet.
- Formulations suitable for oral administration wherein the carrier is a liquid may be presented as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water liquid emulsion.
- Formulations for oral administration include controlled release dosage forms, e.g., tablets wherein an active compound is formulated in an appropriate release - controlling matrix, or is coated with a suitable release - controlling film. Such formulations may be particularly convenient for prophylactic use.
- compositions suitable for rectal administration wherein the carrier is a solid are most preferably presented as unit dose suppositories.
- Suitable carriers include cocoa butter and other materials commonly used in the art.
- the suppositories may be conveniently formed by admixture of an active compound with the softened or melted carrier(s) followed by chilling and shaping in moulds.
- Pharmaceutical formulations suitable for parenteral administration include sterile solutions or suspensions of an active compound in aqueous or oleaginous vehicles.
- Injectable preparations may be adapted for bolus injection or continuous infusion. Such preparations are conveniently presented in unit dose or multi-dose containers which are sealed after introduction of the formulation until required for use.
- an active compound may be in powder form which is constituted with a suitable vehicle, such as sterile, pyrogen-free water, before use.
- An active compound may also be formulated as long-acting depot preparations, which may be administered by intramuscular injection or by implantation, e.g., subcutaneously or intramuscularly. Depot preparations may include, for example, suitable polymeric or hydrophobic materials, or ion-exchange resins. Such long-acting formulations are particularly convenient for prophylactic use.
- Formulations suitable for pulmonary administration via the buccal cavity are presented such that particles containing an active compound and desirably having a diameter in the range of 0.5 to 7 microns are delivered in the bronchial tree of the recipient.
- such formulations are in the form of finely comminuted powders which may conveniently be presented either in a pierceable capsule, suitably of, for example, gelatin, for use in an inhalation device, or alternatively as a self-propelling formulation comprising an active compound, a suitable liquid or gaseous propellant and optionally other ingredients such as a surfactant and/or a solid diluent.
- Suitable liquid propellants include propane and the chlorofluorocarbons
- suitable gaseous propellants include carbon dioxide.
- Self-propelling formulations may also be employed wherein an active compound is dispensed in the form of droplets of solution or suspension.
- Such self-propelling formulations are analogous to those known in the art and may be prepared by established procedures. Suitably they are presented in a container provided with either a manually-operable or automatically functioning valve having the desired spray characteristics; advantageously the valve is of a metered type delivering a fixed volume, for example, 25 to 100 microlitres, upon each operation thereof.
- an active compound may be in the form of a solution or suspension for use in an atomizer or nebuliser whereby an accelerated airstream or ultrasonic agitation is employed to produce a fine droplet mist for inhalation.
- Formulations suitable for nasal administration include preparations generally similar to those described above for pulmonary administration.
- such formulations should desirably have a particle diameter in the range 10 to 200 microns to enable retention in the nasal cavity; this may be achieved by, as appropriate, use of a powder of a suitable particle size or choice of an appropriate valve.
- suitable formulations include coarse powders having a particle diameter in the range 20 to 500 microns, for administration by rapid inhalation through the nasal passage from a container held close up to the nose, and nasal drops comprising 0.2 to 5% w/v of an active compound in aqueous or oily solution or suspension.
- Pharmaceutically acceptable carriers are well known to those skilled in the art and include, but are not limited to, 0.1 M and preferably 0.05 M phosphate buffer or 0.8% saline. Additionally, such pharmaceutically acceptable carriers may be aqueous or nonaqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate.
- Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
- Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils. Preservatives and other additives may also be present, such as, for example, antimicrobials, antioxidants, chelating agents, inert gases and the like.
- Formulations suitable for topical formulation may be provided for example as gels, creams or ointments. Such preparations may be applied e.g. to a wound or ulcer either directly spread upon the surface of the wound or ulcer or carried on a suitable support such as a bandage, gauze, mesh or the like which may be applied to and over the area to be treated.
- a suitable support such as a bandage, gauze, mesh or the like which may be applied to and over the area to be treated.
- Liquid or powder formulations may also be provided which can be sprayed or sprinkled directly onto the site to be treated, e.g. a wound or ulcer.
- a carrier such as a bandage, gauze, mesh or the like can be sprayed or sprinkle with the formulation and then applied to the site to be treated.
- a process for the preparation of a pharmaceutical or veterinary composition as described above comprising bringing the active compound(s) into association with the carrier, for example by admixture.
- the formulations are prepared by uniformly and intimately bringing into association the active agent with liquid carriers or finely divided solid carriers or both, and then if necessary shaping the product.
- the invention extends to methods for preparing a pharmaceutical composition comprising bringing a compound of general formula (I) in conjunction or association with a pharmaceutically or veterinarily acceptable carrier or vehicle.
- the compounds of the invention can be present as salts or esters, in particular pharmaceutically and veterinarily acceptable salts or esters.
- salts of the compounds of the invention include suitable acid addition or base salts thereof.
- suitable pharmaceutical salts may be found in Berge et al, J Pharm Sci, 66, 1-19 (1977). Salts are formed, for example with strong inorganic acids such as mineral acids, e.g.
- hydrohalic acids such as hydrochloride, hydrobromide and hydroiodide, sulphuric acid, phosphoric acid sulphate, bisulphate, hemisulphate, thiocyanate, persulphate and sulphonic acids; with strong organic carboxylic acids, such as alkanecarboxylic acids of 1 to 4 carbon atoms which are unsubstituted or substituted (e.g., by halogen), such as acetic acid; with saturated or unsaturated dicarboxylic acids, for example oxalic, malonic, succinic, maleic, fumaric, phthalic or tetraphthalic; with hydroxycarboxylic acids, for example ascorbic, glycolic, lactic, malic, tartaric or citric acid; with aminoacids, for example aspartic or glutamic acid; with benzoic acid; or with organic sulfonic acids, such as (C C 4 )-alkyl- or aryl-sulfonic acids
- Salts which are not pharmaceutically or veterinarily acceptable may still be valuable as intermediates.
- Preferred salts include, for example, acetate, trifluoroacetate, lactate, gluconate, citrate, tartrate, maleate, malate, pantothenate, adipate, alginate, aspartate, benzoate, butyrate, digluconate, cyclopentanate, glucoheptanate, glycerophosphate, oxalate, heptanoate, hexanoate, fumarate, nicotinate, palmoate, pectinate, 3-phenylpropionate, picrate, pivalate, proprionate, tartrate, lactobionate, pivolate, camphorate, undecanoate and succinate, organic sulphonic acids such as methanesulphonate, ethanesulphonate, 2- hydroxyethane sulphonate, camphorsulphonate, 2-naphthalenesulphon
- Esters are formed either using organic acids or alcohols/hydroxides, depending on the functional group being esterified.
- Organic acids include carboxylic acids, such as alkanecarboxylic acids of 1 to 12 carbon atoms which are unsubstituted or substituted (e.g., by halogen), such as acetic acid; with saturated or unsaturated dicarboxylic acid, for example oxalic, malonic, succinic, maleic, fumaric, phthalic or tetraphthalic; with hydroxycarboxylic acids, for example ascorbic, glycolic, lactic, malic, tartaric or citric acid; with aminoacids, for example aspartic or glutamic acid; with benzoic acid; or with organic sulfonic acids, such as (C
- Suitable hydroxides include inorganic hydroxides, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, aluminium hydroxide.
- Alcohols include alkanealcohols of 1- 12 carbon atoms which may be unsubstituted or substituted, e.g. by a halogen).
- the invention includes, where appropriate all enantiomers, diastereoisomers and tautomers of the compounds of the invention.
- the person skilled in the art will recognise compounds that possess optical properties (one or more chiral carbon atoms) or tautomeric characteristics.
- the corresponding enantiomers and/or tautomers may be isolated/prepared by methods known in the art. Enantiomers are characterised by the absolute configuration of their chiral centres and described by the R- and S-sequencing rules of Cahn, Ingold and Prelog. Such conventions are well known in the art (e.g. see 'Advanced Organic Chemistry', 3 rd edition, ed. March, J., John Wiley and Sons, New York, 1985).
- Some of the compounds of the invention may exist as stereoisomers and/or geometric isomers - e.g. they may possess one or more asymmetric and/or geometric centres and so may exist in two or more stereoisomeric and/or geometric forms.
- the present invention contemplates the use of all the individual stereoisomers and geometric isomers of those inhibitor agents, and mixtures thereof.
- the terms used in the claims encompass these forms, provided said forms retain the appropriate functional activity (though not necessarily to the same degree).
- the present invention also includes all suitable isotopic variations of the agent or a pharmaceutically acceptable salt thereof.
- An isotopic variation of an agent of the present invention or a pharmaceutically acceptable salt thereof is defined as one in which at least one atom is replaced by an atom having the same atomic number but an atomic mass different from the atomic mass usually found in nature.
- isotopes that can be incorporated into the agent and pharmaceutically acceptable salts thereof include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulphur, fluorine and chlorine such as 2 H, 3 H, 13 C, 14 C, 15 N, 17 0, 18 0, 31 P, 32 P, 35 S, 8 F and 36 CI, respectively.
- isotopic variations of the agent and pharmaceutically acceptable salts thereof are useful in drug and/or substrate tissue distribution studies. Tritiated, i.e., 3 H, and carbon-14, i.e., 14 C, isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with isotopes such as deuterium, i.e., 2 H, may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased in vivo half-life or reduced dosage requirements and hence may be preferred in some circumstances.
- the invention includes compounds of general formula (I) where any hydrogen atom has been replaced by a deuterium atom. Isotopic variations of the agent of the present invention and pharmaceutically acceptable salts thereof of this invention can generally be prepared by conventional procedures using appropriate isotopic variations of suitable reagents.
- the invention further includes the compounds of the present invention in prodrug form, i.e. covalently bonded compounds which release the active parent drug according to general formula (I) in vivo.
- prodrugs are generally compounds of the invention wherein one or more appropriate groups have been modified such that the modification may be reversed upon administration to a human or mammalian subject. Reversion is usually performed by an enzyme naturally present in such subject, though it is possible for a second agent to be administered together with such a prodrug in order to perform the reversion in vivo. Examples of such modifications include ester (for example, any of those described above), wherein the reversion may be carried out be an esterase etc. Other such systems will be well known to those skilled in the art.
