WO2011010527A1 - 膜形成用組成物、絶縁膜および半導体装置 - Google Patents
膜形成用組成物、絶縁膜および半導体装置 Download PDFInfo
- Publication number
- WO2011010527A1 WO2011010527A1 PCT/JP2010/060847 JP2010060847W WO2011010527A1 WO 2011010527 A1 WO2011010527 A1 WO 2011010527A1 JP 2010060847 W JP2010060847 W JP 2010060847W WO 2011010527 A1 WO2011010527 A1 WO 2011010527A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- insulating film
- polymerizable compound
- forming composition
- polymerizable
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/5329—Insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02118—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12044—OLED
Definitions
- the present invention relates to a film forming composition, an insulating film, and a semiconductor device.
- inorganic interlayer insulating films mainly composed of silicon such as HSQ (hydrogen-silsesquioxane) and MSQ (methyl-silsesquioxane) have been widely used.
- the characteristics of the interlayer insulating film can be recovered by a damage recovery process by the surface treatment of the interlayer insulating film or a damage component removal process on the surface of the interlayer insulating film using irradiation of an electron beam or the like.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2007-266099
- Patent Document 2 Japanese Patent Application Laid-Open No. 2007-317817.
- the miniaturization of the wiring insulated by the interlayer insulating film further proceeds, the damage received by the interlayer insulating film cannot be sufficiently recovered, or a process for recovering the characteristics of the interlayer insulating film There is a problem of increasing the number.
- An object of the present invention is to provide a film-forming composition that is capable of forming an insulating film that is not easily damaged by an etching process and maintains film characteristics, an insulating film formed using such a film-forming composition, and An object of the present invention is to provide a semiconductor device provided with such an insulating film.
- a film-forming composition comprising a polymerizable compound having a polymerizable functional group,
- the polymerizable compound has in its molecule a partial structure containing an adamantane-type cage structure and a polymerizable reactive group contributing to the polymerization reaction,
- the polymerizable reactive group has an aromatic ring and an ethynyl group or a vinyl group directly bonded to the aromatic ring;
- the number of carbons derived from the aromatic ring is 15% or more and 38% or less with respect to the number of carbons in the entire polymerizable compound.
- the polymerizable reactive group has two ethynyl groups or vinyl groups, and the one ethynyl group or the vinyl group is present at the meta position of the other ethynyl group or the vinyl group.
- the film forming composition as described in any one of (1) to (3) above.
- n an integer of 1 to 5.
- the rate of change in dielectric constant on the etched surface etched by a reactive ion etching method using a mixed gas of nitrogen and hydrogen or ammonia gas as a processing gas is 10% or less. Insulating film.
- the etching rate at the time of etching is 10 ⁇ / second or more and 90 ⁇ / second or less by the reactive ion etching method using a mixed gas of nitrogen and hydrogen or ammonia gas.
- the insulating film as described.
- an etching rate when etching with a fluorine-based gas is 0.75 times or less of the SiO film.
- Adhesion force measured by using an insulating film and a SiCN film by an m-ELT method is 0.15 MPa ⁇ m (1/2) or more and 0.35 MPa ⁇ m ( The insulating film according to any one of (12) to (16), which is 1/2) or less.
- a semiconductor device comprising the insulating film according to any one of (12) to (17).
- FIG. 1 is a longitudinal sectional view showing an example of a method for forming an interlayer insulating film patterned in a predetermined shape.
- FIG. 2 is a longitudinal sectional view schematically showing an example of the semiconductor device of the present invention.
- FIG. 3 is a longitudinal sectional view showing a preferred embodiment of a method for manufacturing a semiconductor device.
- FIG. 4 is a longitudinal sectional view showing a preferred embodiment of a method for manufacturing a semiconductor device.
- FIG. 5 is a longitudinal sectional view showing a preferred embodiment of a method for manufacturing a semiconductor device.
- the film-forming composition of the present invention contains a polymerizable compound X having a polymerizable functional group.
- the polymerizable compound X has in its molecule a partial structure A including an adamantane cage structure and a polymerizable reactive group B that contributes to the polymerization reaction. , Having an ethynyl group or a vinyl group directly bonded to the aromatic ring, and in the polymerizable compound X, the number of carbons derived from the aromatic ring is the total number of carbons in the polymerizable compound X. It is characterized by being 15% or more and 38% or less with respect to the number.
- the polymerizable compound X will be described.
- the ethynyl group or vinyl group which the polymerizable reactive group B has is a polymerizable group when the polymerizable compounds are polymerized and exhibits the same function, the polymerizable reactive group will be described below. A case where B has an ethynyl group will be described as an example.
- Polymerizable compound X has a partial structure A including an adamantane-type cage structure and a polymerizable reactive group B contributing to the polymerization reaction in the molecule.
- Partial structure A The partial structure A possessed by the polymerizable compound X includes an adamantane cage structure. Thereby, the film (insulating film) formed using the film-forming composition can have a low density, and the dielectric constant of the formed film can be reduced.
- the reactivity of the polymerizable compound X having the polymerizable reactive group B as described later in detail can be made appropriate, film formation on a member (for example, a semiconductor substrate) on which a film is to be formed
- a member for example, a semiconductor substrate
- the viscosity of the film-forming composition is surely suitable, and unintentional variations in thickness and characteristics at each part of the formed film can be suppressed, The strength of the finally formed film can be made excellent.
- the etching rate in the etching process for patterning the film (insulating film) formed using the film forming composition into a predetermined shape can be made relatively low.
- Examples of the partial structure A possessed by the polymerizable compound X include adamantane, polyadamantane (eg, biadamantane, triadamantane, tetraadamantane, pentaadamantane, hexaadamantane, heptaadamantane, etc.), polyamantane (eg, diamantane, triamantane, Tetramantane, pentamantane, hexamantane, heptamantane, etc.), divalent groups such as compounds in which at least a part of hydrogen atoms constituting these compounds are substituted with alkyl groups or halogen atoms (two hydrogen atoms constituting the above compounds) A structure having two or more of these divalent groups (for example, a bi (diamantane) skeleton, a tri (diamantane) skeleton, a tetra (diamantane) skeleton
- R 1 and R 2 each independently represent a hydrogen atom, an alkyl group, or a halogen group, and l, m, and n are each independently 1 represents an integer of 1 or more.
- the partial structure A preferably has an adamantane structure.
- the dielectric constant of the film (insulating film) formed using the film-forming composition can be made particularly low, and in the etching process for patterning the film into a predetermined shape, the film has a high dielectric constant. It is possible to accurately suppress or prevent the rate from increasing.
- the reactivity of the polymerizable compound X can be made more suitable, and when the composition for film formation on a member (for example, a semiconductor substrate) on which a film is to be formed is applied, The viscosity of the composition is more surely suitable, and it is possible to more effectively suppress unintentional variations in thickness and characteristics at each part of the formed film, and the film formed finally The strength can be made particularly excellent.
- the adamantane structure preferably has a methyl group as a substituent.
- membrane formation can be made especially low.
- the reactivity of the polymerizable compound X can be made more suitable, and when the composition for film formation on a member (for example, a semiconductor substrate) on which a film is to be formed is applied, The viscosity of the composition is more surely suitable, and it is possible to more effectively suppress unintentional variations in thickness and characteristics at each part of the formed film, and the film formed finally The strength can be made particularly excellent.
- the etching rate in the etching process for patterning the film (insulating film) formed using the film forming composition into a desired shape can be made relatively low.
- n represents an integer of 1 or more.
- the film (insulating film) formed using the film-forming composition exhibits the above-described effects more remarkably.
- the partial structure A having such a structure is a structure having symmetry itself. That is, in the above formula (2), n is preferably an even number. Thereby, the reactivity of the polymerizable compound X can be made more appropriate, and when the composition for forming a film on a member (for example, a semiconductor substrate) on which a film is to be formed is applied, the film formation is performed.
- the viscosity of the composition for use is more surely suitable, and it is possible to more effectively suppress unintentional variations in thickness and characteristics at each part of the formed film, and the film finally formed Can be made particularly excellent in strength.
- the partial structure A may have a diamantane structure.
- membrane formed using the composition for film formation can be made low.
- the reactivity of the polymerizable compound X can be made more suitable, and when the composition for film formation on a member (for example, a semiconductor substrate) on which a film is to be formed is applied, The viscosity of the composition is more surely suitable, and it is possible to more effectively suppress unintentional variations in thickness and characteristics at each part of the formed film, and the film formed finally The strength can be made particularly excellent.
- polymerizable reactive group B In addition to the partial structure A as described above, the polymerizable compound X has a polymerizable reactive group B that contributes to the polymerization reaction.
- the polymerizable reactive group B has an aromatic ring and an ethynyl group directly bonded to the aromatic ring.
- the polymerizable compound X may have one polymerizable reactive group B, but has two, and these have a structure in which they are symmetrically bonded around the partial structure A. preferable. Thereby, the reactivity of the polymerizable compound X can be made appropriate, and when the film-forming composition is applied onto a member (for example, a semiconductor substrate) on which a film is to be formed, The viscosity of the composition is surely suitable, and it is possible to suppress unintentional variations in the thickness and characteristics of each part of the film to be formed, and the strength of the film finally formed is excellent. It can be.
- the polymerizable compound X has the two polymerizable reactive groups B together with the partial structure A. Furthermore, since these have a specific arrangement, a particularly excellent effect is exhibited.
- the aromatic ring constituting the polymerizable reactive group B is not particularly limited.
- a benzene ring is preferred as the aromatic ring.
- membrane can be performed more easily.
- membrane formed using the film forming composition can be made suitable, and the intensity
- the aromatic ring constituting the polymerizable reactive group B may be bonded to the cage structure constituting the partial structure A via at least one other atom, but the cage structure constituting the partial structure A It is preferable that it is directly bonded to.
- the reactivity of the polymerizable compound X can be made more suitable, and the film formation can be performed when a film forming composition is applied onto a member (for example, a semiconductor substrate) on which a film is to be formed.
- the viscosity of the composition for use is more surely suitable, and it is possible to more effectively suppress unintentional variations in thickness and characteristics at each part of the formed film, and the film finally formed Can be made particularly excellent in strength.
- the polymerizable reactive group B may have one ethynyl group, but has two ethynyl groups, and two ethynyl groups are directly bonded to the aromatic ring as described above. Is preferred. Thus, when the polymerizable reactive group B has two ethynyl groups as reaction sites, an initial reaction with respect to the polymerizable compound X is likely to occur. On the other hand, when one of the two ethynyl groups of the polymerizable reactive group B reacts (polymerization reaction), the electronic state of the aromatic ring changes, and the reactivity of the other ethynyl group rapidly increases. descend.
- the polymerizable compound X preferably has two polymerizable reactive groups B in the molecule, one of the two polymerizable reactive groups B present in the molecule of the polymerizable compound X is Only the ethynyl group can be reacted selectively.
- A represents the partial structure A
- Ar represents an aromatic ring constituting the polymerizable reactive group B
- n represents an integer of 2 or more.
- polymerizable reactive group B has a vinyl group instead of an ethynyl group
- a polymer in which a plurality of polymerizable compounds X are polymerized one-dimensionally by a reaction as shown in the following formula (3 ′) ( A chain prepolymer) is obtained.
- A represents the partial structure A
- Ar represents an aromatic ring constituting the polymerizable reactive group B
- n represents an integer of 2 or more.
- the polymerizable compound X reacts excessively during storage of the film-forming composition, and the film-forming composition becomes extremely viscous (for example, gelation). Can be reliably prevented, and the viscosity of the film-forming composition is surely suitable for applying the film-forming composition onto a member (for example, a semiconductor substrate) on which a film is to be formed. Can be. As a result, it is possible to reliably suppress the occurrence of unintentional variations in thickness and characteristics at each site of the formed film.
- the polymer obtained by the reaction as described above has an unreacted ethynyl group
- the firing conditions described in detail later Under the heating conditions on the semiconductor substrate, the remaining ethynyl groups can be reacted with certainty, and the film finally formed has a three-dimensionally cross-linked structure.
- the formed film is particularly excellent in heat resistance and the like.
- each polymerizable reactive group B constituting the polymerizable compound X has two ethynyl groups
- one ethynyl group is a meta of the other ethynyl group. It is preferable that it exists in a position.
- both of the two ethynyl groups are present at the meta position where the aromatic ring is bonded to the cage structure.
- the reactivity of the two ethynyl groups of the polymerizable reactive group B (reactivity for the first stage reaction and reactivity for the second stage reaction) is made higher.
- the polymerizable compound X has the partial structure A and the polymerizable reactive group B as described above in the molecule.
- the number of carbons derived from the aromatic ring in the polymerizable compound X is 15% or more and 38% or less, and preferably 18% or more and 27% or less with respect to the total number of carbons of the polymerizable compound X.
- the increase in the dielectric constant of the film in the etching process is caused by, for example, physical influence and chemical influence as shown below.
- the physical effect is that the etching gas accelerated by the plasma collides with the film at a high speed, resulting in unevenness on the film surface. As a result, moisture and the like are adsorbed on the film surface. It is thought that the characteristics change.
- the chemical effect is caused by the fact that the etching gas changes into ions and radicals due to plasma, and when these collide with the film, the chemical bonds in the film are broken and the structure of the film is changed. Therefore, it is considered that the characteristics of the film change.
- the increase in the dielectric constant of the film caused by such physical and chemical influences is suppressed or prevented more accurately by setting the number of carbons derived from the aromatic ring in the polymerizable compound X within the above-mentioned range. be able to.
- the etching rate in this etching process is lowered and the etching rate on the surface of the insulating film is reduced, the etching is relatively gentle, and the physical and chemical effects described above are limited to the vicinity of the surface of the insulating film.
- the modified layer (etching damage layer) formed on the surface of the insulating film by etching can be prevented from being formed to the inside of the insulating film. Therefore, from this point of view, it is possible to accurately suppress or prevent the properties of the film from being altered or deteriorated.
- the polymerizable compound X include those having a structure represented by the following formula (1). In the following formula (1), n represents an integer of 1 to 5.
- the film (insulating film) formed using the film forming composition exhibits the above-described effects more remarkably.
- X having the structure represented by the above formula (1)
- those having two polymerizable reactive groups B are exemplified, but other polymerizable compounds having one polymerizable reactive group B are exemplified.
- Examples of X include those having a structure represented by the following formula (1 ′).
- n represents an integer of 1 or 2.
- the polymerizable compound X may have a partial structure other than the partial structure A and the polymerizable reactive group B.
- the polymerizable compound X as described above has two polymerizable reactive groups B, and when the polymerizable reactive group B has two ethynyl groups, for example, it can be synthesized as follows. it can.
- a compound A ′ corresponding to partial structure A (a compound in which two hydrogen atoms are bonded to A as a divalent group) is reacted with bromine, and a dibromo form of A ′ (two bromo groups are bonded to partial structure A)
- the polymerizable compound X can be synthesized, for example, as follows.
- the film-forming composition may contain the polymerizable compound X alone as described above.
- the polymerizable compound X has two polymerizable reactive groups B and / or polymerizes.
- the polymerizable reactive group B has two ethynyl groups
- a polymer in which the polymerizable compound X is partially polymerized a prepolymer in which only one polymerizable reactive group B of the two polymerizable reactive groups B is polymerized or reacted
- a prepolymer obtained by polymerization reaction of only one ethynyl group of the two ethynyl groups of the polymerizable reactive group B a prepolymer obtained by polymerization reaction of only one ethynyl group of the two ethynyl groups of the polymerizable reactive group B.
- the film-forming composition contains a polymer (prepolymer) in which the polymerizable compound X is partially polymerized, the viscosity of the film-forming composition is more surely suitable, and each part of the film to be formed In addition, it is possible to more effectively suppress unintentional variations in thickness and characteristics of the film, and it is possible to make the strength of the finally formed film particularly excellent.
- the film forming composition is subjected to heat treatment prior to applying the film forming composition onto the member (for example, a semiconductor substrate) on which the film is to be formed, so that the film to be formed is relatively thick. Even if it is a thing, it can form suitably.
- the film-forming composition contains a prepolymer of the polymerizable compound X
- a member for example, a semiconductor substrate
- the amount of heat applied on the member can be reduced. Damage to the member due to heating can be prevented more reliably.
