[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011061954A1 - 画像処理装置および画像処理方法 - Google Patents

画像処理装置および画像処理方法 Download PDF

Info

Publication number
WO2011061954A1
WO2011061954A1 PCT/JP2010/060119 JP2010060119W WO2011061954A1 WO 2011061954 A1 WO2011061954 A1 WO 2011061954A1 JP 2010060119 W JP2010060119 W JP 2010060119W WO 2011061954 A1 WO2011061954 A1 WO 2011061954A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
color
coordinate
xyz
chromaticity
Prior art date
Application number
PCT/JP2010/060119
Other languages
English (en)
French (fr)
Inventor
張 小▲忙▼
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to RU2012125614/08A priority Critical patent/RU2012125614A/ru
Priority to JP2011541825A priority patent/JP5296889B2/ja
Priority to CN201080043561.XA priority patent/CN102577397B/zh
Priority to BR112012011965A priority patent/BR112012011965A2/pt
Priority to US13/500,474 priority patent/US8890884B2/en
Priority to EP10831353.7A priority patent/EP2503784A4/en
Publication of WO2011061954A1 publication Critical patent/WO2011061954A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6058Reduction of colour to a range of reproducible colours, e.g. to ink- reproducible colour gamut
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/67Circuits for processing colour signals for matrixing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation

Definitions

  • the present invention relates to an image processing apparatus and an image processing method, and more particularly to a technique for converting a color reproduction range between input data and output data.
  • the color reproduction range (color gamut) is different for each model.
  • the color reproduction range of the input video signal is different for each adopted television system.
  • various color conversion processes have been conventionally performed when generating output data from input data so as to output a color as faithful as possible to the input data regardless of the difference in the color reproduction range.
  • HDTV High Definition Television
  • ITU-R International Telecommunication Union Radiocommunications Sector
  • a signal of a standard defined in 709 (hereinafter referred to as “HDTV standard”) is supplied from an external signal source to the color television set.
  • the signal given from the external signal source to the color television apparatus is an RGB signal.
  • a process of mapping (corresponding) the color gamut of the RGB signal given from a signal source to the color gamut in a liquid crystal panel constituting the color television apparatus (hereinafter referred to as “color gamut conversion process”). ) Is performed. Then, a voltage corresponding to the value of each color included in the RGB signal obtained by the color gamut conversion process is applied to the liquid crystal layer. As a result, a color as faithful as possible to the color represented by the RGB signal given from the signal source is displayed on the display unit of the liquid crystal panel.
  • color gamut conversion process performed in the color television apparatus will be described in detail.
  • FIG. 14 is a diagram showing chromaticity coordinate values (primary coordinate values in the xy chromaticity diagram) of primary colors in the HDTV standard and primary color chromaticity coordinate values in a certain liquid crystal panel constituting a display device (color television device). It is. From FIG. 14, for example, it is understood that “the value of the chromaticity coordinate (x, y) of R (red) is (0.6400, 0.3300) in the HDTV standard”.
  • the brightness Y of W (white) in the XYZ color space is 1 based on the information about the HDTV standard indicated by reference numeral 91 in FIG.
  • the RGB value and the XYZ value The following expression (1) is obtained as an expression representing the relationship: X, Y, and Z are tristimulus values in the XYZ color system.
  • the following expression (2) is obtained as an expression representing the relationship between RGB values and XYZ values.
  • the above equation (3) is an equation for obtaining the value of each color of RGB corresponding to the value of the voltage to be applied to the liquid crystal layer in the liquid crystal panel from the RGB signal of the HDTV standard given from the signal source. .
  • the RGB signal RGB in of the HDTV standard is input from the signal source 93 to the display device (color television device) 9, and the RGB signal RGB in is converted into the above equation by the color gamut conversion processing unit 94. Conversion is performed based on (3). Then, the RGB signal RGB out obtained by the conversion process in the color gamut conversion processing unit 94 is given to the liquid crystal panel 95. In this way, accurate color on the color represented by the RGB signal RGB in sent from the signal source 93 is displayed on the display unit of the liquid crystal panel 95.
  • Japanese Patent Laid-Open No. 4-291591 discloses an invention of a color display device that performs color reproduction without causing a color reproduction error for any input video signal having a plurality of different color reproduction ranges. Yes.
  • Japanese Unexamined Patent Application Publication No. 2008-78737 discloses a technique for preventing waste of a color gamut of an image output apparatus by correcting brightness or luminance.
  • Japanese Unexamined Patent Application Publication No. 2008-86029 discloses a technique for obtaining a desired color reproduction using a standard color space with an extended color gamut.
  • xvYCC standard (“xvYCC” is a registered trademark) is generally defined as an international standard (IEC 61966-2-4) as a standard for an extended color space for moving images.
  • the xvYCC standard is an expanded color reproduction range than before, while maintaining compatibility with “ITU-R BT.709”.
  • the color reproduction range in the xvYCC standard will be described with reference to FIGS. 16 and 17.
  • the vertical axis represents the luminance signal (Y)
  • the horizontal axis represents the color difference signal (CrCb).
  • the color reproduction range in the HDTV standard is indicated by a square 81
  • the color reproduction range in the xvYCC standard is indicated by a square 82.
  • the luminance value can take a value exceeding 1 or a negative value.
  • values from 1 to 15 and values from 241 to 254 are also used as video signals (if the data is 8 bits).
  • FIG. 17 shows a CIE 1931 chromaticity diagram.
  • a color reproduction range in the HDTV standard is represented by a triangle 85
  • a color reproduction range of a general liquid crystal panel is represented by a triangle 86
  • a range including all colors is represented by a curve 87.
  • most colors can be represented.
  • the color reproduction range in the xvYCC standard is wider than the color reproduction range 85 in the HDTV standard, and further wider than the color reproduction range 86 of the liquid crystal panel.
  • the colors in the curve denoted by reference numeral 87 are referred to as “extended colors” for convenience.
  • “Clip processing” refers to processing for converting the extended color data value to the maximum output value for extended color data having a value exceeding the maximum outputable value (maximum output value) of the panel. It is.
  • the present invention provides image processing that enables display of images utilizing the color reproduction ability of a panel while ensuring display of colors based on the extended color data when input data including extended color data is given.
  • An object is to provide an apparatus.
  • a first aspect of the present invention is an image processing device that converts a color indicated by input data into a color within a color reproduction range of a predetermined output device, A first color space converter that converts RGB color system image data obtained based on the input data into first XYZ data that is XYZ color system image data; An image in the XYZ color system showing colors within the color reproduction range of the output device by performing predetermined conversion processing on the values of X, Y, and Z as tristimulus values constituting the first XYZ data An XYZ data conversion unit for generating second XYZ data as data; A second color space conversion unit that converts the second XYZ data into RGB color system image data, The first color space conversion unit is provided with image data indicating colors within a color reproduction range wider than the color reproduction range of the output device as the input data.
  • the XYZ data converter is The first XYZ data is the first color data indicating the color within the color reproduction range corresponding to the first boundary line formed on the xy chromaticity diagram, and the first boundary on the xy chromaticity diagram.
  • Second color data indicating a color within a color reproduction range based on a predetermined standard that is compatible with the standard of the input data and having a chromaticity coordinate outside the line, and color reproduction based on the predetermined standard
  • Third color data indicating a color that is out of range and that falls within the color reproduction range corresponding to the third boundary formed on the xy chromaticity diagram so as to include the color reproduction range of the output device , And xy chromaticity diagram, and the fourth color data indicating a color having a chromaticity coordinate outside the third boundary line
  • the color is a color having chromaticity coordinates outside the second boundary line formed on the xy chromaticity diagram so as to include the color reproduction range based on the predetermined standard, and the color reproduction range of the output device
  • the color indicated by the second XYZ data has chromaticity coordinates on a line representing the color reproduction range of the output device on the xy chromaticity diagram.
  • the XYZ data conversion unit performs the conversion process on the data of each pixel included in the first XYZ data.
  • a first coordinate that is a chromaticity coordinate for the data of each pixel, a conversion straight line that passes through a predetermined reference coordinate and the first coordinate, and the first boundary line A second coordinate that is a chromaticity coordinate of the intersection with the third coordinate, a third coordinate that is a chromaticity coordinate of the intersection of the conversion straight line and a line representing a color reproduction range based on the predetermined standard, the conversion straight line, and the A fourth coordinate which is a chromaticity coordinate of an intersection with the second boundary line, a fifth coordinate which is a chromaticity coordinate of an intersection of the straight line for conversion and a line representing the color reproduction range of the output device, and the conversion A sixth coordinate which is a chromaticity coordinate of the intersection of the straight line for use and the
  • the ratio of the distance between the second coordinate and the first coordinate to the distance between the second coordinate and the third coordinate and the second coordinate-the The ratio of the distance between the second coordinate and the seventh coordinate with respect to the distance between the fourth coordinates is equal, and for the third color data, between the third coordinates and the sixth coordinates.
  • the ratio of the distance between the third coordinate and the first coordinate with respect to the distance is equal to the ratio of the distance between the fourth coordinate and the seventh coordinate with respect to the distance between the fourth coordinate and the fifth coordinate.
  • the sixth coordinate and the 7 as coordinates and is the same, and obtains the seventh coordinates from the chromaticity coordinates on the conversion linearity.
  • the XYZ data conversion unit performs the conversion process on the data of each pixel included in the first XYZ data.
  • a first coordinate that is a chromaticity coordinate for the data of each pixel, a conversion straight line that passes through a predetermined reference coordinate and the first coordinate, and the first boundary line A second coordinate that is a chromaticity coordinate of the intersection with the third coordinate, a third coordinate that is a chromaticity coordinate of the intersection of the conversion straight line and a line representing a color reproduction range based on the predetermined standard, the conversion straight line, and the A fourth coordinate which is a chromaticity coordinate of an intersection with the second boundary line, a fifth coordinate which is a chromaticity coordinate of an intersection of the straight line for conversion and a line representing the color reproduction range of the output device, and the conversion A sixth coordinate which is a chromaticity coordinate of the intersection of the straight line for use and the
  • the coordinate is the seventh coordinate
  • the third color data is obtained by dividing the distance between the third coordinate and the first coordinate by the distance between the third coordinate and the sixth coordinate.
  • Function of the basic coefficient The chromaticity coordinates on the fifth coordinate side on the straight line for conversion from the fourth coordinates by the distance obtained by multiplying the first coefficient represented by the distance between the fourth coordinates and the fifth coordinates,
  • the seventh coordinate is set, and the sixth color is set as the seventh coordinate for the fourth color data.
  • the XYZ data converter obtains a first coefficient for the second color data and a first coefficient for the third color data according to the following equations.
  • k 1 1-e -kq
  • k 1 is the first coefficient
  • e is the base of the natural logarithm
  • k is the basic coefficient
  • q is a positive value that can be set to an arbitrary value for each of the second color data and the third color data. Is the coefficient.
  • a sixth aspect of the present invention is the fourth aspect of the present invention, For each of the second color data and the third color data, further comprising a first look-up table that holds a plurality of values of the first coefficient in association with a predetermined index in advance.
  • the XYZ data converter obtains the value of the first coefficient from the first look-up table using an index obtained based on the basic coefficient.
  • the XYZ data conversion unit performs the conversion process on the second color data, the third color data, and the fourth color data among the data of each pixel included in the first XYZ data.
  • the ratio of the maximum brightness value in the seventh coordinate to the maximum brightness value in the first coordinate and the data after the conversion processing is performed on the data of each pixel with respect to the brightness of each pixel data. It is characterized in that a lightness value is obtained for data of each pixel to be included in the second XYZ data so that the lightness ratio is equal.
  • the XYZ data conversion unit converts the second XYZ data into the second XYZ data when performing the conversion process on the second color data and the third color data among the data of each pixel included in the first XYZ data.
  • the brightness value for the data of each pixel to be included is obtained by the following equation using the second coefficient represented by the function of the basic coefficient.
  • Y 1 ((1 ⁇ k 2 ) + (Y a ⁇ k 2 )) ⁇ Y
  • Y 1 is the brightness for the data of each pixel to be included in the second XYZ data
  • Y is the brightness for the data of each pixel included in the first XYZ data
  • k 2 is the second coefficient.
  • Y a is a value obtained by dividing the maximum brightness value at the seventh coordinate by the maximum brightness value at the first coordinate.
  • a ninth aspect of the present invention is the eighth aspect of the present invention.
  • the XYZ data conversion unit obtains a second coefficient for the second color data and a second coefficient for the third color data by the following formula.
  • k 2 1-e -kr
  • k 2 is the second coefficient
  • e is the base of the natural logarithm
  • k is the basic coefficient
  • r is a positive value that can be set to an arbitrary value for each of the second color data and the third color data. Is the coefficient.
  • a tenth aspect of the present invention is the eighth aspect of the present invention, A second look-up table that holds a plurality of values of the second coefficient in association with predetermined indexes for each of the second color data and the third color data;
  • the XYZ data converter obtains the value of the second coefficient from the second lookup table using an index obtained based on the basic coefficient.
  • An eleventh aspect of the present invention is the second aspect of the present invention,
  • the first boundary line is formed so that a chromaticity coordinate of D65 as a standard light source is included inside the first boundary line.
  • a twelfth aspect of the present invention is the second aspect of the present invention,
  • the first boundary line is formed so that chromaticity coordinates of a memory color including at least white and skin color are included inside the first boundary line.
  • the input data is data compliant with the xvYCC standard.
  • the image processing apparatus further includes a third color space conversion unit that receives YCbCr color system image data as the input data and converts the YCbCr color system image data into RGB color system image data.
  • a fifteenth aspect of the present invention is a display device including a display panel for displaying an image, An image processing apparatus according to the first aspect of the present invention;
  • the display panel displays the image based on RGB color system data generated by the second color space converter.
  • a sixteenth aspect of the present invention is an image processing method for converting a color indicated by input data into a color within a color reproduction range of a predetermined output device, RGB color system image data obtained based on the input data, which is image data indicating a color within a color reproduction range wider than the color reproduction range of the output device, is XYZ color system image data.
  • a first color space conversion step for converting to XYZ data An image in the XYZ color system showing colors within the color reproduction range of the output device by performing predetermined conversion processing on the values of X, Y, and Z as tristimulus values constituting the first XYZ data
  • An XYZ data conversion step for generating second XYZ data as data An XYZ data conversion step for generating second XYZ data as data; And a second color space conversion step of converting the second XYZ data into RGB color system image data.
  • RGB color system image data (hereinafter referred to as “RGB data”) obtained based on image data provided from outside is converted into XYZ color system image data (hereinafter referred to as “XYZ data”).
  • XYZ data XYZ color system image data
  • a conversion process is performed on the tristimulus values X, Y, and Z of the XYZ data.
  • the tristimulus value does not become negative in the XYZ color system, and the tristimulus value in the XYZ color system is a device-independent value.
  • the image data is classified into four color data (first, second, third, and fourth color data) during the conversion process.
  • first color data a color faithful to the color indicated by the input data is displayed.
  • a color faithful to the color indicated by the input data is displayed as the memory color. can do.
  • the color reproduction range obtained by the data after the conversion process is wider than the color reproduction range obtained by the data before the conversion process. For this reason, for a color based on a predetermined standard, a vivid display utilizing the color reproduction capability of the panel is performed.
  • the third color data a color within the color reproduction range of the output device is displayed, and for the fourth color data, the chromaticity coordinate point on the outermost contour of the output device color reproduction range is set.
  • the data values are converted so that the colors they have are displayed. For this reason, not all of the extended color data is clipped, and the relatively important color among the extended colors is displayed so as not to impair the color continuity.
  • input data including extended color data is given from the outside, it is possible to display a vivid image utilizing the color reproduction ability of the panel while ensuring the display of the color based on the extended color data. It becomes possible.
  • the conversion process is performed while considering the relationship between the color reproduction range before and after the conversion and the chromaticity coordinates of the input data. Done. For this reason, for the colors based on a predetermined standard without breaking the balance of the colors of the entire image on the xy chromaticity diagram, vivid display utilizing the color reproduction ability of the panel is performed, and comparison of the extended colors is performed. For colors that are important to the target, display is performed such that the continuity of the colors is not impaired.
  • the conversion process is performed while considering the relationship between the color reproduction range before and after the conversion and the chromaticity coordinates of the input data. Done.
  • the chromaticity coordinates of the converted data are obtained using the first coefficient which is a function of the coefficient (basic coefficient) determined according to the chromaticity coordinates of the data of each pixel included in the input data. . Therefore, by adopting a configuration in which the first coefficient is obtained in consideration of human visual characteristics and the like, the same effect as in the third aspect can be obtained without giving an uncomfortable feeling to the viewer of the image.
  • the discomfort given to the viewer of the image is further reduced, and the color reproduction capability of the panel for colors based on a predetermined standard is reduced.
  • Vibrant display is made use of, and for the relatively important color among the extended colors, display is performed so that the continuity of the color is not impaired.
  • the calculation process for obtaining the first coefficient is not necessary, and the implementation is easy. .
  • the lightness of the data after the conversion process is considered while taking into account the relationship between the maximum lightness in the chromaticity coordinates of the input data and the maximum lightness in the chromaticity coordinates of the data after the conversion process. Is required. For this reason, the brightness balance of the entire image in the xyY color space is not lost.
  • the lightness of the data after the conversion process is considered while taking into account the relationship between the maximum lightness in the chromaticity coordinates of the input data and the maximum lightness in the chromaticity coordinates of the converted data. Is required.
  • a second coefficient that is a function of a coefficient (basic coefficient) determined according to the chromaticity coordinates of each pixel included in the input data is used. For this reason, by adopting a configuration in which the second coefficient is obtained in consideration of human visual characteristics and the like, colors based on a predetermined standard can be obtained from input data without giving an uncomfortable feeling to the viewer of the image. Display using a color with a brightness higher than the maximum brightness is performed, and for a relatively important color among the extended colors, display is performed such that the continuity of the brightness of the color is not impaired.
  • the discomfort given to the viewer of the image is further reduced, and for the color based on the predetermined standard, the maximum obtained by the input data is obtained.
  • Display using a color having a lightness higher than the lightness is performed, and for a relatively important color among the extended colors, a display that does not impair the continuity of the color brightness is performed.
  • the second coefficient used for the data conversion process is acquired from the lookup table, an arithmetic process for obtaining the second coefficient is not necessary, and the implementation is facilitated.
  • the tristimulus values X, Y, and Z in the XYZ color system do not change before and after the conversion process. For this reason, the reference white color is displayed faithfully. This suppresses the viewer of the image from feeling uncomfortable due to the conversion process being performed on the color data.
  • the tristimulus values X, Y, and Z in the XYZ color system do not change before and after the conversion process. For this reason, as the memory color, a color faithful to the color indicated by the input data is displayed.
  • the panel has a display of color based on the extended color data while suppressing discomfort to the viewer of the image. Vivid image display utilizing color reproducibility is performed.
  • an effect similar to that of the first aspect of the present invention can be obtained in an image processing apparatus in which data compliant with the xvYCC standard is given as input data.
  • an effect similar to that of the first aspect of the present invention can be obtained in an image processing apparatus in which YCbCr color system image data is provided as input data.
  • a display device including an image processing device that achieves the same effects as the first aspect of the present invention is realized.
  • FIG. 1 It is a block diagram which shows schematic structure of the display apparatus which concerns on one Embodiment of this invention. It is xy chromaticity diagram for demonstrating the outline
  • the said embodiment is a flowchart which shows the procedure of a 1st conversion process.
  • it is a flowchart which shows the procedure of a 2nd conversion process.
  • it is a flowchart which shows the procedure of a 3rd conversion process.
  • it is a flowchart which shows the procedure of the 4th conversion process.
  • it is a figure for demonstrating conversion of the brightness.
  • it is a block diagram which shows schematic structure of a display apparatus. It is a figure which shows an example of a lookup table in the modification of the said embodiment. It is a figure for demonstrating the shape of the 1st boundary line in the modification of the said embodiment.
  • RGB data RGB color system image data
  • RGB data for a liquid crystal panel is provided as input data (input video signal) to the image processing apparatus from the outside.
  • conversion from RGB data compliant with the xvYCC standard to RGB data for a liquid crystal panel is performed by the image processing apparatus.
  • the RGB data is converted into XYZ data (XYZ color system image data), and the tristimulus values X, Y, and Z of the XYZ data are converted.
  • the xyY color space is used. An outline of image processing in the present embodiment performed using this xyY color space will be described below. Note that the mutual conversion between the RGB data and the XYZ data may be performed based on the IEC standard, and thus detailed description thereof is omitted.
  • FIG. 2 is an xy chromaticity diagram for explaining an overview of image processing in the present embodiment.
  • the thick dotted line indicated by reference numeral 45 indicates the color reproduction range (outermost) of the liquid crystal panel used in this embodiment
  • the thick solid line indicated by reference numeral 44 indicates the color reproduction range (outermost of the color reproduction range based on the HDTV standard).
  • the color reproduction range 45 of the liquid crystal panel is wider than the color reproduction range 44 based on the HDTV standard.
  • input data (input video signal) including data outside the color reproduction range 44 based on the HDTV standard, that is, the extended color data described above, is given to the image processing apparatus from the outside.
  • first boundary line 41, 42, and 43 as indicated by reference numerals 41, 42, and 43 in FIG. Provided on the degree chart.
  • the first boundary line 41, the second boundary line 42, and the third boundary line 43 all pass at least three points to form a closed region.
  • the first boundary line 41 is formed inside the outermost contour of the color reproduction range 44 based on the HDTV standard.
  • the second boundary line 42 is formed outside the outermost outline of the color reproduction range 44 based on the HDTV standard and inside the outermost outline of the color reproduction range 45 of the liquid crystal panel.
  • the third boundary line 43 is formed outside the outermost outline of the color reproduction range 45 of the liquid crystal panel.
  • the first boundary line 41 is formed so that the memory color and D65 (reference white) are included inside (the boundary line).
  • the pixel colors included in the input video signal are classified into four colors (first color, second color, third color, and fourth color) as follows.
  • the color having the chromaticity coordinates inside the first boundary line 41 is the first color.
  • a color having chromaticity coordinates outside the first boundary line 41 and inside the outermost contour of the color reproduction range 44 based on the HDTV standard is set as the second color.
  • the color having the chromaticity coordinates outside the outermost contour of the color reproduction range 44 based on the HDTV standard and inside the third boundary line 43 is the third color.
  • the color having the chromaticity coordinates outside the third boundary line 43 is the fourth color. Note that the third color and the fourth color are the extended colors described above.
  • target pixel the color of a certain pixel included in the input video signal is determined to be any of the above four colors.
  • P point position on the xy chromaticity diagram for the color of the target pixel.
  • W point white point
  • B1 point intersection between the straight line 47 and the first boundary line 41
  • H point intersection between the straight line 47 and the outermost contour of the color reproduction range 44 based on the HDTV standard.
  • An intersection between the straight line 47 and the second boundary line 42 (referred to as “B2 point”), an intersection between the straight line 47 and the outermost outline of the color reproduction range 45 of the liquid crystal panel (referred to as “D point”), Further, the chromaticity coordinates of the intersection (referred to as “B3 point”) between the straight line 47 and the third boundary line 43 are obtained. If the point P is between the point W and the point B1, it is determined that the color of the target pixel is the first color. If the point P is between the point B1 and the point H, the color of the target pixel is the second color.
  • the color of the target pixel is determined to be the third color, and if the point P is in any other position, The color is determined to be the fourth color.
  • the color is determined to be the fourth color.
  • the ratio of the length of the line segment BP to the length of the line segment B1H” and “the ratio of the length of the line segment B1Q to the length of the line segment B1B2” From the chromaticity coordinates on the straight line 47, the chromaticity coordinates of the Q point such that are equal to each other are obtained. The chromaticity coordinates of the Q point obtained in this way are used as the chromaticity coordinates after conversion for the color of the target pixel. Further, the xyY color space is set such that “the ratio of the maximum brightness value at the point Q to the maximum brightness value at the point P” and “the ratio of the brightness of the converted data to the brightness indicated by the input video signal” are equal. The brightness of the converted data in is obtained.