- the present invention also includes solvate forms of the compounds of the present invention.
- the terms used in the claims encompass these forms.
- the invention further relates to the compounds of the present invention in their various crystalline forms, polymorphic forms and (an)hydrous forms. It is well established within the pharmaceutical industry that chemical compounds may be isolated in any of such forms by slightly varying the method of purification and or isolation form the solvents used in the synthetic preparation of such compounds.
- compositions of the present invention may be adapted for rectal, nasal, intrabronchial, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous, intraarterial and intradermal), intraperitoneal or intrathecal administration.
- the formulation is an orally administered formulation.
- the formulations may conveniently be presented in unit dosage form, i.e., in the form of discrete portions containing a unit dose, or a multiple or sub-unit of a unit dose.
- the formulations may be in the form of tablets and sustained release capsules, and may be prepared by any method well known in the art of pharmacy.
- Formulations for oral administration in the present invention may be presented as: discrete units such as capsules, gellules, drops, cachets, pills or tablets each containing a predetermined amount of the active agent; as a powder or granules; as a solution, emulsion or a suspension of the active agent in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion; or as a bolus etc.
- these compositions contain from 1 to 250 mg and more preferably from 10-100 mg, of active ingredient per dose.
- the term "acceptable carrier” includes vehicles such as common excipients e.g. binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, polyvinylpyrrolidone (Povidone), methylcellulose, ethylcellulose, sodium carboxymethylcellulose, hydroxypropyl- methylcellulose, sucrose and starch; fillers and carriers, for example corn starch, gelatin, lactose, sucrose, microcrystalline cellulose, kaolin, mannitol, dicalcium phosphate, sodium chloride and alginic acid; and lubricants such as magnesium stearate, sodium stearate and other metallic stearates, glycerol stearate stearic acid, silicone fluid, talc waxes, oils and colloidal silica.
- vehicles such as common excipients e.g. binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, polyvin
- Flavouring agents such as peppermint, oil of wintergreen, cherry flavouring and the like can also be used. It may be desirable to add a colouring agent to make the dosage form readily identifiable. Tablets may also be coated by methods well known in the art.
- a tablet may be made by compression or moulding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing in a suitable machine the active agent in a free flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface-active or dispersing agent.
- Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
- the tablets may be optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active agent.
- Other formulations suitable for oral administration include lozenges comprising the active agent in a flavoured base, usually sucrose and acacia or tragacanth; pastilles comprising the active agent in an inert base such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active agent in a suitable liquid carrier.
- Other forms of administration comprise solutions or emulsions which may be injected intravenously, intraarterially, intrathecally, subcutaneously, intradermally, intraperitoneally or intramuscularly, and which are prepared from sterile or sterilisable solutions. Injectable forms typically contain between 10 - 1000 mg, preferably between 10 - 250 mg, of active ingredient per dose.
- compositions of the present invention may also be in form of suppositories, pessaries, suspensions, emulsions, lotions, ointments, creams, gels, sprays, solutions or dusting powders.
- An alternative means of transdermal administration is by use of a skin patch.
- the active ingredient can be incorporated into a cream consisting of an aqueous emulsion of polyethylene glycols or liquid paraffin.
- the active ingredient can also be incorporated, at a concentration of between 1 and 10% by weight, into an ointment consisting of a white wax or white soft paraffin base together with such stabilisers and preservatives as may be required.
- a person of ordinary skill in the art can easily determine an appropriate dose of one of the instant compositions to administer to a subject without undue experimentation.
- a physician will determine the actual dosage which will be most suitable for an individual patient and it will depend on a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the individual undergoing therapy.
- the dosages disclosed herein are exemplary of the average case. There can of course be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.
- an effective amount of a compound of general formula (I) may be administered to inhibit the kinase implicated with a particular condition or disease.
- this dosage amount will further be modified according to the type of administration of the compound.
- parenteral administration of a compound of general formula (I) is preferred.
- An intravenous infusion of the compound in 5% dextrose in water or normal saline, or a similar formulation with suitable excipients, is most effective, although an intramuscular bolus injection is also useful.
- the parenteral dose will be about 0.01 to about 100 mg/kg; preferably between 0.1 and 20 mg/kg, in a manner to maintain the concentration of drug in the plasma at a concentration effective to inhibit a kinase.
- the compounds may be administered one to four times daily at a level to achieve a total daily dose of about 0.4 to about 400 mg/kg/day.
- the precise amount of an inventive compound which is therapeutically effective, and the route by which such compound is best administered, is readily determined by one of ordinary skill in the art by comparing the blood level of the agent to the concentration required to have a therapeutic effect.
- the compounds of this invention may also be administered orally to the patient, in a manner such that the concentration of drug is sufficient to achieve one or more of the therapeutic indications disclosed herein.
- a pharmaceutical composition containing the compound is administered at an oral dose of between about 0.1 to about 50 mg/kg in a manner consistent with the condition of the patient.
- the oral dose would be about 0.5 to about 20 mg/kg.
- the one or more compounds of the invention are administered in combination with one or more other active agents, for example, existing drugs available on the market.
- the compounds of the invention may be administered consecutively, simultaneously or sequentially with the one or more other active agents.
- Drugs in general are more effective when used in combination.
- combination therapy is desirable in order to avoid an overlap of major toxicities, mechanism of action and resistance mechanism(s).
- the major advantages of combining chemotherapeutic drugs are that it may promote additive or possible synergistic effects through biochemical interactions and also may decrease the emergence of resistance.
- Beneficial combinations may be suggested by studying the inhibitory activity of the test compounds with agents known or suspected of being valuable in the treatment of a particular disorder. This procedure can also be used to determine the order of administration of the agents, i.e. before, simultaneously, or after delivery. Such scheduling may be a feature of all the active agents identified herein.
- a further aspect of the invention relates to the use of a compound as described above in an assay for identifying further candidate compounds capable of inhibiting one or more kinases, more preferably LRRK, even more preferably, LRRK2.
- the assay is a competitive binding assay.
- the competitive binding assay comprises contacting a compound of the invention with a kinase, preferably LRRK, more preferably LRRK2, and a candidate compound and detecting any change in the interaction between the compound according to the invention and the kinase.
- a kinase preferably LRRK, more preferably LRRK2
- the candidate compound is generated by conventional SAR modification of a compound of the invention.
- conventional SAR modification refers to standard methods known in the art for varying a given compound by way of chemical derivatisation.
- the identified compound may act as a model (for example, a template) for the development of other compounds.
- the compounds employed in such a test may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The abolition of activity or the formation of binding complexes between the compound and the agent being tested may be measured.
- the assay of the present invention may be a screen, whereby a number of agents are tested.
- the assay method of the present invention is a high through-put screen.
- This invention also contemplates the use of competitive drug screening assays in which neutralising antibodies capable of binding a compound specifically compete with a test compound for binding to a compound.
- Another technique for screening provides for high throughput screening (HTS) of agents having suitable binding affinity to the substances and is based upon the method described in detail in WO 84/03564. It is expected that the assay methods of the present invention will be suitable for both small and large-scale screening of test compounds as well as in quantitative assays.
- the competitive binding assay comprises contacting a compound of the invention with a kinase in the presence of a known substrate of said kinase and detecting any change in the interaction between said kinase and said known substrate.
- a further aspect of the invention provides a method of detecting the binding of a ligand to a kinase, said method comprising the steps of:
- One aspect of the invention relates to a process comprising the steps of:
- Another aspect of the invention provides a process comprising the steps of:
- Another aspect of the invention provides a process comprising the steps of:
- the invention also relates to a ligand identified by the method described hereinabove.
- Yet another aspect of the invention relates to a pharmaceutical composition
- a pharmaceutical composition comprising a ligand identified by the method described hereinabove.
- Another aspect of the invention relates to the use of a ligand identified by the method described hereinabove in the preparation of a pharmaceutical composition for use in the treatment of one or more disorders described above.
- the above methods may be used to screen for a ligand useful as an inhibitor of one or more kinases.
- the compounds of the invention are useful both as laboratory tools and as therapeutic agents. In the laboratory certain compounds of the invention are useful in establishing whether a known or newly discovered kinase contributes a critical or at least significant biochemical function during the establishment or progression of a disease state, a process commonly referred to as 'target validation'.
- Another aspect of the invention relates to a process for preparing compounds of formula la and formula lb.
- the invention provides a process for preparing a compound of formula la', where Q' is halogen or C 1-6 -alkyl, and R 1 and R 2 are as defined above, said process comprising converting a compound of formula lla' into a compound of formula la':
- the process further comprises the step of preparing said compound of formula lla' by treating a compound of formula Ilia' with hydrazine monohydrate:
- the process further comprises the step of preparing said compound of formula Ilia' by treating a compound of formula IVa' with an oxidizing agent:
- the process further comprises the step of preparing said compound of formula IVa' by treating a compound of formula Va' with 2 - Mg-CI:
- R 1 is -NHR 3
- the process comprises reacting a compound of formula lla' with an amine of formula NH 2 R 3 .
- R is an NH-containing C -7 - heterocycloalkyl or an NH-containing fused aryl-C 4-7 -heterocycloalkyl
- the process comprises reacting a compound of formula lla' with the NH-group of said C 4-7 - heterocycloalkyl or fused aryl-C 4-7 -heterocycloalkyl.
- R 1 is selected from aryl, heteroaryl, 7-heterocycloalkyl, fused aryl-C -7 -heterocycloalkyl, -C 3-7 cycloalkyl and -C 1-6 alkyl, and said process comprises reacting a compound of formula lla' with X-R 1 , where X is a 4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl group, in the presence of a coupling agent.
- the coupling agent is palladium diphenylphosphinoferrocene dichloride.