- Such a film-forming composition containing a prepolymer of the polymerizable compound X can be suitably used as an insulating film varnish.
- a film-forming composition containing a polymer (prepolymer) in which the polymerizable compound X is partially polymerized can be suitably prepared by subjecting the polymerizable compound X to a heat treatment, for example.
- the heat treatment conditions are preferably heating temperature: 120 to 190 ° C., heating time: 3 to 11 hours, heating temperature: 140 to 180 ° C., heating time: 3 to 9 hours. preferable.
- the synthesis of the prepolymer by the heat treatment as described above may be performed in a solvent as a constituent of the film-forming composition as described later, May be carried out in a solvent having a different composition. That is, after polymerizing the polymerizable compound X using a predetermined solvent to obtain a prepolymer, the solvent may be replaced with a solvent as a constituent of the target film-forming composition.
- solvent examples include alcohols such as methanol, ethanol, isopropanol, 1-butanol, and 2-butanol.
- Solvents Ketone solvents such as acetone, acetylacetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, 2-pentanone, 2-heptanone; ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, propylene glycol monomethyl ether acetate, etc.
- Esters such as diisopropyl ether, dibutyl ether, diphenyl ether, tetrahydrofuran, anisole, 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, 1,4-dimethoxybenzene
- Ter solvents aromatic and aliphatic hydrocarbon solvents such as benzene, toluene, mesitylene, ethylbenzene, diethylbenzene, propylbenzene, heptane, hexane, n-octane; chloromethane, dichloromethane, chloroform, dichloroethane, carbon tetrachloride, etc.
- Halide solvents; amide solvents such as N-methylpyrrolidone and the like can be mentioned, and one or more selected from these can be used in combination.
- the step of obtaining the prepolymer of the polymerizable compound X includes, for example, a method by thermal polymerization in which the reaction is carried out without using a catalyst, radicals such as benzoyl peroxide, t-butyl peroxide, azobisisobutyronitrile, etc.
- the heat treatment conditions are preferably heating temperature: 120 to 190 ° C., heating time: 3 to 11 hours, heating temperature: 140 to 180 ° C., heating time: 3 to More preferably, it is 9 hours.
- the heat treatment conditions are preferably heating temperature: 40 to 190 ° C., heating time: 0.5 to 11 hours, heating temperature: 60 to 180 ° C., heating time: 0. More preferably, 5 to 9 hours.
- the composition obtained in the above step is subjected to the first condition that the heating temperature is 150 to 190 ° C. and the heating time is 1 to 6 hours. It is also possible to appropriately select the heat treatment and the second heat treatment performed under the conditions of heating temperature: 120 to 160 ° C. and heating time: 2 to 9 hours, or further multi-stage heat treatment.
- a radical initiator for example, a first heat treatment performed under the conditions of heating temperature: 60 to 190 ° C., heating time: 0.5 to 6 hours, heating temperature: 40 to 160 ° C., heating time: A second heat treatment performed under a condition of 0.5 to 9 hours or a multistage heat treatment can be appropriately selected.
- the synthesis of the prepolymer by the heat treatment as described above may be performed in a solvent as a component of the film-forming composition to be prepared, and what is a component of the film-forming composition?
- the solvent may be replaced with a solvent as a component of the target film-forming composition.
- the solvent reaction solvent
- examples of the solvent (reaction solvent) that can be used for the synthesis of a polymer (prepolymer) in which a polymerizable compound is partially polymerized include alcohol solvents such as methanol, ethanol, isopropanol, 1-butanol, and 2-butanol.
- Ketone solvents such as acetone, acetylacetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, 2-pentanone, 2-heptanone; esters such as ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, propylene glycol monomethyl ether acetate Solvents such as diisopropyl ether, dibutyl ether, diphenyl ether, tetrahydrofuran, anisole, 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, 1,4-dimethoxybenzene, etc.
- Solvents aromatic and aliphatic hydrocarbon solvents such as benzene, toluene, mesitylene, ethylbenzene, diethylbenzene, propylbenzene, heptane, hexane, n-octane; chloromethane, dichloroethane, chloroform, dichloroethane, carbon tetrachloride, etc.
- Halide solvents amide solvents such as N-methylpyrrolidone and the like can be mentioned, and one or more selected from these can be used in combination.
- the film-forming composition contains a prepolymer of the polymerizable compound X
- the unreacted polymerizable compound X is removed by purification (the unreacted polymerizable compound X is not included as much as possible). Is preferred. Thereby, various characteristics, such as the intensity
- the content of the polymerizable compound X in the film-forming composition and a polymer in which the polymerizable compound X is partially polymerized (for example, only one polymerizable reactive group B out of two polymerizable reactive groups B undergoes a polymerization reaction).
- the content of the prepolymer obtained by polymerization reaction of only one ethynyl group of the two ethynyl groups possessed by the polymerizable reactive group B is preferably 1.0 to 30 wt%.
- the film-forming composition includes the polymerizable compound X as described above, and further the polymerizable compound X has two polymerizable reactive groups B and / or two polymerizable reactive groups B.
- a polymer in which the polymerizable compound X is partially polymerized (a prepolymer in which only one polymerizable reactive group B out of two polymerizable reactive groups B is polymerized or a polymerizable reactive group B is Any one of the two ethynyl groups having a prepolymer obtained by polymerization reaction of only one ethynyl group may be used, but usually a solvent for dissolving them is included.
- the solvent examples include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, Propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol-3-monomethyl ether, methyl pyruvate, ethyl pyruvate, methyl-3-methoxy Propionate, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, tetrahydride
- Furan, anisole, mesitylene and the like can be used singly or in combination
- cyclopentanone and cyclohexanone are preferable as the solvent.
- the solvent constituting the film-forming composition include a solvent (reaction solvent) used for the synthesis of the polymerizable compound X and the above-described polymer (a prepolymer obtained by partially polymerizing the polymerizable compound X). May be included.
- the content of the solvent in the film-forming composition is not particularly limited, but is preferably 70 to 99 wt%.
- the film-forming composition may contain components other than those described above.
- examples of such components include surfactants; coupling agents such as silane coupling agents; catalysts such as radical initiators and disulfides.
- the film-forming composition may also contain a naphthoquinonediazide compound as a photosensitizer.
- the composition for film formation can be used suitably for formation of the surface protection film which has photosensitivity.
- the film-forming composition does not include a pore-forming material that foams due to thermal decomposability and forms pores in the formed film.
- a pore forming material has been used for the purpose of reducing the dielectric constant of the film.
- the polymerizable compound X has two polymerizable reactive groups B as well as the polymerizable compound X as described above.
- a polymer in which the polymerizable compound X is partially polymerized (only one polymerizable reactive group B out of the two polymerizable reactive groups B) Can be formed without using a pore-forming material.
- the dielectric constant of the film to be sufficiently low Can.
- production of the above problems can be prevented reliably by not containing a void
- the film-forming composition as described above may be used for forming a film as it is, but the polymerizable compound X has two polymerizable reactive groups B and / or is polymerizable.
- B has two ethynyl groups
- the film-forming composition can include a polymer (prepolymer) in which the polymerizable compound X is partially polymerized, and the viscosity of the film-forming composition is more surely suitable and formed.
- the film forming composition is subjected to heat treatment prior to applying the film forming composition onto the member (for example, a semiconductor substrate) on which the film is to be formed, so that the film to be formed is relatively thick. Even if it is a thing, it can form suitably.
- a heat treatment to the film-forming composition prior to applying the film-forming composition onto a member (for example, a semiconductor substrate) on which a film is to be formed, the amount of heat applied on the member is reduced. Therefore, damage to the member due to heating can be prevented more reliably.
- the heat treatment conditions are preferably heating temperature: 120 to 190 ° C., heating time: 3 to 11 hours, heating temperature: 140 to 180 ° C., heating time: 3 to 9 hours. It is more preferable that Moreover, you may perform the above heat processing combining a different condition. For example, a first heat treatment performed under the conditions of heating temperature: 150 to 190 ° C. and heating time of 1 to 6 hours and a second heat treatment performed under conditions of heating temperature: 120 to 160 ° C. and heating time: 2 to 9 hours And may be given.
- the insulating film of the present invention is formed using the film forming composition as described above.
- FIG. 1 is a longitudinal sectional view showing an example of a method for forming an interlayer insulating film patterned into a predetermined shape.
- the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
- the film-forming composition as described above is applied onto a member such as a semiconductor substrate, and subjected to a treatment (baking treatment) such as heating or irradiation with active energy rays. Is formed.
- a treatment such as heating or irradiation with active energy rays.
- the composition for forming a film has a case where the polymerizable compound X has two polymerizable reactive groups B and / or the polymerizable reactive group B has two ethynyl groups.
- the polymer compound X preferably contains a partially polymerized polymer (prepolymer).
- the unreacted ethynyl group of the polymerizable compound X or the prepolymer partially polymerized by the polymerizable compound X undergoes a polymerization reaction and has a structure in which a three-dimensional crosslinking reaction occurs.
- a film (insulating film) composed of a polymer (cured product) is obtained.
- a film (insulating film) composed of a polymer (cured product) having such a chemical structure is excellent in strength, heat resistance, and the like.
- the film obtained as described above has a low dielectric constant.
- the film obtained as described above is one in which unintentional variations in film thickness and characteristics at each part are suppressed. For these reasons, the above film can be suitably used as an insulating film constituting a semiconductor device.
- Examples of the method for applying the film-forming composition onto the member include a spin coating method using a spinner, a spray coating method using a spray coater, dipping, printing, and roll coating.
- a treatment (desolvation treatment) for removing the solvent from the film-forming composition applied on the member may be performed prior to the firing treatment.
- Such solvent removal treatment can be performed, for example, by heat treatment, reduced pressure treatment, or the like.
- the firing treatment is preferably performed under the conditions of, for example, a treatment temperature: 200 to 450 degrees, a treatment time: 1 to 60 minutes, and a treatment temperature: 250 to 400 degrees, and a treatment time: 5 to 30 minutes. More preferred. In the baking step, heat treatments with different conditions may be combined.
- an insulating film when such an insulating film is applied to, for example, an interlayer insulating film that insulates wiring layers formed on a semiconductor substrate, vias (conductor posts) that electrically connect the wiring layers included in the semiconductor substrate are provided between the layers. It is formed so as to penetrate in the thickness direction of the insulating film. Therefore, the interlayer insulating film needs to have a predetermined shape patterned corresponding to the shape of the via (conductor post).
- the interlayer insulating film having such a predetermined shape can be formed as follows, for example.
- a semiconductor substrate 1 on which a SiCN film 2 as a silicon-containing film is formed is prepared.
- an interlayer insulating film 3 On this SiCN film 2, an interlayer insulating film 3, a hard mask layer 4 as a cap layer (cap film), and a photoresist layer ( A resist film 8 is formed in this order (see FIG. 1A).
- the interlayer insulating film 3 is formed by the method described above using the film forming composition of the present invention.
- the hard mask layer 4 is formed using the photoresist layer 8 as a mask by a reactive ion etching method using a gas generally used for patterning a hard mask material such as a fluorine-based gas such as CF 4 as a processing gas. By etching, a hard mask layer 4 having a predetermined shape is formed (see FIG. 1C).
- an interlayer insulating film is formed using the photoresist layer 8 as a mask by a reactive ion etching method using a mixed gas of nitrogen and hydrogen or an ammonia gas generally used for etching an organic film or the like as a processing gas. 3 is etched to form an interlayer insulating film 3 having a predetermined shape (see FIG. 1D).
- the interlayer insulating film 3 having a predetermined shape is obtained as described above.
- the interlayer insulating film 3 is formed using the film forming composition of the present invention as described above, the interlayer insulating film 3 is formed. It is possible to more accurately suppress or prevent the film 3 from having a high dielectric constant, and to maintain the characteristics of the film with certainty.
- the rate of change of dielectric constant is preferably reduced to 10% or less (excluding 0%), more preferably to 6.5% or less.
- the etching rate in this etching process is lowered and the etching rate on the surface of the insulating film is lowered, so that the etching is relatively gentle, and the formation of a modified layer (etching damage layer) by etching extends to the inside of the insulating film. Therefore, from this point of view, it is possible to accurately suppress or prevent the properties of the film from being altered or deteriorated.
- a mixed gas of nitrogen and hydrogen nitrogen flow rate: 7.5 sccm, hydrogen flow rate: 2.5 sccm
- ammonia gas flow rate: 10.0 sccm ammonia gas flow rate
- the etching rate when etching the interlayer insulating film 3 by the reactive ion etching method under the conditions of the pressure of 12.5 Pa and the output of 100 W is preferably 10 ⁇ / second or more and 90 ⁇ / second or less, preferably 10 ⁇ / second. As mentioned above, it is more preferable that it is 50 tons / second or less. Thereby, it is possible to more appropriately suppress or prevent the property of the interlayer insulating film 3 from being altered or deteriorated.
- the insulating film is preferably in contact with a member (for example, a semiconductor substrate, an intermediate film, etc.) made of SiOC, SiCN or SiO.
- a member for example, a semiconductor substrate, an intermediate film, etc.
- the adhesiveness etc. of the insulating film with respect to the member can be made particularly excellent.
- the dielectric constant of the insulating film of the present invention (dielectric constant before being subjected to etching by the reactive ion etching method using a mixed gas of nitrogen and hydrogen or ammonia gas as a processing gas) is described in a specific example described later. As shown in FIG. 2, it is preferably 2.32 or less, more preferably 2.30 or less, more preferably 1.80 or more and 2.30 or less, and 1.80 or more and 2.25 or less. Most preferably. Thereby, it is possible to further increase the speed of the semiconductor device. Note that the dielectric constant of the insulating film can be obtained using, for example, an automatic mercury probe CV measuring device SSM495 manufactured by Nippon SSM Co., Ltd.
- the etching rate of the insulating film when etched using a fluorine-based gas is V 1 [nm / min]
- the etching rate when the SiO film is etched under the same conditions is V 2 [nm / min].
- V 1 / V 2 ⁇ 0.75 it is preferable to satisfy the relationship of V 1 / V 2 ⁇ 0.75, more preferable to satisfy the relationship of V 1 / V 2 ⁇ 0.70, and V 1 / V 2 ⁇ 0.65. It is more preferable to satisfy this relationship.
- the dielectric constant of the insulating film is made sufficiently low, when the cap layer is etched (first etching step) in the manufacture of a semiconductor device as described in detail later (see FIGS.
- the insulating film of the present invention preferably satisfies the following conditions. That is, the adhesion force by m-ELT method (Modified-Edge Lift off Test) measured using the insulating film of the present invention and SiCN is 0.15 MPa ⁇ m (1/2) or more and 0.35 MPa ⁇ m (1 / 2) or less, preferably 0.20 MPa ⁇ m (1/2) or more and 0.35 MPa ⁇ m (1/2) or less, more preferably 0.20 MPa ⁇ m (1/2) or more. More preferably, it is 0.30 MPa ⁇ m (1/2) or less. Thereby, the reliability of the semiconductor device manufactured using the insulating film can be made particularly high.
- m-ELT method Modified-Edge Lift off Test
- a film for obtaining adhesion with the insulating film of the present invention is formed on a silicon wafer by a vapor deposition method or the like to prepare a wafer with a film.
- a SiCN film is formed to a thickness of 50 nm on a silicon wafer.
- the insulating film of the present invention was formed on the upper layer of the SiCN film to obtain a wafer with an SiCN film / insulating film.
- an epoxy resin with a known low-temperature residual stress is applied on the insulating film, and the epoxy resin is cured by treating in an oven at 170 ° C. for 1 hour.
- a measurement sample is cut into about 0.5 inch square, and the sample is set in Laminar Series 2 manufactured by FSM. Thereafter, the temperature is raised to 90 ° C. and cooled to ⁇ 170 ° C. at a rate of ⁇ 3 ° C./min. An image is captured every 20 ° C. to 1 ° C. The peeling energy at the interface at the time of peeling is calculated from the temperature at which the sample peeled.
- an m-ELT method measurement sample was prepared by sequentially stacking a SiCN film, an insulating film, and an epoxy resin on a silicon wafer.