  • the ratio of the length of the line segment HP to the length of the line segment HB3” and “the ratio of the length of the line segment B2Q to the length of the line segment B2D” From the chromaticity coordinates on the straight line 47, the chromaticity coordinates of the Q point such that are equal to each other are obtained. The chromaticity coordinates of the Q point obtained in this way are used as the chromaticity coordinates after conversion for the color of the target pixel. Further, the xyY color space is set such that “the ratio of the maximum brightness value at the point Q to the maximum brightness value at the point P” and “the ratio of the brightness of the converted data to the brightness indicated by the input video signal” are equal. The brightness of the converted data in is obtained.
  • the intersection of the straight line 47 and the outermost outline of the color reproduction range 45 of the liquid crystal panel that is, the chromaticity coordinate of the point D is the color after conversion for the color of the target pixel It is a degree coordinate.
  • the xyY color space is set such that “the ratio of the maximum brightness value at the point Q to the maximum brightness value at the point P” and “the ratio of the brightness of the converted data to the brightness indicated by the input video signal” are equal. The brightness of the converted data in is obtained.
  • the point P corresponds to the first coordinate
  • the point B1 corresponds to the second coordinate
  • the point H corresponds to the third coordinate
  • the point B2 corresponds to the fourth coordinate
  • the point D corresponds to the fifth coordinate
  • point B3 corresponds to the sixth coordinate
  • point Q corresponds to the seventh coordinate.
  • FIG. 1 is a block diagram showing a schematic configuration of a display device according to an embodiment of the present invention.
  • the display device 10 includes an image processing device 12 and a liquid crystal panel 14.
  • the image processing device 12 functions to convert an RGB signal R′G′B ′ in conforming to the xvYCC standard sent from the external signal source 20 into an RGB signal R′G′B ′ out for the liquid crystal panel 14.
  • the liquid crystal panel 14 displays an image on a display unit (not shown) by applying a voltage based on the RGB signal R′G′B ′ out supplied from the image processing device 12 to the liquid crystal layer.
  • the chromaticity coordinate value of the primary color in the xvYCC standard is as indicated by reference numeral 31 in FIG. 3, and the chromaticity coordinate value of the primary color in the liquid crystal panel 14 used in this embodiment is as indicated by reference numeral 32 in FIG. .
  • the chromaticity coordinate value of the primary color in the xvYCC standard and the chromaticity coordinate value of the primary color in the HDTV standard are the same value.
  • the image processing apparatus 12 includes a first gamma processing unit 121, a first color space conversion unit 122, a three-dimensional nonlinear color gamut conversion unit 123, a second color space conversion unit 124, and a first color space conversion unit 124.
  • 2 gamma processing units 125 are included.
  • the first gamma processor 121 performs a well-known gamma processing to the RGB signal R'G'B 'in conforming to the xvYCC standard sent from an external signal source 20 to generate a linear RGB signal RGB in. Note that the gamma value is typically (1 / 2.2) during the gamma processing in the first gamma processing unit 121.
  • the first color space conversion unit 122 converts the RGB signal RGB in generated by the first gamma processing unit 121 into an XYZ signal XYZ in as first XYZ data based on the above equation (1). That is, the first color space conversion unit 122 performs data conversion from the RGB color space to the XYZ color space.
  • the XYZ signal XYZ in obtained by the conversion process in the first color space conversion unit 122 is given to the three-dimensional nonlinear color gamut conversion unit 123.
  • 3D nonlinear color gamut conversion unit 123 performs predetermined conversion processing into XYZ signals XYZ in, generates the XYZ signal XYZ out as the second XYZ data for providing the second color space conversion unit 124.
  • the second color space conversion unit 124 converts the XYZ signal XYZ out into a linear RGB signal RGB out based on the following equation (4) obtained from the above equation (2). That is, the second color space conversion unit 124 performs data conversion from the XYZ color space to the RGB color space.
  • the second gamma processing unit 125 performs known gamma processing on the linear RGB signal RGB out generated by the second color space conversion unit 124 to generate a non-linear RGB signal R′G′B ′ out . .
  • the gamma value is typically set to 2.2 when performing the gamma processing in the second gamma processing unit 125.
  • the RGB signal R′G′B ′ out generated by the second gamma processing unit 125 is given to the liquid crystal panel 14. Then, as described above, the liquid crystal panel 14 performs image display based on the RGB signal R′G′B ′ out .
  • an XYZ data conversion unit is realized by the three-dimensional nonlinear color gamut conversion unit 123, and an output device is realized by the liquid crystal panel 14.
  • the data of the xyY color system corresponding to the XYZ signal XYZ out output from is represented by codes x 1 , y 1 , and Y 1 .
  • FIG. 4 is a flowchart showing an outline of the procedure of conversion processing performed by the three-dimensional nonlinear color gamut conversion unit 123.
  • FIG. 4 shows an outline of a processing procedure when attention is paid to data of one pixel (target pixel) included in the input video signal.
  • FIG. 5 is an enlarged view of a region indicated by reference numeral 49 in FIG.
  • the chromaticity coordinates of the P point are represented by (x, y)
  • the chromaticity coordinates of the Q point to be obtained by the conversion process are represented by (x 1 , y 1 ).
  • the chromaticity coordinates of the B1 point are represented by (x 2 , y 2 )
  • the chromaticity coordinates of the B2 point are represented by (x 3 , y 3 )
  • the chromaticity coordinates of the D point are represented by (x 4 , y 4 ).
  • the three-dimensional nonlinear color gamut conversion unit 123 receives the XYZ signal XYZ in obtained by the conversion process in the first color space conversion unit 122, and converts the data from the XYZ color system to the xyY color system. This is performed (step S10 in FIG. 4). Conversion from the XYZ color system to the xyY color system is performed based on the following equations (5) and (6).
  • x X / (X + Y + Z)
  • y Y / (X + Y + Z) (6)
  • the Y value in the XYZ color system becomes the Y value in the xyY color system as it is.
  • the value of the chromaticity coordinate (x, y) and the value of brightness Y on the xy chromaticity diagram for the color of the target pixel are obtained.
  • the P point that is, the chromaticity coordinate point on the xy chromaticity diagram for the color of the target pixel is also referred to as “input data chromaticity coordinate point”.
  • FIG. 5 shows an example in which the input data chromaticity coordinate point (P point) is located outside the first boundary line 41 and inside the outermost outline of the color reproduction range 44 based on the HDTV standard.
  • the three-dimensional nonlinear color gamut conversion unit 123 obtains chromaticity coordinates for the points B1, H, B2, D, and B3 (step S15). Specifically, the three-dimensional nonlinear color gamut conversion unit 123 first obtains an expression representing a straight line 47 passing through the white point (W point) and the P point. Next, the three-dimensional nonlinear color gamut conversion unit 123 obtains the chromaticity coordinates of the point B1 based on the formula representing the straight line 47 and the formula representing the first boundary line 41, and based on the formula representing the straight line 47 and the HDTV standard.
  • the chromaticity coordinates of the point H are obtained based on the expression representing the outermost contour of the color reproduction range 44
  • the chromaticity coordinates of the point B2 are obtained based on the expression representing the straight line 47 and the expression representing the second boundary line 42
  • the straight line The chromaticity coordinates of the point D are obtained based on the formula representing 47 and the formula representing the outermost contour of the color reproduction range 45 of the liquid crystal panel 14, and B3 based on the formula representing the straight line 47 and the formula representing the third boundary line 43. Find the chromaticity coordinates of a point.
  • the three-dimensional nonlinear color gamut conversion unit 123 determines whether or not the length l WP of the line segment WP is equal to or shorter than the length l WB1 of the line segment WB1 (step S20). Specifically, the three-dimensional nonlinear color gamut conversion unit 123 obtains the length l WP of the line segment WP based on the chromaticity coordinates of the W point and the chromaticity coordinates of the P point, and the chromaticity coordinates of the W point and the B1 point The length l WB1 of the line segment WB1 is obtained based on the chromaticity coordinates.
  • the three-dimensional nonlinear color gamut conversion unit 123 determines whether or not l WP is equal to or less than l WB1 . As a result of the determination, if l WP is equal to or less than l WB1 , the process proceeds to step S30, and if l WP is greater than l WB1 , the process proceeds to step S40. Note that when it is determined in step S20 that l WP is equal to or less than l WB1 , the color of the target pixel is the first color.
  • step S30 the following first conversion process is performed by the three-dimensional nonlinear color gamut conversion unit 123.
  • FIG. 6 is a flowchart showing the procedure of the first conversion process.
  • step S32 3-dimensional nonlinear color gamut conversion unit 123, the value of x 1 and x.
  • step S34 the three-dimensional nonlinear color gamut conversion unit 123 sets the value of y 1 to y.
  • step S36 the three-dimensional nonlinear color gamut conversion unit 123 sets the value of Y 1 to Y. After step S36 ends, the process proceeds to step S90 in FIG.
  • step S40 the three-dimensional nonlinear color gamut conversion unit 123 determines whether or not the length l WP of the line segment WP is equal to or shorter than the length l WH of the line segment WH. Specifically, the three-dimensional nonlinear color gamut conversion unit 123 first determines the length l WH line segment WH based on the chromaticity coordinates of the chromaticity coordinates and H point of the W point. Based on l WH obtained in this way and l WP obtained in step S20, the three-dimensional nonlinear color gamut conversion unit 123 determines whether or not l WP is equal to or less than l WH .
  • step S50 if l WP is equal to or less than l WH , the process proceeds to step S50, and if l WP is greater than l WH , the process proceeds to step S60. Note that when it is determined in step S40 that l WP is equal to or less than l WH , the color of the target pixel is the second color.
  • step S50 the following second conversion process is performed by the three-dimensional nonlinear color gamut conversion unit 123.
  • FIG. 7 is a flowchart showing the procedure of the second conversion process.
  • step S52 the three-dimensional nonlinear color gamut conversion unit 123 obtains the ratio of the length of the line segment B1P to the length of the line segment B1H as a coefficient (basic coefficient) k for use in a step described later.
  • the three-dimensional nonlinear color gamut conversion unit 123 obtains the length l B1H of the line segment B1H based on the chromaticity coordinates of the B1 point and the chromaticity coordinates of the H point, and the chromaticity coordinates of the B1 point and the P point
  • the length l B1P of the line segment B1P is obtained on the basis of the chromaticity coordinates.
  • the three-dimensional nonlinear color gamut conversion unit 123 obtains the coefficient k by dividing l B1P by l B1H as shown in the following equation (7).
  • k l B1P / l B1H (7)
  • step S54 3-dimensional nonlinear color gamut conversion unit 123 obtains a value of x 1 based on the following equation (8).
  • x 1 x 2 + k ⁇ (x 3 ⁇ x 2 ) (8)
  • step S56 the three-dimensional nonlinear color gamut conversion unit 123 obtains a value of y 1 based on the following equation (9).
  • y 1 y 2 + k ⁇ (y 3 ⁇ y 2 ) (9)
  • step S58 the three-dimensional nonlinear color gamut conversion unit 123 obtains a value of Y 1 based on the following equation (10).
  • Y xvYCC — max (x, y) is the maximum value of lightness in chromaticity coordinates (x, y), and Y panel — max (x 1 , y 1 ) is chromaticity coordinates (x 1 , y 1). ) Is the maximum value of lightness.
  • the above equation (10) will be described with reference to FIG.
  • the maximum value of brightness Y varies depending on the value of chromaticity coordinates (x, y) on the xy chromaticity diagram. That is, the maximum value of brightness corresponding to the point P is different from the maximum value of brightness corresponding to the point Q. Therefore, in the present embodiment, the lightness of the target pixel color so that the increase rate is the same as the increase rate of the maximum value of lightness associated with the chromaticity coordinate conversion on the xy chromaticity diagram for the color of the target pixel. Is converted from Y to Y 1 .
  • the converted brightness Y 1 for the color of the target pixel is converted. 1.1 times the previous brightness Y. The same applies to a third conversion process and a fourth conversion process described later.
  • step S60 the three-dimensional nonlinear color gamut conversion unit 123 determines whether or not the length l WP of the line segment WP is equal to or shorter than the length l WB3 of the line segment WB3. Specifically, the three-dimensional nonlinear color gamut conversion unit 123 obtains the length l WB3 of the line segment WB3 based on the chromaticity coordinates of the W point and the chromaticity coordinates of the B3 point. Based on l WB3 obtained in this way and l WP obtained in step S20, the three-dimensional nonlinear color gamut conversion unit 123 determines whether or not l WP is equal to or less than l WB3 .
  • step S70 if l WP is equal to or less than l WB3 , the process proceeds to step S70, and if l WP is larger than l WB3 , the process proceeds to step S80. Note that when it is determined in step S60 that l WP is equal to or less than l WB3 , the color of the target pixel is the third color. When it is determined in step S60 that l WP is larger than l WB3 , the color of the target pixel is the fourth color.
  • step S ⁇ b> 70 the following third conversion process is performed by the three-dimensional nonlinear color gamut conversion unit 123.
  • FIG. 8 is a flowchart showing the procedure of the third conversion process.
  • the three-dimensional nonlinear color gamut conversion unit 123 obtains a ratio of the length of the line segment HP to the length of the line segment HB3 as a coefficient k for use in a step described later.
  • the three-dimensional nonlinear color gamut conversion unit 123 obtains the length l HB3 of the line segment HB3 based on the chromaticity coordinates of the H point and the chromaticity coordinates of the B3 point, and the chromaticity coordinates of the H point and the P point.
  • the length l HP of the line segment HP is obtained based on the chromaticity coordinates.
  • step S74 the three-dimensional nonlinear color gamut conversion unit 123 obtains the value of x 1 based on the following equation (12).
  • x 1 x 3 + k ⁇ (x 4 ⁇ x 3 ) (12)
  • step S76 the three-dimensional nonlinear color gamut conversion unit 123 obtains the value of y 1 based on the following equation (13).
  • y 1 y 3 + k ⁇ (y 4 ⁇ y 3 ) (13)
  • step S78 the three-dimensional nonlinear color gamut conversion unit 123 calculates the value of Y 1 based on the above equation (10), as in the second conversion process described above. After step S78 ends, the process proceeds to step S90 in FIG.
  • step S ⁇ b> 80 the following fourth conversion process is performed by the three-dimensional nonlinear color gamut conversion unit 123.
  • FIG. 9 is a flowchart showing the procedure of the fourth conversion process.
  • step S82 3-dimensional nonlinear color gamut conversion unit 123, the value of x 1 and x 4.
  • step S84 the three-dimensional nonlinear color gamut conversion unit 123 sets the value of y 1 to y 4 .
  • step S86 the three-dimensional nonlinear color gamut conversion unit 123 obtains the value of Y 1 based on the above equation (10), as in the second conversion process described above. After step S86 ends, the process proceeds to step S90 in FIG.
  • step S90 the three-dimensional nonlinear color gamut conversion unit 123 converts the xyY color system from XYZ based on the data values x 1 , y 1 , and Y 1 obtained by any of the first to fourth conversion processes. Convert data to the color system. Conversion from the xyY color system to the XYZ color system is performed based on the following equations (14) to (16).
  • the color data is converted by four different methods. Specifically, when the input data chromaticity coordinate point is inside the first boundary line 41, the input data chromaticity coordinate point and the chromaticity coordinate point for the converted data are made the same.
  • the first boundary line 41 and the second boundary line 42 The “positional relationship between the chromaticity coordinate points of the converted data” is the same as the “positional relationship between the first boundary 41 and the outermost contour of the color reproduction range 44 based on the HDTV standard and the input data chromaticity coordinate points”. As described above, the chromaticity coordinate point for the converted data is determined. When the input data chromaticity coordinate point is outside the outermost contour of the color reproduction range 44 based on the HDTV standard and inside the third boundary line 43, the color reproduction range of the second boundary line 42 and the liquid crystal panel 14 is displayed.
  • the positional relationship between the 45 outermost contours and the chromaticity coordinate points of the converted data is“ the positional relationship between the outermost contour of the color reproduction range 44 based on the HDTV standard, the third boundary line 43, and the input data chromaticity coordinate points ”.
  • the chromaticity coordinate points on the xy chromaticity diagram for the converted data are determined so as to be the same as ".”
  • the chromaticity coordinate point on the outermost contour of the color reproduction range 45 of the liquid crystal panel 14 is set as the chromaticity coordinate point of the converted data.
  • the ratio of the lightness of the converted data to the lightness of the data before conversion is the lightness at the input data chromaticity coordinate point.
  • the brightness in the xyY color space for the converted data is determined so as to be equal to the ratio of the maximum brightness value at the chromaticity coordinate point of the converted data with respect to the maximum value.
  • the display unit of the liquid crystal panel 14 is faithful to the color indicated by the input video signal.
  • the color is displayed. Therefore, by defining the first boundary line 41 so that a color called a memory color such as white or skin color is included therein, a color faithful to the color indicated by the input video signal is displayed as the memory color. Can be.
  • the color of the target pixel is the second color
  • the data value in the xyY color space is converted so as to increase the saturation and the brightness, and the display unit of the liquid crystal panel 14 displays the converted value. The later color is displayed.
  • conversion processing is performed on the tristimulus values X, Y, and Z of the XYZ color system data.
  • the tristimulus value does not become negative, and the tristimulus value is a device-independent value. For this reason, when it is desired to display a color different from the color indicated by the input video signal on the liquid crystal panel 14 as described above, it is easy to perform without requiring complicated arithmetic processing compared to the conversion processing of RGB color system data.
  • data conversion processing can be performed.
  • RGB data RGB color system image data
  • YCbCr data YCbCr color system image data
  • FIG. 11 is a block diagram illustrating a schematic configuration of a display device according to this modification.
  • a third color space conversion unit 126 is provided in the image processing apparatus 12 in addition to the components in the above embodiment.
  • the third color space conversion unit 126 converts the YCbCr signal YCbCr in conforming to the xvYCC standard sent from the external signal source 20 into a non-linear RGB signal R′G′B ′ in based on the following equation (17). . That is, the third color space conversion unit 126 converts data from the YCbCr color space to the RGB color space.
  • RGB signal R'G'B 'in produced in the third color space converter 126 is provided to the first gamma processor 121. In components other than the third color space conversion unit 126, processing similar to that in the above embodiment is performed.
  • k obtained from the above equation (7) that is, k obtained by dividing l B1P by l B1H is the chromaticity coordinates (x, Although used as a coefficient in the conversion of y) (steps S54 and S56 in FIG. 7), the present invention is not limited to this.
  • the function of k obtained from the above equation (7) may be used as a coefficient when converting the chromaticity coordinates (x, y).
  • the function of k (basic coefficient) is denoted as k 1 (first coefficient) for convenience.
  • the three-dimensional nonlinear color gamut conversion unit 123 obtains the value of x 1 based on the following equation (18) instead of the above equation (8) in step S54, and the above equation ( Instead of 9), the value of y 1 is obtained based on the following equation (19).
  • x 1 x 2 + k 1 ⁇ (x 3 ⁇ x 2 ) (18)
  • y 1 y 2 + k 1 ⁇ (y 3 ⁇ y 2 ) (19)
  • the coefficient k 1 included in the above equation (18) and the above equation (19) can be obtained by a linear equation or can be obtained by a nonlinear equation. it can. For example, assuming that k 1 is obtained by the following equation (20), the same conversion process as in the above embodiment is performed.
  • a coefficient k 1 is prepared in advance as a lookup table (first lookup).
  • Table) and the three-dimensional nonlinear color gamut conversion unit 123 may acquire the coefficient k 1 from the lookup table.
  • This can be realized as follows, for example. First, the number N of data of the coefficient k 1 held in the lookup table is determined. Then, as an equation for obtaining the value of the coefficient k 1 , for example, an equation as shown in the following equation (22) is determined.
  • i is an index for referring to the lookup table, and is an integer of 0 or more and less than N.
  • k 1 [i] 1 ⁇ e ⁇ iq (22)
  • N is sequentially substituted for the index i.
  • N the number of data of the coefficient k 1
  • the lookup table generated in this way may be held in the image processing apparatus 12, and the lookup table may be configured so that the three-dimensional nonlinear color gamut conversion unit 123 can refer to it.
  • the index i when the three-dimensional nonlinear color gamut conversion unit 123 refers to the lookup table in order to obtain the value of the coefficient k 1 for example, “k obtained in step S52” and “the data of the coefficient k 1 ”
  • a value obtained by converting the product of “number N” into an integer for example, a value obtained by rounding down the decimal point
  • step S52 For example, if the value of k obtained in step S52 is “0.1” and the number N of data of the coefficient k 1 is “32”, “0.1” and “32” “3” obtained by truncating the product “3.2” after the decimal point is used as an index i when the three-dimensional nonlinear color gamut conversion unit 123 refers to the lookup table. However, when the value of k is “1”, the product of “1” and “32” is “32” even though the maximum value of the index i is “31”. The index i is used when the dimensional nonlinear color gamut conversion unit 123 refers to the lookup table.
  • the configuration including the look-up table that holds the value of the coefficient k 1 allows the three-dimensional nonlinear color gamut conversion unit 123 to operate as shown in the above equation (21) during the operation of the display device 10. It is not necessary to perform arithmetic processing based on a non-linear expression, and realization becomes easy.
  • k 1 (first coefficient), which is a function of k (basic coefficient), is converted into chromaticity coordinates (x, y) (step in FIG. 8). It can be configured to be used as a coefficient in S74, S76).
  • the coefficient k 1 is held in a lookup table prepared in advance (first lookup table), and the three-dimensional nonlinear color gamut conversion unit 123 performs the lookup.
  • the coefficient k 1 may be acquired from the table.
  • the lightness conversion in the xyY color space is performed based on the above equation (10), that is, the color of the target pixel color on the xy chromaticity diagram.
  • the present invention is not limited thereto.
  • a conversion from Y to Y 1 may be performed based on the following equation (23).
  • the coefficient k 2 (second coefficient) included in the following equation (23) is a function of k (basic coefficient) obtained by the above equation (7).
  • the coefficient k 2 can be obtained by a linear expression as with the coefficient k 1 , or can be obtained by a non-linear expression.
  • it is possible to k 2 is configured to be calculated by the following equation (24).
  • k 2 k (24)
  • the value of k becomes closer to “1”. Therefore, when the coefficient k 2 is obtained by the above equation (24), the closer the input data chromaticity coordinate point is to the first boundary line 41, the closer the coefficient k 2 is to “0”, and the input data color The closer the degree coordinate point is to the outermost contour of the color reproduction range 44 based on the HDTV standard, the closer the coefficient k 2 is to “1”.
  • the input data chromaticity coordinate point closer to the first boundary line 41 with greater weight is made to the value of a lightness in xyY color space based on the input video signal Y conversion line from Y to Y 1 Is called.
  • the input data chromaticity coordinate point is closer to the outermost color reproduction range 44 based on the HDTV standard, with greater weight is made to increase the maximum value of the brightness caused by the conversion of chromaticity coordinates from Y to Y 1 Conversion is performed.
  • the second characteristic can be obtained while considering the human visual characteristics. Lightness conversion is performed for the colors of.
  • the third conversion process may be configured such that the conversion from Y to Y 1 is performed based on the above equation (23) instead of the above equation (10).
  • the value of k is closer to “1”. Therefore, when the coefficient k 2 is obtained by the above equation (24), the coefficient k 2 is closer to “0” as the input data chromaticity coordinate point is closer to the outermost contour of the color reproduction range 44 based on the HDTV standard.
  • a color based on the HDTV standard is displayed using a color with a brightness higher than the maximum brightness obtained by the input video signal without giving a sense of incongruity to the viewer of the image.
  • the colors that are relatively important are displayed such that the continuity of the brightness of the colors is not impaired.
  • a look-up table (second look-up table) including data of the coefficient k 2 (second coefficient) is held in the image processing apparatus 12 and the look
  • the three-dimensional nonlinear color gamut conversion unit 123 may acquire the coefficient k 2 from the up table.
  • the shape of the first boundary line 41 on the xy chromaticity diagram is an elliptical shape (see FIG. 2), but the present invention is not limited to this.
  • the shape of the first boundary line 41 may be a polygon as shown in FIG. 13 as long as it can be expressed as an expression on the xy plane. Since the appearance of the image on the screen depends on the preference of the viewer, for example, a large number of statistical data relating to the appearance of the image is acquired, and the shape of the first boundary line 41 is determined based on the statistical data. You can do it.
  • the shape of the second boundary line 42 and the shape of the third boundary line 43 are not limited to the shape in the above embodiment (see FIG. 2).
  • the memory color and the chromaticity coordinates of D65 are included in the first boundary line 41, but the present invention is not limited to this.
  • the present invention is not limited to this.
  • the memory color but also a color that should be displayed faithfully to the input video signal and the chromaticity coordinates of D65 may be included in the first boundary line 41, or a reference white other than D65 A configuration in which the chromaticity coordinates (such as D93) are included in the first boundary line 41 is also possible.
  • DESCRIPTION OF SYMBOLS 10 ... Display apparatus 12 ... Image processing apparatus 14 ... Liquid crystal panel 20 ... Signal source 41 ... 1st boundary line 42 ... 2nd boundary line 43 ... 3rd boundary line 44 ... Color reproduction range based on HDTV specification Outer) 45 ... Color reproduction range of LCD panel (outermost) DESCRIPTION OF SYMBOLS 121 ... 1st gamma processing part 122 ... 1st color space conversion part 123 ... 3D nonlinear gamut conversion part 124 ... 2nd color space conversion part 125 ... 2nd gamma processing part 126 ... 3rd color space Conversion unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Image Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