- Another aspect of the invention relates to a process for preparing a compound of formula la", wherein Q" is C 3-7 -cycloalkyl, heterocycloalkyl, aryl or heteroaryl, each of which is optionally substituted with one or more substituents A, and R and R 2 are as defined above, said process comprising converting a compound of formula Via" into a compound of formula la":
- the process comprises reacting a compound of formula Via" with the NH-group of a in the presence of a coupling agent.
- the process comprises reacting a compound of formula Via" with a compound Q"-Y, where Q" is C 3-7 -cycloalkyl, heterocycloalkyl, aryl or heteroaryl and Y is a boronic acid or boronic acid ester moiety, in the presence of a coupling agent.
- Another aspect of the invention relates to a process for preparing a compound of formula lb as defined above, said process comprising converting a compound of formula lib into a compound of formula
- said compound of formula lib is prepared from a compound of formula Illb,
- the process further comprises the step of preparing said compound of formula Illb by treating a compound of formula IVb with an oxidizing agent:
- the process further comprises the step of preparing said compound of formula IVb by treating a compound of formula Vb with R 2 - Mg-CI.
- R 1 is aryl or heteroaryl
- the process comprises reacting said compound of formula Mb with a compound R 1 -Y, where Y is a boronic acid or boronic acid ester moiety, in the presence of a coupling agent.
- R 1 is -NHR 3
- the process comprises reacting said compound of formula Mb with an amine of formula NH 2 R 3 .
- Another aspect of the invention relates to a process for preparing a compound of formula lb as defined above, wherein R 1 is OR 3 , said process comprising converting a compound of formula Illb into a compound of formula lb,
- the process comprises treating said compound of formula lllb with a hydrazine, preferably hydrazine monohydrate, and subjecting the reaction mixture to microwave radiation.
- a hydrazine preferably hydrazine monohydrate
- Figure 1 shows the domain structure of LRRK1 and local mutations that have been linked to Parkinson's disease.
- All LRRK2 protein kinases were of human origin and were sourced from Invitrogen Corporation (Carlsbad, CA 92008 USA) unless otherwise indicated.
- the active mutant used was recombinant human, catalytic domain (amino acids 970-2527) containing a G2019S mutation, GST-tagged, expressed in insect cells (Invitrogen Cat#PV4881).
- the wild type used was recombinant human, catalytic domain (amino acids 970-2527) GST - tagged, expressed in insect cells (Invitrogen Cat#PV4873).
- the kinase dead mutant used was recombinant human, catalytic domain (amino acids 970-2527) containing a D1994A mutation, GST-tagged, expressed in insect cells (Invitrogen Cat#PM4041AE). No special measures were taken to activate any of the kinases.
- the peptide substrate in the assay was RLG WWRFYTLRRARQG TKQ R at " ⁇ .
- the assays were initiated with Mg/ATP and stopped by the addition of 25 ⁇ !/ ⁇ ! ⁇ 50% orthophosphoric acid. Reactions were harvested onto Whatman P81 Unifilter Plates (Fisher Scientific. Loughborough, LE115RG, UK. Cat# FDU-105-020U) using a Tomtec harvester (Tomtec Hamden, Ct 06514. USA). Plates were counted using a Perkin Elmer Top Count NX7. (Perkin Elmer, Shelton CT 06484-4794 USA)
- IC50 values of inhibitors were determined after carrying out assays at 10 different concentrations of each compound in duplicate.
- Preparative high pressure liquid chromatography was carried out using apparatus made by Agilent.
- the apparatus is constructed such that the chromatography is monitored by a multi-wavelength UV detector (G1365B manufactured by Agilent) and an MM-ES+APCI mass spectrometer (G-1956A, manufactured by Agilent) connected in series, and if the appropriate criteria are met the sample is collected by an automated fraction collector (G1364B manufactured by Agilent). Collection can be triggered by any combination of UV or mass spectrometry or can be based on time.
- Typical conditions for the separation process are as follows: The gradient is run over a 10 minute period (gradient at start: 10% methanol and 90% water, gradient at finish: 100% methanol and 0% water; as buffer: either 0.1% trifluoroacetic acid is added to the water (low pH buffer), or ammonium bicarbonate (10 mmol / 1) and 35% ammonium hydroxide (1.6 ml / 1) is added to the water (high pH buffer).
- buffer either 0.1% trifluoroacetic acid is added to the water (low pH buffer), or ammonium bicarbonate (10 mmol / 1) and 35% ammonium hydroxide (1.6 ml / 1) is added to the water (high pH buffer).
- Flash chromatography refers to silica gel chromatography and carried out using an SP4 or an Isolara 4 MPLC system (manufactured by Biotage); pre-packed silica gel cartridges (supplied by Biotage); or using conventional glass column chromatography.
- Xantphos 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene
- HATU N, , ' , N '-Tetramethyl-0-(7-azabenzotri azol- 1 -yl)uronium- hexafluorophospate
- EDCI 1 ,3-Propanediamine, N3-(ethylcarbonimidoyl)-N1 ,N1 -dimethyl-, hydrochloride
- DIPEA N,N-diisopropylethylamine
- TBSMSCI Tertiarybutyldimethylsilyl chloride
- TPAP Tetrapropylammonium perruthenate
- BINAP 2,2'-bis(diphenylphosphino)-1 ,1'-binaphthyl
- TPAP Tetrapropylammonium perruthenate
- DIAD Diisopropyl azodicarboxylate
- NMO /V-Methylmorpholine /V-oxide
- Methyl magnesium chloride, 3M in THF (11.5 ml, 34.4 mmol) in THF (10 ml) was added dropwise to a stirred suspension of 3,5-dichloropyridine-4-carboxaldehyde (5.51 g, 31.3 mmol) in THF (110 ml) at -78°C.
- the mixture was stirred at -78°C for 1 hour and then allowed to warm to rt and stirred at that temperature for a further 1 hour.
- the mixture was quenched with sat. NH 4 CI(aq) whilst ice-cooling was applied.
- the mixture was extracted with ethyl acetate and the organic phase was washed with brine, dried and concentrated.
- Example 2 (30 mg, 0.113 mmol) and morpholine (1 ml) were irradiated in the Biotage I-60 microwave reactor at 200°C for 5 hours. The mixture was concentrated to dryness and purified by preparative HPLC (high pH buffer), to give an off-white solid (5 mg, 14%).
- a microwave reactor tube was charged with Example 2 (40 mg, 0.150 mmol), 1- methylpyrazole-4-boronic acid pinacol ester (47 mg, 0.226 mmol), Pd(dppf)CI 2 (6.1 mg, 0.0075 mmol) and 2M Na 2 C0 3 (aq) (263 ⁇ , 0.526 mmol) in dioxane (2 ml).
- the contents of the tube were degassed, placed under an atmosphere of nitrogen and irradiated in the Biotage 1-60 microwave reactor for 30 minutes at 160°C.
- the reaction mixture was diluted with ethyl acetate and water.
- the organic phase was washed with brine, dried and concentrated.
- Step 2 The product from Step 1 (78 mg, 0.223 mmol) and aluminium (III) chloride (1 19 mg, 0.891 mmol) in toluene (7 ml) were heated at 50°C for 4 hours. The reaction mixture was allowed to cool to rt and concentrated to dryness. The residue was purified by flash column chromatography on silica gel in 20:1 DCM-MeOH to afford an orange oil. Further purification by preparative HPLC (high pH buffer) gave an off-white solid (6 mg, 12%).
- the reaction mixture was diluted with 0.2 N HCI solution (1000 mL), extracted with CH 2 CI 2 (3 x 500 mL), the combined organics were washed with H 2 0 (2 x 200 mL), brine solution (2 x 250 mL), dried (Na 2 S0 4 ) and concentrated.
- the crude compound was purified by flash column chromatography (silica gel, 100-200 mesh) and the desired aldehyde (XX) eluted with 5% EtOAc-pet ether to afford 16 g as an off-white solid.
- R f 0.6 (20% EtOAc/pet ether).
- reaction mixture was cooled in an ice bath and added to a saturated sodium metabisulphite solution, stirred for 30 minutes, and the precipitated solid was collected by filtration and washed with water (600 ml_), pet ether (2 x 200mL) and dried to obtain 4-chloro-3-iodo-6-methyl-1 H-pyrazolo[4,3-c]pyridine (11 g, 78%) as a white solid.
- reaction mixture was then evaporated under reduced pressure and the residue was purified by flash column chromatography eluting with petroleum ether/ethyl acetate (from 10:1 to 8:1) to afford 4-chloro-3-iodo-1-(4-methoxybenzyl)-6-methyl-1H- pyrazolo[4,3-c]pyridine as a white solid (3.30 g, 62%).
- a microwave vial equipped with a magnetic stirrer was charged with 4-chloro-3-iodo-1-(4- methoxybenzyl)-6-methyl-1H-pyrazolo[4,3-c]pyridine (2.60 g, 6.30 mmol), tetrahydro-2H- pyran-4-amine (1.91 g, 18.9 mmol), n-BuOH (10 mL), and diisopropylethylamine (2.44 g, 18.9 mmol).
- the reaction mixture was heated at 170 °C for 2 h under microwave irradiation. It was then cooled to room temperature and concentrated under reduced pressure.
- a microwave vial equipped with a magnetic stirrer was charged with 1-(4-methoxybenzyl)- 6-methyl-N-(tetrahydro-2H-pyran-4-yl)-3-(trimethylstannyl)-1H-pyrazolo[4,3-c]pyridin-4- amine (600 mg, 1.16 mmol), 4,6-dichloropyrimidine (208 mg, 1.40 mmol), LiCI (195 mg, 4.64 mmol), Cul (22 mg, 0.116 mmol), Pd(PPh 3 ) 4 (134 mg, 0.116 mmol), and THF (10 mL). After three cycles of vacuum/argon flash, the reaction mixture was heated at 100 °C for 30 minutes under microwave irradiation.
- Triethylamine (499 uL, 0.00358 mol) was added to a suspension 4-chloro-3-iodo-6- methyl-1 H-pyrazolo[4,3-c]pyridine (0.700 g, 0.00238 mol) and triphenylmethyl chloride
- reaction mixture became homogenous after ⁇ 5 minutes.
