WO2010120923A1 - Novel microalgal food compositions - Google Patents
Novel microalgal food compositions Download PDFInfo
- Publication number
- WO2010120923A1 WO2010120923A1 PCT/US2010/031088 US2010031088W WO2010120923A1 WO 2010120923 A1 WO2010120923 A1 WO 2010120923A1 US 2010031088 W US2010031088 W US 2010031088W WO 2010120923 A1 WO2010120923 A1 WO 2010120923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flour
- oil
- microalgal
- biomass
- food
- Prior art date
Links
- 235000013305 food Nutrition 0.000 title claims abstract description 330
- 239000000203 mixture Substances 0.000 title claims abstract description 228
- 239000002028 Biomass Substances 0.000 claims abstract description 596
- 239000003921 oil Substances 0.000 claims abstract description 465
- 235000013312 flour Nutrition 0.000 claims abstract description 301
- 238000000034 method Methods 0.000 claims abstract description 138
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 103
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 102
- 235000013601 eggs Nutrition 0.000 claims abstract description 94
- 239000004615 ingredient Substances 0.000 claims abstract description 75
- 235000013361 beverage Nutrition 0.000 claims abstract description 71
- 239000000843 powder Substances 0.000 claims abstract description 68
- 230000002829 reductive effect Effects 0.000 claims abstract description 66
- 235000019197 fats Nutrition 0.000 claims abstract description 56
- 239000000835 fiber Substances 0.000 claims abstract description 33
- 235000015173 baked goods and baking mixes Nutrition 0.000 claims abstract description 22
- 235000019198 oils Nutrition 0.000 claims description 380
- 210000004027 cell Anatomy 0.000 claims description 196
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 claims description 154
- 150000002632 lipids Chemical class 0.000 claims description 123
- 235000018102 proteins Nutrition 0.000 claims description 101
- 239000007788 liquid Substances 0.000 claims description 94
- 235000012041 food component Nutrition 0.000 claims description 82
- 239000005417 food ingredient Substances 0.000 claims description 82
- 239000002245 particle Substances 0.000 claims description 78
- 241000894007 species Species 0.000 claims description 74
- 241000195493 Cryptophyta Species 0.000 claims description 60
- 241000195645 Auxenochlorella protothecoides Species 0.000 claims description 59
- 238000004519 manufacturing process Methods 0.000 claims description 56
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 52
- 235000013325 dietary fiber Nutrition 0.000 claims description 50
- 150000002313 glycerolipids Chemical group 0.000 claims description 49
- 241000195649 Chlorella <Chlorellales> Species 0.000 claims description 44
- 238000011194 good manufacturing practice Methods 0.000 claims description 43
- 230000019612 pigmentation Effects 0.000 claims description 41
- 150000001720 carbohydrates Chemical class 0.000 claims description 39
- 235000014633 carbohydrates Nutrition 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 38
- 229930002875 chlorophyll Natural products 0.000 claims description 36
- 235000019804 chlorophyll Nutrition 0.000 claims description 36
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 claims description 36
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 claims description 35
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 claims description 35
- 238000001035 drying Methods 0.000 claims description 34
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 30
- 239000008103 glucose Substances 0.000 claims description 30
- 229930006000 Sucrose Natural products 0.000 claims description 27
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 27
- 239000005720 sucrose Substances 0.000 claims description 27
- 235000021466 carotenoid Nutrition 0.000 claims description 25
- 150000001747 carotenoids Chemical class 0.000 claims description 25
- 229930003802 tocotrienol Natural products 0.000 claims description 25
- 239000011731 tocotrienol Substances 0.000 claims description 25
- 235000019148 tocotrienols Nutrition 0.000 claims description 25
- 240000008042 Zea mays Species 0.000 claims description 24
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 24
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 claims description 24
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 claims description 24
- 229930003799 tocopherol Natural products 0.000 claims description 24
- 239000011732 tocopherol Substances 0.000 claims description 24
- GJJVAFUKOBZPCB-ZGRPYONQSA-N (r)-3,4-dihydro-2-methyl-2-(4,8,12-trimethyl-3,7,11-tridecatrienyl)-2h-1-benzopyran-6-ol Chemical class OC1=CC=C2OC(CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-ZGRPYONQSA-N 0.000 claims description 23
- 239000002002 slurry Substances 0.000 claims description 23
- 239000000126 substance Substances 0.000 claims description 23
- 235000019149 tocopherols Nutrition 0.000 claims description 23
- 229940068778 tocotrienols Drugs 0.000 claims description 23
- 235000019750 Crude protein Nutrition 0.000 claims description 22
- 239000000839 emulsion Substances 0.000 claims description 22
- 235000000346 sugar Nutrition 0.000 claims description 22
- KBPHJBAIARWVSC-XQIHNALSSA-N trans-lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C KBPHJBAIARWVSC-XQIHNALSSA-N 0.000 claims description 22
- 235000012680 lutein Nutrition 0.000 claims description 21
- 239000001656 lutein Substances 0.000 claims description 21
- 229960005375 lutein Drugs 0.000 claims description 21
- ORAKUVXRZWMARG-WZLJTJAWSA-N lutein Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=CC(O)CC2(C)C)C ORAKUVXRZWMARG-WZLJTJAWSA-N 0.000 claims description 21
- FJHBOVDFOQMZRV-XQIHNALSSA-N xanthophyll Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C=C(C)C(O)CC2(C)C FJHBOVDFOQMZRV-XQIHNALSSA-N 0.000 claims description 21
- KBPHJBAIARWVSC-RGZFRNHPSA-N lutein Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]1C(C)=C[C@H](O)CC1(C)C KBPHJBAIARWVSC-RGZFRNHPSA-N 0.000 claims description 20
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 19
- 235000008429 bread Nutrition 0.000 claims description 19
- 235000005822 corn Nutrition 0.000 claims description 19
- 241001465754 Metazoa Species 0.000 claims description 17
- 229940087168 alpha tocopherol Drugs 0.000 claims description 17
- 229960000984 tocofersolan Drugs 0.000 claims description 17
- 235000004835 α-tocopherol Nutrition 0.000 claims description 17
- 239000002076 α-tocopherol Substances 0.000 claims description 17
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 claims description 15
- 229940064063 alpha tocotrienol Drugs 0.000 claims description 15
- RZFHLOLGZPDCHJ-DLQZEEBKSA-N alpha-Tocotrienol Natural products Oc1c(C)c(C)c2O[C@@](CC/C=C(/CC/C=C(\CC/C=C(\C)/C)/C)\C)(C)CCc2c1C RZFHLOLGZPDCHJ-DLQZEEBKSA-N 0.000 claims description 15
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 claims description 15
- 229930182830 galactose Natural products 0.000 claims description 15
- 235000016709 nutrition Nutrition 0.000 claims description 15
- 235000015067 sauces Nutrition 0.000 claims description 15
- RZFHLOLGZPDCHJ-XZXLULOTSA-N α-Tocotrienol Chemical compound OC1=C(C)C(C)=C2O[C@@](CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)(C)CCC2=C1C RZFHLOLGZPDCHJ-XZXLULOTSA-N 0.000 claims description 15
- 235000019145 α-tocotrienol Nutrition 0.000 claims description 15
- 239000011730 α-tocotrienol Substances 0.000 claims description 15
- 108010068370 Glutens Proteins 0.000 claims description 14
- 239000003963 antioxidant agent Substances 0.000 claims description 14
- 235000006708 antioxidants Nutrition 0.000 claims description 14
- 235000021312 gluten Nutrition 0.000 claims description 14
- 239000003053 toxin Substances 0.000 claims description 14
- 231100000765 toxin Toxicity 0.000 claims description 14
- 108700012359 toxins Proteins 0.000 claims description 14
- 235000013162 Cocos nucifera Nutrition 0.000 claims description 13
- 244000060011 Cocos nucifera Species 0.000 claims description 13
- 240000007594 Oryza sativa Species 0.000 claims description 13
- 235000007164 Oryza sativa Nutrition 0.000 claims description 13
- 235000012054 meals Nutrition 0.000 claims description 13
- 150000002772 monosaccharides Chemical class 0.000 claims description 13
- 235000015927 pasta Nutrition 0.000 claims description 13
- 235000009566 rice Nutrition 0.000 claims description 13
- 244000062793 Sorghum vulgare Species 0.000 claims description 12
- 235000010469 Glycine max Nutrition 0.000 claims description 11
- 230000003078 antioxidant effect Effects 0.000 claims description 11
- 235000012970 cakes Nutrition 0.000 claims description 11
- 238000009472 formulation Methods 0.000 claims description 11
- 235000013336 milk Nutrition 0.000 claims description 11
- 239000008267 milk Substances 0.000 claims description 11
- 210000004080 milk Anatomy 0.000 claims description 11
- 240000003183 Manihot esculenta Species 0.000 claims description 10
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 claims description 10
- 235000013339 cereals Nutrition 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 10
- 235000014103 egg white Nutrition 0.000 claims description 10
- 210000000969 egg white Anatomy 0.000 claims description 10
- 235000010855 food raising agent Nutrition 0.000 claims description 10
- 235000013310 margarine Nutrition 0.000 claims description 10
- 239000003264 margarine Substances 0.000 claims description 10
- 235000013372 meat Nutrition 0.000 claims description 10
- 229920001592 potato starch Polymers 0.000 claims description 10
- 235000014347 soups Nutrition 0.000 claims description 10
- 235000004977 Brassica sinapistrum Nutrition 0.000 claims description 9
- 208000015943 Coeliac disease Diseases 0.000 claims description 9
- 235000014510 cooky Nutrition 0.000 claims description 9
- 235000012495 crackers Nutrition 0.000 claims description 9
- 241001133760 Acoelorraphe Species 0.000 claims description 8
- 235000012467 brownies Nutrition 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 235000013345 egg yolk Nutrition 0.000 claims description 8
- 210000002969 egg yolk Anatomy 0.000 claims description 8
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 8
- 235000011684 Sorghum saccharatum Nutrition 0.000 claims description 7
- 235000005911 diet Nutrition 0.000 claims description 7
- 230000037213 diet Effects 0.000 claims description 7
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 6
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims description 6
- 244000046052 Phaseolus vulgaris Species 0.000 claims description 6
- 206010039509 Scab Diseases 0.000 claims description 6
- 238000010411 cooking Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000008101 lactose Substances 0.000 claims description 6
- 235000013570 smoothie Nutrition 0.000 claims description 6
- 235000013618 yogurt Nutrition 0.000 claims description 6
- 235000009328 Amaranthus caudatus Nutrition 0.000 claims description 5
- 240000001592 Amaranthus caudatus Species 0.000 claims description 5
- 244000144725 Amygdalus communis Species 0.000 claims description 5
- 235000011437 Amygdalus communis Nutrition 0.000 claims description 5
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 claims description 5
- 235000006008 Brassica napus var napus Nutrition 0.000 claims description 5
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 claims description 5
- 244000188595 Brassica sinapistrum Species 0.000 claims description 5
- 244000025254 Cannabis sativa Species 0.000 claims description 5
- 235000014036 Castanea Nutrition 0.000 claims description 5
- 241001070941 Castanea Species 0.000 claims description 5
- 240000006162 Chenopodium quinoa Species 0.000 claims description 5
- 235000010523 Cicer arietinum Nutrition 0.000 claims description 5
- 244000045195 Cicer arietinum Species 0.000 claims description 5
- 235000006481 Colocasia esculenta Nutrition 0.000 claims description 5
- 244000205754 Colocasia esculenta Species 0.000 claims description 5
- 244000019459 Cynara cardunculus Species 0.000 claims description 5
- 235000019106 Cynara scolymus Nutrition 0.000 claims description 5
- 235000009419 Fagopyrum esculentum Nutrition 0.000 claims description 5
- 240000008620 Fagopyrum esculentum Species 0.000 claims description 5
- 235000004431 Linum usitatissimum Nutrition 0.000 claims description 5
- 240000006240 Linum usitatissimum Species 0.000 claims description 5
- 235000010804 Maranta arundinacea Nutrition 0.000 claims description 5
- 244000145580 Thalia geniculata Species 0.000 claims description 5
- 235000012419 Thalia geniculata Nutrition 0.000 claims description 5
- 102000007544 Whey Proteins Human genes 0.000 claims description 5
- 108010046377 Whey Proteins Proteins 0.000 claims description 5
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 5
- 235000020224 almond Nutrition 0.000 claims description 5
- 239000004178 amaranth Substances 0.000 claims description 5
- 235000012735 amaranth Nutrition 0.000 claims description 5
- 235000016520 artichoke thistle Nutrition 0.000 claims description 5
- 235000021107 fermented food Nutrition 0.000 claims description 5
- 235000021374 legumes Nutrition 0.000 claims description 5
- 235000009973 maize Nutrition 0.000 claims description 5
- 238000004949 mass spectrometry Methods 0.000 claims description 5
- 235000019713 millet Nutrition 0.000 claims description 5
- 208000024891 symptom Diseases 0.000 claims description 5
- AJBZENLMTKDAEK-UHFFFAOYSA-N 3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-4,9-diol Chemical compound CC12CCC(O)C(C)(C)C1CCC(C1(C)CC3O)(C)C2CCC1C1C3(C)CCC1C(=C)C AJBZENLMTKDAEK-UHFFFAOYSA-N 0.000 claims description 4
- 235000017060 Arachis glabrata Nutrition 0.000 claims description 4
- 244000105624 Arachis hypogaea Species 0.000 claims description 4
- 235000010777 Arachis hypogaea Nutrition 0.000 claims description 4
- 235000018262 Arachis monticola Nutrition 0.000 claims description 4
- 235000007319 Avena orientalis Nutrition 0.000 claims description 4
- 244000075850 Avena orientalis Species 0.000 claims description 4
- 240000002791 Brassica napus Species 0.000 claims description 4
- 235000003880 Calendula Nutrition 0.000 claims description 4
- 240000001432 Calendula officinalis Species 0.000 claims description 4
- 244000197813 Camelina sativa Species 0.000 claims description 4
- 235000014595 Camelina sativa Nutrition 0.000 claims description 4
- 240000001548 Camellia japonica Species 0.000 claims description 4
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 claims description 4
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 claims description 4
- 235000003255 Carthamus tinctorius Nutrition 0.000 claims description 4
- 244000020518 Carthamus tinctorius Species 0.000 claims description 4
- 235000009025 Carya illinoensis Nutrition 0.000 claims description 4
- 244000068645 Carya illinoensis Species 0.000 claims description 4
- 240000007154 Coffea arabica Species 0.000 claims description 4
- 235000002787 Coriandrum sativum Nutrition 0.000 claims description 4
- 244000018436 Coriandrum sativum Species 0.000 claims description 4
- 240000009226 Corylus americana Species 0.000 claims description 4
- 235000001543 Corylus americana Nutrition 0.000 claims description 4
- 235000007466 Corylus avellana Nutrition 0.000 claims description 4
- 229920000742 Cotton Polymers 0.000 claims description 4
- 241000219992 Cuphea Species 0.000 claims description 4
- 241000221079 Euphorbia <genus> Species 0.000 claims description 4
- 241000219146 Gossypium Species 0.000 claims description 4
- 244000020551 Helianthus annuus Species 0.000 claims description 4
- 235000003222 Helianthus annuus Nutrition 0.000 claims description 4
- 240000000797 Hibiscus cannabinus Species 0.000 claims description 4
- 241000221089 Jatropha Species 0.000 claims description 4
- 241000408747 Lepomis gibbosus Species 0.000 claims description 4
- 241000219745 Lupinus Species 0.000 claims description 4
- 241000208467 Macadamia Species 0.000 claims description 4
- 240000007817 Olea europaea Species 0.000 claims description 4
- 235000008753 Papaver somniferum Nutrition 0.000 claims description 4
- 240000001090 Papaver somniferum Species 0.000 claims description 4
- 244000025272 Persea americana Species 0.000 claims description 4
- 235000008673 Persea americana Nutrition 0.000 claims description 4
- 240000000528 Ricinus communis Species 0.000 claims description 4
- 235000004443 Ricinus communis Nutrition 0.000 claims description 4
- 241000245026 Scoliopus bigelovii Species 0.000 claims description 4
- 241001047198 Scomberomorus semifasciatus Species 0.000 claims description 4
- 235000003434 Sesamum indicum Nutrition 0.000 claims description 4
- 244000040738 Sesamum orientale Species 0.000 claims description 4
- 244000044822 Simmondsia californica Species 0.000 claims description 4
- 235000004433 Simmondsia californica Nutrition 0.000 claims description 4
- 235000009470 Theobroma cacao Nutrition 0.000 claims description 4
- 244000299461 Theobroma cacao Species 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 235000015895 biscuits Nutrition 0.000 claims description 4
- 235000020113 brazil nut Nutrition 0.000 claims description 4
- 235000009120 camo Nutrition 0.000 claims description 4
- 235000005607 chanvre indien Nutrition 0.000 claims description 4
- 235000016213 coffee Nutrition 0.000 claims description 4
- 235000013353 coffee beverage Nutrition 0.000 claims description 4
- 235000018597 common camellia Nutrition 0.000 claims description 4
- 238000006911 enzymatic reaction Methods 0.000 claims description 4
- 235000004426 flaxseed Nutrition 0.000 claims description 4
- 235000011868 grain product Nutrition 0.000 claims description 4
- 239000011487 hemp Substances 0.000 claims description 4
- 239000008268 mayonnaise Substances 0.000 claims description 4
- 235000010746 mayonnaise Nutrition 0.000 claims description 4
- 235000012771 pancakes Nutrition 0.000 claims description 4
- 235000020232 peanut Nutrition 0.000 claims description 4
- 235000013550 pizza Nutrition 0.000 claims description 4
- 235000020236 pumpkin seed Nutrition 0.000 claims description 4
- 235000020195 rice milk Nutrition 0.000 claims description 4
- 235000011888 snacks Nutrition 0.000 claims description 4
- 235000013322 soy milk Nutrition 0.000 claims description 4
- 235000012773 waffles Nutrition 0.000 claims description 4
- 244000226021 Anacardium occidentale Species 0.000 claims description 3
- 235000020194 almond milk Nutrition 0.000 claims description 3
- 235000020226 cashew nut Nutrition 0.000 claims description 3
- 239000003995 emulsifying agent Substances 0.000 claims description 3
- 235000011389 fruit/vegetable juice Nutrition 0.000 claims description 3
- 235000019508 mustard seed Nutrition 0.000 claims description 3
- 235000021119 whey protein Nutrition 0.000 claims description 3
- AGNTUZCMJBTHOG-UHFFFAOYSA-N 3-[3-(2,3-dihydroxypropoxy)-2-hydroxypropoxy]propane-1,2-diol Chemical compound OCC(O)COCC(O)COCC(O)CO AGNTUZCMJBTHOG-UHFFFAOYSA-N 0.000 claims description 2
- 244000147058 Derris elliptica Species 0.000 claims description 2
- 238000005984 hydrogenation reaction Methods 0.000 claims description 2
- 238000009884 interesterification Methods 0.000 claims description 2
- 239000007764 o/w emulsion Substances 0.000 claims description 2
- 239000007762 w/o emulsion Substances 0.000 claims description 2
- 125000002640 tocopherol group Chemical class 0.000 claims 4
- 239000000047 product Substances 0.000 abstract description 78
- 239000003925 fat Substances 0.000 abstract description 53
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 abstract description 48
- 238000000855 fermentation Methods 0.000 abstract description 23
- 230000004151 fermentation Effects 0.000 abstract description 23
- 230000008569 process Effects 0.000 abstract description 20
- 235000011187 glycerol Nutrition 0.000 abstract description 16
- 229920002678 cellulose Polymers 0.000 abstract description 13
- 239000001913 cellulose Substances 0.000 abstract description 13
- 240000000111 Saccharum officinarum Species 0.000 abstract description 10
- 235000007201 Saccharum officinarum Nutrition 0.000 abstract description 10
- 230000008901 benefit Effects 0.000 abstract description 9
- 230000036186 satiety Effects 0.000 abstract description 8
- 235000019627 satiety Nutrition 0.000 abstract description 8
- 229920002261 Corn starch Polymers 0.000 abstract description 6
- 239000008120 corn starch Substances 0.000 abstract description 6
- 239000008157 edible vegetable oil Substances 0.000 abstract description 6
- 150000003626 triacylglycerols Chemical class 0.000 abstract description 6
- 235000019577 caloric intake Nutrition 0.000 abstract description 5
- 230000035772 mutation Effects 0.000 abstract description 4
- 239000006227 byproduct Substances 0.000 abstract description 3
- 235000021003 saturated fats Nutrition 0.000 abstract description 3
- 230000009261 transgenic effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 63
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 61
- 239000002609 medium Substances 0.000 description 61
- 229910052799 carbon Inorganic materials 0.000 description 32
- 229910052757 nitrogen Inorganic materials 0.000 description 31
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 28
- 239000001963 growth medium Substances 0.000 description 23
- 238000000605 extraction Methods 0.000 description 21
- 230000012010 growth Effects 0.000 description 21
- 230000001965 increasing effect Effects 0.000 description 21
- 230000000813 microbial effect Effects 0.000 description 20
- 244000005700 microbiome Species 0.000 description 19
- QUEDXNHFTDJVIY-UHFFFAOYSA-N γ-tocopherol Chemical class OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 QUEDXNHFTDJVIY-UHFFFAOYSA-N 0.000 description 19
- 239000007789 gas Substances 0.000 description 17
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 16
- 238000000265 homogenisation Methods 0.000 description 16
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 16
- 239000006166 lysate Substances 0.000 description 15
- 238000005119 centrifugation Methods 0.000 description 14
- 235000014113 dietary fatty acids Nutrition 0.000 description 14
- 229930195729 fatty acid Natural products 0.000 description 14
- 239000000194 fatty acid Substances 0.000 description 14
- 102000004190 Enzymes Human genes 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 12
- 235000015872 dietary supplement Nutrition 0.000 description 12
- 229940088598 enzyme Drugs 0.000 description 12
- 150000004665 fatty acids Chemical class 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 210000002421 cell wall Anatomy 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 11
- 230000009569 heterotrophic growth Effects 0.000 description 11
- 235000015097 nutrients Nutrition 0.000 description 11
- 239000012071 phase Substances 0.000 description 11
- 101710184216 Cardioactive peptide Proteins 0.000 description 10
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 10
- 230000003834 intracellular effect Effects 0.000 description 10
- 235000002639 sodium chloride Nutrition 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 235000019587 texture Nutrition 0.000 description 10
- -1 C18:l Chemical compound 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 9
- 230000009089 cytolysis Effects 0.000 description 9
- 239000007921 spray Substances 0.000 description 9
- 239000002699 waste material Substances 0.000 description 9
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 8
- 235000021536 Sugar beet Nutrition 0.000 description 8
- 235000014121 butter Nutrition 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 8
