[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011083868A1 - ピクセル型二次元イメージ検出器 - Google Patents

ピクセル型二次元イメージ検出器 Download PDF

Info

Publication number
WO2011083868A1
WO2011083868A1 PCT/JP2011/050231 JP2011050231W WO2011083868A1 WO 2011083868 A1 WO2011083868 A1 WO 2011083868A1 JP 2011050231 W JP2011050231 W JP 2011050231W WO 2011083868 A1 WO2011083868 A1 WO 2011083868A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
horizontal axis
vertical axis
reflector
detecting
Prior art date
Application number
PCT/JP2011/050231
Other languages
English (en)
French (fr)
Inventor
龍也 中村
片桐 政樹
紀彰 筒井
Original Assignee
独立行政法人日本原子力研究開発機構
株式会社秩父富士
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人日本原子力研究開発機構, 株式会社秩父富士 filed Critical 独立行政法人日本原子力研究開発機構
Priority to US13/520,451 priority Critical patent/US8993973B2/en
Priority to EP11731866.7A priority patent/EP2533072B1/en
Publication of WO2011083868A1 publication Critical patent/WO2011083868A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • G01T3/06Measuring neutron radiation with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors

Definitions

  • the present invention detects, for example, heavy particle beams such as alpha rays (particles with a mass greater than protons) or neutrons using phosphors, and creates a two-dimensional image of the incident intensity of heavy particle beams and neutrons with high accuracy.
  • the present invention relates to a pixel type two-dimensional image detector.
  • the technology of the two-dimensional image detector used here is a useful technology not only in the nuclear field and the medical field but also in the space field.
  • a particle beam detector in which a phosphor particle beam detection sheet and a wavelength shift fiber are combined is used as a two-dimensional image detector for heavy particle beams, particularly ⁇ rays.
  • the neutron two-dimensional image detector used in neutron scattering experiments using a neutron source using a nuclear reactor / accelerator is a neutron scintillator, or a phosphor neutron detection sheet and wavelength combining a phosphor and a neutron converter.
  • a detector combined with a shift fiber is used.
  • position information is obtained using a cross fiber reading method.
  • the object of the present invention is to reduce the leakage of the fluorescence generated by heavy particle beams and neutrons to other than the incident pixels, thereby enabling high-precision two-dimensional images related to the incident intensity of heavy particle beams and neutrons. It is an object of the present invention to provide a pixel-type two-dimensional image detector that can be produced.
  • a fluorescent body weight particle beam detection sheet in which a phosphor, which is a polycrystalline powder, is coated on a transparent substrate such as a glass plate with a binder as a detector for measuring heavy particle beams is used.
  • a detector for measuring neutrons a phosphor, which is a polycrystalline powder, and a material containing at least one of 6 Li or 10 B elements, which are neutron converters, are mixed together with a binder on a metal substrate such as an aluminum plate.
  • a phosphor neutron detection sheet formed by coating or sintering is used. These detection sheets are translucent so as to reduce leakage to pixels other than the incident pixels as much as possible.
  • the detection accuracy can be further improved by setting the thickness of these detection sheets to 0.7 mm or less and reducing the leakage area.
  • the fluorescence emitted from these detection sheets is detected, and the incident position of heavy particle beam or neutron
  • a reflecting plate that reflects the fluorescence from the fluorescent body weight particle detection sheet that emits fluorescence when a heavy particle beam is incident is arranged in the vertical axis direction at equal intervals, and the fluorescence is reflected at right angles to this reflecting plate row
  • the lattice-like structure in which the reflecting plates are arranged on the horizontal axis at equal intervals to form a reflecting plate row, one reflector is arranged at the upper half position of the reflecting plates arranged in the vertical axis direction and at the center position of the vertical axis interval.
  • It has a structure in which a groove or hole for passing a wavelength-shifting fiber for detecting the vertical axis for detecting fluorescence is formed, and one at the lower half position of the reflector arranged in the horizontal axis direction and at the center position of the horizontal axis interval.
  • Wave for horizontal axis detection to detect fluorescence Spaced grooves or holes for passing the shifted fiber structure and the use of grid-like fluorescence detector.
  • one vertical-axis detection wavelength shift fiber and one horizontal-axis detection wavelength shift fiber are provided for each pixel. Accordingly, two or more may be provided for each pixel.
  • the above-mentioned translucent and thin detector sheet is disposed on the front surface of the grid-like fluorescent detector constituting the matrix pixel as described above or on both the front and back surfaces, and the heavy particle beam or neutron Since the image detection is performed, the leakage of fluorescence to other than the incident pixels can be remarkably reduced.
  • FIG. 1 is a diagram showing a structure of a pixel type two-dimensional image detector according to an embodiment of the present invention using a heavy particle beam detection medium.
  • FIG. 2 is a diagram showing the structure of a pixel type two-dimensional image detector according to another embodiment of the present invention using a neutron detection medium.
  • FIG. 3 is a diagram showing a structure of a pixel type two-dimensional image detector according to another embodiment of the present invention using a heavy particle beam detection medium.
  • FIG. 4 is a diagram showing the structure of a pixel type two-dimensional image detector according to another embodiment of the present invention using a neutron detection medium.
  • FIG. 5 is a diagram showing a structure of a pixel type two-dimensional image detector according to another embodiment of the present invention using a heavy particle beam detection medium.
  • FIG. 6 is a diagram showing a structure of a pixel type two-dimensional image detector according to another embodiment of the present invention using a neutron detection medium.
  • FIG. 7 is a diagram showing the structure of a pixel type two-dimensional image detector according to another embodiment of the present invention using a heavy particle beam detection medium.
  • FIG. 8 is a diagram showing a structure of a pixel type two-dimensional image detector according to another embodiment of the present invention using a neutron detection medium.
  • FIG. 9 is a diagram showing a structure of a pixel type two-dimensional image detector according to another embodiment of the present invention using a heavy particle beam detection medium.
  • FIG. 10 is a diagram showing the structure of a pixel type two-dimensional image detector according to another embodiment of the present invention using a heavy particle beam detection medium.
  • FIG. 11 is a diagram showing a structure of a pixel type two-dimensional image detector according to another embodiment of the present invention using a neutron detection medium.
  • FIG. 12 is a diagram showing a structure of a pixel type two-dimensional image detector according to another embodiment of the present invention using a neutron detection medium.
  • FIGS. 13A and 13B are diagrams showing the influence of fluorescence on the surrounding pixels of the neutron two-dimensional image detector.
  • FIG. 14 is a diagram three-dimensionally showing the influence of fluorescence on the surrounding pixels of the neutron two-dimensional image detector.
  • FIG. 15 is a diagram showing the detection efficiency for thermal neutrons when the detection sheet is arranged only on the front surface of the lattice-like fluorescence detector and on both the front surface and the rear surface.
  • a pixel-type two-dimensional image detector includes: In order to reflect the fluorescence from the phosphor particle beam detection sheet, the vertical axis reflector plate arrayed at equal intervals in the vertical axis direction, and the same function as the vertical axis reflector plate array, the vertical axis direction In order to detect fluorescence in the vertical axis direction, the horizontal direction reflector plate array arranged at equal intervals in the horizontal axis direction perpendicular to the vertical axis, and at least one vertical length provided at equal division positions of the vertical axis intervals of the pixels Lattice fluorescence detection comprising: an axis detection wavelength shift fiber; and at least one horizontal axis detection wavelength shift fiber provided at equal division positions of the horizontal axis intervals of pixels in order to detect fluorescence in the horizontal axis direction And a vertical-direction reflector comprising the phosphor particle beam detection sheet that emits fluorescence when a heavy particle beam or neutron is incident on only the front surface or both the front surface and
  • a plurality of the grooves or holes, and the horizontal axis detecting wavelength shift fibers at the positions of the lower half or the upper half of the horizontal axis reflector plate Provided with a plurality of such grooves or holes provided in the horizontal axis reflector plate row, And the phosphor particle beam detection sheet is a translucent sheet, Detecting fluorescence emitted from the wavelength-shifting fiber for detecting the vertical axis and the wavelength-shifting fiber for detecting the horizontal axis, respectively, and determining the incident position of the particle beam by simultaneously counting and measuring these detection signals. It has become. An example in which the above basic configuration is actually implemented will be described below with reference to FIGS.
  • Example 1 As Example 1, a structure of a pixel type two-dimensional image detector according to the present invention using a heavy particle beam detection medium is shown in FIG.
  • ZnS: Ag is used as a phosphor as a heavy particle beam detection medium
  • this ZnS: Ag phosphor is used at 30 mg / cm using a binder.
  • a translucent thin fluorescent body weight particle beam detection sheet coated on a glass plate having a thickness of 0.1 mm with a coating amount of 1 mm is used. Further, a mirror-finished aluminum plate is used as the material of the fluorescent reflecting bottom plate disposed at the bottom.
  • the lattice-like fluorescence detector will be described. As shown in FIG.
  • the reflectors that reflect the fluorescence from the fluorescent body weight particle beam detection sheet that emits fluorescence when a heavy particle beam is incident are arranged at equal intervals in the vertical axis direction.
  • the interval in the vertical axis direction of the reflector is 5 mm.
  • reflectors that reflect fluorescence at right angles to the reflector array are arranged on the horizontal axis at equal intervals.
  • the interval in the horizontal axis direction of the reflector is 5 mm.
  • the material of the reflecting plate is a mirror-finished aluminum plate, the height is 2 mm, the length is 325 mm, and the thickness is 0.15 mm.
  • a groove having a width 100 ⁇ m larger than the thickness of the reflector is formed at the same interval as the interval of the reflectors arranged in the horizontal axis on the reflector arranged in the vertical axis direction.
  • the vertical axis reflector has a groove that is half the depth width and has a width that is 100 ⁇ m larger than the thickness of the reflector at the same interval as the interval between the reflectors arranged in the vertical axis on the reflector arranged in the horizontal axis direction. It was made by making the length half of the depth width and crossing using the grooves in which the vertical axis reflector and the horizontal axis reflector were made.
  • a lattice-like structure is made using the same method.
  • the lattice-like structure that constitutes the vertical axis and horizontal axis reflector rows, the upper half position of the reflectors arranged in the vertical axis direction, and the center position of the vertical axis interval, which is 2.
  • a structure is provided in which a groove for passing a wavelength shift fiber for detecting the vertical axis for detecting one fluorescence is opened at a position of 5 mm.
  • the groove is formed in a semicircular square shape so that the fluorescence is not leaked to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 1.1 mm, and the length of the square part is 1.1 mm.
  • the wavelength shift fiber BCF-92MC manufactured by Saint-Gobain Co., which is sensitive to fluorescence from 350 nm to 440 nm and converts the wavelength to fluorescence of 490 nm is used.
  • the shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • a structure in which a groove for passing a wavelength-shifting fiber for detecting the horizontal axis for detecting one fluorescent light is formed at the center position of the horizontal axis interval at the position of the lower half of the reflectors arranged in the horizontal axis direction, and To do. As shown in FIG. 1, the groove is formed in a semicircular square shape so that the fluorescence is not leaked to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 1.1 mm, and the length of the square part is 1.1 mm. Since the center of the fluorescence wavelength of ZnS: Ag is 450 nm, fluorescence of a wide wavelength range from 360 nm to 540 nm is generated, and the fluorescence lifetime of the short-lived component is 300 ns. Therefore, as a wavelength shift fiber, fluorescence from 350 nm to 440 nm is used. And BCF-92MC manufactured by Saint-Gobain Co., Ltd., which converts the wavelength to fluorescence of 490 nm, is used. The shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • a lattice-like fluorescent detector prepared in this way is configured, and ZnS: Ag is used as the phosphor only on the front surface of the lattice-like fluorescent detector, and this ZnS: Ag phosphor is used at 30 mg / cm using a binder.
  • a fluorescent body weight particle beam detection sheet applied to a glass plate having a thickness of 0.1 mm with a coating amount of 1 mm is disposed.
  • Each photoelectric signal output from the two photomultiplier tubes for the vertical axis and the horizontal axis is amplified by an amplifier and then converted into a digital pulse signal by a wave height discriminator, respectively, and an X-axis pulse signal and a Y-axis pulse Signal.
  • the two-dimensional incident position of the heavy particle beam is determined by measuring the X-axis pulse signal and the Y-axis pulse signal simultaneously.
  • the coincidence time (coincidence time) is 1 ⁇ s, which is about three times the fluorescence lifetime of the short-life component of ZnS: Ag.
  • a sensitive part for a channel and a heavy particle beam can be a large particle beam two-dimensional image detector having a large area of 320 mm ⁇ 320 mm.
  • Example 2 As Example 2, a pixel type two-dimensional image detector according to the present invention using a neutron detection medium will be described with reference to FIG.
  • the configuration of the two-dimensional image detector of the second embodiment is basically the same as that of the first embodiment except for the structure of the detection sheet.
  • ZnS Ag is used as the phosphor as the neutron detection medium, and the neutron converter is used.
  • 6 A neutron detection sheet (ZnS: Ag and manufactured by AST, UK) produced by mixing binders using LiF 6 A LiF mixing ratio of 4: 1) is used. This detection sheet is translucent and has a thickness of 0.45 mm.
  • the lattice-like fluorescence detector will be described. As shown in FIG. 1, reflectors that reflect fluorescence from a phosphor neutron detection sheet that emits fluorescence when neutrons are incident are arranged in the vertical axis direction at equal intervals. The interval in the vertical axis direction of the reflector is 5 mm.
  • reflectors that reflect fluorescence at right angles to the reflector array are arranged on the horizontal axis at equal intervals.
  • the interval in the horizontal axis direction of the reflector is 5 mm.
  • the material of the reflecting plate is a mirror-finished aluminum plate, the height is 2 mm, the length is 325 mm, and the thickness is 0.15 mm.
  • a structure in which a groove for passing a wavelength shift fiber for detecting the vertical axis for detecting one fluorescence is opened at a position of 5 mm.
  • the groove is formed in a semicircular square shape so that the fluorescence is not leaked to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 1.1 mm, and the length of the square part is 1.1 mm.
