[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2011061950A1 - 薄膜太陽電池およびその製造方法 - Google Patents

薄膜太陽電池およびその製造方法 Download PDF

Info

Publication number
WO2011061950A1
WO2011061950A1 PCT/JP2010/056401 JP2010056401W WO2011061950A1 WO 2011061950 A1 WO2011061950 A1 WO 2011061950A1 JP 2010056401 W JP2010056401 W JP 2010056401W WO 2011061950 A1 WO2011061950 A1 WO 2011061950A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
film solar
electrode layer
substrate
groove
Prior art date
Application number
PCT/JP2010/056401
Other languages
English (en)
French (fr)
Inventor
恵右 仲村
時岡 秀忠
古畑 武夫
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201080051932.9A priority Critical patent/CN102612755B/zh
Priority to DE112010004478T priority patent/DE112010004478T5/de
Priority to US13/508,429 priority patent/US20120234375A1/en
Priority to JP2011541823A priority patent/JP5220204B2/ja
Publication of WO2011061950A1 publication Critical patent/WO2011061950A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a thin film solar cell and a method for manufacturing the same.
  • the solar power generation system is expected as clean energy that protects the global environment in the 21st century from the increase in CO 2 gas due to the burning of fossil energy, and its production volume is increasing explosively around the world. For this reason, the situation where the silicon wafer runs short all over the world has occurred. Therefore, in recent years, the production amount of thin-film solar cells in which a photoelectric conversion layer (semiconductor layer) that is not rate-controlled by the supply amount of a silicon wafer is a thin film is increasing rapidly.
  • a thin transparent electrode, a photoelectric conversion layer, and a metal electrode are directly formed on a large-area substrate of about a meter square by a sputtering method, a vapor deposition method, a CVD (Chemical Vapor Deposition) method, or the like.
  • a sputtering method a vapor deposition method
  • a CVD (Chemical Vapor Deposition) method or the like.
  • the entire surface of the large area substrate is divided into a plurality of unit solar cells and connected in series to increase the voltage while limiting the amount of current. In general, the energy is extracted.
  • the scribe lines that divide the unit cell are all bent into a triangular wave shape, and the adjacent scribe lines are shifted half a wavelength at a time so that the interval between adjacent scribe lines is repeatedly expanded and contracted.
  • a thin film solar cell has been proposed (see, for example, Patent Document 1). The distance between the scribe lines is reduced, the distance between the transparent electrodes is shortened, and a large amount of current is passed through a portion where the electrical resistance is reduced, thereby reducing the overall resistance loss.
  • the transparent conductive material thin film constituting the transparent electrode on the light incident side used in the thin film solar cell generally has a high sheet resistance, and when the current flows through the transparent electrode for a long distance, the power generation efficiency decreases due to the Joule loss. Resulting in. Therefore, in order to shorten the current path, the width of the unit solar cell having one photoelectric conversion layer is generally limited to 4 to 20 mm.
  • the width of the unit cell is reduced.
  • the current path in the transparent electrode may be longer than when unit cells are formed with scribe lines parallel to each other, and the current is near the apex where the scribe line is bent on a triangular waveform. Since the electric field strength is high in the concentrated portion where the current is concentrated, the Joule loss is increased, and when the shape of the unit cell is enlarged or reduced as in Patent Document 1, the minimum width of the unit cell is positive. As the unit cell is formed with scribe lines that are parallel to each other, the scribe line cannot be bent too much. It exists.
  • the present invention has been made in view of the above, and in a thin-film solar cell in which a laminate including a transparent electrode, a photoelectric conversion layer, and a metal electrode is formed on a substrate, the Joule loss in the transparent electrode as compared with the conventional case
  • An object of the present invention is to obtain a thin film solar cell and a method for manufacturing the same that can suppress power generation and improve power generation efficiency.
  • a thin-film solar cell includes a first electrode layer formed of a transparent conductive material, a photoelectric conversion layer, and a conductive material that reflects light on a substrate.
  • the groove on both sides of at least one of the unit cells is the unit cell sandwiched between the grooves. It is formed to meander with a certain width in a predetermined direction, and has the same shape that overlaps when translated in the predetermined direction.
  • the grooves on both sides of at least one unit solar cell are formed such that the unit solar cells sandwiched between the grooves meander with a certain width in a predetermined direction, and the predetermined direction.
  • the current path in a part of the region is formed. Can be shortened.
  • the Joule loss at the transparent electrode of each unit solar battery cell can be suppressed and the power generation efficiency can be improved as compared with the conventional case.
  • the current path in the transparent electrode is not long compared to the case where the unit cells are formed by straight scribe lines parallel to each other, and the current concentration near the inflection point of the scribe line as compared with Patent Document 1. Since the amount can be suppressed, Joule loss due to an increase in electric field strength due to current concentration can be reduced, and the scribe line can be bent more than in Patent Document 1, and many other advantages can be obtained. Have.
  • FIG. 1 is a top view showing an example of a thin film solar cell according to Embodiment 1 of the present invention.
  • FIG. 2 is a partial cross-sectional view taken along the line AA in FIG.
  • FIG. 3-1 is a cross-sectional view schematically showing an example of the procedure of the method for manufacturing the thin-film solar cell according to Embodiment 1 (Part 1).
  • FIG. 3-2 is a sectional view schematically showing an example of a procedure of the method for manufacturing the thin-film solar cell according to Embodiment 1 (part 2).
  • FIG. 3-3 is a cross-sectional view schematically showing an example of the procedure of the method for manufacturing the thin-film solar cell according to Embodiment 1 (Part 3).
  • FIG. 1 is a top view showing an example of a thin film solar cell according to Embodiment 1 of the present invention.
  • FIG. 2 is a partial cross-sectional view taken along the line AA in FIG.
  • FIG. 3-1 is a cross-sectional view schematic
  • FIG. 3-4 is a cross-sectional view schematically showing an example of the procedure of the method for manufacturing the thin-film solar cell according to Embodiment 1 (Part 4).
  • FIG. 3-5 is a sectional view schematically showing an example of a procedure of the method for manufacturing the thin-film solar battery according to Embodiment 1 (No. 5).
  • FIG. 3-6 is a cross-sectional view schematically showing an example of the procedure of the method for manufacturing the thin-film solar cell according to Embodiment 1 (No. 6).
  • FIG. 4 is a diagram schematically showing an example of the shape of the scribe line according to the first embodiment.
  • FIG. 5 is a diagram schematically illustrating a state in which a current flows in the transparent electrode layer corresponding to the parallelogram region.
  • FIG. 7 is a diagram schematically illustrating a state in which a current flows in the transparent electrode layer corresponding to the parallelogram region.
  • FIG. 9 is a diagram showing an example of the relationship of the Joule loss ratio J / J 0 when the scribe line is bent and when the L / D and ⁇ are changed.
  • FIG. 9 is a diagram showing an example of the relationship of the Joule loss ratio J / J 0 when the scribe line is bent and when the L / D and ⁇ are changed.
  • FIG. 10 is a top view showing another example of the configuration of the thin-film solar cell according to Embodiment 1.
  • FIG. 11 is a top view showing another example of the configuration of the thin-film solar cell according to Embodiment 1.
  • FIG. 12 is a top view showing another example of the thin-film solar battery according to the first embodiment.
  • FIG. 13 is a top view schematically showing the structure of the thin-film solar cell according to Patent Document 1.
  • FIG. 14 is a diagram schematically illustrating an example of the shape of a scribe line according to Patent Document 1.
  • FIG. FIG. 14 is a diagram schematically illustrating an example of the shape of a scribe line according to Patent Document 1.
  • FIG. 15 shows the state of current flow in the transparent electrode layer corresponding to the trapezoidal region of the thin film solar cell according to Patent Document 1 and the transparent electrode layer corresponding to the parallelogram region of the thin film solar cell according to the first embodiment. It is a figure which shows typically the comparison with a mode that current flows.
  • FIG. 16 is a top view showing an example of a thin film solar cell according to Embodiment 2 of the present invention.
  • FIG. 17 is a top view showing an example of a thin-film solar cell according to Embodiment 3 of the present invention.
  • FIG. 18 is a top view schematically showing an example of a configuration for extracting current from the thin film solar cell of FIG.
  • FIG. 1 is a top view showing an example of a thin film solar cell according to Embodiment 1 of the present invention.
  • the thin-film solar battery 1 according to Embodiment 1 is a thin-film solar battery module as a whole by integrating a plurality of unit solar battery cells 3 connected in series on a rectangular insulating translucent substrate 10. Function as. And the electric current guide
  • the unit solar cells 3 and between the unit solar cells 3 and the current extraction portion 4 are separated by a scribe line 2 which is a separation groove.
  • the shape of the scribe line 2 is insulated.
  • a combination of line segments inclined with respect to the end face of the optical substrate 10 has a bent shape that is periodically repeated, and adjacent scribe lines 2 are arranged substantially in parallel.
  • the unit solar cell 3 has a shape in which the direction along the scribe line 2 is longer than the interval between the adjacent scribe lines 2. Further, the longitudinal position of the bent portion in the scribe line 2 is set to be substantially the same in any scribe line 2.
  • the separation grooves (scribe lines 2) on both sides of the unit solar cell 3 have the same meandering shape that overlaps when translated in the direction along one side of the rectangular insulating translucent substrate 10. Yes.
  • the unit solar cells 3 sandwiched between the separation grooves have a meandering shape so that the width in the direction along one side of the insulating translucent substrate 10 is substantially constant.
  • the separation groove has a wave shape
  • the plurality of waves are arranged in parallel in the wave amplitude direction so as to have the same phase at substantially the same interval.
  • substrate 10 is made into the rectangular shape here, not only a rectangle but another shape may be sufficient. In that case, what is necessary is just to set it as the positional relationship which overlaps, when the separation groove
  • FIG. 2 is a partial cross-sectional view along the line AA in FIG.
  • the thin-film solar cell 1 includes a surface electrode layer 11, a photoelectric conversion layer 12, an intermediate conductor layer 13, and a back electrode layer 14 that are sequentially laminated on an insulating translucent substrate 10.
  • the unit solar cell 3 and the current extraction part 4 are formed by the scribe line 2 provided at the position.
  • the electrode extraction part 4 is provided to connect an external wiring and the thin film solar cell 1 in order to extract the current generated in the thin film solar cell 1 to the outside.
  • the back electrode layer 14 of the current extraction unit 4 is connected to a bus wiring (not shown) that extracts current to the outside. Note that the photoelectric conversion layer 12 of the current extraction unit 4 does not contribute to power generation.
  • the surface electrode layer 11 may be transparent conductive film having a light transmitting property, zinc oxide (ZnO), indium tin oxide (Indium Tin Oxide, hereinafter referred to as ITO), tin oxide (SnO 2) Transparent conductive oxide films such as aluminum (Al), gallium (Ga), indium (In), boron (B), yttrium (Y), silicon (Si), zirconium (Zr), titanium (Ti)
  • ZnO film, an ITO film, a SnO 2 film, or the like using at least one element selected from fluorine (F), nitrogen (N), and the like can be used.
  • the surface electrode layer 11 may be a transparent conductive film formed by laminating these films. Furthermore, the surface electrode layer 11 preferably has a surface texture structure in which irregularities are formed on the surface. This texture structure has a function of scattering incident sunlight and improving the light use efficiency in the photoelectric conversion layer 12.
  • the photoelectric conversion layer 12 has a pn junction or a pin junction, and is configured by laminating one or more thin film semiconductor layers that generate power by incident light.