- the adhesion between the upper part of the SiCN film and the lower part of the insulating film can be measured.
- the adhesion between the upper part of the insulating film and the lower part of the SiCN film can be measured. Since the effect described below can be obtained by showing the result satisfying the value of the adhesion force defined in the invention, the laminated structure of the sample used for measurement by the m-ELT method is not limited at all.
- the adhesion obtained by the m-ELT method is equal to or higher than the above lower limit value, other films adjacent to the insulating film in the laminated structure of the semiconductor device, for example, a SiCN film used as a barrier film or a cap film.
- a SiCN film used as a barrier film or a cap film The semiconductor device finally obtained without the occurrence of hillocks on the surface of the copper wiring due to the thermal history during the wiring process because the adhesion with the SiC film, SiO film, SiN film, SiOC film, etc. is sufficient
- problems such as insulation failure can be reliably prevented and reliability can be improved.
- it is less than the above upper limit value, it has an appropriate adhesion without affecting the interface made of films having different linear expansion coefficients, so that the wiring process can be ensured, and the yield and reliability can be ensured. Can be particularly high.
- the insulating film of the present invention is formed by applying the film forming composition of the present invention on a member such as a semiconductor substrate and subjecting it to a treatment (baking treatment) such as heating or irradiation with active energy rays.
- the temperature of the baking treatment is preferably 300 ° C. or higher and 370 ° C. or lower, and more preferably 330 ° C. or higher and 350 ° C. or lower.
- the remaining polymerizable group can be reliably reacted, the three-dimensional crosslinking reaction is sufficient, and the formed film has sufficient heat resistance.
- the reliability of a semiconductor device manufactured using an insulating film is made particularly high without causing hillocks locally on the surface of the copper wiring by an appropriate heat treatment. it can.
- the thickness of the insulating film is not particularly limited, but when the insulating film is used as an interlayer insulating film for a semiconductor, it is preferably 0.01 to 20 ⁇ m, more preferably 0.02 to 10 ⁇ m, More preferably, the thickness is 0.05 to 0.7 ⁇ m.
- the thickness of the insulating film is preferably 0.01 to 70 ⁇ m, and more preferably 0.05 to 50 ⁇ m.
- FIG. 2 is a longitudinal sectional view schematically showing an example of the semiconductor device of the present invention.
- the semiconductor device 100 is provided on the semiconductor substrate 1 on which elements are formed, the SiCN film 2 provided on the upper side (upper side in FIG. 2), and the SiCN film 2.
- a copper wiring layer (wiring layer) 7 covered with the interlayer insulating film 3 and the barrier metal layer 6 is provided.
- the semiconductor device 100 of this embodiment includes an interlayer insulating film 3 as an insulating film of the present invention.
- a recess corresponding to a pattern to be wired is formed, and a copper wiring layer 7 is provided in the recess.
- a modified treatment layer 5 is provided between the interlayer insulating film 3 and the copper wiring layer 7.
- a hard mask layer 4 is formed on the upper side of the interlayer insulating film 3 (on the side surface opposite to the SiCN film 2).
- the semiconductor device 100 as described above can be manufactured, for example, as follows. First, by using the method described in the above insulating film, an insulating film having a predetermined shape in which a penetrating wiring groove is formed at a predetermined position of the insulating film composed of the interlayer insulating film 3 and the hard mask layer 4 is formed. Form.
- a modified treatment layer 5 is formed on the inner surface of the wiring groove by plasma treatment or the like, and further a barrier composed of Ta, Ti, TaN, TiN, WN or the like by a method such as PVD method or CVD method.
- a metal layer 6 is formed.
- a copper wiring layer 7 to be a wiring layer is formed by an electrolytic plating method or the like, and then the copper wiring layer and the barrier metal layer other than the wiring portion are polished and removed and planarized by a CMP method. Obtainable.
- the interlayer insulating film 3 can be formed by the method described in the description of the insulating film of the present invention. However, a dry film of a resin film is prepared in advance, and this is formed on the SiCN of the semiconductor substrate 1. It can also be formed so as to be laminated on the film 2. More specifically, a resin film is formed on a member in advance using a film-forming composition and dried to obtain a dry film. The dry film is peeled off from the member, and the semiconductor substrate is separated from the semiconductor substrate.
- the interlayer insulating film 3 may be formed by stacking on the SiCN film 2 and irradiating with heat and / or radiation.
- the semiconductor device of the present invention described above uses the interlayer insulating film (insulating film of the present invention) as described above, it has excellent dimensional accuracy and can sufficiently exhibit insulation, thereby providing excellent connection reliability. Yes.
- the interlayer insulating film (the insulating film of the present invention) as described above has excellent adhesion to the wiring layer, the connection reliability of the semiconductor device can be further improved.
- the interlayer insulating film (insulating film of the present invention) as described above has an excellent elastic modulus, it can be suitably adapted to a process for forming a wiring of a semiconductor device (for example, a firing step).
- the interlayer insulating film (the insulating film of the present invention) can suppress or prevent etching damage during wiring processing, thereby suppressing or preventing changes in the characteristics of the insulating film during semiconductor device fabrication. be able to.
- the interlayer insulating film (the insulating film of the present invention) as described above is excellent in dielectric characteristics, it is possible to reduce the signal loss of the semiconductor device.
- interlayer insulating film (insulating film of the present invention) as described above is excellent in dielectric characteristics, wiring delay can be reduced.
- 3 to 5 are longitudinal sectional views showing a preferred embodiment of a method for manufacturing a semiconductor device.
- the upper side in FIGS. 3 to 5 is referred to as “upper” and the lower side is referred to as “lower”.
- Resist film pattern A first etching step (1g) for etching the cap layer 4 using the resist film 8 as a mask, and a resist film removing step (1h) for removing the resist film 8 to be carried out as necessary. Then, using the cap layer 4 as a mask, the interlayer insulating film 3 is etched to form a second etching step (1i) for forming an opening (groove), and a wiring layer to be described later is provided on the surface side on which the interlayer insulating film is provided.
- the silicon-containing film forming step can be suitably performed using a vapor phase film forming method.
- the insulating film forming step can be suitably performed by applying the film forming composition to the surface of the silicon-containing film 2 by the method as described above.
- the interlayer insulating film 3 can also be formed by laminating a resin film (insulating film) separately prepared as a dry film in advance on the silicon-containing film 2. More specifically, using a film forming composition, a resin film (insulating film) is formed on a member and dried in advance to obtain a dry film. The dry film is peeled from the member,
- the interlayer insulating film 3 may be formed by laminating on the silicon-containing film 2 and irradiating with heat and / or radiation.
- the silicon-containing film 2 may be made of a material known to those skilled in the art as a barrier film and an etch stopper film, but SiCN or SiC is preferably used.
- the cap layer forming step can be suitably performed using a vapor phase film forming method.
- the cap layer 4 is usually made of SiO, but may be made of SiN, SiC, SiCN, SiOC or the like, for example.
- the resist film forming step can be performed using, for example, various coating methods, and among them, methods such as spin coating using a spinner, spray coating using a spray coater, dipping, printing, roll coating, etc. are preferably applied. can do.
- the first etching step is performed by an etching method (reactive ion etching method) using a fluorine-based gas such as CF 4 as a processing gas. If the interlayer insulating film 3 satisfies the above-described conditions of the etching rate ratio, it is ensured that a part of the interlayer insulating film 3 together with the cap layer 4 is removed by unintentional etching such as side etching. Is prevented. As a result, the semiconductor device 200 finally obtained is highly reliable with problems such as insulation failure reliably prevented.
- the etching rate V 1 of the insulating film when etched using a fluorine-based gas and the etching rate V 2 when etching the SiO film under the same conditions satisfy a predetermined relationship.
- the cap layer 4 is not limited to being composed of SiO, but is composed of SiN, SiC, SiCN, SiOC, or the like. Even if it is a case, the outstanding effect as mentioned above is acquired. This is because, when etching with a fluorine-based gas, a film composed of SiN, SiC, SiCN, SiOC, etc. shows the same behavior as a film composed of SiO.
- the etching rate of the insulating film and the etching rate of the SiO film at the time of etching are greatly different, even if the cap layer 4 is made of a material such as SiCN or SiOC, the first This is because the etching of the interlayer insulating film 3 in the etching process is surely prevented.
- the second etching step can be performed by an etching method (reactive ion etching method) using a mixed gas of nitrogen and hydrogen or ammonia gas as a processing gas.
- a resist film removing step by ashing can be appropriately performed before and after the second etching step.
- the barrier metal layer forming step can be performed by a vapor deposition method such as a PVD method or a CVD method.
- a vapor deposition method such as a PVD method or a CVD method.
- the constituent material of the barrier metal layer 6 include Ta, Ti, TaN, TiN, and WN.
- the wiring layer forming step is preferably performed in combination with a vapor deposition method such as PVD and a wet plating method such as electric field plating. Thereby, the formation efficiency of the wiring layer 7 can be made particularly excellent while the adhesion of the wiring layer 7 to the barrier metal layer 6 is sufficiently excellent.
- the constituent material of the wiring layer 7 is not particularly limited, but copper (Cu) is preferably used.
- the polishing step can be suitably performed by a CMP method (chemical mechanical polishing method).
- the semiconductor device 200 can be obtained. Since the above-described semiconductor device of the present invention uses the above-described interlayer insulating film (insulating film of the present invention), it is highly reliable and does not cause problems such as insulation failure.
- the semiconductor device when the insulating film constituting the semiconductor device satisfies a predetermined condition with respect to the adhesive force obtained by the m-ELT method, the semiconductor device includes the insulating film in the stacked structure of the semiconductor device. Adhesive strength with other adjacent films, for example, SiCN film, SiC film, SiO film, SiN film, SiOC film, etc. used as a barrier film or a cap film is sufficient. A hillock does not occur on the surface of the copper wiring, and the finally obtained semiconductor device can be made highly reliable with problems such as insulation failure reliably prevented.
- the barrier film and the cap layer are made of SiO, SiN, SiC, SiCN, Even if it is composed of SiOC or the like, the excellent effects as described above can be obtained.
- the interlayer insulating film 3 as the insulating film of the present invention is formed on the SiCN film (silicon-containing film) 2 is representatively described. It is not limited to.
- the insulating film provided with the interlayer insulating film is representatively described.
- the insulating film of the present invention may be applied to other than the interlayer insulating film. .
- reaction was continued for another hour after the temperature did not rise. Then, it poured into about 2000 mL of cold water, and the crude product was separated by filtration, washed with pure water, and dried.
- the crude product was recrystallized from hot ethanol.
- the obtained recrystallized product was dried under reduced pressure to obtain 37.4 g of a product.
- IR analysis shows absorption of bromo groups at 690-515 cm -1 and a mass analysis molecular weight of 322 indicates that the product is 3,5-dimethyl-1,7-dibromoadamantane. It was.
- the precipitate was filtered and washed with acetone: 1000 ml three times to obtain 57 g of 3,5-dimethyl-1,7-bis (3,5-dibromophenyl) adamantane. From the result of the molecular weight of 632 by mass spectrometry, it was shown that the product was 3,5-dimethyl-1,7-bis (3,5-dibromophenyl) adamantane.
- n represents an integer of 1 to 6, and the number of n corresponds to the number (number) of each synthesis example.
- n 6 polymeric compound X (synthesis example A6), the result of a mass analysis, and an elemental analysis are shown.
- n represents an integer of 1 to 5, and the number of n corresponds to (No. 6 in each synthesis example).
- reaction solution was put into 700 mL of 5% hydrochloric acid aqueous solution and stirred.
- the aqueous layer was removed, and the organic layer was poured into 2000 mL of acetone.
- the precipitate was filtered and washed three times with acetone: 1000 mL to obtain 3,1.4 g of 3,5,5-dimethyl-1- (3,5-dibromophenyl) adamantane. From the result of the molecular weight of 398 by mass spectrometry, it was shown that the product was 3,5, -dimethyl-1- (3,5-dibromophenyl) adamantane.
- n represents an integer of 1 to 3, and the number of n corresponds to (No. 11 in each synthesis example).
- reaction solution was put into 700 mL of 5% hydrochloric acid aqueous solution and stirred.
- the aqueous layer was removed, and the organic layer was poured into 2000 mL of acetone.
- the precipitate was filtered and washed three times with acetone: 1000 mL to obtain 56 g of 4- (3,5-dibromophenyl) diamantane.
- the result of mass analysis by molecular weight 422 showed that the product was 4- (3,5-dibromophenyl) diamantane.
- n represents an integer of 1 to 3, and the number of n corresponds to (number -14 in each synthesis example).
- Synthesis Examples A19 to A28 The same as Synthesis Example A18 except that the polymerizable compounds obtained in Synthesis Examples A2 to A11 were prepared instead of 3,5-dimethyl-1,7-bis (3,5-diethynylphenyl) adamantane. Thus, a polymerizable compound X was obtained.
- n represents an integer of 1 to 6
- the number of n corresponds to (number-17 of each synthesis example).
- n represents an integer of 1 to 5.
- N corresponds to (number -23 in each synthesis example).
- n 2 polymerizable compound X (synthesis example A19), the result of a mass analysis, and an elemental analysis are shown.
- n 2 polymeric compound X (synthesis example A25), the result of mass spectrometry, and an elemental analysis are shown.
- n 5 polymeric compound X (synthesis example A28), the result of a mass analysis, and an elemental analysis are shown.
- a prepolymer was obtained (yield: 56%). 2 g of the obtained prepolymer was dissolved in 18 g of cyclopentanone and filtered through a filter to obtain a film forming composition as a varnish for an organic insulating film.
- Examples A2 to A5 As the polymerizable compound, except that those synthesized in Synthesis Examples A2 to A5 were respectively used, a polymerization reaction was performed in the same manner as in Example A1 to obtain a prepolymer, and further using the prepolymer: 2 g, By performing the same treatment as described in Example A1, a film forming composition as a varnish for an organic insulating film was obtained.
- Comparative Example A1 As the polymerizable compound, except that the compound synthesized in Synthesis Example A6 was used, a polymerization reaction was performed in the same manner as in Example A1 to obtain a prepolymer. Further, using the prepolymer: 2 g, By performing the same treatment as described in A1, a film forming composition as a varnish for an organic insulating film was obtained.
- Examples A6 to A9 As the polymerizable compound, except that those synthesized in Synthesis Examples A7 to A10 were used, a polymerization reaction was performed in the same manner as in Example A1, to obtain a prepolymer. Further, using 2 g of the prepolymer, By performing the same treatment as described in Example A1, a film forming composition as a varnish for an organic insulating film was obtained.
- Example A2 As the polymerizable compound, except that the compound synthesized in Synthesis Example A11 was used, a polymerization reaction was performed in the same manner as in Example A1 to obtain a prepolymer. Further, using the prepolymer: 2 g, the above example was used. By performing the same treatment as described in A1, a film forming composition as a varnish for an organic insulating film was obtained.
- Examples A10 and A11 As the polymerizable compound, except that those synthesized in Synthesis Examples A12 and A13 were respectively used, a polymerization reaction was performed in the same manner as in Example A1, to obtain a prepolymer, and further using the prepolymer: 2 g, By performing the same treatment as described in Example A1, a film forming composition as a varnish for an organic insulating film was obtained.
- Example A3 As the polymerizable compound, except that the compound synthesized in Synthesis Example A14 was used, a polymerization reaction was performed in the same manner as in Example A1 to obtain a prepolymer. Further, using the prepolymer: 2 g, the above example was used. By performing the same treatment as described in A1, a film forming composition as a varnish for an organic insulating film was obtained.
- Examples A12 and A13 As the polymerizable compound, except that those synthesized in Synthesis Examples A15 and A16 were respectively used, a polymerization reaction was performed in the same manner as in Example A1, to obtain a prepolymer, and further using the prepolymer: 2 g, By performing the same treatment as described in Example A1, a film forming composition as a varnish for an organic insulating film was obtained.
- Example A4 As the polymerizable compound, except that the compound synthesized in Synthesis Example A17 was used, a polymerization reaction was performed in the same manner as in Example A1 to obtain a prepolymer. Further, using the prepolymer: 2 g, the above example was used. By performing the same treatment as described in A1, a film forming composition as a varnish for an organic insulating film was obtained.