  • the wavelength shift fiber BCF-92MC manufactured by Saint-Gobain Co., which is sensitive to fluorescence from 350 nm to 440 nm and converts the wavelength to fluorescence of 490 nm is used.
  • the shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • a structure in which a groove for passing a wavelength-shifting fiber for detecting the horizontal axis for detecting one fluorescent light is formed at the center position of the horizontal axis interval at the position of the lower half of the reflectors arranged in the horizontal axis direction, and To do.
  • the groove is formed in a semicircular square shape so that the fluorescence is not leaked to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 1.1 mm, and the length of the square part is 1.1 mm.
  • the center of the fluorescence wavelength of ZnS: Ag is 450 nm, fluorescence of a wide wavelength range from 360 nm to 540 nm is generated, and the fluorescence lifetime of the short-lived component is 300 ns. Therefore, as a wavelength shift fiber, fluorescence from 350 nm to 440 nm is used. And BCF-92MC manufactured by Saint-Gobain Co., Ltd., which converts the wavelength to fluorescence of 490 nm, is used. The shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • the lattice-shaped fluorescence detector produced in this way is configured, and the AST 0.45 mm-thick neutron detection sheet is disposed only on the front surface of the lattice-shaped fluorescence detector.
  • the two wavelength shift fibers BCF-92MC are combined and connected to the photodetector.
  • H75546 manufactured by Hamamatsu Photonics which is a 64-channel photomultiplier tube with a sensitive size of one channel of 2 mm ⁇ 2 mm, is used. it can.
  • Each photoelectric signal output from the two multipliers for the vertical axis and the horizontal axis is amplified by an amplifier and then converted into a digital pulse signal by a wave height discriminator, respectively, and an X-axis pulse signal and a Y-axis pulse signal It becomes.
  • a two-dimensional incident position of neutrons is determined by performing coincidence measurement of these X-axis pulse signal and Y-axis pulse signal.
  • the coincidence time (coincidence time) is 1 ⁇ s, which is about three times the fluorescence lifetime of the short-life component of ZnS: Ag.
  • a sensitive area for the channel and neutron can be a large area neutron two-dimensional image detector having a size of 320 mm ⁇ 320 mm.
  • neutron scattering experiment of YAG crystal was performed using pulsed neutrons.
  • the neutron image detector of this example was installed at a distance of 50 cm in a direction perpendicular to the neutron beam, and scattering of the single crystal was measured. As a result, as shown in FIGS. 13A and 13B, it was found that only one pixel had a peak due to neutron scattering. For confirmation, cross-sectional distributions in the X-axis direction and the Y-axis direction are shown in FIG. All but one point is background counting. It was confirmed that there was almost no influence on other pixels in both the X axis and the Y axis.
  • ZnS Ag is used as a phosphor as a neutron detection medium, and a neutron converter is used.
  • 10 B 2 O 3 ZnS / with a thickness of 0.25 mm produced by sintering using 10 B 2 O 3 Neutron detection sheet (ZnS: Ag and H 3 10 BO 3 The mixing ratio of 3: 2) was used and placed on both the front and rear surfaces of the lattice fluorescent detector, and the detection efficiency for thermal neutrons was measured.
  • FIG. 15 shows the results of detection efficiency measured by changing the simultaneous measurement time from 0.1 ⁇ s to 3 ⁇ s.
  • Example 3 As Example 3, another pixel type two-dimensional image detector using a heavy particle beam detection sheet will be described with reference to FIG.
  • the X-axis and Y-axis wavelength shift fibers have a fluorescent weight particle beam detection sheet. It is difficult to sufficiently collect the fluorescence emitted from the. For this reason, it is necessary to increase the number of wavelength shift fibers having one X axis and one Y axis.
  • the thickness of the wavelength shift fiber of the reflector is 1 mm or more in the case of a circular fiber and 1 mm or more in the case of a square fiber
  • the fluorescent light is arranged only on the wavelength fiber.
  • the absorption of the fluorescence by the wavelength shift fiber disposed at the lower portion is absorbed and the count loss when the coincidence measurement is performed is increased.
  • the thickness of the wavelength shift fiber is 1 mm or more for a circular fiber, and 1 mm for a square fiber. When it is above, it increases according to the thickness.
  • the wavelength shift fiber when the wavelength shift fiber is circular, the diameter is small, when the wavelength shift fiber is square, the length of one side is small, compared to the interval between the vertical and horizontal reflectors. It becomes difficult to sufficiently collect the fluorescence emitted from the fluorescent body weight particle beam detection sheet. For this reason, it is necessary to increase the number of wavelength shift fibers having one X axis and one Y axis. In this embodiment, in order to increase the pixel size, the case where the distance between the vertical and horizontal axes of the reflector is 9 mm will be described.
  • the material of the reflector is a mirrored aluminum plate, the material of the reflector is a mirrored aluminum plate, the height is 2 mm, the length is 585 mm, and the thickness is 0.15 mm.
  • ZnS: Ag is used as a phosphor as a heavy particle beam detection medium, and this ZnS: Ag phosphor is used at 30 mg / cm using a binder.
  • the fluorescent body weight particle beam detection sheet applied to a glass plate having a thickness of 0.1 mm with a coating amount of 1 mm is used. Further, a mirror-finished aluminum plate is used as the material of the fluorescent reflecting bottom plate disposed at the bottom. Next, the lattice-like fluorescence detector will be described.
  • Reflecting plates that reflect fluorescence from a fluorescent body weight particle beam detection sheet that emits fluorescence when a heavy particle beam is incident are arranged at equal intervals in the vertical axis direction as shown in FIG.
  • the interval in the vertical axis direction of the reflector is 9 mm.
  • reflectors that reflect fluorescence at right angles to the reflector array are arranged on the horizontal axis at equal intervals.
  • the interval in the horizontal axis direction of the reflector is 9 mm.
  • the material of the reflector is a mirror-finished aluminum plate, the height is 2 mm, the length is 585 mm, and the thickness is 0.15 mm.
  • a structure is provided in which a groove for passing a wavelength shift fiber for detecting the vertical axis for detecting two fluorescent lights is formed at a position and a position of 6 mm.
  • the groove has a semicircular square shape so that the fluorescence does not leak to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 0.9 mm, and the length of the square part is 0.9 mm.
  • the wavelength shift fiber BCF-92MC manufactured by Saint-Gobain Co., which is sensitive to fluorescence from 350 nm to 440 nm and converts the wavelength to fluorescence of 490 nm is used.
  • the shape of the wavelength shift fiber is circular and the diameter is 0.8 mm.
  • a structure in which a groove for passing a wavelength-shifting fiber for detecting the horizontal axis for detecting one fluorescent light is formed at the center position of the horizontal axis interval at the position of the lower half of the reflectors arranged in the horizontal axis direction, and To do. As shown in FIG. 1, the groove is formed in a semicircular square shape so that the fluorescence is not leaked to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 0.9 mm, and the length of the square part is 0.9 mm. Since the center of the fluorescence wavelength of ZnS: Ag is 450 nm, fluorescence of a wide wavelength range from 360 nm to 540 nm is generated, and the fluorescence lifetime of the short-lived component is 300 ns. Therefore, as a wavelength shift fiber, fluorescence from 350 nm to 440 nm is used. And BCF-92MC manufactured by Saint-Gobain Co., Ltd., which converts the wavelength to fluorescence of 490 nm, is used. The shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • a lattice-like fluorescent detector prepared in this way is configured, and ZnS: Ag is used as the phosphor only on the front surface of the lattice-like fluorescent detector, and this ZnS: Ag phosphor is used at 30 mg / cm using a binder.
  • a fluorescent body weight particle beam detection sheet applied to a glass plate having a thickness of 0.1 mm with a coating amount of 1 mm is disposed.
  • Each photoelectric signal output from the two photomultiplier tubes for the vertical axis and the horizontal axis is amplified by an amplifier and then converted into a digital pulse signal by a wave height discriminator, respectively, and an X-axis pulse signal and a Y-axis pulse Signal.
  • the two-dimensional incident position of the heavy particle beam is determined by measuring the X-axis pulse signal and the Y-axis pulse signal simultaneously.
  • the coincidence time (coincidence time) is 1 ⁇ s, which is about three times the fluorescence lifetime of the short-life component of ZnS: Ag.
  • Example 4 As Example 4, the structure of a pixel type two-dimensional image detector according to the present invention using the neutron detection medium according to the present invention will be described with reference to FIG.
  • the wavelength shift fiber with one X axis and one Y axis can be obtained from the phosphor neutron detection sheet. It becomes difficult to collect the emitted fluorescence sufficiently. For this reason, it is necessary to increase the number of wavelength shift fibers having one X axis and one Y axis.
  • the thickness of the wavelength shift fiber of the reflector is 1 mm or more in the case of a circular fiber and 1 mm or more in the case of a square fiber, the fluorescent light is arranged only on the wavelength fiber.
  • the thickness of the wavelength shift fiber is 1 mm or more for a circular fiber and 1 mm or more for a square fiber. If it does, it increases according to its thickness. Due to the above factors, when the wavelength shift fiber is circular, the diameter is small, when the wavelength shift fiber is square, the length of one side is small, compared to the interval between the vertical and horizontal reflectors. It becomes difficult to sufficiently collect the fluorescence emitted from the phosphor neutron detection sheet.
  • the reflecting plates for reflecting the fluorescence from the phosphor neutron detection sheet that emits fluorescence when neutrons are incident are arranged in the vertical axis direction at equal intervals.
  • the interval in the vertical axis direction of the reflector is 9 mm.
  • reflectors that reflect fluorescence at right angles to the reflector array are arranged on the horizontal axis at equal intervals.
  • the interval in the horizontal axis direction of the reflector is 9 mm.
  • the material of the reflector is a mirror-finished aluminum plate, the height is 2 mm, the length is 585 mm, and the thickness is 0.15 mm.
  • a structure is provided in which a groove for passing a wavelength shift fiber for detecting the vertical axis for detecting two fluorescent lights is formed at a position and a position of 6 mm.
  • the groove has a semicircular square shape so that the fluorescence does not leak to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 0.9 mm, and the length of the square part is 0.9 mm.
  • the wavelength shift fiber BCF-92MC manufactured by Saint-Gobain Co., which is sensitive to fluorescence from 350 nm to 440 nm and converts the wavelength to fluorescence of 490 nm is used.
  • the shape of the wavelength shift fiber is circular and the diameter is 0.8 mm.
  • a structure in which a groove for passing a wavelength-shifting fiber for detecting the horizontal axis for detecting one fluorescent light is formed at the center position of the horizontal axis interval at the position of the lower half of the reflectors arranged in the horizontal axis direction, and To do. As shown in FIG. 1, the groove is formed in a semicircular square shape so that the fluorescence is not leaked to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 0.9 mm, and the length of the square part is 0.9 mm. Since the center of the fluorescence wavelength of ZnS: Ag is 450 nm, fluorescence of a wide wavelength range from 360 nm to 540 nm is generated, and the fluorescence lifetime of the short-lived component is 300 ns. Therefore, as a wavelength shift fiber, fluorescence from 350 nm to 440 nm is used. And BCF-92MC manufactured by Saint-Gobain Co., Ltd., which converts the wavelength to fluorescence of 490 nm, is used. The shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • the lattice-shaped fluorescence detector thus produced is constructed, and two 0.45 mm thick neutron detection sheets made by AST are arranged on both the front and back surfaces of the lattice-shaped fluorescence detector.
  • a photodetector for detecting fluorescence shifted in wavelength from the wavelength shift fiber BCF-92MC, H7546 manufactured by Hamamatsu Photonics which is a 64-channel photomultiplier tube having a sensitive size of one channel of 2 mm ⁇ 2 mm, is used. it can.
  • Each photoelectric signal output from the two photomultiplier tubes for the vertical axis and the horizontal axis is amplified by an amplifier and then converted into a digital pulse signal by a wave height discriminator, respectively, and an X-axis pulse signal and a Y-axis pulse Signal.
  • a two-dimensional incident position of neutrons is determined by performing coincidence measurement of these X-axis pulse signal and Y-axis pulse signal.
  • the coincidence time (coincidence time) is 1 ⁇ s, which is about three times the fluorescence lifetime of the short-life component of ZnS: Ag.
  • Example 5 a structure of a pixel type two-dimensional image detector according to the present invention using a ZnS: Ag phosphor as a heavy particle beam detection medium will be described with reference to FIG.
  • the fluorescence lifetime of the short-lived component is as short as 300 ns, but the fluorescence of the slow-life component is generated with light emission.
  • the fluorescence lifetime of the slow component is as long as about 70 ⁇ s and is defined as afterglow.
  • a method for reducing the influence of the ZnS: Ag afterglow will be described.
  • the position of the heavy particle beam is determined by simultaneously counting two fluorescent signals from the wavelength shift fiber having one vertical axis and one horizontal axis.
  • the fluorescence of the afterglow is not completely extinguished, and the fluorescence signal of the wavelength-shifted fiber on the vertical and horizontal axes where the afterglow is strong, in addition to the position where the heavy particle beam is incident. Is determined as a background position with simultaneous counting.
  • the fluorescence detection efficiency is as low as about 3%. Therefore, the fluorescence detection by the photodetector is performed by counting (photon counting) for each light. Is used, the background count that is randomly counted increases.
  • ZnS: Ag is used as a phosphor as a heavy particle beam detection medium, and this ZnS: Ag phosphor is used at 30 mg / cm using a binder.
  • the fluorescent body weight particle beam detection sheet applied to a glass plate having a thickness of 0.1 mm with a coating amount of 1 mm is used. Further, a mirror-finished aluminum plate is used as the material of the fluorescent reflecting bottom plate disposed at the bottom.
  • the lattice-like fluorescence detector will be described. Reflecting plates that reflect fluorescence from a fluorescent body weight particle beam detection sheet that emits fluorescence when a heavy particle beam is incident are arranged at equal intervals in the vertical axis direction as shown in FIG.
  • the interval in the vertical axis direction of the reflector is 6 mm.
  • reflectors that reflect fluorescence at right angles to the reflector array are arranged on the horizontal axis at equal intervals.
  • the interval in the horizontal axis direction of the reflector is 6 mm.
  • the material of the reflecting plate was a mirror-finished aluminum plate, the height was 2 mm, the length was 390 mm, and the thickness was 0.15 mm.
  • the upper half position of the reflectors arranged in the vertical axis direction and the center position of the vertical axis interval which is 2 mm in this embodiment.
  • a groove for passing a wavelength-shifting fiber for detecting the vertical axis for detecting two fluorescent lights at a position and a position of 4 mm is provided.
  • the groove has a semicircular square shape so that the fluorescence does not leak to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 1.1 mm, and the length of the square part is 1.1 mm.