- the reaction was stirred at room temperature for 3 h, diluted with water and extracted with methylene chloride. The organic layer was washed with brine, dried with Na 2 S0 4 , filtered, and concentrate to provide 4-chloro-3-iodo-6-methyl-1-trityl-1H-pyrazolo[4,3-c]pyridine as an off-white solid
- Tetrahydro-2H-pyran-4-ol (108 uL, 1.13 mmol) was added dropwise to a suspension of sodium hydride (61.0 mg, 1.52 mmol) in 1 ,4-dioxane (1 mL, 20 mmol). After bubbling had ceased, the suspension was stirred for 10 minutes, and then a solution of 4-chloro-3-iodo- 6-methyl-1-trityl-1H-pyrazolo[4,3-c]pyridine (0.505 g, 0.942 mmol) in 1 ,4-dioxane (5 mL, 60 mmol) was added and the solution was heated to 180 °C for 1 h in the microwave.
- the reaction mixture was diluted with EtOAc and filtered through Celite. The solvent was removed, redissolved in 5 mL of EtOAc and left standing for 15 minutes. 10 mL of heptane were added, and the solution was stored at -10 °C for 5 h. The resulting solid was collected by filtration ( ⁇ 250 mgs). The residue from evaporation of the filtrate was loaded onto silica, and the product was purified using flash column chromatography (24 g column, 0% to 50% EtOAc/Heptane) to provide an additional 180 mg.
- N,N-Dimethylformamide (1.90 ml_, 24.5 mmol) was added, and the mixture was heated at 90 °C. After 2 h, the reaction was cooled to room temperature, diluted with EtOAc and filtered through Celite. The resulting 6-methyl-3-(1 -(tetrahydro-2H-pyran-4-yl)-1 H-pyrazol-4-yl)-4-(tetrahydro-2H- pyran-4-yloxy)-1 -trityl-1 H-pyrazolo[4,3-c]pyridine was used directly in the following reaction.
- Triethylsilane (0.058 mL) was then added. The reaction was then stirred at room temperature for 30 minutes. The reaction was filtered and concentrated. The crude product was purified by reverse phase HPLC to give 3-(1-isobutyl-1 H-pyrazol-4-yl)-4- (tetrahydro-2H-pyran-4-yloxy)-1 H-pyrazolo[4,3-c]pyridine-6-carbonitrile (26.5 mg, 39.5 %).
- the reaction was sealed and heated in the microwave at 140 °C for 30 minutes.
- the reaction was diluted with water and extracted with EtOAc (3x). The combined extracts were washed with brine, dried over Na 2 S0 4 , filtered and concentrated.
- the crude product was then dissolved in DCM (3 mL) and TFA (0.25 mL). Triethylsilane (0.05 mL) was then added. The reaction was then stirred at room temperature for 1 h. The reaction was filtered and concentrated.
- the crude product was purified by reverse phase HPLC to give the desired product (26.5 mg, 39.5 %).
- the reaction was degassed with nitrogen gas, sealed and heated in the microwave at 150 °C for 40 minutes.
- the reaction was diluted with water and extracted with EtOAc (3x). The combined extracts were washed with brine, dried over Na 2 S0 4 , filtered and concentrated.
- the crude product was dissolved in methylene chloride (0.8 mL), triethylsilane (0.012 mL, 0.07 mmol) and trifiuoroacetic acid (0.7 mL, 9 mmol) at room temperature.
- a microwave vial equipped with a magnetic stirrer was charged with 2-(1-(4- methoxybenzyl)-4-(tetrahydro-2H-pyran-4-ylamino)-1 H-pyrazolo[4,3-c]pyridin-3-yl)-N,N- dimethylisonicotinamide (90 mg, 0.18 mmol) and TFA (3 mL).
- the reaction mixture was heated at 120 °C for 2 h under microwave irradiation. It was then cooled to room temperature and concentrated under reduced pressure.
- a microwave vial equipped with a magnetic stirrer was charged with 1 -(4-methoxybenzyl)- 6-methyl-N-(tetrahydro-2H-pyran-4-yl)-3-(trimethylstannyl)-1 H-pyrazolo[4,3-c]pyridin-4- amine (190 mg, 0.369 mmol), 2-bromo-4-(trifluoromethyl)pyridine (167 mg, 0.738 mmol), LiCI (64 mg, 1.48 mmol), Cul (7 mg, 0.037 mmol), Pd(PPh 3 ) 4 (43 mg, 0.037 mmol), and THF (10 mL).
- a microwave vial equipped with a magnetic stirrer was charged with 1-(4-methoxybenzyl)- 6-methyl-N-(tetrahydro-2H-pyran-4-yl)-3-(4-(trifluoromethyl)pyridin-2-yl)-1 H-pyrazolo[4,3- c]pyridin-4-amine (55 mg, 0.111 mmol) and TFA (3 mL).
- the reaction mixture was heated at 120 °C for 2 h under microwave irradiation. It was then cooled to room temperature and concentrated under reduced pressure.
- Trifluoroacetic Acid (2.0 ml_, 26 mmol) was added dropwise to a solution of 4-(4-(4- methoxy-6-methyl-1-trityl-1 H-pyrazolo[4,3-c]pyridin-3-yl)pyridin-2-yl)morpholine (0.187 g, 0.329 mmol) and triethylsilane (158 uL, 0.987 mmol) in methylene chloride (4.0 ml_, 62 mmol) at 23 °C. The reaction became red and was stirred for 15 minutes.
- N-Methyl-3-(6- ethyl-4-(tetrahydro-2H-pyran-4-yloxy)-1H-pyrazolo[4,3-c]pyridin-3- yl)benzamide was prepared according to a procedure as described in example 21.
- 6-Methyl-3-(1 -(tetrahydro-2H-pyran-4-yl)-1 H-pyrazol-4-yl)-4-(tetrahydro-2H-pyran-4- yloxy)-1H-pyrazolo[4,3-c]pyridine was prepared according to a procedure as described in example 21.
- Parkinson disease yields new mutations. Neurology. 65, 741-744
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Psychology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11720847A EP2569293A1 (en) | 2010-05-14 | 2011-05-16 | Pyrazolopyridines as inhibitors of the kinase lrrk2 |
CA2798222A CA2798222A1 (en) | 2010-05-14 | 2011-05-16 | Pyrazolopyridines as inhibitors of the kinase lrrk2 |
US13/697,878 US20130267513A1 (en) | 2010-05-14 | 2011-05-16 | Pyrazolopyridines as inhibitors of the kinase lrrk2 |
CN201180033483XA CN102971306A (en) | 2010-05-14 | 2011-05-16 | Pyrazolopyridines as inhibitors of the kinase LRRK2 |
AU2011251733A AU2011251733A1 (en) | 2010-05-14 | 2011-05-16 | Pyrazolopyridines as inhibitors of the kinase LRRK2 |
JP2013509631A JP2013529196A (en) | 2010-05-14 | 2011-05-16 | Pyrazolopyridines as inhibitors of kinase LRRK2 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB1008134.7A GB201008134D0 (en) | 2010-05-14 | 2010-05-14 | Compounds |
GB1008134.7 | 2010-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011141756A1 true WO2011141756A1 (en) | 2011-11-17 |
Family
ID=42334821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2011/050937 WO2011141756A1 (en) | 2010-05-14 | 2011-05-16 | Pyrazolopyridines as inhibitors of the kinase lrrk2 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20130267513A1 (en) |
EP (1) | EP2569293A1 (en) |
JP (1) | JP2013529196A (en) |
CN (1) | CN102971306A (en) |
AU (1) | AU2011251733A1 (en) |
CA (1) | CA2798222A1 (en) |
GB (1) | GB201008134D0 (en) |
WO (1) | WO2011141756A1 (en) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102675310A (en) * | 2012-05-09 | 2012-09-19 | 林辉 | Method for preparing pyrazol heteroaromatic compound |
WO2013139882A1 (en) | 2012-03-21 | 2013-09-26 | F. Hoffmann-La Roche Ag | Pyrazolopyridines for treatment of parkinsons disease |
WO2013166276A1 (en) | 2012-05-02 | 2013-11-07 | Southern Research Institute | Triazolopyridazine compounds, use as inhibitors of the kinase lrrk2, and methods for preparation thereof |
WO2014001973A1 (en) | 2012-06-29 | 2014-01-03 | Pfizer Inc. | NOVEL 4-(SUBSTITUTED-AMINO)-7H-PYRROLO[2,3-d]PYRIMIDINES AS LRRK2 INHIBITORS |
US8791112B2 (en) | 2011-03-30 | 2014-07-29 | Arrien Pharmaceuticals Llc | Substituted 5-(pyrazin-2-yl)-1H-pyrazolo [3, 4-B] pyridine and pyrazolo [3, 4-B] pyridine derivatives as protein kinase inhibitors |
WO2014137723A1 (en) | 2013-03-04 | 2014-09-12 | Merck Sharp & Dohme Corp. | Compounds inhibiting leucine-rich repeat kinase enzyme activity |
WO2014140235A1 (en) * | 2013-03-15 | 2014-09-18 | Ipsen Pharma S.A.S. | Macrocyclic lrrk2 kinase inhibitors |
US20140288043A1 (en) * | 2013-03-19 | 2014-09-25 | Genentech, Inc. | Pyrazolopyridine compounds |
WO2015092592A1 (en) | 2013-12-17 | 2015-06-25 | Pfizer Inc. | Novel 3,4-disubstituted-1h-pyrrolo[2,3-b]pyridines and 4,5-disubstituted-7h-pyrrolo[2,3-c]pyridazines as lrrk2 inhibitors |
US9266892B2 (en) | 2012-12-19 | 2016-02-23 | Incyte Holdings Corporation | Fused pyrazoles as FGFR inhibitors |
US9388185B2 (en) | 2012-08-10 | 2016-07-12 | Incyte Holdings Corporation | Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors |
US9416126B2 (en) | 2013-03-04 | 2016-08-16 | Merck Sharp & Dohme Corp. | Compounds inhibiting leucine-rich repeat kinase enzyme activity |
US9440952B2 (en) | 2013-03-04 | 2016-09-13 | Merck Sharp & Dohme Corp. | Compounds inhibiting leucine-rich repeat kinase enzyme activity |