 拡張色のデータを含む入力データが与えられたときに当該拡張色のデータに基づく色の表示を確保しつつパネルの持つ色再現能力を活かした画像表示を可能ならしめる画像処理装置を提供する。 第1の色空間変換部(122)は、液晶パネル(14)の色域よりも広い色域を有するRGB表色系の画像データをXYZ表色系の画像データに変換する。3次元非線形色域変換部(123)は、XYZ信号の三刺激値に変換を施す。その際、画像データは4つの色に分類され、第1の色については入力データに忠実な色が表示されるように、第2の色については彩度が高められるように、第3の色については液晶パネル(14)の色域のうち所定範囲の色域を用いた表示がなされるように、第4の色については液晶パネル(14)の色域の境界に相当する色が表示されるように、それぞれ変換される。

Description

画像処理装置および画像処理方法
 本発明は、画像処理装置および画像処理方法に関し、特に、入力データと出力データとの間で色再現範囲を変換する技術に関する。
 一般に、表示装置,印刷装置,撮像装置などにおいては機種毎に色再現範囲(色域)が異なっている。また、カラーテレビジョン装置においては、採用されるテレビジョン方式毎に、入力映像信号の色再現範囲が異なっている。これらのことから、従来より、色再現範囲の相違に関わらず入力データにできるだけ忠実な色の出力が行われるよう、入力データから出力データを生成する際に各種の色変換処理がなされている。例えば、液晶パネルを用いたカラーテレビジョン装置でHDTV(High Definition Television:高精細度テレビジョン)放送が行われるときには、ITU-R(International Telecommunication Union Radiocommunications Sector)BT.709で定められた規格(以下、「HDTV規格」という。)の信号が外部の信号源からカラーテレビジョン装置に与えられる。ここで、外部の信号源からカラーテレビジョン装置に与えられる信号は、RGB信号である。カラーテレビジョン装置では、信号源から与えられるこのRGB信号の色域を当該カラーテレビジョン装置を構成する液晶パネルにおける色域にマッピング(対応付け)する処理(以下、「色域変換処理」という。)が行われる。そして、その色域変換処理によって得られたRGB信号に含まれる各色の値に応じた電圧が液晶層に印加される。これにより、信号源から与えられたRGB信号の表す色にできるだけ忠実な色が液晶パネルの表示部に表示される。以下、カラーテレビジョン装置で行われるこのような色域変換処理について詳しく説明する。
 図14は、HDTV規格における原色の色度座標値(xy色度図上の座標の値)および表示装置(カラーテレビジョン装置)を構成する或る液晶パネルにおける原色の色度座標値を示す図である。図14より、例えば、「HDTV規格においては、R(赤)の色度座標(x,y)の値は(0.6400,0.3300)である。」ということが把握される。ここで、図14で符号91で示すHDTV規格に関する情報に基づいて、XYZ色空間におけるW(白)の明度Yが1となるように正規化が行われると、RGBの値とXYZの値との関係を表す式として次式(1)が求められる。なお、X,Y,ZはXYZ表色系の三刺激値である。
Figure JPOXMLDOC01-appb-M000001
同様にして、図14で符号92で示す液晶パネルに関する情報に基づいて、RGBの値とXYZの値との関係を表す式として次式(2)が求められる。
Figure JPOXMLDOC01-appb-M000002
さらに、「上式(1)の右辺=上式(2)の右辺」とおくと、次式(3)が得られる。
Figure JPOXMLDOC01-appb-M000003
ここで、上式(3)は、信号源から与えられるHDTV規格のRGB信号から液晶パネル内の液晶層に印加されるべき電圧の値に対応するRGBの各色の値を求めるための式となる。すなわち、図15に示すように、信号源93から表示装置(カラーテレビジョン装置)9にはHDTV規格のRGB信号RGBinが入力され、そのRGB信号RGBinが色域変換処理部94で上式(3)に基づいて変換される。そして、色域変換処理部94での変換処理によって得られたRGB信号RGBoutが液晶パネル95に与えられる。このようにして、信号源93から送られるRGB信号RGBinの表す色に忠実な色が液晶パネル95の表示部に表示される。
 なお、本件発明に関連して、以下の先行技術文献が知られている。日本の特開平4-291591号公報には、互いに異なる複数の色再現範囲を持ついずれの入力映像信号に対しても色再現誤差を生ずることなく色再現を行うカラーディスプレイ装置の発明が開示されている。日本の特開2008-78737号公報には、明度又は輝度を補正することにより画像出力装置の色域の無駄を防止する技術が開示されている。日本の特開2008-86029号公報には、色域が拡張された標準色空間を利用して所望の色再現を得る手法について開示されている。
日本の特開平4-291591号公報 日本の特開2008-78737号公報 日本の特開2008-86029号公報
 ところで、動画用の拡張色空間の規格として、一般に「xvYCC規格」(「xvYCC」は登録商標)と呼ばれる規格が国際標準(IEC61966-2-4)として定められている。xvYCC規格は、「ITU-R BT.709」との互換性を保ちつつ、色再現範囲を従来よりも拡大させたものである。ここで、図16および図17を参照しつつ、xvYCC規格における色再現範囲について説明する。図16において、縦軸は輝度信号(Y)を表し、横軸は色差信号(CrCb)を表している。また、HDTV規格における色再現範囲を符号81の四角形で示し、xvYCC規格における色再現範囲を符号82の四角形で示している。図16から把握されるように、xvYCC規格においては、輝度値として1を超える値や負の値を取ることができる。また、量子化の際、(データが8ビットであれば)1から15までの値および241から254までの値についても映像信号として使用される。このようにして、xvYCC規格においては、HDTV規格と比較して色再現範囲が顕著に拡大されている。また、図17にはCIE1931色度図を示している。図17において、HDTV規格における色再現範囲を符号85の三角形で表し、或る一般的な液晶パネルの色再現範囲を符号86の三角形で表し、全ての色を含む範囲を符号87の曲線で表している。xvYCC規格によれば、ほとんどの色を表すことができる。すなわち、xvYCC規格における色再現範囲は、HDTV規格における色再現範囲85よりも広く、さらに、液晶パネルの色再現範囲86よりも広くなっている。なお、以下においては、符号87の曲線内の色のうちHDTV規格における色再現範囲85に含まれる色を除く色のことを便宜上「拡張色」という。
 上述した拡張色のデータを含む入力データが表示装置に与えられたときに、仮にxvYCC規格に基づいて色域変換処理が行われると、パネルの色再現範囲内の色については入力データに忠実な色が表示される。しかしながら、拡張色以外の色(HDTV規格における色再現範囲内の色)のうち記憶色を除く色については、入力データに忠実な表示が行われるよりも、パネルの持つ色再現能力を活かした表示が行われる方が鮮やかな表示がなされるので好ましい。以上のことから、色域変換処理が行われる場合には、拡張色以外の色については、本来表示されるべき色よりも淡く表示されることになる。一方、色域変換処理が行われなければ、拡張色のデータについてはクリップ処理が施される。そうすると、拡張色のデータについての色の連続性が失われ、拡張された色空間を用いたデータに基づく高品位な画像が得られない。なお、「クリップ処理」とは、パネルの出力可能な最大値(出力最大値)を超える値を持つ拡張色のデータについて、当該拡張色のデータの値を上記出力最大値に変換する処理のことである。
 そこで本発明は、拡張色のデータを含む入力データが与えられたときに当該拡張色のデータに基づく色の表示を確保しつつパネルの持つ色再現能力を活かした画像表示を可能ならしめる画像処理装置を提供することを目的とする。
 本発明の第1の局面は、入力データが示す色を所定の出力装置の色再現範囲内の色に変換する画像処理装置であって、
 前記入力データに基づいて得られるRGB表色系の画像データをXYZ表色系の画像データである第1のXYZデータに変換する第1の色空間変換部と、
 前記第1のXYZデータを構成する三刺激値としてのX,Y,およびZの値に所定の変換処理を施すことにより、前記出力装置の色再現範囲内の色を示すXYZ表色系の画像データである第2のXYZデータを生成するXYZデータ変換部と、
 前記第2のXYZデータをRGB表色系の画像データに変換する第2の色空間変換部と
を備え、
 前記第1の色空間変換部には、前記入力データとして前記出力装置の色再現範囲よりも広い色再現範囲内の色を示す画像データが与えられることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記XYZデータ変換部は、
  前記第1のXYZデータを、xy色度図上に形成された第1の境界線に対応する色再現範囲内の色を示す第1の色データ,xy色度図上において前記第1の境界線よりも外側の色度座標を有する色であって、前記入力データの規格と互換性のある所定規格に基づく色再現範囲内の色を示す第2の色データ,前記所定規格に基づく色再現範囲外の色であって、前記出力装置の色再現範囲を包含するようにxy色度図上に形成された第3の境界線に対応する色再現範囲内の色を示す第3の色データ,およびxy色度図上において前記第3の境界線よりも外側の色度座標を有する色を示す第4の色データに分類し、
  前記第1の色データについては、前記第1のXYZデータの示す色と前記第2のXYZデータの示す色とが同じになるように、かつ、前記第2の色データについては、前記第1のXYZデータによって得られる色再現範囲よりも前記第2のXYZデータによって得られる色再現範囲の方が広くなるように、かつ、前記第3の色データについては、前記第2のXYZデータの示す色が、前記所定規格に基づく色再現範囲を包含するようにxy色度図上に形成された第2の境界線よりも外側の色度座標を有する色であって前記出力装置の色再現範囲内の色となるように、かつ、前記第4の色データについては、前記第2のXYZデータの示す色がxy色度図上において前記出力装置の色再現範囲を表す線上の色度座標を有する色となるように、前記X,Y,およびZの値に前記変換処理を施すことを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 前記XYZデータ変換部は、前記第1のXYZデータに含まれる各画素のデータに前記変換処理を施す際、
  xy色度図上において、当該各画素のデータについての色度座標である第1座標と、所定の基準座標と前記第1座標とを通過する直線である変換用直線と前記第1の境界線との交点の色度座標である第2座標と、前記変換用直線と前記所定規格に基づく色再現範囲を表す線との交点の色度座標である第3座標と、前記変換用直線と前記第2の境界線との交点の色度座標である第4座標と、前記変換用直線と前記出力装置の色再現範囲を表す線との交点の色度座標である第5座標と、前記変換用直線と前記第3の境界線との交点の色度座標である第6座標とを求め、
  当該各画素のデータに前記変換処理が施された後のデータの色度座標を第7座標としたときに、前記第1の色データについては、前記第1座標と前記第7座標とが同じになるように、かつ、前記第2の色データについては、前記第2座標-前記第3座標間の距離に対する前記第2座標-前記第1座標間の距離の割合と前記第2座標-前記第4座標間の距離に対する前記第2座標-前記第7座標間の距離の割合とが等しくなるように、かつ、前記第3の色データについては、前記第3座標-前記第6座標間の距離に対する前記第3座標-前記第1座標間の距離の割合と前記第4座標-前記第5座標間の距離に対する前記第4座標-前記第7座標間の距離の割合とが等しくなるように、かつ、前記第4の色データについては、前記第6座標と前記第7座標とが同じになるように、前記変換用直線上の色度座標の中から前記第7座標を求めることを特徴とする。
 本発明の第4の局面は、本発明の第2の局面において、
 前記XYZデータ変換部は、前記第1のXYZデータに含まれる各画素のデータに前記変換処理を施す際、
  xy色度図上において、当該各画素のデータについての色度座標である第1座標と、所定の基準座標と前記第1座標とを通過する直線である変換用直線と前記第1の境界線との交点の色度座標である第2座標と、前記変換用直線と前記所定規格に基づく色再現範囲を表す線との交点の色度座標である第3座標と、前記変換用直線と前記第2の境界線との交点の色度座標である第4座標と、前記変換用直線と前記出力装置の色再現範囲を表す線との交点の色度座標である第5座標と、前記変換用直線と前記第3の境界線との交点の色度座標である第6座標とを求め、
  当該各画素のデータに前記変換処理が施された後のデータの色度座標を第7座標としたときに、前記第1の色データについては、前記第1座標を前記第7座標とし、かつ、前記第2の色データについては、前記第2座標-前記第1座標間の距離を前記第2座標-前記第3座標間の距離で除することによって得られる値を基本係数として当該基本係数の関数で表される第1係数を前記第2座標-前記第4座標間の距離に乗ずることによって得られる距離だけ前記第2座標から前記変換用直線上において前記第4座標側にある色度座標を前記第7座標とし、かつ、前記第3の色データについては、前記第3座標-前記第1座標間の距離を前記第3座標-前記第6座標間の距離で除することによって得られる値を基本係数として当該基本係数の関数で表される第1係数を前記第4座標-前記第5座標間の距離に乗ずることによって得られる距離だけ前記第4座標から前記変換用直線上において前記第5座標側にある色度座標を前記第7座標とし、かつ、前記第4の色データについては、前記第6座標を前記第7座標とすることを特徴とする。
 本発明の第5の局面は、本発明の第4の局面において、
 前記XYZデータ変換部は、下記の式によって前記第2の色データについての第1係数と前記第3の色データについての第1係数とを求めることを特徴とする。
1=1-e-kq
ここで、k1は前記第1係数、eは自然対数の底、kは前記基本係数、qは前記第2の色データおよび前記第3の色データのそれぞれにつき任意の値に定められ得る正の係数である。
 本発明の第6の局面は、本発明の第4の局面において、
 前記第2の色データおよび前記第3の色データのそれぞれにつき、前記第1係数の値を所定のインデックスと対応付けて予め複数個保持する第1のルックアップテーブルを更に備え、
 前記XYZデータ変換部は、前記基本係数に基づいて求められるインデックスを用いて、前記第1のルックアップテーブルから前記第1係数の値を取得することを特徴とする。
 本発明の第7の局面は、本発明の第3の局面において、
 前記XYZデータ変換部は、前記第1のXYZデータに含まれる各画素のデータのうち前記第2の色データ,前記第3の色データ,および前記第4の色データに前記変換処理を施す際、前記第1座標における明度の最大値に対する前記第7座標における明度の最大値の割合と当該各画素のデータについての明度に対する当該各画素のデータに前記変換処理が施された後のデータについての明度の割合とが等しくなるように、前記第2のXYZデータに含まれるべき各画素のデータについての明度の値を求めることを特徴とする。
 本発明の第8の局面は、本発明の第4の局面において、
 前記XYZデータ変換部は、前記第1のXYZデータに含まれる各画素のデータのうち前記第2の色データおよび前記第3の色データに前記変換処理を施す際、前記第2のXYZデータに含まれるべき各画素のデータについての明度の値を、前記基本係数の関数で表される第2係数を用いて下記の式によって求めることを特徴とする。
1=((1-k2)+(Ya×k2))×Y
ここで、Y1は前記第2のXYZデータに含まれるべき各画素のデータについての明度、Yは前記第1のXYZデータに含まれる各画素のデータについての明度、k2は前記第2係数、Yaは前記第7座標における明度の最大値を前記第1座標における明度の最大値で除することによって得られる値である。
 本発明の第9の局面は、本発明の第8の局面において、
 前記XYZデータ変換部は、下記の式によって前記第2の色データについての第2係数と前記第3の色データについての第2係数とを求めることを特徴とする。
2=1-e-kr
ここで、k2は前記第2係数、eは自然対数の底、kは前記基本係数、rは前記第2の色データおよび前記第3の色データのそれぞれにつき任意の値に定められ得る正の係数である。
 本発明の第10の局面は、本発明の第8の局面において、
 前記第2の色データおよび前記第3の色データのそれぞれにつき、前記第2係数の値を所定のインデックスと対応付けて予め複数個保持する第2のルックアップテーブルを更に備え、
 前記XYZデータ変換部は、前記基本係数に基づいて求められるインデックスを用いて、前記第2のルックアップテーブルから前記第2係数の値を取得することを特徴とする。
 本発明の第11の局面は、本発明の第2の局面において、
 前記第1の境界線の内側に標準光源であるD65の色度座標が含まれるように、前記第1の境界線が形成されていることを特徴とする。
 本発明の第12の局面は、本発明の第2の局面において、
 前記第1の境界線の内側に少なくとも白色と肌色とを含む記憶色の色度座標が含まれるように、前記第1の境界線が形成されていることを特徴とする。
 本発明の第13の局面は、本発明の第1の局面において、
 前記入力データはxvYCC規格に準拠したデータであることを特徴とする。
 本発明の第14の局面は、本発明の第1の局面において、
 前記入力データとしてYCbCr表色系の画像データを受け取り当該YCbCr表色系の画像データをRGB表色系の画像データに変換する第3の色空間変換部を更に備えることを特徴とする。
 本発明の第15の局面は、画像を表示する表示パネルを備えた表示装置であって、
 本発明の第1の局面に係る画像処理装置を有し、
 前記表示パネルは、前記第2の色空間変換部によって生成されたRGB表色系のデータに基づいて前記画像を表示することを特徴とする。
 本発明の第16の局面は、入力データが示す色を所定の出力装置の色再現範囲内の色に変換する画像処理方法であって、
 前記出力装置の色再現範囲よりも広い色再現範囲内の色を示す画像データである前記入力データに基づいて得られるRGB表色系の画像データをXYZ表色系の画像データである第1のXYZデータに変換する第1の色空間変換ステップと、
 前記第1のXYZデータを構成する三刺激値としてのX,Y,およびZの値に所定の変換処理を施すことにより、前記出力装置の色再現範囲内の色を示すXYZ表色系の画像データである第2のXYZデータを生成するXYZデータ変換ステップと、
 前記第2のXYZデータをRGB表色系の画像データに変換する第2の色空間変換ステップと
を備えることを特徴とする。
 また、本発明の第16の局面において実施形態および図面を参照することにより把握される変形例が、課題を解決するための手段として考えられる。
 本発明の第1の局面によれば、出力装置の色再現範囲よりも広い色再現範囲内の色を示す画像データが外部から画像処理装置に与えられる。外部から与えられた画像データに基づいて得られるRGB表色系の画像データ(以下、「RGBデータ」という。)はXYZ表色系の画像データ(以下、「XYZデータ」という。)に変換され、XYZデータの三刺激値X,Y,およびZの値に対して変換処理が施される。ここで、RGB表色系とは異なり、XYZ表色系では三刺激値が負になることがなく、また、XYZ表色系における三刺激値はデバイスに依存しない値である。このため、外部から与えられる画像データの示す色とは異なる色を出力装置(例えば、液晶パネル)に表示させたいときに、RGB表色系のデータの変換処理に比べて、複雑な演算処理を要することなく容易にデータの変換処理を行うことができる。また、外部から与えられる画像データの示す色は出力装置の色再現範囲内の色に変換されるので、拡張色のデータについての色の連続性を表示画像に反映することが可能となる。
 本発明の第2の局面によれば、変換処理に際して、画像データは4つの色データ(第1,第2,第3,および第4の色データ)に分類される。そして、第1の色データについては、入力データの示す色に忠実な色が表示される。このため、白色や肌色など記憶色と呼ばれる色が内部に含まれるように第1の境界線を定めておくことによって、記憶色については入力データの示す色に忠実な色が表示されるようにすることができる。また、第2の色データについては、変換処理前のデータによって得られる色再現範囲よりも変換処理後のデータによって得られる色再現範囲の方が広くなる。このため、所定の規格に基づく色については、パネルの持つ色再現能力を活かした鮮やかな表示が行われる。さらに、第3の色データについては出力装置の色再現範囲内の色が表示されるように、かつ、第4の色データについては出力装置の色再現範囲の最外郭上の色度座標点を有する色が表示されるように、データの値に変換が施される。このため、拡張色のデータの全てがクリップされるということはなく、拡張色のうち比較的重視される色については、色の連続性が損なわれないように表示される。以上より、拡張色のデータを含む入力データが外部から与えられたときに、拡張色のデータに基づく色の表示を確保しつつパネルの持つ色再現能力を活かした鮮やかな画像表示を行うことが可能となる。