  • the wavelength shift fiber BCF-92MC manufactured by Saint-Gobain Co., which is sensitive to fluorescence from 350 nm to 440 nm and converts the wavelength to fluorescence of 490 nm is used.
  • the shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • a structure in which a groove for passing a wavelength-shifting fiber for detecting the horizontal axis for detecting one fluorescent light is formed at the center position of the horizontal axis interval at the position of the lower half of the reflectors arranged in the horizontal axis direction, and To do. As shown in FIG. 1, the groove is formed in a semicircular square shape so that the fluorescence is not leaked to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 1.1 mm, and the length of the square part is 1.1 mm. Since the center of the fluorescence wavelength of ZnS: Ag is 450 nm, fluorescence of a wide wavelength range from 360 nm to 540 nm is generated, and the fluorescence lifetime of the short-lived component is 300 ns. Therefore, as a wavelength shift fiber, fluorescence from 350 nm to 440 nm is used. And BCF-92MC manufactured by Saint-Gobain Co., Ltd., which converts the wavelength to fluorescence of 490 nm, is used. The shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • a lattice-like fluorescent detector prepared in this way is configured, and ZnS: Ag is used as the phosphor only on the front surface of the lattice-like fluorescent detector, and this ZnS: Ag phosphor is used at 30 mg / cm using a binder.
  • a fluorescent body weight particle beam detection sheet applied to a glass plate having a thickness of 0.1 mm with a coating amount of 1 mm is disposed.
  • Each photoelectric signal output from the two photomultiplier tubes for the vertical axis is amplified by an amplifier and then converted into a digital pulse signal by a wave height discriminator to be two Y axis determination pulse signals.
  • the coincidence measurement is performed for these two Y-axis determination pulse signals (Y1-1 and Y1-2 in the case of the first pixel), and when the coincidence is established, the position of the Y-axis is determined, and the Y-axis pulse signal is Is output.
  • each photoelectric signal output from the two photomultiplier tubes for the horizontal axis is amplified by an amplifier, and then converted into a digital pulse signal by a wave height discriminator, respectively. Become.
  • the coincidence measurement is performed on these two X-axis determination pulse signals (X1-1 and X1-2 in the case of the first pixel), and when the coincidence is established, the position of the X-axis is determined, and the X-axis pulse signal is Is output.
  • the coincidence time is 1 ⁇ s, which is about three times the fluorescence lifetime of the short-life component of ZnS: Ag.
  • the simultaneous measurement measurement is performed three times to reduce the probability of the occurrence of a random background due to the after glow of ZnS: Ag.
  • a sensitive area for the channel and heavy particle beam can be a large particle heavy particle beam two-dimensional image detector having a size of 384 mm ⁇ 384 mm.
  • the fluorescence lifetime of the short-lived component is as short as 300 ns, but the fluorescence of the slow-life component is generated with light emission.
  • the fluorescence lifetime of the slow component is as long as about 70 ⁇ s and is defined as afterglow.
  • a method for reducing the influence of the ZnS: Ag afterglow will be described.
  • the position of the neutron is determined by simultaneously counting two fluorescent signals from the wavelength shift fiber having one vertical axis and one horizontal axis.
  • a neutron detection sheet (ZnS: Ag and manufactured by AST, UK) produced by mixing binders using LiF 6 The mixture ratio of LiF is 2: 1).
  • This detection sheet is translucent and has a thickness of 0.45 mm.
  • two neutron detection sheets are used on the front and rear surfaces of the lattice phosphor.
  • the lattice-like fluorescence detector will be described. As shown in FIG. 3, the reflecting plates for reflecting the fluorescence from the phosphor neutron detection sheet that emits fluorescence when neutrons are incident are arranged in the vertical axis direction at equal intervals. The interval in the vertical axis direction of the reflector is 6 mm.
  • reflectors that reflect fluorescence at right angles to the reflector array are arranged on the horizontal axis at equal intervals.
  • the interval in the horizontal axis direction of the reflector is 6 mm.
  • the material of the reflecting plate was a mirror-finished aluminum plate, the height was 2 mm, the length was 390 mm, and the thickness was 0.15 mm.
  • the upper half position of the reflectors arranged in the vertical axis direction and the center position of the vertical axis interval which is 2 mm in this embodiment.
  • a groove for passing a wavelength-shifting fiber for detecting the vertical axis for detecting two fluorescent lights at a position and a position of 4 mm is provided.
  • the groove has a semicircular square shape so that the fluorescence does not leak to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 1.1 mm, and the length of the square part is 1.1 mm.
  • the wavelength shift fiber BCF-92MC manufactured by Saint-Gobain Co., which is sensitive to fluorescence from 350 nm to 440 nm and converts the wavelength to fluorescence of 490 nm is used.
  • the shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • a structure in which a groove for passing a wavelength-shifting fiber for detecting the horizontal axis for detecting one fluorescent light is formed at the center position of the horizontal axis interval at the position of the lower half of the reflectors arranged in the horizontal axis direction, and To do. As shown in FIG. 1, the groove is formed in a semicircular square shape so that the fluorescence is not leaked to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 1.1 mm, and the length of the square part is 1.1 mm. Since the center of the fluorescence wavelength of ZnS: Ag is 450 nm, fluorescence of a wide wavelength range from 360 nm to 540 nm is generated, and the fluorescence lifetime of the short-lived component is 300 ns. Therefore, as a wavelength shift fiber, fluorescence from 350 nm to 440 nm is used. And BCF-92MC manufactured by Saint-Gobain Co., Ltd., which converts the wavelength to fluorescence of 490 nm, is used. The shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • a photodetector for detecting fluorescence shifted in wavelength from the wavelength shift fiber BCF-92MC H7546 manufactured by Hamamatsu Photonics, which is a 64-channel photomultiplier tube having a sensitive size of one channel of 2 mm ⁇ 2 mm, is used. it can.
  • Each photoelectric signal output from the two photomultiplier tubes for the vertical axis is amplified by an amplifier and then converted into a digital pulse signal by a wave height discriminator to be two Y axis determination pulse signals.
  • the coincidence measurement is performed for these two Y-axis determination pulse signals (Y1-1 and Y1-2 in the case of the first pixel), and when the coincidence is established, the position of the Y-axis is determined, and the Y-axis pulse signal is Is output.
  • each photoelectric signal output from the two photomultiplier tubes for the horizontal axis is amplified by an amplifier, and then converted into a digital pulse signal by a wave height discriminator, respectively.
  • X-axis determination pulse signals X1-1 and X1-2 in the case of the first pixel
  • the coincidence is established, the position of the X-axis is determined, and the X-axis pulse signal is Is output.
  • coincidence counting is established for the Y-axis pulse signal and the X-axis pulse signal, the two-dimensional incident position of neutrons is determined.
  • the coincidence time is 1 ⁇ s, which is about three times the fluorescence lifetime of the short-life component of ZnS: Ag.
  • the probability of the occurrence of randomly occurring background due to the after glow of ZnS: Ag can be reduced.
  • 65 reflecting plates are used for the vertical axis and 64 wavelength shift fibers are used, and 65 reflecting plates are used for the horizontal axis and 64 wavelength shifting fibers are used, 64 channels of the vertical axis and 64 horizontal axes are used.
  • a neutron two-dimensional image detector having a large area with a channel and neutron sensitive portion of 384 mm ⁇ 384 mm can be obtained.
  • Example 7 a structure of a pixel type two-dimensional image detector according to the present invention using a ZnS: Ag phosphor according to the present invention as a heavy particle beam detection medium will be described with reference to FIG.
  • ZnS is used as the phosphor
  • the fluorescence lifetime of the short-lived component is as short as 300 ns, but the fluorescence of the slow-life component is generated with light emission.
  • the fluorescence lifetime of the slow component is as long as about 70 ⁇ s and is defined as afterglow.
  • the position of the heavy particle beam is determined by simultaneously counting two fluorescence signals from the fluorescence emitted from one end face of the wavelength shift fiber having one vertical axis and one horizontal axis. .
  • the fluorescence of the afterglow is not completely extinguished, and the fluorescence signal of the wavelength-shifted fiber on the vertical and horizontal axes where the afterglow is strong, in addition to the position where the heavy particle beam is incident. Is determined as a background position with simultaneous counting.
  • the fluorescence detection efficiency is as low as about 3%. Therefore, the fluorescence detection by the photodetector is performed by counting (photon counting) for each light. Is used, the background count that is randomly counted increases.
  • ZnS: Ag is used as a phosphor as a heavy particle beam detection medium, and this ZnS: Ag phosphor is used at 30 mg / cm using a binder. 2
  • the fluorescent body weight particle beam detection sheet applied to a glass plate having a thickness of 0.1 mm with a coating amount of 1 mm is used. For this reason, it will be influenced by afterglow.
  • a mirror-finished aluminum plate is used as the material of the fluorescent reflecting bottom plate disposed at the bottom. For this reason, in this embodiment, not only fluorescence emitted from only one end face of the wavelength shift fiber having one vertical axis and one horizontal axis in the first embodiment but also fluorescence from the other end face is used. Like to do.
  • the lattice-like fluorescent detector will be described. Reflecting plates that reflect fluorescence from a fluorescent body weight particle beam detection sheet that emits fluorescence when a heavy particle beam is incident are arranged at equal intervals in the vertical axis direction as shown in FIG. The interval in the vertical axis direction of the reflector is 5 mm.
  • reflectors that reflect fluorescence at right angles to the reflector array are arranged on the horizontal axis at equal intervals.
  • the interval in the horizontal axis direction of the reflector is 5 mm.
  • the material of the reflecting plate is a mirror-finished aluminum plate, the height is 2 mm, the length is 325 mm, and the thickness is 0.15 mm.
  • a structure in which a groove for passing a wavelength shift fiber for detecting the vertical axis for detecting one fluorescence is opened at a position of 5 mm.
  • the groove is formed in a semicircular square shape so that the fluorescence is not leaked to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 1.1 mm, and the length of the square part is 1.1 mm.
  • the wavelength shift fiber BCF-92MC manufactured by Saint-Gobain Co., which is sensitive to fluorescence from 350 nm to 440 nm and converts the wavelength to fluorescence of 490 nm is used.
  • the shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • a structure in which a groove for passing a wavelength-shifting fiber for detecting the horizontal axis for detecting one fluorescent light is formed at the center position of the horizontal axis interval at the position of the lower half of the reflectors arranged in the horizontal axis direction, and To do.
  • the groove is formed in a semicircular square shape so that the fluorescence is not leaked to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 1.1 mm, and the length of the square part is 1.1 mm.
  • the center of the fluorescence wavelength of ZnS: Ag is 450 nm, fluorescence of a wide wavelength range from 360 nm to 540 nm is generated, and the fluorescence lifetime of the short-lived component is 300 ns. Therefore, as a wavelength shift fiber, fluorescence from 350 nm to 440 nm is used. And BCF-92MC manufactured by Saint-Gobain Co., Ltd., which converts the wavelength to fluorescence of 490 nm, is used. The shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • a lattice-like fluorescent detector prepared in this way is configured, and ZnS: Ag is used as the phosphor only on the front surface of the lattice-like fluorescent detector, and this ZnS: Ag phosphor is used at 30 mg / cm using a binder.
  • a fluorescent body weight particle beam detection sheet applied to a glass plate having a thickness of 0.1 mm with a coating amount of 1 mm is disposed.
  • Both end faces of the wavelength shift fiber for the vertical axis are respectively connected to two photomultiplier tubes and output as fluorescent electric signals.
  • Each outputted photoelectric signal is amplified by an amplifier and then converted into a digital pulse signal by a wave height discriminator, respectively, so as to become two Y axis determination pulse signals.
  • the coincidence measurement is performed for these two Y-axis determination pulse signals (Y1-1 and Y1-2 in the case of the first pixel), and when the coincidence is established, the position of the Y-axis is determined, and the Y-axis pulse signal is Is output.
  • both end faces of the wavelength shift fiber for the horizontal axis are connected to two photomultiplier tubes, respectively, and output as fluorescent electric signals.
  • Each output photoelectric signal is amplified by an amplifier and then converted into a digital pulse signal by a wave height discriminator, respectively, to become two X-axis determining pulse signals.
  • the coincidence measurement is performed on these two X-axis determination pulse signals (X1-1 and X1-2 in the case of the first pixel), and when the coincidence is established, the position of the X-axis is determined, and the X-axis pulse signal is Is output.
  • the coincidence count is established for the Y-axis pulse signal and the X-axis pulse signal, the two-dimensional incident position of the heavy particle beam is determined.
  • the coincidence time (coincidence time) is 1 ⁇ s, which is about three times the fluorescence lifetime of the short-life component of ZnS: Ag.
  • the simultaneous measurement measurement is performed three times to reduce the probability of the occurrence of a random background due to the after glow of ZnS: Ag.
  • ZnS: Ag When 65 reflecting plates are used for the vertical axis and 64 wavelength shift fibers are used, and 65 reflecting plates are used for the horizontal axis and 64 wavelength shifting fibers are used, 64 channels of the vertical axis and 64 horizontal axes are used.
  • a sensitive part for a channel and a heavy particle beam can be a large particle beam two-dimensional image detector having a large area of 320 mm ⁇ 320 mm.
  • Example 8 As Example 8, the structure of a pixel type two-dimensional image detector according to the present invention using the ZnS: Ag phosphor according to the present invention as a neutron detection medium will be described with reference to FIG.
  • ZnS is used as the phosphor, as shown in the figure, the fluorescence lifetime of the short-lived component is as short as 300 ns, but the fluorescence of the slow-life component is generated with light emission.
  • the fluorescence lifetime of the slow component is as long as about 70 ⁇ s and is defined as afterglow.
  • a method of reducing the influence of this ZnS: Ag afterglow will be described.
  • the position of the heavy particle beam is determined by simultaneously counting two fluorescence signals from the fluorescence emitted from one end face of the wavelength shift fiber having one vertical axis and one horizontal axis. .
  • the fluorescence signals of the wavelength-shifted fibers on both the vertical and horizontal axes, where the afterglow is strong are randomly generated in addition to the position where the neutrons are incident.
  • Counting measurement is established and determined as the background position. In particular, when a wavelength shift fiber is used for fluorescence detection, the fluorescence detection efficiency is as low as about 3%.