US9533984B2 (en) | 2013-04-19 | 2017-01-03 | Incyte Holdings Corporation | Bicyclic heterocycles as FGFR inhibitors |
US9533954B2 (en) | 2010-12-22 | 2017-01-03 | Incyte Corporation | Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3 |
US9580423B2 (en) | 2015-02-20 | 2017-02-28 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
EP3035800A4 (en) * | 2013-08-22 | 2017-03-15 | Merck Sharp & Dohme Corp. | Compounds inhibiting leucine-rich repeat kinase enzyme activity |
WO2017046675A1 (en) | 2015-09-14 | 2017-03-23 | Pfizer Inc. | Novel imidazo [4,5-c] quinoline and imidazo [4,5-c][1,5] naphthyridine derivatives as lrrk2 inhibitors |
US9611267B2 (en) | 2012-06-13 | 2017-04-04 | Incyte Holdings Corporation | Substituted tricyclic compounds as FGFR inhibitors |
US9688654B2 (en) | 2013-03-04 | 2017-06-27 | Merck Sharp & Dohme Corp. | Compounds inhibiting leucine-rich repeat kinase enzyme activity |
US9708318B2 (en) | 2015-02-20 | 2017-07-18 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US9890156B2 (en) | 2015-02-20 | 2018-02-13 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
WO2018049200A1 (en) * | 2016-09-09 | 2018-03-15 | Incyte Corporation | Pyrazolopyridine derivatives as hpk1 modulators and uses thereof for the treatment of cancer |
US10023579B2 (en) | 2015-12-16 | 2018-07-17 | Southern Research Institute | Pyrrolopyrimidine compounds, use as inhibitors of the kinase LRRK2, and methods for preparation thereof |
WO2018155947A1 (en) | 2017-02-24 | 2018-08-30 | 재단법인 대구경북첨단의료산업진흥재단 | Pharmaceutical composition comprising compound capable of penetrating blood-brain barrier as effective ingredient for preventing or treating brain cancer |
WO2018163030A1 (en) | 2017-03-10 | 2018-09-13 | Pfizer Inc. | Cyclic substituted imidazo[4,5-c]quinoline derivatives |
WO2018163066A1 (en) | 2017-03-10 | 2018-09-13 | Pfizer Inc. | Novel imidazo[4,5-c]quinoline derivatives as lrrk2 inhibitors |
US10280164B2 (en) | 2016-09-09 | 2019-05-07 | Incyte Corporation | Pyrazolopyridone compounds and uses thereof |
WO2020021149A1 (en) | 2018-07-25 | 2020-01-30 | Consejo Superior De Investigaciones Científicas | Method for depositing elements on a substrate of interest and device |
WO2020039110A1 (en) | 2018-08-24 | 2020-02-27 | Consejo Superior De Investigaciones Científicas | Lrrk2 inhibiting compounds and use thereof for treating neurodegenerative diseases |
US10611762B2 (en) | 2017-05-26 | 2020-04-07 | Incyte Corporation | Crystalline forms of a FGFR inhibitor and processes for preparing the same |
US10722495B2 (en) | 2017-09-08 | 2020-07-28 | Incyte Corporation | Cyanoindazole compounds and uses thereof |
US10745388B2 (en) | 2018-02-20 | 2020-08-18 | Incyte Corporation | Indazole compounds and uses thereof |
US10752635B2 (en) | 2018-02-20 | 2020-08-25 | Incyte Corporation | Indazole compounds and uses thereof |
US10800761B2 (en) | 2018-02-20 | 2020-10-13 | Incyte Corporation | Carboxamide compounds and uses thereof |
US10851105B2 (en) | 2014-10-22 | 2020-12-01 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US10899755B2 (en) | 2018-08-08 | 2021-01-26 | Incyte Corporation | Benzothiazole compounds and uses thereof |
US11014929B2 (en) | 2016-09-09 | 2021-05-25 | Incyte Corporation | Pyrazolopyrimidine compounds and uses thereof |
US11066394B2 (en) | 2019-08-06 | 2021-07-20 | Incyte Corporation | Solid forms of an HPK1 inhibitor |
US11111247B2 (en) | 2018-09-25 | 2021-09-07 | Incyte Corporation | Pyrazolopyrimidine compounds and uses thereof |
US11174257B2 (en) | 2018-05-04 | 2021-11-16 | Incyte Corporation | Salts of an FGFR inhibitor |
US11242343B2 (en) | 2016-09-09 | 2022-02-08 | Incyte Corporation | Pyrazolopyridine compounds and uses thereof |
US11299473B2 (en) | 2018-04-13 | 2022-04-12 | Incyte Corporation | Benzimidazole and indole compounds and uses thereof |
US11406624B2 (en) | 2017-02-15 | 2022-08-09 | Incyte Corporation | Pyrazolopyridine compounds and uses thereof |
US11407750B2 (en) | 2019-12-04 | 2022-08-09 | Incyte Corporation | Derivatives of an FGFR inhibitor |
US11466004B2 (en) | 2018-05-04 | 2022-10-11 | Incyte Corporation | Solid forms of an FGFR inhibitor and processes for preparing the same |
US11566028B2 (en) | 2019-10-16 | 2023-01-31 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
US11591329B2 (en) | 2019-07-09 | 2023-02-28 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
US11607416B2 (en) | 2019-10-14 | 2023-03-21 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
US11628162B2 (en) | 2019-03-08 | 2023-04-18 | Incyte Corporation | Methods of treating cancer with an FGFR inhibitor |
WO2023076404A1 (en) | 2021-10-27 | 2023-05-04 | Aria Pharmaceuticals, Inc. | Methods for treating systemic lupus erythematosus |
US11897891B2 (en) | 2019-12-04 | 2024-02-13 | Incyte Corporation | Tricyclic heterocycles as FGFR inhibitors |
US11939331B2 (en) | 2021-06-09 | 2024-03-26 | Incyte Corporation | Tricyclic heterocycles as FGFR inhibitors |
US12012409B2 (en) | 2020-01-15 | 2024-06-18 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
US12065494B2 (en) | 2021-04-12 | 2024-08-20 | Incyte Corporation | Combination therapy comprising an FGFR inhibitor and a Nectin-4 targeting agent |
US12122767B2 (en) | 2019-10-01 | 2024-10-22 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2889572C (en) | 2012-11-08 | 2019-03-05 | Pfizer Inc. | Heteroaromatic compounds as dopamine d1 ligands |
WO2017156493A1 (en) | 2016-03-11 | 2017-09-14 | Denali Therapeutics Inc. | Compounds, compositions, and methods |
TW201533043A (en) * | 2013-04-18 | 2015-09-01 | Lundbeck & Co As H | Arylpyrrolopyridine derived compounds as LRRK2 inhibitors |
CN103819396B (en) * | 2014-02-26 | 2016-06-15 | 四川大学 | A kind of 1-(3,5-dichloropyridine-4-base of chirality) synthetic method of-ethanol |
WO2015162518A1 (en) | 2014-04-25 | 2015-10-29 | Pfizer Inc. | Heteroaromatic compounds and their use as dopamine d1 ligands |
US10975081B2 (en) * | 2015-07-23 | 2021-04-13 | Glaxosmithkline Intellectual Property Development Limited | Substituted fused pyrazole compounds and their use as LRRK2 inhibitors |
WO2017087905A1 (en) | 2015-11-20 | 2017-05-26 | Denali Therapeutics Inc. | Compound, compositions, and methods |
PE20190395A1 (en) | 2016-06-16 | 2019-03-13 | Denali Therapeutics Inc | PYRIMIDIN-2-ILAMINO-1H-PYRAZOLES AS LRRK2 INHIBITORS FOR USE IN THE TREATMENT OF NEURODEGENERATIVE DISORDERS |
US10040211B2 (en) | 2016-12-09 | 2018-08-07 | Bettcher Industries, Inc. | Power operated rotary knife |
WO2018213211A1 (en) * | 2017-05-15 | 2018-11-22 | The Regents Of The University Of Michigan | Pyrrolo[2,3-c]pyridines and related analogs as lsd-1 inhibitors |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1984003564A1 (en) | 1983-03-08 | 1984-09-13 | Commw Serum Lab Commission | Method of determining antigenically active amino acid sequences |
WO1994003453A1 (en) * | 1992-08-07 | 1994-02-17 | Zeneca Limited | Pyrazolopyridine derivatives as angiotensin ii antagonists |
WO1994017062A1 (en) * | 1993-01-28 | 1994-08-04 | Zeneca Limited | Substituted fused pyrazolo compounds and their use as herbicides |
EP1396488A1 (en) * | 2001-05-23 | 2004-03-10 | Mitsubishi Pharma Corporation | Fused heterocyclic compound and medicinal use thereof |
WO2007100295A1 (en) * | 2006-03-03 | 2007-09-07 | Torrent Pharmaceuticals Ltd | Novel dual action receptors antagonists (dara) at the ati and eta receptors |
US20080039491A1 (en) * | 2005-01-19 | 2008-02-14 | Aventis Pharma S.A. | Substituted pyrazolopyridines, compositions containing them, method for the production thereof, and their use |
EP1932845A1 (en) * | 2006-12-15 | 2008-06-18 | Bayer Schering Pharma Aktiengesellschaft | 3-H-pyrazolopyridines and salts thereof, pharmaceutical compositions comprising same, methods of preparing same and uses of same |
WO2009030270A1 (en) * | 2007-09-03 | 2009-03-12 | Novartis Ag | Dihydroindole derivatives useful in parkinson's disease |
WO2010106333A1 (en) * | 2009-03-19 | 2010-09-23 | Medical Research Council Technology | Compounds |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0709699A2 (en) * | 2006-03-29 | 2011-07-26 | Foldrx Pharmaceuticals Inc | inhibition of alpha synuclein toxicity |