  • a semiconductor layer such as an amorphous silicon layer, a microcrystalline silicon layer, a hydrogenated amorphous silicon germanium layer, a microcrystalline silicon germanium layer, or a stacked body of these semiconductor layers can be used.
  • a conductive oxide material such as SnO 2 , ZnO, or ITO or a conductive oxide material thereof is used between different thin film semiconductor layers.
  • the intermediate conductor layer 13 is made of, for example, a conductive oxide material such as SnO 2 , ZnO, or ITO, a material obtained by adding a metal to these conductive oxide materials, p-type hydrogenated crystalline silicon, i-type hydrogenated crystalline silicon, n-type hydrogenated crystalline silicon, p-type hydrogenated amorphous silicon oxide, i-type hydrogenated amorphous silicon oxide, n-type hydrogenated amorphous silicon oxide, p-type hydrogenated microcrystalline silicon oxide, i-type hydrogenated microcrystal At least one material selected from silicon oxide, n-type hydrogenated microcrystalline silicon oxide, p-type hydrogenated microcrystalline silicon carbide, i-type hydrogenated microcrystalline silicon carbide, and n-type hydrogenated microcrystalline silicon carbide A transparent conductive film made of can be used.
  • a conductive oxide material such as SnO 2 , ZnO, or ITO
  • a metal material having both high conductivity and light reflectivity such as silver (Ag), Al, Ti, gold (Au), copper (Cu), neodymium (Nd), chromium (Cr), or the like Mixtures of metallic materials can be used.
  • the layer which consists of these materials may be used as a single layer, and may be laminated
  • a layer made of the above material may be formed at the interface with the intermediate conductor layer 13, and a layer made of a material having low light reflectivity such as a conductive paste may be further stacked thereon.
  • the scribe line 2 shown in FIG. 1 actually includes a first scribe line 21 that separates the surface electrode layer 11, a second scribe line 22 that separates the photoelectric conversion layer 12 and the intermediate conductor layer 13, and photoelectric conversion. It is composed of a third scribe line 23 that separates the layer 12, the intermediate conductor layer 13 and the back electrode layer 14.
  • a region sandwiched between adjacent scribe lines 2 contributes to power generation as the unit solar cell 3.
  • the unit solar cell 3 has a structure connected in series with the adjacent unit solar cell 3, the surface electrode layers 11 between the adjacent unit solar cells 3, the photoelectric conversion layer 12, and the intermediate conductor
  • the layers 13 and the back electrode layers 14 are prevented from being connected to each other, and the front electrode layer 11 of the own unit solar battery cell 3 and the back electrode layer 14 of the unit solar battery cell 3 adjacent to one side are electrically connected.
  • the back electrode layer 14 of the self unit solar cell 3 and the front electrode layer 11 of the unit solar cell 3 adjacent to the other side are electrically connected.
  • the surface electrode layer 11 is connected to the back electrode layer 14 of the unit solar cell 3 adjacent to the left side, and the back electrode layer 14 is adjacent to the right side.
  • the unit solar cell 3 is connected to the surface electrode layer 11. Therefore, the insulation between the adjacent unit solar cells 3 is ensured by the first scribe line 21 and the third scribe line 23, and the front electrode layer 11 and the back electrode layer 14 are brought into contact with each other by the second scribe line 22.
  • Adjacent unit solar cells 3 are connected in series and function as a solar cell module.
  • FIGS. 3-1 to 3-6 are cross-sectional views schematically showing an example of the procedure of the method for manufacturing the thin-film solar cell according to the first embodiment.
  • the surface electrode layer 11 is formed on the upper surface of the insulating translucent substrate 10 by a film forming method such as a sputtering method or a CVD method.
  • the surface texture structure may be formed using a wet etching method or a plasma etching method using a solvent.
  • a first scribe line 21 for separating the surface electrode layer 11 is formed by a laser processing method.
  • the first scribe line 21 has a bent shape in plan view and is formed at a predetermined interval in a specific direction, like the scribe line 2 shown in FIG.
  • the adjacent first scribe lines 21 have the same bent shape, and are preferably parallel to each other so that the positions of the bent portions in the direction perpendicular to the specific direction are the same.
  • an insulating translucent substrate 10 is placed on an XY stage of a laser processing apparatus, and a desired bent shape is obtained by moving in the XY direction during laser processing. Can do.
  • the first scribe line 21 having a desired bent shape may be formed by moving the laser beam to an arbitrary position in the XY plane by galvano scan, or the scribe line 21 moves only in one direction.
  • a moving stage and a laser capable of scanning only in one direction are combined so that the moving directions are not the same, and the first scribe line 21 having a desired bent shape can be formed by synchronizing each other. Also good. After this laser processing, cleaning may be performed to remove processing residues and a deteriorated layer by laser.
  • the photoelectric conversion layer 12 is formed by the CVD method on the surface electrode layer 11 on which the first scribe line 21 is formed, and the intermediate conductor layer 13 is further formed by the sputtering method or the CVD method.
  • a second scribe line 22 that separates the intermediate conductor layer 13 and the photoelectric conversion layer 12 is formed by a laser processing method in the same manner as the first scribe line 21.
  • the second scribe line 22 has a bent shape in plan view like the first scribe line 21 and is formed at a predetermined interval in a specific direction.
  • the second scribe line 22 is formed at a position that does not overlap the first scribe line 21.
  • the back electrode layer 14 is formed by sputtering on the intermediate conductor layer 13 on which the second scribe line 22 is formed. At this time, the back electrode layer 14 is embedded in the second scribe line 22.
  • a third scribe line 23 that separates the back electrode layer 14, the intermediate conductor layer 13, and the photoelectric conversion layer 12 is formed by laser processing in the same manner as the first scribe line 21. To do.
  • the third scribe line 23 has a bent shape in plan view like the first scribe line 21 and is formed at a predetermined interval.
  • the third scribe line 23 is formed at a position that does not overlap the first scribe line 21 and the second scribe line 22.
  • cleaning may be performed to remove processing residues and a deteriorated layer by laser. As described above, the thin film solar cell shown in FIGS. 1 and 2 is manufactured.
  • FIG. 4 is a diagram schematically showing an example of the shape of the scribe line according to the first embodiment.
  • the left-right direction in the plane of the paper is the X direction corresponding to the extending direction of the upper and lower sides of the insulating translucent substrate 10 in FIG. 1, and the direction in the plane perpendicular to the X direction is the insulating translucent substrate.
  • the Y direction corresponds to the extending direction of the right side and the left side of 10.
  • the scribe line 2 is formed by alternately connecting a line segment having an inclination of an angle ⁇ and a line segment having an inclination of an angle ⁇ , where the crossing angle with respect to the X direction is ⁇ .
  • the scribe line has a zigzag shape.
  • an interval in the X direction between adjacent scribe lines 2 is D
  • an interval in the Y direction between adjacent bending points R on one scribe line 2 is L.
  • the unit solar cells 3 are parallel to each other in the base D and the height L by the line segment in the X direction to be connected and the two line segments constituted by the scribe lines 2 connecting the bending points R between the two line segments. It is divided into quadrilateral regions 31. Consider the direction of current in the region of the parallelogram 31.
  • FIG. 5 is a diagram schematically illustrating a state in which a current flows in the transparent electrode layer corresponding to the parallelogram region. Actually, current concentrates in the vicinity of the inflection point, and the current path does not become a straight line but spreads and bends. Therefore, the following is an approximate calculation.
  • the region 31 is represented by a perpendicular h that extends from one bending point R of the parallelogram to the side that forms the opposing scribe line 2.
  • the area 311 and the area 312 are divided into two.
  • the current flows in the direction 41 parallel to the perpendicular h hung down to the scribe line 2 at the shortest distance to the scribe line 2.
  • a line segment connecting each point and the bending point R that is the starting point of the perpendicular h is the shortest distance, and current flows in a direction 42 toward the bending point R.
  • dS / dx can be expressed by the following expressions (2) and (3), where dS is an area where the distance to the scribe line in the region 31 is in the range of x and x + dx. .
  • the horizontal axis is the distance x to the scribe line 2 at each position in the region 31 normalized by the distance D between the scribe lines 2
  • the vertical axis is the change of the area S with respect to the distance x.
  • the rate is normalized by the distance L in the Y direction between the bending points R.
  • the relationship between dS / dx and x is a curve indicated by a solid line. Comparing the two, by bending the scribe line 2, the ratio of the region 51 having a short distance to the scribe line 2 is increased as compared with the case where the scribe line 2 is a straight line, and the distance to the scribe line 2 is increased. The ratio of the long region 52 becomes small. As a result, the ratio of the region where the distance to the scribe line 2 is short as a whole increases, the current path becomes short, and Joule loss can be reduced as compared with the case where the scribe line 2 is a straight line.
  • FIG. 7 is a diagram schematically illustrating a state in which a current flows in the transparent electrode layer corresponding to the parallelogram region.
  • current concentrates in the vicinity of the inflection point and the current path is not a straight line but spreads and bends, the following is only an approximate calculation.
  • the region 31 is lowered from one bending point R of the parallelogram on the extension line of the side constituting the opposing scribe line 2.
  • the region is divided into a region 313, a region 314, and a region 315 by a perpendicular line h and a diagonal line m connecting the bending point R where the perpendicular line h is lowered and the bending point R opposite to the bending point R.
  • the current flows in a direction 43 parallel to the perpendicular h that is lowered on the extension line of the scribe line 2.
  • current flows in the directions 44 and 45 toward the bending point R where the perpendicular h is lowered.
  • dS / dx can be expressed by the following equations (6) to (8), where dS is an area where the distance to the scribe line 2 in the region 31 is in the range of x and x + dx. it can.
  • the horizontal axis is the distance x to the scribe line 2 at each position in the region 31 normalized by the distance D between the scribe lines 2, and the vertical axis is the change of the area S with respect to the distance x.
  • the rate is normalized by the distance L between the bending points R.
  • the relationship between dS / dx and x is a curve indicated by a solid line. Comparing the two, by bending the scribe line 2, the ratio of the region 53 in which the current path becomes shorter and the ratio of the region 54 in which the current path becomes longer than when the scribe line 2 is a straight line. Becomes smaller. As a result, the current path is shortened as a whole, and Joule loss can be reduced as compared with the case where the scribe line 2 is a straight line.
  • the length of the current path in the region 31 is integrated to estimate the Joule loss.
  • the current density J can be expressed by the following equation (10) when integrated using the above dS / dx.
  • the Joule loss in the transparent electrode layer can be obtained from the current density J of the equation (10) and the resistivity of the transparent electrode layer. Assuming uniformity within the battery module, the Joule loss is proportional to the current density J. Further, when the integrated value of the length of the current path in the region 31 when the scribe line 2 is not bent is J 0 , it can be expressed as the following equation (11).
  • FIG. 9 is a diagram showing an example of the relationship of the Joule loss ratio J / J 0 when the scribe line is bent and when the L / D and ⁇ are changed. From FIG. 9, in order to reduce the Joule loss by about 5% or more as compared with the case where the scribe line 2 is not bent, ⁇ should be an angle smaller than at least 72.5 °. desirable.
  • the pattern of the scribe line 2 is shown as having a sharp shape at the bent portion, but is not limited thereto.
  • 10 and 11 are top views showing other examples of the configuration of the thin-film solar cell according to the first embodiment.
  • the pattern of the scribe line 2 may be a pattern in which the corners of the bent portions are rounded, or as shown in FIG. 11, it is a wavy pattern (periodic wavy pattern). May be.
  • increasing the curvature of the bent portion can alleviate current concentration on the bent portion, and has an effect of reducing Joule loss.