- 239000000470 constituent Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- 235000014438 salad dressings Nutrition 0.000 description 8
- 150000008163 sugars Chemical class 0.000 description 8
- 235000019640 taste Nutrition 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 7
- 230000029087 digestion Effects 0.000 description 7
- 235000015071 dressings Nutrition 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 150000004676 glycans Chemical class 0.000 description 7
- 238000002703 mutagenesis Methods 0.000 description 7
- 231100000350 mutagenesis Toxicity 0.000 description 7
- 150000003904 phospholipids Chemical class 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 239000013535 sea water Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 108010001949 Algal Proteins Proteins 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 6
- 229930182558 Sterol Natural products 0.000 description 6
- 235000001014 amino acid Nutrition 0.000 description 6
- 229940024606 amino acid Drugs 0.000 description 6
- 150000001413 amino acids Chemical class 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 6
- 238000009295 crossflow filtration Methods 0.000 description 6
- 238000012258 culturing Methods 0.000 description 6
- 238000001976 enzyme digestion Methods 0.000 description 6
- 238000004880 explosion Methods 0.000 description 6
- 235000004213 low-fat Nutrition 0.000 description 6
- 125000001477 organic nitrogen group Chemical group 0.000 description 6
- 239000000049 pigment Substances 0.000 description 6
- 229920001282 polysaccharide Polymers 0.000 description 6
- 239000005017 polysaccharide Substances 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 235000003702 sterols Nutrition 0.000 description 6
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 5
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 5
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 5
- 239000005642 Oleic acid Substances 0.000 description 5
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 230000033228 biological regulation Effects 0.000 description 5
- 230000032823 cell division Effects 0.000 description 5
- 235000012000 cholesterol Nutrition 0.000 description 5
- 235000008504 concentrate Nutrition 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000004108 freeze drying Methods 0.000 description 5
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 230000035764 nutrition Effects 0.000 description 5
- 230000003204 osmotic effect Effects 0.000 description 5
- 150000003432 sterols Chemical class 0.000 description 5
- 235000013311 vegetables Nutrition 0.000 description 5
- 229940088594 vitamin Drugs 0.000 description 5
- 229930003231 vitamin Natural products 0.000 description 5
- 235000013343 vitamin Nutrition 0.000 description 5
- 239000011782 vitamin Substances 0.000 description 5
- 235000016425 Arthrospira platensis Nutrition 0.000 description 4
- 240000002900 Arthrospira platensis Species 0.000 description 4
- 241001474374 Blennius Species 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 4
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 4
- 239000004067 bulking agent Substances 0.000 description 4
- 235000021185 dessert Nutrition 0.000 description 4
- 235000013399 edible fruits Nutrition 0.000 description 4
- 239000000796 flavoring agent Substances 0.000 description 4
- 235000019634 flavors Nutrition 0.000 description 4
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 235000008935 nutritious Nutrition 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000009928 pasteurization Methods 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 230000002335 preservative effect Effects 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 230000001953 sensory effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 235000015112 vegetable and seed oil Nutrition 0.000 description 4
- 239000002023 wood Substances 0.000 description 4
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- 102000003886 Glycoproteins Human genes 0.000 description 3
- 108090000288 Glycoproteins Proteins 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 241000405774 Nitzschia pusilla Species 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 241001520808 Panicum virgatum Species 0.000 description 3
- 241001036353 Parachlorella Species 0.000 description 3
- 241000195646 Parachlorella kessleri Species 0.000 description 3
- 235000010582 Pisum sativum Nutrition 0.000 description 3
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 235000021307 Triticum Nutrition 0.000 description 3
- 241000209140 Triticum Species 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 238000003501 co-culture Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000012136 culture method Methods 0.000 description 3
- 235000013365 dairy product Nutrition 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 235000019621 digestibility Nutrition 0.000 description 3
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 3
- ZGNITFSDLCMLGI-UHFFFAOYSA-N flubendiamide Chemical compound CC1=CC(C(F)(C(F)(F)F)C(F)(F)F)=CC=C1NC(=O)C1=CC=CC(I)=C1C(=O)NC(C)(C)CS(C)(=O)=O ZGNITFSDLCMLGI-UHFFFAOYSA-N 0.000 description 3
- 235000021588 free fatty acids Nutrition 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 239000001573 invertase Substances 0.000 description 3
- 235000011073 invertase Nutrition 0.000 description 3
- 229920005610 lignin Polymers 0.000 description 3
- 230000002934 lysing effect Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 235000013622 meat product Nutrition 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000000243 photosynthetic effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 150000003839 salts Chemical group 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- 235000011649 selenium Nutrition 0.000 description 3
- 235000013599 spices Nutrition 0.000 description 3
- 239000010907 stover Substances 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 239000003760 tallow Substances 0.000 description 3
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- IDCPFAYURAQKDZ-UHFFFAOYSA-N 1-nitroguanidine Chemical compound NC(=N)N[N+]([O-])=O IDCPFAYURAQKDZ-UHFFFAOYSA-N 0.000 description 2
- GJJVAFUKOBZPCB-UHFFFAOYSA-N 2-methyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)-3,4-dihydrochromen-6-ol Chemical compound OC1=CC=C2OC(CCC=C(C)CCC=C(C)CCC=C(C)C)(C)CCC2=C1 GJJVAFUKOBZPCB-UHFFFAOYSA-N 0.000 description 2
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 241000609240 Ambelania acida Species 0.000 description 2
- 235000019737 Animal fat Nutrition 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 241001530791 Begonia cinnabarina Species 0.000 description 2
- 208000016444 Benign adult familial myoclonic epilepsy Diseases 0.000 description 2
- 241001536303 Botryococcus braunii Species 0.000 description 2
- 241000488541 Bracteacoccus aerius Species 0.000 description 2
- 241001122183 Carex muelleri Species 0.000 description 2
- 206010057248 Cell death Diseases 0.000 description 2
- 241000195654 Chlorella sorokiniana Species 0.000 description 2
- 240000009108 Chlorella vulgaris Species 0.000 description 2
- 235000007089 Chlorella vulgaris Nutrition 0.000 description 2
- 241000195628 Chlorophyta Species 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- 240000006560 Coccinia grandis Species 0.000 description 2
- 241000199912 Crypthecodinium cohnii Species 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 241000195634 Dunaliella Species 0.000 description 2
- 241000195633 Dunaliella salina Species 0.000 description 2
- 102000002322 Egg Proteins Human genes 0.000 description 2
- 108010000912 Egg Proteins Proteins 0.000 description 2
- PLUBXMRUUVWRLT-UHFFFAOYSA-N Ethyl methanesulfonate Chemical compound CCOS(C)(=O)=O PLUBXMRUUVWRLT-UHFFFAOYSA-N 0.000 description 2
- 241000195620 Euglena Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 241000371004 Graesiella emersonii Species 0.000 description 2
- 229920002488 Hemicellulose Polymers 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- 241001478792 Monoraphidium Species 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- 241000195644 Neochloris Species 0.000 description 2
- 241000195659 Neodesmus pupukensis Species 0.000 description 2
- 241000199478 Ochromonas Species 0.000 description 2
- 241001036351 Parachlorella beijerinckii Species 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 102000057297 Pepsin A Human genes 0.000 description 2
- 108090000284 Pepsin A Proteins 0.000 description 2
- 241000196250 Prototheca Species 0.000 description 2
- 241000195648 Pseudochlorella pringsheimii Species 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- 241000195663 Scenedesmus Species 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 2
- 241000405713 Tetraselmis suecica Species 0.000 description 2
- 241000196251 Ulva arasakii Species 0.000 description 2
- 240000001866 Vernicia fordii Species 0.000 description 2
- 241000195615 Volvox Species 0.000 description 2
- 239000005862 Whey Substances 0.000 description 2
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- ANVAOWXLWRTKGA-XHGAXZNDSA-N all-trans-alpha-carotene Chemical compound CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1C(C)=CCCC1(C)C ANVAOWXLWRTKGA-XHGAXZNDSA-N 0.000 description 2
- NBZANZVJRKXVBH-ITUXNECMSA-N all-trans-alpha-cryptoxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2C(=CCCC2(C)C)C NBZANZVJRKXVBH-ITUXNECMSA-N 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 230000003816 axenic effect Effects 0.000 description 2
- 239000010905 bagasse Substances 0.000 description 2
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 2
- LGJMUZUPVCAVPU-UHFFFAOYSA-N beta-Sitostanol Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(C)CCC(CC)C(C)C)C1(C)CC2 LGJMUZUPVCAVPU-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 235000013351 cheese Nutrition 0.000 description 2
- 239000002962 chemical mutagen Substances 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 208000016427 familial adult myoclonic epilepsy Diseases 0.000 description 2
- 235000013861 fat-free Nutrition 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 150000002327 glycerophospholipids Chemical class 0.000 description 2
- 239000011121 hardwood Substances 0.000 description 2
- 230000007407 health benefit Effects 0.000 description 2
- 235000008216 herbs Nutrition 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 235000003642 hunger Nutrition 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000011081 inoculation Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- 235000021056 liquid food Nutrition 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- 238000009629 microbiological culture Methods 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000013379 molasses Nutrition 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 235000014571 nuts Nutrition 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 235000019161 pantothenic acid Nutrition 0.000 description 2
- 239000011713 pantothenic acid Substances 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 229940111202 pepsin Drugs 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 230000009564 phototrophic growth Effects 0.000 description 2
- 229940068065 phytosterols Drugs 0.000 description 2
- 235000015108 pies Nutrition 0.000 description 2
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 235000021251 pulses Nutrition 0.000 description 2
- 239000012465 retentate Substances 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000011122 softwood Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000007239 soil extract medium Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 229940082787 spirulina Drugs 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 230000037351 starvation Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000004250 tert-Butylhydroquinone Substances 0.000 description 2
- 235000019281 tert-butylhydroquinone Nutrition 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- 239000002916 wood waste Substances 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- RQOCXCFLRBRBCS-UHFFFAOYSA-N (22E)-cholesta-5,7,22-trien-3beta-ol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CCC(C)C)CCC33)C)C3=CC=C21 RQOCXCFLRBRBCS-UHFFFAOYSA-N 0.000 description 1
- GFHNQKKLOLZRQE-WNJXEPBRSA-N (2r,3s,4s,5r)-2,3,4,5-tetrahydroxy-6-methoxyhexanal Chemical compound COC[C@@H](O)[C@H](O)[C@H](O)[C@@H](O)C=O GFHNQKKLOLZRQE-WNJXEPBRSA-N 0.000 description 1
- DMASLKHVQRHNES-UPOGUZCLSA-N (3R)-beta,beta-caroten-3-ol Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C DMASLKHVQRHNES-UPOGUZCLSA-N 0.000 description 1
- JKQXZKUSFCKOGQ-JLGXGRJMSA-N (3R,3'R)-beta,beta-carotene-3,3'-diol Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-JLGXGRJMSA-N 0.000 description 1
- NBZANZVJRKXVBH-DJPRRHJBSA-N (3R,6'R)-beta,epsilon-caroten-3-ol Chemical compound C([C@H](O)CC=1C)C(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=C[C@H]1C(C)=CCCC1(C)C NBZANZVJRKXVBH-DJPRRHJBSA-N 0.000 description 1
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 description 1
- SRKQWNFPTBNUKE-UHFFFAOYSA-N 1-methyl-1,2-dinitroguanidine Chemical compound [O-][N+](=O)N(C)\C(N)=N/[N+]([O-])=O SRKQWNFPTBNUKE-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 108020004463 18S ribosomal RNA Proteins 0.000 description 1
- AQTKXCPRNZDOJU-NXRLNHOXSA-N 2-(alpha-D-galactosyl)glycerol Chemical compound OCC(CO)O[C@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O AQTKXCPRNZDOJU-NXRLNHOXSA-N 0.000 description 1
- AQTKXCPRNZDOJU-UHFFFAOYSA-N 2-O-alpha-D-Galactopyranosylglycerol Natural products OCC(CO)OC1OC(CO)C(O)C(O)C1O AQTKXCPRNZDOJU-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- 241001607836 Achnanthes Species 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000091673 Amphiprora Species 0.000 description 1
- 241000611184 Amphora Species 0.000 description 1
- 241000091621 Amphora coffeiformis Species 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 241000192542 Anabaena Species 0.000 description 1
- 241000196169 Ankistrodesmus Species 0.000 description 1
- 241000512259 Ascophyllum nodosum Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241001536324 Botryococcus Species 0.000 description 1
- 241001014907 Botryosphaerella sudetica Species 0.000 description 1
- 241000488537 Bracteacoccus Species 0.000 description 1
- 241000488535 Bracteacoccus medionucleatus Species 0.000 description 1
- 241000488538 Bracteacoccus minor Species 0.000 description 1
- 241000219198 Brassica Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- OILXMJHPFNGGTO-NRHJOKMGSA-N Brassicasterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@](C)([C@H]([C@@H](/C=C/[C@H](C(C)C)C)C)CC4)CC3)CC=2)CC1 OILXMJHPFNGGTO-NRHJOKMGSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 240000007324 Campanula punctata Species 0.000 description 1
- SGNBVLSWZMBQTH-FGAXOLDCSA-N Campesterol Natural products O[C@@H]1CC=2[C@@](C)([C@@H]3[C@H]([C@H]4[C@@](C)([C@H]([C@H](CC[C@H](C(C)C)C)C)CC4)CC3)CC=2)CC1 SGNBVLSWZMBQTH-FGAXOLDCSA-N 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241001249699 Capitata Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241001232703 Carex media Species 0.000 description 1
- 241000227752 Chaetoceros Species 0.000 description 1
- 241000091752 Chaetoceros calcitrans Species 0.000 description 1
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 description 1
- 241000448049 Chilara taylori Species 0.000 description 1
- 241000195585 Chlamydomonas Species 0.000 description 1
- 241000195651 Chlorella sp. Species 0.000 description 1
- 241000180279 Chlorococcum Species 0.000 description 1
- 241000144274 Chlorococcum infusionum Species 0.000 description 1
- 241000508318 Chlorogonium Species 0.000 description 1
- 241000195658 Chloroidium saccharophilum Species 0.000 description 1
- 108020004998 Chloroplast DNA Proteins 0.000 description 1
- 241000195492 Chroomonas Species 0.000 description 1
- 241000206751 Chrysophyceae Species 0.000 description 1
- 241000391097 Chrysosphaera Species 0.000 description 1
- DBPRUZCKPFOVDV-UHFFFAOYSA-N Clorprenaline hydrochloride Chemical compound O.Cl.CC(C)NCC(O)C1=CC=CC=C1Cl DBPRUZCKPFOVDV-UHFFFAOYSA-N 0.000 description 1
- 241001053191 Cobitis linea Species 0.000 description 1
- 241001301781 Coelastrella vacuolata Species 0.000 description 1
- 101800004637 Communis Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001137251 Corvidae Species 0.000 description 1
- 241001245609 Cricosphaera Species 0.000 description 1
- 241000195618 Cryptomonas Species 0.000 description 1
- 229910016502 CuCl2—2H2O Inorganic materials 0.000 description 1
- 241000206585 Cyanidium Species 0.000 description 1
- 241001147476 Cyclotella Species 0.000 description 1
- 241001147477 Cyclotella cryptica Species 0.000 description 1
- 241001147470 Cyclotella meneghiniana Species 0.000 description 1
- 244000081727 Cyperus tenuis Species 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- 241000196221 Dasycladales Species 0.000 description 1
- 241000899885 Desmidiales Species 0.000 description 1
- 241000736718 Dunaliella bioculata Species 0.000 description 1
- 241000856893 Dunaliella minuta Species 0.000 description 1
- 241000195631 Dunaliella parva Species 0.000 description 1
- 241001324819 Dunaliella peircei Species 0.000 description 1
- 241001403474 Dunaliella primolecta Species 0.000 description 1
- 241000195632 Dunaliella tertiolecta Species 0.000 description 1
- 241001231664 Dunaliella viridis Species 0.000 description 1
- 241000464908 Elliptica Species 0.000 description 1
- 240000001218 Ephedra viridis Species 0.000 description 1
- 241000354295 Eremosphaera Species 0.000 description 1
- DNVPQKQSNYMLRS-NXVQYWJNSA-N Ergosterol Natural products CC(C)[C@@H](C)C=C[C@H](C)[C@H]1CC[C@H]2C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@H]3CC[C@]12C DNVPQKQSNYMLRS-NXVQYWJNSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 241001179799 Fistulifera pelliculosa Species 0.000 description 1
- 241000692361 Fistulifera saprophila Species 0.000 description 1
- 206010016803 Fluid overload Diseases 0.000 description 1
- 208000004262 Food Hypersensitivity Diseases 0.000 description 1
- 241001466505 Fragilaria Species 0.000 description 1
- 241001533489 Fragilaria crotonensis Species 0.000 description 1
- 241000923853 Franceia Species 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- BTEISVKTSQLKST-UHFFFAOYSA-N Haliclonasterol Natural products CC(C=CC(C)C(C)(C)C)C1CCC2C3=CC=C4CC(O)CCC4(C)C3CCC12C BTEISVKTSQLKST-UHFFFAOYSA-N 0.000 description 1
- 241001442242 Heterochlorella luteoviridis Species 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 241001037825 Hymenomonas Species 0.000 description 1
- 108091023242 Internal transcribed spacer Proteins 0.000 description 1
- 241001501885 Isochrysis Species 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- SRBFZHDQGSBBOR-HWQSCIPKSA-N L-arabinopyranose Chemical compound O[C@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-HWQSCIPKSA-N 0.000 description 1
- SHZGCJCMOBCMKK-JFNONXLTSA-N L-rhamnopyranose Chemical compound C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O SHZGCJCMOBCMKK-JFNONXLTSA-N 0.000 description 1
- PNNNRSAQSRJVSB-UHFFFAOYSA-N L-rhamnose Natural products CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 1
- 241000936931 Lepocinclis Species 0.000 description 1
- 241000167860 Linaria vulgaris Species 0.000 description 1
- 241001585383 Lobophora <moth> Species 0.000 description 1
- UPYKUZBSLRQECL-UKMVMLAPSA-N Lycopene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=C)CCCC2(C)C UPYKUZBSLRQECL-UKMVMLAPSA-N 0.000 description 1
- JEVVKJMRZMXFBT-XWDZUXABSA-N Lycophyll Natural products OC/C(=C/CC/C(=C\C=C\C(=C/C=C/C(=C\C=C\C=C(/C=C/C=C(\C=C\C=C(/CC/C=C(/CO)\C)\C)/C)\C)/C)\C)/C)/C JEVVKJMRZMXFBT-XWDZUXABSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000520876 Merismopedia Species 0.000 description 1
- 229910017621 MgSO4-7H2O Inorganic materials 0.000 description 1
- 241000586743 Micractinium Species 0.000 description 1
- 240000005551 Micromelum minutum Species 0.000 description 1
- 240000003433 Miscanthus floridulus Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241000186359 Mycobacterium Species 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 241000196305 Nannochloris Species 0.000 description 1
- 241000224474 Nannochloropsis Species 0.000 description 1
- 241000224476 Nannochloropsis salina Species 0.000 description 1
- 241000502321 Navicula Species 0.000 description 1
- 241001442227 Nephroselmis Species 0.000 description 1
- 241001421546 Nephroselmis anterostigmatica Species 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 241000180701 Nitzschia <flatworm> Species 0.000 description 1
- 241001104995 Nitzschia communis Species 0.000 description 1
- 241000905117 Nitzschia dissipata Species 0.000 description 1
- 241001656200 Nitzschia frustulum Species 0.000 description 1
- 241001303192 Nitzschia hantzschiana Species 0.000 description 1
- 241000905115 Nitzschia inconspicua Species 0.000 description 1
- 241000019842 Nitzschia microcephala Species 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 241000207836 Olea <angiosperm> Species 0.000 description 1
- 241000514008 Oocystis Species 0.000 description 1
- 241000733494 Oocystis parva Species 0.000 description 1
- 241001443840 Oocystis pusilla Species 0.000 description 1
- 241000192497 Oscillatoria Species 0.000 description 1
- 241000682093 Oscillatoria subbrevis Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000206755 Palmaria Species 0.000 description 1
- 241000206754 Palmaria palmata Species 0.000 description 1
- 241000196159 Parietochloris Species 0.000 description 1
- 241000206766 Pavlova Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 241000199264 Phaseolus carteri Species 0.000 description 1
- 241000192608 Phormidium Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000196317 Platymonas Species 0.000 description 1
- 241000722208 Pleurochrysis Species 0.000 description 1
- 244000288644 Podocarpus falcatus Species 0.000 description 1
- 241000195630 Polytomella Species 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- 241000206609 Porphyra Species 0.000 description 1
- 241000206607 Porphyra umbilicalis Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 241001074118 Prototheca moriformis Species 0.000 description 1
- 241001597169 Prototheca stagnorum Species 0.000 description 1
- 241000795122 Prototheca zopfii var. portoricensis Species 0.000 description 1
- 241000530613 Pseudanabaena limnetica Species 0.000 description 1
- 241000927377 Pseudomonas acidophila Species 0.000 description 1
- 241001509341 Pyramimonas Species 0.000 description 1
- 241000195604 Pyrobotrys Species 0.000 description 1
- 241001524101 Rhodococcus opacus Species 0.000 description 1
- 108020001027 Ribosomal DNA Proteins 0.000 description 1
- 241001466077 Salina Species 0.000 description 1
- 241000997737 Scenedesmus armatus Species 0.000 description 1
- 241000233671 Schizochytrium Species 0.000 description 1
- 241000657513 Senna surattensis Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000019764 Soybean Meal Nutrition 0.000 description 1
- 108010073771 Soybean Proteins Proteins 0.000 description 1
- 241000196294 Spirogyra Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241001148696 Stichococcus Species 0.000 description 1
- 241000018896 Stigmatophora Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 241000192707 Synechococcus Species 0.000 description 1
- 241001136511 Synechococcus rubescens Species 0.000 description 1
- 241000891463 Tetraedron Species 0.000 description 1
- 241000196321 Tetraselmis Species 0.000 description 1
- 241000957276 Thalassiosira weissflogii Species 0.000 description 1