US9085560B2 (en) * | 2009-08-17 | 2015-07-21 | Intellikine, Inc. | Heterocyclic compounds and uses thereof |
-
2010
- 2010-05-14 GB GBGB1008134.7A patent/GB201008134D0/en not_active Ceased
-
2011
- 2011-05-16 EP EP11720847A patent/EP2569293A1/en not_active Withdrawn
- 2011-05-16 CA CA2798222A patent/CA2798222A1/en not_active Abandoned
- 2011-05-16 CN CN201180033483XA patent/CN102971306A/en active Pending
- 2011-05-16 JP JP2013509631A patent/JP2013529196A/en not_active Withdrawn
- 2011-05-16 US US13/697,878 patent/US20130267513A1/en not_active Abandoned
- 2011-05-16 AU AU2011251733A patent/AU2011251733A1/en not_active Abandoned
- 2011-05-16 WO PCT/GB2011/050937 patent/WO2011141756A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1984003564A1 (en) | 1983-03-08 | 1984-09-13 | Commw Serum Lab Commission | Method of determining antigenically active amino acid sequences |
WO1994003453A1 (en) * | 1992-08-07 | 1994-02-17 | Zeneca Limited | Pyrazolopyridine derivatives as angiotensin ii antagonists |
WO1994017062A1 (en) * | 1993-01-28 | 1994-08-04 | Zeneca Limited | Substituted fused pyrazolo compounds and their use as herbicides |
EP1396488A1 (en) * | 2001-05-23 | 2004-03-10 | Mitsubishi Pharma Corporation | Fused heterocyclic compound and medicinal use thereof |
US20080039491A1 (en) * | 2005-01-19 | 2008-02-14 | Aventis Pharma S.A. | Substituted pyrazolopyridines, compositions containing them, method for the production thereof, and their use |
WO2007100295A1 (en) * | 2006-03-03 | 2007-09-07 | Torrent Pharmaceuticals Ltd | Novel dual action receptors antagonists (dara) at the ati and eta receptors |
EP1932845A1 (en) * | 2006-12-15 | 2008-06-18 | Bayer Schering Pharma Aktiengesellschaft | 3-H-pyrazolopyridines and salts thereof, pharmaceutical compositions comprising same, methods of preparing same and uses of same |
WO2009030270A1 (en) * | 2007-09-03 | 2009-03-12 | Novartis Ag | Dihydroindole derivatives useful in parkinson's disease |
WO2010106333A1 (en) * | 2009-03-19 | 2010-09-23 | Medical Research Council Technology | Compounds |
Non-Patent Citations (33)
Title |
---|
"Advanced Organic Chemistry", 1985, JOHN WILEY AND SONS |
"Handbook of Pharmaceutical Excipients", 1994 |
"Remington's Pharmaceutical Sciences", 1985, MACK PUBLISHING CO. |
AFINIDAD , 50(443), 55-8 CODEN: AFINAE; ISSN: 0001-9704, 1993 * |
BERGE ET AL., J PHARM SCI, vol. 66, 1977, pages 1 - 19 |
BOSGRAAF, L., RUSSCHER, H., SMITH, J. L., WESSELS, D., SOLL, D. R., VAN HAASTERT, P. J.: "A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium", EMBO J., vol. 21, 2002, pages 4560 - 4570 |
BOSGRAAF, L., VAN HAASTERT, P. J.: "Roc, a Ras/GTPase domain in complex proteins", BIOCHIM BIOPHYS ACTA, vol. 1643, 2003, pages 5 - 10, XP004477079, DOI: doi:10.1016/j.bbamcr.2003.08.008 |
BRETSCHER, A., EDWARDS, K., FEHON, R. G.: "ERM proteins and merlin: integrators at the cell cortex", NAT REV MOL CELL BIOL., vol. 3, 2002, pages 586 - 599 |
CHEM. BER., vol. 36, 1903, pages 521 * |
COHEN, P., KNEBEL, A.: "KESTREL: a powerful method for identifying the physiological substrates of protein kinases", BIOCHEM J., vol. 393, 2006, pages 1 - 6 |
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; DONATI, DONATO ET AL: "Photochemical rearrangements of 3-methylisoxazolopyridines", XP002645169, retrieved from STN Database accession no. 1989:212666 * |
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; MAREI, MOHAMED GABER: "Preparation and reactions of pyrazolo[4,3-c]pyridin-4(5H)-ones", XP002645170, retrieved from STN Database accession no. 1993:428050 * |
DATABASE REAXYS [online] Elsevier Information Systems GmbH, Frankfurt/Main (DE); XP002644834, Database accession no. 150536 * |
DATABASE REAXYS [online] Elsevier Information Systems GmbH, Frankfurt/Main (DE); XP002644835, Database accession no. 128724, 150537, 3717823 * |
DATABASE REAXYS [online] Elsevier Information Systems GmbH, Frankfurt/Main (DE); XP002644836, Database accession no. 513127 * |
DATABASE REGISTRY [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 19 March 2010 (2010-03-19), XP002645171, Database accession no. 1211580-21-0 * |
FARRER, M., STONE, J., MATA, I. F., LINCOLN, S., KACHERGUS, J., HULIHAN, M., STRAIN, K. J., MARAGANORE, D. M.: "LRRK2 mutations in Parkinson disease", NEUROLOGY, vol. 65, 2005, pages 738 - 740 |
GOLDBERG, J. M., BOSGRAAF, L., VAN HAASTERT, P. J., SMITH, J. L.: "Identification of four candidate cGMP targets in Dictyostelium", PROC NATL ACAD SCI U S A., vol. 99, 2002, pages 6749 - 6754 |
GREGGIO, E., JAIN, S., KINGSBURY, A., BANDOPADHYAY, R., LEWIS, P., KAGANOVICH, A., VAN DER BRUG, M. P., BEILINA, A., BLACKINTON, J: "Kinase activity is required for the toxic effects of mutant LRRK2/dardarin", NEUROBIOL DIS., vol. 23, 2006, pages 329 - 341 |
HETEROCYCLES , 27(8), 1899-905 CODEN: HTCYAM; ISSN: 0385-5414, 1988 * |
JALEEL, M., NICHOLS, R. J., DEAK, M., CAMPBELL, D. G., GILLARDON, F., KNEBEL, A., ALESSI, D. R.: "LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity", BIOCHEM J., vol. 405, 2007, pages 307 - 317, XP002494862 |
JUSTUS LIEBIGS ANNALEN DER CHEMIE, vol. 366, 1909, pages 405 * |
MANNING, G., WHYTE, D. B., MARTINEZ, R., HUNTER, T., SUDARSANAM, S.: "The protein kinase complement of the human genome", SCIENCE, vol. 298, 2002, pages 1912 - 1934, XP002422776, DOI: doi:10.1126/science.1075762 |
MARIN, I.: "The Parkinson disease gene LRRK2: evolutionary and structural insights", MOL BIOL EVOL., vol. 23, 2006, pages 2423 - 2433 |
MATA, I. F., WEDEMEYER, W. J., FARRER, M. J., TAYLOR, J. P., GALLO, K. A.: "LRRK2 in Parkinson's disease: protein domains and functional insights", TRENDS NEUROSCI., vol. 29, 2006, pages 286 - 293, XP025031251, DOI: doi:10.1016/j.tins.2006.03.006 |
NICHOLS, R. J., DZAMKO, N., HUTTI, J. E., CANTLEY, L. C., DEAK, M., MORAN, J., BAMBOROUGH, P., REITH, A. D., ALESSI, D. R.: "Substrate specificity and inhibitors of LRRK2, a protein kinase mutated in Parkinson's disease", BIOCHEM J., vol. 424, 2009, pages 47 - 60, XP002654035, DOI: doi:10.1042/BJ20091035 |
PAISAN-RUIZ, C., JAIN, S., EVANS, E. W., GILKS, W. P., SIMON, J., VAN DER BRUG, M., LOPEZ DE MUNAIN, A., APARICIO, S., GIL, A. M.,: "Cloning of the gene containing mutations that cause PARKB-linked Parkinson's disease", NEURON, vol. 44, 2004, pages 595 - 600, XP002371965, DOI: doi:10.1016/j.neuron.2004.10.023 |
POLESELLO, C., PAYRE, F.: "Small is beautiful: what flies tell us about ERM protein function in development", TRENDS CELL BIOL., vol. 14, 2004, pages 294 - 302 |
TAYLOR, J. P., MATA, I. F., FARRER, M. J.: "LRRK2: a common pathway for parkinsonism, pathogenesis and prevention?", TRENDS MOL MED., vol. 12, 2006, pages 76 - 82, XP028058701, DOI: doi:10.1016/j.molmed.2005.12.004 |
TYVORSKII ET AL.: "Synthesis of 5-alkyl-4-amino-2-(trifluoromethyl)pyridines and their transformation into trifluoromethylated 1H-pyrazolo[4,3-c]pyridines", TETRAHEDRON, vol. 57, no. 10, 3 March 2001 (2001-03-03), pages 2051 - 2055, XP004317676, ISSN: 0040-4020, DOI: 10.1016/S0040-4020(01)00024-2 * |
WEST, A. B., MOORE, D. J., BISKUP, S., BUGAYENKO, A., SMITH, W. W., ROSS, C. A., DAWSON, V. L., DAWSON, T. M.: "Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity", PROC NATL ACAD SCI U S A., vol. 102, 2005, pages 16842 - 16847, XP002437140, DOI: doi:10.1073/pnas.0507360102 |
YAKUGAKU ZASSHI, vol. 94, 1974, pages 945 - 951 * |
ZABETIAN, C. P., SAMII, A., MOSLEY, A. D., ROBERTS, J. W., LEIS, B. C., YEAROUT, D., RASKIND, W. H., GRIFFITH, A.: "A clinic-based study of the LRRK2 gene in Parkinson disease yields new mutations", NEUROLOGY, vol. 65, 2005, pages 741 - 744 |
Cited By (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9533954B2 (en) | 2010-12-22 | 2017-01-03 | Incyte Corporation | Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3 |
US10813930B2 (en) | 2010-12-22 | 2020-10-27 | Incyte Corporation | Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3 |
US10213427B2 (en) | 2010-12-22 | 2019-02-26 | Incyte Corporation | Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3 |
US8791112B2 (en) | 2011-03-30 | 2014-07-29 | Arrien Pharmaceuticals Llc | Substituted 5-(pyrazin-2-yl)-1H-pyrazolo [3, 4-B] pyridine and pyrazolo [3, 4-B] pyridine derivatives as protein kinase inhibitors |