  • the distance between the adjacent scribe lines 2 is constant, and the position of the bent portion of the scribe line 2 adjacent in the short direction is formed at substantially the same position in the longitudinal direction.
  • FIG. 12 is a top view showing another example of the thin-film solar battery according to the first embodiment.
  • a plurality of thin line-like current collecting electrodes 5 may be arranged between the insulating translucent substrate 10 and the surface electrode layer 11 in the short direction of the unit solar cells 3.
  • the current collecting electrode 5 is disposed in the vicinity of the bent portion of the scribe line 2, the current in the region where the path in the surface electrode layer 11 is the longest can be guided to the current collecting electrode 5.
  • the Joule loss in the surface electrode layer 11 can be further reduced.
  • the material constituting the current collecting electrode 5 silver, aluminum, gold, chromium, nickel, titanium, etc., which are metal materials having higher conductivity than the transparent conductive material constituting the surface electrode layer 11, are used. Is desirable.
  • the current path in the surface electrode layer 11 made of a transparent conductive material is the unit solar cell 3. And the current path can be shortened. As a result, compared to the case where the unit solar cells 3 formed without bending the scribe line 2 have the same cell width, the joule loss can be reduced and the power generation efficiency can be improved. Have.
  • the unit solar cells 3 have the same area, if the unit solar cells 3 have a meandering shape, the length in the direction along the meander becomes longer and the width in the direction perpendicular to the meander direction becomes narrower. . For this reason, it can be considered that the current path is shortened and the loss can be reduced.
  • the separation grooves on both sides of the unit solar cell 3 have the same meandering shape that overlaps when translated in a specific direction, and the unit solar cell 3 sandwiched between the separation grooves is in a specific direction. Since the meandering shape is such that the width is substantially constant, a wide portion does not occur. For this reason, the part where a current path becomes long does not arise.
  • the width of the unit solar battery cell 3 becomes substantially constant by setting the position in the longitudinal direction of the bent portion in the scribe line 2 to be substantially the same position in any scribe line 2. As a result, there is no region in which the current path becomes extremely long, so that the joule loss can be reduced.
  • the crossing angle of the scribe line 2 with respect to the direction (short direction) perpendicular to the longitudinal direction of the scribe line 2 is ⁇ and ⁇ , and the absolute value of ⁇ is smaller than 72.5 °, so that the unit solar cell The degree of bending of the cell 3 was increased. As a result, the effect of shortening the current path is increased, and the Joule loss in the surface electrode layer 11 made of a transparent conductive material can be further greatly reduced.
  • the ratio L / D between the 1 ⁇ 2 period L (height L in FIG. 4) and its width D (D in FIG. 4) is 0.25 or more. It is desirable to be. When L / D is larger and ⁇ is smaller, the current path tends to be shorter. In other words, it is desirable to meander so as to be somewhat large.
  • FIG. 13 is a top view schematically showing the structure of a thin-film solar cell according to Patent Document 1
  • FIG. 14 is a diagram schematically showing an example of the shape of a scribe line according to Patent Document 1.
  • symbol is attached
  • FIG. 14 is a diagram schematically showing an example of the shape of a scribe line according to Patent Document 1.
  • the meandering scribe line 2 (separation groove) has a wave shape
  • the unit solar cells 3 are separated by one meandering wave-shaped scribe line 2 and a wave-shaped scribe line 2 whose phase is reversed with respect to the scribe line 2. is doing. Therefore, the length of the unit solar battery cell 3 in the short direction (specific direction) varies depending on the location and changes periodically.
  • the left-right direction in the plane of the paper is the X direction corresponding to the extending direction of the upper side and the lower side of the insulating translucent substrate 10 in FIG. 13, and the direction in the plane perpendicular to the X direction is the insulating translucent substrate.
  • the Y direction corresponds to the extending direction of the right side and the left side of 10.
  • the maximum interval between adjacent scribe lines 2 is W max
  • the minimum interval is W min
  • the average interval is W ave
  • the intersection angle of the scribe line 2 with respect to the X direction is ⁇
  • the interval in the Y direction between adjacent bending points R on the same scribe line 2 is L.
  • the width of the unit solar cell 3 surrounded by the two adjacent scribe lines 2 is the distance between the bending points R. It gradually decreases from the portion where the maximum interval W max is reached, reaches the portion where the interval between the bending points R is the minimum interval W min, and gradually increases so that the interval between the bending points R is maximum. It reaches a portion where the interval is W max .
  • the unit solar cell 3 has a trapezoidal region having an upper side W max , a lower side W min , and a height L by two line segments constituted by the scribe lines 2 connecting the bent points R between the two line segments. It is divided into 32. The current path in the region 32 of the trapezoid 32 will be compared when the following formula (12) in which the average widths of the first embodiment and the unit solar battery cell 3 are equal holds.
  • Tan ⁇ is a monotonically increasing function of ⁇ in the range of 0 ° ⁇ ⁇ 90 °.
  • the effect of reducing the Joule loss can be increased by reducing the angle ⁇ as much as possible and increasing the value of L / D.
  • Patent Document 1 since the relationship between ⁇ , L, and D needs to satisfy the relationship of equation (15), there are restrictions on making the angle ⁇ as small as possible and increasing the value of L / D. .
  • FIG. 15 shows the state of current flow in the transparent electrode layer corresponding to the trapezoidal region of the thin film solar cell according to Patent Document 1 and the transparent electrode layer corresponding to the parallelogram region of the thin film solar cell according to the first embodiment. It is a figure which shows typically the comparison with a mode that current flows.
  • the parallelogram region 31 of FIG. 4 of Embodiment 1 and the trapezoid region 32 of FIG. 14 of Patent Document 1 as a comparative example are overlaid and compared.
  • the first embodiment when compared with Patent Document 1, even when ⁇ , L, and D have the same value, the first embodiment can reduce Joule loss.
  • Joule loss can be further reduced by reducing the angle ⁇ as much as possible and increasing the value of L / D. .
  • FIG. FIG. 16 is a top view showing an example of a thin film solar cell according to Embodiment 2 of the present invention.
  • the scribe line 2 having a small degree of bending is disposed from the center of the insulating translucent substrate 10 toward the side edge (end) in the short direction of the scribe line 2. It is the composition which becomes.
  • the shape of the scribe line 2 that separates the unit solar cells 3 and the current extraction portions 4 at both ends in the short direction is substantially parallel to the end face of the insulating translucent substrate 10.
  • the scribe lines 2 adjacent to each other at the edge portion are not substantially parallel because the degree of bending changes, but the positions and periods of peaks and valleys constituting the bent portion are aligned.
  • variety of the unit photovoltaic cell 3 becomes extremely wide can be suppressed.
  • symbol is attached
  • the cross-sectional structure and manufacturing method of the thin film solar cell 1 having such a structure are the same as those in the first embodiment, the description thereof is also omitted.
  • each scribe line 2 it is desirable to adjust the bending degree and interval of each scribe line 2 so that the generated current amount of each unit solar cell 3 is substantially equal.
  • a pattern in which the corners of the bent portions are rounded or a wave pattern may be used as in the first embodiment.
  • the area of the current extraction portions 4 at both ends of the insulating translucent substrate 10 that does not contribute to power generation can be reduced, and the power generation efficiency of the thin film solar cell module can be improved.
  • the electrodes of the unit solar cell 3 at both ends are generally straight, it is easy to connect the bus wiring for taking out the power to the outside of the module.
  • the scribe lines 2 are not substantially parallel, so that the current path in the surface electrode layer 11 made of a transparent conductive material becomes long. Joule loss may increase. However, since the Joule loss is reduced in the unit solar cells 3 other than the edge portion of the insulating translucent substrate 10, the amount of Joule loss as the entire solar cell module is reduced.
  • FIG. 17 is a top view showing an example of a thin-film solar cell according to Embodiment 3 of the present invention.
  • the degree of bending of the scribe line 2 does not change even at the side edge (end) of the scribe line 2 in the short direction. If the endmost scribe line 2 is made to be substantially parallel to the adjacent scribe line 2, it will protrude from the insulating translucent substrate 10. Therefore, the bent portion of the outermost scribe line 2 that protrudes from the insulating light-transmitting substrate 10 is parallel to the end surface of the insulating light-transmitting substrate 10 so as to be within the insulating light-transmitting substrate 10.
  • the shape of the scribe line 2 is set so that the unit solar cells 3 arranged at both ends in the left-right direction (the short direction of the scribe line 2) in the figure have substantially the same area as the other unit solar cells 3. It is changing.
  • the rightmost scribe line 2a has the shape of the scribe line 2b indicated by a dotted line when the shape is matched with the other scribe line 2.
  • a part of the scribe line 2 b is formed outside the formation region of the insulating translucent substrate 10.
  • the area S1 per bent part convex to the right is smaller than the area of the other unit solar cells 3. Therefore, the shape of the bent portion on the side facing the virtual bent portion formed outside the region of the insulating translucent substrate 10 is changed to the shape shown by the scribe line 2a.
  • FIG. 18 is a top view schematically showing an example of a configuration for extracting current from the thin film solar cell of FIG.
  • bus wiring 6 is provided on a region including the electrode extraction portions 4 at both ends in the left-right direction in the figure, and each electrode extraction portion 4 formed in an island shape and the bus wiring are electrically connected by a connection portion 7.
  • a low-resistance wire such as copper or aluminum can be used, and the surface may be covered with solder in order to improve the connectivity with the back electrode layer 14.
  • the electrode extraction part 4 since the electrode extraction part 4 is arrange
  • each scribe line 2 a pattern in which the corners of the bent portions are rounded or a wavy pattern may be used as in the first embodiment.
  • the degree of bending gradually decreases from the center of the insulating translucent substrate 10 toward the lateral edge (end) of the scribe line 2 in the short direction.
  • the bent portion of the outermost scribe line 2 that protrudes from the insulating translucent substrate 10 is parallel to the end face of the insulating translucent substrate 10 with the degree of bending of the scribe line 2 at the outermost edge being reduced to some extent. You may make it become.
  • a plurality of thin-line current collecting electrodes may be arranged between the insulating translucent substrate 10 and the surface electrode layer 11 in the short direction of the unit solar battery cell 3.
  • the bending degree of the scribe line 2 is also reduced in the unit solar cells 3 in the edge portion (end portion) in the arrangement direction of the scribe lines 2 (short direction of the unit solar cells 3). Therefore, the area of the current extraction portions 4 at both ends of the insulating translucent substrate 10 that does not contribute to power generation can be reduced. As a result, the power generation efficiency of the thin film solar cell module can be improved.
  • the shape of the same unit photovoltaic cell 3 is reflected on a board
  • substrate a board
  • substrate a reflective electrode
  • transparent electrode a transparent electrode
  • the connection between the reflective electrode and the transparent electrode in the groove may be made by any one of the electrodes, but other conductive materials such as a conductive paste may be used.
  • the thin film solar cell according to the present invention is useful for a structure in which a plurality of unit solar cells are connected in series on a substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 基板上に、透明導電性材料からなる第1の電極層と、光電変換層と、光を反射する導電性の材料を含む第2の電極層と、を含み、スクライブライン2によって複数に分割された単位太陽電池セル3を複数有し、光電変換層に形成されたスクライブライン2内で第2の電極層と隣接する単位太陽電池セル3の第1の電極層とが接続されて、複数の単位太陽電池セル3が電気的に直列接続された薄膜太陽電池1において、少なくとも1つの単位太陽電池セル3の両側のスクライブライン2は、スクライブライン2間に挟まれた単位太陽電池セル3が所定方向に一定の幅を有して蛇行するように形成されるとともに、所定方向に平行移動した場合に重なり合う同一形状を有する。