- 241000736687 Trebouxia Species 0.000 description 1
- BAECOWNUKCLBPZ-HIUWNOOHSA-N Triolein Natural products O([C@H](OCC(=O)CCCCCCC/C=C\CCCCCCCC)COC(=O)CCCCCCC/C=C\CCCCCCCC)C(=O)CCCCCCC/C=C\CCCCCCCC BAECOWNUKCLBPZ-HIUWNOOHSA-N 0.000 description 1
- PHYFQTYBJUILEZ-UHFFFAOYSA-N Trioleoylglycerol Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCCCCCCCC)COC(=O)CCCCCCCC=CCCCCCCCC PHYFQTYBJUILEZ-UHFFFAOYSA-N 0.000 description 1
- OILXMJHPFNGGTO-ZRUUVFCLSA-N UNPD197407 Natural products C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)C=C[C@H](C)C(C)C)[C@@]1(C)CC2 OILXMJHPFNGGTO-ZRUUVFCLSA-N 0.000 description 1
- HZYXFRGVBOPPNZ-UHFFFAOYSA-N UNPD88870 Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)=CCC(CC)C(C)C)C1(C)CC2 HZYXFRGVBOPPNZ-UHFFFAOYSA-N 0.000 description 1
- 241001411202 Viridiella fridericiana Species 0.000 description 1
- 240000008497 Wahlenbergia marginata Species 0.000 description 1
- JKQXZKUSFCKOGQ-LQFQNGICSA-N Z-zeaxanthin Natural products C([C@H](O)CC=1C)C(C)(C)C=1C=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC1=C(C)C[C@@H](O)CC1(C)C JKQXZKUSFCKOGQ-LQFQNGICSA-N 0.000 description 1
- QOPRSMDTRDMBNK-RNUUUQFGSA-N Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCC(O)C1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C QOPRSMDTRDMBNK-RNUUUQFGSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000012773 agricultural material Substances 0.000 description 1
- 239000002154 agricultural waste Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- JKQXZKUSFCKOGQ-LOFNIBRQSA-N all-trans-Zeaxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)CC(O)CC2(C)C JKQXZKUSFCKOGQ-LOFNIBRQSA-N 0.000 description 1
- NBZANZVJRKXVBH-GYDPHNCVSA-N alpha-Cryptoxanthin Natural products O[C@H]1CC(C)(C)C(/C=C/C(=C\C=C\C(=C/C=C/C=C(\C=C\C=C(/C=C/[C@H]2C(C)=CCCC2(C)C)\C)/C)\C)/C)=C(C)C1 NBZANZVJRKXVBH-GYDPHNCVSA-N 0.000 description 1
- 239000011795 alpha-carotene Substances 0.000 description 1
- 235000003903 alpha-carotene Nutrition 0.000 description 1
- ANVAOWXLWRTKGA-HLLMEWEMSA-N alpha-carotene Natural products C(=C\C=C\C=C(/C=C/C=C(\C=C\C=1C(C)(C)CCCC=1C)/C)\C)(\C=C\C=C(/C=C/[C@H]1C(C)=CCCC1(C)C)\C)/C ANVAOWXLWRTKGA-HLLMEWEMSA-N 0.000 description 1
- 235000005861 alpha-cryptoxanthin Nutrition 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 235000019728 animal nutrition Nutrition 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229940011019 arthrospira platensis Drugs 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000001651 autotrophic effect Effects 0.000 description 1
- 230000000721 bacterilogical effect Effects 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940076810 beta sitosterol Drugs 0.000 description 1
- 108010047754 beta-Glucosidase Proteins 0.000 description 1
- 102000006995 beta-Glucosidase Human genes 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- 235000002360 beta-cryptoxanthin Nutrition 0.000 description 1
- 239000011774 beta-cryptoxanthin Substances 0.000 description 1
- DMASLKHVQRHNES-ITUXNECMSA-N beta-cryptoxanthin Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CC(O)CC1(C)C)C=CC=C(/C)C=CC2=C(C)CCCC2(C)C DMASLKHVQRHNES-ITUXNECMSA-N 0.000 description 1
- NJKOMDUNNDKEAI-UHFFFAOYSA-N beta-sitosterol Natural products CCC(CCC(C)C1CCC2(C)C3CC=C4CC(O)CCC4C3CCC12C)C(C)C NJKOMDUNNDKEAI-UHFFFAOYSA-N 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- OILXMJHPFNGGTO-ZAUYPBDWSA-N brassicasterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)/C=C/[C@H](C)C(C)C)[C@@]1(C)CC2 OILXMJHPFNGGTO-ZAUYPBDWSA-N 0.000 description 1
- 235000004420 brassicasterol Nutrition 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- SGNBVLSWZMBQTH-PODYLUTMSA-N campesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](C)C(C)C)[C@@]1(C)CC2 SGNBVLSWZMBQTH-PODYLUTMSA-N 0.000 description 1
- 235000000431 campesterol Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000008162 cooking oil Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 235000011850 desserts Nutrition 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 235000018823 dietary intake Nutrition 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000002036 drum drying Methods 0.000 description 1
- 239000001921 dulse Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- DNVPQKQSNYMLRS-SOWFXMKYSA-N ergosterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H](CC[C@]3([C@H]([C@H](C)/C=C/[C@@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-SOWFXMKYSA-N 0.000 description 1
- 235000004626 essential fatty acids Nutrition 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000004136 fatty acid synthesis Effects 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- UKYVGQJPUFNXKS-UHFFFAOYSA-N floridoside Natural products CC(=O)OCC(COC(C)=O)OC1OC(COC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O UKYVGQJPUFNXKS-UHFFFAOYSA-N 0.000 description 1
- 235000020932 food allergy Nutrition 0.000 description 1
- 235000002864 food coloring agent Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000013350 formula milk Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 235000021022 fresh fruits Nutrition 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000000769 gas chromatography-flame ionisation detection Methods 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000001056 green pigment Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 235000015143 herbs and spices Nutrition 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 235000006486 human diet Nutrition 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 210000004276 hyalin Anatomy 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000012623 in vivo measurement Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 235000014058 juice drink Nutrition 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- 230000006372 lipid accumulation Effects 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 125000002635 lutein group Chemical group 0.000 description 1
- 235000012661 lycopene Nutrition 0.000 description 1
- 239000001751 lycopene Substances 0.000 description 1
- 229960004999 lycopene Drugs 0.000 description 1
- OAIJSZIZWZSQBC-GYZMGTAESA-N lycopene Chemical compound CC(C)=CCC\C(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)CCC=C(C)C OAIJSZIZWZSQBC-GYZMGTAESA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 235000012459 muffins Nutrition 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 231100000707 mutagenic chemical Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 150000002835 noble gases Chemical class 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002417 nutraceutical Substances 0.000 description 1
- 235000021436 nutraceutical agent Nutrition 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229940023569 palmate Drugs 0.000 description 1
- 229940014662 pantothenate Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 235000014594 pastries Nutrition 0.000 description 1
- 235000012162 pavlova Nutrition 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000013081 phylogenetic analysis Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229930001119 polyketide Natural products 0.000 description 1
- 125000000830 polyketide group Chemical group 0.000 description 1
- 235000021085 polyunsaturated fats Nutrition 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 150000003135 prenol lipids Chemical class 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 108010009004 proteose-peptone Proteins 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000018612 quorum sensing Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- KZJWDPNRJALLNS-VJSFXXLFSA-N sitosterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CC[C@@H](CC)C(C)C)[C@@]1(C)CC2 KZJWDPNRJALLNS-VJSFXXLFSA-N 0.000 description 1
- 229950005143 sitosterol Drugs 0.000 description 1
- NLQLSVXGSXCXFE-UHFFFAOYSA-N sitosterol Natural products CC=C(/CCC(C)C1CC2C3=CCC4C(C)C(O)CCC4(C)C3CCC2(C)C1)C(C)C NLQLSVXGSXCXFE-UHFFFAOYSA-N 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000004455 soybean meal Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 229940032091 stigmasterol Drugs 0.000 description 1
- HCXVJBMSMIARIN-PHZDYDNGSA-N stigmasterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)/C=C/[C@@H](CC)C(C)C)[C@@]1(C)CC2 HCXVJBMSMIARIN-PHZDYDNGSA-N 0.000 description 1
- 235000016831 stigmasterol Nutrition 0.000 description 1
- BFDNMXAIBMJLBB-UHFFFAOYSA-N stigmasterol Natural products CCC(C=CC(C)C1CCCC2C3CC=C4CC(O)CCC4(C)C3CCC12C)C(C)C BFDNMXAIBMJLBB-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 235000021404 traditional food Nutrition 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- ZCIHMQAPACOQHT-ZGMPDRQDSA-N trans-isorenieratene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/c1c(C)ccc(C)c1C)C=CC=C(/C)C=Cc2c(C)ccc(C)c2C ZCIHMQAPACOQHT-ZGMPDRQDSA-N 0.000 description 1
- 235000010692 trans-unsaturated fatty acids Nutrition 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 125000005457 triglyceride group Chemical group 0.000 description 1
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 1
- 229940117972 triolein Drugs 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 235000021081 unsaturated fats Nutrition 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 150000003735 xanthophylls Chemical class 0.000 description 1
- 235000008210 xanthophylls Nutrition 0.000 description 1
- 235000010930 zeaxanthin Nutrition 0.000 description 1
- 239000001775 zeaxanthin Substances 0.000 description 1
- 229940043269 zeaxanthin Drugs 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L17/00—Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
- A23L17/60—Edible seaweed
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L13/00—Meat products; Meat meal; Preparation or treatment thereof
- A23L13/40—Meat products; Meat meal; Preparation or treatment thereof containing additives
- A23L13/42—Additives other than enzymes or microorganisms in meat products or meat meals
- A23L13/424—Addition of non-meat animal protein material, e.g. blood, egg, dairy products, fish; Proteins from microorganisms, yeasts or fungi
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L15/00—Egg products; Preparation or treatment thereof
- A23L15/30—Addition of substances other than those covered by A23L15/20 – A23L15/25
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/52—Adding ingredients
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L23/00—Soups; Sauces; Preparation or treatment thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/60—Salad dressings; Mayonnaise; Ketchup
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/115—Fatty acids or derivatives thereof; Fats or oils
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/20—Reducing nutritive value; Dietetic products with reduced nutritive value
- A23L33/21—Addition of substantially indigestible substances, e.g. dietary fibres
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L7/00—Cereal-derived products; Malt products; Preparation or treatment thereof
- A23L7/10—Cereal-derived products
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L7/00—Cereal-derived products; Malt products; Preparation or treatment thereof
- A23L7/10—Cereal-derived products
- A23L7/117—Flakes or other shapes of ready-to-eat type; Semi-finished or partly-finished products therefor
- A23L7/126—Snacks or the like obtained by binding, shaping or compacting together cereal grains or cereal pieces, e.g. cereal bars
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L7/00—Cereal-derived products; Malt products; Preparation or treatment thereof
- A23L7/10—Cereal-derived products
- A23L7/117—Flakes or other shapes of ready-to-eat type; Semi-finished or partly-finished products therefor
- A23L7/13—Snacks or the like obtained by oil frying of a formed cereal dough
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
Definitions
- the invention resides in the fields of microbiology, food preparation, and human and animal nutrition.
- Algal powders made with algae grown photosynthetically in outdoor ponds or photobioreactors are commercially available but have a deep green color (from the chlorophyll) and a strong, unpleasant taste. When formulated into food products or as nutritional supplements, these algal powders impart a visually unappealing green color to the food product or nutritional supplement and have an unpleasant fishy or seaweed flavor.
- macroalgae such as kelp, purple laver ⁇ Porphyra, used in nori), dulse (Palmaria palmate) and sea lettuce ⁇ Ulva lactuca).
- Microalgae such as Spirulina (Arthrospira platensis) are grown commercially in open ponds (photosynthetically) for use as a nutritional supplement or incorporated in small amounts in smoothies or juice drinks (usually less than 0.5% w/w).
- Other microalgae, including some species of Chlorella are popular in Asian countries as a nutritional supplement.
- DHA docosahexanoic acid
- infant formulas algal oil with high docosahexanoic acid (DHA) content
- DHA is a highly polyunsaturated oil.
- DHA has anti-inflammatory properties and is a well known supplement as well as an additive used in the preparation of foodstuffs.
- DHA is not suitable for cooked foods because it oxidizes with heat treatment.
- DHA is unstable when exposed to oxygen even at room temperature in the presence of antioxidants. The oxidation of DHA results in a fishy taste and unpleasant aroma.
- the present invention includes compositions of microalgae-derived flour from multiple genera, species, and strains of edible microalgae.
- Microalgae used in the invention are free of algal toxins and contain varying levels of primarily monounsaturated triglyceride oil.
- Flours disclosed herein are formulated as free flowing blendable powders, mixed food ingredients, oxidation stabilized, homogenized and micronized, and combinations therein. Flours disclosed herein also form self stabilizing emulsions in slurries with manageable viscosities.
- innovative methods of formulating flours and incorporating them into food compositions are also disclosed.
- the invention also comprises flours with significant digestible protein and unique dietary fiber content and associated water binding, texturizing, and healthy oil delivery attributes. Novel methods of oil and fat replacement using flours of the invention are also disclosed.
- Flours of the invention can be manufactured from edible and inedible heterotrophic fermentation feedstocks, including corn starch, sugar cane, glycerol, and depolymerized cellulose.
- the present invention provides a microalgal flour comprising a homogenate of microalgal biomass containing predominantly or completely lysed cells in the form of a powder comprising at least 16% by dry weight triglyceride oil.
- the average size of particles in the powder is less than 100 ⁇ m. In some embodiments, the average size of particles in the powder is 1-15 ⁇ m.
- the powder is formed by micronizing microalgal biomass to form an emulsion and drying the emulsion.
- the microalgal flour has a moisture content of 10% or less or 5% or less by weight.
- the biomass comprises between 45% and 70% by dry weight triglyceride oil.
- 60%-75% of the triglyceride oil is an 18:1 lipid in a glycerolipid form.
- the triglyceride oil is less than 2% 14:0, 13-16% 16:0, 1-4% 18:0, 64-70% 18:1, 10-16% 18:2, 0.5-2.5% 18:3, and less than 2% oil of a carbon chain length 20 or longer.
- the biomass is between 25%-40% carbohydrates by dry weight.
- the carbohydrate component of the biomass is between 25%-35% dietary fiber and 2%-8% free sugar including sucrose, by dry weight.
- the monosaccharide composition of the dietary fiber component of the biomass is 0.1-4% arabinose, 5-15% mannose, 15-35% galactose, and 50-70% glucose.
- the biomass has between 20-115 ⁇ g/g of total carotenoids, including 20-70 ⁇ g/g lutein.
- the chlorophyll content of the biomass is less than 2 ppm.
- the biomass has 1-8 mg/lOOg total tocopherols, including 2-6 mg/lOOg alpha tocopherol.
- the biomass has 0.05-0.30 mg/g total tocotrienols, including 0.10-0.25 mg/g alpha tocotrienol.
- the microalgal flour is in the form of a food ingredient composition, wherein the microalgal flour is combined with one or more additional edible ingredients that is a grain, fruit, vegetable, protein, herbs, spices, or one or more ingredients for preparation of a salad dressing, egg product, baked good, bread, pasta, sauce, soup, beverage, frozen dessert, butter or spread.
- the microalgal flour is lacking visible oil.
- the microalgal flour further comprises a flow agent.
- the microalgal flour further comprises an antioxidant.
- the biomass is derived from a single strain of microalgae.
- the biomass is derived from an algae that is a species of the genus Chlorella.
- the algae is Chlorella protothecoides .
- the biomass is derived from an algae that is a color mutant with reduced color pigmentation compared to the strain from which it was derived.
- the algal biomass is derived from algae cultured heterotrophically.
- the algal biomass is derived from algae cultured and processed under good manufacturing practice (GMP) conditions.
- the present invention provides a food ingredient composition
- a food ingredient composition comprising or formed by combining (a) at least 0.5% w/w microalgal flour, wherein the microalgal flour is a homogenate containing predominantly or completely lysed microalgal cells in the form of a powder comprising at least 16% by weight triglyceride oil, and (b) at least one other edible ingredient, wherein the food ingredient composition can be converted into a reconstituted food product by addition of a liquid to the food ingredient composition.
- the food ingredient composition is a dry pasta.
- the food ingredient composition can be converted into a reconstituted food product by the addition of liquid followed by baking.
- the reconstituted food product is a liquid food product.
- the food ingredient composition can be converted into the reconstituted food product by a process including subjecting the product of reconstitution to shear forces.
- the average size of particles of microalgal biomass in the liquid food product is between 1 and 15 ⁇ m.
- the reconstituted food product is an emulsion.
- the reconstituted food product is a salad dressing, soup, sauce, beverage, butter or spread.
- the reconstituted food products of the present invention contain no oil or fat other than oil from the microalgal biomass.
- the amount of microalgal flour in the reconstituted food product is 0.25-1 times the weight of oil and/or fat in a conventional food product of the same type as the reconstituted food product.
- the average size of particles of microalgal biomass is less than 100 ⁇ m. In one embodiment, the average size of particles of microalgal biomass is 1-15 ⁇ m.
- the food ingredient composition has a moisture content of 10% or less or 5% or less by weight.
- the microalgal biomass comprises between 45% and 65% by dry weight triglyceride oil.
- 60%-75% of the triglyceride oil is an 18:1 lipid in a glycerolipid form.
- the triglyceride oil of the food ingredient composition is less than 2% 14:0, 13-16% 16:0, 1-4% 18:0, 64-70% 18:1, 10-16% 18:2, 0.5-2.5% 18:3; and less than 2% oil of a carbon chain length 20 or longer.
- the microalgal biomass is between 25% to 40% carbohydrates by dry weight.
- the carbohydrate component of the microalgal biomass is between 25%-35% dietary fiber and 2% to 8% free sugar including sucrose, by dry weight.
- the dietary fiber component of the microalgal biomass is 0.1-4% arabinose, 5-15% mannose, 15- 35% galactose, and 50-70% glucose.
- the microalgal biomass comprises between 20-115 ⁇ g/g of total carotenoids, including 20-70 ⁇ g/g lutein.
- the microalgal biomass comprises less than 2 ppm chlorophyll.
- the microalgal biomass comprises 1-8 mg/lOOg total tocopherols, including 2-6 mg/lOOg alpha tocopherol.
- the microalgal biomass comprises 0.05-0.30 mg/g total tocotrienols, including 0.10-0.25 mg/g alpha tocotrienol.
- the present invention provides a method of making a microalgal flour comprising (a) providing microalgal cells containing at least 16% by dry weight triglyceride oil, (b) disrupting the cells and reducing the particle size to produced an aqueous homogenate, and (c) drying the homogenate to produce microalgal flour comprising at least 16% by dry weight triglyceride oil.
- the method further comprises separating the microalgal cells from culture media before disrupting the cells.
- the disruption is performed using a pressure disrupter, French press, or ball mill.
- the drying is performed using a lyophilizer, drum dryer, flash dryer, spray dryer, or box dryer.
- the method is performed using microalgal cells containing between 50% and 65% by dry weight oil. In some cases, the method further comprises adding a flow agent at any point during the process. In one embodiment, the average size of particles in the flour is less than 100 ⁇ m. In one embodiment, the average size of particles of flour are between 1 and 15 ⁇ m. In some cases, the flour has a moisture content of 10% or less or 5% or less by weight. In some cases, 50%-75% of the oil is an 18:1 lipid in a glycerolipid form. In one embodiment, the oil is less than 2% 14:0, 13-16% 16:0, 1-4% 18:0, 64-70% 18:1, 10-16% 18:2, 0.5-2.5% 18:3, and less than 2% oil of a carbon chain length 20 or longer.
- the method is performed using microalgal cells of a single strain of microalgae.
- the cells are a species of the genus Chlorella.
- the cells are Chlorella protothecoides.
- the cells are of a color mutant strain with reduced color pigmentation compared to the strain from which it was derived.
- the cells are from a heterotrophic culture.
- the cells are disrupted and dried under good manufacturing practice (GMP) conditions.
- GMP good manufacturing practice
- the present invention provides a method of making a food product from microalgal flour, comprising (a) determining an amount of microalgal flour to include in the food product based an amount of oil, fat or eggs in a conventional form of the food product, wherein the microalgal flour is a homogenate of microalgal biomass containing predominantly or completely lysed cells in the form of a powder comprising at least 16% by dry weight triglyceride oil, and (b) combining the amount of microalgal flour with one or more edible ingredients and less than the amount of oil, fat or eggs present in the conventional form of the food product to form the food product from the microalgal flour.
- the food product contains less than 25% oil or fat by weight, excluding microalgal oil contributed by the biomass. In some cases, the food product from microalgal flour contains less than 10% oil or fat by weight, excluding microalgal oil contributed by the biomass. In one embodiment, the food product from microalgal flour is free of oil or fat excluding microalgal oil contributed by the biomass. In some cases, the food product from microalgal flour is free of eggs. In some cases, the food product is free of oil other than microalgal oil contributed by the biomass.
- the present invention further includes novel beverages and raw materials for the manufacture thereof, such beverage and raw materials containing microalgae of various species with varying components.
- Attributes of the microalgal biomass used in the invention include nutrition-providing materials such as carotenoids, dietary fiber, tocotrienols and tocopherols, and varying lipid compositions, particularly low levels of saturated lipids.
- Attributes of the microalgal biomass used in the invention include structural attributes such as improved mouth feel compared to alternative milk products such as soy milk and rice milk.