 本発明の第3の局面によれば、第2の色データおよび第3の色データについては、変換前後の色再現範囲と入力データについての色度座標との関係が考慮されつつ、変換処理が行われる。このため、xy色度図上における画像全体の色のバランスを崩すことなく、所定の規格に基づく色については、パネルの持つ色再現能力を活かした鮮やかな表示が行われ、拡張色のうち比較的重視される色については、色の連続性が損なわれないような表示が行われる。
 本発明の第4の局面によれば、第2の色データおよび第3の色データについては、変換前後の色再現範囲と入力データについての色度座標との関係が考慮されつつ、変換処理が行われる。このとき、入力データに含まれる各画素のデータの色度座標に応じて決定される係数(基本係数)の関数である第1係数を用いて、変換処理後のデータの色度座標が求められる。従って、人の視覚特性等を考慮して上記第1係数が求められる構成とすることにより、画像の視聴者に違和感を与えることなく、上記第3の局面と同様の効果を得ることができる。
 本発明の第5の局面によれば、qを適当な値に定めることにより、画像の視聴者に与える違和感をより小さくしつつ、所定の規格に基づく色については、パネルの持つ色再現能力を活かした鮮やかな表示が行われ、拡張色のうち比較的重視される色については、色の連続性が損なわれないような表示が行われる。
 本発明の第6の局面によれば、データの変換処理に用いられる第1係数がルックアップテーブルから取得されるので、当該第1係数を求めるための演算処理が不要となり、実現が容易になる。
 本発明の第7の局面によれば、入力データの色度座標における最大の明度と変換処理後のデータの色度座標における最大の明度との関係が考慮されつつ、変換処理後のデータの明度が求められる。このため、xyY色空間における画像全体の明度のバランスが崩れることはない。
 本発明の第8の局面によれば、入力データの色度座標における最大の明度と変換処理後のデータの色度座標における最大の明度との関係が考慮されつつ、変換処理後のデータの明度が求められる。このとき、入力データに含まれる各画素の色度座標に応じて決定される係数(基本係数)の関数である第2係数が用いられる。このため、人の視覚特性等を考慮して上記第2係数が求められる構成とすることにより、画像の視聴者に違和感を与えることなく、所定の規格に基づく色については、入力データによって得られる最大の明度よりも高い明度の色を用いた表示が行われ、拡張色のうち比較的重視される色については、色の明るさの連続性が損なわれないような表示が行われる。
 本発明の第9の局面によれば、rを適当な値に定めることにより、画像の視聴者に与える違和感をより小さくしつつ、所定の規格に基づく色については、入力データによって得られる最大の明度よりも高い明度の色を用いた表示が行われ、拡張色のうち比較的重視される色については、色の明るさの連続性が損なわれないような表示が行われる。
 本発明の第10の局面によれば、データ変換処理に用いられる第2係数がルックアップテーブルから取得されるので、当該第2係数を求めるための演算処理が不要となり、実現が容易になる。
 本発明の第11の局面によれば、標準光源であるD65のデータについては、変換処理の前後でXYZ表色系における三刺激値X,Y,およびZの値に変化はない。このため、基準白色については忠実な表示が行われる。これにより、色のデータに変換処理が施されることに起因して画像の視聴者が違和感を持つことが抑制される。
 本発明の第12の局面によれば、記憶色のデータについては、変換処理の前後でXYZ表色系における三刺激値X,Y,およびZの値に変化はない。このため、記憶色については、入力データの示す色に忠実な色が表示される。これにより、拡張色のデータを含む入力データが外部から与えられたときに、画像の視聴者に違和感を与えることを抑制しつつ、拡張色のデータに基づく色の表示を確保しつつパネルの持つ色再現能力を活かした鮮やかな画像表示が行われる。
 本発明の第13の局面によれば、入力データとしてxvYCC規格に準拠したデータが与えられる画像処理装置において、本発明の第1の局面と同様の効果が得られる。
 本発明の第14の局面によれば、入力データとしてYCbCr表色系の画像データが与えられる画像処理装置において、本発明の第1の局面と同様の効果が得られる。
 本発明の第15の局面によれば、本発明の第1の局面と同様の効果を奏する画像処理装置を備えた表示装置が実現される。
本発明の一実施形態に係る表示装置の概略構成を示すブロック図である。 上記実施形態における画像処理の概要について説明するためのxy色度図である。 上記実施形態において、xvYCC規格における原色の色度座標値および表示装置を構成する液晶パネルにおける原色の色度座標値を示す図である。 上記実施形態において、3次元非線形色域変換部で行われる変換処理の手順の概要を示すフローチャートである。 図2で符号49で示す領域の拡大図である。 上記実施形態において、第1の変換処理の手順を示すフローチャートである。 上記実施形態において、第2の変換処理の手順を示すフローチャートである。 上記実施形態において、第3の変換処理の手順を示すフローチャートである。 上記実施形態において、第4の変換処理の手順を示すフローチャートである。 上記実施形態において、明度の変換について説明するための図である。 上記実施形態の変形例において、表示装置の概略構成を示すブロック図である。 上記実施形態の変形例において、ルックアップテーブルの一例を示す図である。 上記実施形態の変形例における第1の境界線の形状について説明するための図である。 HDTV規格における原色の色度座標値および表示装置を構成する或る液晶パネルにおける原色の色度座標値を示す図である。 従来例における表示装置の構成例を示すブロック図である。 xvYCC規格における色再現範囲について説明するための図である。 xvYCC規格における色再現範囲について説明するためのxy色度図である。
 以下、添付図面を参照しつつ本発明の一実施形態について説明する。
<1.処理概要>
 まず、本実施形態における画像処理の考え方について説明する。本実施形態においては、xvYCC規格に準拠したRGBデータ(RGB表色系の画像データ)が入力データ(入力映像信号)として外部から画像処理装置に与えられる。そして、xvYCC規格に準拠したRGBデータから液晶パネル用のRGBデータへの変換が画像処理装置で行われる。その際、RGBデータがXYZデータ(XYZ表色系の画像データ)に変換され、そのXYZデータの三刺激値X,Y,およびZに対して変換処理が施される。三刺激値X,Y,およびZに対する変換処理が施される際には、xyY色空間が利用される。このxyY色空間を利用して行われる本実施形態での画像処理の概要を以下に説明する。なお、RGBデータとXYZデータとの間の相互の変換については、IECの規格に基づいて行われれば良いので、詳しい説明を省略する。
 図2は、本実施形態における画像処理の概要について説明するためのxy色度図である。図2において、符号45で示す太点線は本実施形態で使用される液晶パネルの色再現範囲(の最外郭)を示し、符号44で示す太実線はHDTV規格に基づく色再現範囲(の最外郭)を示している。図2から把握されるように、液晶パネルの色再現範囲45はHDTV規格に基づく色再現範囲44よりも広くなっている。本実施形態においては、HDTV規格に基づく色再現範囲44外の色すなわち上述した拡張色のデータを含む入力データ(入力映像信号)が外部から画像処理装置に与えられる。
 本実施形態においては、図2で符号41,42,および43で示すような3つの境界線(第1の境界線,第2の境界線,および第3の境界線)が仮想的にxy色度図上に設けられる。それら第1の境界線41,第2の境界線42,および第3の境界線43はいずれも、少なくとも3点を通過し、閉じた領域を形成する。第1の境界線41は、HDTV規格に基づく色再現範囲44の最外郭よりも内側に形成される。第2の境界線42は、HDTV規格に基づく色再現範囲44の最外郭よりも外側かつ液晶パネルの色再現範囲45の最外郭よりも内側に形成される。第3の境界線43は、液晶パネルの色再現範囲45の最外郭よりも外側に形成される。なお、本実施形態においては、第1の境界線41は(境界線の)内部に記憶色およびD65(基準白色)が含まれるように形成される。
 入力映像信号に含まれる画素の色は、以下のように4つの色(第1の色,第2の色,第3の色,および第4の色)に分類される。xy色度図上において第1の境界線41よりも内側の色度座標を有する色は第1の色とされる。xy色度図上において第1の境界線41よりも外側かつHDTV規格に基づく色再現範囲44の最外郭よりも内側の色度座標を有する色は第2の色とされる。xy色度図上においてHDTV規格に基づく色再現範囲44の最外郭よりも外側かつ第3の境界線43よりも内側の色度座標を有する色は第3の色とされる。xy色度図上において第3の境界線43よりも外側の色度座標を有する色は第4の色とされる。なお、第3の色と第4の色とが上述した拡張色である。
 次に、入力映像信号に含まれる或る画素(以下、「対象画素」という。)の色がどのようにして上記4つの色のうちのいずれの色であると判断されるかについて説明する。対象画素の色についてのxy色度図上における位置をP点とすると、まず、白色点(「W点」とする。)とP点とを通過する直線(変換用直線)47の式が求められる。次に、直線47と第1の境界線41との交点(「B1点」とする。),直線47とHDTV規格に基づく色再現範囲44の最外郭との交点(「H点」とする。),直線47と第2の境界線42との交点(「B2点」とする。),直線47と液晶パネルの色再現範囲45の最外郭との交点(「D点」とする。),および直線47と第3の境界線43との交点(「B3点」とする。)についての色度座標が求められる。そして、P点がW点-B1点間にあれば、対象画素の色は第1の色であると判断され、P点がB1点-H点間にあれば、対象画素の色は第2の色であると判断され、P点がH点-B3点間にあれば、対象画素の色は第3の色であると判断され、それ以外の位置にP点があれば、対象画素の色は第4の色であると判断される。以下、第1~第4の色がそれぞれどのように変換されるかについて説明する。
 対象画素の色が第1の色である場合には、入力映像信号の表す色に忠実な色が表示されるように変換処理が施される。すなわち、変換処理の前後において、xy色度図上における色度座標の値に変化はなく、xyY色空間における明度の値にも変化はない。
 対象画素の色が第2の色である場合には、「線分B1Hの長さに対する線分BPの長さの割合」と「線分B1B2の長さに対する線分B1Qの長さの割合」とが等しくなるようなQ点の色度座標が、上記直線47上の色度座標から求められる。このようにして求められたQ点の色度座標が、対象画素の色についての変換後の色度座標とされる。さらに、「P点における明度の最大値に対するQ点における明度の最大値の割合」と「入力映像信号の示す明度に対する変換後のデータについての明度の割合」とが等しくなるように、xyY色空間における変換後のデータについての明度が求められる。
 対象画素の色が第3の色である場合には、「線分HB3の長さに対する線分HPの長さの割合」と「線分B2Dの長さに対する線分B2Qの長さの割合」とが等しくなるようなQ点の色度座標が、上記直線47上の色度座標から求められる。このようにして求められたQ点の色度座標が、対象画素の色についての変換後の色度座標とされる。さらに、「P点における明度の最大値に対するQ点における明度の最大値の割合」と「入力映像信号の示す明度に対する変換後のデータについての明度の割合」とが等しくなるように、xyY色空間における変換後のデータについての明度が求められる。
 対象画素の色が第4の色である場合には、直線47と液晶パネルの色再現範囲45の最外郭との交点すなわちD点の色度座標が、対象画素の色についての変換後の色度座標とされる。さらに、「P点における明度の最大値に対するQ点における明度の最大値の割合」と「入力映像信号の示す明度に対する変換後のデータについての明度の割合」とが等しくなるように、xyY色空間における変換後のデータについての明度が求められる。
 なお、本実施形態においては、P点が第1座標に相当し、B1点が第2座標に相当し、H点が第3座標に相当し、B2点が第4座標に相当し、D点が第5座標に相当し、B3点が第6座標に相当し、Q点が第7座標に相当する。
<2.表示装置の構成および動作の概要>
 図1は、本発明の一実施形態に係る表示装置の概略構成を示すブロック図である。図1に示すように、この表示装置10は、画像処理装置12と液晶パネル14とによって構成されている。画像処理装置12は、外部の信号源20から送られるxvYCC規格に準拠したRGB信号R’G’B’inを液晶パネル14用のRGB信号R’G’B’outに変換するために機能する。液晶パネル14は、画像処理装置12から与えられるRGB信号R’G’B’outに基づく電圧を液晶層に印加することにより、表示部(不図示)に画像を表示する。なお、xvYCC規格における原色の色度座標値は図3で符号31で示すとおりであり、本実施形態で用いられる液晶パネル14における原色の色度座標値は図3で符号32で示すとおりである。図3および図14から把握されるように、xvYCC規格における原色の色度座標値とHDTV規格における原色の色度座標値とは同じ値になっている。
 画像処理装置12には、図1に示すように、第1のガンマ処理部121と第1の色空間変換部122と3次元非線形色域変換部123と第2の色空間変換部124と第2のガンマ処理部125とが含まれている。第1のガンマ処理部121は、外部の信号源20から送られるxvYCC規格に準拠したRGB信号R’G’B’inに周知のガンマ処理を施して、線形のRGB信号RGBinを生成する。なお、第1のガンマ処理部121でのガンマ処理の際、ガンマ値は典型的には(1/2.2)とされる。第1の色空間変換部122は、上式(1)に基づいて、第1のガンマ処理部121によって生成されたRGB信号RGBinを第1のXYZデータとしてのXYZ信号XYZinに変換する。すなわち、第1の色空間変換部122では、RGB色空間からXYZ色空間へのデータの変換が行われる。第1の色空間変換部122における変換処理によって得られたXYZ信号XYZinは、3次元非線形色域変換部123に与えられる。3次元非線形色域変換部123は、XYZ信号XYZinに所定の変換処理を施して、第2の色空間変換部124に与えるための第2のXYZデータとしてのXYZ信号XYZoutを生成する。なお、この3次元非線形色域変換部123における処理内容についての詳しい説明は後述する。第2の色空間変換部124は、上式(2)より求められる次式(4)に基づいて、XYZ信号XYZoutを線形のRGB信号RGBoutに変換する。
Figure JPOXMLDOC01-appb-M000004
すなわち、第2の色空間変換部124では、XYZ色空間からRGB色空間へのデータの変換が行われる。第2のガンマ処理部125は、第2の色空間変換部124で生成された線形のRGB信号RGBoutに周知のガンマ処理を施して、非線形のRGB信号R’G’B’outを生成する。なお、第2のガンマ処理部125でのガンマ処理の際、ガンマ値は典型的には2.2とされる。第2のガンマ処理部125によって生成されたRGB信号R’G’B’outは液晶パネル14に与えられる。そして、液晶パネル14では、上述したようにRGB信号R’G’B’out基づく画像表示が行われる。
 なお、本実施形態においては、3次元非線形色域変換部123によってXYZデータ変換部が実現され、液晶パネル14によって出力装置が実現されている。また、以下においては、3次元非線形色域変換部123に入力されるXYZ信号XYZinに対応するxyY表色系のデータを符号x,y,およびYで表し、3次元非線形色域変換部123から出力されるXYZ信号XYZoutに対応するxyY表色系のデータを符号x1,y1,およびY1で表す。
<3.3次元非線形色域変換部における処理内容>
 次に、図4から図10を参照しつつ、3次元非線形色域変換部123における処理内容について説明する。図4は、3次元非線形色域変換部123で行われる変換処理の手順の概要を示すフローチャートである。なお、図4には、入力映像信号に含まれる1つの画素(対象画素)のデータに着目したときの処理手順の概要を示している。
 図5は、図2で符号49で示す領域の拡大図である。以下の説明では、図5に示すように、上記P点の色度座標を(x,y)で表し、変換処理によって求められるべきQ点の色度座標を(x1,y1)で表し、上記B1点の色度座標を(x2,y2)で表し、上記B2点の色度座標を(x3,y3)で表し、上記D点の色度座標を(x4,y4)で表している。
 3次元非線形色域変換部123は、まず、第1の色空間変換部122での変換処理によって得られたXYZ信号XYZinを受け取り、XYZ表色系からxyY表色系へのデータの変換を行う(図4のステップS10)。XYZ表色系からxyY表色系への変換は、次式(5)および(6)に基づいて行われる。
 x=X/(X+Y+Z)   ・・・(5)
 y=Y/(X+Y+Z)   ・・・(6)
明度Yについては、XYZ表色系におけるYの値がそのままxyY表色系におけるYの値となる。以上のようにして、対象画素の色についてのxy色度図上の色度座標(x,y)の値と明度Yの値とが得られる。なお、以下の説明においては、上記P点すなわち対象画素の色についてのxy色度図上における色度座標点のことを「入力データ色度座標点」ともいう。また、図5では、第1の境界線41よりも外側かつHDTV規格に基づく色再現範囲44の最外郭よりも内側に入力データ色度座標点(P点)がある例を示している。
 次に、3次元非線形色域変換部123は、B1点,H点,B2点,D点,およびB3点についての色度座標を求める(ステップS15)。詳しくは、3次元非線形色域変換部123は、まず、白色点(W点)とP点とを通過する直線47を表す式を求める。次に、3次元非線形色域変換部123は、直線47を表す式と第1の境界線41を表す式とに基づきB1点の色度座標を求め、直線47を表す式とHDTV規格に基づく色再現範囲44の最外郭を表す式とに基づきH点の色度座標を求め、直線47を表す式と第2の境界線42を表す式とに基づきB2点の色度座標を求め、直線47を表す式と液晶パネル14の色再現範囲45の最外郭を表す式とに基づきD点の色度座標を求め、直線47を表す式と第3の境界線43を表す式とに基づきB3点の色度座標を求める。
 次に、3次元非線形色域変換部123は、線分WPの長さlWPが線分WB1の長さlWB1以下であるか否かを判定する(ステップS20)。詳しくは、3次元非線形色域変換部123は、W点の色度座標とP点の色度座標とに基づいて線分WPの長さlWPを求め、W点の色度座標とB1点の色度座標とに基づいて線分WB1の長さlWB1を求める。このようにして求めたlWP,lWB1に基づいて、3次元非線形色域変換部123は、lWPがlWB1以下であるか否かを判定する。判定の結果、lWPがlWB1以下であればステップS30に進み、lWPがlWB1よりも大きければステップS40に進む。なお、ステップS20でlWPがlWB1以下であると判断されるとき、対象画素の色は上記第1の色である。
 ステップS30では、3次元非線形色域変換部123によって、以下の第1の変換処理が行われる。図6は、第1の変換処理の手順を示すフローチャートである。ステップS32では、3次元非線形色域変換部123は、x1の値をxとする。ステップS34では、3次元非線形色域変換部123は、y1の値をyとする。ステップS36では、3次元非線形色域変換部123は、Y1の値をYとする。ステップS36の終了後、図4のステップS90に進む。
 ステップS40では、3次元非線形色域変換部123は、線分WPの長さlWPが線分WHの長さlWH以下であるか否かを判定する。詳しくは、3次元非線形色域変換部123は、まず、W点の色度座標とH点の色度座標とに基づいて線分WHの長さlWHを求める。このようにして求めたlWHとステップS20で求めたlWPとに基づいて、3次元非線形色域変換部123は、lWPがlWH以下であるか否かを判定する。判定の結果、lWPがlWH以下であればステップS50に進み、lWPがlWHよりも大きければステップS60に進む。なお、ステップS40でlWPがlWH以下であると判断されるとき、対象画素の色は上記第2の色である。
 ステップS50では、3次元非線形色域変換部123によって、以下の第2の変換処理が行われる。図7は、第2の変換処理の手順を示すフローチャートである。ステップS52では、3次元非線形色域変換部123は、線分B1Hの長さに対する線分B1Pの長さの比を、後述するステップで用いるための係数(基本係数)kとして求める。詳しくは、3次元非線形色域変換部123は、B1点の色度座標とH点の色度座標とに基づいて線分B1Hの長さlB1Hを求め、B1点の色度座標とP点の色度座標とに基づいて線分B1Pの長さlB1Pを求める。そして、3次元非線形色域変換部123は、次式(7)に示すように、lB1PをlB1Hで除することによって係数kを求める。
 k=lB1P/lB1H   ・・・(7)