Description

薄膜太陽電池およびその製造方法
 この発明は、薄膜太陽電池およびその製造方法に関するものである。
 太陽光発電システムは、21世紀の地球環境を化石エネルギの燃焼によるCO2ガスの増加から守るクリーンエネルギとして期待されており、その生産量は世界中で爆発的に増加している。このため、世界中でシリコンウェハが不足するという事態が発生している。そのため、近年では、シリコンウェハの供給量に律速されない光電変換層(半導体層)が薄膜からなる薄膜太陽電池の生産量が急速に伸びつつある。
 薄膜太陽電池では、メートル角程度の大面積の基板の上に、薄膜の透明電極、光電変換層および金属電極をスパッタ法や蒸着法、CVD(Chemical Vapor Deposition)法などで直接形成している。しかし、電極、特に透明電極の抵抗率が高いために、大面積基板全面を複数の単位太陽電池セルに分割し、かつ順次直列に接続することによって、電流量を制限しつつ、電圧を高めて、エネルギを取り出す構成とすることが一般的である。また単位セルを分割するスクライブラインを全て三角波型形状に屈曲して形成し、かつ、隣接するスクライブラインを半波長ずつずらすことによって隣接するスクライブラインの間隔が互いに繰り返し拡縮されるようにした構造の薄膜太陽電池が提案されている(たとえば、特許文献1参照)。スクライブラインの間隔が縮小され、透明電極の距離が短くなり、電気抵抗が小さくなる部分に多くの電流を流すことによって、全体的な抵抗損失を減少させている。
特許第3172369号公報
 ところで、薄膜太陽電池に用いられる光入射側の透明電極を構成する透明導電材料薄膜は、一般的にシート抵抗が高く、電流がその透明電極を長い距離流れると、そのジュール損失によって発電効率が低下してしまう。そこで、電流経路を短くするために、一つの光電変換層を有する単位太陽電池セルの幅は、一般的に4~20mmに制限されていた。
 また、特許文献1のように単位セルの幅を拡縮させて透明電極中の電流経路が短くなる部分に多くの電流を流して、全体的な抵抗損失を減少させたとしても、単位セルの幅が拡大した部分では、互いに平行なスクライブラインで単位セルを形成した場合と比べて透明電極中の電流経路が長くなる場合があること、スクライブラインを三角波形上に屈曲させた頂点近傍に電流が集中し、電流が集中する部分では電界強度が高くなるため、ジュール損失が大きくなること、特許文献1のように単位セルの幅を拡縮させる様な形状とした場合、単位セルの最小幅は正の値としなければならないため、互いに平行なスクライブラインで単位セルを形成した場合に比べて、あまり大きくスクライブラインを屈曲させることができないこと、などの欠点が存在する。
 この発明は、上記に鑑みてなされたもので、基板上に透明電極、光電変換層および金属電極を含む積層体が形成されてなる薄膜太陽電池において、従来に比して透明電極でのジュール損失を抑え、発電効率を改善することができる薄膜太陽電池およびその製造方法を得ることを目的とする。
 上記目的を達成するため、この発明にかかる薄膜太陽電池は、基板上に、透明導電性材料によって形成される第1の電極層と、光電変換層と、光を反射する導電性の材料を含む第2の電極層と、を含み、溝によって複数に分割された単位セルを複数有し、前記光電変換層に形成された溝内で前記第2の電極層と隣接する単位セルの第1の電極層とが接続されて、複数の前記単位セルが電気的に直列接続された薄膜太陽電池において、少なくとも1つの前記単位セルの両側の前記溝は、前記溝間に挟まれた前記単位セルが所定方向に一定の幅を有して蛇行するように形成されるとともに、前記所定方向に平行移動した場合に重なり合う同一形状を有することを特徴とする。
 この発明によれば、少なくとも1つの単位太陽電池セルの両側の溝を、溝間に挟まれた単位太陽電池セルが所定方向に一定の幅を有して蛇行するように形成するとともに、所定方向に平行移動した場合に重なり合う同一形状を有するように形成したので、セル幅を同じにして直線のスクライブラインで太陽電池セル間を分離する場合に比して、一部の領域での電流経路を短くすることができる。その結果、各単位太陽電池セルの透明電極でのジュール損失を抑え、従来に比して発電効率を改善することができるという効果を有する。
 また、互いに平行な直線のスクライブラインで単位セルを形成した場合と比べて透明電極中の電流経路が長くなる部分ことがないこと、特許文献1に比べスクライブラインの屈曲点近傍への電流の集中量を抑制できるため、電流集中のための電界強度の高まりによるジュール損失を低減することができること、スクライブラインを特許文献1に比べより大きく屈曲させることが可能であること、などの多くの利点を有する。
図1は、この発明の実施の形態1による薄膜太陽電池の一例を示す上面図である。 図2は、図1のA-A線上の一部断面図である。 図3-1は、実施の形態1による薄膜太陽電池の製造方法の手順の一例を模式的に示す断面図である(その1)。 図3-2は、実施の形態1による薄膜太陽電池の製造方法の手順の一例を模式的に示す断面図である(その2)。 図3-3は、実施の形態1による薄膜太陽電池の製造方法の手順の一例を模式的に示す断面図である(その3)。 図3-4は、実施の形態1による薄膜太陽電池の製造方法の手順の一例を模式的に示す断面図である(その4)。 図3-5は、実施の形態1による薄膜太陽電池の製造方法の手順の一例を模式的に示す断面図である(その5)。 図3-6は、実施の形態1による薄膜太陽電池の製造方法の手順の一例を模式的に示す断面図である(その6)。 図4は、実施の形態1によるスクライブラインの形状の一例を模式的に示す図である。 図5は、平行四辺形の領域に対応する透明電極層での電流の流れる様子を模式的に示す図である。 図6は、θ=π/4、L/D=2とした場合のdS/dxとxとの間の関係をそれぞれLとDとで規格化したグラフである。 図7は、平行四辺形の領域に対応する透明電極層での電流の流れる様子を模式的に示す図である。 図8は、θ=π/4、L/D=1/3とした場合のdS/dxとxとの間の関係をそれぞれLとDとで規格化したグラフである。 図9は、L/Dとθとを変化させたときのスクライブラインを屈曲させた場合とさせなかった場合のジュール損失の比J/J0の関係の一例を示す図である。 図10は、実施の形態1による薄膜太陽電池の構成の他の例を示す上面図である。 図11は、実施の形態1による薄膜太陽電池の構成の他の例を示す上面図である。 図12は、実施の形態1による薄膜太陽電池の他の例を示す上面図である。 図13は、特許文献1による薄膜太陽電池の構造を模式的に示す上面図である。 図14は、特許文献1によるスクライブラインの形状の一例を模式的に示す図である。 図15は、特許文献1による薄膜太陽電池の台形の領域に対応する透明電極層での電流の流れる様子と、実施の形態1による薄膜太陽電池の平行四辺形の領域に対応する透明電極層での電流の流れる様子との比較を模式的に示す図である。 図16は、この発明の実施の形態2による薄膜太陽電池の一例を示す上面図である。 図17は、この発明の実施の形態3による薄膜太陽電池の一例を示す上面図である。 図18は、図17の薄膜太陽電池から電流を取り出す構成の一例を模式的に示す上面図である。
 以下に添付図面を参照して、この発明の実施の形態にかかる薄膜太陽電池およびその製造方法を詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。また、以下の実施の形態で用いられる薄膜太陽電池の断面図は模式的なものであり、層の厚みと幅との関係や各層の厚みの比率などは現実のものとは異なる。
実施の形態1.
 図1は、この発明の実施の形態1による薄膜太陽電池の一例を示す上面図である。実施の形態1による薄膜太陽電池1は、長方形状の絶縁透光性基板10の上に、複数の単位太陽電池セル3が直列に接続されて集積化されることで、全体として薄膜太陽電池モジュールとして機能する。そして、両端の電流取出部4に導かれた電流は外部に取り出される。ここで、各単位太陽電池セル3間、および単位太陽電池セル3と電流取出部4との間は、分離溝であるスクライブライン2によって分離されるが、このスクライブライン2の形状は、絶縁透光性基板10の端面に対し傾いた線分の組み合わせが周期的に繰り返された屈曲した形状であり、また隣接するスクライブライン2同士は略平行に配置されている。なお、単位太陽電池セル3は、隣り合うスクライブライン2の間隔に比べて、スクライブライン2に沿った方向が長手となる形状を有する。また、スクライブライン2における屈曲部の長手方向の位置は、どのスクライブライン2においても略同じ位置に設定されている。
 つまり、単位太陽電池セル3の両側の分離溝(スクライブライン2)は、長方形状の絶縁透光性基板10の一辺に沿った方向に平行移動した場合に重なり合う、同一の蛇行した形状となっている。これによって分離溝間に挟まれた単位太陽電池セル3は、絶縁透光性基板10の一辺に沿った方向の幅が略一定であるように蛇行した形状となっている。また、別の表現をすれば、分離溝を波形状とした場合に、複数の波は略同一間隔で同じ位相の波となるように波の振幅方向に平行に並んだ形状となっている。
 なお、ここでは絶縁透光性基板10の形状を長方形状としているが、長方形に限らず他の形状でもよい。その場合、単位太陽電池セル3の両側の分離溝が特定方向に平行移動した際に重なり合うような位置関係とすればよい。
 図2は、図1のA-A線上の一部断面図である。この図に示されるように、薄膜太陽電池1は、絶縁透光性基板10の上に表面電極層11、光電変換層12、中間導電体層13および裏面電極層14が順に積層され、所定の位置に設けられたスクライブライン2によって、単位太陽電池セル3および電流取出部4が形成される。電極取出部4は、薄膜太陽電池1で生じた電流を外部に取り出すために、外部の配線と薄膜太陽電池1とを接続するために設けられる。たとえば、電流取出部4の裏面電極層14と外部に電流を取り出す図示しないバス配線とが接続される。なお、電流取出部4の光電変換層12は発電には寄与しない。
 ここで、絶縁透光性基板10として、白板ガラスなどの高光透過率のガラス材料やポリイミドなどの透光性の有機フィルム材料を用いることができる。また、表面電極層11は、光透過性を有している透明導電膜であればよく、酸化亜鉛(ZnO)、酸化インジウム錫(Indium Tin Oxide、以下、ITOという)、酸化スズ(SnO2)などの透明導電性酸化膜や、ドーパントとしてアルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ホウ素(B)、イットリウム(Y)、シリコン(Si)、ジルコニウム(Zr)、チタン(Ti)、フッ素(F)、窒素(N)などから選択される少なくとも1種類以上の元素を用いたZnO膜、ITO膜、SnO2膜などを用いることができる。また、表面電極層11として、これらの膜を積層して形成した透明導電性膜であってもよい。さらに、表面電極層11は、表面に凹凸が形成された表面テクスチャ構造を有することが好ましい。このテクスチャ構造は、入射した太陽光を散乱させ、光電変換層12での光利用効率を高める機能を有する。
 光電変換層12は、pn接合またはpin接合を有し、入射する光により発電を行う薄膜半導体層が1層以上積層されて構成される。このような光電変換層12としてはアモルファスシリコン層、微結晶シリコン層、水素化アモルファスシリコンゲルマニウム層、微結晶シリコンゲルゲルマニウム層などの半導体層、あるいはこれら半導体層の積層体を用いることができる。
 また、複数の薄膜半導体層が積層されて光電変換層12が構成される場合には、異なる薄膜半導体層間にSnO2,ZnO,ITOなどの導電性酸化物材料もしくはこれらの導電性酸化物材料に金属を添加した材料、またはp型水素化結晶シリコン、i型水素化結晶シリコン、n型水素化結晶シリコン、p型水素化アモルファスシリコン酸化物、i型水素化アモルファスシリコン酸化物、n型水素化アモルファスシリコン酸化物、p型水素化微結晶シリコン酸化物、i型水素化微結晶シリコン酸化物、n型水素化微結晶シリコン酸化物、p型水素化微結晶炭化シリコン、i型水素化微結晶炭化シリコン、n型水素化微結晶炭化シリコンから選択される少なくとも1種類以上の材料からなる中間層を挿入して、異なる薄膜半導体層間の電気的、光学的接続を改善してもよい。
 中間導電体層13は、たとえばSnO2,ZnO,ITOなどの導電性酸化物材料もしくはこれら導電性酸化物材料に金属を添加した材料、またはp型水素化結晶シリコン、i型水素化結晶シリコン、n型水素化結晶シリコン、p型水素化アモルファスシリコン酸化物、i型水素化アモルファスシリコン酸化物、n型水素化アモルファスシリコン酸化物、p型水素化微結晶シリコン酸化物、i型水素化微結晶シリコン酸化物、n型水素化微結晶シリコン酸化物、p型水素化微結晶炭化シリコン、i型水素化微結晶炭化シリコン、n型水素化微結晶炭化シリコンから選択される少なくとも1種類以上の材料からなる透明導電性膜を用いることができる。
 裏面電極層14として、銀(Ag)、Al、Ti、金(Au)、銅(Cu)、ネオジウム(Nd)、クロム(Cr)などの高い導電性と光反射性を併せ持つ金属材料またはこれらの金属材料の混合物を使用することができる。また、これらの材料からなる層を単層として使用してもよいし、積層して使用してもよい。さらに、中間導電体層13との界面部に上記の材料を用いて層を形成し、さらにその上に導電性ペーストなどの光反射性の低い材料からなる層を積層してもよい。
 図1で示されるスクライブライン2は、実際には、表面電極層11を分離する第1スクライブライン21と、光電変換層12および中間導電体層13を分離する第2スクライブライン22と、光電変換層12、中間導電体層13および裏面電極層14を分離する第3スクライブライン23から構成されている。
 図2に示される薄膜太陽電池1の断面において、隣接するスクライブライン2に挟まれた領域が単位太陽電池セル3として発電に寄与する。また、単位太陽電池セル3は、隣接する単位太陽電池セル3と直列に接続される構成を有するので、隣接する単位太陽電池セル3間の表面電極層11同士、光電変換層12および中間導電体層13同士、裏面電極層14同士が接続されないようにするとともに、自単位太陽電池セル3の表面電極層11と一方の側に隣接する単位太陽電池セル3の裏面電極層14とを電気的に接続し、自単位太陽電池セル3の裏面電極層14と他方の側に隣接する単位太陽電池セル3の表面電極層11とを電気的に接続する。具体的には、図2では、ある単位太陽電池セル3において表面電極層11は、左側に隣接する単位太陽電池セル3の裏面電極層14と接続され、裏面電極層14は、右側に隣接する単位太陽電池セル3の表面電極層11と接続される。そのため、第1スクライブライン21および第3スクライブライン23によって、隣接する単位太陽電池セル3間の絶縁を確保し、第2スクライブライン22で表面電極層11と裏面電極層14とを接触させることによって、隣接する単位太陽電池セル3が直列に接続され、太陽電池モジュールとして機能する。