  • the fluorescence detection by the photodetector is performed by counting (photon counting) for each light. Is used, the background count that is randomly counted increases.
  • ZnS Ag is used as the phosphor
  • the neutron converter 6 A neutron detection sheet (ZnS: Ag and manufactured by AST, UK) produced by mixing binders using LiF 6 The mixture ratio of LiF is 2: 1).
  • This detection sheet is translucent and has a thickness of 0.45 mm.
  • two neutron detection sheets are used on the front and rear surfaces of the lattice phosphor.
  • the fluorescence emitted from one end face of the wavelength shift fiber having one vertical axis and one horizontal axis in the first embodiment uses the fluorescence from the other end face. Is a feature.
  • the lattice-like fluorescent detector will be described.
  • the reflecting plates for reflecting the fluorescence from the phosphor neutron detection sheet that emits fluorescence when neutrons are incident are arranged in the vertical axis direction at equal intervals.
  • the interval in the vertical axis direction of the reflector is 5 mm.
  • reflectors that reflect fluorescence at right angles to the reflector array are arranged on the horizontal axis at equal intervals.
  • the interval in the horizontal axis direction of the reflector is 5 mm.
  • the material of the reflecting plate is a mirror-finished aluminum plate, the height is 2 mm, the length is 325 mm, and the thickness is 0.15 mm.
  • the upper half position of the reflectors arranged in the vertical axis direction, and the center position of the vertical axis interval which is 2.
  • a structure is provided in which a groove for passing a wavelength shift fiber for detecting the vertical axis for detecting one fluorescence is opened at a position of 5 mm. As shown in FIG. 1, the groove is formed in a semicircular square shape so that the fluorescence is not leaked to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 1.1 mm, and the length of the square part is 1.1 mm.
  • the wavelength shift fiber BCF-92MC manufactured by Saint-Gobain Co., which is sensitive to fluorescence from 350 nm to 440 nm and converts the wavelength to fluorescence of 490 nm is used.
  • the shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • a structure in which a groove for passing a wavelength-shifting fiber for detecting the horizontal axis for detecting one fluorescent light is formed at the center position of the horizontal axis interval at the position of the lower half of the reflectors arranged in the horizontal axis direction, and To do. As shown in FIG.
  • the groove is formed in a semicircular square shape so that the fluorescence is not leaked to the adjacent pixels as much as possible.
  • the diameter of the semicircular part is 1.1 mm, and the length of the square part is 1.1 mm. Since the center of the fluorescence wavelength of ZnS: Ag is 450 nm, fluorescence of a wide wavelength range from 360 nm to 540 nm is generated, and the fluorescence lifetime of the short-lived component is 300 ns. Therefore, as a wavelength shift fiber, fluorescence from 350 nm to 440 nm is used. And BCF-92MC manufactured by Saint-Gobain Co., Ltd., which converts the wavelength to fluorescence of 490 nm, is used.
  • the shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • a photodetector for detecting fluorescence shifted in wavelength from the wavelength shift fiber BCF-92MC, H7546 manufactured by Hamamatsu Photonics which is a 64-channel photomultiplier tube having a sensitive size of one channel of 2 mm ⁇ 2 mm, is used. it can.
  • Both end faces of the wavelength shift fiber for the vertical axis are respectively connected to two photomultiplier tubes and output as fluorescent electric signals. Each outputted photoelectric signal is amplified by an amplifier and then converted into a digital pulse signal by a wave height discriminator, respectively, so as to become two Y axis determination pulse signals.
  • the coincidence measurement is performed for these two Y-axis determination pulse signals (Y1-1 and Y1-2 in the case of the first pixel), and when the coincidence is established, the position of the Y-axis is determined, and the Y-axis pulse signal is Is output.
  • both end faces of the wavelength shift fiber for the horizontal axis are connected to two photomultiplier tubes, respectively, and output as fluorescent electric signals.
  • Each output photoelectric signal is amplified by an amplifier, and then converted into a digital pulse signal by a wave height discriminator, to become two X axis determination pulse signals.
  • the coincidence measurement is performed on these two X-axis determination pulse signals (X1-1 and X1-2 in the case of the first pixel), and when the coincidence is established, the position of the X-axis is determined, and the X-axis pulse signal is Is output.
  • the coincidence count is established for the Y-axis pulse signal and the X-axis pulse signal, the two-dimensional incident position of the neutron is determined.
  • the coincidence time is 1 ⁇ s, which is about three times the fluorescence lifetime of the short-life component of ZnS: Ag.
  • the simultaneous measurement measurement is performed three times to reduce the probability of the occurrence of a random background due to the after glow of ZnS: Ag.
  • Example 9 As Example 9, the structure of a pixel type two-dimensional image detector according to the present invention using a heavy particle beam detection medium will be described with reference to FIG.
  • ZnS: Ag is used as a phosphor as a heavy particle beam detection medium, and this ZnS: Ag phosphor is used at 30 mg / cm using a binder.
  • the fluorescent body weight particle beam detection sheet applied to a glass plate having a thickness of 0.1 mm with a coating amount of 1 mm is used. Further, a mirror-finished aluminum plate is used as the material of the fluorescent reflecting bottom plate disposed at the bottom.
  • the wavelength shift fiber for the vertical axis of the lattice-like fluorescence detector described next arranged behind this fluorescent body weight particle beam detection sheet is configured to be in close contact with this detection sheet, it is emitted from the detection sheet close to this close contact portion.
  • the fluorescence is absorbed by the wavelength shift fiber for the vertical axis, and the ratio detected by the wavelength shift fiber for the horizontal axis arranged below becomes very low.
  • the wavelength shift fiber BCF-92MC manufactured by Saint-Gobain Co., which is sensitive to fluorescence from 350 nm to 440 nm and converts the wavelength to fluorescence of 490 nm is used.
  • the shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • the position in this embodiment, is a space structure for passing a vertical axis detecting wavelength shift fiber for detecting one fluorescence at a position of 2.5 mm.
  • the hole has a circular shape with a diameter of 1.1 mm so that the fluorescence does not leak to the adjacent pixels, and the center position is 1 mm from the upper part of the reflector.
  • a wavelength shift fiber for detecting the vertical axis that detects one fluorescence at the position of the upper half of the reflectors arranged in the vertical axis direction and at the center position of the vertical axis interval, in this embodiment, at a position of 2.5 mm. It is a vacant structure to pass through. As shown in FIG. 9, the hole has a circular shape with a diameter of 1.1 mm so that the fluorescent light does not leak to the adjacent pixel, and its center position is 1 mm from the upper part of the reflector.
  • a sensitive part for a channel and a heavy particle beam can be a large particle beam two-dimensional image detector having a large area of 320 mm ⁇ 320 mm.
  • Example 10 As Example 10, a structure of a pixel type two-dimensional image detector according to the present invention using a heavy particle beam detection medium will be described with reference to FIG.
  • ZnS: Ag is used as a phosphor as a heavy particle beam detection medium, and this ZnS: Ag phosphor is used at 30 mg / cm using a binder.
  • the fluorescent body weight particle beam detection sheet applied to a glass plate having a thickness of 0.1 mm with a coating amount of 1 mm is used.
  • a mirror-finished aluminum plate is used as the material of the fluorescent reflecting bottom plate disposed at the bottom.
  • the wavelength shift fiber for the vertical axis of the lattice-like fluorescence detector described next arranged behind this fluorescent body weight particle beam detection sheet is configured to be in close contact with this detection sheet, it is emitted from the detection sheet close to this close contact portion.
  • the fluorescence is absorbed by the wavelength shift fiber for the vertical axis, and the ratio detected by the wavelength shift fiber for the horizontal axis disposed below becomes very low. In order to improve this defect, it is necessary to provide a distance between the fluorescent body weight particle beam detection sheet and the wavelength shift fiber for the vertical axis.
  • a gap is formed in the reflection plate by a distance that is free, and thus leakage of fluorescence to the adjacent pixels occurs.
  • the wavelength shift fiber BCF-92MC manufactured by Saint-Gobain Co., which is sensitive to fluorescence from 350 nm to 440 nm and converts the wavelength to fluorescence of 490 nm is used.
  • the shape of the wavelength shift fiber is a square, and the length of one side is 1 mm.
  • the position in the lattice-like structure constituting the reflector array of the vertical axis and the horizontal axis, at the position of the upper half of the reflectors arranged in the vertical axis direction and the center of the vertical axis interval
  • the position in this embodiment, is a space structure for passing a vertical axis detecting wavelength shift fiber for detecting one fluorescence at a position of 2.5 mm.
  • the hole has a square shape with a side of 1.1 mm so that fluorescence does not leak to adjacent pixels, and its center position is 1 mm from the top of the reflector.
  • a wavelength shift fiber for detecting the vertical axis that detects one fluorescence at the position of the upper half of the reflectors arranged in the vertical axis direction and at the center position of the vertical axis interval, in this embodiment, at a position of 2.5 mm. It is a vacant structure to pass through. As shown in FIG. 10, the hole has a square shape with a side of 1.1 mm so that fluorescence does not leak to adjacent pixels, and its center position is 1 mm from the top of the reflector.
  • a sensitive part for a channel and a heavy particle beam can be a large particle beam two-dimensional image detector having a large area of 320 mm ⁇ 320 mm.
  • Example 11 a two-dimensional neutron image detector according to the present invention will be described with reference to FIG. 11 with reference to Example 2 of a pixel type two-dimensional image detector according to the present invention using a neutron detection medium.
  • ZnS: Ag is used as the phosphor as the neutron detection medium, and the neutron converter is used.
  • a neutron detection sheet (ZnS: Ag and manufactured by AST, UK) produced by mixing binders using LiF 6 The mixture ratio of LiF is 2: 1). The thickness is 0.45 mm.
  • two neutron detection sheets are used on the front and rear surfaces of the lattice phosphor.
  • the wavelength shift fiber for the longitudinal axis of the lattice-like fluorescence detector described below arranged behind the phosphor neutron detection sheet is in close contact with the detection sheet, the fluorescence emitted from the detection sheet close to the contact portion Is absorbed by the wavelength shift fiber for the vertical axis, and the ratio detected by the wavelength shift fiber for the horizontal axis arranged below becomes very low.
  • a gap is formed in the reflection plate by a distance that is free, and thus leakage of fluorescence to the adjacent pixels occurs.
  • the wavelength shift fiber BCF-92MC manufactured by Saint-Gobain Co., which is sensitive to fluorescence from 350 nm to 440 nm and converts the wavelength to fluorescence of 490 nm is used.
  • the shape of the wavelength shift fiber is circular and the diameter is 1 mm.
  • the position in this embodiment, is a space structure for passing a vertical axis detecting wavelength shift fiber for detecting one fluorescence at a position of 2.5 mm.
  • the hole has a circular shape with a diameter of 1.1 mm so that fluorescence does not leak to adjacent pixels, and the center position is 1 mm from the upper part of the reflector.
  • a wavelength shift fiber for detecting the vertical axis that detects one fluorescence at the position of the upper half of the reflectors arranged in the vertical axis direction and at the center position of the vertical axis interval, in this embodiment, at a position of 2.5 mm. It is a vacant structure to pass through. As shown in FIG. 11, the hole has a circular shape with a diameter of 1.1 mm so that fluorescence does not leak to adjacent pixels, and its center position is 1 mm from the top of the reflector.
  • a 0.5 mm gap is provided between the neutron detection sheet placed at the bottom and the surface of the horizontal axis wavelength shift fiber, and the fluorescence concentration rate due to close contact with the empty neutron detection sheet is reduced.
  • Example 12 As Example 12, the structure of a pixel type two-dimensional image detector according to the present invention using a neutron detection medium will be described with reference to FIG.
  • ZnS Ag is used as the phosphor as the neutron detection medium, and the neutron converter is used.
  • a neutron detection sheet (ZnS: Ag and manufactured by AST, UK) produced by mixing binders using LiF 6 The mixture ratio of LiF is 2: 1). The thickness is 0.45 mm.
  • two neutron detection sheets are used on the front and rear surfaces of the lattice phosphor.
  • the wavelength shift fiber for the longitudinal axis of the lattice-like fluorescence detector described below arranged behind the phosphor neutron detection sheet is in close contact with the detection sheet, the fluorescence emitted from the detection sheet close to the contact portion Is absorbed by the wavelength shift fiber for the vertical axis, and the ratio detected by the wavelength shift fiber for the horizontal axis arranged below becomes very low.
  • the wavelength shift fiber BCF-92MC manufactured by Saint-Gobain Co., which is sensitive to fluorescence from 350 nm to 440 nm and converts the wavelength to fluorescence of 490 nm is used.
  • the shape of the wavelength shift fiber is a square, and the length of one side is 1 mm.
  • the position in this embodiment, is a space structure for passing a vertical axis detecting wavelength shift fiber for detecting one fluorescence at a position of 2.5 mm.
  • the hole is a square with a side of 1.1 mm so that fluorescence does not leak to the adjacent pixel, and its center position is 1 mm from the top of the reflector.
  • an interval of about 0.5 mm is left between the phosphor neutron detection sheet and the surface of the wavelength shift fiber for the vertical axis, and the above-described drawbacks can be improved.
  • a wavelength shift fiber for detecting the horizontal axis which detects one fluorescent light at the position of the upper half of the reflectors arranged in the horizontal axis direction and at the center position of the horizontal axis interval, in this embodiment, at a position of 2.5 mm. It is a vacant structure to pass through. As shown in FIG.
  • the hole is a square with a side of 1.1 mm so that fluorescence does not leak to the adjacent pixel, and its center position is 1 mm from the top of the reflector.
  • a sensitive area for the channel and neutron can be a large area neutron two-dimensional image detector having a size of 320 mm ⁇ 320 mm.
  • a two-dimensional image detector having a relatively simple configuration with a small number of wavelength-shifting fibers has been described in order to explain the invention in an easy-to-understand manner. Basically, a wavelength shift arranged in one pixel is described. The detection sensitivity can be further increased by increasing the number of fibers more than the number shown in the examples.
  • the case where the number of wavelength shift fibers arranged in one pixel is two has been described.
  • three or more wavelength shift fibers are arranged in one pixel to increase photoelectrons.
  • the area can be further increased and the cost of the entire two-dimensional image detector can be reduced.
  • the first and third fibers are connected to the photomultiplier tube 1 and the other is connected to the photomultiplier tube 2.
  • the first and third fibers are connected to the photomultiplier tube 1 and the second and fourth fibers are connected to the photomultiplier tube 2.
  • the same configuration can be used when a larger number is used.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