- Examples A14 to A18 As the polymerizable compound, except that those synthesized in Synthesis Examples A18 to A22 were used, a polymerization reaction was performed in the same manner as in Example A1, to obtain a prepolymer. Further, using 2 g of the prepolymer, By performing the same treatment as described in Example A1, a film forming composition as a varnish for an organic insulating film was obtained.
- Example A5 As the polymerizable compound, except that the compound synthesized in Synthesis Example A23 was used, a polymerization reaction was performed in the same manner as in Example A1 to obtain a prepolymer. Further, using the prepolymer: 2 g, the above example was used. By performing the same treatment as described in A1, a film forming composition as a varnish for an organic insulating film was obtained.
- Examples A19 to A22 As the polymerizable compound, except that those synthesized in Synthesis Examples A24 to A27 were used, a polymerization reaction was performed in the same manner as in Example A1, to obtain a prepolymer. Further, using 2 g of the prepolymer, By performing the same treatment as described in Example A1, a film forming composition as a varnish for an organic insulating film was obtained.
- Example A6 As the polymerizable compound, except that the compound synthesized in Synthesis Example A28 was used, a polymerization reaction was performed in the same manner as in Example A1 to obtain a prepolymer. Further, using the prepolymer: 2 g, the above example was used. By performing the same treatment as described in A1, a film forming composition as a varnish for an organic insulating film was obtained.
- the number of carbons derived from the aromatic ring the number of carbons derived from the polymerizable reactive group, the number of carbons derived from the partial structure, and the aromatic ring, respectively.
- Table 1 shows the ratio of carbon derived from the carbon source.
- a film forming composition as a varnish for an organic insulating film was applied onto a silicon wafer by a spin coater.
- the rotation speed and time of the spin coater were set so that the thickness of the insulating film after the heat treatment was 100 nm.
- the rotation speed and time of the spin coater were set so that the thickness of the insulating film after the heat treatment was 1000 nm.
- the silicon wafer provided with the coating film as described above was placed on a hot plate at 200 ° C. for 1 minute to remove the solvent (cyclopentanone) contained in the coating film.
- the silicon wafer provided with the dried coating film is subjected to a heat treatment (baking treatment) for 30 minutes in a nitrogen atmosphere in an oven at 400 ° C., thereby curing the prepolymer constituting the coating film, Thus, a substrate with a film (substrate with an insulating film) was obtained.
- a heat treatment for 30 minutes in a nitrogen atmosphere in an oven at 400 ° C.
- Breakdown voltage and leakage current were evaluated using an automatic mercury probe CV measuring device SSM495 manufactured by Nippon SSM Co., Ltd., as with the dielectric constant.
- the breakdown voltage the voltage applied when a current of 1 ⁇ 10 ⁇ 2 A flows is defined as the breakdown voltage, and the electric field strength (the voltage (MV) applied when a current of 1 ⁇ 10 ⁇ 2 A flows) The value divided by), expressed in units of MV / cm).
- the change rate of the breakdown voltage was obtained by a calculation formula of ((value before etching) ⁇ (value after etching) / (value before etching)) ⁇ 100.
- the leakage current is defined as a leakage current that flows when the electric field intensity is 1 MV / cm, and the current density (A) that flows when the electric field intensity is 1 MV / cm is the mercury electrode area of the automatic mercury probe CV measuring device (the value obtained by dividing the cm 2) unit:. shown in A / cm 2).
- the change in leakage current was determined by dividing the value after etching by the value before etching to determine how many times it changed before etching.
- Reactive ion etching is performed using L-201D-L manufactured by Anerva Co., Ltd., frequency 13.56 MHz, pressure 12.5 Pa, output 100 W, flow rate (nitrogen: 7.5 sccm, hydrogen: 2.5 sccm), The treatment time was 1 minute.
- RI refractometer
- UV (254 nm) ultraviolet / visible detector
- the etching rate when etching the insulating film was suppressed to 10 ⁇ / second or more and 90 ⁇ / second or less.
- the number of carbons derived from the aromatic ring is less than 15% with respect to the total number of carbons in the polymerizable compound, and as a result, for each of the evaluation items, The rate of change from etching to post-etching was large, and this tendency was particularly noticeable in the dielectric constant. Moreover, in each comparative example, it was guessed that the etching rate at the time of etching an insulating film was fast, and it became the cause of quality change and deterioration of an insulating film.
- Example group B ⁇ Example group B> [B1] Synthesis of polymerizable compound (Synthesis Example B1) First, 1,3-dimethyladamantane was prepared, and carbon tetrachloride: 700 mL and bromine: 35 g (0.22 mol) were placed in a 4-neck 2000 mL flask equipped with a thermometer, a stirrer and a reflux tube, and stirred. Then, the prepared 1,3-dimethyladamantane: 32.9 g (0.2 mol) was added little by little. During the addition, the internal temperature was kept at 20-30 ° C.
- the crude product was recrystallized from hot ethanol.
- the obtained recrystallized product was dried under reduced pressure to obtain 37.4 g of a product.
- IR analysis shows absorption of bromo groups at 690-515 cm -1 and a mass analysis molecular weight of 322 indicates that the product is 3,5-dimethyl-1,7-dibromoadamantane. It was.
- the precipitate was filtered and washed with acetone: 1000 ml three times to obtain 57 g of 3,5-dimethyl-1,7-bis (3,5-dibromophenyl) adamantane. From the result of the molecular weight of 632 by mass spectrometry, it was shown that the product was 3,5-dimethyl-1,7-bis (3,5-dibromophenyl) adamantane.
- n represents an integer of 1 to 5
- the number of n corresponds to the number (number) of each synthesis example.
- n represents an integer of 1 to 4, and the number of n corresponds to (number-5 in each synthesis example).
- reaction solution was put into 700 mL of 5% hydrochloric acid aqueous solution and stirred.
- the aqueous layer was removed, and the organic layer was poured into 2000 mL of acetone.
- the precipitate was filtered and washed three times with acetone: 1000 mL to obtain 3,1.4 g of 3,5,5-dimethyl-1- (3,5-dibromophenyl) adamantane. From the result of the molecular weight of 398 by mass spectrometry, it was shown that the product was 3,5, -dimethyl-1- (3,5-dibromophenyl) adamantane.
- n represents an integer of 1 to 2, and the number of n corresponds to (No. 9 in each synthesis example).
- reaction solution was put into 700 mL of 5% hydrochloric acid aqueous solution and stirred.
- the aqueous layer was removed, and the organic layer was poured into 2000 mL of acetone.
- the precipitate was filtered and washed three times with acetone: 1000 mL to obtain 56 g of 4- (3,5-dibromophenyl) diamantane.
- the result of mass analysis by molecular weight 422 showed that the product was 4- (3,5-dibromophenyl) diamantane.
- n represents an integer of 1 to 2, and the number of n corresponds to (No. 11 in each synthesis example).
- Synthesis Examples B15 to B22 Similar to Synthesis Example B14 except that the polymerizable compounds obtained in Synthesis Examples B2 to B9 were prepared instead of 3,5-dimethyl-1,7-bis (3,5-diethynylphenyl) adamantane. Thus, a polymerizable compound X was obtained.
- n represents an integer of 1 to 5
- the number of n corresponds to (number -13 in each synthesis example)
- n represents an integer of 1 to 4.
- N corresponds to (number -18 in each synthesis example).
- n 2 polymerizable compound X (synthesis example B15), the result of a mass analysis, and an elemental analysis are shown.
- a prepolymer was obtained (yield: 56%). 2 g of the obtained prepolymer was dissolved in 18 g of cyclopentanone and filtered through a filter to obtain a film forming composition as a varnish for an organic insulating film.
- Preparation Examples B2 to B23 Except for using each of the compounds synthesized in Synthesis Examples B2 to B23 as the polymerizable compound, a polymerization reaction was performed in the same manner as in Preparation Example B1 to obtain a prepolymer, and further using 2 g of the prepolymer, By performing the same treatment as described in Preparation Example B1, a film forming composition as a varnish for an organic insulating film was obtained.
- the number of carbons derived from the aromatic ring is shown in Table 5.
- Insulating films were formed as follows using the film forming compositions as varnishes for organic insulating films obtained in the respective Preparation Examples B1 to B22.
- a film forming composition as a varnish for an organic insulating film was applied onto a silicon wafer by a spin coater. At this time, the rotation speed and time of the spin coater were set so that the thickness of the insulating film after the heat treatment was 100 nm.
- the silicon wafer provided with the coating film as described above was placed on a hot plate at 200 ° C. for 1 minute to remove the solvent (cyclopentanone) contained in the coating film.
- the silicon wafer provided with the dried coating film is subjected to a heat treatment (baking treatment) for 30 minutes in a nitrogen atmosphere in an oven at 400 ° C., thereby curing the prepolymer constituting the coating film, Then, a substrate with an insulating film was obtained.
- a heat treatment for 30 minutes in a nitrogen atmosphere in an oven at 400 ° C.
- Reactive ion etching is performed using L-201D-L manufactured by Anelva Co., Ltd., with a frequency of 13.56 MHz, a pressure of 20 Pa, an output of 1000 W, a flow rate (CF 4 : 200 sccm, argon: 400 sccm), and a processing time of 10 seconds. Carried out.
- a substrate with an SiO film in which an SiO film (thickness: 100 nm) was formed on a silicon wafer was obtained separately using a plasma CVD method.
- the etching rate was obtained by performing reactive ion etching under the same conditions as those for the insulating film of the substrate with the insulating film.
- the etching rate (V 2 [nm / min]) of the SiO film obtained as a result of the measurement was 240 nm / min.
- Breakdown voltage and leakage current were evaluated using an automatic mercury probe CV measuring device SSM495 manufactured by Nippon SSM Co., Ltd., as with the dielectric constant.
- the voltage applied when a current of 1 ⁇ 10 ⁇ 2 A flows is defined as the breakdown voltage, and the electric field strength (the voltage (MV) applied when a current of 1 ⁇ 10 ⁇ 2 A flows) The value divided by), expressed in units of MV / cm).
- the leakage current is defined as a leakage current that flows when the electric field intensity is 1 MV / cm, and the current density (A) that flows when the electric field intensity is 1 MV / cm is the mercury electrode area of the automatic mercury probe CV measuring device (the value obtained by dividing the cm 2) unit:. shown in A / cm 2).
- a SiO film was formed by the method.
- a resist film was formed on the surface of the cap layer, and the resist film was exposed and developed using a photomask to form an opening (groove) at a position corresponding to the position where the wiring groove of the resist film was to be formed.
- the SiO film as the cap layer was etched by a reactive ion etching method using a mixed gas of CF 4 and argon, to form a cap layer opening (groove) of 130 nm.
- This reactive ion etching was performed using L-201D-L manufactured by Anelva Co., Ltd. at a frequency of 13.56 MHz, a pressure of 20 Pa, an output of 1000 W, and a flow rate (CF4: 200 sccm, argon: 400 sccm). Further, the treatment time was adjusted so that the cap layer was completely opened.
- the precipitate was filtered and washed with acetone: 1000 ml three times to obtain 57 g of 3,5-dimethyl-1,7-bis (3,5-dibromophenyl) adamantane. From the result of the molecular weight of 632 by mass spectrometry, it was shown that the product was 3,5-dimethyl-1,7-bis (3,5-dibromophenyl) adamantane.
- Synthesis Examples C2 to C5 A polymerizable compound X was obtained in the same manner as in Synthesis Example C1 except that tetramethylbiadamantane, hexamethyltriadamantane, octamethyltetraadamantane, and decamethylpentaadamantane were prepared instead of dimethyladamantane.
- the structural formula of the polymerizable compound X obtained in Synthesis Examples C1 to C5 is shown in the following formula (1).
- n represents an integer of 1 to 5, and the number of n corresponds to the number (number) of each synthesis example.
- n 2 polymerizable compound X (Synthesis Example C2) in the above formula (1) are shown.
- n 5 polymeric compound X (synthesis example C5), the result of a mass analysis, and an elemental analysis are shown.
- Synthesis Examples C7 to C9 A polymerizable compound X was obtained in the same manner as in Synthesis Example C6 except that dibromodi (diamantane), dibromotri (diamantane), and dibromotetra (diamantane) were prepared instead of dibromodiamantane.
- the structural formula of the polymerizable compound X obtained in Synthesis Examples C6 to C9 is shown in the following formula (4).
- n represents an integer of 1 to 4, and the number of n corresponds to (number-5 in each synthesis example).
- n represents an integer of 1 to 5
- the number of n corresponds to (number-9 of each synthesis example)
- n represents an integer of 1 to 4.
- N corresponds to (number-14 in each synthesis example).
- Appearance: White solid MS (FD) (m / z): 817 (M +) Elemental analysis: Theoretical value (/%) C; 91.12, H; 8.88, measured value (/%) C; 91.10, H; 8.84 The external appearance of the said compound (6) n 4 polymeric compound X (synthesis example C18), the result of a mass analysis, and an elemental analysis are shown.
- Example C1 Preparation of film-forming composition (Example C1) 3,5-dimethyl-1,7-bis (3,5-diethynylphenyl) adamantane: 5 g as a polymerizable compound synthesized in Synthesis Example C1 was dissolved in 45 g of 1,3-dimethoxybenzene and dried. The reaction was carried out at 170 ° C. for 3 hours under nitrogen, and the reaction solution was once cooled to room temperature. When the molecular weight was measured by GPC, the number average molecular weight was 46,000. The reaction solution was heated again and reacted at 150 ° C. for 6 hours.
- a prepolymer was obtained (yield: 56%). 2 g of the obtained prepolymer was dissolved in 18 g of cyclopentanone and filtered through a filter to obtain a film forming composition as a varnish for an organic insulating film.
- Examples C2 to C18 As the polymerizable compound, except that those synthesized in Synthesis Examples C2 to C18 were respectively used, a polymerization reaction was performed in the same manner as in Example C1 to obtain a prepolymer, and further using the prepolymer: 2 g, By performing the same treatment as described in Example C1, a film-forming composition as a varnish for an organic insulating film was obtained.
- each dried coating film is subjected to a heat treatment (baking treatment) for 30 minutes in a nitrogen atmosphere in an oven under the conditions shown in Table 7 for m-ELT, tape test, and heat resistance.
- the prepolymer was cured to form an insulating film to obtain a substrate with a film (substrate with an insulating film).
- Dielectric constant, breakdown voltage, and leakage current are heat treated (baked) for 30 minutes in a 400 ° C. oven in a nitrogen atmosphere to cure the prepolymer constituting the coating film and form an insulating film. (Substrate with insulating film) was obtained.
- the evaluation method of hillock resistance is described in [C5].
- m-ELT For the film-coated substrates according to Examples and Comparative Examples prepared in the above [C3], m-ELT was evaluated using Laminar Series 2 manufactured by FSM (Frontier Semiconductor, Inc.). The thickness of the insulating film was 150 nm.
- the dielectric constant was evaluated using an automatic mercury probe CV measuring apparatus SSM495 manufactured by Nippon SSM Co., Ltd.
- the breakdown voltage the voltage applied when a current of 1 ⁇ 10 ⁇ 2 A flows is defined as the breakdown voltage, and the electric field strength (the voltage (MV) applied when a current of 1 ⁇ 10 ⁇ 2 A flows) The value divided by), expressed in units of MV / cm).
- the leakage current is defined as a leakage current that flows when the electric field intensity is 1 MV / cm, and the current density (A) that flows when the electric field intensity is 1 MV / cm is the mercury electrode area of the automatic mercury probe CV measuring device (the value obtained by dividing the cm 2) unit:. shown in A / cm 2).
- Heat resistance was evaluated by a thermal decomposition temperature.
- the obtained insulating film was measured using a TG / DTA measuring device (Seiko Instruments Co., Ltd., TG / DTA220) under a nitrogen gas flow of 200 mL / min. Under a temperature rising rate of 10 ° C./min. The temperature at which the weight loss reached 5% was defined as the thermal decomposition temperature.