- the novel beverages provide delivery systems for high nutrition materials found in microalgae.
- the invention provides a new category of finished beverages based on microalgae (such as refrigerated and shelf stable liquids and emulsions) as well as compositions for augmenting properties of current beverages through inclusion of novel microalgae-based materials as ingredients.
- microalgae such as refrigerated and shelf stable liquids and emulsions
- the present invention provides a beverage comprising microalgal biomass containing at least 16% by dry weight triglyceride oil and/or at least 40% by dry protein in the form of a whole cells or a homogenate containing predominantly or completely lysed cells and an edible liquid.
- the beverage is formed by dispersing the microalgal biomass and the edible liquid.
- the microalgal biomass is in the form of a micronized homogenate.
- the average size of particles in the homogenate is less than 100 ⁇ m. In one embodiment, the average size of particles in the homogenate is 1-15 ⁇ m.
- the biomass lacks detectable algal toxins by mass spectrometric analysis.
- the beverage is pasteurized.
- the beverage further comprises an exogenous protein source and/or lactose.
- the exogenous protein source is whey protein.
- the beverage is free of lactose.
- the edible liquid is soy milk, rice milk or almond milk.
- the beverage is selected from the group consisting of a milk, a juice, a smoothie, a nutritional beverage, an egg nog, and a meal replacement beverage.
- the microalgal biomass is 45-75% triglyceride oil by dry weight.
- At least 50% by weight of the triglyceride oil is monounsaturated oil. In one embodiment, at least 50% by weight of the triglyceride oil is an 18:1 lipid and is contained in a glycerolipid form. In some cases, less than 5% by weight of the triglyceride oil is docosahexanoic acid (DHA) (22:6). In some cases, 60%-75% of the triglyceride oil is an 18:1 lipid in a glycerolipid form.
- DHA docosahexanoic acid
- the triglyceride oil is less than 2% 14:0, 13-16% 16:0, 1-4% 18:0, 64-70% 18:1, 10-16% 18:2, 0.5-2.5% 18:3 and less than 2% oil of a carbon chain length 20 or longer.
- the biomass is between 25%-40% carbohydrates by dry weight.
- the carbohydrate component of the biomass is between 25%-35% dietary fiber and 2%-8% free sugar including sucrose, by dry weight.
- the monosaccharide composition of the dietary fiber component of the biomass is 0.1-4% arabinose, 5-15% mannose, 15-35% galactose and 50-70% glucose.
- the biomass has between 20-115 ⁇ g/g of total carotenoids, including 20-70 ⁇ g/g lutein.
- the chlorophyll content of the biomass is less than 2 ppm.
- the biomass has 1-8 mg/lOOg total tocopherols, including 2-6 mg/lOOg alpha tocopherol. In some cases, the biomass has 0.05-0.30 mg/g total tocotrienols, including 0.10-0.25 mg/g alpha tocotrienol.
- the biomass is from microalgae grown heterotrophically. In some cases, the biomass is made under good manufacturing practice conditions. In some cases, the microalgal biomass is derived from a single strain of microalgae. In some embodiments, the microalgae is a species of the genus Chlorella. In one embodiment, the microalgae is a strain of Chlorella protothecoides. In some cases, the biomass is derived from an algae that is a color mutant with reduced color pigmentation compared to the strain from which it was derived. In one embodiment, the microalgae is Chlorella protothecoides 33-55, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA- 10397. In one embodiment, the microalgae is Chlorella protothecoides 25-32, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA- 10396.
- the present invention provides a method of making a beverage comprising combining microalgal biomass in the form of whole cell flakes or powder or a micronized homogenate in the form of a powder having a tri glycerol oil content of at least 25% and an edible liquid to form a beverage.
- the microalgal biomass is first combined with a second edible liquid to form a slurry and the slurry is then combined with the edible liquid to form the beverage.
- the method further comprises adding an exogenous protein source and/or lactose to form the beverage.
- the exogenous protein source is whey protein.
- the method further comprises pasteurizing the beverage.
- the microalgal biomass and the edible liquid are combined together to form a stable dispersion.
- the beverage made by the methods of the invention is selected from the group consisting of a milk, a juice, a smoothie, a nutritional beverage, and a meal replacement beverage.
- the edible liquid is soy milk, rice milk, or almond milk.
- the present invention provides a fermented food product comprising (a) microalgal biomass containing at least 16% by dry weight triglyceride oil and/or at least 40% by dry protein in the form of a whole cells or a homogenate containing predominantly or completely lysed cells, (b) an edible liquid, and (c) a live microbe suitable for use in food products.
- the live microbe is a bacteria culture.
- the edible liquid is a milk.
- the milk is from an animal.
- the milk is from a non-animal source.
- the fermented food product is a yogurt.
- the yogurt is in the form of a liquid beverage.
- the present invention further includes microalgae-containing baked goods with novel properties compared to preexisting products of the same type.
- Methods of formulating and manufacturing these foods to deliver reduced fat, reduced cholesterol, and increased fiber content are disclosed herein.
- Various embodiments include elimination or reduction of eggs, butter, animal fat, and saturated oils in favor of healthy oil-containing microalgae biomass and oils, including the manufacture of foods with lower calories than preexisting products of the same type.
- Methods of producing raw materials for the manufacture of novel processed baked foods and intermediates such as cake and bead mixes are also provided.
- the present invention provides a food product formed by baking a mixture of microalgal biomass having a triglyceride oil content of at least 16% by weight in the form of whole cell flakes or whole cell powder or a homogenate containing predominantly or completely lysed cells, and an edible liquid and at least one other edible ingredient.
- the microalgal biomass is in the form of microalgal flour, which is a homogenate of microalgal biomass containing predominantly or completely lysed cells in powdered form.
- the microalgal flour is a micronized homogenate of microalgal biomass.
- the microalgal biomass is in the form of slurry of the homogenate.
- the biomass lacks detectable algal toxins by mass spectrometric analysis.
- the food product has a water activity (Aw) of between 0.3 and 0.95.
- the food product has at least 1.5 times higher fiber content compared to an otherwise identical conventional food product.
- the food product is selected from the group consisting of a brownie, a cookie, a cake, and cake-like products, crackers, a bread, and snack chips.
- the bread is a pizza crust, a breadstick, brioche, or a biscuit.
- the microalgal biomass is 45-75% triglyceride oil by dry weight.
- At least 50% by weight of the triglyceride oil is monounsaturated oil. In one embodiment, at least 50% by weight of the triglyceride oil is an 18:1 lipid and is contained in a glycerolipid form. In some cases, less than 5% by weight of the triglyceride oil is docosahexanoic acid (DHA) (22:6). In some cases, 60%-75% of the triglyceride oil is an 18:1 lipid in a glycerolipid form.
- DHA docosahexanoic acid
- the triglyceride oil is less than 2% 14:0, 13-16% 16:0, 1-4% 18:0, 64-70% 18:1, 10-16% 18:2, 0.5-2.5% 18:3 and less than 2% oil of a carbon chain length 20 or longer.
- the biomass is between 25%-40% carbohydrates by dry weight.
- the carbohydrate component of the biomass is between 25%-35% dietary fiber and 2%-8% free sugar including sucrose, by dry weight.
- the monosaccharide composition of the dietary fiber component of the biomass is 0.1-3% arabinose, 5-15% mannose, 15-35% galactose and 50-70% glucose.
- the biomass has between 20-115 ⁇ g/g of total carotenoids, including 20-70 ⁇ g/g lutein.
- the chlorophyll content of the biomass is less than 2 ppm.
- the biomass has 1-8 mg/lOOg total tocopherols, including 2-6 mg/lOOg alpha tocopherol. In some cases, the biomass has 0.05-0.30 mg/g total tocotrienols, including 0.10-0.25 mg/g alpha tocotrienol.
- the biomass is from microalgae grown heterotrophically. In some cases, the biomass is made under good manufacturing practice conditions.
- the microalgal biomass is derived from microalgae that is a species of the genus Chlorella. In one embodiment, the microalgae is a strain of Chlorella protothecoides. In some cases, the microalgal biomass is derived from an algae that is a color mutant with reduced color pigmentation compared to the strain from which it was derived. In one embodiment, the microalgae is Chlorella protothecoides 33-55, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA- 10397.
- the microalgae is Chlorella protothecoides 25-32, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA- 10396.
- the present invention provides a food ingredient composition comprising microalgal biomass having a triglyceride oil content of at least 16% by weight in the form of whole cell flakes or whole cell powder or a homogenate containing predominantly or completely lysed cells and at least one other edible ingredient, wherein the food ingredient can be converted to a reconstituted food product by addition of liquid to the food ingredient composition and baking.
- the biomass has a triglyceride oil content 45-75% triglyceride oil by dry weight.
- the biomass comprises at least 40% protein by dry weight, and the protein comprises at least 60% digestible crude protein.
- the present invention provides a method of making a baked product comprising combining microalgal biomass having a triglyceride oil content of at least 25% by weight in the form of whole cell flakes or whole cell powder or a micronized homogenate in powder form, an edible liquid and at least one other edible ingredient, and baking the mixture.
- the baked product is a brownie, a cookie, a cake, a bread, a pizza crust, a breadstick, a cracker, a biscuit, pie crusts or snack chips.
- the microalgal biomass is not combined with an edible liquid or other edible ingredient that is predominantly fat, oil, or egg.
- the present invention provides a food product comprising microalgal biomass having a triglyceride oil content of at least 10% by weight in the form of whole cell flakes or whole cell powder or a homogenate containing predominantly or completely lysed cells, and an edible liquid and a flour.
- the food product further comprises a leavening agent.
- the leavening agent is a chemical leavener.
- the leavening agent is a biological leavener.
- the microalgal biomass comprises between 45% and 70% by dry weight triglyceride oil.
- the microalgal biomass comprises at least 40% protein.
- the present invention further includes foods containing microalgae biomass with high levels of lipid.
- foods include sauces, dressings, spreads, mayonnaise, and other edible materials that contain microalgae, where the edible materials are traditionally associated with delivery of saturated fats and oils.
- microalgae-containing foods with reduced caloric load compared to traditional foods of the same type, and in various embodiments the novel foods have similar or identical organoleptic properties as full-fat versions of the foods.
- methods of formulating and manufacturing the novel foods and for manufacturing microalgae-based intermediates for manufacturing the same can be manufactured using existing fermentation and food processing equipment, and can replace existing food products with healthier microalgae-derived food that have desirable structural and organoleptic properties.
- the present invention provides a food or food ingredient composition containing at least 10% by weight of a homogenate of microalgal biomass containing predominantly or completely lysed cells comprising at least 16% by dry weight triglyceride oil emulsified in an edible liquid.
- the composition is a sauce, a mayonnaise, a soup, or a dressing.
- the composition is free of oil and fat except for oil in the microalgal biomass.
- the composition contains less than 25% oil or fat by weight excluding oil contributed by the biomass.
- the composition contains less than 10% oil or fat by weight excluding oil contributed by the biomass.
- the composition is an oil in water emulsion.
- the composition is a water in oil emulsion.
- the biomass lacks detectable levels of algal toxins by mass spectrometric analysis.
- the microalgal biomass is 45-75% triglyceride oil by dry weight.
- at least 50% by weight of the triglyceride oil is monounsaturated oil.
- at least 50% by weight of the triglyceride oil is an 18: 1 lipid and is contained in a glycerolipid form.
- less than 5% by weight of the triglyceride oil is docosahexanoic acid (DHA) (22:6).
- DHA docosahexanoic acid
- 60%-75% of the triglyceride oil is an 18:1 lipid in a glycerolipid form.
- the triglyceride oil is less than 2% 14:0, 13-16% 16:0, 1-4% 18:0, 64-70% 18:1, 10-16% 18:2, 0.5-2.5% 18:3 and less than 2% oil of a carbon chain length 20 or longer.
- the biomass is between 25%-40% carbohydrates by dry weight.
- the carbohydrate component of the biomass is between 25%-35% dietary fiber and 2%-8% free sugar including sucrose, by dry weight.
- the monosaccharide composition of the dietary fiber component of the biomass is 0.1-4% arabinose, 5-15% mannose, 15-35% galactose and 50-70% glucose.
- the biomass has between 20-115 ⁇ g/g of total carotenoids, including 20-70 ⁇ g/g lutein. In one embodiment, the chlorophyll content of the biomass is less than 2 ppm. In some cases, the biomass has 1-8 mg/lOOg total tocopherols, including 2-6 mg/lOOg alpha tocopherol. In some embodiments, the biomass has 0.05-0.30 mg/g total tocotrienols, including 0.10-0.25 mg/g alpha tocotrienol.
- the biomass is from microalgae grown heterotrophically. In some cases, the biomass is made under good manufacturing process conditions. In some cases, the microalgal biomass is derived from microalgae that is a species of the genus Chlorella, the genus Prototheca, or the genus Parachlorella. In some embodiments, the microalgae is a species of the genus Chlorella. In one embodiment, the microalgae is a strain of Chlorella protothecoides . In one embodiment, the microalgae is Chlorella protothecoides 33-55, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA-10397. In one embodiment, the microalgae is Chlorella protothecoides 25- 32, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA-10396.
- the present invention provides a slurry formed by dispersing algal flour, which is a homogenate of microalgal biomass containing predominantly or completely lysed cells comprising at least 16% by dry weight triglyceride oil in powder form in an aqueous solution, wherein the algal flour constitutes 10-50% by weight of the slurry.
- the biomass has an oil content of 5-55% triglyceride oil by dry weight.
- the biomass comprises at least 40% protein by dry weight, and the protein comprises at least 60% digestible crude protein.
- the present invention provides a method of making food product including microalgal biomass, comprising (a) determining an amount of microalgal biomass to include in the food product based an amount of oil, fat or eggs in a conventional form of the food product, wherein the microalgal biomass comprises at least 16% by dry weight triglyceride oil, and (b) combining the amount of microalgal biomass with one or more edible ingredients and less than the amount of oil, fat or eggs present in the conventional form of the food product to form the food product including microalgal biomass.
- the food product including microalgal flour contains less than 10% oil or fat by weight, excluding microalgal oil contributed by the biomass.
- the food product including microalgal flour is free of food ingredients constituting predominantly oil or fat, excluding microalgal oil contributed by the biomass. In some cases, the food product including microalgal flour is free of eggs. In some embodiments, the food product is free of oil other than microalgal oil contributed by the biomass. In some cases, the amount of microalgal biomass is 25-100% by weight or volume of the oil or fat in the conventional recipe.
- the present invention provides a method of making a low fat food comprising combining algal biomass comprising at least 16% by dry weight triglyceride oil with one or more other edible ingredients, wherein at least one of the edible ingredients is depleted in a natural fat or oil.
- the edible ingredient depleted in a natural fat or oil is an egg white.
- the edible ingredient depleted in a natural fat or oil is a dairy product depleted in fat.
- the dairy product is reduced or fat- free milk.
- the present invention provides a method of making a low fat food comprising combining algal biomass comprising at least 16% by dry weight triglyceride oil with one or more other edible ingredients to form the low fat food product, wherein the low fat food product has no more than 10% oil or fat, excluding microalgal oil.
- the one or more edible ingredients with which the algal biomass is combined do not include an ingredient constituting predominantly oil, fat or egg.
- the present invention further includes compositions and methods relating to the creation of food products based on eggs, wherein the productions contain various raw materials made from microalgae in different forms. Some forms include high levels of monounsaturated oil, dietary fiber, carotenoids, and digestible crude protein. Provided herein are methods and compositions for enhancing food stability at elevated temperature during extended periods of storage in hydrated egg products.
- the microalgae-derived materials are provided as dry or hydrated homogenates made from heterotrophically produced microalgae of varying genera, species and strain. Weight/weight levels of saturated fats and cholesterol are reduced in egg products of the invention, while dietary fiber is increased.
- Blends of liquid or dried egg with liquid or dried algae are provided, as well as methods of manufacturing and formulating the blends.
- Unique combinations of egg whites and microalgae are also provided for manufacture of very low cholesterol egg products.
- the textural characteristics of powdered eggs are altered to be more like the textural characteristics of liquid eggs through the inclusion of dietary fiber and other moisture-retaining properties of microalgal biomass.
- the present invention provides a food ingredient composition
- a food ingredient composition comprising a dried egg product and algal flour, which is a homogenate of microalgal biomass containing predominantly or completely lysed cells in the form of a powder comprising at least 16% by dry weight triglyceride oil, for formulation of a food product on addition of a liquid and optionally other edible ingredients.
- the dried egg product is dried whole eggs.
- the dried egg product is dried egg whites.
- the dried egg product is dried egg yokes.
- the food ingredient composition is a powdered egg product, or a pancake or waffle mix.
- the algal flour is formed by micronizing microalgal biomass to form an emulsion and drying the emulsion.
- the average size of particles in the algal flour is less than 100 ⁇ m. In one embodiment, the average size of particles in the algal flour is 1-15 ⁇ m.
- the biomass is made under good manufacturing practice conditions. In some cases, the biomass lacks detectable algal toxins by mass spectrometric analysis.
- the microalgal biomass is 45-75% triglyceride oil by dry weight. In one embodiment, at least 50% by weight of the triglyceride oil is monounsaturated oil. In one embodiment, at least 50% by weight of the triglyceride oil is an 18:1 lipid and is contained in a glycerolipid form. In one embodiment, less than 5% by weight of the triglyceride oil is docosahexanoic acid (DHA) (22:6). In some cases, 60%-75% of the triglyceride oil is an 18:1 lipid in a glycerolipid form.
- DHA docosahexanoic acid
- the triglyceride oil is less than 2% 14:0, 13-16% 16:0, 1-4% 18:0, 64-70% 18:1, 10-16% 18:2, 0.5-2.5% 18:3 and less than 2% oil of a carbon chain length 20 or longer.
- the biomass is between 25%-40% carbohydrates by dry weight.
- the carbohydrate component of the biomass is between 25%-35% dietary fiber and 2%-8% free sugar including sucrose, by dry weight.
- the monosaccharide composition of the dietary fiber component of the biomass is 0.1-3% arabinose, 5-15% mannose, 15-35% galactose and 50-70% glucose.
- the biomass has between 20-115 ⁇ g/g of total carotenoids, including 20-70 ⁇ g/g lutein. In one embodiment, the chlorophyll content of the biomass is less than 2 ppm. In some cases, the biomass has 1-8 mg/lOOg total tocopherols, including 2-6 mg/lOOg alpha tocopherol. In some cases, the biomass has 0.05-0.30 mg/g total tocotrienols, including 0.10-0.25 mg/g alpha tocotrienol.
- the biomass is from microalgae grown heterotrophically.
- the microalgal biomass is derived from microalgae that is a species of the genus Chlorella.
- the microalgae is a strain of Chlorella protothecoides.
- the microalgal biomass is derived from a single strain of microalgae.
- the microalgal biomass is derived from an algae that is a color mutant with reduced color pigmentation compared to the strain from which it was derived.
- the microalgae is Chlorella protothecoides 33-55, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA-10397.
- the microalgae is Chlorella protothecoides 25-32, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA- 10396.
- the present invention provides a food ingredient composition formed by combining an egg product and algal flour, which is a homogenate of microalgal biomass containing predominantly or completely lysed cells in the form of a powder comprising at least 16% by dry weight triglyceride oil, for formulation of a food product on addition of a liquid and optionally other edible ingredients.
- the food ingredient composition is a pasta.
- the present invention provides a food ingredient composition
- a food ingredient composition comprising a liquid egg product and an algal flour slurry, wherein the algal flour is a homogenate of microalgal biomass containing predominantly or completely lysed cells in the form of a powder comprising at least 16% by dry weight triglyceride oil.
- the liquid egg product is liquid whole eggs, liquid egg whites, liquid egg yolks and liquid egg substitute.
- the food ingredient composition is for formulation of a scrambled egg product when heated.
- the present invention provides a method of preparing a food product comprising combining a food ingredient comprising a dried egg product and microalgal flour, which is a homogenate of microalgal biomass containing predominantly or completely lysed cells in the form of a powder comprising at least 16% by dry weight triglyceride oil, with a liquid and optionally other edible ingredients and cooking.
- the food product is a powdered egg product, or a pancake or waffle mix.
- the present invention provides a method of preparing a food ingredient composition comprising providing a homogenate of microalgal biomass containing predominantly or completely lysed cells and at least 16% by dry weight triglyceride oil and a liquid egg product and drying the homogenate and egg product together to provide the food ingredient composition.
- the method further comprises micronizing algal biomass to provide the homogenate.
- the food ingredient composition is for formulation as a scrambled egg product when heated.
- the present invention provides a food composition formed by combining an egg product and microalgal flour or a slurry of microalgal flour, and at least one other edible ingredient and heating, wherein microalgal flour is a homogenate of microalgal biomass containing predominantly or completely lysed cells in the form of a powder comprising at least 16% by dry weight triglyceride oil.
- the egg product is a liquid egg product.
- the liquid egg product is liquid whole eggs, liquid egg yolks, liquid egg whites or liquid egg substitute.
- the egg product is a dried egg product.
- the dried egg product is dried whole eggs, dried egg yolks or dried egg whites.
- the at least one other edible ingredient includes an edible liquid.
- the food composition is scrambled eggs.
- the present invention provides a food ingredient composition
- a food ingredient composition comprising an egg product and algal flour, which is a homogenate of microalgal biomass containing predominantly or completely lysed cells in the form of a powder comprising no more than 20% by dry weight triglyceride oil and at least 40% by dry weight protein, for formulation of a food product on addition of an edible liquid and optionally other edible ingredients.
- the present invention further includes unique and novel strains of microalgae that have been subjected to non-trans genie methods of mutation sufficient to reduce the coloration of biomass produced by the strains.
- Biomass produced from such strains can be used in the manufacture of baked goods, gluten free foods, beverages, high lipid algal flours, and other foods.
- Pigments such as carotenoids and chlorophyll can be undesirable for consumer acceptance when incorporated into foods such as mayonnaise, yogurt, and white sauces that are not traditionally associated with colors such as yellow, red, orange and green.
- Some pigments, such as chlorophyll can also create undesirable taste profiles.