入射ピクセル以外への蛍光の漏洩を極力低減したピクセル型二次元イメージ検出器であって、蛍光体中性子検出シートからの蛍光を反射する反射板を等間隔に縦軸方向に配列し、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列し反射板列を構成した格子状構造体において、縦軸方向反射板の上半分の位置で、かつ縦軸間隔の中心位置に蛍光を検出する縦軸検出用波長シフトファイバを通すための溝を、横軸方向反射板の下半分の位置で、かつ横軸間隔の中心位置に蛍光を検出する横軸検出用波長シフトファイバを通すための溝を設けて格子状蛍光検出体を構成し、この検出体の前面にのみ、あるいは前面と背面に蛍光体中性子検出シートを配置した構造を持つ二次元中性子イメージ検出器。

Description

ピクセル型二次元イメージ検出器
 本発明は、例えばα線などの重粒子線(陽子以上の質量を持つ粒子)、あるいは中性子を蛍光体を用いて検出し、重粒子線や中性子の入射強度に関する二次元画像を高精度に作成することができるピクセル型の二次元イメージ検出器に関する。ここで対象としている二次元イメージ検出器の技術は、原子力分野、医療分野のみならず宇宙分野でも有用な技術である。
 従来、重粒子線、特にα線の二次元イメージ検出器としては、蛍光体粒子線検出シートと波長シフトファイバとを組み合わせた粒子線検出器が使用されている。また、原子炉/加速器を用いた中性子源などを利用した中性子散乱実験に使用される中性子二次元イメージ検出器としては、中性子シンチレータ、あるいは蛍光体と中性子コンバータを組み合わせた蛍光体中性子検出シートと波長シフトファイバを組み合わせた検出器が使用されている。
 これらの二次元イメージ検出器では、クロスファイバ読み取り方式を用いて位置情報を得るようにしている。重粒子線の位置蛍光体シートあるいはシンチレータ板の上面と下面に波長シフトファイバ束を面状に直角方向に配置し、同時計数法により入射位置を決定する方法、クロスファイバ読み取り方式を改良しシンチレータの背面に波長シフトファイバ束を面状に直角方向に配置し同時計数法により入射位置を決定する方法、あるいは波長シフトファイバ束を面状に直角方向に配置しその上部と下部にシンチレータを配置した方法などが使用されてきた(例えば、以下の特許文献1及び2、非特許文献1を参照)。
特開2000−187077号公報 特開2002−071816号公報 Nucl.Instr.And Meth.,A430(1999)311−320
 しかし、上述の方法では波長シフトファイバが面上に配置されているため、大面積の二次元イメージ検出器を構成するために手間がかかるという欠点と、ピクセルの境界がないため、蛍光体シートから放出される蛍光が散乱されて広がって、多くの波長シフトファイバに入射するため、入射位置のピクセル以外の周囲のピクセルに蛍光が広がるという欠点があった。
 したがって、本発明の目的は、重粒子線や中性子によって発生させられた蛍光が、入射ピクセル以外へ漏洩することを低減させることによって、重粒子線や中性子の入射強度に関する二次元画像を高精度に作成することができるピクセル型の二次元イメージ検出器を提供することにある。
 本発明においては、重粒子線を測定する検出体として、多結晶の粉体である蛍光体をバインダでガラス板等の透明な基板にバインダで塗布した蛍光体重粒子線検出シートを使用する。また、中性子を測定する検出体としては多結晶の粉体である蛍光体と中性子コンバータであるLiあるいは10B元素のうち1つ以上含んだ材料を混合しアルミニウム板等の金属基板にバインダで塗布、あるいは焼結して構成した蛍光体中性子検出シートを使用する。これらの検出シートは、入射ピクセル以外のピクセルに漏洩することをできるだけ低減できるように半透明になっている。さらにまた、これらの検出シートの厚さを0.7mm以下に設定し、漏洩面積を小さくすることによって、一層検出精度を上げることができる。
 本発明に係る二次元イメージ検出器の内で、最も簡潔な構造を持つピクセル型二次元イメージ検出器においては、これらの検出シートから放出される蛍光を検出し、重粒子線あるいは中性子の入射位置を決定する手段として、重粒子線が入射すると蛍光を放出する蛍光体重粒子検出シートからの蛍光を反射する反射板を等間隔に縦軸方向に配列し、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列し反射板列を構成した格子状構造体において、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置に1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための溝または穴をあけた構造とし、横軸方向に配列した反射板の下半分の位置で、かつ横軸間隔の中心位置に1本の蛍光を検出する横軸検出用波長シフトファイバを通すための溝または穴をあけた構造とした格子状蛍光検出体を用いる。
 上述の最も簡単な構成においては、縦軸検出用波長シフトファイバ及び横軸検出用波長シフトファイバが各ピクセルに対して1本設けられているが、より検出感度を上げたい場合には、必要に応じて各ピクセルに対してそれぞれ2本以上設けても良い。
 本発明によれば、上述のようにマトリクス状ピクセルを構成している格子状蛍光検出体の前面あるいは前面と背面の両面に、上記半透明で薄い検出体シートを配置して重粒子線あるいは中性子のイメージ検出を行うようにしたので、入射ピクセル以外への蛍光の漏洩を顕著に低減させることができる。
 図1は、重粒子線検出媒体を用いた本発明の一実施例に係るピクセル型二次元イメージ検出器の構造を示す図である。
 図2は、中性子検出媒体を用いた本発明の他の実施例に係るピクセル型二次元イメージ検出器の構造を示す図である。
 図3は、重粒子線検出媒体を用いた本発明の他の実施例に係るピクセル型二次元イメージ検出器の構造を示す図である。
 図4は、中性子検出媒体を用いた本発明の他の実施例に係るピクセル型二次元イメージ検出器の構造を示す図である。
図5は、重粒子線検出媒体を用いた本発明の他の実施例に係るピクセル型二次元イメージ検出器の構造を示す図である。
図6は、中性子検出媒体を用いた本発明の他の実施例に係るピクセル型二次元イメージ検出器の構造を示す図である。
図7は、重粒子線検出媒体を用いた本発明の他の実施例に係るピクセル型二次元イメージ検出器の構造を示す図である。
図8は、中性子検出媒体を用いた本発明の他の実施例に係るピクセル型二次元イメージ検出器の構造を示す図である。
図9は、重粒子線検出媒体を用いた本発明の他の実施例に係るピクセル型二次元イメージ検出器の構造を示す図である。
図10は、重粒子線検出媒体を用いた本発明の他の実施例に係るピクセル型二次元イメージ検出器の構造を示す図である。
図11は、中性子検出媒体を用いた本発明の他の実施例に係るピクセル型二次元イメージ検出器の構造を示す図である。
図12は、中性子検出媒体を用いた本発明の他の実施例に係るピクセル型二次元イメージ検出器の構造を示す図である。
図13(A)及び(B)は、ともに中性子二次元イメージ検出器の周囲ピクセルへの蛍光の影響を示す図である。
図14は、中性子二次元イメージ検出器の周囲ピクセルへの蛍光の影響を立体的に示す図である。
図15は、検出シートを格子状蛍光検出体の前面のみ、前面と後面の両面に配置した場合の熱中性子に対する検出効率を示す図である。
 本発明に係るピクセル型二次元イメージ検出器は、
 蛍光体粒子線検出シートからの蛍光を反射させるため、縦軸方向に等間隔に配列された縦軸方向反射板列と、該縦軸方向反射板列と同一の機能を有し、縦軸方向と直角の横軸方向に等間隔に配列された横軸方向反射板列と、縦軸方向における蛍光を検出するため、ピクセルの各縦軸間隔の均等分割位置に設けられた少なくとも1本の縦軸検出用波長シフトファイバと、横軸方向における蛍光を検出するため、ピクセルの各横軸間隔の均等分割位置に設けられた少なくとも1本の横軸検出用波長シフトファイバとから成る格子状蛍光検出体、及び
格子状蛍光検出体の前面のみ、あるいは前面と背面の両面に、重粒子線または中性子が入射することにより蛍光を放出する前記蛍光体粒子線検出シートから構成され、縦軸方向反射板と横軸方向反射板で囲まれる領域によって各ピクセルを構成しているピクセル型二次元イメージ検出器であって、
 さらに、前記縦軸方向反射板列の上半分または下半分の位置で、前記縦軸検出用波長シフトファイバをそれぞれの溝または穴に1本づつ通すために、当該縦軸反射板列に設けられた複数個の当該溝または穴と、前記横軸方向反射板列の下半分または上半分の位置で、前記横軸検出用波長シフトファイバをそれぞれの溝または穴に1本づつ通すために、当該横軸反射板列に設けられた複数個の当該溝または穴を備え、
 かつ前記蛍光体粒子線検出シートが半透明のシートであって、
 縦軸検出用波長シフトファイバと横軸検出用波長シフトファイバとから波長変換されて放出される蛍光をそれぞれ検出し、これらの検出信号を同時に計数測定することにより粒子線の入射位置を決定するようになっている。
 以上の基本構成を実際に実施した例を図1から図15を参照しながら以下に説明する。
(実施例1)
 実施例1として、重粒子線検出媒体を用いた本発明に係るピクセル型二次元イメージ検出器の構造を図1に示す。
 本実施例では重粒子線検出媒体として、蛍光体としてZnS:Agを用い、このZnS:Ag蛍光体をバインダを用いて30mg/cmの塗布量で厚さ0.1mmのガラス板に塗布した、半透明の薄い蛍光体重粒子線検出シートを用いる。また、最下部に配置される蛍光反射底板の材料については鏡面のアルミニウム板を使用する。
 次に格子状蛍光検出体について説明する。重粒子線が入射すると蛍光を放出する蛍光体重粒子線検出シートからの蛍光を反射する反射板を図1に示すように等間隔に縦軸方向に配列する。反射板の縦軸方向の間隔は5mmとする。また、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列する。反射板の横軸方向の間隔は5mmとする。反射板の材料は鏡面のアルミニウム板を使用することとし、高さ2mmで長さ325mmとし、厚さを0.15mmとした。
 この格子状構造体を作る方法として、縦軸方向に配列する反射板に横軸方向に配列する反射板の間隔の長さと同じ間隔で、反射板の厚さより100μm大きい幅の溝を反射板の奥行き幅の半分の長さ作り、横軸方向に配列する反射板に縦軸方向に配列する反射板の間隔の長さと同じ間隔で、反射板の厚さより100μm大きい幅の溝を縦軸反射板の奥行き幅の半分の長さ作り、縦軸反射板と横軸反射板を作製した溝を使って交叉させることにより作製した。以下の実施例においても同様の方法を用いて格子状構造体を作る。
 このように縦軸及び横軸の反射板列を構成した格子状構造体において、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では2.5mmの位置に1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図1に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は1.1mmとし、正方形部の長さは1.1mmとする。波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 同様に、横軸方向に配列した反射板の下半分の位置で、かつ横軸間隔の中心位置に1本の蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図1に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は1.1mmとし、正方形部の長さは1.1mmとする。
 ZnS:Agの蛍光波長の中心は450nmであり、360nmから540nmまで幅広い波長の蛍光を発生し、短寿命成分の蛍光寿命は300nsであることから、波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 このように作製した格子状蛍光検出体を構成し、この格子状蛍光検出体の前面のみに蛍光体としてZnS:Agを用い、このZnS:Ag蛍光体をバインダを用いて30mg/cmの塗布量で厚さ0.1mmのガラス板に塗布した蛍光体重粒子線検出シートを配置する。
 波長シフトファイバBCF−92MCから波長シフトされてきた蛍光を検出する光検出器としては、一つのチャネルの有感サイズが2mm×2mmの64チャンネル光電子増倍管である浜松ホトニクス製H7546を用いることができる。縦軸用及び横軸用の2本の光電子増倍管から出力された各光電気信号は増幅器で増幅した後、それぞれ波高弁別器によりデジタルパルス信号に変換され、X軸パルス信号及びY軸パルス信号となる。これらのX軸パルス信号とY軸パルス信号との同時計数測定を行うことにより、重粒子線の2次元入射位置を決定する。同時計数時間(コインシデンス時間)としては、ZnS:Agの短寿命成分の蛍光寿命の約3倍の1μsとする。
 縦軸用として反射板を65枚使用し、波長シフトファイバを64本使用すると共に、横軸用として反射板を65枚使用し波長シフトファイバを64本使用すると、縦軸64チャネル及び横軸64チャネル、重粒子線に対する有感部分が320mm×320mmの大面積の重粒子線二次元イメージ検出器とすることができる。
(実施例2)
 実施例2として、中性子検出媒体を用いた本発明に係るピクセル型二次元イメージ検出器について図2を用いて説明する。実施例2の二次元イメージ検出器の構成は、検出シートの構造を除いて基本的に実施例1と同じである。
 本実施例では中性子検出媒体として、蛍光体としてZnS:Agを用い、中性子コンバータとしてLiFを用いバインダ混合し作製した英国AST社製中性子検出シート(ZnS:AgとLiFの混合比が4:1)を用いる。この検出シートは半透明であり、その厚さは0.45mmである。
 次に格子状蛍光検出体について説明する。中性子が入射すると蛍光を放出する蛍光体中性子検出シートからの蛍光を反射する反射板を図1に示すように等間隔に縦軸方向に配列する。反射板の縦軸方向の間隔は5mmとする。また、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列する。反射板の横軸方向の間隔は5mmとする。反射板の材料は鏡面のアルミニウム板を使用することとし、高さ2mmで長さ325mmとし、厚さを0.15mmとした。
 このように縦軸及び横軸の反射板列を構成した格子状構造体において、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では2.5mmの位置に1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図1に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は1.1mmとし、正方形部の長さは1.1mmとする。波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 同様に、横軸方向に配列した反射板の下半分の位置で、かつ横軸間隔の中心位置に1本の蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図1に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は1.1mmとし、正方形部の長さは1.1mmとする。
 ZnS:Agの蛍光波長の中心は450nmであり、360nmから540nmまで幅広い波長の蛍光を発生し、短寿命成分の蛍光寿命は300nsであることから、波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 このように作製した格子状蛍光検出体を構成し、この格子状蛍光検出体の前面のみに上記AST社製0.45mm厚の中性子検出シートを配置する。
 2本の波長シフトファイバBCF−92MCは合体して光検出器に接続される。合体された波長シフトファイバから波長シフトされてきた蛍光を検出する光検出器としては、一つのチャネルの有感サイズが2mm×2mmの64チャンネル光電子増倍管である浜松ホトニクス製H7546を用いることができる。縦軸用及び横軸用の2本の増倍管から出力された各光電気信号は増幅器で増幅した後、それぞれ波高弁別器によりデジタルパルス信号に変換され、X軸パルス信号及びY軸パルス信号となる。これらのX軸パルス信号とY軸パルス信号との同時計数測定を行うことにより、中性子の2次元入射位置を決定する。同時計数時間(コインシデンス時間)としては、ZnS:Agの短寿命成分の蛍光寿命の約3倍の1μsとする。
 縦軸用として反射板を65枚使用し、波長シフトファイバを64本使用すると共に、横軸用として反射板を65枚使用し波長シフトファイバを64本使用すると、縦軸64チャネル及び横軸64チャネル、中性子に対する有感部分が320mm×320mmの大面積の中性子二次元イメージ検出器とすることができる。
 本中性子イメージ検出器の周囲ピクセルへの蛍光の影響を調べるために、パルス中性子を用いて、YAG結晶の中性子散乱実験を行った。3mm×3mm×3mmのサイズのYAG結晶を用い、中性子ビームと直角方向に本実施例の中性子イメージ検出器を50cmの距離設置して単結晶の散乱を測定した。その結果、図13の(A)及び(B)に示すように、1ピクセルのみ中性子散乱によるピークになることがわかった。確認のため、X軸方向及びY軸方向の断面分布を図14に示す。一点以外はバックグラウンド計数である。X軸及びY軸とも他のピクセルへの影響がほとんどないことが確認できた。
 また、本実施例において、中性子検出媒体として、蛍光体としてZnS:Agを用い、中性子コンバータとして10を用い焼結して作製した厚さ0.25mmのZnS/10中性子検出シート(ZnS:AgとH 10BOの混合比が3:2)を2枚用い、格子状蛍光検出体の前面と後面の両面に配置し、熱中性子に対する検出効率を測定した。同時計測時間を0.1μsから3μsまで変化させて測定した検出効率の結果を図15に示す。その結果、同時計測時間1μsの場合前面のみの場合30%の検出効率が前面と後面の両面に配置した場合48%に増加し、1.6倍向上することが確認された。
(実施例3)
 実施例3として、重粒子線検出シートを用いた他のピクセル型二次元イメージ検出器について、図3を参照して述べる。
 実施例1及び2よりさらにピクセルサイズを大きくするため、縦軸及び横軸の反射板の間隔を大きくした場合、X軸1本、Y軸1本の波長シフトファイバでは、蛍光体重粒子線検出シートから放出される蛍光を十分収集することが困難となる。このため、X軸1本、Y軸1本の波長シフトファイバの数を増加する必要が生ずる。
 また、反射板の波長シフトファイバの太さを円形状ファイバの場合は直径1mm以上、正方形状ファイバの場合には一辺が1mm以上とした場合、上部に配置されたは波長フトファイバのみに蛍光が吸収されてしまい下部に配置された波長シフトファイバによる蛍光の収集が減少し同時計数測定を行った際の計数損失が大きくなる。また、波長シフトファイバは重粒子線計測のバックグラウンドとなるガンマ線に有感であることから波長シフトファイバの太さを円形状ファイバの場合は直径1mm以上、正方形状ファイバの場合には一辺が1mm以上とした場合、その太さに応じて増加する。以上の要因のため、縦軸及び横軸の反射板の間隔に比較して、波長シフトファイバが円形の時にはその直径が小さい場合、波長シフトファイバが正方形の時にはその一辺の長さが小さい場合、蛍光体重粒子線検出シートから放出される蛍光を十分収集することが困難となる。このため、X軸1本、Y軸1本の波長シフトファイバの数を増加する必要が生ずる。
 本実施例では、ピクセルサイズを大きくするため、反射板の縦軸及び横軸の間隔が9mmの場合について述べる。反射板の材料は鏡面のアルミニウム板を使用することとし、反射板の材料は鏡面のアルミニウム板を使用することとし、高さ2mmで長さ585mmとし、厚さを0.15mmとした。
 本実施例では重粒子線検出媒体として、蛍光体としてZnS:Agを用い、このZnS:Ag蛍光体をバインダを用いて30mg/cmの塗布量で厚さ0.1mmのガラス板に塗布した蛍光体重粒子線検出シートを用いる。また、最下部に配置される蛍光反射底板の材料については鏡面のアルミニウム板を使用する。
 次に格子状蛍光検出体について説明する。重粒子線が入射すると蛍光を放出する蛍光体重粒子線検出シートからの蛍光を反射する反射板を図3に示すように等間隔に縦軸方向に配列する。反射板の縦軸方向の間隔は9mmとする。また、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列する。反射板の横軸方向の間隔は9mmとする。反射板の材料は鏡面のアルミニウム板を使用することとし、高さ2mmで長さ585mmとし、厚さを0.15mmとした。
 このように縦軸及び横軸の反射板列を構成した格子状構造体において、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では3mmの位置と6mmの位置に2本の蛍光を検出する縦軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図3に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は0.9mmとし、正方形部の長さは0.9mmとする。波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径0.8mmとする。