 ステップS54では、3次元非線形色域変換部123は、次式(8)に基づいてx1の値を求める。
 x1=x2+k×(x3-x2)   ・・・(8)
ステップS56では、3次元非線形色域変換部123は、次式(9)に基づいてy1の値を求める。
 y1=y2+k×(y3-y2)   ・・・(9)
ステップS58では、3次元非線形色域変換部123は、次式(10)に基づいてY1の値を求める。なお、YxvYCC_max(x,y)は色度座標(x,y)における明度の最大値であって、Ypanel_max(x1,y1)は色度座標(x1,y1)における明度の最大値である。
Figure JPOXMLDOC01-appb-M000005
ステップS58の終了後、図4のステップS90に進む。
 ここで、上式(10)について、図10を参照しつつ説明する。xyY色空間においては、明度Yの最大値は、xy色度図上における色度座標(x,y)の値によって異なる。すなわち、P点に対応する明度の最大値とQ点に対応する明度の最大値とは異なっている。そこで、本実施形態においては、対象画素の色についてのxy色度図上における色度座標の変換に伴う明度の最大値の増加率と同じ増加率となるように、対象画素の色についての明度をYからY1に変換している。例えば、P点に対応する明度の最大値が3で、かつ、Q点に対応する明度の最大値が3.3である場合には、対象画素の色についての変換後の明度Y1は変換前の明度Yの1.1倍となる。なお、後述する第3の変換処理および第4の変換処理においても同様である。
 ステップS60では、3次元非線形色域変換部123は、線分WPの長さlWPが線分WB3の長さlWB3以下であるか否かを判定する。詳しくは、3次元非線形色域変換部123は、W点の色度座標とB3点の色度座標とに基づいて線分WB3の長さlWB3を求める。このようにして求めたlWB3とステップS20で求めたlWPと基づいて、3次元非線形色域変換部123は、lWPがlWB3以下であるか否かを判定する。判定の結果、lWPがlWB3以下であればステップS70に進み、lWPがlWB3よりも大きければステップS80に進む。なお、ステップS60でlWPがlWB3以下であると判断されるとき、対象画素の色は上記第3の色である。また、ステップS60でlWPがlWB3よりも大きいと判断されるとき、対象画素の色は上記第4の色である。
 ステップS70では、3次元非線形色域変換部123によって、以下の第3の変換処理が行われる。図8は、第3の変換処理の手順を示すフローチャートである。ステップS72では、3次元非線形色域変換部123は、線分HB3の長さに対する線分HPの長さの比を、後述するステップで用いるための係数kとして求める。詳しくは、3次元非線形色域変換部123は、H点の色度座標とB3点の色度座標とに基づいて線分HB3の長さlHB3を求め、H点の色度座標とP点の色度座標とに基づいて線分HPの長さlHPを求める。そして、3次元非線形色域変換部123は、次式(11)に示すように、lHPをlHB3で除することによって係数kを求める。
 k=lHP/lHB3   ・・・(11)
 ステップS74では、3次元非線形色域変換部123は、次式(12)に基づいてx1の値を求める。
 x1=x3+k×(x4-x3)   ・・・(12)
ステップS76では、3次元非線形色域変換部123は、次式(13)に基づいてy1の値を求める。
 y1=y3+k×(y4-y3)   ・・・(13)
ステップS78では、3次元非線形色域変換部123は、上述した第2の変換処理と同様、上式(10)に基づいてY1の値を求める。ステップS78の終了後、図4のステップS90に進む。
 ステップS80では、3次元非線形色域変換部123によって、以下の第4の変換処理が行われる。図9は、第4の変換処理の手順を示すフローチャートである。ステップS82では、3次元非線形色域変換部123は、x1の値をx4とする。ステップS84では、3次元非線形色域変換部123は、y1の値をy4とする。ステップS86では、3次元非線形色域変換部123は、上述した第2の変換処理と同様、上式(10)に基づいてY1の値を求める。ステップS86の終了後、図4のステップS90に進む。
 ステップS90では、3次元非線形色域変換部123は、第1~第4の変換処理のいずれかによって求めたデータの値x1,y1,およびY1を基に、xyY表色系からXYZ表色系へのデータの変換を行う。xyY表色系からXYZ表色系への変換は、次式(14)から(16)に基づいて行われる。
 S=Y1/y1   ・・・(14)
 X1=x1×S1   ・・・(15)
 Z1=(1-x1-y1)×S   ・・・(16)
なお、上式(14)から(16)は、XYZ表色系のデータとxyY表色系のデータとの間に「(X/x)=(Y/y)=(Z/z)」かつ「x+y+z=1」の関係が定義されていることから求められる。
 以上のようにして、XYZ表色系のデータの三刺激値X1,Y1,およびZ1が求められると、3次元非線形色域変換部123における変換処理は終了する。
<4.効果>
 本実施形態によれば、入力映像信号の示す色のxy色度図上における色度座標点(入力データ色度座標点)と、第1の境界線41,HDTV規格に基づく色再現範囲44の最外郭,および第3の境界線43との位置関係に応じて、異なる4つの手法によって色のデータに変換処理が施される。詳しくは、入力データ色度座標点が第1の境界線41の内側にある場合には、入力データ色度座標点と変換後のデータについての色度座標点とが同じにされる。入力データ色度座標点が第1の境界線41の外側かつHDTV規格に基づく色再現範囲44の最外郭の内側にある場合には、「第1の境界線41と第2の境界線42と変換後のデータの色度座標点との位置関係」が「第1の境界線41とHDTV規格に基づく色再現範囲44の最外郭と入力データ色度座標点との位置関係」と同様になるように、変換後のデータについての色度座標点が決定される。入力データ色度座標点がHDTV規格に基づく色再現範囲44の最外郭の外側かつ第3の境界線43の内側にある場合には、「第2の境界線42と液晶パネル14の色再現範囲45の最外郭と変換後のデータの色度座標点との位置関係」が「HDTV規格に基づく色再現範囲44の最外郭と第3の境界線43と入力データ色度座標点との位置関係」と同様になるように、変換後のデータについてのxy色度図上の色度座標点が決定される。入力データ色度座標点が第3の境界線43の外側にある場合には、液晶パネル14の色再現範囲45の最外郭上の色度座標点が変換後のデータの色度座標点とされる。また、入力データ色度座標点が第1の境界線41の外側にある場合には、変換前のデータについての明度に対する変換後のデータについての明度の割合が入力データ色度座標点における明度の最大値に対する変換後のデータの色度座標点における明度の最大値の割合と等しくなるように、変換後のデータについてのxyY色空間における明度が決定される。
 以上より、対象画素の色が第1の色である場合には、xyY色空間におけるデータの値に変換は施されず、液晶パネル14の表示部には、入力映像信号の示す色に忠実な色が表示される。このため、白色や肌色など記憶色と呼ばれる色が内部に含まれるように第1の境界線41を定めておくことによって、記憶色については入力映像信号の示す色に忠実な色が表示されるようにすることができる。また、対象画素の色が第2の色である場合には、彩度および明度が高められるようにxyY色空間におけるデータの値に変換が施され、液晶パネル14の表示部には、その変換後の色が表示される。このため、HDTV規格の色(但し、第1の境界線41の内側の色度座標を有する色を除く)については、パネルの持つ色再現能力を活かした鮮やかな表示が行われる。さらに、対象画素の色が第3の色である場合には、液晶パネル14の色再現範囲45の最外郭近傍の所定範囲内の色度座標を有する色が表示されるように、かつ、対象画素の色が第4の色である場合には、液晶パネル14の色再現範囲45の最外郭上の色度座標点を有する色が表示されるように、xyY色空間におけるデータの値に変換が施される。このため、拡張色のデータ全てにクリップ処理が施されるということはなく、拡張色のうち比較的重視される色については、色の連続性が損なわれないような表示が行われる。以上のように、拡張色のデータを含む入力データが外部から与えられたときに、当該拡張色のデータに基づく色の表示を確保しつつパネルの持つ色再現能力を充分に活かした鮮やかな画像表示を行うことが可能となる。
 また、本実施形態においては、XYZ表色系のデータの三刺激値X,Y,およびZの値に対して変換処理が施される。ここで、XYZ表色系では、RGB表色系とは異なり、三刺激値が負になることがなく、また、三刺激値はデバイスに依存しない値である。このため、上述のように入力映像信号の示す色とは異なる色を液晶パネル14に表示させたいときに、RGB表色系のデータの変換処理に比べて、複雑な演算処理を要することなく容易にデータの変換処理を行うことが可能となる。
<5.変形例>
 以下、上記実施形態の変形例について説明する。
<5.1 外部から送られるデータについての変形例>
 上記実施形態においては、xvYCC規格に準拠したデータとしてRGBデータ(RGB表色系の画像データ)が外部から送られる例を挙げて説明したが、本発明はこれに限定されない。xvYCC規格に準拠したデータとして例えばYCbCrデータ(YCbCr表色系の画像データ)が外部から送られる場合にも本発明を適用することができる。
 図11は、本変形例における表示装置の概略構成を示すブロック図である。本変形例においては、上記実施形態における構成要素に加えて、画像処理装置12内に第3の色空間変換部126が設けられている。第3の色空間変換部126は、次式(17)に基づき、外部の信号源20から送られるxvYCC規格に準拠したYCbCr信号YCbCrinを非線形のRGB信号R’G’B’inに変換する。
Figure JPOXMLDOC01-appb-M000006
すなわち、第3の色空間変換部126では、YCbCr色空間からRGB色空間へのデータの変換が行われる。第3の色空間変換部126で生成されたRGB信号R’G’B’inは第1のガンマ処理部121に与えられる。第3の色空間変換部126以外の構成要素では、上記実施形態と同様の処理が行われる。
 本変形例によれば、拡張色のデータを含む入力データとしてYCbCr表色系の画像データが外部から与えられたときに、上記実施形態と同様、拡張色のデータに基づく色の表示を確保しつつパネルの持つ色再現能力を充分に活かした鮮やかな画像表示を行うことが可能となる。
<5.2 色度座標値の変換の際に用いられる係数kについての変形例>
 上記実施形態の第2の変換処理においては、上式(7)より求められたkすなわちlB1PをlB1Hで除することによって求められたkがxy色度図上における色度座標(x,y)の変換(図7のステップS54,S56)の際に係数として用いられているが、本発明はこれに限定されない。例えば、上式(7)より求められたkの関数が色度座標(x,y)の変換の際に係数として用いられる構成とすることもできる。以下、k(基本係数)の関数を便宜上k1(第1係数)と示す。
 本変形例においては、3次元非線形色域変換部123は、上記ステップS54では上式(8)に代えて次式(18)に基づいてx1の値を求め、上記ステップS56では上式(9)に代えて次式(19)に基づいてy1の値を求める。
 x1=x2+k1×(x3-x2)   ・・・(18)
 y1=y2+k1×(y3-y2)   ・・・(19)
ここで、上式(18)および上式(19)に含まれている係数k1については、線形の式で求められる構成とすることもできるし、非線形の式で求められる構成とすることもできる。例えば、k1が次式(20)で求められる構成とすると、上記実施形態と同様の変換処理が行われることになる。
 k1=k   ・・・(20)
また、例えば、k1が次式(21)に示すような非線形の式で求められる構成とすることもできる。なお、qは任意の値に定められ得る正の係数である。
 k1=1-e-kq   ・・・(21)
このようにk1が非線形の式で求められる構成とすることによって、視聴者に与える違和感をより小さくしつつ、パネルの持つ色再現能力を活かした画像表示を行うことが可能となる。なお、上記係数k1については、人の視覚特性等に基づいて決定されるべきものであるので、上式(20)や上式(21)には限定されず、画像の見栄えに関する統計データ等に基づいて決定することが好ましい。
 ところで、k(基本係数)の関数であるk1(第1係数)を色度座標の変換の際の係数として用いる構成に関し、係数k1を予め用意されたルックアップテーブル(第1のルックアップテーブル)に保持しておき、3次元非線形色域変換部123が当該ルックアップテーブルから係数k1を取得するようにしても良い。これについては、例えば次のようにして実現することができる。まず、ルックアップテーブルに保持する係数k1のデータの個数Nを決定する。そして、係数k1の値を求めるための式として、例えば次式(22)に示すような式を定める。なお、iは、ルックアップテーブルを参照する際のインデックスであって、0以上N未満の整数である。
 k1[i]=1-e-iq   ・・・(22)
次に、上式(21)において、qの値を決めた後、インデックスiに0以上N未満の整数を順次に代入する。これにより、係数k1のデータの個数Nを例えば「32」としたとき、32個の係数k1[0]~k1[31]のデータを含む例えば図12に示すようなルックアップテーブルが生成される。このようにして生成されたルックアップテーブルを画像処理装置12内に保持しておき、当該ルックアップテーブルを3次元非線形色域変換部123が参照可能な構成にしておけば良い。
 3次元非線形色域変換部123が係数k1の値を取得するためにルックアップテーブルを参照する際のインデックスiについては、例えば「上記ステップS52で求めたk」と「係数k1のデータの個数N」との積を整数化した値(例えば、小数点以下を切り捨てることによって得られる値)とすれば良い。例えば、ステップS52で得られたkの値が「0.1」であって、かつ、係数k1のデータの個数Nが「32」であれば、「0.1」と「32」との積である「3.2」の小数点以下を切り捨てることによって得られる「3」を、3次元非線形色域変換部123がルックアップテーブルを参照する際のインデックスiとする。但し、kの値が「1」のときには、インデックスiの最大値が「31」であるにもかかわらず「1」と「32」との積が「32」となるので、「31」を3次元非線形色域変換部123がルックアップテーブルを参照する際のインデックスiとする。
 このように、係数k1の値を保持するルックアップテーブルを備える構成とすることによって、この表示装置10の動作中に3次元非線形色域変換部123が例えば上式(21)に示すような非線形の式に基づく演算処理を行うことが不要となり、実現が容易になる。
 なお、第3の変換処理についても、第2の変換処理と同様、k(基本係数)の関数であるk1(第1係数)を色度座標(x,y)の変換(図8のステップS74,S76)の際の係数として用いる構成とすることができる。また、この場合、第2の変換処理と同様、係数k1を予め用意されたルックアップテーブル(第1のルックアップテーブル)に保持しておき、3次元非線形色域変換部123が当該ルックアップテーブルから係数k1を取得するようにしても良い。
<5.3 明度の変換についての変形例>
 上記実施形態においては、第2の変換処理の際、xyY色空間における明度の変換は上式(10)に基づいて行われているが、すなわち、対象画素の色のxy色度図上における色度座標の変換に伴う明度の最大値の増加率と同じ増加率となるように対象画素の色の明度についてYからY1への変換が行われているが、本発明はこれに限定されない。例えば、上式(10)に代えて次式(23)に基づいてYからY1への変換が行われる構成とすることもできる。なお、次式(23)に含まれている係数k2(第2係数)は、上式(7)によって求められるk(基本係数)の関数である。
Figure JPOXMLDOC01-appb-M000007
上式(23)に関し、係数k2については、上記係数k1と同様、線形の式で求められる構成とすることもできるし、非線形の式で求められる構成とすることもできる。例えば、k2が次式(24)によって求められる構成とすることができる。
 k2=k   ・・・(24)
 ところで、第2の変換処理においては、図5および上式(7)から把握されるように、入力データ色度座標点が第1の境界線41に近いほどkの値は「0」に近い値となり、入力データ色度座標点がHDTV規格に基づく色再現範囲44の最外郭に近いほどkの値は「1」に近い値となる。従って、係数k2が上式(24)によって求められる構成とした場合、入力データ色度座標点が第1の境界線41に近いほど係数k2は「0」に近い値となり、入力データ色度座標点がHDTV規格に基づく色再現範囲44の最外郭に近いほど係数k2は「1」に近い値となる。このため、入力データ色度座標点が第1の境界線41に近いほど、入力映像信号に基づくxyY色空間における明度であるYの値に大きな重み付けがなされてYからY1への変換が行われる。一方、入力データ色度座標点がHDTV規格に基づく色再現範囲44の最外郭に近いほど、色度座標の変換に伴う明度の最大値の増加率に大きな重み付けがなされてYからY1への変換が行われる。以上のように、第2の変換処理の際に上式(23)に基づいてYからY1への変換が行われる構成とすることで、より人の視覚特性を考慮しつつ、上記第2の色についての明度の変換が行われる。
 第3の変換処理についても、第2の変換処理と同様、上式(10)に代えて上式(23)に基づいてYからY1への変換が行われる構成とすることもできる。
 ところで、第3の変換処理においては、図5および上式(11)から把握されるように、入力データ色度座標点がHDTV規格に基づく色再現範囲44の最外郭に近いほどkの値は「0」に近い値となり、入力データ色度座標点が第3の境界線43に近いほどkの値は「1」に近い値となる。従って、係数k2が上式(24)によって求められる構成とした場合、入力データ色度座標点がHDTV規格に基づく色再現範囲44の最外郭に近いほど係数k2は「0」に近い値となり、入力データ色度座標点が第3の境界線43に近いほど係数k2は「1」に近い値となる。このため、入力データ色度座標点がHDTV規格に基づく色再現範囲44の最外郭に近いほど、入力映像信号に基づくxyY色空間における明度であるYの値に大きな重み付けがなされてYからY1への変換が行われる。一方、入力データ色度座標点が第3の境界線43に近いほど、色度座標の変換に伴う明度の最大値の増加率に大きな重み付けがなされてYからY1への変換が行われる。以上のように、第3の変換処理の際に上式(23)に基づいてYからY1への変換が行われる構成とすることで、より人の視覚特性を考慮しつつ、上記第3の色についての明度の変換が行われる。
 以上より、本変形例によれば、画像の視聴者に違和感を与えることなく、HDTV規格に基づく色については、入力映像信号によって得られる最大の明度よりも高い明度の色を用いた表示が行われ、拡張色のうち比較的重視される色については、色の明るさの連続性が損なわれないような表示が行われる。
 また、係数k1(第1係数)と同様、係数k2(第2係数)が次式(25)に示すような非線形の式で求められる構成とすることもできる。なお、rは任意の値に定められ得る正の係数である。
 k2=1-e-kr   ・・・(25)
 さらに、係数k1(第1係数)と同様、係数k2(第2係数)のデータを含むルックアップテーブル(第2のルックアップテーブル)を画像処理装置12内に保持しておき、当該ルックアップテーブルから3次元非線形色域変換部123が係数k2を取得する構成としても良い。
<5.4 第1の境界線についての変形例>
 上記実施形態においては、xy色度図上の第1の境界線41の形状を楕円形の形状(図2参照)としているが、本発明はこれに限定されない。第1の境界線41の形状については、xy平面上の式として表すことのできるものであれば、例えば図13に示すように多角形にしても良い。なお、画面上における画像の見栄えは視聴者の好みに因るので、例えば画像の見栄えに関する多数の統計データを取得して、当該統計データに基づいて第1の境界線41の形状を決定するようにすれば良い。第2の境界線42の形状および第3の境界線43の形状についても、上記実施形態における形状(図2参照)には限定されない。
 また、上記実施形態においては、記憶色およびD65(基準白色)の色度座標が第1の境界線41の内部に含まれる構成としているが、本発明はこれに限定されない。例えば、記憶色に限らず入力映像信号に忠実な表示が行われるべき色およびD65の色度座標が第1の境界線41の内部に含まれる構成としても良いし、また、D65以外の基準白色(D93など)の色度座標が第1の境界線41の内部に含まれる構成としても良い。
 10…表示装置
 12…画像処理装置
 14…液晶パネル
 20…信号源
 41…第1の境界線
 42…第2の境界線
 43…第3の境界線
 44…HDTV規格に基づく色再現範囲(の最外郭)
 45…液晶パネルの色再現範囲(の最外郭)
 121…第1のガンマ処理部
 122…第1の色空間変換部
 123…3次元非線形色域変換部
 124…第2の色空間変換部
 125…第2のガンマ処理部
 126…第3の色空間変換部