- Use of reduced pigment microalgal biomass expands the range of food products that can be manufactured with healthy lipid profiles.
- High protein containing biomass of the invention also reduced in pigmentation, is also incorporated into products such as meat analogues, nutritional bars and meal replacement beverages.
- the reduced pigmentation microalgae also allow for incorporation of higher amounts of biomass into certain food products that could otherwise be achieved using highly pigmented microalgal biomass. Methods of generating novel reduced pigment microalgae are disclosed herein.
- the strains provided by the invention are also useful in the manufacture of healthy, neutral colored extracted triglyceride oils.
- the present invention provides a food composition comprising at least 0.1% w/w microalgal biomass and one or more other edible ingredients, wherein the microalgal biomass comprises at least 16% triglyceride oil by dry weight and the microalgal strain providing the biomass is a color mutant with reduced color pigmentation compared to the strain from which it was derived.
- the microalgal strain providing the biomass has reduced coloration compared with Chlorella protothecoides when grown under comparable conditions.
- the microalgal strain is Chlorella protothecoides 33-55, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA-10397.
- the microalgal strain is Chlorella protothecoides 25-32, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA- 10396.
- the microalgal strain providing the biomass has been grown and processed under good manufacturing process (GMP) conditions.
- the food composition is selected from the group consisting of a salad dressing, an egg product, a baked good, a bread, a bar, a pasta, a sauce, a soup drink, a beverage, a frozen dessert, a dough, a butter substitute or a spread.
- the one or more edible ingredients is selected from the group consisting of a grain, fruit, vegetable, protein, herb or spice.
- the food composition further comprises a food- compatible preservative.
- the present invention provides a food composition comprising at least 0.1% w/w microalgal biomass and one or more other edible ingredients, wherein the microalgal biomass comprises at least 40% protein by dry weight and is prepared from a microalgal strain that is a color mutant with reduced color pigmentation compared to the strain from which it was derived.
- the microalgal strain is Chlorella protothecoides 33-55, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA-10397.
- the microalgal strain is Chlorella protothecoides 25-32, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA- 10396.
- the present invention provides a method of providing a microalgal strain suitable for food production, comprising (a) mutagenizing a microalgal strain, (b) identifying a mutagenized colony having reduced coloration relative to the original strain when grown under the same conditions; and (c) culturing the mutagenized strain under conditions to give a triglyceride oil content of at least 25% by dry weight and/or a protein content of at least 40% by dry weight of cells.
- the method further comprises harvesting the cultured cells and drum-drying the microalgal biomass.
- the dried microalgal biomass comprises less than 5 mcg/g total carotenoids.
- the dried microalgal biomass comprises less than 2 mcg/g total carotenoids.
- the dried microalgal biomass comprises less than 1.1 mcg/g total carotenoids.
- the method is performed with a microalgal strain that is a species of the genus Chlorella.
- the microalgal strain is Chlorella protothecoides.
- the mutagenized strain is cultured heterotrophically.
- the mutagenized strain is capable of heterotrophic growth.
- the microalgal strain is Chlorella protothecoides 33-55, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA-10397.
- the microalgal strain is Chlorella protothecoides 25-32, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA- 10396.
- the present invention provides a method of formulating a food product comprising combining microalgal biomass and one or more other edible ingredients, wherein the microalgal biomass comprises at least 16% triglyceride oil by dry weight and/or at least 40% protein by dry weight and the microalgal biomass has reduced coloration compared with biomass of Chlorella protothecoides grown under the same conditions.
- the food product is selected from the group consisting of a salad dressing, an egg product, a baked good, a bread, a bar, a pasta, a sauce, a soup drink, a beverage, a frozen dessert,a dough, a butter substitute or a spread.
- the present invention provides a food ingredient composition
- a food ingredient composition comprising a homogenate of microalgal biomass containing predominantly or completely lysed cells in the form of a powder comprising at least 10% dry weight triglyceride oil and the microalgal strain providing the biomass is a color mutant with reduced color pigmentation compared to the strain from which it was derived.
- the microalgal strain has been grown and processed under good manufacturing process (GMP) conditions.
- the microalgal biomass is derived from algae cultured heterotrophically.
- the microalgal biomass comprises between 45% and 70% by dry weight oil.
- the microalgal biomass comprises at least 40% protein by dry weight.
- the food ingredient composition further comprises an antioxidant. In some cases, the food ingredient composition further comprises a flow agent. [0066] In some embodiments, the food composition comprises biomass from a microalgal strain that is a microalgal species in the genus Chlorella. In one embodiment, the microalgal strain is Chlorella protothecoides. In one embodiment, the microalgal strain is Chlorella protothecoides 33-55, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA-10397. In one embodiment, the microalgal strain is Chlorella protothecoides 25-32, deposited on October 13, 2009 at the American Type Culture Collection under deposit designation PTA- 10396.
- the present invention further includes microalgae-containing gluten-reduced and gluten- free finished food compositions, as well as microalgae-containing food ingredients for the large-scale manufacture of gluten-reduced and gluten- free foods.
- Foods and ingredients of the invention while reducing or eliminating gluten, also have increased health benefits through reduction or elimination of less healthy oils and fats via replacement of primarily monounsaturated algal oils.
- the novel food compositions also possess more desirable sensory properties and shelf life than previously existing gluten free foods.
- the present invention provides a food product formed by combination of microalgal biomass comprising at least 16% triglyceride oil by dry weight and at least one other gluten- free flour or gluten- free grain product.
- the gluten- free flour or gluten- free grain product comprises at least one of the following: amaranth flour, arrow root flour, buckwheat flour, rice flour, chickpea flour, cornmeal, maize flour, millet flour, potato flour, potato starch flour, quinoa flour, sorghum flour, soy flour, bean flour, legume flour, tapioca (cassava) flour, teff flour, artichoke flour, almond flour, acorn flour, coconut flour, chestnut flour, corn flour and taro flour.
- the food product is formed with microalgal biomass in the form of microalgal flakes, algal powder, or a microalgal flour, which is a homogenate of microalgal biomass containing predominantly or completely lysed cells in powder form, or a slurry formed by dispersing the flour in an edible liquid.
- the microalgal biomass is predominantly lysed cells.
- the microalgal biomass is a microalgal flour.
- the microalgal flour has an average particle size of between 1 and 100 ⁇ m.
- the triglyceride oil is less than 2% 14:0, 13-16% 16:0, 1-4% 18:0, 64-70% 18:1, 10-16% 18:2, 0.5-2.5% 18:3, and less than 2% oil of a carbon chain length 20 or longer.
- the microalgal biomass has between 25-40% carbohydrates by dry weight.
- the carbohydrate component of the biomass is between 25-35% dietary fiber and 2% to 8% free sugar including sucrose by dry weight.
- the monosaccharide composition of the dietary fiber component of the biomass is 0.1-4% arabinose, 5-15% mannose, 15-35% galactose and 50-70% glucose.
- the microalgal biomass has between 20-115 ⁇ g/g of total carotenoids, including 20-70 ⁇ g/g lutein.
- the chlorophyll content of the microalgal biomass is less than 200 ppm. In one embodiment, the chlorophyll content of the microalgal biomass is less than 2 ppm.
- the biomass has 1-8 mg/lOOg total tocopherols, including 2-6 mg/100 alpha tocopherol.
- the biomass has 0.05-0.30 mg/g total tocotrienols, including 0.10-0.25 mg/g alpha tocotrienol.
- the triglyceride oil is less than 5% docosahexanoic acid (DHA) (22:6) by dry weight.
- DHA docosahexanoic acid
- the microalgal biomass is in the form of microalgal flour and the flour lacks visible oil.
- the microalgal biomass is in the form of microalgal flour and further comprises a flow agent.
- the microalgal biomass is in the form of microalgal flour and the flour further comprises an antioxidant.
- the microalgal biomass is derived from no more than a single strain of microalgae.
- the microalgal biomass is derived from an microalgae that is a species of the genus Chlorella.
- the microalgae is Chlorella protothecoides.
- the microalgal biomass is derived from a microalgae that is a color mutant with reduced color pigmentation compared to the strain from which it was derived. In some cases, the microalgal biomass is derived from microalgae culture heterotrophically. In some cases, the microalgal biomass is derived from algae cultured and processed under good manufacturing practice (GMP) conditions.
- GMP good manufacturing practice
- the food product is a baked good, bread, cereal, cracker or pasta. In some embodiments, the baked good is selected from the group consisting of brownies, cakes, and cake-like products, and cookies. In one embodiment, the food product is gluten-free. In some cases, a food-compatible preservative is added to the microalgal biomass.
- the food product is free of oil or fat excluding algal oil contributed by the microalgal biomass. In some cases, the food product is free of egg yolks. In some embodiments, the microalgal biomass has about 0.5% to 1.2% w/w algal phospholipids. In some cases, the phospholipids comprise a combination of phosphotidyl choline, phosphatidyl ethanolamine, and phosphatidylinositol. In one embodiment, the food product is an uncooked product. In one embodiment, the food product is a cooked product.
- the present invention provides a gluten-free flour composition
- a microalgal flour and at least one other gluten- free flour other than microalgal flour
- the microalgal flour comprises a homogenate of microalgal biomass containing predominantly or completely lysed cells in the form of a powder and contains at least 16% by dry weight triglyceride oil.
- the at least one other gluten-free flour is selected from the group consisting of amaranth flour, arrow root flour, buckwheat flour, rice flour, chickpea flour, cornmeal, maize flour, millet flour, potato flour, potato starch flour, quinoa flour, sorghum flour, soy flour, bean flour, legume flour, tapioca (cassava) flour, teff flour, artichoke flour, almond flour, acorn flour, coconut flour, chestnut flour, corn flour and taro flour.
- the average size of particles of biomass in the microalgal flour is between 1 and 100 ⁇ m.
- the microalgal flour has a moisture content of 10% or less or 5% or less by weight.
- the microalgal biomass has between 45% and 70% by dry weight triglyceride oil.
- 60-75% of the oil is an 18:1 lipid in a glycerolipid form.
- the oil is less than 2% 14:0, 13-16% 16:0, 1-4% 18:0, 64-70% 18:1, 10-16% 18:2, 0.5-2.5% 18:3 and less than 2% oil of a carbon chain length 20 or longer.
- the gluten-free flour composition comprises microalgal biomass that is between 25% to 40% carbohydrates by dry weight.
- the carbohydrate component of the microalgal biomass is between 25-35% dietary fiber and 2% to 8% free sugar including sucrose, by dry weight.
- the monosaccharide composition of the dietary fiber component of the biomass is 0.1-4% arabinose, 5-15% mannose, 15-35% galactose and 50-70% glucose.
- the microalgal biomass has between 20-115 ⁇ g/g of total carotenoids, including 20-70 ⁇ g/g lutein.
- the chlorophyll content of the microalgal biomass is less than 200 ppm.
- the chlorophyll content of the microalgal biomass is less than 2 ppm.
- the microalgal biomass has 1-8 mg/lOOg total tocopherols, including 2-6 mg/lOOg alpha tocopherol.
- the microalgal biomass has 0.05-0.30 mg/g total tocotrienols, including 0.10-0.25 mg/g alpha tocotrienol.
- the microalgal flour is lacking visible oil.
- the gluten-free flour further comprises a flow agent.
- the gluten-free flour further comprises an antioxidant.
- the microalgal biomass is derived from no more than a single strain of microalgae.
- the microalgal biomass is derived from an algae that is a species of the genus Chlorella.
- the algae is Chlorella protothecoid.es.
- the microalgal biomass is derived from an algae that is a color mutant with reduced color pigmentation compared to the strain from which it was derived.
- the microalgal biomass is derived from algae cultured heterotrophically.
- the microalgae biomass is derived from algae cultured and processed under good manufacturing practice (GMP) conditions.
- GMP good manufacturing practice
- the present invention provides a method of reducing the symptoms of gluten intolerance comprising (a) substituting a gluten-containing food product in the diet of a subject having gluten intolerance with a food product of the same type produced by combining microalgal biomass comprising at least 16% triglyceride oil by dry mass and at least one other gluten-free food ingredient, wherein the food product of the same type is gluten free, and (b) providing the food product of the same type to a subject with gluten intolerance, whereby at least one symptom of gluten intolerance is reduced in the subject.
- the present invention provides a method of making a gluten-free food product comprising combining microalgal biomass comprising at least 16% dry weight triglyceride oil with at least one other edible gluten- free ingredient to make the food product.
- the microalgal biomass has between 45% and 70% oil by dry weight.
- 60%-75% of the oil is an 18:1 lipid in a glycerolipid form.
- the triglyceride oil is less than 2% 14:0, 13-16% 16:0, 1-4% 18:0, 64-70% 18:1, 10-16% 18:2, 0.5-2.5% 18:3 and less than 2% oil of a carbon chain length 20 or longer.
- the microalgal biomass is derived from no more than a single strain of microalgae.
- the microalgal biomass is derived from an algae that is a species of the genus Chlorella.
- the algae is Chlorella protothecoides.
- the microalgal biomass is derived from algae cultured heterotrophically.
- the microalgal biomass is derived from algae cultured and processed under good manufacturing practice (GMP) conditions.
- the present invention further includes methods of inducing satiety by providing microalgae-based foods.
- microalgal biomass contains high levels of dietary fiber and/or digestible crude protein and/or low saturation triglyceride oil. Homogenization methods to liberate free oil and fiber are disclosed for enhancing the feeling of satiety in a human, thereby reducing caloric intake. The provision of such materials to a human have the further benefit of providing heart-healthy microalgae-based ingredients while achieving levels of satiety sufficient to reduce further caloric intake.
- the present invention provides a method of inducing satiety in a human, comprising administering a food product comprising microalgal biomass that is combined with one or more additional edible ingredients, wherein the microalgal biomass comprises at least 16% triglyceride oil by dry weight and at least 10% total dietary fiber by dry weight.
- the microalgal biomass has between 45% and 70% by dry weight oil.
- 60-75% of the triglyceride oil is an 18: 1 lipid in a glycerolipid form.
- the triglyceride oil is less than 2% 14:0, 13-16% 16:0, 1-4% 18:0, 64-70% 18:1, 10-16% 18:2, 0.5-2.5% 18:3 and less than 2% oil of a carbon chain length 20 or longer.
- the microalgal biomass has between 25%-45% carbohydrates by dry weight.
- the carbohydrate component of the microalgal biomass is between 25- 35% dietary fiber and 2-8% free sugar including sucrose, by dry weight.
- the monosaccharide composition of the dietary fiber component of the biomass is 0.1-4% arabinose, 5-15% mannose, 15-35% galactose and 50-70% glucose.
- he microalgal biomass comprises about 20% soluble fiber and about 10% insoluble fiber.
- the dietary fiber to triglyceride oil ratio in the microalgal biomass is about 3:5.
- the microalgal biomass has between 20-115 ⁇ g/g of total carotenoids, including 20-70 ⁇ g/g lutein.
- the chlorophyll content of the microalgal biomass is less than 2 ppm.
- the microalgal biomass has 1-8 mg/lOOg total tocopherols, including 2-6 mg/100g alpha tocopherol.
- the microalgal biomass has 0.05-0.3 mg/g total tocotrienols, including 0.10-0.25 mg/g alpha tocotrienol.
- the one or more additional edible ingredient is selected from the group consisting of a grain, a fruit, vegetable, protein, herbs and spices.
- the food product is selected from the group consisting of egg products, bar, baked goods, breads, pasta, soups, beverages and desserts.
- the food product is a nutritional beverage suitable as a meal replacement.
- the microalgal biomass is lacking visible oil.
- the microalgal biomass is processed into a microalgal flour, which is a homogenate containing predominately or completely lysed cells in the form of a powder.
- the flour further comprises a flow agent.
- the moisture content of the flour is 10% or less by weight.
- the average particle size of microalgal biomass in the flour is between 1 and 100 ⁇ m.
- the flower further comprises an antioxidant.
- the microalgal biomass used in the methods of the present invention is derived from no more than a single strain of microalgae.
- the microalgal biomass is derived from a microalgae that is species of the genus Chlorella.
- the microalgae is Chlorella protothecoides.
- the microalgal biomass is derived from an algae that is a color mutant with reduced color pigmentation compared to the strain from which it is derived.
- the microalgal biomass is derived from algae cultured heterotrophically.
- the microalgal biomass is derived from algae cultured and processed under good manufacturing practice (GMP) conditions.
- GMP good manufacturing practice
- the food product comprises at least 0.5% w/w microalgal biomass.
- the microalgal biomass comprises at least 40% protein by dry weight and no more than 20% triglyceride oil.
- the dietary fiber to protein ratio in the microalgal biomass is about 3:10.
- the microalgal biomass comprises about 10% soluble fiber and about 4% insoluble fiber by dry weight.
- the microalgal biomass has no more than 200 ppm chlorophyll.
- the protein is at least 40% digestible crude protein.
- the microalgal biomass comprises 1 - 3g/100 total sterols.
- the present invention provides a method of inducing satiety, comprising replacing one or more conventional food products in a diet of a subject with one or more microalgae-containing food products of the same type, wherein the microalgae- containing food product(s) of the same type contains microalgal biomass comprising at least 16% triglyceride oil by dry weight and at least 10% total dietary fiber by dry weight, wherein calories consumed by the subject are the same or lower on the replacement diet and the subject has increased satiety.
- the microalgal biomass has 45-70% triglyceride oil.
- the ratio of dietary fiber to triglyceride oil in the microalgal biomass is about 3:5.
- the microalgal biomass further comprises at least 40% protein by dry weight. In some embodiments, the ratio of dietary fiber to protein in the microalgal biomass is about 3:10. In some cases, the microalgae-containing food product comprises at least 0.5% w/w microalgal biomass.
- the conventional food product is selected from the group consisting of egg products, a bar, baked goods, breads, pasta, soups, beverage and dessert. In one embodiment, the beverage is a nutritional beverage suitable as a meal replacement. In some cases, the microalgae-containing food product has the same or reduced oils, fats or eggs when compared to the conventional food product.
- the present invention provides a method of inducing satiety in a subject comprising administering a microalgal food product to the subject, wherein the microalgal food product is comparable to a conventional food product except that some or all of oils, fats, or eggs in the conventional food product are replaced with microalgal biomass comprising at least 16% triglyceride oil by dry weight and at least 10% total dietary fiber by dry weight.
- the present invention further includes microalgal biomass high in protein and fiber, wherein the biomass has been manufactured through heterotrophic fermentation.
- the materials provided herein are useful for the manufacture of meat substitutes and meat enhancers, as well as other food products that benefit from the addition of digestible protein and dietary fiber. Structural properties of foods are enhanced through the use of such materials, including texture and water retention properties.
- High in protein and fiber food materials of the invention can be manufactured from edible and inedible heterotrophic fermentation feedstocks, including corn starch, sugar cane, glycerol, and depolymerized cellulose.
- the present invention provides a microalgal flour, which is a homogenate of microalgal biomass containing predominantly or completely lysed cells in the form of a powder, wherein the algal biomass comprises at least 40% protein by dry weight and less than 20% of triglyceride oil by dry weight and wherein the algal biomass is derived from algae heterotrophically cultured and processed under good manufacturing practice (GMP) conditions.
- GMP good manufacturing practice
- the average size of particles is less than 100 ⁇ m.
- the average size of particles in the powder is 1-15 ⁇ m.
- the powder is formed by micronizing microalgal biomass to form an emulsion and drying the emulsion.
- the microalgal flour has a moisture content of 10% or less by weight.
- the algal biomass comprises at least 20% carbohydrate by dry weight.
- the algal biomass comprises at least 10% dietary fiber by weight.
- the protein is at least 40% digestible crude protein.
- the algal biomass is derived from algae cultured heterotrophically.
- the algal biomass is derived from an algae that is a species of the genus Chlorella.
- the algae is Chlorella protothecoides.
- the algal biomass is derived from no more than a single strain of microalgae.
- the algal biomass lacks detectable amounts of algal toxins.
- the chlorophyll content of the biomass is less than 200 ppm.
- the biomass comprises l-3g/100g total sterols.
- the biomass contains 0.15-0.8 mg/10Og tocopherols, including 0.18-0.35 mg/10Og alpha tocopherol.
- the biomass is derived from an algae that is a color mutant with reduced color pigmentation compared to the strain from which it was derived.
- the microalgal flour further comprises a food compatible preservative.
- the food compatible preservative is an antioxidant.
- the present invention provides a food ingredient comprising the microalgal flour discussed above combined with at least one other protein product that is suitable for human ingestion, wherein the food ingredient contains at least 50% protein by dry weight.
- the at least one other protein product is derived from a vegetarian source.
- the vegetarian source is selected from the group consisting of soy, pea, bean, milk, whey, rice and wheat.
- the microalgal biomass of the food ingredient is derived from an algae that is a species of the genus Chlorella.
- the algae is Chlorella protothecoides.
- the microalgal biomass is derived from algae cultured heterotrophically.
- the microalgal biomass is derived from an algae that is a color mutant with reduced color pigmentation compared to the strain from which it was derived.
- the present invention provides a food composition formed by combining the microalgal flour discussed above with at least one other edible ingredient.
- the food composition is a vegetarian meat substitute, protein bar, or nutritional beverage.
- the present invention provides a food composition formed by combining microalgal biomass comprising at least 40% protein by dry weight and less than 20% of triglyceride oil by dry weight and wherein the algal biomass is derived from algae heterotrophically cultured and processed under good manufacturing practice (GMP) conditions with at least one other edible ingredient.
- the microalgal biomass is in the form of microalgal flakes, algal powder, algal flour, which is a homogenate of microalgal biomass containing predominantly or completely lysed cells in powder form, or a slurry, which is a dispersion of the algal flour in an edible liquid.
- the microalgal biomass is an algal flour or slurry.
- the at least one other edible ingredient is a meat product.
- the food composition is an uncooked product.
- the food composition is a cooked product.
- the present invention provides a method of making a vegetarian meat substitute comprising combining microalgal biomass comprising at least 40% protein by dry weight and less than 20% of triglyceride oil by dry weight and wherein the algal biomass is derived from microalgae heterotrophically cultured and processed under good manufacturing practice (GMP) conditions with at least one other vegetarian protein source.