WO2013139882A1 (en) | 2012-03-21 | 2013-09-26 | F. Hoffmann-La Roche Ag | Pyrazolopyridines for treatment of parkinsons disease |
EP2844660A4 (en) * | 2012-05-02 | 2015-09-23 | Southern Res Inst | Triazolopyridazine compounds, use as inhibitors of the kinase lrrk2, and methods for preparation thereof |
WO2013166276A1 (en) | 2012-05-02 | 2013-11-07 | Southern Research Institute | Triazolopyridazine compounds, use as inhibitors of the kinase lrrk2, and methods for preparation thereof |
US9187484B2 (en) | 2012-05-02 | 2015-11-17 | Southern Research Institute | Triazolopyridazine compounds, use as inhibitors of the kinase LRRK2, and methods for preparation thereof |
CN102675310A (en) * | 2012-05-09 | 2012-09-19 | 林辉 | Method for preparing pyrazol heteroaromatic compound |
CN102675310B (en) * | 2012-05-09 | 2014-12-24 | 林辉 | Method for preparing pyrazol heteroaromatic compound |
US11840534B2 (en) | 2012-06-13 | 2023-12-12 | Incyte Corporation | Substituted tricyclic compounds as FGFR inhibitors |
US11053246B2 (en) | 2012-06-13 | 2021-07-06 | Incyte Corporation | Substituted tricyclic compounds as FGFR inhibitors |
US10131667B2 (en) | 2012-06-13 | 2018-11-20 | Incyte Corporation | Substituted tricyclic compounds as FGFR inhibitors |
US9611267B2 (en) | 2012-06-13 | 2017-04-04 | Incyte Holdings Corporation | Substituted tricyclic compounds as FGFR inhibitors |
JP2015522002A (en) * | 2012-06-29 | 2015-08-03 | ファイザー・インク | Novel 4- (substituted amino) -7H-pyrrolo [2,3-d] pyrimidines as LRRK2 inhibitors |
US9156845B2 (en) | 2012-06-29 | 2015-10-13 | Pfizer Inc. | 4-(substituted amino)-7H-pyrrolo[2,3-d] pyrimidines as LRRK2 inhibitors |
WO2014001973A1 (en) | 2012-06-29 | 2014-01-03 | Pfizer Inc. | NOVEL 4-(SUBSTITUTED-AMINO)-7H-PYRROLO[2,3-d]PYRIMIDINES AS LRRK2 INHIBITORS |
EP3255049A1 (en) | 2012-06-29 | 2017-12-13 | Pfizer Inc | Novel 4-(substituted-amino)-7h-pyrrolo[2,3-d]pyrimidines as lrrk2 inhibitors |
US9642855B2 (en) | 2012-06-29 | 2017-05-09 | Pfizer Inc. | Substituted pyrrolo[2,3-d]pyrimidines as LRRK2 inhibitors |
EA025186B1 (en) * | 2012-06-29 | 2016-11-30 | Пфайзер Инк. | NOVEL 4-(SUBSTITUTED-AMINO)-7H-PYRROLO[2,3-d]PYRIMIDINES AS LRRK2 INHIBITORS |
US9388185B2 (en) | 2012-08-10 | 2016-07-12 | Incyte Holdings Corporation | Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors |
US9745311B2 (en) | 2012-08-10 | 2017-08-29 | Incyte Corporation | Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors |
US9266892B2 (en) | 2012-12-19 | 2016-02-23 | Incyte Holdings Corporation | Fused pyrazoles as FGFR inhibitors |
EP2964223A4 (en) * | 2013-03-04 | 2016-08-10 | Merck Sharp & Dohme | Compounds inhibiting leucine-rich repeat kinase enzyme activity |
US9688654B2 (en) | 2013-03-04 | 2017-06-27 | Merck Sharp & Dohme Corp. | Compounds inhibiting leucine-rich repeat kinase enzyme activity |
WO2014137723A1 (en) | 2013-03-04 | 2014-09-12 | Merck Sharp & Dohme Corp. | Compounds inhibiting leucine-rich repeat kinase enzyme activity |
US9416126B2 (en) | 2013-03-04 | 2016-08-16 | Merck Sharp & Dohme Corp. | Compounds inhibiting leucine-rich repeat kinase enzyme activity |
US9493440B2 (en) | 2013-03-04 | 2016-11-15 | Merck Sharp & Dohme Corp. | Compounds inhibiting leucine-rich repeat kinase enzyme activity |
US9440952B2 (en) | 2013-03-04 | 2016-09-13 | Merck Sharp & Dohme Corp. | Compounds inhibiting leucine-rich repeat kinase enzyme activity |
WO2014140235A1 (en) * | 2013-03-15 | 2014-09-18 | Ipsen Pharma S.A.S. | Macrocyclic lrrk2 kinase inhibitors |
CN105143232A (en) * | 2013-03-15 | 2015-12-09 | 益普生制药股份有限公司 | Macrocyclic IRRK2 kinase inhibitors |
US20140288043A1 (en) * | 2013-03-19 | 2014-09-25 | Genentech, Inc. | Pyrazolopyridine compounds |
US10040790B2 (en) | 2013-04-19 | 2018-08-07 | Incyte Holdings Corporation | Bicyclic heterocycles as FGFR inhibitors |
US10450313B2 (en) | 2013-04-19 | 2019-10-22 | Incyte Holdings Corporation | Bicyclic heterocycles as FGFR inhibitors |
US11530214B2 (en) | 2013-04-19 | 2022-12-20 | Incyte Holdings Corporation | Bicyclic heterocycles as FGFR inhibitors |
US9533984B2 (en) | 2013-04-19 | 2017-01-03 | Incyte Holdings Corporation | Bicyclic heterocycles as FGFR inhibitors |
US10947230B2 (en) | 2013-04-19 | 2021-03-16 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
EP3035800A4 (en) * | 2013-08-22 | 2017-03-15 | Merck Sharp & Dohme Corp. | Compounds inhibiting leucine-rich repeat kinase enzyme activity |
US9718818B2 (en) | 2013-08-22 | 2017-08-01 | Merck Sharp & Dohme Corp. | Compounds inhibiting leucine-rich repeat kinase enzyme activity |
US9695171B2 (en) | 2013-12-17 | 2017-07-04 | Pfizer Inc. | 3,4-disubstituted-1 H-pyrrolo[2,3-b]pyridines and 4,5-disubstituted-7H-pyrrolo[2,3-c]pyridazines as LRRK2 inhibitors |
WO2015092592A1 (en) | 2013-12-17 | 2015-06-25 | Pfizer Inc. | Novel 3,4-disubstituted-1h-pyrrolo[2,3-b]pyridines and 4,5-disubstituted-7h-pyrrolo[2,3-c]pyridazines as lrrk2 inhibitors |
US10851105B2 (en) | 2014-10-22 | 2020-12-01 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US9708318B2 (en) | 2015-02-20 | 2017-07-18 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US10016438B2 (en) | 2015-02-20 | 2018-07-10 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US11173162B2 (en) | 2015-02-20 | 2021-11-16 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US10738048B2 (en) | 2015-02-20 | 2020-08-11 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US10214528B2 (en) | 2015-02-20 | 2019-02-26 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US9580423B2 (en) | 2015-02-20 | 2017-02-28 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US10251892B2 (en) | 2015-02-20 | 2019-04-09 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US11667635B2 (en) | 2015-02-20 | 2023-06-06 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US11014923B2 (en) | 2015-02-20 | 2021-05-25 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US9801889B2 (en) | 2015-02-20 | 2017-10-31 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US10632126B2 (en) | 2015-02-20 | 2020-04-28 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
US9890156B2 (en) | 2015-02-20 | 2018-02-13 | Incyte Corporation | Bicyclic heterocycles as FGFR4 inhibitors |
WO2017046675A1 (en) | 2015-09-14 | 2017-03-23 | Pfizer Inc. | Novel imidazo [4,5-c] quinoline and imidazo [4,5-c][1,5] naphthyridine derivatives as lrrk2 inhibitors |
US10039753B2 (en) | 2015-09-14 | 2018-08-07 | Pfizer Inc. | Imidazo[4,5-c]quinoline and imidazo[4,5-c][1,5]naphthyridine derivatives as LRRK2 inhibitors |
US10294235B2 (en) | 2015-12-16 | 2019-05-21 | Southern Research Institute | Pyrrolopyrimidine compounds, use as inhibitors of the kinase LRRK2, and methods for preparation thereof |
US10023579B2 (en) | 2015-12-16 | 2018-07-17 | Southern Research Institute | Pyrrolopyrimidine compounds, use as inhibitors of the kinase LRRK2, and methods for preparation thereof |
CN109923114A (en) * | 2016-09-09 | 2019-06-21 | 因赛特公司 | Pyrazolo pyridine derivatives and its purposes for being used for treating cancer as HPK1 regulator |
US10934288B2 (en) | 2016-09-09 | 2021-03-02 | Incyte Corporation | Pyrazolopyridine compounds and uses thereof |
US11891388B2 (en) | 2016-09-09 | 2024-02-06 | Incyte Corporation | Pyrazolopyridine compounds and uses thereof |
WO2018049200A1 (en) * | 2016-09-09 | 2018-03-15 | Incyte Corporation | Pyrazolopyridine derivatives as hpk1 modulators and uses thereof for the treatment of cancer |
US11795166B2 (en) | 2016-09-09 | 2023-10-24 | Incyte Corporation | Pyrazolopyridine compounds and uses thereof |
US11242343B2 (en) | 2016-09-09 | 2022-02-08 | Incyte Corporation | Pyrazolopyridine compounds and uses thereof |
CN115819417A (en) * | 2016-09-09 | 2023-03-21 | 因赛特公司 | Pyrazolopyridine derivatives as HPK1 modulators and their use for the treatment of cancer |
EP4119558A1 (en) * | 2016-09-09 | 2023-01-18 | Incyte Corporation | Pyrazolopyridine compounds and uses thereof |
CN109923114B (en) * | 2016-09-09 | 2022-11-01 | 因赛特公司 | Pyrazolopyridine derivatives as HPK1 modulators and their use for the treatment of cancer |
US10435405B2 (en) | 2016-09-09 | 2019-10-08 | Incyte Corporation | Pyrazolopyridine compounds and uses thereof |
US11542265B2 (en) | 2016-09-09 | 2023-01-03 | Incyte Corporation | Pyrazolopyrimidine compounds and uses thereof |