- the cap film was an SiO film (60 nm) formed by a CVD method, and the barrier metal was a combined 20 nm TaN film and Ta film formed by a PVD method. Then, the heat processing for 400 degreeC for 30 minutes were added, and the presence or absence of the copper hillock was confirmed.
- an insulating film formed using a film-forming composition is less susceptible to damage even when an etching process is performed, and has a film characteristic without causing an increase in dielectric constant of the insulating film. It will be maintained.
- a highly reliable semiconductor device including the insulating film can be provided. Therefore, it has industrial applicability.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
(1) 重合性の官能基を有する重合性化合物を含む膜形成用組成物であって、
前記重合性化合物は、分子内に、アダマンタン型のかご型構造を含む部分構造と、重合反応に寄与する重合性反応基とを有するものであり、
前記重合性反応基が、芳香環と、当該芳香環に直接結合するエチニル基またはビニル基とを有するものであり、
前記重合性化合物において、前記芳香環由来の炭素の数は、当該重合性化合物全体の炭素の数に対して、15%以上、38%以下であることを特徴とする膜形成用組成物。
(15) 誘電率が1.80以上2.30以下である上記(12)ないし(14)のいずれかに記載の絶縁膜。
(16) フッ素系ガスでエッチングした際のエッチングレートが、SiO膜の0.75倍以下である上記(12)ないし(15)のいずれかに記載の絶縁膜。
(17) 絶縁膜とSiCN膜とを用いて測定される、m-ELT法 (Modified-Edge Lift off Test)による密着力が、0.15MPa・m(1/2)以上0.35MPa・m(1/2)以下である上記(12)ないし(16)のいずれかに記載の絶縁膜。
<膜形成用組成物>
まず、本発明の膜形成用組成物について説明する。
なお、重合性反応基Bが有するエチニル基またはビニル基は、重合性化合物同士が重合する際の重合性基であり、同一の機能を発揮するものであることから、以下では、重合性反応基Bがエチニル基を有する場合を一例に説明する。
重合性化合物Xは、分子内に、アダマンタン型のかご型構造を含む部分構造Aと、重合反応に寄与する重合性反応基Bとを有するものである。
[1.1]部分構造A
重合性化合物Xが有する部分構造Aは、アダマンタン型のかご型構造を含むものである。これにより、膜形成用組成物を用いて形成される膜(絶縁膜)を、低密度のものとすることができ、形成される膜の誘電率を低いものとすることができる。また、後に詳述するような重合性反応基Bを備える重合性化合物Xの反応性を適切なものとすることができるため、膜を形成すべき部材(例えば、半導体基板)上への膜形成用組成物を付与するのに際し、当該膜形成用組成物の粘度を確実に好適なものとし、形成される膜の各部位での厚さや特性の不本意なばらつきを抑制することができるとともに、最終的に形成される膜の強度を優れたものとすることができる。さらに、膜形成用組成物を用いて形成される膜(絶縁膜)を、所定形状にパターニングするためのエッチング工程におけるエッチングレートを比較的低くすることができる。
重合性化合物Xは、上記のような部分構造Aに加え、重合反応に寄与する重合性反応基Bを有している。
また、重合性化合物Xのプレポリマーを得る工程は、例えば、触媒を用いないで加熱して反応させる熱重合による方法、過酸化ベンゾイル、t-ブチルパーオキシド、アゾビスイソブチロニトリル等のラジカル開始剤を用いたラジカル重合による方法、光照射等を用いた光ラジカル重合による方法、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ビス(ベンゾニトリル)パラジウム(II)ジクロリド及びテトラキス(トリフェニルホスフィン)パラジウム(0)などのパラジウム触媒を用いた重合による方法、酢酸銅(II)などの遷移金属触媒を用いた重合による方法、塩化モリブデン(V)、塩化タングステン(VI)及び塩化タンタル(V)などの遷移金属塩化物を用いた重合による方法などにより行うことができる。これらの中でも、反応を制御しやすく所望の重合体が得られ、また、金属触媒等の残存による不純物除去が不要なことから、熱重合やラジカル開始剤を用いたラジカル重合による方法が望ましい。
前記熱重合の方法で調製する場合、熱処理の条件としては、加熱温度:120~190℃、加熱時間:3~11時間であるのが好ましく、加熱温度:140~180℃、加熱時間:3~9時間であるのがより好ましい。ラジカル開始剤を使用する場合は、熱処理の条件としては、加熱温度:40~190℃、加熱時間:0.5~11時間であるのが好ましく、加熱温度:60~180℃、加熱時間:0.5~9時間がより好ましい。また、前記工程で得られた組成物(重合性化合物を含む組成物)に対する加熱処理は、異なる条件を組み合わせて行ってもよい。例えば、熱重合においては、前記工程で得られた組成物(重合性化合物を含む組成物)に対しては、加熱温度:150~190℃、加熱時間:1~6時間という条件で行う第1の熱処理と、加熱温度:120~160℃、加熱時間:2~9時間という条件で行う第2の熱処理、あるいは、さらに多段階の熱処理を施すことも適宜選択できる。ラジカル開始剤を使用する場合においても、例えば、加熱温度:60~190℃、加熱時間:0.5~6時間という条件で行う第1の熱処理と、加熱温度:40~160℃、加熱時間:0.5~9時間という条件で行う第2の熱処理、あるいは、さらに多段階の熱処理を施すことも適宜選択できる。なお、上記のような加熱処理は、前記工程で得られた組成物(重合性化合物を含む組成物)を溶媒に溶解した状態で行うのが好ましい。また、上記のような加熱処理によるプレポリマーの合成は、調製すべき膜形成用組成物の構成成分としての溶媒中で行うものであってもよいし、膜形成用組成物の構成成分とは異なる組成の溶媒中で行うものであってもよい。すなわち、所定の溶媒を用いて重合性化合物を重合させプレポリマーを得た後、当該溶媒を、目的とする膜形成用組成物の構成成分としての溶媒に置換してもよい。重合性化合物が部分的に重合した重合体(プレポリマー)の合成に用いることのできる溶媒(反応溶媒)としては、例えば、メタノール、エタノール、イソプロパノール、1-ブタノール、2-ブタノール等のアルコール系溶剤;アセトン、アセチルアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2-ペンタノン、2-ヘプタノン等のケトン系溶剤;酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶剤;ジイソプロピルエーテル、ジブチルエーテル、ジフェニルエーテル、テトラヒドロフラン、アニソール、1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、1,4-ジメトキシベンゼン等のエーテル系溶剤;ベンゼン、トルエン、メシチレン、エチルベンゼン、ジエチルベンゼン、プロピルベンゼン、ヘプタン、ヘキサン、n-オクタン等の芳香族および脂肪族炭化水素系溶剤;クロロメタン、ジクロロエタン、クロロホルム、ジクロロエタン、四塩化炭素等のハロゲン化物系溶剤;N-メチルピロリドン等のアミド系溶剤等が挙げられ、これらから選択される1種または2種以上を組み合わせて用いることができる。
膜形成用組成物は、上述したような重合性化合物X、さらに、重合性化合物Xが2つの重合性反応基Bを有し、および/または、重合性反応基Bが2つのエチニル基を有する場合、重合性化合物Xが部分的に重合した重合体(2つの重合性反応基Bのうち一方の重合性反応基Bのみが重合反応したプレポリマーや、重合性反応基Bが有する2つのエチニル基のうち一方のエチニル基のみが重合反応したプレポリマー)を含むものであればよいが、通常、これらを溶解する溶媒を含むものである。
膜形成用組成物は、上記以外の成分を含むものであってもよい。このような成分としては、例えば、界面活性剤;シランカップリンク剤等のカップリング剤;ラジカル開始剤、ジスルフィド類等の触媒等が挙げられる。
本発明の絶縁膜は、上述したような膜形成用組成物を用いて形成されるものである。
まず、シリコンウエハ上に、本発明の絶縁膜との密着力を求める膜(無機膜、有機膜、金属膜等)を、気相成膜法等により成膜し、膜付きウエハを準備する。本実施形態ではSiCN膜をシリコンウエハ上に50nm成膜した。続いてSiCN膜の上層に本発明の絶縁膜を成膜し、SiCN膜/絶縁膜付きウエハを得た。その後、絶縁膜上に低温残留応力が既知のエポキシ樹脂を塗布し、170℃のオーブンで1時間処理し、エポキシ樹脂を硬化する。室温まで冷却後、測定サンプルを約0.5インチ角に切り出し、FSM社製Laminar Series2にサンプルをセットする。その後、90℃まで昇温し、-3℃/minの速度で-170℃まで冷却する。なお、20℃から1℃ごとに画像を取り込む。
試料の剥離した温度から剥離時の界面の剥離エネルギーを算出する。
上記の例では、シリコンウエハ上に、SiCN膜、絶縁膜、エポキシ樹脂の順に積層しm-ELT法測定サンプルを準備した。この場合、SiCN膜の上部と、絶縁膜の下部との密着力を測定することが出来る。積層する順番を変更して、シリコンウエハ上に、絶縁膜、SiCN膜、エポキシ樹脂の順に積層することで絶縁膜の上部と、SiCN膜の下部との密着力を測定することができるが、本発明で規定する密着力の値を満たす結果を示すことで、以下に記載する効果を得ることが出来ることから、m-ELT法で測定に使用するサンプルの積層構造にはなんら限定されない。
このm-ELT法で求められた密着力が上記下限値以上であれば、半導体装置の積層構造の中で絶縁膜と隣接する他の膜、例えば、バリア膜やキャップ膜として使用されるSiCN膜、SiC膜、SiO膜、SiN膜、SiOC膜等との密着力が十分であるため、配線工程時の熱履歴によって、銅配線の表面にヒロックが生じることなく、最終的に得られる半導体装置を、絶縁不良等の問題が確実に防止された信頼性の高いものとすることができる。また、上記上限値以下であれば、線膨張率の異なる膜からなる界面に影響を与えることなく、適切な密着力であるため、配線工程を確実なものとすることができ、歩留まりや信頼性を特に高いものとすることができる。
次に、本発明の半導体装置について好適な実施の形態に基づいて説明する。
図2に示すように、半導体装置100は、素子が形成された半導体基板1と、半導体基板1の上側(図2上側)に設けられたSiCN膜2と、SiCN膜2の上に設けられた層間絶縁膜3およびバリアメタル層6で覆われた銅配線層(配線層)7を有している。本実施形態の半導体装置100は、本発明の絶縁膜として、層間絶縁膜3を備えている。
また、層間絶縁膜3の上側(SiCN膜2と反対側面)には、ハードマスク層4が形成されている。
まず、上記絶縁膜で説明した方法を用いて、層間絶縁膜3とハードマスク層4とで構成される絶縁膜の所定の位置に、貫通した配線溝が形成された所定形状をなす絶縁膜を形成する。
次に、本発明の他の好適な実施形態について説明する。以下の説明では、上述した実施形態との相違点を中心に説明し、同様の事項の説明の一部は省略した。
図3~図5は、半導体装置の製造方法の好適な実施形態を示す縦断面図である。なお、以下の説明では、図3~図5中の上側を「上」、下側を「下」と言う。
絶縁膜形成工程は、ケイ素含有膜2の表面に、上述したような方法により、膜形成用組成物を付与することにより、好適に行うことができる。なお、層間絶縁膜3は、予め、別途ドライフィルムとして用意した樹脂膜(絶縁膜)を、ケイ素含有膜2の上に積層するように形成することもできる。より具体的には、予め、膜形成用組成物を用いて、部材上に樹脂膜(絶縁膜)を形成して乾燥し、ドライフィルムを得、このドライフィルムを前記部材から剥離し、これを、ケイ素含有膜2の上に、積層して、加熱および/または放射線を照射することにより、層間絶縁膜3を形成してもよい。なお、ケイ素含有膜2は、当業者にバリア膜、エッチストッパー膜として公知の材料を用いればよいが、SiCNやSiCが好適に用いられるものである。
研磨工程は、CMP法(化学機械研磨法)により好適に行うことができる。
上述した本発明の半導体装置は、上記のような層間絶縁膜(本発明の絶縁膜)を用いているので、絶縁不良等の問題を生じにくく信頼性の高いものである。
[A1]重合性化合物の合成
(合成例A1)
まず、1,3-ジメチルアダマンタンを用意し、温度計、撹拌機および還流管を備えた4つ口の2000mLフラスコに、四塩化炭素:700mL、臭素:35g(0.22mol)を入れ、撹拌しながら、用意した1,3-ジメチルアダマンタン:32.9g(0.2mol)を、少量ずつ添加した。添加中、内温は20~30℃に保った。
その後、冷水:約2000mLに注いで、粗生成物を濾別し、純水で洗い、乾燥した。
MS(FD)(m/z):413(M+)
元素分析:理論値(/%)C;93.16、H;6.84、実測値(/%)C;93.11、H;6.82
ジメチルアダマンタンに代えて、テトラメチルビアダマンタン、ヘキサメチルトリアダマンタン、オクタメチルテトラアダマンタン、デカメチルペンタアダマンタン、ドデカメチルヘキサアダマンタンを用意したこと以外は、前記合成例A1と同様にして、重合性化合物Xを得た。
MS(FD)(m/z):574(M+)
元素分析:理論値(/%)C;91.93、H;8.07、実測値(/%)C;91.87、H;8.00
MS(FD)(m/z):737(M+)
元素分析:理論値(/%)C;91.25、H;8.75、実測値(/%)C;91.21、H;8.77
MS(FD)(m/z):899(M+)
元素分析:理論値(/%)C;90.81、H;9.19、実測値(/%)C;90.75、H;9.16
MS(FD)(m/z):1062(M+)
元素分析:理論値(/%)C;90.51、H;9.49、実測値(/%)C;90.49、H;9.47
MS(FD)(m/z):1223(M+)
元素分析:理論値(/%)C;90.28、H;9.72、実測値(/%)C;90.26、H;9.70
まず、Journal of Organic Chemistry.,39,2987-3003(1974)に記載の合成法に従って、4,9-ジブロモジアマンタンを合成した。IR分析によりブロモ基の吸収が690~515cm-1に見られること、質量分析による分子量が346である結果より、生成物が4,9-ジブロモジアマンタンであることが示された。
MS(FD)(m/z):436(M+)
元素分析:理論値(/%)C;93.54、H;6.46、実測値(/%)C;93.46、H;6.38
ジブロモジアマンタンに代えて、ジブロモジ(ジアマンタン)、ジブロモトリ(ジアマンタン)、ジブロモテトラ(ジアマンタン)、ジブロモペンタ(ジアマンタン)を用意したこと以外は前記合成例A7と同様にして、重合性化合物Xを得た。
MS(FD)(m/z):622(M+)
元素分析:理論値(/%)C;92.56、H;7.44、実測値(/%)C;92.53、H;7.41
MS(FD)(m/z):809(M+)
元素分析:理論値(/%)C;92.03、H;7.97、実測値(/%)C;92.01、H;7.94
MS(FD)(m/z):995(M+)
元素分析:理論値(/%)C;91.70、H;8.30、実測値(/%)C;91.67、H;8.28
MS(FD)(m/z):1181(M+)
元素分析:理論値(/%)C;91.47、H;8.53、実測値(/%)C;91.42、H;8.50
まず、温度計、攪拌器および還流管を備えた4つ口の2000mLフラスコに、3,5-ジメチル-1-ブロモアダマンタン:45.5g(187.1mmol)と1,3-ジブロモベンゼン:1217g(5161.6mmol)とを入れて攪拌し、乾燥窒素下25℃において、臭化アルミニウム(III):24.8g(93.0mmol)を少量ずつ添加した。これを60℃に昇温して8時間攪拌した後、室温に戻し、反応液を得た。
MS(FD)(m/z):288(M+)
元素分析:理論値(/%)C;91.61、H;8.39、実測値(/%)C;91.59、H;8.37
ジメチルブロモアダマンタンに代えて、テトラメチルブロモビアダマンタン、ヘキサメチルブロモトリアダマンタンを用意したこと以外は、前記合成例A12と同様にして、重合性化合物Xを得た。
MS(FD)(m/z):450(M+)
元素分析:理論値(/%)C;90.61、H;9.39、実測値(/%)C;90.59、H;9.36
MS(FD)(m/z):612(M+)
元素分析:理論値(/%)C;90.13、H;9.87、実測値(/%)C;90.10、H;9.86
まず、温度計、攪拌器および還流管を備えた4つ口の2000mLフラスコに、4-ブロモジアマンタン:50g(187.1mmol)と1,3-ジブロモベンゼン:1217g(5161.6mmol)とを入れて攪拌し、乾燥窒素下25℃において、臭化アルミニウム(III):24.8g(93.0mmol)を少量ずつ添加した。これを60℃に昇温して8時間攪拌した後、室温に戻し、反応液を得た。
MS(FD)(m/z):312(M+)
元素分析:理論値(/%)C;92.26、H;7.74、実測値(/%)C;92.12、H;7.70
ブロモジアマンタンに代えて、ブロモビ(ジアマンタン)、ブロモトリ(ジアマンタン)を用意したこと以外は前記合成例A15と同様にして、重合性化合物Xを得た。
MS(FD)(m/z):498(M+)
元素分析:理論値(/%)C;91.51、H;8.94、実測値(/%)C;91.49、H;8.46
MS(FD)(m/z):685(M+)
元素分析:理論値(/%)C;91.17、H;8.83、実測値(/%)C;91.15、H;8.80