 ここで、このような構造の薄膜太陽電池1における動作の概略について説明する。絶縁透光性基板10の裏面(単位太陽電池セル3が形成されていない方の面)から太陽光が入射すると、光電変換層12内で自由キャリアが生成される。生成された自由キャリアは、光電変換層12のp型半導体層とn型半導体層によって形成される内蔵電界によって輸送され、電流が発生する。各単位太陽電池セル3で発生した電流は、第2のスクライブライン22内に埋め込まれた裏面電極層14を介して隣接する単位太陽電池セル3へと流れ込み、薄膜太陽電池モジュール全体の発電電流を生成する。
 つぎに、薄膜太陽電池の製造方法について説明する。図3-1~図3-6は、実施の形態1による薄膜太陽電池の製造方法の手順の一例を模式的に示す断面図である。まず、図3-1に示されるように、絶縁透光性基板10の上面にスパッタリング法またはCVD法などの成膜法によって表面電極層11を形成する。表面電極層11を形成後に、溶媒を用いたウェットエッチング法やプラズマエッチング法を用いて、表面テクスチャ構造を形成してもよい。
 ついで、図3-2に示されるように、レーザ加工法によって、表面電極層11を分離する第1スクライブライン21を形成する。この第1スクライブライン21は、図1に示されるスクライブライン2と同じように、平面視上で屈曲形状を有し、特定方向に所定の間隔をおいて形成される。なお、隣り合う第1スクライブライン21は同じ屈曲形状を有しており、特定方向に垂直な方向での屈曲部の位置が互いに同じとなるように、互いに平行とするとよい。第1スクライブライン21を形成するには、たとえば、レーザ加工装置のXYステージに、絶縁透光性基板10を載置し、レーザ加工中にXY方向に移動させることで所望の屈曲形状を得ることができる。また、この他にもガルバノスキャンによりレーザビームをXY面内の任意の位置に走査させることによって、所望の屈曲形状を有する第1スクライブライン21を形成してもよいし、一方向のみに移動する移動ステージと、一方向のみに走査できるレーザとを組み合わせ、互いの移動する方向が同一とならないように配置し、それぞれを同期させることでも所望の屈曲形状を有する第1スクライブライン21を形成してもよい。このレーザ加工の後、加工残渣やレーザによる変質層除去のため洗浄を行ってもよい。
 その後、図3-3に示されるように、第1スクライブライン21を形成した表面電極層11上にCVD法によって光電変換層12を形成し、さらにスパッタリング法またはCVD法によって中間導電体層13を形成する。ついで、図3-4に示されるように、第1スクライブライン21と同様にレーザ加工法によって、中間導電体層13および光電変換層12を分離する第2スクライブライン22を形成する。なお、この第2スクライブライン22は、第1スクライブライン21と同様に平面視上で屈曲形状を有し、特定方向に所定の間隔をおいて形成される。また、この第2スクライブライン22は、第1スクライブライン21と重ならない位置に形成される。このレーザ加工の後、加工残渣やレーザによる変質層除去のため洗浄を行ってもよい。
 その後、図3-5に示されるように、第2スクライブライン22を形成した中間導電体層13上にスパッタリング法によって裏面電極層14を形成する。このとき、裏面電極層14は第2スクライブライン22に埋め込まれる。ついで、図3-6に示されるように、第1スクライブライン21と同様にレーザ加工法によって、裏面電極層14、中間導電体層13および光電変換層12を分離する第3スクライブライン23を形成する。なお、この第3スクライブライン23は、第1スクライブライン21と同様に平面視上で屈曲形状を有し、所定の間隔をおいて形成される。また、この第3スクライブライン23は、第1スクライブライン21および第2スクライブライン22と重ならない位置に形成される。このレーザ加工の後、加工残渣やレーザによる変質層除去のため洗浄を行ってもよい。以上のようにして、図1と図2に示される薄膜太陽電池が製造される。
 以下に、実施の形態1によるスクライブライン2の形状について説明する。図4は、実施の形態1によるスクライブラインの形状の一例を模式的に示す図である。この図において、紙面内の左右方向を図1の絶縁透光性基板10の上辺および下辺の延在方向に対応するX方向とし、このX方向に垂直な紙面内の方向を絶縁透光性基板10の右辺および左辺の延在方向に対応するY方向とする。
 この図に示されるように、スクライブライン2は、X方向に対する交差角度をθとすると、角度θの傾きを持つ線分と角度-θの傾きを持つ線分とを交互に繋ぎ合わせることで構成され、図4では、スクライブラインがつづら折状(ジグザグ状)となっている。ここで、隣接するスクライブライン2間のX方向の間隔をDとし、1本のスクライブライン2上の隣接する屈曲点R間のY方向の間隔をLとする。隣接する2本のスクライブライン2の同じ位相の屈曲点R間を結ぶX方向の線分と、この屈曲点Rに隣接し、隣接する2本のスクライブライン2の同じ位相の屈曲点R間を結ぶX方向の線分と、これら2つの線分の屈曲点R間を結ぶスクライブライン2によって構成される2本の線分と、によって、単位太陽電池セル3は底辺D、高さLの平行四辺形の領域31に分割される。この平行四辺形31の領域内での電流の向きについて考察する。
 領域31の平行四辺形の底辺Dと高さLが次式(1)の関係式を満たす場合について考える。図5は、平行四辺形の領域に対応する透明電極層での電流の流れる様子を模式的に示す図である。実際には屈曲点近傍では電流が集中し、電流経路は直線とはならず、広がり曲がってしまうため、以下はあくまでも近似的な計算である。
Figure JPOXMLDOC01-appb-M000001
 (1)式の関係を満たす場合には、図5に示されるように、領域31は、平行四辺形の1つの屈曲点Rから対向するスクライブライン2を構成する辺に下ろした垂線hによって、領域311と領域312とに2分割される。領域311内の各点ではスクライブライン2までの最短距離はスクライブライン2に下ろした垂線hと平行な方向41に電流は流れる。一方、領域312内の各点からは、各点と垂線hの起点となる屈曲点Rとを結ぶ線分が最短距離となり、この屈曲点Rへと向かう方向42に電流は流れる。
 (1)式の条件を満たすとき、領域31でスクライブラインまでの距離がxとx+dxの範囲となる面積をdSとすると、dS/dxは次式(2)、(3)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 図6は、θ=π/4、L/D=2とした場合のdS/dxとxとの間の関係をそれぞれLとDとで規格化したグラフである。この図において、横軸は、領域31内での各位置におけるスクライブライン2までの距離xを、スクライブライン2間の距離Dで規格化したものであり、縦軸は面積Sの距離xに対する変化率を屈曲点R間のY方向の距離Lで規格化したものである。
 スクライブライン2を図1に示されるように屈曲させずに、絶縁透光性基板10の辺と平行な直線によってスクライブした場合には、dS/dxとxとの関係は、次式(4)で示されるように、図6の破線で示される距離xに依らない直線(横軸に平行な直線)となる。
Figure JPOXMLDOC01-appb-M000004
 また、スクライブライン2を図1に示されるように屈曲させた場合には、dS/dxとxとの関係は、実線で示される曲線となる。両者を比較すると、スクライブライン2を屈曲化させることによって、スクライブライン2を直線とした場合に比して、スクライブライン2までの距離が短い領域51の割合が増加し、スクライブライン2までの距離が長い領域52の割合が小さくなる。その結果、全体としてスクライブライン2までの距離が短い領域の割合が増え、電流経路が短くなり、スクライブライン2を直線とした場合に比して、ジュール損失を低減することができる。
 つぎに、領域31の平行四辺形の底辺Dと高さLが次式(5)の関係式を満たす場合について考える。図7は、平行四辺形の領域に対応する透明電極層での電流の流れる様子を模式的に示す図である。ここでも、実際には屈曲点近傍では電流が集中し、電流経路は直線とはならず、広がり曲がってしまうため、以下はあくまでも近似的な計算である。
Figure JPOXMLDOC01-appb-M000005
 (5)式の関係を満たす場合には、図7に示されるように、領域31は、平行四辺形の1つの屈曲点Rから、対向するスクライブライン2を構成する辺の延長線上に下ろした垂線hと、垂線hを下ろした屈曲点Rとこの屈曲点Rに対向する屈曲点Rとの間を結ぶ対角線mとによって、領域313、領域314、および領域315に3分割される。領域313内の各点では、電流はスクライブライン2の延長線上に下ろした垂線hと平行な方向43に電流は流れる。一方、領域314内と領域315内の各点では、垂線hを下ろした屈曲点Rへと向かう方向44,45に電流は流れる。
 (5)式の条件を満たすとき、領域31でスクライブライン2までの距離がxとx+dxの範囲となる面積をdSとすると、dS/dxは次式(6)~(8)で表すことができる。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 図8は、θ=π/4、L/D=1/3とした場合のdS/dxとxとの間の関係をそれぞれLとDとで規格化したグラフである。この図において、横軸は、領域31内での各位置におけるスクライブライン2までの距離xを、スクライブライン2間の距離Dで規格化したものであり、縦軸は面積Sの距離xに対する変化率を屈曲点R間の距離Lで規格化したものである。
 スクライブライン2を図1に示されるように屈曲させずに、絶縁透光性基板10の辺と平行な直線によってスクライブした場合には、dS/dxとxとの関係は、次式(9)で示されるように、図8の破線で示される距離xに依らない直線(横軸に平行な直線)となる。
Figure JPOXMLDOC01-appb-M000009
 また、スクライブライン2を図1に示されるように屈曲させた場合には、dS/dxとxとの関係は、実線で示される曲線となる。両者を比較すると、スクライブライン2を屈曲化させることによって、スクライブライン2を直線とした場合に比して、電流経路が短くなる領域53の割合が増加し、電流経路が長くなる領域54の割合が小さくなる。その結果、全体として電流経路が短くなり、スクライブライン2を直線とした場合に比して、ジュール損失を低減することができる。
 なお、図6と図8では、θの値とL/Dの値としてそれぞれ一例を挙げて示したが、上述の(2)、(6)、(7)式は0<θ<π/2を満たせば、L/Dの値に依らず、恒にLより大きくなるため、電流経路が短くなる領域が増加する。つまり、一般的にスクライブライン2を屈曲化させることで、スクライブライン2を直線とした場合に比して、ジュール損失を低減させることができる。特に、角度θをなるべく小さくし、またL/Dの値を大きくすることで、ジュール損失低減の効果を大きくすることができる。
 ここで、領域31内の電流経路の長さを積分して、ジュール損失を見積もる。既述の通り、実際には電流が集中する屈曲点近傍では、電流経路は最短距離の直線とはならず、広がり曲がってしまうため、以下はあくまでも近似的な計算である。電流密度Jは、上述のdS/dxを用いて積分すると次式(10)のように表すことができる。
Figure JPOXMLDOC01-appb-M000010
 透明電極層(表面電極層11)でのジュール損失は、(10)式の電流密度Jと、透明電極層の抵抗率から求めることができるが、電流密度Jおよび透明電極層の抵抗率が太陽電池モジュール内で均一であると仮定すると、ジュール損失は電流密度Jに比例する。また、スクライブライン2が屈曲していない場合の領域31内の電流経路の長さの積分値をJ0とすると、次式(11)のように表すことができる。
Figure JPOXMLDOC01-appb-M000011
 スクライブライン2を屈曲させた場合とさせなかった場合のジュール損失の比J/J0を(2)、(3)、(6)~(8)式を用いて計算する。ここでは、θを30~85°の範囲で変化させ、L/Dを5,1,0.5,0.25として計算を行う。図9は、L/Dとθとを変化させたときのスクライブラインを屈曲させた場合とさせなかった場合のジュール損失の比J/J0の関係の一例を示す図である。この図9から、ジュール損失を、スクライブライン2を屈曲させなかった場合に比して5%程度かまたはそれ以上低減するためには、θは少なくとも72.5°よりも小さい角度とすることが望ましい。
 なお、上述した例では、スクライブライン2のパターンは、屈曲部で尖った形状を有している場合示したが、これに限定されるものではない。図10と図11は、実施の形態1による薄膜太陽電池の構成の他の例を示す上面図である。図10に示されるように、スクライブライン2のパターンは屈曲部の角を丸めたパターンであってもよいし、図11に示されるように、波状のパターン(周期的な波状のパターン)であってもよい。これらの場合において、屈曲部の曲率を大きくすることで屈曲部への電流集中を緩和でき、ジュール損失を低減する効果を有する。また、このような場合においても、隣接するスクライブライン2間の距離は一定であり、短手方向に隣接するスクライブライン2の屈曲部の位置は、略同じ長手方向上の位置に形成される。
 さらに、上述した例では、単位太陽電池セル3を周期的に屈曲させ、ジグザグ状に蛇行した形状としたが、屈曲部は1か所のみであってもよい。また、屈曲した単位太陽電池セル3が長手方向に複数の領域に分割されていてもよい。図12は、実施の形態1による薄膜太陽電池の他の例を示す上面図である。図12に示されるように、細線状の集電電極5を単位太陽電池セル3の短手方向に複数、絶縁透光性基板10と表面電極層11との間に配置してもよい。この集電電極5をスクライブライン2の屈曲部近傍に配置すると、表面電極層11中の経路が最も長くなる領域の電流を集電電極5に導くことができる。これによって、表面電極層11中でのジュール損失をさらに低減することができる。集電電極5を構成する材料としては、表面電極層11を構成する透明導電性材料に比して導電率の高い金属材料である、銀、アルミニウム、金、クロム、ニッケル、チタンなどを用いることが望ましい。
 この実施の形態1によれば、絶縁透光性基板10の辺に対してスクライブライン2を屈曲させるようにしたので、透明導電性材料からなる表面電極層11における電流経路が単位太陽電池セル3の幅方向に対して斜めになり、電流経路を短くすることができる。その結果、スクライブライン2を屈曲させないで形成した単位太陽電池セル3のセル幅を同じにした場合に比して、ジュール損失を低減することができ、発電効率を向上させることができるという効果を有する。
 単位太陽電池セル3の面積が同じである場合に、単位太陽電池セル3を蛇行した形状とすると、蛇行に沿った方向には長さが長くなり、蛇行方向に直交する方向の幅が狭くなる。このため、電流経路が短くなり損失を低減できると考えることもできる。
 さらに、単位太陽電池セル3の両側の分離溝が、特定方向に平行移動した場合に重なり合う同一の蛇行した形状であって、それらの分離溝間に挟まれた単位太陽電池セル3は特定方向の幅が略一定であるように蛇行した形状としたので、幅が広い部分が生じない。このため、電流経路が長くなる部分が生じない。
 これに対して、たとえばランダムに蛇行した分離溝間に挟まれた単位太陽電池セル3を考えると、部分的にくびれた狭い部分や、幅広な部分が生じる。狭い部分では電流経路が短くなる一方、幅広な部分では電流経路が長くなり損失が増加してしまう。つまり、損失低減の観点からは、単位太陽電池セル3の幅の平均が同じ場合には、幅広の部分や部分的にくびれた部分を形成する場合よりも、この実施の形態1のようにどの位置においても単位太陽電池セル3の幅を略一定とする場合の方が望ましい。
 この実施の形態1によれば、スクライブライン2における屈曲部の長手方向の位置を、どのスクライブライン2においても略同じ位置に設定することで、単位太陽電池セル3の幅が略一定となる。その結果、電流経路が極端に長くなる領域が存在しないので、ジュール損失を低減することができるという効果も有する。
 さらに、スクライブライン2の長手方向に垂直な方向(短手方向)に対するスクライブライン2の交差角度をθと-θとし、このθの絶対値を72.5°よりも小さくして、単位太陽電池セル3の屈曲度合いを大きくした。これによって、電流経路の短縮の効果が大きくなり、透明導電性材料で構成される表面電極層11でのジュール損失を一層大きく低減することが可能になるという効果も有する。
 また、単位太陽電池セル3を周期的に蛇行させる場合、1/2周期L(図4の高さL)とその幅D(図4のD)との比L/Dが0.25以上であることが望ましい。L/Dが大きく、またθが小さい方が電流経路を短くできる傾向にある。つまり、ある程度の大きくねるように蛇行させる方が望ましい。
 ここで、実施の形態1による薄膜太陽電池と、特許文献1の薄膜太陽電池とを比較する。図13は、特許文献1による薄膜太陽電池の構造を模式的に示す上面図であり、図14は、特許文献1によるスクライブラインの形状の一例を模式的に示す図である。なお、実施の形態1と同一の構成要素には同一の符号を付している。
 図13に示されるように、特許文献1の薄膜太陽電池では、蛇行したスクライブライン2(分離溝)を波形状とすると、実施の形態1のように特定方向に平行移動した場合に、重なり合う形状とはなっておらず、1つの蛇行した波形状のスクライブライン2と、このスクライブライン2に対して位相が反転した波形状のスクライブライン2によって、単位太陽電池セル3が区切られた構造を有している。そのため、単位太陽電池セル3の短手方向(特定方向)の長さは、場所によって異なっており、周期的に変化している。
 図14において、紙面内の左右方向を図13の絶縁透光性基板10の上辺および下辺の延在方向に対応するX方向とし、このX方向に垂直な紙面内の方向を絶縁透光性基板10の右辺および左辺の延在方向に対応するY方向とする。特許文献1においては隣接するスクライブライン2間の最大間隔をWmaxとし、最小間隔をWminとし、平均間隔をWaveとする。また、実施の形態1と同様にスクライブライン2のX方向に対する交差角度をθとし、同一のスクライブライン2上の隣接する屈曲点R間のY方向の間隔をLとする。特許文献1では、隣接する2本のスクライブライン2の位相は逆となっているので、隣接する2本のスクライブライン2に囲まれる単位太陽電池セル3の幅は、屈曲点R間の間隔が最大間隔Wmaxとなる部分から、徐々に減少していき、屈曲点R間の間隔が最小間隔Wminとなる部分に至り、また、徐々に増加して行き、屈曲点R間の間隔が最大間隔Wmaxとなる部分に至る。
 ここで、屈曲点R間の間隔が最大間隔Wmaxとなる線分と、この最大間隔Wmaxとなる屈曲点Rに隣接し、屈曲点R間の間隔が最小間隔Wminとなる線分と、これら2つの線分の屈曲点R間を結ぶスクライブライン2によって構成される2本の線分と、によって、単位太陽電池セル3は上辺Wmax、下辺Wmin、高さLの台形の領域32に分割される。この台形32の領域32内での電流経路について、実施の形態1と単位太陽電池セル3の平均幅が等しくなる次式(12)が成立する場合において比較検討する。
Figure JPOXMLDOC01-appb-M000012
 特許文献1においてL,θ,Wmax,Wminの間には次式(13)の関係が成立する。
Figure JPOXMLDOC01-appb-M000013
 WmaxとWminは互いに正の値であることからつぎの不等式(14)の関係が成り立ち、式(13)と式(14)とから、さらに不等式(15)の関係が成立する。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 0°<θ<90°の範囲においてtanθはθの単調増加関数である。また、上述の通り、角度θをなるべく小さくし、またL/Dの値を大きくすることで、ジュール損失低減の効果を大きくすることができる。しかし、特許文献1では、θ,L,Dの関係は(15)式の関係を満たす必要があるため、角度θをなるべく小さくし、またL/Dの値を大きくすることには制約が生ずる。
 つぎに、特許文献1と本実施の形態1において、(15)式を満たす条件で、θ,L,Dがそれぞれ同じ値となる場合において比較を行う。図15は、特許文献1による薄膜太陽電池の台形の領域に対応する透明電極層での電流の流れる様子と、実施の形態1による薄膜太陽電池の平行四辺形の領域に対応する透明電極層での電流の流れる様子との比較を模式的に示す図である。この図15では、実施の形態1の図4の平行四辺形の領域31と、比較例としての特許文献1の図14の台形の領域32とを重ね合わせて比較したものである。
 お互いが重なりあう領域33において発生した電流の透明電極層中の電流経路において差は生じず、お互いが重なり合わない領域315と領域321とで発生した電流の透明電極層中の電流経路の差がジュール損実の差となる。領域315,321で発生した電流はスクライブライン2に対しその電流経路が最短となるよう、スクライブライン2に下ろした垂線の交点か、または屈曲点Rに向かって流れる。領域315で発生した電流の透明電極層中の電流経路46と、領域321で発生した電流の透明電極層中の電流経路47とを比較すると、電流経路46の方が電流経路47に比して短くなることは図15から自明である。つまり、実施の形態1の方が、特許文献1に比してジュール損失を低減することができることを示す。
 以上から特許文献1と比較した場合に、θ,L,Dがそれぞれ同じ値となる場合においても実施の形態1の方がジュール損失を低減することができる。また、実施の形態1では、θとL/Dの値の関係に制約がないため、角度θをなるべく小さくし、またL/Dの値を大きくすることでジュール損失をより低減することもできる。
実施の形態2.
 図16は、この発明の実施の形態2による薄膜太陽電池の一例を示す上面図である。実施の形態2の薄膜太陽電池1では、絶縁透光性基板10の中央からスクライブライン2の短手方向の辺縁部(端部)に向かうにつれて、屈曲の度合いが小さいスクライブライン2が配置される構成となっている。この例では、短手方向の両端の単位太陽電池セル3と電流取出部4とを分離するスクライブライン2の形状は、絶縁透光性基板10の端面と略平行となっている。また辺縁部の隣接するスクライブライン2同士は屈曲の度合いが変化するため略平行とはならないが、屈曲部を構成する山や谷の位置や周期を揃えている。このようにすることで、単位太陽電池セル3の幅の変化量が極端に広くなる部位の発生を抑えることができる。なお、実施の形態1と同一の構成要素には同一の符号を付してその説明を省略している。また、このような構造の薄膜太陽電池1の断面構造および製造方法については、実施の形態1と同様であるため、その説明についても省略する。
 さらに、各スクライブライン2の屈曲度合いや間隔については、各単位太陽電地セル3の発生電流量が略等しくなるように調整することが望ましい。また、各スクライブライン2のパターンについては実施の形態1と同様に屈曲部の角を丸めたパターンや波状のパターンを用いてもよい。
 この実施の形態2によれば、発電に寄与しない絶縁透光性基板10の両端の電流取出部4の面積を小さくすることができ、薄膜太陽電池モジュールの発電効率を向上させることができるという効果を有する。また、両端部の単位太陽電地セル3の電極がおおむね直線であるため、電極にモジュール外部に電力を取り出すためのバス配線を接続することが容易となる。
 なお、絶縁透光性基板10の辺縁部の単位太陽電池セル3において、スクライブライン2は略平行とならないため透明導電性材料で構成される表面電極層11での電流経路が長くなり、そのためジュール損失が増大する場合がある。しかし、絶縁透光性基板10の辺縁部以外の単位太陽電池セル3では、ジュール損失が低減されているため、太陽電池モジュール全体としてのジュール損失量は低減される。
実施の形態3.
 図17は、この発明の実施の形態3による薄膜太陽電池の一例を示す上面図である。実施の形態3の薄膜太陽電池1では、スクライブライン2の屈曲の度合いはスクライブライン2の短手方向の辺縁部(端部)でも変化しない。最端部のスクライブライン2を、隣接するスクライブライン2と略平行にしようとすると絶縁透光性基板10からはみ出してしまう。そこで最端部のスクライブライン2の絶縁透光性基板10からはみ出してしまう屈曲部分については絶縁透光性基板10内に収まるように絶縁透光性基板10の端面と平行となるようにする。また、図の左右方向(スクライブライン2の短手方向)の両端に配置される単位太陽電池セル3が、他の単位太陽電池セル3と略等しい面積となるように、スクライブライン2の形状を変えている。
 たとえば、最も右側のスクライブライン2aでは、他のスクライブライン2と形状を一致させる場合には、点線で示したスクライブライン2bの形状となる。しかし、この場合、スクライブライン2bの一部は、絶縁透光性基板10の形成領域外に形成されることになる。その結果、右に凸の屈曲部1つ当たり面積S1だけ、他の単位太陽電池セル3の面積よりも小さくなってしまう。そこで、絶縁透光性基板10の領域外に形成される仮想的な屈曲部に対向する側の屈曲部の形状を変化させ、スクライブライン2aに示される形状とする。これは、電極取出部4から面積S1を差し引いたものであり、スクライブライン2aの左側の屈曲部が省略され、屈曲部を構成する辺の途中を直線で結んだ形状となっている。これによって、電流取出部4は複数の島状の領域に分離される構成となる。
 図18は、図17の薄膜太陽電池から電流を取り出す構成の一例を模式的に示す上面図である。この薄膜太陽電池1では、図の左右方向両端の電極取出部4を含む領域上にバス配線6が設けられ、島状に形成された各電極取出部4とバス配線とは接続部7によって電気的に接続される。バス配線6の材料として、銅やアルミニウムなどの低抵抗の線材を用いることができ、裏面電極層14との接続性を改善させるため表面にはんだを被覆してもよい。
 また、電極取出部4は島状に配置されているため、バス配線6は電極取出部4間に存在する単位太陽電池セル3上にも設けられる構造となっている。そのため、バス配線6は、最外縁部の単位太陽電池セル3の裏面電極層14とも接触し短絡する可能性がある。そこで、単位太陽電池セル3の裏面電極層14とバス配線6との間に、絶縁シートを挿入したり、またはバス配線6の最表面を絶縁膜で被覆したりすることが望ましい。さらに、電極取出部4の裏面電極層14とバス配線6との電気的接続方法にははんだ接続や超音波溶接、導電性接着剤や異方性導電シートを用いた接着法を用いることが望ましい。
 なお、実施の形態1と同一の構成要素には同一の符号を付してその説明を省略している。また、このような構造の薄膜太陽電池1の断面構造および製造方法については、実施の形態1と同様であるため、その説明についても省略する。
 さらに、各スクライブライン2のパターンについては実施の形態1と同様に屈曲部の角を丸めたパターンや波状のパターンを用いてもよい。また、実施の形態2のように、絶縁透光性基板10の中央からスクライブライン2の短手方向の辺縁部(端部)に向かうにつれて、屈曲の度合いが徐々に小さくなるように形成し、最外縁部のスクライブライン2の屈曲の度合いをある程度小さくした状態で、最外端のスクライブライン2の絶縁透光性基板10からはみ出してしまう屈曲部を絶縁透光性基板10の端面と平行となるようにしてもよい。さらに、実施の形態1と同様に、細線状の集電電極を単位太陽電池セル3の短手方向に複数、絶縁透光性基板10と表面電極層11との間に配置してもよい。
 この実施の形態3では、スクライブライン2の配列方向(単位太陽電池セル3の短手方向)の辺縁部(端部)の単位太陽電池セル3においても、スクライブライン2の屈曲度を小さくすることなく、発電に寄与しない絶縁透光性基板10の両端の電流取出部4の面積を小さくすることができる。その結果、薄膜太陽電池モジュールの発電効率を向上させることができるという効果を有する。
 なお、上記の実施の形態では絶縁透光性基板を用いたスーパーストレート型構造の場合を示したが、同様な単位太陽電池セル3の形状を、基板上に反射電極、光電変換層、透明電極が順に積層され、膜面側から光を入射するサブストレート型構造にも用いても同様の効果が得られる。また、溝内で反射電極と透明電極との接続は、いずれかの電極によってもよいが、導電性ペーストなどの他の導電材料を介してもかまわない。
 以上のように、本発明にかかる薄膜太陽電池は、基板上に単位太陽電池セルが直列に複数接続された構造に有用である。
 1 薄膜太陽電池
 2 スクライブライン
 3 単位太陽電池セル
 4 電流取出部
 5 集電電極
 6 バス配線
 7 接続部
10 絶縁透光性基板
11 表面電極層
12 光電変換層
13 中間導電体層
14 裏面電極層
21 第1スクライブライン
22 第2スクライブライン
23 第3スクライブライン 

Claims (13)

  1.  基板上に、透明導電性材料によって形成される第1の電極層と、光電変換層と、光を反射する導電性の材料を含む第2の電極層と、を含み、溝によって複数に分割された単位セルを複数有し、前記光電変換層に形成された溝内で前記第2の電極層と隣接する単位セルの第1の電極層とが接続されて、複数の前記単位セルが電気的に直列接続された薄膜太陽電池において、
     少なくとも1つの前記単位セルの両側の前記溝は、前記溝間に挟まれた前記単位セルが所定方向に一定の幅を有して蛇行するように形成されるとともに、前記所定方向に平行移動した場合に重なり合う同一形状を有することを特徴とする薄膜太陽電池。
  2.  前記溝は、前記所定方向に対して角度θで交差する第1の線分からなる溝、および角度-θで交差する第2の線分からなる溝を、少なくとも1つの屈曲部を有するように接続した構造を有することを特徴とする請求項1に記載の薄膜太陽電池。
  3.  前記溝の屈曲部が曲線で構成されることを特徴とする請求項1または2に記載の薄膜太陽電池。
  4.  前記溝は、周期的な波状の曲線で構成されることを特徴とする請求項1または2に記載の薄膜太陽電池。
  5.  前記基板は矩形形状を有し、前記所定方向は前記基板の第1の辺と平行であり、
     前記複数の溝は、前記第1の辺の延在方向に周期的に設けられるとともに、前記基板の前記第1の辺と交差する第2の辺の延在方向上での屈曲部の位置、または山と谷の位置が略一致して配置されることを特徴とする請求項1~4のいずれか1つに記載の薄膜太陽電池。
  6.  前記角度θの絶対値は、72.5°よりも小さい角度であることを特徴とする請求項1~5のいずれか1つに記載の薄膜太陽電池。
  7.  前記基板と前記第1の電極層との層間の前記溝の屈曲部の近傍に細線状の集電電極をさらに備えることを特徴とする請求項1~6のいずれか1つに記載の薄膜太陽電池。
  8.  前記基板の前記所定方向の中央部から端部に向かうほど、前記溝の屈曲の度合いが小さくなることを特徴とする請求項1~7のいずれか1つに記載の薄膜太陽電池。
  9.  前記基板は矩形形状を有し、前記所定方向は前記基板の第1の辺と平行であり、
     前記基板の前記第1の辺の延在方向の端部に形成される溝は、前記基板の前記第1の辺と交差する第2の辺の延在方向と略平行な直線であることを特徴とする請求項8に記載の薄膜太陽電池。
  10.  前記基板の前記所定方向の両端部の前記第1の電極層、前記光電変換層および前記第2の電極層の積層構造は、直列接続された前記単位セルで発電された電流を外部に取り出す電流取出部であり、
     前記電流取出部上に設けられる配線と、
     前記配線と前記電流取出部とを電気的に接続する接続部と、
     をさらに備えることを特徴とする請求項1~9のいずれか1つに記載の薄膜太陽電池。
  11.  前記電流取出部は、前記基板の前記所定方向の両端部の前記単位セルの屈曲構造によって、前記溝の延在方向に複数島状に分離された構造を有し、
     前記接続部は、前記各電流取出部に設けられることを特徴とする請求項10に記載の薄膜太陽電池。
  12.  前記光電変換層は、バンドギャップの異なるpn接合またはpin接合を有する複数の半導体層が、基板面に垂直な方向に積層された構造を有することを特徴とする請求項1~11のいずれか1つに記載の薄膜太陽電池。
  13.  基板上に第1の電極層を形成する工程と、
     前記第1の電極層を互いに平行な屈曲した形状の第1の分離溝で単位セルごとに分離する工程と、
     前記第1の電極層を形成した前記基板上に、半導体層からなる光電変換層を形成する工程と、
     前記光電変換層を前記第1の分離溝と同じ形状の第2の分離溝で、前記第1の分離溝と異なる位置で前記単位セルごとに分離する工程と、
     前記第2の分離溝内に導電性材料を埋め込む工程と、
     前記第2の分離溝に埋め込まれた前記導電性材料を含む前記光電変換層上に第2の電極層を形成する工程と、
     前記第2の電極層と前記光電変換層を、前記第1の分離溝と同じ形状の第3の分離溝で、前記第1および第2の分離溝と異なる位置で前記単位セルごとに分離する工程と、
     を含むことを特徴とする薄膜太陽電池の製造方法。
     
     
PCT/JP2010/056401 2009-11-17 2010-04-08 薄膜太陽電池およびその製造方法 WO2011061950A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080051932.9A CN102612755B (zh) 2009-11-17 2010-04-08 薄膜太阳能电池及其制造方法
DE112010004478T DE112010004478T5 (de) 2009-11-17 2010-04-08 Dünnschichtsolarzelle und Verfahren zu deren Herstellung
US13/508,429 US20120234375A1 (en) 2009-11-17 2010-04-08 Thin film solar cell and method of manufacturing the same
JP2011541823A JP5220204B2 (ja) 2009-11-17 2010-04-08 薄膜太陽電池およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009262162 2009-11-17
JP2009-262162 2009-11-17

Publications (1)

Publication Number Publication Date
WO2011061950A1 true WO2011061950A1 (ja) 2011-05-26

Family

ID=44059436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056401 WO2011061950A1 (ja) 2009-11-17 2010-04-08 薄膜太陽電池およびその製造方法

Country Status (5)

Country Link
US (1) US20120234375A1 (ja)
JP (1) JP5220204B2 (ja)
CN (1) CN102612755B (ja)
DE (1) DE112010004478T5 (ja)
WO (1) WO2011061950A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035780A1 (ja) * 2010-09-16 2012-03-22 三洋電機株式会社 光電変換装置
CN103107216A (zh) * 2011-11-14 2013-05-15 台湾积体电路制造股份有限公司 利用无缓冲剂制造工艺形成薄膜太阳能电池的方法
JP2013110249A (ja) * 2011-11-21 2013-06-06 Kyocera Corp 光電変換装置、および光電変換装置の製造方法
DE102012106275A1 (de) * 2012-07-12 2014-01-16 Heliatek Gmbh Dünnschichtphotovoltaikmodul
WO2013150418A3 (en) * 2012-04-03 2014-01-23 Flisom Ag Thin-film photovoltaic device with wavy monolithic interconnects
US20140027420A1 (en) * 2012-07-27 2014-01-30 Primestar Solar, Inc. Dual lasers for removing glass-side debris during the manufacture of thin film photovoltaic devices
KR20140049065A (ko) * 2011-09-19 2014-04-24 쌩-고벵 글래스 프랑스 직렬 연결형 박막 태양광 모듈 및 박막 태양 전지의 직렬 연결 방법
US20140144479A1 (en) * 2012-11-26 2014-05-29 Samsung Sdi Co., Ltd. Photoelectric conversion module
CN110838527A (zh) * 2019-10-30 2020-02-25 江苏朗道新能源有限公司 一种用于半片叠瓦光伏组件的电池片及该组件的制作方法
KR20200088809A (ko) * 2017-09-29 2020-07-23 (씨엔비엠) 벵부 디자인 앤드 리서치 인스티튜트 포 글래스 인더스트리 컴퍼니 리미티드 반투명 박막 태양광 모듈
JP2021531658A (ja) * 2018-07-25 2021-11-18 ネーデルランドセ オルガニサティエ フォール トエゲパスト−ナトールヴェテンシャッペリク オンデルゾエク ティエヌオー 光起電デバイス及びその製造方法
CN114203623A (zh) * 2021-12-16 2022-03-18 华能新能源股份有限公司 一种器件的制造方法及承载板

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101664633B1 (ko) * 2011-10-31 2016-10-10 후지필름 가부시키가이샤 광전 변환 소자 및 촬상 소자
CN103866275B (zh) * 2012-12-11 2016-10-05 中国科学院微电子研究所 原子层沉积的共掺氧化锌薄膜的制备方法
DE102013104132A1 (de) * 2013-04-24 2014-10-30 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und optoelektronisches Halbleiterbauteil
DE102013010691A1 (de) * 2013-06-27 2014-12-31 Nb Technologies Gmbh Solarzelle
US20150020863A1 (en) 2013-07-22 2015-01-22 International Business Machines Corporation Segmented thin film solar cells
CN104282802B (zh) * 2013-09-27 2016-08-17 成都旭双太阳能科技有限公司 一种多子电池串联的太阳能电池模组及其制备方法
CN104638040A (zh) * 2013-11-13 2015-05-20 财团法人工业技术研究院 太阳能电池组
US9401438B2 (en) 2013-11-13 2016-07-26 Industrial Technology Research Institute Solar cell module and solar cell thereof
TWI459574B (zh) * 2013-11-25 2014-11-01 Nexpower Technology Corp High transmittance thin film solar panels
TWI464894B (zh) * 2014-02-12 2014-12-11 Nexpower Technology Corp Thin film solar panels for the prevention and treatment of thermal damage
TWI677105B (zh) 2014-05-23 2019-11-11 瑞士商弗里松股份有限公司 製造薄膜光電子裝置之方法及可藉由該方法獲得的薄膜光電子裝置
TWI661991B (zh) 2014-09-18 2019-06-11 瑞士商弗里松股份有限公司 用於製造薄膜裝置之自組裝圖案化
EP3414779B1 (en) 2016-02-11 2021-01-13 Flisom AG Self-assembly patterning for fabricating thin-film devices
HUE053005T2 (hu) 2016-02-11 2021-06-28 Flisom Ag Vékonyréteg optoelektronikai eszközök gyártása hozzáadott rubídiummal és/vagy céziummal
JP6978005B2 (ja) * 2016-07-29 2021-12-08 サンパワー コーポレイション 非直線的な縁部に沿って重なり合う、屋根板状に重ねられた太陽電池
US10741703B2 (en) 2016-07-29 2020-08-11 Sunpower Corporation Shingled solar cells overlapping along non-linear edges
DE102017122530B4 (de) * 2017-09-28 2023-02-23 Helmholtz-Zentrum Berlin für Materialien und Energie Gesellschaft mit beschränkter Haftung Photovoltaikmodul mit auf der Rückseite ineinandergreifenden Kontakten
CN111900218B (zh) * 2020-07-10 2023-05-12 唐山科莱鼎光电科技有限公司 用于制备薄膜太阳能电池第二道刻线的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172369B2 (ja) * 1994-08-08 2001-06-04 三洋電機株式会社 集積型光起電力装置
JP2004119953A (ja) * 2002-09-26 2004-04-15 Honda Motor Co Ltd 薄膜太陽電池およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297391A (en) * 1979-01-16 1981-10-27 Solarex Corporation Method of applying electrical contacts to a photovoltaic cell
JPH06102776B2 (ja) 1989-11-30 1994-12-14 ホーヤ株式会社 硬化膜およびその硬化膜を有する光学部材
JP3588186B2 (ja) * 1996-03-27 2004-11-10 三洋電機株式会社 光起電力装置及び光電変換装置の製造方法
WO2005093854A1 (ja) * 2004-03-25 2005-10-06 Kaneka Corporation 薄膜太陽電池用基板、及びその製造方法、並びにそれを用いた薄膜太陽電池
JP5171001B2 (ja) * 2005-09-30 2013-03-27 三洋電機株式会社 太陽電池モジュールの製造方法、太陽電池セルおよび太陽電池モジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172369B2 (ja) * 1994-08-08 2001-06-04 三洋電機株式会社 集積型光起電力装置
JP2004119953A (ja) * 2002-09-26 2004-04-15 Honda Motor Co Ltd 薄膜太陽電池およびその製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012035780A1 (ja) * 2010-09-16 2012-03-22 三洋電機株式会社 光電変換装置
KR20140049065A (ko) * 2011-09-19 2014-04-24 쌩-고벵 글래스 프랑스 직렬 연결형 박막 태양광 모듈 및 박막 태양 전지의 직렬 연결 방법
CN103797585A (zh) * 2011-09-19 2014-05-14 法国圣戈班玻璃厂 具有串联连接的薄层太阳能模块和用于串联连接薄层太阳能电池单元的方法
JP2014530498A (ja) * 2011-09-19 2014-11-17 サン−ゴバングラス フランスSaint−Gobain Glass France 直列接続部を含む薄膜ソーラーモジュール、及び、複数の薄膜ソーラーセルを直列接続する方法
KR101652607B1 (ko) * 2011-09-19 2016-08-30 쌩-고벵 글래스 프랑스 직렬 연결형 박막 태양광 모듈 및 박막 태양 전지의 직렬 연결 방법
CN103107216A (zh) * 2011-11-14 2013-05-15 台湾积体电路制造股份有限公司 利用无缓冲剂制造工艺形成薄膜太阳能电池的方法
JP2013110249A (ja) * 2011-11-21 2013-06-06 Kyocera Corp 光電変換装置、および光電変換装置の製造方法
US9911881B2 (en) 2012-04-03 2018-03-06 Flisom Ag Thin-film photovoltaic device with wavy monolithic interconnects
WO2013150418A3 (en) * 2012-04-03 2014-01-23 Flisom Ag Thin-film photovoltaic device with wavy monolithic interconnects
US10211357B2 (en) 2012-04-03 2019-02-19 Flisom Ag Thin-film photovoltaic device with wavy monolithic interconnects
DE102012106275A1 (de) * 2012-07-12 2014-01-16 Heliatek Gmbh Dünnschichtphotovoltaikmodul
US20140027420A1 (en) * 2012-07-27 2014-01-30 Primestar Solar, Inc. Dual lasers for removing glass-side debris during the manufacture of thin film photovoltaic devices
US9555502B2 (en) * 2012-07-27 2017-01-31 First Solar, Inc. Dual lasers for removing glass-side debris during the manufacture of thin film photovoltaic devices
US20140144479A1 (en) * 2012-11-26 2014-05-29 Samsung Sdi Co., Ltd. Photoelectric conversion module
KR20200088809A (ko) * 2017-09-29 2020-07-23 (씨엔비엠) 벵부 디자인 앤드 리서치 인스티튜트 포 글래스 인더스트리 컴퍼니 리미티드 반투명 박막 태양광 모듈
JP2020535654A (ja) * 2017-09-29 2020-12-03 (シーエヌビーエム)ボンブー デザイン アンド リサーチ インスティテュート フォー グラス インダストリー カンパニー,リミティド 半透明薄膜ソーラーモジュール
KR102413995B1 (ko) * 2017-09-29 2022-06-29 씨엔비엠 리서치 인스티튜트 포 어드밴스드 글래스 머터리얼즈 그룹 컴퍼니 리미티드 반투명 박막 태양광 모듈
JP7124068B2 (ja) 2017-09-29 2022-08-23 中建材硝子新材料研究院集団有限公司 半透明薄膜ソーラーモジュール
JP2021531658A (ja) * 2018-07-25 2021-11-18 ネーデルランドセ オルガニサティエ フォール トエゲパスト−ナトールヴェテンシャッペリク オンデルゾエク ティエヌオー 光起電デバイス及びその製造方法
JP7372965B2 (ja) 2018-07-25 2023-11-01 ネーデルランドセ オルガニサティエ フォール トエゲパスト-ナトールヴェテンシャッペリク オンデルゾエク ティエヌオー 光起電デバイス及びその製造方法
CN110838527A (zh) * 2019-10-30 2020-02-25 江苏朗道新能源有限公司 一种用于半片叠瓦光伏组件的电池片及该组件的制作方法
CN110838527B (zh) * 2019-10-30 2024-03-08 江苏朗道新能源有限公司 一种用于半片叠瓦光伏组件的电池片及该组件的制作方法
CN114203623A (zh) * 2021-12-16 2022-03-18 华能新能源股份有限公司 一种器件的制造方法及承载板

Also Published As

Publication number Publication date
JPWO2011061950A1 (ja) 2013-04-04
JP5220204B2 (ja) 2013-06-26
CN102612755B (zh) 2015-04-15
CN102612755A (zh) 2012-07-25
US20120234375A1 (en) 2012-09-20
DE112010004478T5 (de) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5220204B2 (ja) 薄膜太陽電池およびその製造方法
JP5879538B2 (ja) 光電変換装置及びその製造方法
JP5820988B2 (ja) 光電変換装置及びその製造方法
CN102201500B (zh) 薄膜型太阳能电池及其制造方法
JP4334455B2 (ja) 太陽電池モジュール
US9806206B2 (en) Optimized grid design for concentrator solar cell
US9786800B2 (en) Solar cell contact structure
JP5874011B2 (ja) 太陽電池及び太陽電池モジュール
JP5705968B2 (ja) 光電変換装置及びその製造方法
CN102157612B (zh) 太阳能电池及其制造方法
US20170194516A1 (en) Advanced design of metallic grid in photovoltaic structures
JP5710024B2 (ja) 太陽電池の製造方法
JP5642591B2 (ja) 太陽電池モジュール
JPWO2018037672A1 (ja) 太陽電池および太陽電池モジュール
JP5819862B2 (ja) 特別な母線形状を有する太陽電池、前記太陽電池を含む太陽電池配列、および太陽電池を製造するための方法
JP5554409B2 (ja) 光電変換装置
JP2015207598A (ja) 太陽電池モジュール、太陽電池およびこれに用いられる素子間接続体
EP3480860B1 (en) Photovoltaic cell assembly
US8729383B2 (en) Stacked-layered thin film solar cell and manufacturing method thereof
JP5174900B2 (ja) 薄膜光電変換装置およびその製造方法
CN103066133A (zh) 光电装置
TWI605604B (zh) 光電模組、太陽能電池及其製造方法
JPWO2018034266A1 (ja) 光電変換素子および光電変換装置
JP5535891B2 (ja) 太陽電池
CN109585579A (zh) 太阳能电池及其制造方法、与太阳能电池模块

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051932.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541823

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13508429

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100044783

Country of ref document: DE

Ref document number: 112010004478

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831349

Country of ref document: EP

Kind code of ref document: A1