 同様に、横軸方向に配列した反射板の下半分の位置で、かつ横軸間隔の中心位置に1本の蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図1に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は0.9mmとし、正方形部の長さは0.9mmとする。
 ZnS:Agの蛍光波長の中心は450nmであり、360nmから540nmまで幅広い波長の蛍光を発生し、短寿命成分の蛍光寿命は300nsであることから、波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 このように作製した格子状蛍光検出体を構成し、この格子状蛍光検出体の前面のみに蛍光体としてZnS:Agを用い、このZnS:Ag蛍光体をバインダを用いて30mg/cmの塗布量で厚さ0.1mmのガラス板に塗布した蛍光体重粒子線検出シートを配置する。波長シフトファイバBCF−92MCから波長シフトされてきた蛍光を検出する光検出器としては、一つのチャネルの有感サイズが2mm×2mmの64チャンネル光電子増倍管である浜松ホトニクス製H7546を用いることができる。縦軸用及び横軸用の2本の光電子増倍管から出力された各光電気信号は増幅器で増幅した後、それぞれ波高弁別器によりデジタルパルス信号に変換され、X軸パルス信号及びY軸パルス信号となる。これらのX軸パルス信号とY軸パルス信号との同時計数測定を行うことにより、重粒子線の2次元入射位置を決定する。同時計数時間(コインシデンス時間)としては、ZnS:Agの短寿命成分の蛍光寿命の約3倍の1μsとする。
 縦軸用として反射板を65枚使用し、波長シフトファイバを64本使用すると共に、横軸用として反射板を65枚使用し波長シフトファイバを64本使用すると、縦軸64チャネル及び横軸64チャネル、重粒子線に対する有感部分が576mm×576mmの大面積の重粒子線二次元イメージ検出器とすることができる。
(実施例4)
 実施例4として、本発明による中性子検出媒体を用いた本発明に係るピクセル型二次元イメージ検出器の構造について、図4を参照して述べる。
 実施例1及び2よりさらにピクセルサイズを大きくするため、縦軸及び横軸の反射板の間隔を大きくした場合、X軸1本、Y軸1本の波長シフトファイバでは、蛍光体中性子検出シートから放出される蛍光を十分収集することが困難となる。このため、X軸1本、Y軸1本の波長シフトファイバの数を増加する必要が生ずる。
 また、反射板の波長シフトファイバの太さを円形状ファイバの場合は直径1mm以上、正方形状ファイバの場合には一辺が1mm以上とした場合、上部に配置されたは波長フトファイバのみに蛍光が吸収されてしまい下部に配置された波長シフトファイバによる蛍光の収集が減少し同時計数測定を行った際の計数損失が大きくなる。また、波長シフトファイバは中性子計測のバックグラウンドとなるガンマ線に有感であることから波長シフトファイバの太さを円形状ファイバの場合は直径1mm以上、正方形状ファイバの場合には一辺が1mm以上とした場合、その太さに応じて増加する。以上の要因のため、縦軸及び横軸の反射板の間隔に比較して、波長シフトファイバが円形の時にはその直径が小さい場合、波長シフトファイバが正方形の時にはその一辺の長さが小さい場合、蛍光体中性子検出シートから放出される蛍光を十分収集することが困難となる。このため、X軸1本、Y軸1本の波長シフトファイバの数を増加する必要が生ずる。
 本実施例では、ピクセルサイズを大きくするため、反射板の縦軸及び横軸の間隔が9mmの場合について述べる。
 本実施例では中性子検出媒体として、蛍光体としてZnS:Agを用い、中性子コンバータとしてLiFを用いバインダ混合し作製した英国AST社製中性子検出シート(ZnS:AgとLiFの混合比が2:1)を用いる。厚さは0.45mmである。本実施例ではこの中性子検出シートを2枚使用する。
 次に格子状蛍光検出体について説明する。中性子が入射すると蛍光を放出する蛍光体中性子検出シートからの蛍光を反射する反射板を図3に示すように等間隔に縦軸方向に配列する。反射板の縦軸方向の間隔は9mmとする。また、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列する。反射板の横軸方向の間隔は9mmとする。反射板の材料は鏡面のアルミニウム板を使用することとし、高さ2mmで長さ585mmとし、厚さを0.15mmとした。
 このように縦軸及び横軸の反射板列を構成した格子状構造体において、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では3mmの位置と6mmの位置に2本の蛍光を検出する縦軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図3に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は0.9mmとし、正方形部の長さは0.9mmとする。波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径0.8mmとする。
 同様に、横軸方向に配列した反射板の下半分の位置で、かつ横軸間隔の中心位置に1本の蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図1に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は0.9mmとし、正方形部の長さは0.9mmとする。
 ZnS:Agの蛍光波長の中心は450nmであり、360nmから540nmまで幅広い波長の蛍光を発生し、短寿命成分の蛍光寿命は300nsであることから、波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 このように作製した格子状蛍光検出体を構成し、この格子状蛍光検出体の前面及び背面の両面に上記AST社製0.45mm厚の中性子検出シート2枚を配置する。
 波長シフトファイバBCF−92MCから波長シフトされてきた蛍光を検出する光検出器としては、一つのチャネルの有感サイズが2mm×2mmの64チャンネル光電子増倍管である浜松ホトニクス製H7546を用いることができる。縦軸用及び横軸用の2本の光電子増倍管から出力された各光電気信号は増幅器で増幅した後、それぞれ波高弁別器によりデジタルパルス信号に変換され、X軸パルス信号及びY軸パルス信号となる。これらのX軸パルス信号とY軸パルス信号との同時計数測定を行うことにより、中性子の2次元入射位置を決定する。同時計数時間(コインシデンス時間)としては、ZnS:Agの短寿命成分の蛍光寿命の約3倍の1μsとする。
 縦軸用として反射板を65枚使用し、波長シフトファイバを64本使用すると共に、横軸用として反射板を65枚使用し波長シフトファイバを64本使用すると、縦軸64チャネル及び横軸64チャネル、中性子に対する有感部分が576mm×576mmの大面積の中性子二次元イメージ検出器とすることができる。
(実施例5)
 実施例5として、ZnS:Ag蛍光体を重粒子線検出媒体として用いた本発明に係るピクセル型二次元イメージ検出器の構造について、図5を参照して述べる。
 蛍光体としてZnSを使用した場合、短寿命成分の蛍光寿命は300nsと非常に短いが、発光に伴って遅い寿命成分の蛍光が発生する。遅い成分の蛍光寿命は約70μsと長くアフターグローと定義されている。
 この実施例では、このZnS:Agのアフターグローの影響を低減する方法について述べる。上記実施例1においては、縦軸1本及び横軸1本の波長シフトファイバからの2つの蛍光信号を同時計数処理して重粒子線の位置を決定している。重粒子線が検出器に高計数率で入射するとアフターグローの蛍光が完全に消滅しない状態となり、重粒子線が入射した位置以外にアフターグローが強い縦軸と横軸の波長シフトファイバの蛍光信号がランダムに同時計数計測が成立しバックグラウンドの位置として決定される。特に、波長シフトファイバを蛍光の検出に用いた場合、蛍光の検出効率が約3%と非常に小さいため、光検出器による蛍光の検出が一つの光毎に計数(フォトンカウンティング)して行う方法が使用されるために、ランダムに計数されるバックグラウンド計数が増加する。
 本実施例では重粒子線検出媒体として、蛍光体としてZnS:Agを用い、このZnS:Ag蛍光体をバインダを用いて30mg/cmの塗布量で厚さ0.1mmのガラス板に塗布した蛍光体重粒子線検出シートを用いる。また、最下部に配置される蛍光反射底板の材料については鏡面のアルミニウム板を使用する。
 次に格子状蛍光検出体について説明する。重粒子線が入射すると蛍光を放出する蛍光体重粒子線検出シートからの蛍光を反射する反射板を図3に示すように等間隔に縦軸方向に配列する。反射板の縦軸方向の間隔は6mmとする。また、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列する。反射板の横軸方向の間隔は6mmとする。反射板の材料は鏡面のアルミニウム板を使用することとし、高さ2mmで長さ390mmとし、厚さを0.15mmとした。
 このように縦軸及び横軸の反射板列を構成した格子状構造体において、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では2mmの位置と4mmの位置に2本の蛍光を検出する縦軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図3に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は1.1mmとし、正方形部の長さは1.1mmとする。波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 同様に、横軸方向に配列した反射板の下半分の位置で、かつ横軸間隔の中心位置に1本の蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図1に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は1.1mmとし、正方形部の長さは1.1mmとする。
 ZnS:Agの蛍光波長の中心は450nmであり、360nmから540nmまで幅広い波長の蛍光を発生し、短寿命成分の蛍光寿命は300nsであることから、波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 このように作製した格子状蛍光検出体を構成し、この格子状蛍光検出体の前面のみに蛍光体としてZnS:Agを用い、このZnS:Ag蛍光体をバインダを用いて30mg/cmの塗布量で厚さ0.1mmのガラス板に塗布した蛍光体重粒子線検出シートを配置する。
 波長シフトファイバBCF−92MCから波長シフトされてきた蛍光を検出する光検出器としては、一つのチャネルの有感サイズが2mm×2mmの64チャンネル光電子増倍管である浜松ホトニクス製H7546を用いることができる。縦軸用の2個の光電子増倍管から出力された各光電気信号は増幅器で増幅した後、それぞれ波高弁別器によりデジタルパルス信号に変換され、2つのY軸決定用パルス信号となる。この2つのY軸決定用パルス信号(1番目のピクセルの場合Y1−1及びY1−2)について同時計数測定を行い、同時計数が成立した場合Y軸の位置が決定し、Y軸パルス信号が出力される。同様に、横軸用の2個の光電子増倍管から出力された各光電気信号は増幅器で増幅した後、それぞれ波高弁別器によりデジタルパルス信号に変換され、2つのX軸決定用パルス信号となる。この2つのX軸決定用パルス信号(1番目のピクセルの場合X1−1及びX1−2)について同時計数測定を行い、同時計数が成立した場合X軸の位置が決定し、X軸パルス信号が出力される。このY軸パルス信号及びX軸パルス信号について同時計数が成立した場合、重粒子線の2次元入射位置を決定する。同時計数時間(コインシデンス時間)としては、ZnS:Agの短寿命成分の蛍光寿命の約3倍の1μsとする。
 以上のように同時計測測定を3回行うことによりZnS:Agのアフターグローに起因するランダムに発生するバックグラウンドの発生する確率を低減することを特長とする。
 縦軸用として反射板を65枚使用し、波長シフトファイバを64本使用すると共に、横軸用として反射板を65枚使用し波長シフトファイバを64本使用すると、縦軸64チャネル及び横軸64チャネル、重粒子線に対する有感部分が384mm×384mmの大面積の重粒子線二次元イメージ検出器とすることができる。
(実施例6)
 実施例6として、本発明によるZnS:Ag蛍光体を中性子検出媒体として用いた本発明に係るピクセル型二次元イメージ検出器の構造について、図6を参照して述べる。
 蛍光体としてZnSを使用した場合、短寿命成分の蛍光寿命は300nsと非常に短いが、発光に伴って遅い寿命成分の蛍光が発生する。遅い成分の蛍光寿命は約70μsと長くアフターグローと定義されている。
 実施例では、このZnS:Agのアフターグローの影響を低減する方法について述べる。上記実施例1においては、縦軸1本及び横軸1本の波長シフトファイバからの2つの蛍光信号を同時計数処理して中性子の位置を決定している。中性子が検出器に高計数率で入射するとアフターグローの蛍光が完全に消滅しない状態となり、中性子が入射した位置以外にアフターグローが強い縦軸と横軸の波長シフトファイバの蛍光信号がランダムに同時計数計測が成立しバックグラウンドの位置として決定される。特に、波長シフトファイバを蛍光の検出に用いた場合、蛍光の検出効率が約3%と非常に小さいため、光検出器による蛍光の検出が一つの光毎に計数(フォトンカウンティング)して行う方法が使用されるために、ランダムに計数されるバックグラウンド計数が増加する。
 本実施例では中性子検出媒体として、蛍光体としてZnS:Agを用い、中性子コンバータとしてLiFを用いバインダ混合し作製した英国AST社製中性子検出シート(ZnS:AgとLiFの混合比が2:1)を用いる。この検出シートは半透明であり、その厚さは0.45mmである。本実施例ではこの中性子検出シートを2枚を格子状蛍光体の前面と後面に配置して使用する。
 次に格子状蛍光検出体について説明する。中性子が入射すると蛍光を放出する蛍光体中性子検出シートからの蛍光を反射する反射板を図3に示すように等間隔に縦軸方向に配列する。反射板の縦軸方向の間隔は6mmとする。また、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列する。反射板の横軸方向の間隔は6mmとする。反射板の材料は鏡面のアルミニウム板を使用することとし、高さ2mmで長さ390mmとし、厚さを0.15mmとした。
 このように縦軸及び横軸の反射板列を構成した格子状構造体において、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では2mmの位置と4mmの位置に2本の蛍光を検出する縦軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図3に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は1.1mmとし、正方形部の長さは1.1mmとする。波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 同様に、横軸方向に配列した反射板の下半分の位置で、かつ横軸間隔の中心位置に1本の蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図1に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は1.1mmとし、正方形部の長さは1.1mmとする。
 ZnS:Agの蛍光波長の中心は450nmであり、360nmから540nmまで幅広い波長の蛍光を発生し、短寿命成分の蛍光寿命は300nsであることから、波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 波長シフトファイバBCF−92MCから波長シフトされてきた蛍光を検出する光検出器としては、一つのチャネルの有感サイズが2mm×2mmの64チャンネル光電子増倍管である浜松ホトニクス製H7546を用いることができる。縦軸用の2個の光電子増倍管から出力された各光電気信号は増幅器で増幅した後、それぞれ波高弁別器によりデジタルパルス信号に変換され、2つのY軸決定用パルス信号となる。この2つのY軸決定用パルス信号(1番目のピクセルの場合Y1−1及びY1−2)について同時計数測定を行い、同時計数が成立した場合Y軸の位置が決定し、Y軸パルス信号が出力される。同様に、横軸用の2個の光電子増倍管から出力された各光電気信号は増幅器で増幅した後、それぞれ波高弁別器によりデジタルパルス信号に変換され、2つのX軸決定用パルス信号となる。
 この2つのX軸決定用パルス信号(1番目のピクセルの場合X1−1及びX1−2)について同時計数測定を行い、同時計数が成立した場合X軸の位置が決定し、X軸パルス信号が出力される。このY軸パルス信号及びX軸パルス信号について同時計数が成立した場合、中性子の2次元入射位置を決定する。同時計数時間(コインシデンス時間)としては、ZnS:Agの短寿命成分の蛍光寿命の約3倍の1μsとする。
 以上のように同時計測測定を3回行うことによりZnS:Agのアフターグローに起因するランダムに発生するバックグラウンドの発生する確率を低減することができる。
 縦軸用として反射板を65枚使用し、波長シフトファイバを64本使用すると共に、横軸用として反射板を65枚使用し波長シフトファイバを64本使用すると、縦軸64チャネル及び横軸64チャネル、中性子に対する有感部分が384mm×384mmの大面積の中性子二次元イメージ検出器とすることができる。
(実施例7)
 実施例7として、本発明によるZnS:Ag蛍光体を重粒子線検出媒体として用いた本発明に係るピクセル型二次元イメージ検出器の構造について、図7を参照して述べる。
 蛍光体としてZnSを使用した場合、短寿命成分の蛍光寿命は300nsと非常に短いが、発光に伴って遅い寿命成分の蛍光が発生する。遅い成分の蛍光寿命は約70μsと長くアフターグローと定義されている。
 本実施例では、このZnS:Agのアフターグローの影響を低減する方法について述べる。上記実施例1においては、縦軸1本及び横軸1本の波長シフトファイバの片方の端面から放出する蛍光からの2つの蛍光信号を同時計数処理して重粒子線の位置を決定している。重粒子線が検出器に高計数率で入射するとアフターグローの蛍光が完全に消滅しない状態となり、重粒子線が入射した位置以外にアフターグローが強い縦軸と横軸の波長シフトファイバの蛍光信号がランダムに同時計数計測が成立しバックグラウンドの位置として決定される。特に、波長シフトファイバを蛍光の検出に用いた場合、蛍光の検出効率が約3%と非常に小さいため、光検出器による蛍光の検出が一つの光毎に計数(フォトンカウンティング)して行う方法が使用されるために、ランダムに計数されるバックグラウンド計数が増加する。
 本実施例では重粒子線検出媒体として、蛍光体としてZnS:Agを用い、このZnS:Ag蛍光体をバインダを用いて30mg/cmの塗布量で厚さ0.1mmのガラス板に塗布した蛍光体重粒子線検出シートを用いる。このため、アフターグローの影響を受けることになる。また、最下部に配置される蛍光反射底板の材料については鏡面のアルミニウム板を使用する。
 このため、本実施例においては、実施例1における縦軸1本及び横軸1本の波長シフトファイバの片方の端面のみから放出される蛍光だけではなく、もう1方の端面からの蛍光も利用するようにしている。
 格子状蛍光検出体について説明する。重粒子線が入射すると蛍光を放出する蛍光体重粒子線検出シートからの蛍光を反射する反射板を図3に示すように等間隔に縦軸方向に配列する。反射板の縦軸方向の間隔は5mmとする。また、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列する。反射板の横軸方向の間隔は5mmとする。反射板の材料は鏡面のアルミニウム板を使用することとし、高さ2mmで長さ325mmとし、厚さを0.15mmとした。
 このように縦軸及び横軸の反射板列を構成した格子状構造体において、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では2.5mmの位置に1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図1に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は1.1mmとし、正方形部の長さは1.1mmとする。波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 同様に、横軸方向に配列した反射板の下半分の位置で、かつ横軸間隔の中心位置に1本の蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図1に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は1.1mmとし、正方形部の長さは1.1mmとする。