- GMP good manufacturing practice
- the present invention provides a method of making a comminuted meat product comprising combining a meat product with microalgal biomass comprising at least 40% protein by dry weight and less than 20% of triglyceride oil by dry weight and wherein the algal biomass is derived from microalgae heterotrophically cultured and processed under good manufacturing practice (GMP) conditions.
- GMP good manufacturing practice
- the present invention provides a food composition formed by combining microalgal biomass comprising at least 13% total dietary fiber by weight and at least one edible ingredient.
- the microalgal biomass comprises between 13-
- the microalgal biomass comprises between
- the microalgal biomass comprises between 4-10% insoluble fiber.
- the present invention provides a method of making an algal protein concentrate comprising (a) defatting microalgal biomass comprising at least 40% protein by dry weight, and (b) removing the soluble sugars from the defatted microalgal biomass, whereby an algal protein concentrate is produced.
- the present invention provides an algal protein concentrate produced by the process comprising (a) defatting microalgal biomass comprising at least 40% protein by dry weight, and (b) removing the soluble sugars from the defatted microalgal biomass, whereby an algal protein concentrate is produced.
- the present invention provides an algal protein isolate, wherein the minimum protein content is 90% by dry weight and is produced from microalgal biomass comprising at least 40% protein by dry weight.
- the present invention further includes novel triglyceride oils for human consumption.
- agricultural materials such as canola, soybean, and olives have been the sources of edible oils, and such materials are limited by the geography in which these crops can be cultivated.
- Oils of the invention can be manufactured from edible and inedible heterotrophic fermentation feedstocks, including corn starch, sugar cane, glycerol, and depolymerized cellulose that are purpose-grown or byproducts of existing agricultural processes from an extremely broad diversity of geographic regions.
- the food oils disclosed herein are low in saturates, high in monounsaturates, and can be manufactured in reduced pigment form through the use of pigment-reduced microalgae strains.
- the food oils disclosed herein can be manufactured through the use of a variety of different types of oil-producing microalgae.
- the present invention provides a purified microalgal triglyceride oil suitable for human consumption comprising at least 50% oleic oil and less than 5% DHA, wherein the microalgal oil is lacking in detectable microalgal toxins and is prepared under good manufacturing conditions.
- the triglyceride oil is packaged in a bottle or aerosol spray can that is suitable for use in cooking applications.
- the oil is packaged in a volume greater than 5OmL of oil product.
- the oil is less than 2% 14:0, 13-16% 16:0, 1-4% 18:0, 64-70% 18:1, 10-16% 18:2, 0.5%-2.5% 18:3 and less than 2% oil of a carbon chain length 20 or longer.
- the microalgal oil has been purified from no more than a single strain of microalgae.
- the microalgae is a species from the genus Chlorella.
- the microalgae is Chlorella protothecoides.
- the microalgal triglyceride oil further comprises an added antioxidant.
- the oil has between 40-230 ⁇ g/g of total carotenoids, including 40-70 ⁇ g/g lutein.
- the oil has less than 2 ppm chlorophyll.
- the oil has between 2-16 mg/lOOg total tocopherols, including 4-12 mg/lOOg alpha tocopherol.
- the oil has between 0.10-0.6 mg/g total tocotrienols, including 0.2-0.5 mg/g alpha tocotrienol.
- the present invention provides a food spread comprising the microalgal triglyceride oil of claim 1 and a liquid, wherein the oil and the liquid are formed into a stable emulsion.
- the food spread further comprises an emulsifier.
- the food spread is spreadable at ambient temperature. In some cases, the food spread is spreadable at 5-10 0 C.
- the present invention provides a margarine formed by subjecting purified microalgal triglyceride oil produced under good manufacturing practice conditions to a chemical or enzymatic reaction, whereby the margarine is produced.
- the chemical reaction is hydrogenation.
- the chemical or enzymatic reaction is interesterification with glycerolipids of a different lipid profile from the microalgal triglyceride oil.
- the glycerolipids of a different lipid profile from the microalgal triglyceride oil are from one or more of oils selected from the group consisting of soy, rapeseed, canola, palm, palm kernel, coconut, corn, olive, sunflower, cotton seed, cuphea, peanut, camelina sativa, mustard seed, cashew nut, oats, lupine, kenaf, calendula, hemp, coffee, linseed, hazelnut, euphorbia, pumpkin seed, coriander, camellia, sesame, safflower, rice, tung oil tree, cocoa, copra, pium poppy, castor beans, pecan, jojoba, jatropha, macadamia, Brazil nuts, and avocado.
- oils selected from the group consisting of soy, rapeseed, canola, palm, palm kernel, coconut, corn, olive, sunflower, cotton seed, cuphea, peanut, camelina sativa, mustard seed,
- the present invention provides a purified triglyceride oil suitable for human consumption wherein the oil is purified from microalgae and is predominantly liquid at 4°C, wherein the oil is lacking in detectable microalgal toxins and is prepared under good manufacturing conditions.
- the present invention provides a purified microalgal triglyceride oil that lacks detectable levels of phospholipids and has less than 2 ppm chlorophyll.
- the oil further comprises at least one of the following: (a) approximately 12-13 ppm native tert-butylhydroquinone (TBHQ); (b) 1.34% free fatty acids; (c) less than 0.1% Karl Fischer Moisture; (d) less than 0.1% monoglycerides; (e) less than 3% diglycerides; (f) about 6mg/100g total tocopherols, including about 5.58 mg/lOOg alpha tocopherol; and (g) about 0.24 mg/g total tocotrienols.
- TBHQ native tert-butylhydroquinone
- the present invention provides a method of making microalgal triglyceride oil that is suitable for human consumption, comprising (a) extracting oil from microalgal biomass containing at least 25% triglyceride oil by dry weight, and (b) subjecting the extracted oil to one or more of the following steps: removing free fatty acids; bleaching; and deodorizing, wherein the microalgal biomass is grown and processed under good manufacturing practice (GMP) conditions and wherein the triglyceride oil is less than 2% 14:0, 13-16% 16:0, 1-4% 18:0, 64-70% 18:1, 10-16% 18:2, 0.5%-2.5% 18:3, and less than 2% oil of a carbon chain length 20 or longer.
- GMP good manufacturing practice
- the extracting oil from microalgal biomass is performed at a temperature not exceeding 180 0 F.
- the method is performed under good manufacturing conditions (GMP).
- GMP good manufacturing conditions
- the present invention provides a bulking agent suitable for human consumption comprising delipidated microalgal biomass free of detectable microalgal toxins prepared under good manufacturing conditions.
- the bulking agent is incorporated into a baked good.
- the bulking agent is incorporated into a beverage.
- the present invention provides a food product formed by combining the bulking agent discussed above and at least one other edible ingredient.
- the present invention provides a delipidated microalgal biomass free of detectable microalgal toxins, wherein the microalgal biomass was cultured and processed under good manufacturing conditions.
- the present invention provides an animal food product formed by combining delipidated microalgal biomass and one or more other edible ingredient, wherein the delipidated microalgal biomass constitutes at least 0.1% by dry weight of all ingredients of the animal food product.
- the one or more other edible ingredient include a grain.
- the animal food is formulated for a farm animal.
- Figure 1 shows the lipid profile of selected strains of microalgae as a percentage of total lipid content.
- the species/strain corresponding to each strain number is shown in Table 1 of Example 1.
- Figure 2 shows the amino acid profile of Chlorella protothecoides biomass compared to the amino acid profile of whole egg protein.
- Figure 3 shows the sensory scores of liquid whole egg with and without algal flour held on a steam table for 60 minutes. The appearance, texture and mouthfeel of the eggs were evaluated every 10 minutes.
- Figure 4 shows algal flour (approximately 50% lipid by dry weight) in a water dispersion under light microscopy.
- the arrows point to average-sized, individual algal flour particles, while the larger arrowheads point to algal flour particles that have agglomerated or clumped together after the dispersion was formed.
- Figures 5A-C show size distribution of aqueos resuspended algal flour particles immediately after: (5A) gentle mixing; (5B) homogenized under 300 bar pressure; and (5C) homogenized under 1000 bar pressure.
- Figure 6 shows the results of a senory panel evaluation of a food product contains algal flour, a full-fat control, low-fat control and a non-fat control.
- Section I provides definitions for various terms used herein.
- Section II in parts A-E, describes methods for preparing microalgal biomass, including suitable organisms (A), methods of generating a microalgae strain lacking in or has significantly reduced pigmentation (B) culture conditions (C), concentration conditions (D), and chemical composition of the biomass produced in accordance with the invention (E).
- Section III in parts A-D, describes methods for processing the microalgal biomass into algal flake (A), algal powder (B), algal flour (C); and algal oil (D) of the invention.
- Section IV describes various foods of the invention and methods of combining microalgal biomass with other food ingredients.
- GMP conditions can include adhering to regulations governing: disease control; cleanliness and training of personnel; maintenance and sanitary operation of buildings and facilities; provision of adequate sanitary facilities and accommodations; design, construction, maintenance, and cleanliness of equipment and utensils; provision of appropriate quality control procedures to ensure all reasonable precautions are taken in receiving, inspecting, transporting, segregating, preparing, manufacturing, packaging, and storing food products according to adequate sanitation principles to prevent contamination from any source; and storage and transportation of finished food under conditions that will protect food against physical, chemical, or undesirable microbial contamination, as well as against deterioration of the food and the container.
- Area Percent refers to the area of peaks observed using FAME GC/FID detection methods in which every fatty acid in the sample is converted into a fatty acid methyl ester
- FAME prior to detection. For example, a separate peak is observed for a fatty acid of 14 carbon atoms with no unsaturation (C14:0) compared to any other fatty acid such as C14:l.
- the peak area for each class of FAME is directly proportional to its percent composition in the mixture and is calculated based on the sum of all peaks present in the sample (i.e. [area under specific peak/ total area of all measured peaks] X 100).
- "at least 4% C8-C14” means that at least 4% of the total fatty acids in the cell or in the extracted glycerolipid composition have a chain length that includes 8, 10, 12 or 14 carbon atoms.
- Axenic means a culture of an organism that is not contaminated by other living organisms.
- Baked good means a food item, typically found in a bakery, that is prepared by using an oven and usually contain a leavening agent. Baked goods include, but are not limited to brownies, cookies, pies, cakes and pastries.
- Bioreactor and “fermentor” mean an enclosure or partial enclosure, such as a fermentation tank or vessel, in which cells are cultured typically in suspension.
- Bit means a food item that contains flour, liquid, and usually a leavening agent.
- the leavening agent can be chemical or organic/biological in nature.
- the organic leavening agent is yeast.
- the leavening agent is chemical in nature (such as baking powder and/or baking soda), these food products are referred to as
- Cellulosic material means the products of digestion of cellulose, particularly glucose and xylose. Cellulose digestion typically produces additional compounds such as disaccharides, oligosaccharides, lignin, furfurals and other compounds. Sources of cellulosic material include, for example and without limitation, sugar cane bagasse, sugar beet pulp, corn stover, wood chips, sawdust, and switchgrass. [0133] "Co-culture” and variants thereof such as “co-cultivate” and “co-ferment” mean that two or more types of cells are present in the same bioreactor under culture conditions.
- the two or more types of cells are, for purposes of the present invention, typically both microorganisms, typically both microalgae, but may in some instances include one non- microalgal cell type.
- Culture conditions suitable for co-culture include, in some instances, those that foster growth and/or propagation of the two or more cell types, and, in other instances, those that facilitate growth and/or proliferation of only one, or only a subset, of the two or more cells while maintaining cellular growth for the remainder.
- Cofactor means a molecule, other than the substrate, required for an enzyme to carry out its enzymatic activity.
- Conventional food product means a composition intended for consumption, e.g., by a human, that lacks algal biomass or other algal components and includes ingredients ordinarily associated with the food product, particularly a vegetable oil, animal fat, and/or egg(s), together with other edible ingredients.
- Conventional food products include food products sold in shops and restaurants and those made in the home. Conventional food products are often made by following conventional recipes that specify inclusion of an oil or fat from a non-algal source and/or egg(s) together with other edible ingredient(s).
- Cooked product means a food that has been heated, e.g., in an oven, for a period of time.
- “Creamy salad dressing” means a salad dressing that is a stable dispersion with high viscosity and a slow pour-rate. Generally, creamy salad dressings are opaque.
- “Cultivate,” “culture,” and “ferment”, and variants thereof, mean the intentional fostering of growth and/or propagation of one or more cells, typically microalgae, by use of culture conditions. Intended conditions exclude the growth and/or propagation of microorganisms in nature (without direct human intervention).
- Cytolysis means the lysis of cells in a hypotonic environment. Cytolysis results from osmosis, or movement of water, to the inside of a cell to a state of hyperhydration, such that the cell cannot withstand the osmotic pressure of the water inside, and so bursts.
- Dietary fiber means non-starch carbohydrates found in plants and other organisms containing cell walls, including microalgae. Dietary fiber can be soluble (dissolved in water) or insoluble (not able to be dissolved in water). Soluble and insoluble fiber makes up total dietary fiber.
- Delipidated meal means algal biomass that has undergone an oil extraction process and so contains less oil, relative to the biomass prior to oil extraction. Cells in delipidated meal are predominantly lysed. Delipidated meal include algal biomass that has been solvent (hexane) extracted.
- Digestible crude protein is the portion of protein that is available or can be converted into free nitrogen (amino acids) after digesting with gastric enzymes.
- gastric enzymes such as pepsin and digesting a sample and measuring the free amino acid after digestion.
- In vivo measurement of digestible crude protein is accomplished by measuring the protein levels in a feed/food sample and feeding the sample to an animal and measuring the amount of nitrogen collected in the animal's feces.
- Dry weight and "dry cell weight” mean weight determined in the relative absence of water.
- reference to microalgal biomass as comprising a specified percentage of a particular component by dry weight means that the percentage is calculated based on the weight of the biomass after substantially all water has been removed.
- Edible ingredient means any substance or composition which is fit to be eaten.
- Edible ingredients include, without limitation, grains, fruits, vegetables, proteins, herbs, spices, carbohydrates, and fats.
- Exogenously provided means a molecule provided to a cell (including provided to the media of a cell in culture).
- “Fat” means a lipid or mixture of lipids that is generally solid at ordinary room temperatures and pressures. “Fat” includes, without limitation, lard and butter.
- Fiber means non-starch carbohydrates in the form of polysaccharide. Fiber can be soluble in water or insoluble in water. Many microalgae produce both soluble and insoluble fiber, typically residing in the cell wall.
- Finished food product and “finished food ingredient” mean a food composition that is ready for packaging, use, or consumption.
- a “finished food product” may have been cooked or the ingredients comprising the “finished food product” may have been mixed or otherwise integrated with one another.
- a “finished food ingredient” is typically used in combination with other ingredients to form a food product.
- Fiberd carbon source means molecule(s) containing carbon, typically organic molecules, that are present at ambient temperature and pressure in solid or liquid form.
- Food means any composition intended to be or expected to be ingested by humans as a source of nutrition and/or calories.
- Food compositions are composed primarily of carbohydrates, fats, water and/or proteins and make up substantially all of a person's daily caloric intake.
- a “food composition” can have a weight minimum that is at least ten times the weight of a typical tablet or capsule (typical tablet/capsule weight ranges are from less than or equal to 100 mg up to 1500 mg).
- a “food composition” is not encapsulated or in tablet form.
- Glycerolipid profile means the distribution of different carbon chain lengths and saturation levels of glycerolipids in a particular sample of biomass or oil.
- a sample could have a glycerolipid profile in which approximately 60% of the glycerolipid is C18:l, 20% is C18:0, 15% is C16:0, and 5% is C14:0.
- C: 18 such reference can include any amount of saturation; for example, microalgal biomass that contains 20% (by weight/mass) lipid as C: 18 can include C18:0, C18:l, C18:2, and the like, in equal or varying amounts, the sum of which constitute 20% of the biomass.
- references to percentages of a certain saturation type such as "at least 50% monounsaturated in an 18:1 glycerolipid form” means the aliphatic side chains of the glycerolipids are at least 50% 18:1, but does not necessarily mean that at least 50% of the triglycerides are triolein (three 18:1 chains attached to a single glycerol backbone); such a profile can include glycerolipids with a mixture of 18:1 and other side chains, provided at least 50% of the total side chains are 18:1.
- Good manufacturing practice and “GMP” mean those conditions established by regulations set forth at 21 C.F.R. 110 (for human food) and 11 1 (for dietary supplements), or comparable regulatory schemes established in locales outside the United States.
- the U.S. regulations are promulgated by the U.S. Food and Drug Administration under the authority of the Federal Food, Drug, and Cosmetic Act to regulate manufacturers, processors, and packagers of food products and dietary supplements for human consumption.
- “Growth” means an increase in cell size, total cellular contents, and/or cell mass or weight of an individual cell, including increases in cell weight due to conversion of a fixed carbon source into intracellular oil.
- Homogenate means biomass that has been physically disrupted. Homogenization is a fluid mechanical process that involves the subdivision of particles into smaller and more uniform sizes, forming a dispersion that may be subjected to further processing. Homogenization is used in treatment of several foods and dairy products to improve stability, shelf-life, digestion, and taste.
- “Increased lipid yield” means an increase in the lipid/oil productivity of a microbial culture that can achieved by, for example, increasing the dry weight of cells per liter of culture, increasing the percentage of cells that contain lipid, and/or increasing the overall amount of lipid per liter of culture volume per unit time.
- "In situ” means "in place” or "in its original position”.
- a culture may contain a first microalgal cell type secreting a catalyst and a second microorganism cell type secreting a substrate, wherein the first and second cell types produce the components necessary for a particular chemical reaction to occur in situ in the co-culture without requiring further separation or processing of the materials.
- Lipid means any of a class of molecules that are soluble in nonpolar solvents
- lipid molecules have these properties, because they are largely composed of long hydrocarbon tails that are hydrophobic in nature.
- lipids include fatty acids (saturated and unsaturated); glycerides or glycerolipids (such as monoglycerides, diglycerides, triglycerides or neutral fats, and phosphoglycerides or glycerophospholipids); and nonglycerides (sphingolipids, tocopherols, tocotrienols, sterol lipids including cholesterol and steroid hormones, prenol lipids including terpenoids, fatty alcohols, waxes, and polyketides).
- fatty acids saturated and unsaturated
- glycerides or glycerolipids such as monoglycerides, diglycerides, triglycerides or neutral fats, and phosphoglycerides or glycerophospholipids
- nonglycerides sphingolipids, tocopherols, to
- Lysate means a solution containing the contents of lysed cells.
- Lysis means the breakage of the plasma membrane and optionally the cell wall of a microorganism sufficient to release at least some intracellular content, which is often achieved by mechanical or osmotic mechanisms that compromise its integrity.
- “Lysing” means disrupting the cellular membrane and optionally the cell wall of a biological organism or cell sufficient to release at least some intracellular content.
- Microalgae means a eukarytotic microbial organism that contains a chloroplast, and which may or may not be capable of performing photosynthesis.
- Microalgae include obligate photoautotrophs, which cannot metabolize a fixed carbon source as energy, as well as heterotrophs, which can live solely off of a fixed carbon source, including obligate heterotrophs, which cannot perform photosynthesis.
- Microalgae include unicellular organisms that separate from sister cells shortly after cell division, such as Chlamydomonas, as well as microbes such as, for example, Volvox, which is a simple multicellular photosynthetic microbe of two distinct cell types.
- "Microalgae” also include cells such as
- Chlorella, Parachlorella and Dunaliella Chlorella, Parachlorella and Dunaliella.
- Microalgal biomass means a material produced by growth and/or propagation of microalgal cells. Biomass may contain cells and/or intracellular contents as well as extracellular material. Extracellular material includes, but is not limited to, compounds secreted by a cell.
- Microalgal oil and “algal oil” mean any of the lipid components produced by microalgal cells, including triacylglycerols.
- “Micronized” means biomass that has been homogenized under high pressure (or an equivalent process) so that at least 50% of the particle size (median particle size)is no more 10 ⁇ m in their longest dimension or diameter of a sphere of equivalent volume. Typically, at least 50% to 90% or more of such particles are less than 5 ⁇ m in their longest dimension or diameter of a sphere of equivalent volume. In any case, the average particle size of micronized biomass is smaller than the intact microalgal cell.
- the particle sizes referred to are those resulting from the homogenization and are preferably measured as soon as practical after homogenization has occurred and before drying to avoid possible distortions caused by clumping of particles as may occur in the course of drying.
- Some techniques of measuring particle size such as laser diffraction, detect the size of clumped particles rather individual particles and may show a larger apparent particle size (e.g., average particle size of 1-100 ⁇ m) after drying. Because the particles are typically approximately spherical in shape, the diameter of a sphere of equivalent volume and the longest dimension of a particle are approximately the same.
- Nutritional supplement means a composition intended to supplement the diet by providing specific nutrients as opposed to bulk calories.
- a nutritional supplement may contain any one or more of the following ingredients: a vitamin, a mineral, an herb, an amino acid, an essential fatty acid, and other substances.
- Nutritional supplements are typically tableted or encapsulated. A single tableted or encapsulated nutritional supplement is typically ingested at a level no greater than 15 grams per day.
- Nutritional supplements can be provided in ready-to-mix sachets that can be mixed with food compositions, such as yogurt or a "smoothie", to supplement the diet, and are typically ingested at a level of no more than 25 grams per day.
- Oil means any triacylglyceride (or triglyceride oil), produced by organisms, including microalgae, other plants, and/or animals. "Oil,” as distinguished from “fat”, refers, unless otherwise indicated, to lipids that are generally liquid at ordinary room temperatures and pressures.
- oil includes vegetable or seed oils derived from plants, including without limitation, an oil derived from soy, rapeseed, canola, palm, palm kernel, coconut, corn, olive, sunflower, cotton seed, cuphea, peanut, camelina sativa, mustard seed, cashew nut, oats, lupine, kenaf, calendula, hemp, coffee, linseed, hazelnut, euphorbia, pumpkin seed, coriander, camellia, sesame, safflower, rice, rung oil tree, cocoa, copra, pium poppy, castor beans, pecan, jojoba, jatropha, macadamia, Brazil nuts, and avocado, as well as combinations thereof.