Claims (29)

  1.  入力データが示す色を所定の出力装置の色再現範囲内の色に変換する画像処理装置であって、
     前記入力データに基づいて得られるRGB表色系の画像データをXYZ表色系の画像データである第1のXYZデータに変換する第1の色空間変換部と、
     前記第1のXYZデータを構成する三刺激値としてのX,Y,およびZの値に所定の変換処理を施すことにより、前記出力装置の色再現範囲内の色を示すXYZ表色系の画像データである第2のXYZデータを生成するXYZデータ変換部と、
     前記第2のXYZデータをRGB表色系の画像データに変換する第2の色空間変換部と
    を備え、
     前記第1の色空間変換部には、前記入力データとして前記出力装置の色再現範囲よりも広い色再現範囲内の色を示す画像データが与えられることを特徴とする、画像処理装置。
  2.  前記XYZデータ変換部は、
      前記第1のXYZデータを、xy色度図上に形成された第1の境界線に対応する色再現範囲内の色を示す第1の色データ,xy色度図上において前記第1の境界線よりも外側の色度座標を有する色であって、前記入力データの規格と互換性のある所定規格に基づく色再現範囲内の色を示す第2の色データ,前記所定規格に基づく色再現範囲外の色であって、前記出力装置の色再現範囲を包含するようにxy色度図上に形成された第3の境界線に対応する色再現範囲内の色を示す第3の色データ,およびxy色度図上において前記第3の境界線よりも外側の色度座標を有する色を示す第4の色データに分類し、
      前記第1の色データについては、前記第1のXYZデータの示す色と前記第2のXYZデータの示す色とが同じになるように、かつ、前記第2の色データについては、前記第1のXYZデータによって得られる色再現範囲よりも前記第2のXYZデータによって得られる色再現範囲の方が広くなるように、かつ、前記第3の色データについては、前記第2のXYZデータの示す色が、前記所定規格に基づく色再現範囲を包含するようにxy色度図上に形成された第2の境界線よりも外側の色度座標を有する色であって前記出力装置の色再現範囲内の色となるように、かつ、前記第4の色データについては、前記第2のXYZデータの示す色がxy色度図上において前記出力装置の色再現範囲を表す線上の色度座標を有する色となるように、前記X,Y,およびZの値に前記変換処理を施すことを特徴とする、請求項1に記載の画像処理装置。
  3.  前記XYZデータ変換部は、前記第1のXYZデータに含まれる各画素のデータに前記変換処理を施す際、
      xy色度図上において、当該各画素のデータについての色度座標である第1座標と、所定の基準座標と前記第1座標とを通過する直線である変換用直線と前記第1の境界線との交点の色度座標である第2座標と、前記変換用直線と前記所定規格に基づく色再現範囲を表す線との交点の色度座標である第3座標と、前記変換用直線と前記第2の境界線との交点の色度座標である第4座標と、前記変換用直線と前記出力装置の色再現範囲を表す線との交点の色度座標である第5座標と、前記変換用直線と前記第3の境界線との交点の色度座標である第6座標とを求め、
      当該各画素のデータに前記変換処理が施された後のデータの色度座標を第7座標としたときに、前記第1の色データについては、前記第1座標と前記第7座標とが同じになるように、かつ、前記第2の色データについては、前記第2座標-前記第3座標間の距離に対する前記第2座標-前記第1座標間の距離の割合と前記第2座標-前記第4座標間の距離に対する前記第2座標-前記第7座標間の距離の割合とが等しくなるように、かつ、前記第3の色データについては、前記第3座標-前記第6座標間の距離に対する前記第3座標-前記第1座標間の距離の割合と前記第4座標-前記第5座標間の距離に対する前記第4座標-前記第7座標間の距離の割合とが等しくなるように、かつ、前記第4の色データについては、前記第6座標と前記第7座標とが同じになるように、前記変換用直線上の色度座標の中から前記第7座標を求めることを特徴とする、請求項2に記載の画像処理装置。
  4.  前記XYZデータ変換部は、前記第1のXYZデータに含まれる各画素のデータに前記変換処理を施す際、
      xy色度図上において、当該各画素のデータについての色度座標である第1座標と、所定の基準座標と前記第1座標とを通過する直線である変換用直線と前記第1の境界線との交点の色度座標である第2座標と、前記変換用直線と前記所定規格に基づく色再現範囲を表す線との交点の色度座標である第3座標と、前記変換用直線と前記第2の境界線との交点の色度座標である第4座標と、前記変換用直線と前記出力装置の色再現範囲を表す線との交点の色度座標である第5座標と、前記変換用直線と前記第3の境界線との交点の色度座標である第6座標とを求め、
      当該各画素のデータに前記変換処理が施された後のデータの色度座標を第7座標としたときに、前記第1の色データについては、前記第1座標を前記第7座標とし、かつ、前記第2の色データについては、前記第2座標-前記第1座標間の距離を前記第2座標-前記第3座標間の距離で除することによって得られる値を基本係数として当該基本係数の関数で表される第1係数を前記第2座標-前記第4座標間の距離に乗ずることによって得られる距離だけ前記第2座標から前記変換用直線上において前記第4座標側にある色度座標を前記第7座標とし、かつ、前記第3の色データについては、前記第3座標-前記第1座標間の距離を前記第3座標-前記第6座標間の距離で除することによって得られる値を基本係数として当該基本係数の関数で表される第1係数を前記第4座標-前記第5座標間の距離に乗ずることによって得られる距離だけ前記第4座標から前記変換用直線上において前記第5座標側にある色度座標を前記第7座標とし、かつ、前記第4の色データについては、前記第6座標を前記第7座標とすることを特徴とする、請求項2に記載の画像処理装置。
  5.  前記XYZデータ変換部は、下記の式によって前記第2の色データについての第1係数と前記第3の色データについての第1係数とを求めることを特徴とする、請求項4に記載の画像処理装置:
    1=1-e-kq
    ここで、k1は前記第1係数、eは自然対数の底、kは前記基本係数、qは前記第2の色データおよび前記第3の色データのそれぞれにつき任意の値に定められ得る正の係数である。
  6.  前記第2の色データおよび前記第3の色データのそれぞれにつき、前記第1係数の値を所定のインデックスと対応付けて予め複数個保持する第1のルックアップテーブルを更に備え、
     前記XYZデータ変換部は、前記基本係数に基づいて求められるインデックスを用いて、前記第1のルックアップテーブルから前記第1係数の値を取得することを特徴とする、請求項4に記載の画像処理装置。
  7.  前記XYZデータ変換部は、前記第1のXYZデータに含まれる各画素のデータのうち前記第2の色データ,前記第3の色データ,および前記第4の色データに前記変換処理を施す際、前記第1座標における明度の最大値に対する前記第7座標における明度の最大値の割合と当該各画素のデータについての明度に対する当該各画素のデータに前記変換処理が施された後のデータについての明度の割合とが等しくなるように、前記第2のXYZデータに含まれるべき各画素のデータについての明度の値を求めることを特徴とする、請求項3に記載の画像処理装置。
  8.  前記XYZデータ変換部は、前記第1のXYZデータに含まれる各画素のデータのうち前記第2の色データおよび前記第3の色データに前記変換処理を施す際、前記第2のXYZデータに含まれるべき各画素のデータについての明度の値を、前記基本係数の関数で表される第2係数を用いて下記の式によって求めることを特徴とする、請求項4に記載の画像処理装置:
    1=((1-k2)+(Ya×k2))×Y
    ここで、Y1は前記第2のXYZデータに含まれるべき各画素のデータについての明度、Yは前記第1のXYZデータに含まれる各画素のデータについての明度、k2は前記第2係数、Yaは前記第7座標における明度の最大値を前記第1座標における明度の最大値で除することによって得られる値である。
  9.  前記XYZデータ変換部は、下記の式によって前記第2の色データについての第2係数と前記第3の色データについての第2係数とを求めることを特徴とする、請求項8に記載の画像処理装置:
    2=1-e-kr
    ここで、k2は前記第2係数、eは自然対数の底、kは前記基本係数、rは前記第2の色データおよび前記第3の色データのそれぞれにつき任意の値に定められ得る正の係数である。
  10.  前記第2の色データおよび前記第3の色データのそれぞれにつき、前記第2係数の値を所定のインデックスと対応付けて予め複数個保持する第2のルックアップテーブルを更に備え、
     前記XYZデータ変換部は、前記基本係数に基づいて求められるインデックスを用いて、前記第2のルックアップテーブルから前記第2係数の値を取得することを特徴とする、請求項8に記載の画像処理装置。
  11.  前記第1の境界線の内側に標準光源であるD65の色度座標が含まれるように、前記第1の境界線が形成されていることを特徴とする、請求項2に記載の画像処理装置。
  12.  前記第1の境界線の内側に少なくとも白色と肌色とを含む記憶色の色度座標が含まれるように、前記第1の境界線が形成されていることを特徴とする、請求項2に記載の画像処理装置。
  13.  前記入力データはxvYCC規格に準拠したデータであることを特徴とする、請求項1に記載の画像処理装置。
  14.  前記入力データとしてYCbCr表色系の画像データを受け取り当該YCbCr表色系の画像データをRGB表色系の画像データに変換する第3の色空間変換部を更に備えることを特徴とする、請求項1に記載の画像処理装置。
  15.  画像を表示する表示パネルを備えた表示装置であって、
     請求項1に記載の画像処理装置を有し、
     前記表示パネルは、前記第2の色空間変換部によって生成されたRGB表色系のデータに基づいて前記画像を表示することを特徴とする、表示装置。
  16.  入力データが示す色を所定の出力装置の色再現範囲内の色に変換する画像処理方法であって、
     前記出力装置の色再現範囲よりも広い色再現範囲内の色を示す画像データである前記入力データに基づいて得られるRGB表色系の画像データをXYZ表色系の画像データである第1のXYZデータに変換する第1の色空間変換ステップと、
     前記第1のXYZデータを構成する三刺激値としてのX,Y,およびZの値に所定の変換処理を施すことにより、前記出力装置の色再現範囲内の色を示すXYZ表色系の画像データである第2のXYZデータを生成するXYZデータ変換ステップと、
     前記第2のXYZデータをRGB表色系の画像データに変換する第2の色空間変換ステップと
    を備えることを特徴とする、画像処理方法。
  17.  前記XYZデータ変換ステップでは、
      前記第1のXYZデータは、xy色度図上に形成された第1の境界線に対応する色再現範囲内の色を示す第1の色データ,xy色度図上において前記第1の境界線よりも外側の色度座標を有する色であって、前記入力データの規格と互換性のある所定規格に基づく色再現範囲内の色を示す第2の色データ,前記所定規格に基づく色再現範囲外の色であって、前記出力装置の色再現範囲を包含するようにxy色度図上に形成された第3の境界線に対応する色再現範囲内の色を示す第3の色データ,およびxy色度図上において前記第3の境界線よりも外側の色度座標を有する色を示す第4の色データに分類され、
      前記第1の色データについては、前記第1のXYZデータの示す色と前記第2のXYZデータの示す色とが同じになるように、かつ、前記第2の色データについては、前記第1のXYZデータによって得られる色再現範囲よりも前記第2のXYZデータによって得られる色再現範囲の方が広くなるように、かつ、前記第3の色データについては、前記第2のXYZデータの示す色が、前記所定規格に基づく色再現範囲を包含するようにxy色度図上に形成された第2の境界線よりも外側の色度座標を有する色であって前記出力装置の色再現範囲内の色となるように、かつ、前記第4の色データについては、前記第2のXYZデータの示す色がxy色度図上において前記出力装置の色再現範囲を表す線上の色度座標を有する色となるように、前記X,Y,およびZの値に前記変換処理が施されることを特徴とする、請求項16に記載の画像処理方法。
  18.  前記XYZデータ変換ステップでは、前記第1のXYZデータに含まれる各画素のデータに前記変換処理が施される際、
      xy色度図上において、当該各画素のデータについての色度座標である第1座標と、所定の基準座標と前記第1座標とを通過する直線である変換用直線と前記第1の境界線との交点の色度座標である第2座標と、前記変換用直線と前記所定規格に基づく色再現範囲を表す線との交点の色度座標である第3座標と、前記変換用直線と前記第2の境界線との交点の色度座標である第4座標と、前記変換用直線と前記出力装置の色再現範囲を表す線との交点の色度座標である第5座標と、前記変換用直線と前記第3の境界線との交点の色度座標である第6座標とが求められ、
      当該各画素のデータに前記変換処理が施された後のデータの色度座標を第7座標としたときに、前記第1の色データについては、前記第1座標と前記第7座標とが同じになるように、かつ、前記第2の色データについては、前記第2座標-前記第3座標間の距離に対する前記第2座標-前記第1座標間の距離の割合と前記第2座標-前記第4座標間の距離に対する前記第2座標-前記第7座標間の距離の割合とが等しくなるように、かつ、前記第3の色データについては、前記第3座標-前記第6座標間の距離に対する前記第3座標-前記第1座標間の距離の割合と前記第4座標-前記第5座標間の距離に対する前記第4座標-前記第7座標間の距離の割合とが等しくなるように、かつ、前記第4の色データについては、前記第6座標と前記第7座標とが同じになるように、前記変換用直線上の色度座標の中から前記第7座標が求められることを特徴とする、請求項17に記載の画像処理方法。
  19.  前記XYZデータ変換ステップでは、前記第1のXYZデータに含まれる各画素のデータに前記変換処理が施される際、
      xy色度図上において、当該各画素のデータについての色度座標である第1座標と、所定の基準座標と前記第1座標とを通過する直線である変換用直線と前記第1の境界線との交点の色度座標である第2座標と、前記変換用直線と前記所定規格に基づく色再現範囲を表す線との交点の色度座標である第3座標と、前記変換用直線と前記第2の境界線との交点の色度座標である第4座標と、前記変換用直線と前記出力装置の色再現範囲を表す線との交点の色度座標である第5座標と、前記変換用直線と前記第3の境界線との交点の色度座標である第6座標とが求められ、
      当該各画素のデータに前記変換処理が施された後のデータの色度座標を第7座標としたときに、前記第1の色データについては、前記第1座標が前記第7座標とされ、かつ、前記第2の色データについては、前記第2座標-前記第1座標間の距離を前記第2座標-前記第3座標間の距離で除することによって得られる値を基本係数として当該基本係数の関数で表される第1係数を前記第2座標-前記第4座標間の距離に乗ずることによって得られる距離だけ前記第2座標から前記変換用直線上において前記第4座標側にある色度座標が前記第7座標とされ、かつ、前記第3の色データについては、前記第3座標-前記第1座標間の距離を前記第3座標-前記第6座標間の距離で除することによって得られる値を基本係数として当該基本係数の関数で表される第1係数を前記第4座標-前記第5座標間の距離に乗ずることによって得られる距離だけ前記第4座標から前記変換用直線上において前記第5座標側にある色度座標が前記第7座標とされ、かつ、前記第4の色データについては、前記第6座標が前記第7座標とされることを特徴とする、請求項17に記載の画像処理方法。
  20.  前記XYZデータ変換ステップでは、下記の式によって前記第2の色データについての第1係数と前記第3の色データについての第1係数とが求められることを特徴とする、請求項19に記載の画像処理方法:
    1=1-e-kq
    ここで、k1は前記第1係数、eは自然対数の底、kは前記基本係数、qは前記第2の色データおよび前記第3の色データのそれぞれにつき任意の値に定められ得る正の係数である。
  21.  前記XYZデータ変換ステップでは、前記第2の色データおよび前記第3の色データのそれぞれにつき前記第1係数の値を所定のインデックスと対応付けて予め複数個保持する第1のルックアップテーブルから、前記基本係数に基づいて求められるインデックスを用いて前記第1係数の値が取得されることを特徴とする、請求項19に記載の画像処理方法。
  22.  前記XYZデータ変換ステップでは、前記第1のXYZデータに含まれる各画素のデータのうち前記第2の色データ,前記第3の色データ,および前記第4の色データに前記変換処理が施される際、前記第1座標における明度の最大値に対する前記第7座標における明度の最大値の割合と当該各画素のデータについての明度に対する当該各画素のデータに前記変換処理が施された後のデータについての明度の割合とが等しくなるように、前記第2のXYZデータに含まれるべき各画素のデータについての明度の値が求められることを特徴とする、請求項18に記載の画像処理方法。
  23.  前記XYZデータ変換ステップでは、前記第1のXYZデータに含まれる各画素のデータのうち前記第2の色データおよび前記第3の色データに前記変換処理が施される際、前記第2のXYZデータに含まれるべき各画素のデータについての明度の値が、前記基本係数の関数で表される第2係数を用いて下記の式によって求められることを特徴とする、請求項19に記載の画像処理方法:
    1=((1-k2)+(Ya×k2))×Y
    ここで、Y1は前記第2のXYZデータに含まれるべき各画素のデータについての明度、Yは前記第1のXYZデータに含まれる各画素のデータについての明度、k2は前記第2係数、Yaは前記第7座標における明度の最大値を前記第1座標における明度の最大値で除することによって得られる値である。
  24.  前記XYZデータ変換ステップでは、下記の式によって前記第2の色データについての第2係数と前記第3の色データについての第2係数とが求められることを特徴とする、請求項23に記載の画像処理方法:
    2=1-e-kr
    ここで、k2は前記第2係数、eは自然対数の底、kは前記基本係数、rは前記第2の色データおよび前記第3の色データのそれぞれにつき任意の値に定められ得る正の係数である。
  25.  前記XYZデータ変換ステップでは、前記第2の色データおよび前記第3の色データのそれぞれにつき前記第2係数の値を所定のインデックスと対応付けて予め複数個保持する第2のルックアップテーブルから、前記基本係数に基づいて求められるインデックスを用いて前記第2係数の値が取得されることを特徴とする、請求項23に記載の画像処理方法。
  26.  前記第1の境界線の内側に標準光源であるD65の色度座標が含まれるように、前記第1の境界線が形成されていることを特徴とする、請求項17に記載の画像処理方法。
  27.  前記第1の境界線の内側に少なくとも白色と肌色とを含む記憶色の色度座標が含まれるように、前記第1の境界線が形成されていることを特徴とする、請求項17に記載の画像処理方法。
  28.  前記入力データはxvYCC規格に準拠したデータであることを特徴とする、請求項16に記載の画像処理方法。
  29.  前記入力データとしてのYCbCr表色系の画像データをRGB表色系の画像データに変換する第3の色空間変換ステップを更に備えることを特徴とする、請求項16に記載の画像処理方法。
PCT/JP2010/060119 2009-11-20 2010-06-15 画像処理装置および画像処理方法 WO2011061954A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2012125614/08A RU2012125614A (ru) 2009-11-20 2010-06-15 Устройство обработки изображения и способ обработки изображения
JP2011541825A JP5296889B2 (ja) 2009-11-20 2010-06-15 画像処理装置および画像処理方法
CN201080043561.XA CN102577397B (zh) 2009-11-20 2010-06-15 图像处理装置和图像处理方法
BR112012011965A BR112012011965A2 (pt) 2009-11-20 2010-06-15 dispositivo de processamento de imagem e método de processamento de imagem
US13/500,474 US8890884B2 (en) 2009-11-20 2010-06-15 Image processing device converting a color represented by inputted data into a color within a color reproduction range of a predetermined output device and image processing method thereof
EP10831353.7A EP2503784A4 (en) 2009-11-20 2010-06-15 IMAGE PROCESSING DEVICE AND IMAGE PROCESSING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-264475 2009-11-20
JP2009264475 2009-11-20