 ZnS:Agの蛍光波長の中心は450nmであり、360nmから540nmまで幅広い波長の蛍光を発生し、短寿命成分の蛍光寿命は300nsであることから、波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 このように作製した格子状蛍光検出体を構成し、この格子状蛍光検出体の前面のみに蛍光体としてZnS:Agを用い、このZnS:Ag蛍光体をバインダを用いて30mg/cmの塗布量で厚さ0.1mmのガラス板に塗布した蛍光体重粒子線検出シートを配置する。
 波長シフトファイバBCF−92MCから波長シフトされてきた蛍光を検出する光検出器としては、一つのチャネルの有感サイズが2mm×2mmの64チャンネル光電子増倍管である浜松ホトニクス製H7546を用いることができる。縦軸用波長シフトファイバの両方の端面はそれぞれ2個の光電子増倍管に接続され、蛍光電気信号として出力される。出力された各光電気信号は増幅器で増幅した後、それぞれ波高弁別器によりデジタルパルス信号に変換され、2つのY軸決定用パルス信号となる。この2つのY軸決定用パルス信号(1番目のピクセルの場合Y1−1及びY1−2)について同時計数測定を行い、同時計数が成立した場合Y軸の位置が決定し、Y軸パルス信号が出力される。同様に、横軸用波長シフトファイバの両方の端面はそれぞれ2個の光電子増倍管に接続され、蛍光電気信号として出力される。出力された各光電気信号は増幅器で増幅した後、それぞれ波高弁別器によりデジタルパルス信号に変換され、2つのX軸決定用パルス信号となる。この2つのX軸決定用パルス信号(1番目のピクセルの場合X1−1及びX1−2)について同時計数測定を行い、同時計数が成立した場合X軸の位置が決定し、X軸パルス信号が出力される。
 このY軸パルス信号及びX軸パルス信号について同時計数が成立した場合、重粒子線の2次元入射位置を決定する。同時計数時間(コインシデンス時間)としては、ZnS:Agの短寿命成分の蛍光寿命の約3倍の1μsとする。
 以上のように同時計測測定を3回行うことによりZnS:Agのアフターグローに起因するランダムに発生するバックグラウンドの発生する確率を低減することを特長とする。
 縦軸用として反射板を65枚使用し、波長シフトファイバを64本使用すると共に、横軸用として反射板を65枚使用し波長シフトファイバを64本使用すると、縦軸64チャネル及び横軸64チャネル、重粒子線に対する有感部分が320mm×320mmの大面積の重粒子線二次元イメージ検出器とすることができる。
(実施例8)
 実施例8として、本発明によるZnS:Ag蛍光体を中性子検出媒体として用いた本発明に係るピクセル型二次元イメージ検出器の構造について、図8を参照して述べる。
 蛍光体としてZnSを使用した場合、図に示すように、短寿命成分の蛍光寿命は300nsと非常に短いが、発光に伴って遅い寿命成分の蛍光が発生する。遅い成分の蛍光寿命は約70μsと長くアフターグローと定義されている。
 本実施例では、このZnS:Agのアフターグローの影響を低減する方法について述べる。上記実施例1においては、縦軸1本及び横軸1本の波長シフトファイバの片方の端面から放出する蛍光からの2つの蛍光信号を同時計数処理して重粒子線の位置を決定している。中性子が検出器に高計数率で入射するとアフターグローの蛍光が完全に消滅しない状態となり、中性子が入射した位置以外にアフターグローが強い縦軸と横軸の波長シフトファイバの蛍光信号がランダムに同時計数計測が成立しバックグラウンドの位置として決定される。特に、波長シフトファイバを蛍光の検出に用いた場合、蛍光の検出効率が約3%と非常に小さいため、光検出器による蛍光の検出が一つの光毎に計数(フォトンカウンティング)して行う方法が使用されるために、ランダムに計数されるバックグラウンド計数が増加する。
 本実施例の中性子検出媒体では、蛍光体としてZnS:Agを用い、中性子コンバータとしてLiFを用いバインダ混合し作製した英国AST社製中性子検出シート(ZnS:AgとLiFの混合比が2:1)を用いる。この検出シートは半透明であり、その厚さは0.45mmである。本実施例ではこの中性子検出シートを2枚を格子状蛍光体の前面と後面に配置して使用する。
 このため、本実施例においては、実施例1における縦軸1本及び横軸1本の波長シフトファイバの片方の端面のみから放出する蛍光だけでは、もう1方の端面からの蛍光を利用することが特長である。
 格子状蛍光検出体について説明する。中性子が入射すると蛍光を放出する蛍光体中性子検出シートからの蛍光を反射する反射板を図3に示すように等間隔に縦軸方向に配列する。反射板の縦軸方向の間隔は5mmとする。また、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列する。反射板の横軸方向の間隔は5mmとする。反射板の材料は鏡面のアルミニウム板を使用することとし、高さ2mmで長さ325mmとし、厚さを0.15mmとした。
 このように縦軸及び横軸の反射板列を構成した格子状構造体において、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では2.5mmの位置に1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図1に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は1.1mmとし、正方形部の長さは1.1mmとする。波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 同様に、横軸方向に配列した反射板の下半分の位置で、かつ横軸間隔の中心位置に1本の蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造とする。溝は図1に示すように、隣のピクセルに蛍光ができるだけ漏洩しないように半円形正方形状とする。半円形部の直径は1.1mmとし、正方形部の長さは1.1mmとする。
 ZnS:Agの蛍光波長の中心は450nmであり、360nmから540nmまで幅広い波長の蛍光を発生し、短寿命成分の蛍光寿命は300nsであることから、波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 波長シフトファイバBCF−92MCから波長シフトされてきた蛍光を検出する光検出器としては、一つのチャネルの有感サイズが2mm×2mmの64チャンネル光電子増倍管である浜松ホトニクス製H7546を用いることができる。縦軸用波長シフトファイバの両方の端面はそれぞれ2個の光電子増倍管に接続され、蛍光電気信号として出力される。出力された各光電気信号は増幅器で増幅した後、それぞれ波高弁別器によりデジタルパルス信号に変換され、2つのY軸決定用パルス信号となる。この2つのY軸決定用パルス信号(1番目のピクセルの場合Y1−1及びY1−2)について同時計数測定を行い、同時計数が成立した場合Y軸の位置が決定し、Y軸パルス信号が出力される。同様に、横軸用波長シフトファイバの両方の端面はそれぞれ2個の光電子増倍管に接続され、蛍光電気信号として出力される。
 出力された各光電気信号は増幅器で増幅された後、それぞれ波高弁別器によりデジタルパルス信号に変換され、2つのX軸決定用パルス信号となる。この2つのX軸決定用パルス信号(1番目のピクセルの場合X1−1及びX1−2)について同時計数測定を行い、同時計数が成立した場合X軸の位置が決定し、X軸パルス信号が出力される。
 このY軸パルス信号及びX軸パルス信号について同時計数が成立した場合、中性子の2次元入射位置を決定する。同時計数時間(コインシデンス時間)としては、ZnS:Agの短寿命成分の蛍光寿命の約3倍の1μsとする。
 以上のように同時計測測定を3回行うことによりZnS:Agのアフターグローに起因するランダムに発生するバックグラウンドの発生する確率を低減することを特長とする。
 縦軸用として反射板を65枚使用し、波長シフトファイバを64本使用すると共に、横軸用として反射板を65枚使用し波長シフトファイバを64本使用すると、縦軸64チャネル及び横軸64チャネル、中性子に対する有感部分が320mm×320mmの大面積の重粒子線二次元イメージ検出器とすることができる。
(実施例9)
 実施例9として、図9を参照して重粒子線検出媒体を用いた本発明に係るピクセル型二次元イメージ検出器の構造について説明する。
 本実施例では重粒子線検出媒体として、蛍光体としてZnS:Agを用い、このZnS:Ag蛍光体をバインダを用いて30mg/cmの塗布量で厚さ0.1mmのガラス板に塗布した蛍光体重粒子線検出シートを用いる。また、最下部に配置される蛍光反射底板の材料については鏡面のアルミニウム板を使用する。
 この蛍光体重粒子線検出シートの背後に配置された次に説明する格子状蛍光検出体の縦軸用波長シフトファイバがこの検出シート密着した構成とした場合この密着部分に近い検出シートから放出された蛍光は縦軸用波長シフトファイバに吸収されてしまい、下に配置される横軸用波長シフトファイバに検出される割合が非常に低くなる。この欠点を改善するためには、蛍光体重粒子線検出シートと縦軸用波長シフトファイバとの間に距離をおく必要がある。これを実施例1で実現しようとすると、空けた距離だけの分反射板に隙間ができるため、隣のピクセルへの蛍光の漏洩が生じてしまう。
 波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 これを改善するため、本実施例では、縦軸及び横軸の反射板列を構成した格子状構造体において、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では2.5mmの位置に1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための空けた構造とする。穴は図9に示すように、隣のピクセルに蛍光が漏洩しないように直径は1.1mmの円形とし、その中心位置は反射板上部より1mmとする。このような構成にすることにより蛍光体重粒子線検出シートと縦軸用波長シフトファイバの表面との間には0.5mmの間隔が空き、上記した欠点を改善することができる。
 同様に、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では2.5mmの位置に1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための空けた構造とする。穴は図9に示すように、隣のピクセルに蛍光が漏洩しないように直径は1.1mmの円形とし、その中心位置は反射板上部より1mmとする。このような構成にすることにより最下部に置かれた蛍光反射底板と横軸用波長シフトファイバの表面との間には0.5mmの間隔が空き、蛍光反射底板との密着による蛍光集光率の低下を改善することができる。
 このように作製した格子状蛍光検出体の使用方法等以降については実施例1と同じなので省略する。
 縦軸用として反射板を65枚使用し、波長シフトファイバを64本使用すると共に、横軸用として反射板を65枚使用し波長シフトファイバを64本使用すると、縦軸64チャネル及び横軸64チャネル、重粒子線に対する有感部分が320mm×320mmの大面積の重粒子線二次元イメージ検出器とすることができる。
(実施例10)
 実施例10として、図10を参照して、重粒子線検出媒体を用いた本発明に係るピクセル型二次元イメージ検出器の構造について説明する。
 本実施例では重粒子線検出媒体として、蛍光体としてZnS:Agを用い、このZnS:Ag蛍光体をバインダを用いて30mg/cmの塗布量で厚さ0.1mmのガラス板に塗布した蛍光体重粒子線検出シートを用いる。また、最下部に配置される蛍光反射底板の材料については鏡面のアルミニウム板を使用する。
 この蛍光体重粒子線検出シートの背後に配置された次に説明する格子状蛍光検出体の縦軸用波長シフトファイバがこの検出シート密着した構成とした場合この密着部分に近い検出シートから放出された蛍光は縦軸用波長シフトファイバに吸収されてしまい、下に配置される横軸用波長シフトファイバに検出される割合が非常に低くなる。この欠点を改善するためには、蛍光体重粒子線検出シートと縦軸用波長シフトファイバとの間に距離をおく必要がある。これを実施例1で実現しようとすると、空けた距離だけの分反射板に隙間ができるため、隣のピクセルへの蛍光の漏洩が生じてしまう。
 波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は正方形とし、一辺の長さを1mmとする。
 これを改善するため、本実施例では、縦軸及び横軸の反射板列を構成した格子状構造体において、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では2.5mmの位置に1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための空けた構造とする。穴は図10に示すように、隣のピクセルに蛍光が漏洩しないように一辺が1.1mmの正方形とし、その中心位置は反射板上部より1mmとする。このような構成にすることにより蛍光体重粒子線検出シートと縦軸用波長シフトファイバの表面との間には約0.5mmの間隔が空き、上記した欠点を改善することができる。
 同様に、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では2.5mmの位置に1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための空けた構造とする。穴は図10に示すように、隣のピクセルに蛍光が漏洩しないように一辺が1.1mmの正方形とし、その中心位置は反射板上部より1mmとする。このような構成にすることにより最下部に置かれた蛍光反射底板と横軸用波長シフトファイバの表面との間には約0.5mmの間隔が空き、蛍光反射底板との密着による蛍光集光率の低下を改善することができる。
 このように作製した格子状蛍光検出体の使用方法等以降については実施例1と同じなので省略する。
 縦軸用として反射板を65枚使用し、波長シフトファイバを64本使用すると共に、横軸用として反射板を65枚使用し波長シフトファイバを64本使用すると、縦軸64チャネル及び横軸64チャネル、重粒子線に対する有感部分が320mm×320mmの大面積の重粒子線二次元イメージ検出器とすることができる。
(実施例11)
 実施例11として、中性子検出媒体を用いた本発明に係るピクセル型二次元イメージ検出器の構造実施例2を参照して、図11をもとに本発明による2次元中性子イメージ検出器を説明する。
 本実施例では中性子検出媒体として、蛍光体としてZnS:Agを用い、中性子コンバータとしてLiFを用いバインダ混合し作製した英国AST社製中性子検出シート(ZnS:AgとLiFの混合比が2:1)を用いる。厚さは0.45mmである。本実施例ではこの中性子検出シートを2枚を格子状蛍光体の前面と後面に配置して使用する。
 この蛍光体中性子検出シートの背後に配置された次に説明する格子状蛍光検出体の縦軸用波長シフトファイバがこの検出シート密着した構成とした場合この密着部分に近い検出シートから放出された蛍光は縦軸用波長シフトファイバに吸収されてしまい、下に配置される横軸用波長シフトファイバに検出される割合が非常に低くなる。この欠点を改善するためには、蛍光体中性子検出シートと縦軸用波長シフトファイバとの間に距離をおく必要がある。これを実施例1で実現しようとすると、空けた距離だけの分反射板に隙間ができるため、隣のピクセルへの蛍光の漏洩が生じてしまう。
 波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は円形とし、直径1mmとする。
 これを改善するため、本実施例では、縦軸及び横軸の反射板列を構成した格子状構造体において、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では2.5mmの位置に1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための空けた構造とする。穴は図11に示すように、隣のピクセルに蛍光が漏洩しないように直径は1.1mmの円形とし、その中心位置は反射板上部より1mmとする。このような構成にすることにより蛍光体重粒子線検出シートと縦軸用波長シフトファイバの表面との間には0.5mmの間隔が空き、上記した欠点を改善することができる。
 同様に、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では2.5mmの位置に1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための空けた構造とする。穴は図11に示すように、隣のピクセルに蛍光が漏洩しないように直径は1.1mmの円形とし、その中心位置は反射板上部より1mmとする。このような構成にすることにより最下部に置かれた中性子検出シートと横軸用波長シフトファイバの表面との間には0.5mmの間隔が空き中性子検出シートとの密着による蛍光集光率の低下を改善することができる。
 このように作製した格子状蛍光検出体の使用方法等以降については実施例2と同じなので省略する。
 縦軸用として反射板を65枚使用し、波長シフトファイバを64本使用すると共に、横軸用として反射板を65枚使用し波長シフトファイバを64本使用すると、縦軸64チャネル及び横軸64チャネル、中性子に対する有感部分が320mm×320mmの大面積の中性子二次元イメージ検出器とすることができる。
(実施例12)
 実施例12として、図12を参照して中性子検出媒体を用いた本発明に係るピクセル型二次元イメージ検出器の構造について説明する。
 本実施例では中性子検出媒体として、蛍光体としてZnS:Agを用い、中性子コンバータとしてLiFを用いバインダ混合し作製した英国AST社製中性子検出シート(ZnS:AgとLiFの混合比が2:1)を用いる。厚さは0.45mmである。本実施例ではこの中性子検出シートを2枚を格子状蛍光体の前面と後面に配置して使用する。
 この蛍光体中性子検出シートの背後に配置された次に説明する格子状蛍光検出体の縦軸用波長シフトファイバがこの検出シート密着した構成とした場合この密着部分に近い検出シートから放出された蛍光は縦軸用波長シフトファイバに吸収されてしまい、下に配置される横軸用波長シフトファイバに検出される割合が非常に低くなる。この欠点を改善するためには、蛍光体重粒子線検出シートと縦軸用波長シフトファイバとの間に距離をおく必要がある。これを実施例1で実現しようとすると、空けた距離だけの分反射板に隙間ができるため、隣のピクセルへの蛍光の漏洩が生じてしまう。
 波長シフトファイバとしては、350nmから440nmまでの蛍光に感度があり、490nmの蛍光に波長変換するサンゴバン社製BCF−92MCを用いる。波長シフトファイバの形状は正方形とし、一辺の長さを1mmとする。
 これを改善するため、本実施例では、縦軸及び横軸の反射板列を構成した格子状構造体において、縦軸方向に配列した反射板の上半分の位置で、かつ縦軸間隔の中心位置、本実施例では2.5mmの位置に1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための空けた構造とする。穴は図12に示すように、隣のピクセルに蛍光が漏洩しないように一辺が1.1mmの正方形とし、その中心位置は反射板上部より1mmとする。このような構成にすることにより蛍光体中性子検出シートと縦軸用波長シフトファイバの表面との間には約0.5mmの間隔が空き、上記した欠点を改善することができる。
 同様に、横軸方向に配列した反射板の上半分の位置で、かつ横軸間隔の中心位置、本実施例では2.5mmの位置に1本の蛍光を検出する横軸検出用波長シフトファイバを通すための空けた構造とする。穴は図12に示すように、隣のピクセルに蛍光が漏洩しないように一辺が1.1mmの正方形とし、その中心位置は反射板上部より1mmとする。このような構成にすることにより最下部に置かれた蛍光反射底板と横軸用波長シフトファイバの表面との間には約0.5mmの間隔が空き、中性子検出シートとの密着による蛍光集光率の低下を改善することができる。
 このように作製した格子状蛍光検出体の使用方法等以降については実施例1と同じなので省略する。
 縦軸用として反射板を65枚使用し、波長シフトファイバを64本使用すると共に、横軸用として反射板を65枚使用し波長シフトファイバを64本使用すると、縦軸64チャネル及び横軸64チャネル、中性子に対する有感部分が320mm×320mmの大面積の中性子二次元イメージ検出器とすることができる。
 以上の実施例においては、発明をわかり易く説明するため、波長シフトファイバ本数が少ない比較的簡単な構成の二次元イメージ検出器について説明したが、基本的には、一つのピクセルに配置される波長シフトファイバの数を、実施例に示された本数よりも多くすることにより、検出感度をさらに増大させることができる。
 また、以上の実施例においては、一つのピクセルに配置される波長シフトファイバの本数が2本の場合について説明しているが、3本以上の波長シフトファイバを一つのピクセルに配置し、光電子増倍管に接続することにより、一層の大面積化を実現すると共に二次元イメージ検出器全体のコストを低減することができる。例えば3本の場合は、1番目と3番目のファイバを光電子増倍管1そしてもう1本を光電子増倍管2に接続するように構成する。また、例えば4本の場合は、1番目と3番目のファイバを光電子増倍管1そして2番目と4番目を光電子増倍管2に接続するように構成する。それ以上の本数を使用する場合も同様に構成することができる。