- Oil includes vegetable or seed oils derived from plants, including without limitation, an oil derived from soy, rapeseed, canola, palm, palm kernel, coconut, corn, olive, sunflower, cotton seed, cuphea, peanut, camelina sativa, mustard seed, cashew
- Pasteurization means a process of heating which is intended to slow microbial growth in food products. Typically pasteurization is performed at a high temperature (but below boiling) for a short amount of time. As described herein, pasteurization can not only reduce the number of undesired microbes in food products, but can also inactivate certain enzymes present in the food product.
- Polysaccharide and “glycan” means any carbohydrate made of monosaccharides joined together by glycosidic linkages.
- Cellulose is an example of a polysaccharide that makes up certain plant cell walls.
- Port means an opening in a bioreactor that allows influx or efflux of materials such as gases, liquids, and cells; a port is usually connected to tubing.
- Predominantly encapsulated means that more than 50% and typically more than
- a referenced component e.g., algal oil
- a referenced container which can include, e.g., a microalgal cell.
- Predominantly intact cells and “predominantly intact biomass” mean a population of cells that comprise more than 50, and often more than 75, 90, and 98% intact cells.
- “Intact”, in this context, means that the physical continuity of the cellular membrane and/or cell wall enclosing the intracellular components of the cell has not been disrupted in any manner that would release the intracellular components of the cell to an extent that exceeds the permeability of the cellular membrane in culture.
- Predominantly lysed means a population of cells in which more than 50%, and typically more than 75 to 90%, of the cells have been disrupted such that the intracellular components of the cell are no longer completely enclosed within the cell membrane.
- Propagation means an increase in cell number via mitosis or other cell division.
- Proximate analysis means analysis of foodstuffs for fat, nitrogen/protein, crude fiber (cellulose and lignin as main components), moisture and ash. Soluble carbohydrate
- total dietary fiber and free sugars can be calculated by subtracting the total of the known values of the proximate analysis from 100 (carbohydrate by difference).
- “Stover” means the dried stalks and leaves of a crop remaining after a grain has been harvested from that crop.
- Suitable for human consumption means a composition can be consumed by humans as dietary intake without ill health effects and can provide significant caloric intake due to uptake of digested material in the gastrointestinal tract.
- Uncooked product means a composition that has not been subjected to heating but may include one or more components previously subjected to heating.
- V/V or "v/v”, in reference to proportions by volume, means the ratio of the volume of one substance in a composition to the volume of the composition.
- reference to a composition that comprises 5% v/v microalgal oil means that 5% of the composition's volume is composed of microalgal oil (e.g., such a composition having a volume of 100 mm 3 would contain 5 mm 3 of microalgal oil), and the remainder of the volume of the composition (e.g., 95 mm 3 in the example) is composed of other ingredients.
- WAV weight of one substance in a composition to the weight of the composition.
- reference to a composition that comprises 5% w/w microalgal biomass means that 5% of the composition's weight is composed of microalgal biomass (e.g., such a composition having a weight of 100 mg would contain 5 mg of microalgal biomass) and the remainder of the weight of the composition (e.g., 95 mg in the example) is composed of other ingredients. II.
- the present invention provides algal biomass suitable for human consumption that is rich in nutrients, including lipid and/or protein constituents, methods of combining the same with edible ingredients and food compositions containing the same.
- the invention arose in part from the discoveries that algal biomass can be prepared with a high oil content and/or with excellent functionality, and the resulting biomass incorporated into food products in which the oil and/or protein content of the biomass can substitute in whole or in part for oils and/or fats and/or proteins present in conventional food products.
- Algal oil which can comprise predominantly monosaturated oil, provides health benefits compared with saturated, hydrogenated (trans fats) and polyunsaturated fats often found in conventional food products.
- Algal oil also can be used as a healthy stable cooking oil free of trans fats.
- the remainder of the algal biomass can encapsulate the oil at least until a food product is cooked, thereby increasing shelf-life of the oil.
- the biomass along with natural antioxidants found in the oil, also protects the oil from oxidation, which would otherwise create unpleasant odors, tastes, and textures.
- the biomass also provides several beneficial micro-nutrients in addition to the oil and/or protein, such as algal- derived dietary fibers (both soluble and insoluble carbohydrates), phospholipids, glycoprotein, phytosterols, tocopherols, tocotrienols, and selenium.
- part A This section first reviews the types of microalgae suitable for use in the methods of the invention (part A), methods of generating a microalgae strain lacking or has significantly reduced pigmentation (part B), then the culture conditions (part C) that are used to propagate the biomass, then the concentration steps that are used to prepare the biomass for further processing (part D), and concludes with a description of the chemical composition of the biomass prepared in accordance with the methods of the invention (part E).
- microalgae that produce suitable oils and/or lipids and/or protein can be used in accordance with the methods of the present invention, although microalgae that naturally produce high levels of suitable oils and/or lipids and/or protein are preferred. Considerations affecting the selection of microalgae for use in the invention include, in addition to production of suitable oils, lipids, or protein for production of food products: (1) high lipid (or protein) content as a percentage of cell weight; (2) ease of growth; (3) ease of propagation; (4) ease of biomass processing; (5) glycerolipid profile; and (6) absence of algal toxins (Example 5 below demonstrates dried microalgal biomass and oils or lipids extracted from the biomass lacks algal toxins).
- the cell wall of the microalgae must be disrupted during food processing (e.g. , cooking) to release the active components or for digestion, and, in these embodiments, strains of microalgae with cell walls susceptible to digestion in the gastrointestinal tract of an animal, e.g., a human or other monogastrics, are preferred, especially if the algal biomass is to be used in uncooked food products.
- Digestibility is generally decreased for microalgal strains which have a high content of cellulose/hemicellulose in the cell walls. Digestibility can be evaluated using a standard pepsin digestibility assay.
- the microalgae comprise cells that are at least 10% or more oil by dry weight. In other embodiments, the microalgae contain at least 25-35% or more oil by dry weight. Generally, in these embodiments, the more oil contained in the microalgae, the more nutritious the biomass, so microalgae that can be cultured to contain at least 40%, at least 50%, 75%, or more oil by dry weight are especially preferred.
- Preferred microalgae for use in the methods of the invention can grow heterotrophically (on sugars in the absence of light) or are obligate heterotrophs.
- Microalgae from the genus Chlorella are generally useful in the methods of the invention.
- Chlorella is a genus of single-celled green algae, belonging to the phylum Chlorophyta.
- Chlorella cells are generally spherical in shape, about 2 to 10 ⁇ m in diameter, and lack fiagella. Some species of Chlorella are naturally heterotrophic.
- the microalgae used in the methods of the invention is Chlorella protothecoides, Chlorella ellipsoidea, Chlorella minutissima, Chlorella zofinienesi, Chlorella luteoviridis, Chlorella kessleri, Chlorella sorokiniana, Chlorella fusca var. vacuolata Chlorella sp., Chlorella cf. minutissima or Chlorella emersonii.
- Chlorella, particularly Chlorella protothecoides is a preferred microorganism for use in the methods of the invention because of its high composition of lipid.
- Particularly preferred species of Chlorella protothecoides for use in the methods of the invention include those exemplified in the examples below.
- Chlorella suitable for use in the methods of the invention include the species selected from the group consisting of anitrata, Antarctica, aureoviridis, Candida, capsulate, desiccate, ellipsoidea (including strain CCAP 211/42), emersonii, fusca (including var. vacuolata), glucotropha, infusionum (including var. actophila and var. auxenophila), kessleri (including any of UTEX strains 397,2229,398), lobophora (including strain SAG 37.88), luteoviridis (including strain SAG 2203 and var. aureoviridis and lutescens), miniata, cf.
- minutissima including UTEX strain 2341
- mutabilis including any of UTEX strains 1806, 411, 264, 256, 255, 250, 249, 31, 29, 25 or CCAP 211/8D, or CCAP 211/17 and var. acidicola
- regularis including var. minima, and umbricata
- reisiglii including strain CCP 11/8
- saccharophila including strain CCAP 211/31, CCAP 211/32 and var. ellipsoidea
- salina simplex
- sorokiniana including strain SAG 211.40B
- Chlorella (and species from other microalgae genera) for use in the invention can be identified by comparison of certain target regions of their genome with those same regions of species identified herein; preferred species are those that exhibit identity or at least a very high level of homology with the species identified herein.
- identification of a specific Chlorella species or strain can be achieved through amplification and sequencing of nuclear and/or chloroplast DNA using primers and methodology using appropriate regions of the genome, for example using the methods described in Wu et al, Bot. Bull. Acad. Sin. 42:115-121 (2001), Identification of Chlorella spp. isolates using ribosomal DNA sequences.
- ITSl and ITS2 rDNA ribosomal internal transcribed spacer
- 23S RNA 23S RNA
- 18S rRNA conserved genomic regions
- genomic DNA comparison can be used to identify suitable species of microalgae to be used in the present invention.
- Regions of conserved genomic DNA such as and not limited to DNA encoding for 23 S rRNA, can be amplified from microalgal species that may be, for example, taxonomically related to the preferred microalgae used in the present invention and compared to the corresponding regions of those preferred species. Species that exhibit a high level of similarity are then selected for use in the methods of the invention. Illustrative examples of such DNA sequence comparison among species within the Chlorella genus are presented below.
- the microalgae that are preferred for use in the present invention have genomic DNA sequences encoding for 23 S rRNA that have at least 65% nucleotide identity to at least one of the sequences listed in SEQ ID NOs: 1-23 and 26-21. In other cases, microalgae that are preferred for use in the present invention have genomic DNA sequences encoding for 23 S rRNA that have at least 75%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or greater nucleotide identity to at least one or more of the sequences listed in SEQ ID NOs: 1-23 and 26-27 ' . Genotyping of a food composition and/or of algal biomass before it is combined with other ingredients to formulate a food composition is also a reliable method for determining if algal biomass is from more than a single strain of microalgae.
- sequence comparison For sequence comparison to determine percent nucleotide or amino acid identity, typically one sequence acts as a reference sequence, to which test sequences are compared.
- test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated.
- sequence comparison algorithm calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.
- Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. MoI. Biol.
- the microalgae is a species selected from the group consisting Parachlorella kessleri, Parachlorella beijerinckii, Neochloris oleabundans, Bracteacoccus, including B. grandis, B. cinnabarinas, and B. aerius, Bracteococcus sp. or Scenedesmus rebescens.
- microalgae species include those species from the group of species and genera consisting of Achnanthes orientalis; Agmenellum; Amphiprora hyaline; Amphora, including A. coffeiformis including A. c. linea, A. c. punctata, A.c. taylori, A.c. tenuis, A.c. delicatissima, A.c. delicatissima capitata; Anabaena; Ankistrodesmus, including A. falcatus; Boekelovia hooglandii; Borodinella; Botryococcus braunii, including B. sudeticus; Bracteoccocus, including B. aerius, B.
- peircei D. primolecta, D. salina, D. terricola, D. tertiolecta, and D. viridis; Eremosphaera, including E. viridis; Ellipsoidon; Euglena; Franceia; Fragilaria, including F. crotonensis; Gleocapsa; Gloeothamnion; Hymenomonas; Isochrysis, including /. aff. galbana and /. galbana; Lepocinclis; Micractinium (including UTEX LB 2614); Monoraphidium, including M. minutum; Monoraphidium; Nannochloris; Nannochloropsis, including N.
- Navicula including N. acceptata, N. biskanterae, N. pseudotenelloid.es, N. pelliculosa, and N. saprophila; Neochloris oleabundans; Nephrochloris; Nephroselmis; Nitschia communis; Nitzschia, including TV. alexandrina, N. communis, N. dissipata, N. frustulum, N. hantzschiana, N. inconspicua, N. intermedia, N. microcephala, N. pusilla, N. pusilla elliptica, N. pusilla monoensis, and N.
- Ochromonas Ochromonas
- Oocystis including O. parva and O. pusilla
- Oscillatoria including O. limnetica and O. subbrevis
- Parachlorella including P. beijerinckii (including strain SAG 2046) and P. kessleri (including any of SAG strains 11.80, 14.82, 21.11H9)
- Pascheria including P. acidophila
- Platymonas Pleurochrysis, including P. carterae and P. dentate
- Prototheca including P. stagnora (including UTEX 327), P. portoricensis, and P.
- moriformis including UTEX strains 1441,1435, 1436, 1437, 1439); Pseudochlorella aquatica; Pyramimonas; Pyrobotrys; Rhodococcus opacus; Sarcinoid chrysophyte; Scenedesmus, including S. armatus and S. rubescens; Schizochytrium; Spirogyra; Spirulina platensis; Stichococcus; Synecho coccus; Tetraedron; Tetraselmis, including T. suecica; Thalassiosira weissflogii; and Viridiella fridericiana.
- food compositions and food ingredients such as algal flour is derived from algae having at least 90% or 95% 23 S rRNA genomic sequence identity to one or more sequences selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:26 and SEQ ID NO:27.
- Microalgae such as Chlorella
- the normally green colored microalgae When grown in heterotrophic conditions where the carbon source is a fixed carbon source and in the absence of light, the normally green colored microalgae has a yellow color, lacking or is significantly reduced in green pigmentation.
- Microalgae of reduced (or lacking in) green pigmentation can be advantageous as a food ingredient.
- One advantage of microalgae of reduced (or is lacking) in green pigmentation is that the microalgae has a reduced chlorophyll flavor.
- microalgae of reduced (or is lacking in) green pigmentation is that as a food ingredient, the addition of the microalgae to foodstuffs will not impart a green color that can be unappealing to the consumer.
- the reduced green pigmentation of microalgae grown under heterotrophic conditions is transient. When switched back to phototrophic growth, microalgae capable of both phototrophic and heterotrophic growth will regain the green pigmentation.
- heterotrophically grown microalgae is a yellow color and this may be unsuitable for some food applications where the consumer expects the color of the foodstuff to be white or light in color.
- chemical mutagenesis can also be employed in order to generate microalgae with reduced (or lacking in) pigmentation.
- Chemical mutagens such as ethyl methanesulfonate (EMS) or N-methyl-N'nitro-N- nitroguanidine (NTG) have been shown to be effective chemical mutagens on a variety of microbes including yeast, fungi, mycobacterium and microalgae.
- Mutagenesis can also be carried out in several rounds, where the microalgae is exposed to the mutagen (either UV or chemical or both) and then screened for the desired reduced pigmentation phenotype. Colonies with the desired phenotype are then streaked out on plates and reisolated to ensure that the mutation is stable from one generation to the next and that the colony is pure and not of a mixed population.
- Chlorella protothecoides was used to generate strains lacking in or with reduced pigmentation using a combination of UV and chemical mutagenesis. Chlorella protothecoides was exposed to a round of chemical mutagenesis with NTG and colonies were screened for color mutants. Colonies not exhibiting color mutations were then subjected to a round of UV irradiation and were again screened for color mutants.
- a Chlorella protothecoides strain lacking in pigmentation was isolated and is Chlorella protothecoides 33-55, deposited on October 13, 2009 at the American Type Culture Collection at 10801 University Boulevard, Manassas, VA 20110-2209, in accordance with the Budapest Treaty, with a Patent Deposit Designation of PTA- 10397.
- a Chlorella protothecoides strain with reduced pigmentation was isolated and is Chlorella protothecoides 25-32, deposited on October 13, 2009 at the American Type Culture Collection at 10801 University Boulevard, Manassas, VA 20110-2209, in accordance with the Budapest Treaty, with a Patent Deposit Designation of PTA- 10396.
- Microalgae are cultured in liquid media to propagate biomass in accordance with the methods of the invention.
- microalgal species are grown in a medium containing a fixed carbon and/or fixed nitrogen source in the absence of light. Such growth is known as heterotrophic growth.
- heterotrophic growth for some species of microalgae, for example, heterotrophic growth for extended periods of time such as 10 to 15 or more days under limited nitrogen conditions results accumulation of high lipid content in cells.
- Microalgal culture media typically contains components such as a fixed carbon source (discussed below), a fixed nitrogen source (such as protein, soybean meal, yeast extract, cornsteep liquor, ammonia (pure or in salt form), nitrate, or nitrate salt), trace elements (for example, zinc, boron, cobalt, copper, manganese, and molybdenum in, e.g., the respective forms of ZnCl 2 , H 3 BO 3 , CoCl 2 -OH 2 O, CuCl 2 -2H 2 O, MnCl 2 -4H 2 O and (NH4) 6 M ⁇ 7 ⁇ 24 -4H 2 O), optionally a buffer for pH maintenance, and phosphate (a source of phosphorous; other phosphate salts can be used).
- Other components include salts such as sodium chloride, particularly for seawater microalgae.
- a medium suitable for culturing Chlorella protothecoides comprises Proteose Medium.
- This medium is suitable for axenic cultures, and a 1 L volume of the medium (pH -6.8) can be prepared by addition of Ig of proteose peptone to 1 liter of Bristol Medium.
- Bristol medium comprises 2.94 mM NaNO 3 , 0.17 mM CaCl 2 -2H 2 O, 0.3 mM MgSO 4 -7H 2 O, 0.43 mM, 1.29 mM KH 2 PO 4 , and 1.43 mM NaCl in an aqueous solution.
- 15 g of agar can be added to 1 L of the solution.
- Solid and liquid growth media are generally available from a wide variety of sources, and instructions for the preparation of particular media that is suitable for a wide variety of strains of microorganisms can be found, for example, online at http://www.utex.org/, a site maintained by the University of Texas at Austin for its culture collection of algae (UTEX).
- various fresh water media include 1/2, 1/3, 1/5, IX, 2/3, 2X CHEV Diatom Medium; 1 :1 DYIII/PEA + Gr+; Ag Diatom Medium; Allen Medium; BGl 1-1 Medium; Bold INV and 3N Medium; Botryococcus Medium; Bristol Medium; Chu's Medium; CRl, CRl-S, and CRl+ Diatom Medium; Cyanidium Medium; Cyanophycean Medium; Desmid Medium; DYIII Medium; Euglena Medium; HEPES Medium; J Medium; Malt Medium; MES Medium; Modified Bold 3N Medium; Modified COMBO Medium; N/20 Medium; Ochromonas Medium; P49 Medium; Polytomella Medium; Proteose Medium; Snow Algae Media; Soil Extract Medium; Soilwater: BAR, GR-, GR-/NH4, GR+, GR+/NH4, PEA, Peat, and VT Medium; Spirulina Medium; Tap Medium; Trebouxia Medium;
- Various Salt Water Media include: 1%, 5%, and IX F/2 Medium; 1/2, IX, and 2X Erdschreiber's Medium; 1/2, 1/3, 1/4, 1/5, IX, 5/3, and 2X Soil+Seawater Medium; 1/4 ERD; 2/3 Enriched Seawater Medium; 20% Allen + 80 % ERD; Artificial Seawater Medium; BGl 1-1 + .36% NaCl Medium; BGl l-1 + 1% NaCl Medium; Bold lNV:Erdshreiber (1 :1) and (4:1); Bristol- NaCl Medium; Dasycladales Seawater Medium; 1/2 and IX Enriched Seawater Medium, including ES/10, ES/2, and ES/4; F/2+NH4; LDM Medium; Modified IX and 2X CHEV; Modified 2 X CHEV + Soil; Modified Artificial Seawater Medium; Porphridium Medium; and SS Diatom Medium.
- SAG refers to the Culture Collection of Algae at the University of Gottingen (G ⁇ ttingen, Germany)
- CCAP refers to the culture collection of algae and protozoa managed by the Scottish Association for Marine Science (Scotland, United Kingdom)
- CCALA refers to the culture collection of algal laboratory at the Institute of Botany (Trebo ⁇ , Czech Republic).
- Microorganisms useful in accordance with the methods of the present invention are found in various locations and environments throughout the world.
- the particular growth medium for optimal growth and generation of oil and/or lipid and/or protein from any particular species of microbe can be difficult or impossible to predict, but those of skill in the art can readily find appropriate media by routine testing in view of the disclosure herein.
- certain strains of microorganisms may be unable to grow on a particular growth medium because of the presence of some inhibitory component or the absence of some essential nutritional requirement required by the particular strain of microorganism.
- the examples below provide exemplary methods of culturing various species of microalgae to accumulate high levels of lipid as a percentage of dry cell weight.
- the fixed carbon source is a key component of the medium.
- Suitable fixed carbon sources for purposes of the present invention include, for example, glucose, fructose, sucrose, galactose, xylose, mannose, rhamnose, arabinose, N-acetylglucosamine, glycerol, floridoside, glucuronic acid, and/or acetate.
- Other carbon sources for culturing microalgae in accordance with the present invention include mixtures, such as mixtures of glycerol and glucose, mixtures of glucose and xylose, mixtures of fructose and glucose, and mixtures of sucrose and depolymerized sugar beet pulp.
- carbon sources suitable for use in culturing microalgae include, black liquor, corn starch, depolymerized cellulosic material (derived from, for example, corn stover, sugar beet pulp, and switchgrass, for example), lactose, milk whey, molasses, potato, rice, sorghum, sucrose, sugar beet, sugar cane, and wheat.
- the one or more carbon source(s) can be supplied at a concentration of at least about 50 ⁇ M, at least about 100 ⁇ M, at least about 500 ⁇ M, at least about 5 mM, at least about 50 mM, and at least about 500 mM.
- the fixed carbon energy source used in the growth medium comprises glycerol and/or 5- and/or 6-carbon sugars, such as glucose, fructose, and/or xylose, which can be derived from sucrose and/or cellulosic material, including depolymerized cellulosic material.
- glycerol and/or 5- and/or 6-carbon sugars such as glucose, fructose, and/or xylose
- sucrose and/or cellulosic material including depolymerized cellulosic material.
- Multiple species of Chlorella and multiple strains within a species can be grown in the presence of sucrose, depolymerized cellulosic material, and glycerol, as described in US Patent Application Publication Nos. 20090035842, 20090011480, 20090148918, respectively, and see also, PCT Patent Application Publication No. 2008/151149, each of which is incorporated herein by reference.