5Lナスフラスコに、前記合成例A1で得られた3,5-ジメチル-1,7-ビス(3,5-ジエチニルフェニル)アダマンタン14.4g(34.9mmol)、キノリン67.4g(522mmol)、5%パラジウム-炭酸カルシウム0.37g(0.174mmol)、テトラヒドロフラン(1000mL)及び攪拌子を投入し、水素気流下、室温で攪拌を開始した。水素3.35L(139mmol)が消費された時点で、窒素を導入して反応を停止させた。反応液を濾過後、濾液を減圧留去し、得られた個体をシリカゲルカラムクロマトグラフィーにより精製することで、重合性化合物Xとしての3,5-ジメチル-1,7-ビス(3,5-ジビニルフェニル)アダマンタン18.1gを得た。
MS(FD)(m/z):420(M+)
元素分析:理論値(/%)C;91.37、H;8.63、実測値(/%)C;91.35、H;8.60
3,5-ジメチル-1,7-ビス(3,5-ジエチニルフェニル)アダマンタンに代えて、前記合成例A2~A11で得られた重合性化合物を用意した以外は、前記合成例A18と同様にして重合性化合物Xを得た。
MS(FD)(m/z):582(M+)
元素分析:理論値(/%)C;90.66、H;9.34、実測値(/%)C;90.63、H;9.31
MS(FD)(m/z):745(M+)
元素分析:理論値(/%)C;90.26、H;9.74、実測値(/%)C;90.24、H;9.70
MS(FD)(m/z):907(M+)
元素分析:理論値(/%)C;90.00、H;10.00、実測値(/%)C;89.96、H;9.97
MS(FD)(m/z):1069(M+)
元素分析:理論値(/%)C;89.82、H;10.18、実測値(/%)C;89.80、H;10.14
MS(FD)(m/z):1231(M+)
元素分析:理論値(/%)C;89.69、H;10.31、実測値(/%)C;89.66、H;10.29
MS(FD)(m/z):444(M+)
元素分析:理論値(/%)C;91.84、H;8.16、実測値(/%)C;91.81、H;8.13
上記式(6)n=2の重合性化合物X(合成例A25)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):630(M+)
元素分析:理論値(/%)C;91.37、H;8.63、実測値(/%)C;91.32、H;8.61
MS(FD)(m/z):817(M+)
元素分析:理論値(/%)C;91.12、H;8.88、実測値(/%)C;91.10、H;8.84
MS(FD)(m/z):1003(M+)
元素分析:理論値(/%)C;90.96、H;9.04、実測値(/%)C;90.93、H;9.01
MS(FD)(m/z):1189(M+)
元素分析:理論値(/%)C;90.85、H;9.15、実測値(/%)C;90.82、H;9.11
(実施例A1)
上記合成例A1で合成された重合性化合物としての3,5-ジメチル-1,7-ビス(3,5-ジエチニルフェニル)アダマンタン:5gを1,3-ジメトキシベンゼン:45gに溶解させ、乾燥窒素下170℃で3時間反応させ、反応液を一旦室温まで冷却した。GPCにより分子量測定を行ったところ、数平均分子量が46,000であった。
再び反応液を加熱し、150℃で6時間反応させ、反応液を、10倍の体積のメタノール/テトラヒドロフラン=3/1の混合溶媒に滴下して沈殿物を集めて乾燥し、2.8gのプレポリマーを得た(収率:56%)。得られたプレポリマー:2gを、シクロペンタノン:18gに溶解させ、フィルターでろ過することにより、有機絶縁膜用ワニスとしての膜形成用組成物とした。
重合性化合物として、合成例A2~A5で合成したものをそれぞれ用いた以外は、前記実施例A1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例A1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
重合性化合物として、合成例A6で合成したものを用いた以外は、前記実施例A1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例A1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
重合性化合物として、合成例A7~A10で合成したものをそれぞれ用いた以外は、前記実施例A1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例A1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
重合性化合物として、合成例A11で合成したものを用いた以外は、前記実施例A1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例A1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
重合性化合物として、合成例A12、A13で合成したものをそれぞれ用いた以外は、前記実施例A1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例A1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
重合性化合物として、合成例A14で合成したものを用いた以外は、前記実施例A1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例A1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
重合性化合物として、合成例A15、A16で合成したものをそれぞれ用いた以外は、前記実施例A1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例A1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
重合性化合物として、合成例A17で合成したものを用いた以外は、前記実施例A1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例A1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
重合性化合物として、合成例A18~A22で合成したものをそれぞれ用いた以外は、前記実施例A1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例A1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
重合性化合物として、合成例A23で合成したものを用いた以外は、前記実施例A1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例A1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
重合性化合物として、合成例A24~A27で合成したものをそれぞれ用いた以外は、前記実施例A1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例A1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
重合性化合物として、合成例A28で合成したものを用いた以外は、前記実施例A1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例A1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
前記各実施例および各比較例で得られた有機絶縁膜用ワニスとしての膜形成用組成物を用い、以下のようにして絶縁膜を形成した。
前記各実施例および各比較例にかかる絶縁膜(膜付き基板)のリアクティブイオンエッチングを施す前後について、誘電率、破壊電圧、リーク電流および耐熱性のそれぞれの特性を、下記の評価方法により評価するとともに、リアクティブイオンエッチングを施す際の絶縁膜のエッチングレートを下記の方法により測定した。
誘電率は、日本エス・エス・エム(株)製、自動水銀プローブCV測定装置SSM495を用いて評価した。なお、誘電率の変化率は、((エッチング後の値)-(エッチング前の値)/(エッチング前の値))×100の計算式で求めた。
破壊電圧、リーク電流は、誘電率と同様に、日本エス・エス・エム(株)製、自動水銀プローブCV測定装置SSM495を用いて評価した。
耐熱性は、熱分解温度で評価した。得られた絶縁膜をTG/DTA測定装置(セイコーインスツルメンツ(株)製、TG/DTA220)を用いて、窒素ガス200mL/min.フロー下、昇温速度10℃/min.の条件により測定し、重量の減少が5%に到達した温度を、熱分解温度とした。耐熱性の変化率は、破壊電圧の変化率と同様に、((エッチング前の値)-(エッチング後の値)/(エッチング前の値))×100の計算式で求めた。
上記[A3]に記載した絶縁膜の形成に従って、各実施例および各比較例について、直径76mmのシリコンウエハ上に絶縁膜を形成し、それぞれ、リアクティブイオンエッチング法を用いて絶縁膜をエッチングした。そして、エッチング前後の膜厚変化率をn&k Technology,Inc.製、n&k Analyzer 1500を用いて測定した。測定ポイントは、中心座標を(0,0)、オリフラ部座標を(0,-38)とし、座標(-38,0)から座標(38,0)の直線座標を等間隔で9ポイントとした。9ポイントの膜厚平均値のエッチング前後での変化率を、リアクティブイオンエッチング処理時間で除した数値をエッチングレートとした。
[B1]重合性化合物の合成
(合成例B1)
まず、1,3-ジメチルアダマンタンを用意し、温度計、撹拌機および還流管を備えた4つ口の2000mLフラスコに、四塩化炭素:700mL、臭素:35g(0.22mol)を入れ、撹拌しながら、用意した1,3-ジメチルアダマンタン:32.9g(0.2mol)を、少量ずつ添加した。添加中、内温は20~30℃に保った。
その後、冷水:約2000mLに注いで、粗生成物を濾別し、純水で洗い、乾燥した。
MS(FD)(m/z):413(M+)
元素分析:理論値(/%)C;93.16、H;6.84、実測値(/%)C;93.11、H;6.82
ジメチルアダマンタンに代えて、テトラメチルビアダマンタン、ヘキサメチルトリアダマンタン、オクタメチルテトラアダマンタン、デカメチルペンタアダマンタンを用意したこと以外は、前記合成例B1と同様にして、重合性化合物Xを得た。
MS(FD)(m/z):574(M+)
元素分析:理論値(/%)C;91.93、H;8.07、実測値(/%)C;91.87、H;8.00
MS(FD)(m/z):737(M+)
元素分析:理論値(/%)C;91.25、H;8.75、実測値(/%)C;91.21、H;8.77
MS(FD)(m/z):899(M+)
元素分析:理論値(/%)C;90.81、H;9.19、実測値(/%)C;90.75、H;9.16
MS(FD)(m/z):1062(M+)
元素分析:理論値(/%)C;90.51、H;9.49、実測値(/%)C;90.49、H;9.47
まず、Journal of Organic Chemistry.,39,2987-3003(1974)に記載の合成法に従って、4,9-ジブロモジアマンタンを合成した。IR分析によりブロモ基の吸収が690~515cm-1に見られること、質量分析による分子量が346である結果より、生成物が4,9-ジブロモジアマンタンであることが示された。
MS(FD)(m/z):436(M+)
元素分析:理論値(/%)C;93.54、H;6.46、実測値(/%)C;93.46、H;6.38
ジブロモジアマンタンに代えて、ジブロモジ(ジアマンタン)、ジブロモトリ(ジアマンタン)、ジブロモテトラ(ジアマンタン)を用意したこと以外は前記合成例B6と同様にして、重合性化合物Xを得た。
MS(FD)(m/z):622(M+)
元素分析:理論値(/%)C;92.56、H;7.44、実測値(/%)C;92.53、H;7.41
MS(FD)(m/z):809(M+)
元素分析:理論値(/%)C;92.03、H;7.97、実測値(/%)C;92.01、H;7.94
MS(FD)(m/z):995(M+)
元素分析:理論値(/%)C;91.70、H;8.30、実測値(/%)C;91.67、H;8.28
まず、温度計、攪拌器および還流管を備えた4つ口の2000mLフラスコに、3,5-ジメチル-1-ブロモアダマンタン:45.5g(187.1mmol)と1,3-ジブロモベンゼン:1217g(5161.6mmol)とを入れて攪拌し、乾燥窒素下25℃において、臭化アルミニウム(III):24.8g(93.0mmol)を少量ずつ添加した。これを60℃に昇温して8時間攪拌した後、室温に戻し、反応液を得た。
MS(FD)(m/z):288(M+)
元素分析:理論値(/%)C;91.61、H;8.39、実測値(/%)C;91.59、H;8.37
ジメチルブロモアダマンタンに代えて、テトラメチルブロモビアダマンタンを用意したこと以外は、前記合成例B10と同様にして、重合性化合物Xを得た。
MS(FD)(m/z):450(M+)
元素分析:理論値(/%)C;90.61、H;9.39、実測値(/%)C;90.59、H;9.36
まず、温度計、攪拌器および還流管を備えた4つ口の2000mLフラスコに、4-ブロモジアマンタン:50g(187.1mmol)と1,3-ジブロモベンゼン:1217g(5161.6mmol)とを入れて攪拌し、乾燥窒素下25℃において、臭化アルミニウム(III):24.8g(93.0mmol)を少量ずつ添加した。これを60℃に昇温して8時間攪拌した後、室温に戻し、反応液を得た。
MS(FD)(m/z):312(M+)
元素分析:理論値(/%)C;92.26、H;7.74、実測値(/%)C;92.12、H;7.70
ブロモジアマンタンに代えて、ブロモビ(ジアマンタン)を用意したこと以外は前記合成例B12と同様にして、重合性化合物Xを得た。
MS(FD)(m/z):498(M+)
元素分析:理論値(/%)C;91.51、H;8.94、実測値(/%)C;91.49、H;8.46
5Lナスフラスコに、前記合成例B1で得られた3,5-ジメチル-1,7-ビス(3,5-ジエチニルフェニル)アダマンタン14.4g(34.9mmol)、キノリン67.4g(522mmol)、5%パラジウム-炭酸カルシウム0.37g(0.174mmol)、テトラヒドロフラン(1000mL)及び攪拌子を投入し、水素気流下、室温で攪拌を開始した。水素3.35L(139mmol)が消費された時点で、窒素を導入して反応を停止させた。反応液を濾過後、濾液を減圧留去し、得られた個体をシリカゲルカラムクロマトグラフィーにより精製することで、重合性化合物Xとしての3,5-ジメチル-1,7-ビス(3,5-ジビニルフェニル)アダマンタン18.1gを得た。
MS(FD)(m/z):420(M+)
元素分析:理論値(/%)C;91.37、H;8.63、実測値(/%)C;91.35、H;8.60
3,5-ジメチル-1,7-ビス(3,5-ジエチニルフェニル)アダマンタンに代えて、前記合成例B2~B9で得られた重合性化合物を用意した以外は、前記合成例B14と同様にして重合性化合物Xを得た。
MS(FD)(m/z):582(M+)
元素分析:理論値(/%)C;90.66、H;9.34、実測値(/%)C;90.63、H;9.31
MS(FD)(m/z):745(M+)
元素分析:理論値(/%)C;90.26、H;9.74、実測値(/%)C;90.24、H;9.70
MS(FD)(m/z):907(M+)
元素分析:理論値(/%)C;90.00、H;10.00、実測値(/%)C;89.96、H;9.97
MS(FD)(m/z):1069(M+)
元素分析:理論値(/%)C;89.82、H;10.18、実測値(/%)C;89.80、H;10.14
MS(FD)(m/z):444(M+)
元素分析:理論値(/%)C;91.84、H;8.16、実測値(/%)C;91.81、H;8.13
MS(FD)(m/z):630(M+)
元素分析:理論値(/%)C;91.37、H;8.63、実測値(/%)C;91.32、H;8.61
MS(FD)(m/z):817(M+)
元素分析:理論値(/%)C;91.12、H;8.88、実測値(/%)C;91.10、H;8.84
MS(FD)(m/z):1003(M+)
元素分析:理論値(/%)C;90.96、H;9.04、実測値(/%)C;90.93、H;9.01
ブロモジアマンタンに代えて、ブロモトリ(ジアマンタン)を用意したこと以外は、前記合成例B12と同様に反応を行い、生成物を得た。
MS(FD)(m/z):684(M+)
元素分析:理論値(/%)C;91.17、H;8.83、実測値(/%)C;91.14、H;8.86
(調製例B1)
上記合成例B1で合成された重合性化合物としての3,5-ジメチル-1,7-ビス(3,5-ジエチニルフェニル)アダマンタン:5gを1,3-ジメトキシベンゼン:45gに溶解させ、乾燥窒素下170℃で3時間反応させ、反応液を一旦室温まで冷却した。GPCにより分子量測定を行ったところ、数平均分子量が46,000であった。再び反応液を加熱し、150℃で6時間反応させ、反応液を、10倍の体積のメタノール/テトラヒドロフラン=3/1の混合溶媒に滴下して沈殿物を集めて乾燥し、2.8gのプレポリマーを得た(収率:56%)。得られたプレポリマー:2gを、シクロペンタノン:18gに溶解させ、フィルターでろ過することにより、有機絶縁膜用ワニスとしての膜形成用組成物とした。
重合性化合物として、合成例B2~B23で合成したものをそれぞれ用いた以外は、前記調製例B1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記調製例B1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
以下のようにして、各実施例および比較例について、それぞれ、複数枚の絶縁膜付き基板を作成した。
それぞれ、前記各調製例B1~B22で得られた有機絶縁膜用ワニスとしての膜形成用組成物を用い、以下のようにして絶縁膜を形成した。
膜形成用組成物として、前記調製例B23で得られたものを用いた以外は、前記実施例と同様にして絶縁膜付き基板を得た。
[B4.1]エッチングレート比
上記[B3]で作製した前記各実施例および比較例の絶縁膜付き基板の絶縁膜について、それぞれ、フッ素系ガスを用いたリアクティブイオンエッチング法によりエッチング処理を施した。そして、エッチング前後の膜厚変化率をn&k Technology,Inc.製、n&k Analyzer 1500を用いて測定した。測定ポイントは、中心座標を(0,0)、オリフラ部座標を(0,-38)とし、座標(-38,0)から座標(38,0)の直線座標を等間隔で9ポイントとした。9ポイントの膜厚平均値のエッチング前後での変化率を、リアクティブイオンエッチング処理時間で除した数値をエッチングレート(V1[nm/分])とした。