US10266530B2 (en) | 2016-09-09 | 2019-04-23 | Incyte Corporation | Pyrazolopyridine compounds and uses thereof |
IL265215A (en) * | 2016-09-09 | 2019-05-30 | Incyte Corp | Pyrazolopyridine derivatives as hpk1 modulators and uses thereof for the treatment of cancer |
US10280164B2 (en) | 2016-09-09 | 2019-05-07 | Incyte Corporation | Pyrazolopyridone compounds and uses thereof |
US11014929B2 (en) | 2016-09-09 | 2021-05-25 | Incyte Corporation | Pyrazolopyrimidine compounds and uses thereof |
US11406624B2 (en) | 2017-02-15 | 2022-08-09 | Incyte Corporation | Pyrazolopyridine compounds and uses thereof |
CN110678182A (en) * | 2017-02-24 | 2020-01-10 | 大邱庆北尖端医疗产业振兴财团 | Pharmaceutical composition containing a compound capable of penetrating the blood-brain barrier as an active ingredient for preventing or treating brain cancer |
CN110678182B (en) * | 2017-02-24 | 2022-08-23 | 大邱庆北尖端医疗产业振兴财团 | Pharmaceutical composition containing a compound capable of penetrating the blood-brain barrier as an active ingredient for preventing or treating brain cancer |
WO2018155947A1 (en) | 2017-02-24 | 2018-08-30 | 재단법인 대구경북첨단의료산업진흥재단 | Pharmaceutical composition comprising compound capable of penetrating blood-brain barrier as effective ingredient for preventing or treating brain cancer |
WO2018163030A1 (en) | 2017-03-10 | 2018-09-13 | Pfizer Inc. | Cyclic substituted imidazo[4,5-c]quinoline derivatives |
WO2018163066A1 (en) | 2017-03-10 | 2018-09-13 | Pfizer Inc. | Novel imidazo[4,5-c]quinoline derivatives as lrrk2 inhibitors |
US11472801B2 (en) | 2017-05-26 | 2022-10-18 | Incyte Corporation | Crystalline forms of a FGFR inhibitor and processes for preparing the same |
US10611762B2 (en) | 2017-05-26 | 2020-04-07 | Incyte Corporation | Crystalline forms of a FGFR inhibitor and processes for preparing the same |
US10722495B2 (en) | 2017-09-08 | 2020-07-28 | Incyte Corporation | Cyanoindazole compounds and uses thereof |
US10752635B2 (en) | 2018-02-20 | 2020-08-25 | Incyte Corporation | Indazole compounds and uses thereof |
US10800761B2 (en) | 2018-02-20 | 2020-10-13 | Incyte Corporation | Carboxamide compounds and uses thereof |
US10745388B2 (en) | 2018-02-20 | 2020-08-18 | Incyte Corporation | Indazole compounds and uses thereof |
US11731958B2 (en) | 2018-02-20 | 2023-08-22 | Incyte Corporation | Carboxamide compounds and uses thereof |
US11492354B2 (en) | 2018-02-20 | 2022-11-08 | Incyte Corporation | Indazole compounds and uses thereof |
US11299473B2 (en) | 2018-04-13 | 2022-04-12 | Incyte Corporation | Benzimidazole and indole compounds and uses thereof |
US11466004B2 (en) | 2018-05-04 | 2022-10-11 | Incyte Corporation | Solid forms of an FGFR inhibitor and processes for preparing the same |
US12024517B2 (en) | 2018-05-04 | 2024-07-02 | Incyte Corporation | Salts of an FGFR inhibitor |
US11174257B2 (en) | 2018-05-04 | 2021-11-16 | Incyte Corporation | Salts of an FGFR inhibitor |
WO2020021149A1 (en) | 2018-07-25 | 2020-01-30 | Consejo Superior De Investigaciones Científicas | Method for depositing elements on a substrate of interest and device |
US10899755B2 (en) | 2018-08-08 | 2021-01-26 | Incyte Corporation | Benzothiazole compounds and uses thereof |
US11866426B2 (en) | 2018-08-08 | 2024-01-09 | Incyte Corporation | Benzothiazole compounds and uses thereof |
US11912678B2 (en) | 2018-08-24 | 2024-02-27 | Consejo Superior De Investigaciones Científicas | LRRK2 inhibiting compounds and use thereof for treating neurodegenerative diseases |
WO2020039110A1 (en) | 2018-08-24 | 2020-02-27 | Consejo Superior De Investigaciones Científicas | Lrrk2 inhibiting compounds and use thereof for treating neurodegenerative diseases |
US11111247B2 (en) | 2018-09-25 | 2021-09-07 | Incyte Corporation | Pyrazolopyrimidine compounds and uses thereof |
US11628162B2 (en) | 2019-03-08 | 2023-04-18 | Incyte Corporation | Methods of treating cancer with an FGFR inhibitor |
US11591329B2 (en) | 2019-07-09 | 2023-02-28 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
US11066394B2 (en) | 2019-08-06 | 2021-07-20 | Incyte Corporation | Solid forms of an HPK1 inhibitor |
US11787784B2 (en) | 2019-08-06 | 2023-10-17 | Incyte Corporation | Solid forms of an HPK1 inhibitor |
US12122767B2 (en) | 2019-10-01 | 2024-10-22 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
US11607416B2 (en) | 2019-10-14 | 2023-03-21 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
US12083124B2 (en) | 2019-10-14 | 2024-09-10 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
US11566028B2 (en) | 2019-10-16 | 2023-01-31 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
US11897891B2 (en) | 2019-12-04 | 2024-02-13 | Incyte Corporation | Tricyclic heterocycles as FGFR inhibitors |
US11407750B2 (en) | 2019-12-04 | 2022-08-09 | Incyte Corporation | Derivatives of an FGFR inhibitor |
US12012409B2 (en) | 2020-01-15 | 2024-06-18 | Incyte Corporation | Bicyclic heterocycles as FGFR inhibitors |
US12065494B2 (en) | 2021-04-12 | 2024-08-20 | Incyte Corporation | Combination therapy comprising an FGFR inhibitor and a Nectin-4 targeting agent |
US11939331B2 (en) | 2021-06-09 | 2024-03-26 | Incyte Corporation | Tricyclic heterocycles as FGFR inhibitors |
WO2023076404A1 (en) | 2021-10-27 | 2023-05-04 | Aria Pharmaceuticals, Inc. | Methods for treating systemic lupus erythematosus |
Also Published As
Publication number | Publication date |
---|---|
CN102971306A (en) | 2013-03-13 |
US20130267513A1 (en) | 2013-10-10 |
EP2569293A1 (en) | 2013-03-20 |
AU2011251733A1 (en) | 2012-12-20 |
CA2798222A1 (en) | 2011-11-17 |
GB201008134D0 (en) | 2010-06-30 |
JP2013529196A (en) | 2013-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011141756A1 (en) | Pyrazolopyridines as inhibitors of the kinase lrrk2 | |
AU2010224693B2 (en) | Compounds | |
US8569281B2 (en) | Compounds and their administration for treating a neurodegenerative disease as well as a method for identifying a compound capable of inhibiting a kinase, such as LRRK | |
EP2751108B1 (en) | Bicyclic heterocycle derivatives for the treatment of pulmonary arterial hypertension | |
CN111484480A (en) | Polycyclic derivative inhibitor, preparation method and application thereof | |
WO2018153373A1 (en) | Fgfr inhibitor and application thereof | |
WO2013139882A1 (en) | Pyrazolopyridines for treatment of parkinsons disease | |
KR20180080311A (en) | A novel pyrazolopyrimidine derivative | |
CN103582478A (en) | Methods and compositions for treating neurodegenerative diseases | |
CN103596568A (en) | Methods and compositions for treating Parkinson disease | |
KR20120140643A (en) | Kinase inhibitors | |
JP2022526854A (en) | Phosphatidylinositol 3-kinase inhibitor | |
US20230234936A1 (en) | Compound for targeting and degrading protein, and preparation method therefor and use thereof | |
TWI762534B (en) | IMIDAZO[1,5-A]PYRAZINE DERIVATIVES AS PI3Kdelta INHIBITORS | |
US20190359616A1 (en) | Novel oxoisoquinoline derivatives | |
JP2020502252A (en) | Derivatives of quinoline as inhibitors of DYRK1A and / or DYRK1B kinase | |
US20140288043A1 (en) | Pyrazolopyridine compounds | |
JP2016537384A (en) | Pyrrolopyrrolone derivatives and their use as BET inhibitors | |
US20240124464A1 (en) | Substituted fused bicyclic compound as kinase inhibitor and use thereof | |
JP2017536396A (en) | Heteroaryl substituted imidazo [1,2-a] pyridines and uses thereof | |
CN112209933B (en) | BTK inhibitors containing 4-azacycloheptane | |
CN112209934B (en) | BTK inhibitors containing azaspiroheptane | |
CN116262750A (en) | Aromatic heterocyclic compound and preparation method and application thereof | |
WO2012127212A1 (en) | Imidazo [1, 2 - b] pyridazine derivatives as cdpk1 inhibitors | |
CN118922188A (en) | Pyrimidine and methods of use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180033483.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11720847 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2798222 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2013509631 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011720847 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2011251733 Country of ref document: AU Date of ref document: 20110516 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13697878 Country of ref document: US |