Claims (10)

  1. 重粒子線が入射すると蛍光を放出する蛍光体重粒子線検出シートからの蛍光を反射する反射板を等間隔に縦軸方向に配列し、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列し反射板列を構成した格子状ピクセル構造体において、縦軸方向に配列した反射板の上半分または下半分の位置で、かつ縦軸間隔の中心位置に1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための溝をあけた構造とし、横軸方向に配列した反射板の下半分または上半分の位置で、かつ横軸間隔の中心位置に1本の蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造として格子状蛍光検出体を構成し、この格子状蛍光検出体の前面のみ、あるいは前面と背面の両面に重粒子線が入射することにより蛍光を放出する半透明の前記蛍光体重粒子線検出シートを配置し、縦軸検出用波長シフトファイバと横軸検出用波長シフトファイバから波長変換されて放出される蛍光をそれぞれ光検出器で検出して、縦軸パルス信号と横軸パルス信号とし、この縦軸パルス信号と横軸パルス信号との同時計数測定を行うことにより重粒子線の入射位置を決定することを特徴としたピクセル型二次元イメージ検出器。
  2. 中性子が入射すると蛍光を放出する蛍光体に中性子コンバータであるLiあるいは10B元素のうち1つ以上含んだ材料を混合した蛍光体中性子検出シートからの蛍光を反射する反射板を等間隔に縦軸方向に配列し、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列し反射板列を構成した格子状ピクセル構造体において、縦軸方向に配列した反射板の上半分または下半分の位置で、かつ縦軸間隔の中心位置に蛍光を検出する縦軸検出用波長シフトファイバを通すための溝をあけた構造とし、横軸方向に配列した反射板の下半分または上半分の位置で、かつ横軸間隔の中心位置に蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造として格子状蛍光検出体を構成し、この格子状蛍光検出体の前面のみ、あるいは前面と背面の両面に中性子が入射することにより蛍光を放出する半透明の蛍光体中性子検出シートを配置し、縦軸検出用波長シフトファイバと横軸検出用波長シフトファイバから波長変換されて放出される蛍光をそれぞれ光検出器で検出して、縦軸パルス信号と横軸パルス信号とし、この縦軸パルス信号と横軸パルス信号との同時計数測定を行うことにより中性子の入射位置を決定することを特徴としたピクセル型二次元イメージ検出器。
  3. 重粒子線が入射すると蛍光を放出する蛍光体重粒子線検出シートからの蛍光を反射する反射板を等間隔に縦軸方向に配列し、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列し反射板列を構成した格子状ピクセル構造体において、縦軸方向に配列した反射板の上半分または下半分の位置で、かつ縦軸間隔を3分の1に分割した2つの位置に蛍光を検出する縦軸検出用波長シフトファイバを通すための2つの溝をあけた構造とし、横軸方向に配列した反射板の下半分または上半分の位置で、かつ横軸間隔を3分の1に分割した2つの位置に蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造として格子状蛍光検出体を構成し、この格子状蛍光検出体の前面のみ、あるいは前面と背面の両面に重粒子線が入射することにより蛍光を放出する半透明の前記蛍光体重粒子線検出シートを配置し、2本以上の縦軸検出用波長シフトファイバと2本以上の横軸検出用波長シフトファイバから波長変換されて放出される蛍光をそれぞれ光検出器で検出して、縦軸パルス信号と横軸パルス信号とし、この縦軸パルス信号と横軸パルス信号との同時計数測定を行うことにより重粒子線の入射位置を決定することを特徴としたピクセル型二次元イメージ検出器。
  4. 中性子が入射すると蛍光を放出する蛍光体に中性子コンバータであるLiあるいは10B元素のうち1つ以上含んだ材料を混合した蛍光体中性子検出シートからの蛍光を反射する反射板を等間隔に縦軸方向に配列し、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列し反射板列を構成した格子状ピクセル構造体において、縦軸方向に配列した反射板の上半分または下半分の位置で、かつ縦軸間隔を3分の1に分割した2つの位置に蛍光を検出する縦軸検出用波長シフトファイバを通すための2つの溝をあけた構造とし、横軸方向に配列した反射板の下半分または上半分の位置で、かつ横軸間隔を3分の1に分割した2つの位置に蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造として格子状蛍光検出体を構成し、この格子状蛍光検出体の前面のみ、あるいは前面と背面の両面に重粒子線が入射することにより蛍光を放出する半透明の前記蛍光体中性子検出シートを配置し、2本以上の縦軸検出用波長シフトファイバと2本以上の横軸検出用波長シフトファイバから波長変換されて放出される蛍光をそれぞれ光検出器で検出して、縦軸パルス信号と横軸パルス信号とし、この縦軸パルス信号と横軸パルス信号との同時計数測定を行うことにより中性子の入射位置を決定することを特徴としたピクセル型二次元イメージ検出器。
  5. 重粒子線が入射すると蛍光を放出する蛍光体としてZnS:Agを用いた蛍光体重粒子線検出シートからの蛍光を反射する反射板を等間隔に縦軸方向に配列し、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列し反射板列を構成した格子状ピクセル構造体において、縦軸方向に配列した反射板の上半分または下半分の位置で、かつ縦軸間隔を3分の1に分割した2つの位置に蛍光を検出する縦軸検出用波長シフトファイバを通すための2つの溝をあけた構造とし、横軸方向に配列した反射板の下半分または上半分の位置で、かつ横軸間隔を3分の1に分割した2つの位置に蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造として格子状蛍光検出体を構成し、この格子状蛍光検出体の前面のみ、あるいは前面と背面の両面に重粒子線が入射することにより蛍光を放出する、半透明の前記蛍光体重粒子線検出シートを配置し、2本以上の縦軸検出用波長シフトファイバからの蛍光をそれぞれ2つの光検出器で検出して2つのパルス信号とし同時計数測定を行い成立した時に縦軸パルス信号とし、2本以上の横軸検出用波長シフトファイバからの蛍光をそれぞれ2つの光検出器で検出して2つのパルス信号とし同時計数測定を行い成立した時に横軸パルス信号とし、この縦軸パルス信号と横軸パルス信号との同時計数測定を行うことにより重粒子線の入射位置を決定することを特徴としたピクセル型二次元イメージ検出器。
  6. 中性子が入射すると蛍光を放出する蛍光体に中性子コンバータであるLiあるいは10B元素のうち1つ以上含んだ材料を混合した蛍光体中性子検出シートからの蛍光を反射する反射板を等間隔に縦軸方向に配列し、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列し反射板列を構成した格子状ピクセル構造体において、縦軸方向に配列した反射板の上半分または下半分の位置で、かつ縦軸間隔を3分の1に分割した2つの位置に蛍光を検出する縦軸検出用波長シフトファイバを通すための2つの溝をあけた構造とし、横軸方向に配列した反射板の下半分または上半分の位置で、かつ横軸間隔を3分の1に分割した2つの位置に蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造として格子状蛍光検出体を構成し、この格子状蛍光検出体の前面のみ、あるいは前面と背面の両面に中性子が入射することにより蛍光を放出する半透明の前記蛍光体中性子検出シートを配置し、2本以上の縦軸検出用波長シフトファイバからの蛍光をそれぞれ2つの光検出器で検出して2つのパルス信号とし同時計数測定を行い成立した時に縦軸パルス信号とし、2本以上の横軸検出用波長シフトファイバからの蛍光をそれぞれ光検出器で検出して2つのパルス信号とし同時計数測定を行い成立した時に横軸パルス信号とし、この縦軸パルス信号と横軸パルス信号との同時計数測定を行うことにより中性子の入射位置を決定することを特徴としたピクセル型二次元イメージ検出器。
  7. 重粒子線が入射すると蛍光を放出する蛍光体重粒子線検出シートからの蛍光を反射する反射板を等間隔に縦軸方向に配列し、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列し反射板列を構成した格子状ピクセル構造体において、縦軸方向に配列した反射板の上半分または下半分の位置で、かつ縦軸間隔の位置に少なくとも1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための溝をあけた構造とし、横軸方向に配列した反射板の下半分または上半分の位置で、かつ横軸間隔の位置に少なくとも1本の蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造として格子状蛍光検出体を構成し、この格子状蛍光検出体の前面のみ、あるいは前面と背面の両面に重粒子線が入射することにより蛍光を放出する半透明の前記蛍光体重粒子線検出シートを配置し、縦軸検出用波長シフトファイバの両端から波長変換されて放出される蛍光をそれぞれ2つの光検出器で検出し、2つのパルス信号とし同時計数測定を行い成立した時に縦軸パルス信号とし、また、横軸検出用波長シフトファイバの両端から波長変換されて放出される蛍光をそれぞれ2つの光検出器で検出し、2つのパルス信号とし同時計数測定を行い成立した時に横軸パルス信号とし、この縦軸パルス信号と横軸パルス信号との同時計数測定を行うことにより重粒子線の入射位置を決定することを特徴としたピクセル型二次元イメージ検出器。
  8. 中性子が入射すると蛍光を放出する蛍光体に中性子コンバータであるLiあるいは10B元素のうち1つ以上含んだ材料を混合した蛍光体中性子検出シートからの蛍光反射する反射板を等間隔に縦軸方向に配列し、この反射板列に直角に蛍光を反射する反射板を等間隔に横軸に配列し反射板列を構成した格子状ピクセル構造体において、縦軸方向に配列した反射板の上半分または下半分の位置で、かつ縦軸間隔の位置に少なくとも1本の蛍光を検出する縦軸検出用波長シフトファイバを通すための溝をあけた構造とし、横軸方向に配列した反射板の下半分または上半分の位置で、かつ横軸間隔の位置に少なくとも1本の蛍光を検出する横軸検出用波長シフトファイバを通すための溝をあけた構造として格子状蛍光検出体を構成し、この格子状蛍光検出体の前面のみ、あるいは前面と背面の両面に中性子が入射することにより蛍光を放出する半透明の前記蛍光体中性子検出シートを配置し、縦軸検出用波長シフトファイバの両端から波長変換されて放出される蛍光をそれぞれ2つの光検出器で検出し、2つのパルス信号とし同時計数測定を行い成立した時に縦軸パルス信号とし、また、横軸検出用波長シフトファイバの両端から波長変換されて放出される蛍光をそれぞれ2つの光検出器で検出し、2つのパルス信号とし同時計数測定を行い成立した時に横軸パルス信号とし、この縦軸パルス信号と横軸パルス信号との同時計数測定を行うことにより中性子の入射位置を決定することを特徴としたピクセル型二次元イメージ検出器。
  9. 請求項1乃至8のいずれか1項において、前記溝の代わりに、波長シフトファイバが円形をしている場合には、円状の穴を縦軸方向に配列した反射板の上半分または下半分に、横軸方向に配列した反射板の下半分または上半分に形成することを特徴としたピクセル型二次元イメージ検出器。
  10. 請求項1乃至8のいずれか1項において、前記溝の代わりに、波長シフトファイバが正方形をしている場合には、正方形状の穴を縦軸方向に配列した反射板の上半分または下半分に、正方形状の穴を横軸方向に配列した反射板の下半分または上半分に形成することを特徴としたピクセル型二次元イメージ検出器。
PCT/JP2011/050231 2010-01-08 2011-01-04 ピクセル型二次元イメージ検出器 WO2011083868A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/520,451 US8993973B2 (en) 2010-01-08 2011-01-04 Pixel-type two-dimensional image detector
EP11731866.7A EP2533072B1 (en) 2010-01-08 2011-01-04 Pixel type two-dimensional image detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-003182 2010-01-08
JP2010003182A JP5548892B2 (ja) 2010-01-08 2010-01-08 ピクセル型二次元イメージ検出器

Publications (1)

Publication Number Publication Date
WO2011083868A1 true WO2011083868A1 (ja) 2011-07-14

Family

ID=44305603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050231 WO2011083868A1 (ja) 2010-01-08 2011-01-04 ピクセル型二次元イメージ検出器

Country Status (4)

Country Link
US (1) US8993973B2 (ja)
EP (1) EP2533072B1 (ja)
JP (1) JP5548892B2 (ja)
WO (1) WO2011083868A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10367718B2 (en) 2013-10-26 2019-07-30 Huawei Technologies Co., Ltd. Method for acquiring, by SDN switch, exact flow entry, and SDN switch, controller, and system

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9958569B2 (en) 2002-07-23 2018-05-01 Rapiscan Systems, Inc. Mobile imaging system and method for detection of contraband
DE102011080077A1 (de) * 2011-07-29 2013-01-31 Siemens Aktiengesellschaft Verfahren zum Erfassen der wahren Koinzidenz zweier Ladungspulse auf benachbarten Bildpunktelementen, Röntgenstrahlungsdetektor sowie Röntgenbildaufnahmevorrichtung
BR112014019198A2 (pt) 2012-02-03 2021-09-08 Rapiscan Systems, Inc. Sistema de imagiologia de múltiplas vistas de transmissão e espalhamento combinado
MX337476B (es) * 2012-02-14 2016-03-04 American Science & Eng Inc Inspeccion con rayos x utilizando detectores de escintilacion acoplados con fibras de desplazamiento de longitud de onda.
US10670740B2 (en) 2012-02-14 2020-06-02 American Science And Engineering, Inc. Spectral discrimination using wavelength-shifting fiber-coupled scintillation detectors
DE102012108766A1 (de) * 2012-09-18 2014-03-20 CDT Cascade Detector Technologies GmbH Neutronendetektoreinheit sowie Neutronendetektoranordnung
ITRM20130254A1 (it) * 2013-04-29 2014-10-30 Infn Istituto Naz Di Fisica N Ucleare "rivelatori di neutroni termici non facenti uso di 3he e metodo per la loro realizzazione"
JP6218224B2 (ja) 2013-10-04 2017-10-25 国立研究開発法人日本原子力研究開発機構 中性子検出器
EP3064966A4 (en) 2013-10-28 2017-05-31 Tokuyama Corporation Neutron scintillator, neutron detector and method for manufacturing neutron scintillator
JP6746603B2 (ja) 2015-03-20 2020-08-26 ラピスカン システムズ、インコーポレイテッド 手持ち式携帯型後方散乱検査システム
WO2017042916A1 (ja) * 2015-09-09 2017-03-16 野洲メディカルイメージングテクノロジー株式会社 熱中性子検出装置、シンチレータユニット及び熱中性子検出システム
JP6746223B2 (ja) * 2016-11-02 2020-08-26 株式会社日立製作所 放射線モニタ
US20180321418A1 (en) * 2017-05-08 2018-11-08 Saint-Gobain Ceramics & Plastics, Inc. Article including a body including a fluorescent material and a wavelength shifting fiber, a radiation detector including the article, and a method of using the same
CN112424644A (zh) 2018-06-20 2021-02-26 美国科学及工程股份有限公司 波长偏移片耦合的闪烁检测器
CN109581473B (zh) * 2018-12-13 2020-10-09 四川理工学院 一种涂硼微孔中子成像探测器及其测量方法
JPWO2021085401A1 (ja) 2019-10-31 2021-05-06
US11175245B1 (en) 2020-06-15 2021-11-16 American Science And Engineering, Inc. Scatter X-ray imaging with adaptive scanning beam intensity
WO2022059298A1 (ja) 2020-09-16 2022-03-24 株式会社クラレ プラスチックシンチレーションファイバ及びその製造方法
CN116324514A (zh) 2020-10-15 2023-06-23 株式会社可乐丽 塑料闪烁光纤及其制造方法
WO2022079956A1 (ja) 2020-10-15 2022-04-21 株式会社クラレ プラスチックシンチレーションファイバ及びその製造方法
US11340361B1 (en) 2020-11-23 2022-05-24 American Science And Engineering, Inc. Wireless transmission detector panel for an X-ray scanner
US12283389B2 (en) 2021-10-01 2025-04-22 Rapiscan Holdings, Inc. Methods and systems for the concurrent generation of multiple substantially similar X-ray beams
CN114460622B (zh) * 2022-02-16 2023-10-31 中国工程物理研究院材料研究所 一种新型大面积热中子探测器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306270A (ja) * 1994-03-15 1995-11-21 Toshiba Corp 放射線検出器および放射線検出方法
JP2002071816A (ja) * 2000-08-29 2002-03-12 Japan Atom Energy Res Inst 2次元放射線および中性子イメージ検出器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288671A (ja) * 1997-04-15 1998-10-27 Toshiba Corp 位置検出型放射線検出装置
JP2000187077A (ja) 1998-12-24 2000-07-04 Japan Atom Energy Res Inst 2次元放射線イメージ検出装置及びその検出方法
US6771376B2 (en) * 1999-07-05 2004-08-03 Novartis Ag Sensor platform, apparatus incorporating the platform, and process using the platform

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306270A (ja) * 1994-03-15 1995-11-21 Toshiba Corp 放射線検出器および放射線検出方法
JP2002071816A (ja) * 2000-08-29 2002-03-12 Japan Atom Energy Res Inst 2次元放射線および中性子イメージ検出器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TATSUYA NAKAMURA ET AL.: "Development for upgrading Japanese ENGIN-X type linear scintillation neutron detectors", JAEA-RESEARCH, vol. 2008-116, March 2009 (2009-03-01), XP055111548 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10367718B2 (en) 2013-10-26 2019-07-30 Huawei Technologies Co., Ltd. Method for acquiring, by SDN switch, exact flow entry, and SDN switch, controller, and system

Also Published As

Publication number Publication date
US8993973B2 (en) 2015-03-31
EP2533072A1 (en) 2012-12-12
EP2533072A4 (en) 2017-08-30
JP2011141239A (ja) 2011-07-21
US20120280132A1 (en) 2012-11-08
EP2533072B1 (en) 2021-11-10
JP5548892B2 (ja) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5548892B2 (ja) ピクセル型二次元イメージ検出器
US7326933B2 (en) Radiation or neutron detector using fiber optics
JP4288285B2 (ja) 光検出器と波長変換ファイバを有するpetスキャナ
US6812469B2 (en) Two-dimensional radiation and neutron image detectors
JP5630756B2 (ja) 3次元放射線位置検出器、及び、その検出位置特定方法
JP6083637B2 (ja) シンチレータを用いた中性子検出器及び中性子イメージ検出器
JP5158882B2 (ja) 中性子検出用シンチレータ及び中性子測定装置
EP3014302B1 (en) Detector arrangement for the detection of ionizing radiation and method for operating such a detector arrangement
EP3351971B1 (en) Scintillator array
JP4886662B2 (ja) 放射線測定装置
JPH10232284A (ja) 波長シフト型放射線センサおよび放射線検出装置
JP2011179863A (ja) 中性子イメージ検出方法及びその方法を用いた中性子イメージ検出器
JP4415095B2 (ja) ZnS蛍光体を用いた粒子線検出器及び中性子検出器
CN102879798B (zh) 用于射线成像装置的闪烁探测器
JP4135795B2 (ja) 蛍光体あるいはシンチレータを用いた二次元放射線及び中性子イメージ検出器
EP3441793B1 (en) Scintillator array
US9720102B1 (en) Filter arrays
CN104090293A (zh) 基于延迟编码的光纤阵列中子位置灵敏探测系统及方法
CN206906590U (zh) 背散射探测模块
RU2408902C1 (ru) Двухкоординатный детектор
JP4635212B2 (ja) 光ファイバを利用した放射線又は中性子検出器
JP4635210B2 (ja) 光ファイバを利用した放射線又は中性子の検出器
RU2834905C1 (ru) Сцинтилляционный детектор тепловых нейтронов с отражателем нейтронов
Kiyanagi et al. Some experimental studies on time-of-flight radiography using a pulsed neutron source
JP4635211B2 (ja) 光ファイバを利用した放射線又は中性子の検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11731866

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011731866

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13520451

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE