VERFAHREN ZUR HERSTELLUNG WASSERABSORBIERENDER, AUFGESCHÄUMTER POLYMERPARTIKEL
Beschreibung
5 Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel, umfassend Polymerisation einer aufgeschäumten Monomerlösung oder -Suspension, Trocknung, Mahlung und Klassierung.
Wasserabsorbierende Polymere werden als wässrige Lösungen absorbierende Pro- 10 dukte zur Herstellung von Windeln, aber auch als wasserzurückhaltende Mittel im
landwirtschaftlichen Gartenbau verwendet.
Die Herstellung wasserabsorbierender Polymerpartikel wird in der Monographie "Modern Superabsorbent Polymer Technology", F.L. Buchholz und AT. Graham, Wiley- 15 VCH, 1998, Seiten 71 bis 103, beschrieben.
Wasserabsorbierende Schäume auf Basis von vernetzten Säuregruppen enthaltenden Monomeren sind bekannt, beispielsweise aus EP 0 858 478 B1 , WO 97/31971 A1 , WO 99/44648 A1 und WO 00/52087 A1. Sie werden beispielsweise durch Schäumen
20 einer polymerisierbaren wässrigen Mischung, die zu mindestens 50 Mol-% neutralisierte, Säuregruppen enthaltende ethylenisch ungesättigte Monomere, Vernetzer und mindestens ein Tensid enthalten, und anschließendes Polymerisieren der geschäumten Mischung hergestellt. Das Schäumen der polymerisierbaren Mischung kann durch Dispergieren von feinen Blasen eines gegenüber Radikalen inerten Gases oder durch
25 Lösen eines solchen Gases unter erhöhtem Druck in der polymerisierbaren Mischung und Entspannen der Mischung erfolgen. Die Schäume werden beispielsweise in Hygieneartikeln zur Akquisition, Distribution und Speicherung von Körperflüssigkeiten verwendet.
30 Aufgabe der vorliegenden Erfindung war die Bereitstellung wasserabsorbierender Polymerpartikel mit verbessertem Eigenschaftsprofil, wie einer hohen Flüssigkeitsweiterleitung (SFC) und insbesondere einer hohen Quellgeschwindigkeit (FSR).
Gelöst wurde die Aufgabe durch ein Verfahren zur Herstellung wasserabsorbierender 35 Polymerpartikel durch Polymerisation einer aufgeschäumten wässrigen Monomerlösung oder -Suspension, enthaltend a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zu 25 bis 95 mol-% neutralisiert ist,
40 b) mindestens einen Vernetzer,
c) mindestens einen Initiator,
d) mindestens ein Tensid,
optional ein oder mehrere mit den unter a) genannten Monomeren copolym sierbare ethylenisch ungesättigte Monomere,
optional einen Lösevermittler und
optional Verdicker, Schaumstabilisatoren, Polymerisationsregler, Füllstoffe, Fasern und/oder Zellkeimbildner, wobei die Monomerlösung oder -Suspension zu einem polymeren Schaum polymeri- siert und getrocknet wird, dadurch gekennzeichnet, dass der polymere Schaum anschließend gemahlen und klassiert wird. Die erhaltenen wasserabsorbierenden Poly- merpartikel sind üblicherweise wasserunlöslich.
Die Monomeren a) sind vorzugsweise wasserlöslich, d.h. die Löslichkeit in Wasser bei 23°C beträgt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Wasser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz beson- ders bevorzugt mindestens 35 g/100 g Wasser.
Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
Weitere geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Sulfon- säuren, wie Styrolsulfonsäure und 2-Acrylamido-2-methylpropansulfonsäure (AMPS).
Verunreinigungen können einen erheblichen Einfluss auf die Polymerisation haben. Daher sollten die eingesetzten Rohstoffe eine möglichst hohe Reinheit aufweisen. Es ist daher oft vorteilhaft die Monomeren a) speziell zu reinigen. Geeignete Reinigungsverfahren werden beispielsweise in der WO 2002/055469 A1 , der WO 2003/078378 A1 und der WO 2004/035514 A1 beschrieben. Ein geeignetes Monomer a) ist beispielsweise eine gemäß WO 2004/035514 A1 gereinigte Acrylsäure mit 99,8460 Gew.-% Acrylsäure, 0,0950 Gew.-% Essigsäure, 0,0332 Gew.-% Wasser, 0,0203 Gew.-% Propionsäure, 0,0001 Gew.-% Furfurale, 0,0001 Gew.-% Maleinsäureanhydrid,
0,0003 Gew.-% Diacrylsäure und 0,0050 Gew.-% Hydrochinonmonomethylether.
Die Menge an Monomer a) beträgt vorzugsweise 20 bis 90 Gew.-%, besonders bevor- zugt 30 bis 85 Gew.-%, ganz besonders bevorzugt 35 bis 75 Gew.-%, jeweils bezogen auf das unneutralisierte Monomer a) und auf die Monomerlösung oder -Suspension. Bezogen auf das unneutralisierte Monomer a) bedeutet im Rahmen dieser Erfindung, dass für die Berechnung der Anteil des Monomeren a) vor der Neutralisation verwendet wird, d.h. der Beitrag der Neutralisation bleibt unberücksichtigt.
Die Säuregruppen der Monomere a) sind zu 25 bis 95 mol-%, vorzugsweise zu 40 bis 85 mol-%, bevorzugt zu 50 bis 80 mol-%, besonders bevorzugt zu 55 bis 75 mol-%,
neutralisiert, wobei die üblichen Neutralisationsmittel verwendet werden können, beispielsweise Alkalimetallhydroxide, Alkalimetalloxide, Alkalimetallcarbonate oder Alkali- metallhydrogencarbonate sowie deren Mischungen. Die Neutralisation kann jedoch auch mit Ammoniak, Aminen oder Alkanolaminen, wie Ethanolamin, Diethanolamin oder Triethanolamin, vorgenommen werden.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden mindestens 50 mol-%, vorzugsweise mindestens 75 mol-%, besonders bevorzugt mindestens 90 mol-%, ganz besonders bevorzugt mindestens 95 mol-%, der neutralisierten Mono- mere a) mittels einer anorganischen Base, vorzugsweise Kaliumkarbonat, Natriumkarbonat oder Natriumhydroxid, neutralisiert wurden.
Ein hoher Neutralisationsgrad und ein hoher Anteil mit einer anorganischen Base neutralisierter Säuregruppen vermindert die Flexibilität der erhaltenen polymeren Schäume und erleichtert die anschließende Mahlung.
Der Anteil an Acrylsäure und/oder deren Salzen an der Gesamtmenge der Monomeren a) beträgt vorzugsweise mindestens 50 mol-%, besonders bevorzugt mindestens 90 mol-%, ganz besonders bevorzugt mindestens 95 mol-%.
Die Monomere a) enthalten üblicherweise Polymerisationsinhibitoren, vorzugsweise Hydrochinonhalbether, als Lagerstabilisator.
Die Monomerlösung enthält vorzugsweise bis zu 250 Gew.-ppm, bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindesten 10 Gew.-ppm, besonders bevorzugt mindesten 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf das unneutralisierte Monomer a). Beispielsweise kann zur Herstellung der Monomerlösung ein ethylenisch ungesättigtes, säuregruppentragendes Monomer mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden.
Bevorzugte Hydrochinonhalbether sind Hydrochinonmonomethylether (MEHQ) und/oder alpha-Tocopherol (Vitamin E). Geeignete Vernetzer b) sind Verbindungen mit mindestens zwei zur Vernetzung geeigneten Gruppen. Derartige Gruppen sind beispielsweise ethylenisch ungesättigte Gruppen, die in die Polymerkette radikalisch einpolymerisiert werden können, und funktionelle Gruppen, die mit den Säuregruppen des Monomeren a) kovalente Bindungen ausbilden können. Weiterhin sind auch polyvalente Metallsalze, die mit mindestens zwei Säuregruppen des Monomeren a) koordinative Bindungen ausbilden können, als Vernetzer b) geeignet.
Vernetzer b) sind vorzugsweise Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldi- acrylat, Polyethylenglykoldiacrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Trially- lamin, Tetraallylammoniumchlorid, Tetraallyloxyethan, wie in EP 0 530 438 A1 beschrieben, Di- und Triacrylate, wie in EP 0 547 847 A1 , EP 0 559 476 A1 , EP 0 632 068 A1 , WO 93/21237 A1 , WO 2003/104299 A1 , WO 2003/104300 A1 ,
WO 2003/104301 A1 und DE 103 31 450 A1 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE 103 31 456 A1 und DE 103 55 401 A1 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE 195 43 368 A1 , DE 196 46 484 A1 , WO 90/15830 A1 und WO 2002/032962 A2 beschrieben.
Bevorzugte Vernetzer b) sind Pentaerythrittriallylether, Tetraalloxyethan, Methylenbis- methacrylamid, 15-fach ethoxiliertes Trimethylolpropantriacrylat, Polyethylenglykoldiacrylat , Trimethylolpropantriacrylat und Triallylamin.
Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine, wie sie beispielsweise in WO 2003/104301 A1 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1 - bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins, insbesondere das Triacrylat des 3-fach ethoxylierten Glyzerins .
Die Menge an Vernetzer b) beträgt vorzugsweise 1 bis 10 Gew.-%, besonders bevorzugt 2 bis 7 Gew.-%, ganz besonders bevorzugt 3 bis 5 Gew.-%, jeweils bezogen auf das unneutralisierte Monomer a). Mit steigendem Vernetzergehalt sinkt die Zentrifu- genretentionskapazität (CRC) und die Absorption unter einem Druck von 21 ,0 g/cm2 (AUL0.3psi) durchläuft ein Maximum.
Als Initiatoren c) können sämtliche unter den Polymerisationsbedingungen in Radikale erzeugende Verbindungen eingesetzt werden, beispielsweise thermische Initiatoren, Redox-Initiatoren, Photoinitiatoren.
Thermische Initiatoren sind beispielsweise Peroxide, Hydroperoxide, Wasserstoffperoxid, Persulfate und Azoinitiatoren. Geeignete Azoinitiatoren sind beispielsweise 2,2'-Azobis-(2-amidinopropan)dihydrochlorid, 2,2'-Azobis-(N,N-dimethylen)isobutyr- amidin-dihydrochlorid, 2-(Carbamoylazo)isobutyronitril, 2,2'-Azobis[2-(2'-imidazolin-2- yl)propan]dihydrochlorid und 4,4'-Azobis-(4-cyanovaleriansäure).
Photoinitiatoren sind beispielsweise oc-Spalter, H-abstrahierende Systeme und Azide. Geeignete oc-Spalter bzw. H-abstrahierende Systeme sind beispielsweise Benzophe- non-Derivate, wie Michlers-Keton, Phenanthren-Derivate, Fluoren-Derivate, Anthrachi- non-Derivate, Thioxanton-Derivate, Cumarin-Derivate, Benzoinether und deren Deriva- te, Azostarter, wie die oben genannten Radikalbildner, substituierte Hexaarylbisimida- zole oder Acylphosphinoxide. Geeignete Azide sind beispielsweise 2-(N,N-Dimethyl- amino)-ethyl-4-azidocinnamat, 2-(N,N-Dimethyl-amino)-ethyl-4-azidonaphthylketon, 2- (N,N-Dimethylamino)-ethyl-4-azidobenzoat, 5-Azido-1 -naphthyl-2'-(N,N-dimethyl- amino)ethylsulfon, N-(4-Sulfonylazidophenyl)maleinimid, N-Acetyl-4-sulfonylazidoanilin, 4-Sulfonylazidoanilin, 4-Azidoanilin, 4-Azidophenacylbromid, p-Azidobenzoesäure,
2,6-Bis(p-azidobenzyliden)cyclohexanon und 2,6-Bis-(p-azido-benzyliden)-4-methylcy- clohexanon.
Die Initiatoren c) werden in üblichen Mengen eingesetzt, vorzugsweise mindestens 0,01 mol-%, besonders bevorzugt mindestens 0,05 mol-%, ganz besonders bevorzugt mindestens 1 mol-%, sowie üblicherweise weniger als 5 mol-%, vorzugsweise weniger als 2 mol-%, bezogen auf die Monomere a).
Die Tenside d) sind für die Herstellung und die Stabilisierung der aufgeschäumten Mo- nomerlösung oder -Suspension von entscheidender Bedeutung. Man kann anionische, kationische oder nichtionische Tenside oder Tensidmischungen verwenden, die miteinander verträglich sind. Man kann niedermolekulare oder auch polymere Tenside einsetzen, wobei sich Kombinationen unterschiedlicher oder auch gleichartiger Typen von Tensiden als vorteilhaft herausgestellt haben. Verwendbare nichtionische Tenside sind beispielsweise Additionsprodukte von Alkylenoxiden, insbesondere Ethylenoxid, Propylenoxid und/oder Butylenoxid an Alkohole, Amine, Phenole, Naphthole oder Carbonsäuren. Vorteilhaft setzt man als Tenside Additionsprodukte von Ethylenoxid und/oder Propylenoxid an mindestens 10 C-Atome enthaltende Alkohole ein, wobei die Additionsprodukte pro Mol Alkohol 3 bis 200 Mol Ethylenoxid und/oder Propylenoxid angelagert enthalten. Die Additionsprodukte enthalten die Alkylenoxid-Einheiten in Form von Blöcken oder in statistischer Verteilung. Beispiele für einsetzbare nichtionische Tenside sind die Additionsprodukte von 7 Mol Ethylenoxid an 1 Mol Talgfettalkohol, Umsetzungsprodukte von 9 Mol Ethylenoxid mit 1 Mol Talgfettalkohol und Additionsprodukte von 80 Mol Ethylenoxid an 1 Mol Talgfettalkohol. Weitere verwendbare handelsübliche nichtionische Tenside bestehen aus Umsetzungsprodukten von Oxoal- koholen oder Ziegler-Alkoholen mit 5 bis 12 Mol Ethylenoxid pro Mol Alkohol, insbesondere mit 7 Mol Ethylenoxid. Weitere verwendbare handelsübliche nichtionische Tenside werden durch Ethoxylierung von Rizinusöl erhalten. Pro Mol Rizinusöl werden beispielsweise 12 bis 80 Mol Ethylenoxid angelagert. Weitere einsetzbare handelsübli- che Produkte sind beispielsweise die Umsetzungsprodukte von 18 Mol Ethylenoxid mit 1 Mol Talgfettalkohol, die Additionsprodukte von 10 Mol Ethylenoxid an 1 Mol eines Ci3/Ci5-Oxoalkohols, oder die Umsetzungsprodukte von 7 bis 8 Mol Ethylenoxid an 1
Mol eines Ci3/Ci5-Oxoalkohols. Weitere geeignete nichtionische Tenside sind Pheno- lalkoxylate, wie beispielsweise p-tert.-Butylphenol, das mit 9 Mol Ethylenoxid umgesetzt ist, oder Methylether von Umsetzungsprodukten aus 1 Mol eines C12- bis C18-AI- kohols und 7,5 Mol Ethylenoxid.
Die oben beschriebenen nichtionischen Tenside können beispielsweise durch Veresterung mit Schwefelsäure in die entsprechenden Schwefelsäurehalbester überführt werden. Die Schwefelsäurehalbester werden in Form der Alkalimetall- oder Ammoniumsalze als anionische Tenside eingesetzt. Als anionische Tenside eignen sich beispiels- weise Alkalimetall- oder Ammoniumsalze von Schwefelsäurehalbestern von Additionsprodukten von Ethylenoxid und/oder Propylenoxid an Fettalkohole, Alkalimetall- oder Ammoniumsalze von Alkylbenzolsulfonsäure oder von Alkylphenolethersulfaten. Produkte der genannten Art sind im Handel erhältlich. Beispielsweise sind das Natriumsalz eines Schwefelsäurehalbesters eines mit 106 Mol Ethylenoxid umgesetzten C13/C15- Oxoalkohols, das Triethanolaminsalz von Dodecylbenzolsulfonsäure, das Natriumsalz von Alkylphenolethersulfaten und das Natriumsalz des Schwefelsäurehalbesters eines Umsetzungsprodukts von 106 Mol Ethylenoxid mit 1 Mol Talgfettalkohol handelsübliche einsetzbare anionische Tenside. Weitere geeignete anionische Tenside sind Schwefelsäurehalbester von Ci3/Ci5-Oxoalkoholen, Paraffinsulfonsäuren, wie Cis-Alkylsulfonat, alkylsubstituierte Benzolsulfonsäuren und alkylsubstituierte Naphthalinsulfonsäuren wie Dodecylbenzolsulfonsäure und Di-n-butylnaphthalinsulfonsäure, sowie Fettalkoholphosphate, wie Ci5/Ci8-Fettalkoholphosphat. Die polymerisierbare wässrige Mischung kann Kombinationen aus einem nichtionischen Tensid und einem anionischen Tensid oder Kombinationen aus nichtionischen Tensiden oder Kombinationen aus anionischen Tensiden enthalten. Auch kationische Tenside sind geeignet. Beispiele hierfür sind die mit Dimethylsulfat quaternierten Umsetzungsprodukte von 6,5 Mol Ethylenoxid mit 1 Mol Oleylamin, Distearyldimethylammoniumchlorid, Lauryltrimethylammoniumchlorid, Cetylpyridiniumbromid und mit Dimethylsulfat quaternierter Stearinsäuretriethanolami- nester, der bevorzugt als kationisches Tensid eingesetzt wird.
Der Tensidgehalt, bezogen auf das unneutralisierte Monomer a) beträgt vorzugsweise 0,01 bis 10 Gew.-%, besonders bevorzugt 0,1 bis 5 Gew.-%, ganz besonders bevorzugt 0,5 bis 3 Gew.-%. Mit den ethylenisch ungesättigten, säuregruppentragenden Monomeren a) copolymeri- sierbare ethylenisch ungesättigte Monomere e) sind beispielsweise Acrylamid, Methac- rylamid, Hydroxyethylacrylat, Hydroxyethylmethacrylat, Dimethylaminoethylmethacry- lat, Dimethylaminoethylacrylat, Dimethylaminopropylacrylat, Diethylaminopropylacrylat, Dimethylaminoethylmethacrylat, Diethylaminoethylmethacrylat.
Lösevermittler f) sind mit Wasser mischbare organische Lösemittel, beispielsweise Dimethylsulfoxid, Dimethylformamid, N-Methylpyrrolidon, einwertige Alkohole, Glykole,
Polyethylenglykole bzw. davon abgeleitete Monoether, wobei die Monoether keine Doppelbindungen im Molekül enthalten. Geeignete Ether sind Methylglykol, Butylglykol, Butyldiglykol, Methyldiglykol, Butyltriglykol, 3-Ethoxy-1 -propanol und Glyzerinmonome- thylether.
Falls Lösevermittler f) eingesetzt werden, beträgt ihr Gehalt in der Monomerlösung oder -Suspension vorzugsweise bis zu 50 Gew.-%, besonders bevorzugt 1 bis
25 Gew.-%, ganz besonders bevorzugt 5 bis 10 Gew.-%. Die Monomerlösung oder -Suspension kann Verdicker, Schaumstabilisatoren, Füllstoffe, Fasern und/oder Zellkeimbildner g) enthalten. Verdicker werden beispielsweise zur Optimierung der Schaumstruktur und zur Verbesserung der Schaumstabilität eingesetzt. Man erreicht damit, dass der Schaum während der Polymerisation nur geringfügig schrumpft. Als Verdickungsmittel kommen alle hierfür bekannten natürlichen und synthetischen Polymeren in Betracht, die die Viskosität eines wässrigen Systems stark erhöhen und nicht mit den Aminogruppen der basischen Polymeren reagieren. Hierbei kann es sich um wasserquellbare oder wasserlösliche synthetische und natürliche Polymere handeln. Eine ausführliche Übersicht über Verdicker findet man beispielsweise in den Veröffentlichungen von R.Y. Lochhead und W.R. Fron, Cosmetics & Toiletries, 108, 95-135 (Mai 1993) und M.T. Clarke, "Rheological Additives" in D. Laba (ed.)
"Rheological Properties of Cosmetics and Toiletries", Cosmetic Science and Technology Series, Vol. 13, Marcel Dekker lnc, New York 1993.
Als Verdicker in Betracht kommende wasserquellbare oder wasserlösliche synthetische Polymere sind beispielsweise hochmolekulare Polyethylenglykole oder Copolymerisate aus Ethylenglykol und Propylenglykol sowie hochmolekulare Polysaccharide, wie Stärke, Guarkernmehl, Johannisbrotkernmehl oder Derivate von Naturstoffen, wie Car- boxymethylcellulose, Hydroxyethylcellulose, Hydroxymethylcellulose, Hydroxypropyl- cellulose und Cellulosemischether. Eine weitere Gruppe von Verdickern sind wasser- unlösliche Produkte, wie feinteiliges Siliciumdioxid, Zeolithe, Bentonit, Cellulosepulver oder andere feinteilige Pulver von vernetzten Polymerisaten. Die Monomerlösung oder -Suspension kann die Verdicker in Mengen bis zu 30 Gew.-% enthalten. Falls solche Verdickungsmittel überhaupt eingesetzt werden, sind sie in Mengen von 0,1 bis 10 Gew.-%, vorzugsweise 0,5 bis 20 Gew.-% in der Monomerlösung oder -Suspension enthalten.
Um die Schaumstruktur zu optimieren, kann man wahlweise Kohlenwasserstoffe mit mindestens 5 C-Atomen im Molekül zu der wässrigen Reaktionsmischung zusetzen. Geeignete Kohlenwasserstoffe sind beispielsweise Pentan, Cyclopentan, Hexan, Cy- clohexan, Heptan, Octan, Isooctan, Decan und Dodecan. Die in Betracht kommenden aliphatischen Kohlenwasserstoffe können geradkettig, verzweigt oder zyklisch sein und haben eine Siedetemperatur, die oberhalb der Temperatur der wässrigen Mischung
während des Schäumens liegt. Die aliphatischen Kohlenwasserstoffe erhöhen die Standzeit der noch nicht polymerisierten geschäumten wässrigen Reaktionsmischung. Dadurch wird das Handling der noch nicht polymerisierten Schäume erleichtert und die Prozesssicherheit erhöht. Die Kohlenwasserstoffe wirken beispielsweise als Zellkeim- bildner und stabilisieren gleichzeitig den bereits gebildeten Schaum. Darüber hinaus können sie beim Polymerisieren der Monomerlösung oder -Suspension ein weiteres Schäumen bewirken. Sie können dann auch die Funktion eines Treibmittels haben. Anstelle von Kohlenwasserstoffen oder in Mischung damit kann man wahlweise auch chlorierte oder fluorierte Kohlenwasserstoffe als Zellkeimbildner und/oder Schaumsta- bilisator einsetzen, wie Dichlormethan, Trichlormethan, 1 ,2-Dichlorethan, Trichlorfluor- methan oder 1 ,1 ,2-Trichlortrifluorethan. Falls Kohlenwasserstoffe eingesetzt werden, verwendet man sie beispielsweise in Mengen von 0,1 bis 20 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-%, bezogen auf die Monomerlösung oder -Suspension. Um die Eigenschaften der Schaumstoffe zu modifizieren, kann man einen oder mehrere Füllstoffe zusetzen, beispielsweise Kreide, Talkum, Ton („Gay"), Titandioxid, Magnesiumoxid, Aluminiumoxid, Fällungskieselsäuren in hydrophilen oder hydrophoben Modifikationen, Dolomit und/oder Kalziumsulfat. Die Füllstoffe können in Mengen bis zu 30 Gew.-% in der Monomerlösung oder -Suspension enthalten sein.
Die oben beschriebenen wässrigen Monomerlösungen oder -Suspensionen werden zunächst geschäumt. Man kann beispielsweise ein inertes Gas, wie Stickstoff, Kohlendioxid oder Luft, unter einem Druck von beispielsweise 2 bis 400 bar in der wässrigen Monomerlösung oder -Suspension lösen und sie anschließend auf Atmosphärendruck entspannen. Beim Entspannen aus mindestens einer Düse entsteht ein fließfähiger Monomerschaum. Da die Gaslöslichkeit mit fallender Temperatur zunimmt, sollte die Gassättigung und das anschließende Schäumen bei möglichst niedriger Temperatur durchgeführt werden, wobei unerwünschte Ausfällungen vermieden werden sollten. Man kann die wässrigen Monomerlösungen oder -Suspensionen auch nach einer ande- ren Methode schäumen, indem man darin feine Blasen eines inerten Gases disper- giert. Das Schäumen der wässrigen Monomerlösungen oder -Suspensionen kann im Labor beispielsweise dadurch erfolgen, dass man die wässrige Monomerlösung oder - Suspension in einer Küchenmaschine, die mit einem Schneebesen ausgerüstet ist, schäumt. Weiterhin ist es möglich die wässrigen Monomerlösungen oder - Suspensionen mit Kohlendioxid zu Schäumen, indem zur Neutralisation Karbonate o- der Hydrogenkarbonate eingesetzt werden.
Die Schaumerzeugung wird vorzugsweise in einer Inertgasatmosphäre und mit Inertgasen durchgeführt, beispielsweise durch Versetzen mit Stickstoff oder Edelgasen un- ter Normaldruck oder erhöhtem Druck, beispielsweise bis zu 25 bar und anschließendes Entspannen. Die Konsistenz der Monomerschäume, die Größe der Gasblasen und die Verteilung der Gasblasen im Monomerschaum kann beispielsweise durch die Aus-
wähl der Tenside d), Lösevermittler f), Schaumstabilisatoren, Zellkeimbildner, Verdickungsmittel und Füllstoffe g) in einem weiten Bereich variiert werden. Dadurch kann man die Dichte, den Grad der Offenzeiligkeit und die Wandstärke des Monomer- schaums leicht einstellen. Die wässrige Monomerlösung oder -Suspension wird vor- zugsweise bei Temperaturen geschäumt, die unterhalb des Siedepunkts ihrer Bestandteile liegen, beispielsweise bei Umgebungstemperatur bis zu 100°C, vorzugsweise bei 0 bis 50°C, besonders bevorzugt bei 5 bis 20°C. Man kann jedoch auch bei Temperaturen oberhalb des Siedepunkts der Komponente mit dem niedrigsten Siedepunkt arbeiten, indem man die wässrige Monomerlösung oder -Suspension in einem druckdicht verschlossenen Behälter schäumt. Man erhält Monomerschäume, die fließfähig und über einen längeren Zeitraum stabil sind. Die Dichte der Monomerschäume beträgt bei einer Temperatur von 20°C beispielsweise 0,01 bis 0,9 g/cm3.
Der erhaltene Monomerschaum kann auf einer geeigneten Unterlage polymerisiert werden. Die Polymerisation wird in Gegenwart üblicher Radikale bildender Initiatoren c) durchgeführt. Die Radikale können beispielsweise durch Erwärmen (thermische Polymerisation) oder durch Bestrahlung mit Licht einer geeigneten Wellenlänge (UV- Polymerisation) erzeugt werden. Polymere Schäume mit einer Schichtdicke von bis zu etwa 5 Millimeter stellt man beispielsweise durch einseitiges oder beidseitiges Erwärmen oder insbesondere durch einseitiges oder beidseitiges Bestrahlen der Monomerschäume her. Falls dickere po- lymere Schäume hergestellt werden sollen, beispielsweise polymere Schäume mit Dicken von mehreren Zentimetern, ist die Erwärmung des Monomerschaums mit Hilfe von Mikrowellen besonders vorteilhaft, weil auf diesem Wege eine relativ gleichmäßige Erwärmung erreicht werden kann. Mit zunehmender Schichtdicke nimmt aber der Anteil an nicht umgesetzten Monomer a) und Vernetzer b) im erhaltenen polymeren Schaum zu. Die thermische Polymerisation erfolgt dabei beispielsweise bei Temperaturen von 20 bis 180°C, vorzugsweise in dem Bereich von 40°C bis 160°C, insbesondere bei Temperaturen von 65 bis 140°C. Bei dickeren polymeren Schäumen kann der Monomerschaum beidflächig erwärmt und/oder bestrahlt werden, beispielsweise mit Hilfe einer Kontaktheizung oder durch Bestrahlung oder in einem Trockenschrank. Die erhaltenen polymeren Schäume sind offenzellig. Der Anteil an offenen Zellen beträgt beispielsweise mindestens 80%, vorzugsweise liegt er oberhalb von 90%. Besonders bevorzugt sind polymere Schäume mit einem offenzelligen Anteil von 100%. Der Anteil an offenen Zellen im polymeren Schaum wird beispielsweise mit Hilfe der Rasterelektronenmikroskopie (Scanning Electron Microscopy) bestimmt.
Nach dem Polymerisieren des Monomerschaums oder während des Polymerisierens erfolgt die Trocknung des polymeren Schaums. Hierbei werden Wasser und andere flüchtige Bestandteile entfernt. Beispiele für geeignete Trocknungsverfahren sind thermische Konvektionstrocknung, wie Umlufttrocknung, thermische Kontakttrocknung, wie
Walzentrocknung, Strahlungstrocknung, wie Infrarottrocknung, dielektrische Trocknung, wie Mikrowellentrocknung, und Gefriertrocknung.
Die Trocknungstemperaturen liegen üblicherweise im Bereich 50 bis 250°C, vorzugs- weise 100 bis 220°C, besonders bevorzugt 120 bis 210°C, ganz besonders bevorzugt 150 bis 200°C. Die bevorzugte Verweilzeit bei dieser Temperatur im Trockner beträgt vorzugsweise mindestens 10 Minuten, besonders bevorzugt mindestens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten, und üblicherweise höchstens 60 Minuten.
Um unerwünschte Zersetzungs- und Vernetzungsreaktionen zu vermeiden, kann es vorteilhaft sein, die Trocknung bei reduziertem Druck, unter einer Schutzgasatmosphäre und/oder unter schonenden thermischen Bedingungen, bei denen die Produkttemperatur 120°C, bevorzugt 100°C, nicht überschreitet, durchzuführen. Ein besonders geeignetes Trocknungsverfahren stellt die (Vakuum)bandtrocknung dar.
Nach dem Trocknungsschritt enthält der polymere Schaum meistens weniger als 10 Gew.-% Wasser. Der Wassergehalt des polymeren Schaums kann jedoch durch Befeuchten mit Wasser oder Wasserdampf beliebig eingestellt werden.
Der getrocknete polymere Schaum wird hiernach gemahlen und klassiert, wobei zur Mahlung üblicherweise ein- oder mehrstufige Walzenstühle, Stiftmühlen, Hammermühlen oder Schwingmühlen eingesetzt werden können. In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird der getrocknete polymere Schaum mittels einer Schneidmühle vorgemahlen und anschließed mittels einer Pralltellermühle nachgemahlen.
Vorteilhaft wird ein vorgetrockneter polymerer Schaum mit einem Wassergehalt von 5 bis 30 Gew.-%, besonders bevorzugt von 8 bis 25 Gew.-%, ganz besonders bevorzugt von 10 bis 20 Gew.-%, gemahlen und auf den gewünschten Endwassergehalt nachgetrocknet. Die Mahlung eines nur vorgetrockneten polymeren Schaums führt zu weniger unerwünscht kleinen Polymerpartikeln.
Die wasserabsorbierenden Polymerpartikel werden unter Verwendung entsprechender Siebe auf eine Partikelgröße im Bereich von vorzugsweise 100 bis 1 .000 μηη, besonders bevorzugt 150 bis 850 μηη, ganz besonders bevorzugt von 150 bis 600 μηη, abgesiebt.
Die mittlere Partikelgröße der als Produktfraktion abgetrennten Polymerpartikel beträgt vorzugsweise mindestens 200 μηη, besonders bevorzugt von 250 bis 600 μηη, ganz besonders von 300 bis 500 μηη. Die mittlere Partikelgröße der Produktfraktion kann mittels der von der EDANA empfohlenen Testmethode Nr. WSP 220.2-05 "Partikel size
distribution" ermittelt werden, wobei die Massenanteile der Siebfraktionen kumuliert aufgetragen werden und die mittlere Partikelgröße graphisch bestimmt wird. Die mittlere Partikelgröße ist hierbei der Wert der Maschenweite, der sich für kumulierte 50 Gew.-% ergibt.
Der Anteil an Partikeln mit einer Partikelgröße von mindestens 150 μηη beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%. Polymerpartikel mit zu niedriger Partikelgröße senken die Permeabilität (SFC). Daher sollte der Anteil zu kleiner Polymerpartikel (Unterkorn) niedrig sein.
Zu kleine Polymerpartikel werden daher üblicherweise abgetrennt und in das Verfahren rückgeführt. Die zu kleinen Polymerpartikel können vor oder während der Rückführung mit Wasser und/oder wässrigem Tensid angefeuchtet werden.
Es ist auch möglich in späteren Verfahrensschritten zu kleine Polymerpartikel abzutrennen, beispielsweise nach der Oberflächennachvernetzung oder einem anderen Beschichtungsschritt. In diesem Fall sind die rückgeführten zu kleinen Polymerpartikel oberflächennachvernetzt bzw. anderweitig beschichtet, beispielsweise mit pyrogener Kieselsäure.
Der Anteil an Partikeln mit einer Partikelgröße von höchstens 850 μηη, beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Der Anteil an Partikeln mit einer Partikelgröße von höchstens 710 μηη, beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%.
Der Anteil an Partikeln mit einer Partikelgröße von höchstens 600 μηη, beträgt vorzugsweise mindestens 90 Gew.-%, besonders bevorzugt mindesten 95 Gew.-%, ganz besonders bevorzugt mindestens 98 Gew.-%. Polymerpartikel mit zu großer Partikelgröße sind weniger mechanisch stabil. Daher sollte der Anteil zu großer Polymerpartikel ebenfalls niedrig sein.
Zu große Polymerpartikel werden daher üblicherweise abgetrennt und in die Mahlung des getrockneten Polymergeis rückgeführt.
Die Polymerpartikel können zur weiteren Verbesserung der Eigenschaften oberflächennachvernetzt werden. Geeignete Oberflächennachvernetzer sind Verbindungen,
die Gruppen enthalten, die mit mindestens zwei Carboxylatgruppen der Polymerpartikel kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise polyfunktionelle Amine, polyfunktionelle Amidoamine, polyfunktionelle Epoxide, wie in EP 0 083 022 A2, EP 0 543 303 A1 und EP 0 937 736 A2 beschrieben, di- oder poly- funktionelle Alkohole, wie in DE 33 14 019 A1 , DE 35 23 617 A1 und EP 0 450 922 A2 beschrieben, oder ß-Hydroxyalkylamide, wie in DE 102 04 938 A1 und US 6,239,230 beschrieben.
Des weiteren sind in DE 40 20 780 C1 zyklische Karbonate, in DE 198 07 502 A1 2-Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in DE 198 07 992 C1 Bis- und Poly-2-oxazolidinone, in DE 198 54 573 A1 2-Oxotetrahydro-1 ,3-oxazin und dessen Derivate, in DE 198 54 574 A1 N-Acyl-2-Oxazolidone, in
DE 102 04 937 A1 zyklische Harnstoffe, in DE 103 34 584 A1 bizyklische Amidacetale, in EP 1 199 327 A2 Oxetane und zyklische Harnstoffe und in WO 2003/31482 A1 Morpholin-2,3-dion und dessen Derivate als geeignete Oberflachennachvernetzer beschrieben.
Bevorzuge Oberflachennachvernetzer sind Ethylenkarbonat, Ethylenglykoldiglycidy- lether, Umsetzungsprodukte von Polyamiden mit Epichlorhydrin und Gemische aus Propylenglykol und 1 ,4-Butandiol.
Ganz besonders bevorzugte Oberflachennachvernetzer sind 2-Hydroxyethyloxazolidin- 2-on, Oxazolidin-2-οη und 1 ,3-Propandiol. Weiterhin können auch Oberflachennachvernetzer eingesetzt werden, die zusätzliche polymerisierbare ethylenisch ungesättigte Gruppen enthalten, wie in DE 37 13 601 A1 beschrieben
Die Menge an Oberflächennachvernetzer beträgt vorzugsweise 0,001 bis 2 Gew.-%, besonders bevorzugt 0,02 bis 1 Gew.-%, ganz besonders bevorzugt 0,05 bis 0,2 Gew.- %, jeweils bezogen auf die Polymerpartikel.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden vor, während oder nach der Oberflächennachvernetzung zusätzlich zu den Oberflächennach- vernetzern polyvalente Kationen auf die Partikeloberfläche aufgebracht.
Die im erfindungsgemäßen Verfahren einsetzbaren polyvalenten Kationen sind beispielsweise zweiwertige Kationen, wie die Kationen von Zink, Magnesium, Kalzium, Eisen und Strontium, dreiwertige Kationen, wie die Kationen von Aluminium, Eisen, Chrom, Seltenerden und Mangan, vierwertige Kationen, wie die Kationen von Titan und Zirkonium. Als Gegenion sind Chlorid, Bromid, Sulfat, Hydrogensulfat, Carbonat, Hydrogencarbonat, Nitrat, Phosphat, Hydrogenphosphat, Dihydrogenphosphat und
Carboxylat, wie Acetat und Lactat, möglich. Aluminiumsulfat ist bevorzugt. Außer Metallsalzen können auch Polyamine als polyvalente Kationen eingesetzt werden.
Die Einsatzmenge an polyvalentem Kation beträgt beispielsweise 0,001 bis 1 ,5 Gew.- %, vorzugsweise 0,005 bis 1 Gew.-%, besonders bevorzugt 0,02 bis 0,8 Gew.-%. jeweils bezogen auf die Polymerpartikel.
Die Oberflachennachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Oberflachennachvernetzers auf die getrockneten Polymerpartikel aufgesprüht wird. Im Anschluss an das Aufsprühen werden die mit der Oberflächennachvernetzer beschichteten Polymerpartikel thermisch getrocknet, wobei die Oberflächennachvernet- zungsreaktion sowohl vor als auch während der Trocknung stattfinden kann.
Das Aufsprühen einer Lösung des Oberflächennachvernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Scheibenmischer und Schaufelmischer, durchgeführt werden. Besonders bevorzugt sind Horizontalmischer, wie Schaufelmischer, ganz besonders bevorzugt sind Vertikalmischer. Die Unterscheidung in Horizontalmischer und Vertikalmischer erfolgt über die Lagerung der Mischwelle, d.h. Horizontalmischer haben eine horizontal gelagerte Mischwelle und Vertikalmischer haben eine vertikal gelagerte Mischwelle. Geeignete Mischer sind beispielsweise Horizontale Pflugschar® Mischer (Gebr. Lödige Maschinenbau GmbH; Paderborn; DE), Vrieco-Nauta Continuous Mixer (Hosokawa Micron BV; Doetinchem; NL), Processall Mixmill Mixer (Processall Incorporated; Cincinnati; US) und Schugi Flexomix® (Hosokawa Micron BV; Doetinchem; NL). Es ist aber auch möglich die O- berflächennachvernetzerlösung in einem Wirbelbett aufzusprühen.
Die Oberflächennachvernetzer werden typischerweise als wässrige Lösung eingesetzt. Über den Gehalt an nichtwässrigem Lösungsmittel bzw. Gesamtlösungsmittelmenge kann die Eindringtiefe des Oberflächennachvernetzers in die Polymerpartikel einge- stellt werden.
Wird ausschließlich Wasser als Lösungsmittel verwendet, so wird vorteilhaft ein Tensid zugesetzt. Dadurch wird das Benetzungsverhalten verbessert und die Verklumpungs- neigung vermindert. Vorzugsweise werden aber Lösungsmittelgemische eingesetzt, beispielsweise Isopropanol/Wasser, 1 ,3-Propandiol/Wasser und Propylengly- kol/Wasser, wobei das Mischungsmassenverhältnis vorzugsweise von 20:80 bis 40:60 beträgt.
Die thermische Trocknung wird vorzugsweise in Kontakttrocknern, besonders bevor- zugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Hosokawa Bepex® Horizontal Paddle Dryer (Hosokawa Micron GmbH; Leingarten; DE), Hosokawa Bepex® Disc Dryer (Hosokawa
Micron GmbH; Leingarten; DE) und Nara Paddle Dryer (NARA Machinery Europe; Frechen; DE). Überdies können auch Wirbelschichttrockner eingesetzt werden.
Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie beispielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Besonders vorteilhaft wird in einem Wirbelschichttrockner gemischt und getrocknet.
Bevorzugte Trocknungstemperaturen liegen im Bereich 100 bis 250°C, bevorzugt 120 bis 220°C, besonders bevorzugt 130 bis 210°C, ganz besonders bevorzugt 150 bis 200°C. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt vorzugsweise mindestens 10 Minuten, besonders bevorzugt mindestens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten, und üblicherweise höchstens 60 Minuten.
Anschließend können die oberflächennachvernetzten Polymerpartikel erneut klassiert werden, wobei zu kleine und/oder zu große Polymerpartikel abgetrennt und in das Verfahren rückgeführt werden. In einer bevorzugten Ausführungsform wird die Oberflachennachvernetzung bereits auf der Stufe des polymeren Schaums durchgeführt, wobei die für die Polymerpartikel genannten Mengen und Temperaturen für den polymeren Schaum entsprechend gelten.
Weiterhin können die Polymerpartikel zur Verbesserung der Eigenschaften beschichtet oder nachbefeuchtet werden.
Die Nachbefeuchtung wird vorzugsweise bei 30 bis 80°C, besonders bevorzugt bei 35 bis 70°C, ganz besonders bevorzugt bei 40 bis 60°C, durchgeführt. Bei zu niedrigen Temperaturen neigen die Polymerpartikel zum Verklumpen und bei höheren Tempera- turen verdampft bereits merklich Wasser. Die zur Nachbefeuchtung eingesetzte Wassermenge beträgt vorzugsweise von 1 bis 10 Gew.-%, besonders bevorzugt von 2 bis 8 Gew.-%, ganz besonders bevorzugt von 3 bis 5 Gew.-%. Durch die Nachbefeuchtung wird die mechanische Stabilität erhöht und die Neigung zur statischen Aufladung vermindert.
Geeignete Beschichtungen zur Verbesserung der Quellgeschwindigkeit (FSR) sowie der Flüssigkeitsweiterleitung (SFC) sind beispielsweise anorganische inerte Substanzen, wie wasserunlösliche Metallsalze, organische Polymere, kationische Polymere sowie zwei- oder mehrwertige Metallkationen, wie Aluminiumsulfat und Aluminuimlak- tat. Geeignete Beschichtungen zur Staubbindung sind beispielsweise Polyole. Geeignete Beschichtungen gegen die unerwünschte Verbackungsneigung der Polymerpartikel sind beispielsweise pyrogene Kieselsäure, wie Aerosil® 200, und Tenside, wie
Span® 20. Geeignete Beschichtungen zur Verminderung des Gehaltes an nicht umgesetzten Monomeren (Restmonomere) sind beispielsweise Reduktionsmittel, wie die Salze der schwefeligen Säure, der unterphosphorigen Säure und/oder organischer Sulfinsäure. Als Reduktionsmittel wird aber vorzugsweise ein Gemisch aus dem Natri- umsalz der 2-Hydroxy-2-sulfinatoessigsäure, dem Dinatriumsalz der 2-Hydroxy-2-sul- fonatoessigsäure und Natriumhydrogensulfit eingesetzt. Derartige Gemische sind als Brüggolite® FF6 und Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn; DE) erhältlich. In einer bevorzugten Ausführungsform wird die Nachbefeuchtung und/oder die Be- schichtung bereits auf der Stufe des polymeren Schaums durchgeführt.
Ein weiterer Gegenstand der vorliegenden Erfindung sind die gemäß dem erfindungsgemäßen Verfahren aus aufgeschäumten Monomerlösungen oder -Suspensionen her- stellbaren wasserabsorbierenden Polymerpartikel.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen einen Feuchtegehalt von vorzugsweise 0 bis 15 Gew.-%, besonders bevorzugt 0,2 bis 10 Gew.-%, ganz besonders bevorzugt 0,5 bis 8 Gew.-%, auf, wobei der Wassergehalt gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 230.2-05 "Moisture content" bestimmt wird.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen eine Zentrifugenretentionskapazität (CRC) von typischerweise mindestens 10 g/g, vorzugsweise mindestens 15 g/g, bevorzugt mindestens 20 g/g, besonders bevorzugt mindestens 22 g/g, ganz besonders bevorzugt mindestens 25 g/g, auf. Die Zentrifugenretentionskapazität (CRC) der wasserabsorbierenden Polymerpartikel beträgt üblicherweise weniger als 40 g/g. Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der EDANA empfohlenen Testmethode
Nr. WSP 241.2-05 "Centrifuge retention capacity" bestimmt.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen eine Absorption unter einem Druck von 49,2 g/cm2 (AUL0.7psi) von typischerweise mindestens 10 g/g, vorzugsweise mindestens 13 g/g, bevorzugt mindestens 16 g/g, besonders bevorzugt mindestens 18 g/g, ganz besonders bevorzugt mindestens 20 g/g, auf. Die Absorption unter einem Druck von 49,2 g/cm2 (AUL0.7psi) der wasserabsorbierenden Polymerpartikel beträgt üblicherweise weniger als 30 g/g. Die Absorption unter einem Druck von 49,2 g/cm2 (AUL0.7psi) wird analog der von der EDANA empfohlenen Testmethode Nr. WSP 242.2-05 "Absorption under pressure" bestimmt, wobei statt eines Drucks von 21 ,0 g/cm2 ein Druck von 49,2 g/cm2 eingestellt wird.
Die gemäß dem erfindungsgemäßen Verfahren hergestellten wasserabsorbierenden Polymerpartikel weisen eine Flüssigkeitsweiterleitung (SFC) von typischerweise mindestens 5 x 10"7 cm3s/g, vorzugsweise mindestens 20 x 10-7 cm3s/g, besonders bevorzugt mindestens 35 x 10-7 cm3s/g, ganz besonders bevorzugt mindestens
50 x 10"7 cm3s/g, auf. Die Flüssigkeitsweiterleitung (SFC) der wasserabsorbierenden Polymerpartikel beträgt üblicherweise weniger als 200 x 10"7 cm3s/g.
Gemäß dem erfindungsgemäßen Verfahren können wasserabsorbierende Polymerpartikel einer hohen Flüssigkeitsweiterleitung (SFC) und einer hohen Quellgeschwindigkeit (FSR) hergestellt werden, insbesondere nimmt die Quellgeschwindigkeit (FSR) mit der Partikelgröße der erfindungsgemäßen wasserabsorbierenden Polymerpartikel zu.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation einer wässrigen Mono- merlösung oder -Suspension, enthaltend a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, das zu 25 bis 95 mol-% neutralisiert ist,
b) mindestens einen Vernetzer,
c) mindestens einen Initiator,
d) optional ein Tensid,
e) optional ein oder mehrere mit den unter a) genannten Monomeren copolymeri- sierbare ethylenisch ungesättigte Monomere,
f) optional einen Lösevermittler und
g) optional Verdicker, Schaumstabilisatoren, Polymerisationsregler, Füllstoffe, Fasern und/oder Zellkeimbildner, wobei die Monomerlösung oder -Suspension polymerisiert und getrocknet wird, dadurch gekennzeichnet, dass die Monomerlösung oder -Suspension erfindungsgemäße wasserabsorbierende Polymerpartikel auf Basis gemahlener polymerer Schäume enthält.
Die Bestandteile a) bis g) der Monomerlösung oder -Suspension haben dabei die weiter oben genannten Bedeutungen.
Die im erfindungsgemäßen Verfahren einzusetzenden erfindungsgemäßen wasserabsorbierenden Polymerpartikel auf Basis gemahlener polymerer Schäume weisen eine Partikelgröße von vorzugsweise weniger als 250 μηη, besonders bevorzugt weniger als 200 μηη, ganz besonders bevorzugt weniger als 150 μηη, auf.
Der Anteil der wasserabsorbierenden Polymerpartikel auf Basis gemahlener polymerer Schäume, bezogen auf das Monomer a), beträgt vorzugsweise von 0,1 bis 50 Gew.-%,
besonders bevorzugt von 1 bis 25 Gew.-%, ganz besonders bevorzugt von 5 bis 15 Gew.-%.
Der Zusatz der wasserabsorbierenden Polymerpartikel auf Basis gemahlener polyme- rer Schäume führt zu deutlich verbesserten Produkteigenschaften, insbesondere zu einer deutlich erhöhten Absorption unter einem Druck von 49,2 g/cm2 (AUL0.7psi).
Geeignete Reaktoren für die Polymerisation sind beispielsweise Knetreaktoren oder Bandreaktoren. Im Kneter wird das bei der Polymerisation einer wässrigen Monomer- lösung oder -Suspension entstehende Polymergel durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert, wie in WO 2001/038402 A1 beschrieben. Die Polymerisation auf dem Band wird beispielsweise in DE 38 25 366 A1 und
US 6,241 ,928 beschrieben. Bei der Polymerisation in einem Bandreaktor entsteht ein Polymergel, das in einem weiteren Verfahrensschritt zerkleinert werden muss, bei- spielsweise in einem Extruder oder Kneter. Die erhaltenen Polymergele können wie bereits oben beschrieben getrocknet, gemahlen und klassiert werden. Die so erhaltenen wasserabsorbierenden Polymerpartikel können wie ebenfalls bereits oben beschrieben anschließend Oberflächennachvernetzt, Beschichtet und/oder Nachbefeuchtet werden.
Ein weiterer Gegenstand der vorliegenden Erfindung sind gemäß dem erfindungsgemäßen Verfahren unter Verwendung gemahlener polymerer Schäume herstellbare wasserabsorbierende Polymerpartikel. Ein weiterer Gegenstand der vorliegenden Erfindung sind unter Verwendung gemahlener polymerer Schäume herstellbare Mischungen wasserabsorbierender Polymerpartikel.
Hierzu können die erfindungsgemäßen wasserabsorbierenden Polymerpartikel mit nicht erfindungsgemäßen Polymergelen und/oder nicht erfindungsgemäßen wasserabsorbierenden Polymerpartikeln gemischt werden. Die Art des Mischens unterliegt keiner Beschränkung.
Der Anteil der erfindungsgemäßen wasserabsorbierenden Polymerpartikel in der Mi- schung beträgt vorzugsweise von 0,1 bis 90 Gew.-%, besonders bevorzugt von 1 bis 50 Gew.-%, ganz besonders bevorzugt von 5 bis 25 Gew.-%.
Die erfindungsgemäßen Mischungen zeichnen sich durch eine überraschend hohe Flüssigkeitsweiterleitung (SFC) aus.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Hygieneartikel, die erfindungsgemäße wasserabsorbierende Polymerpartikel enthalten. Die Hygieneartikel
enthalten üblicherweise eine wasserundurchlässige Rückseite eine wasserdurchlässige Oberseite und dazuwischen einen absorbierenden Kern aus den erfindungsgemäßen Polymerpartikeln und Cellulosefasern. Der Anteil der erfindungsgemäßen Polymerpartikel im absorbierenden Kern beträgt vorzugsweise 20 bis 100 Gew.-%, bevor- zugt 40 bis 100 Gew.-%, ganz besonders bevorzugt 60 bis 100 Gew.-%.
Methoden:
Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstempera- tur von 23 ± 2 °C und einer relativen Luftfeuchte von 50 ± 10 % durchgeführt werden. Die wasserabsorbierenden Polymerpartikel werden vor der Messung gut durchmischt.
Flüssigkeitsweiterleitung (Saline Flow Conductivity) Die Flüssigkeitsweiterleitung (SFC) einer gequollenen Gelschicht unter Druckbelastung von 63,3 g/cm2 (0,9 psi) wird, wie in EP 0 640 330 A1 beschrieben, als Gel-Layer- Permeability einer gequollenen Gelschicht aus wasserabsorbierenden Polymerpartikeln bestimmt, wobei die in zuvor genannter Patentanmeldung auf Seite 19 und in Figur 8 beschriebene Apparatur dahingehend modifiziert wurde, dass die Glasfritte (40) nicht mehr verwendet wird, der Stempel (39) aus gleichem Kunststoffmaterial besteht wie der Zylinder (37) und jetzt über die gesamte Auflagefläche gleichmäßig verteilt 21 gleichgroße Bohrungen enthält. Die Vorgehensweise sowie Auswertung der Messung bleibt unverändert gegenüber EP 0 640 330 A1. Der Durchfluss wird automatisch er- fasst.
Die Flüssigkeitsweiterleitung (SFC) wird wie folgt berechnet:
SFC [cm3s/g] = (Fg(t=0)xL0)/(dxAxWP), wobei Fg(t=0) der Durchfluss an NaCI-Lösung in g/s ist, der anhand einer linearen
Regressionsanalyse der Daten Fg(t) der Durchflussbestimmungen durch Extrapolation gegen t=0 erhalten wird, L0 die Dicke der Gelschicht in cm, d die Dichte der NaCI- Lösung in g/cm3, A die Fläche der Gelschicht in cm2 und WP der hydrostatische Druck über der Gelschicht in dyn/cm2.
Anquellzeit (Vortex)
In ein 100 ml-Becherglas werden 50ml einer 0,9 gew.-%igen Kochsalzlösung vorgelegt und unter Rühren bei 600 Upm mittels eines Magnetrührers 2,00g wasserabsorbierende Polymerpartikel schnell so zugegeben, dass ein Klumpen vermieden wird. Es wird
die Zeit in Sekunden gemessen, bis der durch das Rühren entstehende Wirbel der Flüssigkeit geschlossen und eine glatte Oberfläche entstanden ist.
Quellgeschwindigkeit (Free Swell Rate)
Zur Bestimmung der Quellgeschwindigkeit (FSR) werden 1 ,00 g (= W1 ) wasserabsorbierende Polymerpartikel in ein 25 ml Becherglas eingewogen und gleichmäßig auf dessen Boden verteilt. Dann werden 20 ml einer 0,9 gew.%-igen Kochsalzlösung in ein zweites Becherglas dosiert und der Inhalt dieses Glases wird dem ersten zügig hinzu- gefügt und eine Stoppuhr gestartet. Sobald der letzte Tropfen der Kochssalzlösung absorbiert wurde, was man am Verschwinden der Reflexion auf der Flüssigkeitsoberfläche erkennt, wird die Stoppuhr angehalten. Die genaue Flüssigkeitsmenge, die aus dem zweiten Becherglas ausgegossen und durch die wasserabsorbierenden Polymerpartikel im ersten Becherglas absorbiert wurde, wird durch Rückwägung des zweiten Becherglases genau bestimmt (=W2). Die für die Absorption benötigte Zeitspanne, die mit der Stoppuhr gemessen wurde, wird als t bezeichnet. Das Verschwinden des letzten Flüssigkeitstropfens auf der Oberfläche wird als Zeitpunkt t bestimmt.
Daraus errechnet sich die Quellgeschwindigkeit (FSR) wie folgt:
FSR [g/gs] = W2/(W1xt)
Wenn der Feuchtegehalt der wasserabsorbierenden Polymerpartikel mehr als
3 Gew.-% beträgt, so ist das Gewicht W1 um diesen Feuchtegehalt zu korrigieren.
Quellbarkeit (Free Swell Capacity)
Die Quellbarkeit (FSC) der wasserabsorbierenden Polymerpartikel wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 240.2-05 "Free Swell Capacity" be- stimmt.
Zentrifugenretentionskapazität (Centrifuge Retention Capacity)
Die Zentrifugenretentionskapazität (CRC) der wasserabsorbierenden Polymerpartikel wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 241.2-05 "Centrifuge Retention Capacity" bestimmt.
Absorption unter einem Druck von 21 ,0 g/cm2 (Absorption under Pressure)
Die Absorption unter einem Druck von 21 ,0 g/cm2 (AUL0.3psi) der wasserabsorbierenden Polymerpartikel wird gemäß der von der EDANA empfohlenen Testmethode Nr. WSP 242.2-05 "Absorption under Pressure" bestimmt.
Absorption unter einem Druck von 49,2 g/cm2 (Absorption under Pressure)
Die Absorption unter einem Druck von 49,2 g/cm2 (AUL0.7psi) der wasserabsorbieren- den Polymerpartikel wird analog der von der EDANA empfohlenen Testmethode Nr. WSP 242.2-05 "Absorption under Pressure" bestimmt, wobei statt eines Drucks von 21 ,0 g/cm2 (AUL0.3psi) ein Druck von 49,2 g/cm2 (AUL0.7psi) eingestellt wird.
Die EDANA-Testmethoden sind beispielsweise erhältlich bei der EDANA, Avenue Eu- gene Plasky 157, B-1030 Brüssel, Belgien.
Beispiele
Beispiel 1
149,0 g Acrylsäure, 782,1 g einer 37,3 gew.-%igen wässrigen Natriumacrylatlösung, 15,4 g Sartomer® SR-344 (Diacrylat eines Polyethylenglykols mit einem Molgewicht von ca. 400 g/mol), 23,5 g einer 15 gew.-%igen wässrigen Lösung von Lutensol® AT80 (Additionsprodukt von 80 Mol Ethylenoxid an 1 Mol eines linearen, gesättigten C16-C18 Fettalkohols; BASF SE; Ludwigshafen; DE) und 30,0 g Wasser wurden in einem Becherglas gemischt.
Die erhaltene homogene Lösung wurde in einen Druckbehälter überführt und dort für 25 Minuten bei einem Druck von 10 bar mit Kohlendioxid gesättigt. Unter Druck wurden 14,7 g einer 3 gew.-%igen, wässrigen Lösung von 2,2'-Azobis(2-amidino- propan)dihydrochlorid zugegeben und mit einem starken Kohlendioxidstrom untergemischt. Anschließend wurde für weitere 5 Minuten Kohlendioxid durch die Reaktionsmischung geleitet. Die mit Kohlendioxid gesättigte Reaktionsmischung wurde danach bei einem Druck von 12 bar durch eine Düse mit einem Durchmesser von 1 ,0 mm aus- gepresst, wobei sich ein feinzelliger, gut fließfähiger Schaum bildete.
Der erhaltene Monomerschaum wurde auf eine DIN A3 große Glasplatte mit 3 mm hohen Rändern aufgebracht und mit einer zweiten Glassplatte bedeckt. Die Schaumprobe wurde synchron von beiden Seiten über 4 Minuten mit UV-Licht bestrahlt, von oben mit einem UVA/IS-Strahler UVASPOT 1000/T (Dr. Hönle AG; Gräfelfing; DE), von unten mit 2 UVA/IS-Strahlern UVASPOT 400/T (Dr. Hönle AG; Gräfelfing; DE).
Die erhaltene Schaumschicht wurde in einem Umlufttrockenschrank bei 100°C vollständig getrocknet, anschließend in einer Retschmühle gemahlen und auf eine Partikelgröße von 150 bis 600 μηη abgesiebt. Feststoffgehalt der Reaktionsmischung: 45,3 Gew.-%
Neutralisationsgrad: 60 mol-%
Monomerschaumdichte: 0,16 g/cm3
Die Eigenschaften der erhaltenen wasserabsorbierenden Polymerpartikel sind in Ta- belle 1 und Tabelle 2 angegeben.
Beispiel 2
Es wurde verfahren wie unter Beispiel 1 . Statt 15,4 g Sartomer® SR-344 wurden nur 10,3 g Sartomer® SR-344 eingesetzt. Die Eigenschaften der erhaltenen wasserabsorbierenden Polymerpartikel sind in Tabelle 1 angegeben.
Beispiel 3 Es wurde verfahren wie unter Beispiel 1 . Statt 15,4 g Sartomer® SR-344 wurden nur 7,7 g Sartomer® SR-344 eingesetzt. Die Eigenschaften der erhaltenen wasserabsorbierenden Polymerpartikel sind in Tabelle 1 angegeben.
Beispiel 4
Es wurde verfahren wie unter Beispiel 1 . Statt 15,4 g Sartomer® SR-344 wurden nur 4,4 g Sartomer® SR-344 eingesetzt. Die Eigenschaften der erhaltenen wasserabsorbierenden Polymerpartikel sind in Tabelle 1 angegeben. Beispiel 5
Es wurde verfahren wie unter Beispiel 1 . Statt 15,4 g Sartomer® SR-344 wurden nur 2,2 g Sartomer® SR-344 eingesetzt. Die Eigenschaften der erhaltenen wasserabsorbierenden Polymerpartikel sind in Tabelle 1 angegeben.
Tab. 1 : Variation der Vernetzermenge
Beispiel 6 (nicht erfindungsgemäß)
Durch kontinuierliches Mischen von entionisiertem Wasser, 50 gew.-%iger Natronlauge und Acrylsäure wird eine Acrylsäure/Natriumacrylatlösung hergestellt, so dass der Neutralisationsgrad 69 mol-% entsprach. Der Feststoffgehalt der Monomerlösung betrug 35,5 Gew.-%.
Als mehrfach ethylenisch ungesättigter Vernetzer wurde 3-fach ethoxiliertes Glyze- rintriacrylat (ca. 85 gew.-%ig) verwendet. Die Einsatzmenge betrug 1 ,33 g pro kg Monomerlösung.
Zur Initiierung der radikalischen Polymerisation wurden pro kg Monomerlösung 2,84 g einer 15 gew-%igen wässrigen Natriumperoxodisulfatlösung und 28,4 g einer 0,5 gew.- %igen wässrigen Lösung von Brüggolite® FF7 (Brüggemann Chemicals; Heilbronn; DE) eingesetzt.
Der Durchsatz der Monomerlösung betrug 1200 kg/h. Die Reaktionslösung hatte Zulauf eine Temperatur von 23,5°C.
Die einzelnen Komponenten wurden in folgenden Mengen kontinuierlich in einen Reaktor vom Typ List ORP 250 Contikneter, (LIST AG, Arisdorf, CH) dosiert:
1200 kg/h Monomerlösung
1 ,600 kg/h 3-fach ethoxiliertes Glyzerintriacrylat
3,410 kg/h Natriumperoxodisulfat-Lösung
34,10 kg/h Brüggolite® FF7-Lösung
Zwischen dem Zugabepunkt für Vernetzer und den Zugabestellen für die Initiatoren wurde die Monomerlösung mit Stickstoff inertisiert.
Die Verweilzeit der Reaktionsmischung im Reaktor betrug 15 Minuten.
Das erhaltene Produktgel wurde auf einen Bandtrockner aufgegeben. Auf dem Bandtrockner wurde das Polymergel kontinuierlich mit einem Luft/Gasgemisch umströmt und bei 175°C getrocknet. Die Verweilzeit im Bandtrockner betrug 43 Minuten. Das getrocknete Polymergel wurde gemahlen und auf eine Partikelgrößenfraktion von 150 bis 710 μηη abgesiebt. Das so erhaltene Grundpolymer hatte folgende Eigenschaf- ten:
CRC: 35,7 g/g
AUL0.3psi 19,1 g/g
1 .200 g des Grundpolymers wurden in einen Gebr. Lödige Labormischer (Typ M5R) überführt. Bei ca. 23°C wurde eine Mischung aus 0,6 g 2-Hydroxyethyloxazolidin-2-on, 0,6 g 1 ,3-Propandiol, 6,0 g 1 ,2-Propandiol, 22,8 g Wasser, 1 1 ,0 g 2-Propanol, 0,096 g Sorbitanmonococoat und 5,4 g Aluminiumlaktat über eine Düse aufgesprüht. Die besprühten Polymerpartikel wurden in einen anderen Gebr. Lödige Labormischer überführt, der schnell auf 175°C erwärmt und 50 Minuten bei dieser Temperatur gehalten wurde. Nach dem Abkühlen wurden die oberflachennachvernetzten Polymerpartikel auf einen Siebschnitt zwischen 150 und 710 μηη abgesiebt. Die Eigenschaften der erhalte- nen wasserabsorbierenden Polymerpartikel sind in Tabelle 2 angegeben.
Beispiel 7
In einer 500 ml Glasflasche wurden 50 g wasserabsorbierende Polymerpartikel gemäß Beispiel 1 und 50 g wasserabsorbierende Polymerpartikel gemäß Beispiel 6 für 15 Minuten mittels eines Turbula® Mischers vom Typ T2F (Willy A. Bachofen AG Maschinenfabrik; Muttenz; CH) mit 45 Upm gemischt. Die Eigenschaften der erhaltenen Mischung sind in Tabelle 2 angegeben. Beispiel 8
In einer 500 ml Glasflasche wurden 10 g wasserabsorbierende Polymerpartikel gemäß Beispiel 1 und 90 g wasserabsorbierende Polymerpartikel gemäß Beispiel 6 für 15 Minuten mittels eines Turbula® Mischers vom Typ T2F (Willy A. Bachofen AG Maschi- nenfabrik; Muttenz; CH) mit 45 Upm gemischt. Die Eigenschaften der erhaltenen Mischung sind in Tabelle 2 angegeben.
Tab. 2: Abmischungen mit konventionellen wasserabsorbierenden Polymerpartikeln
Beispiel 9 (nicht erfindungsgemäß)
In einen 1 .000 ml Kunststoffbecher (105 mm Innendurchmesser und 145 mm Höhe) wurden 17,9 g Acrylsäure und 139,6 g einer 37,3 gew.-%igen wässrigen Natriumacry- latlösung eingewogen. Unter Rühren mittels eines Magnetkreuzrührers wurden 0,24 g 3-fach ethoxiliertes Glyzerintriacrylat (ca. 85 gew.-%ig) und 41 ,0 g Wasser zugesetzt. Anschließend wurde der Kunststoffbecher mit einer Kunststofffolie verschlossen, ein PTFE-beschichteter Temperaturfühler mittig in der Lösung positioniert und die Lösung über eine Glasfritte mit Stickstoff durchströmt.
Nach 30 Minuten wurden 0,46 g einer 15 gew.-%igen wässrigen Lösung von Natrium- peroxodisulfat, 0,69 g einer 0,4 gew.-%igen wässrigen Lösung von Ascorbinsäure und 0,08 g einer 10 gew.-%igen wässrigen Lösung von Wasserstoffperoxid mittels Einwegspritzen eingespritzt und die Temperaturaufzeichnung gestartet. Die Maximaltemperatur während der Polymerisation betrug 102,5°C. Das erhaltene Polymergel wurde getrocknet, gemahlen und auf eine Partikelgröße von 150 bis 850 μηη abgesiebt. Die Eigenschaften der erhaltenen wasserabsorbierenden Polymerpartikel sind in Tabelle 3 angegeben.
Beispiel 10
Es wurde verfahren wie unter Beispiel 9. Direkt nach der Zugabe des letzten Initiators wurden 7,0 g wasserabsorbierende Polymerpartikel gemäß Beispiel 1 mit einer Partikelgröße von weniger als 150 μηη zugesetzt. Die Eigenschaften der erhaltenen wasserabsorbierenden Polymerpartikel sind in Tabelle 3 angegeben.
Tab. 3: Zusatz erfindungsgemäßer Polymerpartikel zur Monomerlösung
145,0 g Acrylsäure, 761 ,4 g einer 37,3 gew.-%igen wässrigen Natriumacrylatlösung, 15,0 g Sartomer® SR-344 (Diacrylat eines Polyethylenglykols mit einem Molgewicht von ca. 400 g/mol) und 34,3 g einer 10 gew.-%igen wässrigen Lösung von Lutensol® AT80 (Additionsprodukt von 80 Mol Ethylenoxid an 1 Mol eines linearen, gesättigten C16-C18 Fettalkohols; BASF SE; Ludwigshafen; DE) wurden in einem Becherglas gemischt.
Die erhaltene homogene Lösung wurde in einen Druckbehälter überführt und dort für 25 Minuten bei einem Druck von 10 bar mit Kohlendioxid gesättigt. Unter Druck wurden 43,5 g einer 3 gew.-%igen, wässrigen Lösung von 2,2'-Azobis(2-amidino- propan)dihydrochlorid zugegeben und mit einem starken Kohlendioxidstrom untergemischt. Anschließend wurde für weitere 5 Minuten Kohlendioxid durch die Reaktionsmischung geleitet. Die mit Kohlendioxid gesättigte Reaktionsmischung wurde danach bei einem Druck von 12 bar durch eine Düse mit einem Durchmesser von 1 ,0 mm aus- gepresst, wobei sich ein feinzelliger, gut fließfähiger Schaum bildete.
Der erhaltene Monomerschaum wurde auf eine DIN A3 große Glasplatte mit 3 mm hohen Rändern aufgebracht und mit einer zweiten Glassplatte bedeckt. Die Schaum- probe wurde synchron von beiden Seiten über 4 Minuten mit UV-Licht bestrahlt, von oben mit einem UVA/IS-Strahler UVASPOT 1000/T (Dr. Hönle AG; Gräfelfing; DE), von unten mit 2 UVA/IS-Strahlern UVASPOT 400/T (Dr. Hönle AG; Gräfelfing; DE). Der Abstand der oberen Lampe zum Monomerschaum betrug 39 cm und der Abstand der unteren Lampen zum Monomerschaum betrug 13 cm.
Die erhaltene Schaumschicht wurde in einem Umlufttrockenschrank bei 100°C vollständig getrocknet, anschließend in einer Retschmühle gemahlen, auf verschiedene Partikelgrößen abgesiebt und deren Quellgeschwindigkeit (FSR) bestimmt.
Feststoffgehalt der Reaktionsmischung: 44,9 Gew.-%
Neutralisationsgrad: 60 mol-%
Monomerschaumdichte: 0,16 g/cm3
Die Eigenschaften der erhaltenen Siebschnitte sind in Tabelle 4 angegeben. Tab. 4: Quellgeschwindigkeit (FSR) einzelner Siebschnitte