誘電率は、日本エス・エス・エム(株)製、自動水銀プローブCV測定装置SSM495を用いて評価した。
破壊電圧、リーク電流は、誘電率と同様に、日本エス・エス・エム(株)製、自動水銀プローブCV測定装置SSM495を用いて評価した。
耐熱性は、熱分解温度で評価した。得られた絶縁膜をTG/DTA測定装置(セイコーインスツルメンツ(株)製、TG/DTA220)を用いて、窒素ガス200mL/min.フロー下、昇温速度10℃/min.の条件により測定し、重量の減少が5%に到達した温度を、熱分解温度とした。
上記[B3]で作製した前記各実施例および比較例の絶縁膜付き基板の絶縁膜上に、キャップ層として、膜厚が50nmになるように、気相成膜法でSiO膜を形成した。ついでキャップ層の表面にレジスト膜を形成し、フォトマスクを用いてレジスト膜に露光・現像処理を施し、レジスト膜の配線溝を形成する位置に対応する位置に開口部(溝部)を形成した。ついでレジスト膜をマスクとして、キャップ層であるSiO膜を、それぞれ、CF4とアルゴンの混合ガスを用いたリアクティブイオンエッチング法によりエッチング処理を施し、130nmのキャップ層開口部(溝部)を形成した。なお、このリアクティブイオンエッチングは、アネルバ株式会社製、L-201D-Lを用いて、周波数13.56MHz、圧力20Pa、出力1000W、流量(CF4:200sccm、アルゴン:400sccm)で行った。また、キャップ層が完全に開口されるように処理時間を調整した。
これらの結果を、表6に示した。
[C1]重合性化合物の合成
(合成例C1)
まず、1,3-ジメチルアダマンタンを用意し、温度計、撹拌機および還流管を備えた4つ口の2000mLフラスコに、四塩化炭素:700mL、臭素:35g(0.22mol)を入れ、撹拌しながら、用意した1,3-ジメチルアダマンタン:32.9g(0.2mol)を、少量ずつ添加した。添加中、内温は20~30℃に保った。添加終了後、温度が上昇しなくなってから、さらに1時間反応させた。その後、冷水:約2000mLに注いで、粗生成物を濾別し、純水で洗い、乾燥した。さらに粗生成物を、熱エタノールにより再結晶した。得られた再結晶物を、減圧乾燥することにより、生成物:37.4gを得た。IR分析によりブロモ基の吸収が690~515cm-1に見られること、質量分析による分子量が322である結果より、生成物が3,5-ジメチル-1,7-ジブロモアダマンタンであることが示された。
次に、フラスコ内で、上記で得た3,5-ジメチル-1,7-ジブロモアダマンタン:33.2g(103.2mmol)および1,3-ジブロモベンゼン:1217g(5161.6mmol)を攪拌し、乾燥窒素下25℃において、臭化アルミニウム(III):24.8g(93.0mmol)を少量ずつ添加した。これを60℃に昇温して8時間攪拌した後、室温に戻し、反応液を得た。5%塩酸水溶液:700mlに、反応液を投入し、攪拌した。水層を除去し、有機層をアセトン:2000mlに投入した。析出物をろ過し、アセトン:1000mlで3回洗浄することにより、3,5-ジメチル-1,7-ビス(3,5-ジブロモフェニル)アダマンタン:57gを得た。質量分析による分子量が632である結果より、生成物が3,5-ジメチル-1,7-ビス(3,5-ジブロモフェニル)アダマンタンであることが示された。
次に、上記で得られた3,5,-ジメチル-1,7-ビス(3,5-ジブロモフェニル)アダマンタン:39.8g(62.9mmol)、ジクロロビストリフェニルホスフィンパラジウム:3.53g(5.0mmol)、トリフェニルホスフィン:6.60g(25.2mmol)、ヨウ化銅(II):4.79g(25.2mmol)、トリエチルアミン:750mlをフラスコに添加し、攪拌した。これを75℃に昇温した後、トリメチルシリルアセチレン:37.1g(377.7mmol)をゆっくり添加した。これを75℃において7時間攪拌した後、120℃に昇温してトリエチルアミンを留去した。その後、室温に戻し、ジクロロメタン:1000mlを反応液に添加し、20分攪拌した。析出物をろ過により除去し、ろ液に5%塩酸水溶液:1000mlを加えて分液した。有機層を水:1000mlで3回洗浄した後、有機層の溶媒を減圧除去した。得られた化合物をヘキサン:1500mlに溶解させた。不溶物をろ過により除去し、ろ液部のヘキサンを減圧除去した。これにアセトン:1000mlを投入し、析出物をアセトンで3回洗浄することにより、3,5-ジメチル-1,7-ビス(3,5-ジトリメチルシリルエチニルフェニル)アダマンタン:36.1gを得た。質量分析による分子量が701である結果より、生成物が3,5-ジメチル-1,7-ビス(3,5-ジトリメチルシリルエチニルフェニル)アダマンタンであることが示された。
さらに、上記で得られた3,5-ジメチル-1,7-ビス(3,5-ジトリメチルシリルエチニルフェニル)アダマンタン:32.3g(46.1mmol)と炭酸カリウム:1.46g(10.6mmol)とを、テトラヒドロフラン:600mlとメタノール:300mlとの混合溶媒中において、窒素雰囲気下、室温で4時間攪拌させた。これを10%塩酸水溶液:1000mlに投入して、析出物をろ過し、得られた析出物を水:1000mlで洗浄、さらにアセトン:1000mlで洗浄したのち乾燥させることにより、重合性化合物Xとしての3,5-ジメチル-1,7-ビス(3,5-ジエチニルフェニル)アダマンタン:15.0gを得た。
以下に、生成物の外観、質量分析および元素分析の結果を示す。これらのデータは、上記で得られた化合物が3,5-ジメチル-1,7-ビス(3,5-ジエチニルフェニル)アダマンタンであることを示している。
外観:白色固体
MS(FD)(m/z):413(M+)
元素分析:理論値(/%)C;93.16、H;6.84、実測値(/%)C;93.11、H;6.82
ジメチルアダマンタンに代えて、テトラメチルビアダマンタン、ヘキサメチルトリアダマンタン、オクタメチルテトラアダマンタン、デカメチルペンタアダマンタン、を用意したこと以外は、前記合成例C1と同様にして、重合性化合物Xを得た。
なお、合成例C1~C5で得られた重合性化合物Xの構造式を下記式(1)に示す。下式(1)中、nは1~5の整数を表し、nの数は各合成例の番号(数字)に対応する。
外観:白色固体
MS(FD)(m/z):574(M+)
元素分析:理論値(/%)C;91.93、H;8.07、実測値(/%)C;91.87、H;8.00
また、上記式(1)n=3の重合性化合物X(合成例C3)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):737(M+)
元素分析:理論値(/%)C;91.25、H;8.75、実測値(/%)C;91.21、H;8.77
上記式(1)n=4の重合性化合物X(合成例C4)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):899(M+)
元素分析:理論値(/%)C;90.81、H;9.19、実測値(/%)C;90.75、H;9.16
上記式(1)n=5の重合性化合物X(合成例C5)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):1062(M+)
元素分析:理論値(/%)C;90.51、H;9.49、実測値(/%)C;90.49、H;9.47
(合成例C6)
まず、Journal of Organic Chemistry.,39,2987-3003(1974)に記載の合成法に従って、4,9-ジブロモジアマンタンを合成した。IR分析によりブロモ基の吸収が690~515cm-1に見られること、質量分析による分子量が346である結果より、生成物が4,9-ジブロモジアマンタンであることが示された。
次に、合成例C1での合成中間体としての3,5-ジメチル-1,7-ビス(3,5-ジブロモフェニル)アダマンタンの合成において、3,5-ジメチル-1,7-ジブロモアダマンタンに代えて4,9-ジブロモジアマンタン:35.7g(103.1mmol)を用いた以外は、前記合成例C1と同様な方法で反応させることにより、4,9-ビス(3,5-ジブロモフェニル)ジアマンタン:56gを得た。質量分析による分子量が656である結果より、生成物が4,9-ビス(3,5-ジブロモフェニル)ジアマンタンであることが示された。
次に、合成例C1での3,5,-ジメチル-1,7-ビス(3,5-ジブロモフェニル)アダマンタンに代えて、上記で得られた4,9-ビス(3,5-ジブロモフェニル)ジアマンタンを使用し、同様の手順で4,9-ビス(3,5-ジエチニルフェニル)ジアマンタンを得た。
以下に、生成物の外観、質量分析および元素分析の結果を示す。これらのデータは、上記で得られた化合物が4,9-ビス(3,5-ジエチニルフェニル)ジアマンタンであることを示している。
外観:白色固体
MS(FD)(m/z):436(M+)
元素分析:理論値(/%)C;93.54、H;6.46、実測値(/%)C;93.46、H;6.38
ジブロモジアマンタンに代えて、ジブロモジ(ジアマンタン)、ジブロモトリ(ジアマンタン)、ジブロモテトラ(ジアマンタン)を用意したこと以外は前記合成例C6と同様にして、重合性化合物Xを得た。
なお、合成例C6~C9で得られた重合性化合物Xの構造式を下記式(4)に示す。下記式(4)中、nは1~4の整数を表し、nの数は(各合成例の番号-5)に対応する。
外観:白色固体
MS(FD)(m/z):622(M+)
元素分析:理論値(/%)C;92.56、H;7.44、実測値(/%)C;92.53、H;7.41
また、上記式(4)n=3の重合性化合物X(合成例C8)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):809(M+)
元素分析:理論値(/%)C;92.03、H;7.97、実測値(/%)C;92.01、H;7.94
上記式(4)n=4の重合性化合物X(合成例C9)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):995(M+)
元素分析:理論値(/%)C;91.70、H;8.30、実測値(/%)C;91.67、H;8.28
5Lナスフラスコに、前記合成例C1で得られた3,5-ジメチル-1,7-ビス(3,5-ジエチニルフェニル)アダマンタン14.4g(34.9mmol)、キノリン67.4g(522mmol)、5%パラジウム-炭酸カルシウム0.37g(0.174mmol)、テトラヒドロフラン(1000mL)及び攪拌子を投入し、水素気流下、室温で攪拌を開始した。水素3.35L(139mmol)が消費された時点で、窒素を導入して反応を停止させた。反応液を濾過後、濾液を減圧留去し、得られた個体をシリカゲルカラムクロマトグラフィーにより精製することで、重合性化合物Xとしての3,5-ジメチル-1,7-ビス(3,5-ジビニルフェニル)アダマンタン18.1gを得た。
以下に、生成物の外観、質量分析および元素分析の結果を示す。これらのデータは、上記で得られた化合物が3,5-ジメチル-1,7-ビス(3,5-ジビニルフェニル)アダマンタンであることを示している。
外観:白色固体
MS(FD)(m/z):420(M+)
元素分析:理論値(/%)C;91.37、H;8.63、実測値(/%)C;91.35、H;8.60
3,5-ジメチル-1,7-ビス(3,5-ジエチニルフェニル)アダマンタンに代えて、前記合成例C2~C9で得られた重合性化合物を用意した以外は、前記合成例C10と同様にして重合性化合物Xを得た。
なお、合成例C10~C14で得られた重合性化合物Xの構造式を下記式(5)に、合成例C15~C18で得られた重合性化合物Xの構造式を下記式(6)に示す。また、式(5)中、nは1~5の整数を表し、nの数は(各合成例の番号-9)に対応し、式(6)中、nは1~4の整数を表し、nの数は(各合成例の番号-14)に対応する。
外観:白色固体
MS(FD)(m/z):582(M+)
元素分析:理論値(/%)C;90.66、H;9.34、実測値(/%)C;90.63、H;9.31
また、上記式(5)n=3の重合性化合物X(合成例C12)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):745(M+)
元素分析:理論値(/%)C;90.26、H;9.74、実測値(/%)C;90.24、H;9.70
上記式(5)n=4の重合性化合物X(合成例C13)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):907(M+)
元素分析:理論値(/%)C;90.00、H;10.00、実測値(/%)C;89.96、H;9.97
上記式(5)n=5の重合性化合物X(合成例C14)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):1069(M+)
元素分析:理論値(/%)C;89.82、H;10.18、実測値(/%)C;89.80、H;10.14
上記式(6)n=1の重合性化合物X(合成例C15)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):444(M+)
元素分析:理論値(/%)C;91.84、H;8.16、実測値(/%)C;91.81、H;8.13
上記式(6)n=2の重合性化合物X(合成例C16)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):630(M+)
元素分析:理論値(/%)C;91.37、H;8.63、実測値(/%)C;91.32、H;8.61
上記式(6)n=3の重合性化合物X(合成例C17)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):817(M+)
元素分析:理論値(/%)C;91.12、H;8.88、実測値(/%)C;91.10、H;8.84
上記式(6)n=4の重合性化合物X(合成例C18)の外観、質量分析、及び元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):1003(M+)
元素分析:理論値(/%)C;90.96、H;9.04、実測値(/%)C;90.93、H;9.01
ジアマンタンに代えて、ドデカメチルヘキサアダマンタンを用意したこと以外は、Macromolecules.,5266(1991)に記載の合成法に従って、重合性化合物Xを得た。
得られた生成物の外観、質量分析および元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):1023(M+)
元素分析:理論値(/%)C;89.17、H;10.83、実測値(/%)C;89.15、H;10.80
これらのデータは、上記で得られた化合物が式(7)で表される化合物であることを示している。
ジアマンタンに代えて、ヘキサ(ジアマンタン)を用意したこと以外は、Macromolecules.,5266(1991)に記載の合成法に従って、重合性化合物Xを得た。
得られた生成物の外観、質量分析および元素分析の結果を示す。
外観:白色固体
MS(FD)(m/z):1167(M+)
元素分析:理論値(/%)C;90.51、H;9.49、実測値(/%)C;90.49、H;9.47
これらのデータは、上記で得られた化合物が式(8)で表される化合物であることを示している。
(実施例C1)
上記合成例C1で合成された重合性化合物としての3,5-ジメチル-1,7-ビス(3,5-ジエチニルフェニル)アダマンタン:5gを1,3-ジメトキシベンゼン:45gに溶解させ、乾燥窒素下170℃で3時間反応させ、反応液を一旦室温まで冷却した。GPCにより分子量測定を行ったところ、数平均分子量が46,000であった。再び反応液を加熱し、150℃で6時間反応させ、反応液を、10倍の体積のメタノール/テトラヒドロフラン=3/1の混合溶媒に滴下して沈殿物を集めて乾燥し、2.8gのプレポリマーを得た(収率:56%)。得られたプレポリマー:2gを、シクロペンタノン:18gに溶解させ、フィルターでろ過することにより、有機絶縁膜用ワニスとしての膜形成用組成物とした。
重合性化合物として、合成例C2~C18で合成したものをそれぞれ用いた以外は、前記実施例C1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例C1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
重合性化合物として、合成例C19、C20で合成したものを用いた以外は、前記実施例C1と同様にして重合反応を行い、プレポリマーを得、さらに、当該プレポリマー:2gを用いて、前記実施例C1で述べたのと同様の処理を施すことにより有機絶縁膜用ワニスとしての膜形成用組成物を得た。
なお、各実施例および各比較例における膜形成用組成物に含まれる重合性化合物について、それぞれ、芳香環由来の炭素数、重合性反応基由来の炭素数、部分構造由来の炭素数および芳香環由来の炭素の割合を表7に示した。
前記各実施例および各比較例で得られた有機絶縁膜用ワニスとしての膜形成用組成物を用い、以下のようにして絶縁膜を形成した。
まず、誘電率、破壊電圧、リーク電流、耐熱性評価用に、有機絶縁膜用ワニスとしての膜形成用組成物を、スピンコーターにより、シリコンウエハ上に塗布した。この際、熱処理後の絶縁膜の厚さが、それぞれの評価法に対応する膜厚となるように、スピンコーターの回転数と時間を設定した。次に、上記のようにして塗膜が設けられたシリコンウエハを、200℃のホットプレート上に1分間置き、塗膜中に含まれる溶媒(シクロペンタノン)を除去した。
m-ELT、テープテスト評価用には、シリコンウエハ上に気相成膜法によってSiCN膜を50nm成膜したSiCN膜付きウエハを使用する以外は、上記の、誘電率、破壊電圧、リーク電流、耐熱性評価用と同様に、塗布、溶媒の除去を行った。
その後、それぞれの乾燥した塗膜について、m-ELT、テープテストおよび耐熱性は表7に示す条件でオーブン中で窒素雰囲気下30分間の熱処理(焼成処理)を施すことにより、塗膜を構成するプレポリマーを硬化させ、絶縁膜を形成し、膜付き基板(絶縁膜付き基板)を得た。誘電率、破壊電圧、リーク電流は400℃オーブン中で窒素雰囲気下30分間の熱処理(焼成処理)を施すことにより、塗膜を構成するプレポリマーを硬化させ、絶縁膜を形成し、膜付き基板(絶縁膜付き基板)を得た。耐ヒロック性の評価方法は[C5]に記載した。
[C4.1]誘電率