Publications (1)

Publication Number Publication Date
WO2011061954A1 true WO2011061954A1 (ja) 2011-05-26

Family

ID=44059440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060119 WO2011061954A1 (ja) 2009-11-20 2010-06-15 画像処理装置および画像処理方法

Country Status (7)

Country Link
US (1) US8890884B2 (ja)
EP (1) EP2503784A4 (ja)
JP (1) JP5296889B2 (ja)
CN (1) CN102577397B (ja)
BR (1) BR112012011965A2 (ja)
RU (1) RU2012125614A (ja)
WO (1) WO2011061954A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103079078A (zh) * 2012-03-19 2013-05-01 北京泰邦天地科技有限公司 彩色图像的颜色数据管理方法
WO2013039730A3 (en) * 2011-09-15 2013-11-07 Dolby Laboratories Licensing Corporation Method and system for backward compatible, extended dynamic range encoding of video
WO2015029633A1 (ja) * 2013-08-28 2015-03-05 シャープ株式会社 液晶表示装置および液晶表示装置における画像表示方法
JP2015516584A (ja) * 2012-02-28 2015-06-11 アップル インコーポレイテッド 拡張範囲色空間
KR101549326B1 (ko) 2013-02-07 2015-09-01 가부시키가이샤 재팬 디스프레이 색 변환 장치, 표시 장치, 전자 기기 및 색 변환 방법

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9619865B2 (en) * 2012-09-17 2017-04-11 Konica Minolta Laboratory U.S.A., Inc. Resolution-independent display list
US9191552B2 (en) * 2012-11-30 2015-11-17 Kyocera Document Solutions Inc. Image processing apparatus that performs color conversion and image processing method
WO2015072181A1 (ja) * 2013-11-12 2015-05-21 シャープ株式会社 色再現システムおよび色再現方法
US9807358B2 (en) * 2014-02-06 2017-10-31 Stmicroelectronics S.R.L. Method and system for chromatic gamut extension, corresponding apparatus and computer program product
CN103763538B (zh) * 2014-02-21 2016-08-31 深圳创维-Rgb电子有限公司 一种实现信号颜色显示的方法及装置
US10409822B2 (en) 2014-05-06 2019-09-10 Shutterstock, Inc. Systems and methods for presenting ranked search results
CN103957412B (zh) * 2014-05-06 2017-04-12 北京大学 一种针对屏幕视频帧间残差的基础色索引映射算法
CN105513519B (zh) * 2014-09-23 2019-08-27 台达电子工业股份有限公司 即时色域映对系统与即时色域映对方法
TWI555409B (zh) * 2015-03-10 2016-10-21 友達光電股份有限公司 顯示器之影像處理方法
CN105702227B (zh) * 2016-03-08 2018-06-01 上海大学 一种rgb信号数据到rgbw信号数据的转换系统
CN105867863B (zh) * 2016-04-05 2018-08-24 西安电子科技大学 一种大色域显示设备的图像复现质量提升方法
CN107665677B (zh) * 2017-08-16 2018-10-12 惠科股份有限公司 一种显示装置的白平衡调整方法和显示装置
CN107863081B (zh) * 2017-12-13 2019-08-23 京东方科技集团股份有限公司 多基色转换方法及其转换器、显示控制方法、显示装置
CN108965843B (zh) * 2018-07-17 2020-09-29 天津市智博源微电子技术有限公司 光谱分段确定矩阵系数法提取宽色域数据的方法
US10630867B2 (en) 2018-09-17 2020-04-21 Samsung Electronics Co., Ltd. Perceptual hue preserved color-gamut transferring in non-uniform CIE-1931 color space
US11348553B2 (en) 2019-02-11 2022-05-31 Samsung Electronics Co., Ltd. Color gamut mapping in the CIE 1931 color space
CN110213554B (zh) * 2019-07-03 2021-07-13 大峡谷照明系统(苏州)股份有限公司 一种图像映射播放器及像素点调试的方法
CN110378973B (zh) * 2019-07-17 2022-08-12 Oppo广东移动通信有限公司 图像信息处理方法、装置以及电子设备
CN110675797B (zh) * 2019-09-25 2023-10-13 深圳Tcl数字技术有限公司 一种色域映射方法、组件、显示装置及存储介质
CN111179801B (zh) * 2020-01-06 2024-01-09 京东方科技集团股份有限公司 显示面板的色彩空间调整方法、设备和系统
CN113744689B (zh) * 2020-05-29 2022-11-22 北京小米移动软件有限公司 显示屏色域校准方法、装置和电子设备
CN111862888B (zh) * 2020-08-25 2021-10-26 深圳市奥拓电子股份有限公司 一种四色低蓝光广色域显示的方法、装置、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198371A (ja) * 1997-09-17 1999-04-09 Canon Inc 環境光測定装置および画像処理装置、方法、記録媒体
JP2000354171A (ja) * 1999-06-14 2000-12-19 Mitsubishi Electric Corp 色域圧縮装置及び色域圧縮方法
JP3155768B2 (ja) * 1991-03-20 2001-04-16 キヤノン株式会社 画像処理方法及び装置
JP4241902B2 (ja) * 2006-05-15 2009-03-18 シャープ株式会社 カラー画像表示装置及び色変換装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155768A (ja) 1989-11-13 1991-07-03 Nichiro Corp 食物繊維加工食品
US5933252A (en) 1990-11-21 1999-08-03 Canon Kabushiki Kaisha Color image processing method and apparatus therefor
JPH04241902A (ja) 1991-01-14 1992-08-28 Ishita:Kk 製材機における仕分方法並びに装置
JPH04291591A (ja) 1991-03-19 1992-10-15 Sony Corp カラーディスプレイ装置
AU656057B2 (en) * 1992-03-27 1995-01-19 Milliken & Company Method and apparatus for reproducing blended colorants on an electronic display
US7728845B2 (en) * 1996-02-26 2010-06-01 Rah Color Technologies Llc Color calibration of color image rendering devices
US6567543B1 (en) 1996-10-01 2003-05-20 Canon Kabushiki Kaisha Image processing apparatus, image processing method, storage medium for storing image processing method, and environment light measurement apparatus
US6882445B1 (en) 1999-05-31 2005-04-19 Mitsubishi Denki Kabushiki Kaisha Color gamut compression apparatus and method
KR20030097507A (ko) * 2002-06-21 2003-12-31 삼성전자주식회사 평판 표시 장치의 색도 보정 장치 및 그 방법
JP2006086728A (ja) 2004-09-15 2006-03-30 Nec Viewtechnology Ltd 画像出力装置
CN101346984B (zh) 2005-12-21 2012-12-26 汤姆森特许公司 用于显示彩色图像的方法以及用于图像的色彩显示装置
WO2007125697A1 (ja) * 2006-04-26 2007-11-08 Panasonic Corporation 映像処理装置、記録媒体、映像信号処理方法、映像信号処理用プログラムおよび集積回路
CN1889692A (zh) * 2006-07-12 2007-01-03 友达光电股份有限公司 色彩修正系统及方法
JP2008078737A (ja) 2006-09-19 2008-04-03 Ricoh Co Ltd 画像処理装置、画像処理方法、及び記録媒体
JP2008203308A (ja) * 2007-02-16 2008-09-04 Matsushita Electric Ind Co Ltd 映像表示装置および制御方法
JP2008086029A (ja) 2007-10-09 2008-04-10 Sony Corp 画像情報伝達方法及び画像情報処理装置
JP4666050B2 (ja) 2008-02-01 2011-04-06 セイコーエプソン株式会社 色変換装置、画像出力装置及び色変換方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3155768B2 (ja) * 1991-03-20 2001-04-16 キヤノン株式会社 画像処理方法及び装置
JPH1198371A (ja) * 1997-09-17 1999-04-09 Canon Inc 環境光測定装置および画像処理装置、方法、記録媒体
JP2000354171A (ja) * 1999-06-14 2000-12-19 Mitsubishi Electric Corp 色域圧縮装置及び色域圧縮方法
JP4241902B2 (ja) * 2006-05-15 2009-03-18 シャープ株式会社 カラー画像表示装置及び色変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2503784A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039730A3 (en) * 2011-09-15 2013-11-07 Dolby Laboratories Licensing Corporation Method and system for backward compatible, extended dynamic range encoding of video
US20140341272A1 (en) * 2011-09-15 2014-11-20 Dolby Laboratories Licensing Corporation Method and System for Backward Compatible, Extended Dynamic Range Encoding of Video
US9451292B2 (en) 2011-09-15 2016-09-20 Dolby Laboratories Licensing Corporation Method and system for backward compatible, extended dynamic range encoding of video
JP2015516584A (ja) * 2012-02-28 2015-06-11 アップル インコーポレイテッド 拡張範囲色空間
EP2635032A3 (en) * 2012-02-28 2017-05-03 Apple Inc. Extended range color space
CN103079078A (zh) * 2012-03-19 2013-05-01 北京泰邦天地科技有限公司 彩色图像的颜色数据管理方法
CN103079078B (zh) * 2012-03-19 2015-03-11 北京泰邦天地科技有限公司 彩色图像的颜色数据管理方法
KR101549326B1 (ko) 2013-02-07 2015-09-01 가부시키가이샤 재팬 디스프레이 색 변환 장치, 표시 장치, 전자 기기 및 색 변환 방법
US9501983B2 (en) 2013-02-07 2016-11-22 Japan Display Inc. Color conversion device, display device, and color conversion method
WO2015029633A1 (ja) * 2013-08-28 2015-03-05 シャープ株式会社 液晶表示装置および液晶表示装置における画像表示方法

Also Published As

Publication number Publication date
CN102577397B (zh) 2014-08-27
RU2012125614A (ru) 2013-12-27
US20120194539A1 (en) 2012-08-02
BR112012011965A2 (pt) 2019-09-24
CN102577397A (zh) 2012-07-11
JPWO2011061954A1 (ja) 2013-04-04
US8890884B2 (en) 2014-11-18
EP2503784A1 (en) 2012-09-26
JP5296889B2 (ja) 2013-09-25
EP2503784A4 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5296889B2 (ja) 画像処理装置および画像処理方法
WO2010131500A1 (ja) 画像処理装置および画像処理方法
WO2010131499A1 (ja) 画像処理装置および画像処理方法
WO2009113306A1 (ja) 色変換出力装置、色変換テーブル及びその作成方法
JP4773594B2 (ja) カラー画像処理方法、カラー画像処理装置、液晶表示装置
KR101348369B1 (ko) 디스플레이 장치의 색 변환 방법 및 장치
JP6122716B2 (ja) 画像処理装置
JP2010199659A (ja) 画像処理装置、及び画像処理方法
JP5460805B1 (ja) 画像表示装置
CN108717839B (zh) 一种rgb到rgbw的转换方法、装置及存储介质
JP2010183232A (ja) 色域変換装置
JP3954244B2 (ja) 色再現空間の圧縮・伸張方法
JP5253274B2 (ja) 色変換出力装置
WO2015029633A1 (ja) 液晶表示装置および液晶表示装置における画像表示方法
JP3565020B2 (ja) 画像表示装置の補正データ生成方法
JP5495338B2 (ja) 画像信号処理装置及び画像信号処理方法
JP6698462B2 (ja) 色補正装置、表示装置および色補正方法
JP2007324665A (ja) 画像補正装置及び映像表示装置
JP6185239B2 (ja) 画像処理装置、画像処理方法およびプログラム
WO2015072181A1 (ja) 色再現システムおよび色再現方法
JP2009218962A (ja) 色変換出力装置、色変換出力方法、色変換出力プログラム、色変換テーブル、色変換テーブル記録媒体並びに色変換集積回路
JP2009218961A (ja) 色変換出力装置、色変換出力方法、色変換出力プログラム、色変換テーブル、色変換テーブル記録媒体並びに色変換集積回路
JP2002149143A (ja) 色校正方法および装置
JP4860514B2 (ja) 7軸色補正装置及び方法
JPWO2007083717A1 (ja) 色変換マトリクス作成方法及び色変換方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043561.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831353

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541825

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1496/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010831353

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13500474

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012125614

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012011965

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012011965

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120518