誘電率は、日本エス・エス・エム(株)製、自動水銀プローブCV測定装置SSM495を用いて評価した。
絶縁膜の膜厚は100nmとした。
上記[C3]で作製した各実施例および各比較例にかかる膜付き基板について、m-ELTは、FSM(Frontier Semiconductor,Inc)社製、Laminar Series2を用いて評価した。
絶縁膜の膜厚は150nmとした。
上記[C3]で作製した各実施例および各比較例にかかる膜付き基板について、JIS K 5600-5-6 付着性(クロスカット法)に従い、テープテストにより密着性を評価した。すなわち、カッターナイフで、絶縁膜に1mm角の正方形の升目を100個作り、その上にセロテープ(登録商標)を張った。1分後、基板を抑えてセロテープを剥がし、基板から樹脂膜がいくつ剥がれるかを数えた。絶縁膜の膜厚は100nmとした。
誘電率と同様に、日本エス・エス・エム(株)製、自動水銀プローブCV測定装置SSM495を用いて評価した。
破壊電圧は、1×10-2Aの電流が流れた時に印加した電圧を破壊電圧とし、電界強度(1×10-2Aの電流が流れた時に印加した電圧(MV)を膜厚(cm)で除した値。単位:MV/cm)で示した。
リーク電流は、1MV/cmの電界強度の時に流れる電流値をリーク電流とし、電流密度(1MV/cmの電界強度の時に流れる電流値(A)を、自動水銀プローブCV測定装置の水銀電極面積(cm2)で除した値。単位:A/cm2)で示した。
耐熱性は、熱分解温度で評価した。得られた絶縁膜をTG/DTA測定装置(セイコーインスツルメンツ(株)製、TG/DTA220)を用いて、窒素ガス200mL/min.フロー下、昇温速度10℃/min.の条件により測定し、重量の減少が5%に到達した温度を、熱分解温度とした。
前述の半導体装置の製造方法についての説明(図3~図5参照)で記述した手順に従い、ハーフピッチ65nmの二層配線を作製した。この際、半導体基板としてはシリコン基板を使用し、バリア絶縁膜としては、CVD法によりSiCN膜(30nm)を形成し、膜形成用組成物としては、上記[C2]で調製した各膜形成用組成物を用い、上記[C3]で述べたものと同様の方法により、膜厚100nmの層間絶縁膜とした。キャップ膜はCVD法により成膜したSiO膜(60nm)を、バリアメタルはPVD法により成膜したTaN膜及びTa膜を併せて20nmとした。その後、400℃30分の加熱処理を加え、銅ヒロックの有無を確認した。
これに対して、各比較例では、従来のテープテストでは密着性が問題ないにもかかわらず、m-ELT法による密着力が弱く、ヒロックが発生していることが顕著に認められた。
Claims (18)
- 重合性の官能基を有する重合性化合物を含む膜形成用組成物であって、
前記重合性化合物は、分子内に、アダマンタン型のかご型構造を含む部分構造と、重合反応に寄与する重合性反応基とを有するものであり、
前記重合性反応基が、芳香環と、当該芳香環に直接結合するエチニル基またはビニル基とを有するものであり、
前記重合性化合物において、前記芳香環由来の炭素の数は、当該重合性化合物全体の炭素の数に対して、15%以上、38%以下であることを特徴とする膜形成用組成物。 - 前記重合性反応基を2つ有し、前記部分構造を中心に、当該重合性反応基が対称的に結合した構造をなしているものである請求項1に記載の膜形成用組成物。
- 前記芳香環は、前記かご型構造に直接結合したものである請求項1または2に記載の膜形成用組成物。
- 前記重合性反応基は、2つのエチニル基またはビニル基を有し、一方の前記エチニル基または前記ビニル基は、他方の前記エチニル基または前記ビニル基のメタ位に存在するものである請求項1ないし3のいずれかに記載の膜形成用組成物。
- 2つの前記エチニル基または前記ビニル基は、いずれも、前記芳香環が前記かご型構造に結合する部位のメタ位に存在するものである請求項4に記載の膜形成用組成物。
- さらに、前記重合性化合物が部分的に重合した重合体を含む請求項4または5に記載の膜形成用組成物。
- 前記部分構造は、アダマンタン構造を有するものである請求項1ないし6のいずれかに記載の膜形成用組成物。
- 前記アダマンタン構造は、置換基としてメチル基を有するものである請求項7に記載の膜形成用組成物。
- 前記部分構造は、ジアマンタン構造を有するものである請求項1ないし6のいずれかに記載の膜形成用組成物。
- 膜形成に際して熱分解することにより、膜中に空孔を形成する機能を有する空孔形成材を含まない請求項1ないし10のいずれかに記載の膜形成用組成物。
- 請求項1ないし11のいずれかに記載の膜形成用組成物を用いて形成されたことを特徴とする絶縁膜。
- 処理ガスとして窒素と水素の混合ガス、またはアンモニアガスを用いたリアクティブイオンエッチング法によりエッチングされた、エッチング面における誘電率の変化率が10%以下である請求項12に記載の絶縁膜。
- 窒素と水素の混合ガス、またはアンモニアガスを用いたリアクティブイオンエッチング法により、エッチングする際のエッチングレートが10Å/秒以上、90Å/秒以下である請求項12または13に記載の絶縁膜。
- 誘電率が1.80以上2.30以下である請求項12ないし14のいずれかに記載の絶縁膜。
- フッ素系ガスでエッチングした際のエッチングレートが、SiO膜の0.75倍以下である請求項12ないし15のいずれかに記載の絶縁膜。
- 絶縁膜とSiCN膜とを用いて測定される、m-ELT法 (Modified-Edge Lift off Test)による密着力が、0.15MPa・m(1/2)以上0.35MPa・m(1/2)以下である請求項12ないし16のいずれかに記載の絶縁膜。
- 請求項12ないし17のいずれかに記載の絶縁膜を備えたことを特徴とする半導体装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10802148A EP2457932A1 (en) | 2009-07-21 | 2010-06-25 | Composition for film formation, insulating film, and semiconductor device |
US13/386,286 US20120142879A1 (en) | 2009-07-21 | 2010-06-25 | Composition for film formation, insulating film and semiconductor device |
CN2010800328054A CN102471407A (zh) | 2009-07-21 | 2010-06-25 | 成膜用组合物、绝缘膜以及半导体装置 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009170557A JP2011026375A (ja) | 2009-07-21 | 2009-07-21 | 膜形成用組成物、絶縁膜および半導体装置 |
JP2009-170557 | 2009-07-21 | ||
JP2010034898A JP5609142B2 (ja) | 2010-02-19 | 2010-02-19 | 絶縁膜、積層体、半導体装置および半導体装置の製造方法 |
JP2010-035289 | 2010-02-19 | ||
JP2010-034898 | 2010-02-19 | ||
JP2010035289 | 2010-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011010527A1 true WO2011010527A1 (ja) | 2011-01-27 |
Family
ID=43499003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/060847 WO2011010527A1 (ja) | 2009-07-21 | 2010-06-25 | 膜形成用組成物、絶縁膜および半導体装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120142879A1 (ja) |
EP (1) | EP2457932A1 (ja) |
KR (1) | KR20120038507A (ja) |
CN (1) | CN102471407A (ja) |
WO (1) | WO2011010527A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012012438A (ja) * | 2010-06-29 | 2012-01-19 | Sumitomo Bakelite Co Ltd | 重合体の製造方法、膜形成用組成物、有機膜及び半導体装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5705610B2 (ja) * | 2010-08-05 | 2015-04-22 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
KR101913101B1 (ko) * | 2011-07-07 | 2018-10-31 | 닛산 가가쿠 가부시키가이샤 | 지환식 골격 함유 카바졸 수지를 포함하는 레지스트 하층막 형성 조성물 |
CN113903763A (zh) * | 2020-07-07 | 2022-01-07 | 联华电子股份有限公司 | 半导体元件及其制作方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001332543A (ja) * | 2000-03-17 | 2001-11-30 | Matsushita Electric Ind Co Ltd | 層間絶縁膜、その形成方法及び配線の形成方法 |
JP2005041938A (ja) * | 2003-07-24 | 2005-02-17 | Sumitomo Chemical Co Ltd | 有機絶縁膜形成用組成物 |
JP2006245458A (ja) * | 2005-03-07 | 2006-09-14 | Sumitomo Chemical Co Ltd | 絶縁膜付基板の製造方法 |
JP2007070597A (ja) * | 2005-08-12 | 2007-03-22 | Fujifilm Corp | 重合体、該重合体を含有する膜形成用組成物、該組成物を用いて形成した絶縁膜及び電子デバイス |
JP2007266099A (ja) | 2006-03-27 | 2007-10-11 | Tokyo Electron Ltd | 低誘電率膜のダメージ修復方法、半導体製造装置、記憶媒体 |
JP2007317817A (ja) | 2006-05-25 | 2007-12-06 | Sony Corp | 半導体装置の製造方法 |
JP2008166572A (ja) * | 2006-12-28 | 2008-07-17 | Jsr Corp | 積層体、絶縁膜、および半導体装置 |
JP2008218632A (ja) * | 2007-03-02 | 2008-09-18 | Fujifilm Corp | 電子デバイス |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101140080B1 (ko) * | 2007-02-28 | 2012-04-30 | 스미토모 베이클리트 컴퍼니 리미티드 | 유기 절연 재료, 그것을 이용한 유기 절연막용 바니시, 유기 절연막 및 반도체 장치 |
-
2010
- 2010-06-25 CN CN2010800328054A patent/CN102471407A/zh active Pending
- 2010-06-25 WO PCT/JP2010/060847 patent/WO2011010527A1/ja active Application Filing
- 2010-06-25 US US13/386,286 patent/US20120142879A1/en not_active Abandoned
- 2010-06-25 EP EP10802148A patent/EP2457932A1/en not_active Withdrawn
- 2010-06-25 KR KR1020127004341A patent/KR20120038507A/ko active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001332543A (ja) * | 2000-03-17 | 2001-11-30 | Matsushita Electric Ind Co Ltd | 層間絶縁膜、その形成方法及び配線の形成方法 |
JP2005041938A (ja) * | 2003-07-24 | 2005-02-17 | Sumitomo Chemical Co Ltd | 有機絶縁膜形成用組成物 |
JP2006245458A (ja) * | 2005-03-07 | 2006-09-14 | Sumitomo Chemical Co Ltd | 絶縁膜付基板の製造方法 |
JP2007070597A (ja) * | 2005-08-12 | 2007-03-22 | Fujifilm Corp | 重合体、該重合体を含有する膜形成用組成物、該組成物を用いて形成した絶縁膜及び電子デバイス |
JP2007266099A (ja) | 2006-03-27 | 2007-10-11 | Tokyo Electron Ltd | 低誘電率膜のダメージ修復方法、半導体製造装置、記憶媒体 |
JP2007317817A (ja) | 2006-05-25 | 2007-12-06 | Sony Corp | 半導体装置の製造方法 |
JP2008166572A (ja) * | 2006-12-28 | 2008-07-17 | Jsr Corp | 積層体、絶縁膜、および半導体装置 |
JP2008218632A (ja) * | 2007-03-02 | 2008-09-18 | Fujifilm Corp | 電子デバイス |
Non-Patent Citations (1)
Title |
---|
JOURNAL OF ORGANIC CHEMISTRY, vol. 39, 1974, pages 2987 - 3003 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012012438A (ja) * | 2010-06-29 | 2012-01-19 | Sumitomo Bakelite Co Ltd | 重合体の製造方法、膜形成用組成物、有機膜及び半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20120038507A (ko) | 2012-04-23 |
US20120142879A1 (en) | 2012-06-07 |
EP2457932A1 (en) | 2012-05-30 |
CN102471407A (zh) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101992690B1 (ko) | 하지층용 방향족 수지 | |
JP5458884B2 (ja) | 絶縁膜形成用重合体、絶縁膜形成用組成物、絶縁膜及びそれを有する電子デバイス | |
JP4206925B2 (ja) | 含フッ素芳香族ポリマー及びその用途 | |
WO2011010527A1 (ja) | 膜形成用組成物、絶縁膜および半導体装置 | |
US8524847B2 (en) | Organic insulating material, varnish for resin film using the same, resin film and semiconductor device | |
JP5609142B2 (ja) | 絶縁膜、積層体、半導体装置および半導体装置の製造方法 | |
JP5012372B2 (ja) | 有機絶縁膜及び半導体装置 | |
JP2012182228A (ja) | 半導体装置の製造方法、絶縁膜および半導体装置 | |
JP5239968B2 (ja) | 樹脂組成物、樹脂膜及び半導体装置 | |
JP2011026375A (ja) | 膜形成用組成物、絶縁膜および半導体装置 | |
JP2012182229A (ja) | 半導体装置の製造方法、絶縁膜および半導体装置 | |
JP2011199175A (ja) | 半導体装置の製造方法および半導体装置 | |
JP2012072233A (ja) | 重合体、膜形成用組成物、絶縁膜、半導体装置および重合体の製造方法 | |
JP5381660B2 (ja) | 膜形成用組成物の製造方法、膜形成用組成物、絶縁膜および半導体装置 | |
JP5407836B2 (ja) | 膜形成用組成物、絶縁膜および半導体装置 | |
JP5630100B2 (ja) | 重合体の製造方法 | |
JP2011192955A (ja) | 絶縁膜、半導体装置および膜形成用組成物 | |
JP5407851B2 (ja) | 膜形成用組成物、絶縁膜および半導体装置 | |
JP2011026515A (ja) | 膜形成用組成物、絶縁膜および半導体装置 | |
JP2012077176A (ja) | 絶縁膜、積層体および半導体装置 | |
JP2010077395A (ja) | 絶縁膜用重合体及びその重合方法、絶縁膜ならびに電子デバイス | |
JP2011195776A (ja) | 絶縁膜および半導体装置 | |
JP2009084329A (ja) | 樹脂組成物、樹脂膜および半導体装置 | |
JP2010215819A (ja) | 膜形成用組成物、絶縁膜および半導体装置 | |
KR101754903B1 (ko) | 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080032805.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10802148 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010802148 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13386286 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20127004341 Country of ref document: KR Kind code of ref document: A |