- microorganisms are cultured using depolymerized cellulosic biomass as a feedstock.
- cellulosic biomass depolymerized or otherwise
- Microalgae can proliferate on depolymerized cellulosic material.
- Cellulosic materials generally include cellulose at 40-60% dry weight; hemicellulose at 20-40% dry weight; and lignin at 10-30% dry weight.
- Suitable cellulosic materials include residues from herbaceous and woody energy crops, as well as agricultural crops, i.e., the plant parts, primarily stalks and leaves, not removed from the fields with the primary food or fiber product.
- agricultural wastes such as sugarcane bagasse, rice hulls, corn fiber (including stalks, leaves, husks, and cobs), wheat straw, rice straw, sugar beet pulp, citrus pulp, citrus peels; forestry wastes such as hardwood and softwood thinnings, and hardwood and softwood residues from timber operations; wood wastes such as saw mill wastes (wood chips, sawdust) and pulp mill waste; urban wastes such as paper fractions of municipal solid waste, urban wood waste and urban green waste such as municipal grass clippings; and wood construction waste.
- Additional cellulosics include dedicated cellulosic crops such as switchgrass, hybrid poplar wood, and miscanthus, fiber cane, and fiber sorghum.
- Five-carbon sugars that are produced from such materials include xylose.
- Example 20 describes Chlorella protothecoides successfully being cultivated under heterotrophic conditions using cellulosic- dervied sugars from cornstover and sugar beet pulp.
- Some microbes are able to process cellulosic material and directly utilize cellulosic materials as a carbon source.
- cellulosic material typically needs to be treated to increase the accessible surface area or for the cellulose to be first broken down as a preparation for microbial utilization as a carbon source.
- Ways of preparing or pretreating cellulosic material for enzyme digestion are well known in the art. The methods are divided into two main categories: (1) breaking apart the cellulosic material into smaller particles in order to increase the accessible surface area; and (2) chemically treating the cellulosic material to create a useable substrate for enzyme digestion.
- Methods for increasing the accessible surface area include steam explosion, which involves the use of steam at high temperatures to break apart cellulosic materials. Because of the high temperature requirement of this process, some of the sugars in the cellulosic material may be lost, thus reducing the available carbon source for enzyme digestion (see for example, Chahal, D. S. et ah, Proceedings of the 2 n World Congress of Chemical Engineering; (1981) and Kaar et ah, Biomass and Bioenergy (1998) 14(3): 277-87). Ammonia explosion allows for explosion of cellulosic material at a lower temperature, but is more costly to perform, and the ammonia might interfere with subsequent enzyme digestion processes (see for example, Dale, B. E.
- Chlorella can proliferate on media containing combinations of xylose and glucose, such as depolymerized cellulosic material, and surprisingly, some species even exhibit higher levels of productivity when cultured on a combination of glucose and xylose than when cultured on either glucose or xylose alone.
- certain microalgae can both utilize an otherwise inedible feedstock, such as cellulosic material (or a pre-treated cellulosic material) or glycerol, as a carbon source and produce edible oils.
- the invention provides methods for turning inedible feedstock into high nutrition edible oils, food products, and food compositions.
- Microalgae co-cultured with an organism expressing a secretable sucrose invertase or cultured in media containing a sucrose invertase or expressing an exogenous sucrose invertase gene can proliferate on waste molasses from sugar cane or other sources of sucrose.
- the use of such low-value, sucrose-containing waste products can provide significant cost savings in the production of edible oils.
- the methods of cultivating microalgae on a sucrose feedstock and formulating food compositions and nutritional supplements, as described herein, provide a means to convert low-nutrition sucrose into high nutrition oils (oleic acid, DHA, ARA, etc.) and biomass containing such oils.
- oils oleic acid, DHA, ARA, etc.
- Chlorella species and strains proliferate very well on not only purified reagent-grade glycerol, but also on acidulated and non-acidulated glycerol byproducts from biodiesel transesterification.
- some Chlorella strains undergo cell division faster in the presence of glycerol than in the presence of glucose.
- Two-stage growth processes in which cells are first fed glycerol to increase cell density rapidly and then fed glucose to accumulate lipids, can improve the efficiency with which lipids are produced.
- Another method to increase lipid as a percentage of dry cell weight involves the use of acetate as the feedstock for the microalgae.
- Acetate feeds directly into the point of metabolism that initiates fatty acid synthesis (i.e., acetyl-CoA); thus providing acetate in the culture can increase fatty acid production.
- the microbe is cultured in the presence of a sufficient amount of acetate to increase microbial lipid and/or fatty acid yield, specifically, relative to the yield in the absence of acetate.
- Acetate feeding is a useful component of the methods provided herein for generating microalgal biomass that has a high percentage of dry cell weight as lipid.
- lipid yield is increased by culturing a lipid-producing microalgae in the presence of one or more cofactor(s) for a lipid pathway enzyme (e.g., a fatty acid synthetic enzyme).
- a lipid pathway enzyme e.g., a fatty acid synthetic enzyme
- concentration of the cofactor(s) is sufficient to increase microbial lipid (e.g., fatty acid) yield over microbial lipid yield in the absence of the cofactor(s).
- the cofactor(s) is provided to the culture by including in the culture a microbe secreting the cofactor(s) or by adding the cofactor(s) to the culture medium.
- the microalgae can be engineered to express an exogenous gene that encodes a protein that participates in the synthesis of the co factor.
- suitable cofactors include any vitamin required by a lipid pathway enzyme, such as, for example, biotin or pantothenate.
- High lipid biomass from microalgae is an advantageous material for inclusion in food products compared to low lipid biomass, because it allows for the addition of less microalgal biomass to incorporate the same amount of lipid into a food composition. This is advantageous, because healthy oils from high lipid microalgae can be added to food products without altering other attributes such as texture and taste compared with low lipid biomass.
- the lipid-rich biomass provided by the methods of the invention typically has at least 25% lipid by dry cell weight. Process conditions can be adjusted to increase the percentage weight of cells that is lipid.
- a microalgae is cultured in the presence of a limiting concentration of one or more nutrients, such as, for example, nitrogen, phosphorous, or sulfur, while providing an excess of a fixed carbon source, such as glucose.
- Nitrogen limitation tends to increase microbial lipid yield over microbial lipid yield in a culture in which nitrogen is provided in excess.
- the increase in lipid yield is at least about 10%, 50%, 100%, 200%, or 500%.
- the microbe can be cultured in the presence of a limiting amount of a nutrient for a portion of the total culture period or for the entire period.
- the nutrient concentration is cycled between a limiting concentration and a non-limiting concentration at least twice during the total culture period.
- the cells In a steady growth state, the cells accumulate oil but do not undergo cell division.
- the growth state is maintained by continuing to provide all components of the original growth media to the cells with the exception of a fixed nitrogen source. Cultivating microalgal cells by feeding all nutrients originally provided to the cells except a fixed nitrogen source, such as through feeding the cells for an extended period of time, results in a higher percentage of lipid by dry cell weight.
- high lipid biomass is generated by feeding a fixed carbon source to the cells after all fixed nitrogen has been consumed for extended periods of time, such as at least one or two weeks.
- cells are allowed to accumulate oil in the presence of a fixed carbon source and in the absence of a fixed nitrogen source for over 20 days.
- Microalgae grown using conditions described herein or otherwise known in the art can comprise at least about 20% lipid by dry weight, and often comprise 35%, 45%, 55%, 65%, and even 75% or more lipid by dry weight. Percentage of dry cell weight as lipid in microbial lipid production can therefore be improved by holding cells in a heterotrophic growth state in which they consume carbon and accumulate oil but do not undergo cell division.
- High protein biomass from algae is another advantageous material for inclusion in food products.
- the methods of the invention can also provide biomass that has at least 30% of its dry cell weight as protein. Growth conditions can be adjusted to increase the percentage weight of cells that is protein.
- a microalgae is cultured in a nitrogen rich environment and an excess of fixed carbon energy such as glucose or any of the other carbon sources discussed above. Conditions in which nitrogen is in excess tends to increase microbial protein yield over microbial protein yield in a culture in which nitrogen is not provided in excess.
- the microbe is preferably cultured in the presence of excess nitrogen for the total culture period.
- Suitable nitrogen sources for microalgae may come from organic nitrogen sources and/or inorganic nitrogen sources.
- Organic nitrogen sources have been used in microbial cultures since the early 1900s.
- the use of organic nitrogen sources, such as corn steep liquor was popularized with the production of penicillin from mold.
- An analysis of corn steep liquor determined that it was a rich source of nitrogen and also vitamins such as B-complex vitamins, riboflavin panthothenic acid, niacin, inositol and nutrient minerals such as calcium, iron, magnesium, phosphorus and potassium (Ligget and Koffler, Bacteriological Reviews (1948);12(4): 297- 311).
- Organic nitrogen sources such as corn steep liquor, have been used in fermentation media for yeasts , bacteria, fungi and other microorganisms.
- organic nitrogen sources are yeast extract, peptone, corn steep liquor and corn steep powder.
- preferred inorganic nitrogen sources include, for example, and without limitation, (NH 4 ⁇ SO 4 and NH 4 OH.
- the culture media for carrying out the invention contains only inorganic nitrogen sources.
- the culture media for carrying out the invention contains only organic nitrogen sources.
- the culture media for carrying out the invention contains a mixture of organic and inorganic nitrogen sources.
- a bioreactor or fermentor is used to culture microalgal cells through the various phases of their physiological cycle.
- an inoculum of lipid-producing microalgal cells is introduced into the medium; there is a lag period (lag phase) before the cells begin to propagate.
- lag phase a lag period
- the propagation rate increases steadily and enters the log, or exponential, phase.
- the exponential phase is in turn followed by a slowing of propagation due to decreases in nutrients such as nitrogen, increases in toxic substances, and quorum sensing mechanisms. After this slowing, propagation stops, and the cells enter a stationary phase or steady growth state, depending on the particular environment provided to the cells.
- the culture For obtaining protein rich biomass, the culture is typically harvested during or shortly after then end of the exponential phase.
- the culture For obtaining lipid rich biomass, the culture is typically harvested well after then end of the exponential phase, which may be terminated early by allowing nitrogen or another key nutrient (other than carbon) to become depleted, forcing the cells to convert the carbon sources, present in excess, to lipid.
- Culture condition parameters can be manipulated to optimize total oil production, the combination of lipid species produced, and/or production of a specific oil.
- Bioreactors offer many advantages for use in heterotrophic growth and propagation methods. As will be appreciated, provisions made to make light available to the cells in photosynthetic growth methods are unnecessary when using a fixed-carbon source in the heterotrophic growth and propagation methods described herein.
- microalgae are preferably fermented in large quantities in liquid, such as in suspension cultures as an example.
- Bioreactors such as steel fermentors (5000 liter, 10,000 liter, 40,000 liter, and higher are used in various embodiments of the invention) can accommodate very large culture volumes. Bioreactors also typically allow for the control of culture conditions such as temperature, pH, oxygen tension, and carbon dioxide levels.
- bioreactors are typically configurable, for example, using ports attached to tubing, to allow gaseous components, like oxygen or nitrogen, to be bubbled through a liquid culture.
- Bioreactors can be configured to flow culture media though the bioreactor throughout the time period during which the microalgae reproduce and increase in number.
- media can be infused into the bioreactor after inoculation but before the cells reach a desired density.
- a bioreactor is filled with culture media at the beginning of a culture, and no more culture media is infused after the culture is inoculated.
- the microalgal biomass is cultured in an aqueous medium for a period of time during which the microalgae reproduce and increase in number; however, quantities of aqueous culture medium are not flowed through the bioreactor throughout the time period.
- aqueous culture medium is not flowed through the bioreactor after inoculation.
- Bioreactors equipped with devices such as spinning blades and impellers, rocking mechanisms, stir bars, means for pressurized gas infusion can be used to subject microalgal cultures to mixing. Mixing may be continuous or intermittent. For example, in some embodiments, a turbulent flow regime of gas entry and media entry is not maintained for reproduction of microalgae until a desired increase in number of said microalgae has been achieved.
- bioreactors are often equipped with various ports that, for example, allow the gas content of the culture of microalgae to be manipulated.
- part of the volume of a bioreactor can be gas rather than liquid, and the gas inlets of the bioreactor to allow pumping of gases into the bioreactor.
- Gases that can be beneficially pumped into a bioreactor include air, air/CO 2 mixtures, noble gases, such as argon, and other gases.
- Bioreactors are typically equipped to enable the user to control the rate of entry of a gas into the bioreactor.
- increasing gas flow into a bioreactor can be used to increase mixing of the culture.
- Turbulence can be achieved by placing a gas entry port below the level of the aqueous culture media so that gas entering the bioreactor bubbles to the surface of the culture.
- One or more gas exit ports allow gas to escape, thereby preventing pressure buildup in the bioreactor.
- a gas exit port leads to a "one-way" valve that prevents contaminating microorganisms from entering the bioreactor.
- bioreactors, culture conditions, and heterotrophic growth and propagation methods described herein can be combined in any suitable manner to improve efficiencies of microbial growth and lipid and/or protein production.
- Microalgal cultures generated according to the methods described above yield microalgal biomass in fermentation media.
- the biomass is concentrated, or harvested, from the fermentation medium.
- the biomass comprises predominantly intact cells suspended in an aqueous culture medium.
- a dewatering step is performed. Dewatering or concentrating refers to the separation of the biomass from fermentation broth or other liquid medium and so is solid-liquid separation.
- the culture medium is removed from the biomass (for example, by draining the fermentation broth through a filter that retains the biomass), or the biomass is otherwise removed from the culture medium.
- Common processes for dewatering include centrifugation, filtration, and the use of mechanical pressure. These processes can be used individually or in any combination.
- Centrifugation involves the use of centrifugal force to separate mixtures. During centrifugation, the more dense components of the mixture migrate away from the axis of the centrifuge, while the less dense components of the mixture migrate towards the axis. By increasing the effective gravitational force (i.e., by increasing the centrifugation speed), more dense material, such as solids, separate from the less dense material, such as liquids, and so separate out according to density. Centrifugation of biomass and broth or other aqueous solution forms a concentrated paste comprising the microalgal cells. Centrifugation does not remove significant amounts of intracellular water. In fact, after centrifugation, there may still be a substantial amount of surface or free moisture in the biomass (e.g., upwards of 70%), so centrifugation is not considered to be a drying step.
- Filtration can also be used for dewatering.
- One example of filtration that is suitable for the present invention is tangential flow filtration (TFF), also known as cross-flow filtration.
- Tangential flow filtration is a separation technique that uses membrane systems and flow force to separate solids from liquids.
- tangential flow filtration is a separation technique that uses membrane systems and flow force to separate solids from liquids.
- Millipore Pellicon ® devices used with 10OkD, 30OkD, 1000 kD (catalog number P2C01MC01), O.luM (catalog number P2VVPPV01), 0.22uM (catalog number P2GVPPV01), and 0.45uM membranes (catalog number P2HVMPV01).
- the retentate preferably does not pass through the filter at a significant level, and the product in the retentate preferably does not adhere to the filter material.
- TFF can also be performed using hollow fiber filtration systems.
- Dewatering can also be effected with mechanical pressure directly applied to the biomass to separate the liquid fermentation broth from the microbial biomass sufficient to dewater the biomass but not to cause predominant lysis of cells. Mechanical pressure to dewater microbial biomass can be applied using, for example, a belt filter press.
- a belt filter press is a dewatering device that applies mechanical pressure to a slurry (e.g., microbial biomass taken directly from the fermentor or bioreactor) that is passed between the two tensioned belts through a serpentine of decreasing diameter rolls.
- the belt filter press can actually be divided into three zones: the gravity zone, where free draining water/liquid is drained by gravity through a porous belt; a wedge zone, where the solids are prepared for pressure application; and a pressure zone, where adjustable pressure is applied to the gravity drained solids.
- microalgal biomass can be processed, as described hereinbelow, to produce vacuum-packed cake, algal flakes, algal homogenate, algal powder, algal flour, or algal oil.
- microalgal biomass generated by the culture methods described herein comprises microalgal oil and/or protein as well as other constituents generated by the microorganisms or incorporated by the microorganisms from the culture medium during fermentation.
- Microalgal biomass with a high percentage of oil/lipid accumulation by dry weight has been generated using different methods of culture, including methods known in the art. Microalgal biomass with a higher percentage of accumulated oil/lipid is useful in accordance with the present invention. Chlorella vulgaris cultures with up to 56.6% lipid by dry cell weight (DCW) in stationary cultures grown under autotrophic conditions using high iron (Fe) concentrations have been described (Li et al., Bioresource Technology 99(11):4717-22 (2008). Nanochloropsis sp.
- Chlorella species including Chlorella emersonii, Chlorella sorokiniana and Chlorella minutissima have been described to have accumulated up to 63% oil by DCW when grown in stirred tank bioreactors under low-nitrogen media conditions (Illman et al., Enzyme and Microbial Technology 27:631-635 (2000).
- Heterotrophic growth results in relatively low chlorophyll content (as compared to phototrophic systems such as open ponds or closed photobioreactor systems).
- Reduced chlorophyll content generally improves organoleptic properties of microalgae and therefore allows more algal biomass (or oil prepared therefrom) to be incorporated into a food product.
- the reduced chlorophyll content found in heterotrophically grown microalgae ⁇ e.g., Chlorella also reduces the green color in the biomass as compared to phototrophically grown microalgae.
- the reduced chlorophyll content avoids an often undesired green coloring associated with food products containing phototrophically grown microalgae and allows for the incorporation or an increased incorporation of algal biomass into a food product.
- the food product contains heterotrophically grown microalgae of reduced chlorophyll content compared to phototrophically grown microalgae.
- the chlorophyll content of microalgal flour is less than 5ppm, less than 2ppm, or less than lppm.
- Oil rich microalgal biomass generated by the culture methods described herein and useful in accordance with the present invention comprises at least 10% microalgal oil by DCW.
- the microalgal biomass comprises at least 15%, 25-35%, 30- 50%, 50-55%, 50-65%, 54-62%, 56-60%, at least 75% or at least 90% microalgal oil by DCW.
- the microalgal oil of the biomass described herein (or extracted from the biomass) can comprise glycerolipids with one or more distinct fatty acid ester side chains.
- Glycerolipids are comprised of a glycerol molecule esterif ⁇ ed to one, two, or three fatty acid molecules, which can be of varying lengths and have varying degrees of saturation.
- Specific blends of algal oil can be prepared either within a single species of algae, or by mixing together the biomass (or algal oil) from two or more species of microalgae.
- the oil composition i.e., the properties and proportions of the fatty acid constituents of the glycerolipids, can also be manipulated by combining biomass (or oil) from at least two distinct species of microalgae.
- biomass or oil
- at least two of the distinct species of microalgae have different glycerolipid profiles.
- the distinct species of microalgae can be cultured together or separately as described herein, preferably under heterotrophic conditions, to generate the respective oils.
- the microalgal oil is primarily comprised of monounsaturated oil such as 18:1 (oleic) oil, particularly in triglyceride form.
- the algal oil is at least 20% monounsaturated oil by weight.
- the algal oil is at least 25%, 50%, 75% or more monounsaturated oil such as 18:1 by weight or by volume.
- the monounsaturated oil is 18:1, 16:1, 14:1 or 12:1.
- the algal oil is 60-75%, 64-70%, or 65-69% 18:1 oil.
- the microalgal oil comprises at least 10%, 20%, 25%, or 50% or more esterified oleic acid or esterified alpha-linolenic acid by weight of by volume (particularly in triglyceride form).
- the algal oil comprises less than 10%, less than 5%, less than 3%, less than 2%, or less than 1 % by weight or by volume, or is substantially free of, esterified docosahexanoic acid (DHA (22:6)) (particularly in triglyceride form).
- DHA docosahexanoic acid
- the lipid profile of extracted oil or oil in microalgal flour is less than 2% 14:0; 13-16% 16:0; 1-4% 18:0; 64-70% 18:1; 10-16% 18:2; 0.5-2.5% 18:3; and less than 2% oil of a carbon chain length 20 or longer.
- High protein microalgal biomass has been generated using different methods of culture. Microalgal biomass with a higher percentage of protein content is useful in accordance with the present invention. For example, the protein content of various species of microalgae has been reported (see Table 1 of Becker, Biotechnology Advances (2007) 25:207-210).
- Microalgal biomass generated by culture methods described herein and useful in accordance to those embodiments of the present invention relating to high protein typically comprises at least 30% protein by dry cell weight. In some embodiments, the microalgal biomass comprises at least 40%, 50%, 75% or more protein by dry cell weight. In some embodiments, the microalgal biomass comprises from 30-75% protein by dry cell weight or from 40-60% protein by dry cell weight.
- the protein in the microalgal biomass comprises at least 40% digestible crude protein. In other embodiments, the protein in the microalgal biomass comprises at least 50%, 60%, 70%, 80%, or at least 90% digestible crude protein. In some embodiments, the protein in the microalgal biomass comprises from 40-90% digestible crude protein, from 50-80% digestible crude protein, or from 60-75% digestible crude protein.
- Microalgal biomass (and oil extracted therefrom), can also include other constituents produced by the microalgae, or incorporated into the biomass from the culture medium. These other constituents can be present in varying amounts depending on the culture conditions used and the species of microalgae (and, if applicable, the extraction method used to recover microalgal oil from the biomass).
- the chlorophyll content in the high protein microalgal biomass is higher than the chlorophyll content in the high lipid microalgal biomass.
- the chlorophyll content in the microalgal biomass is less than 200 ppm or less than 100 ppm.
- the other constituents can include, without limitation, phospholipids (e.g., algal lecithin), carbohydrates, soluble and insoluble fiber, glycoproteins, phytosterols (e.g., ⁇ -sitosterol, campesterol, stigmasterol, ergosterol, and brassicasterol), tocopherols, tocotrienols, carotenoids (e.g., ⁇ -carotene, ⁇ -carotene, and lycopene), xanthophylls (e.g.
- the biomass comprises at least 10 ppm selenium. In some cases, the biomass comprises at least 25% w/w algal polysaccharide. In some cases, the biomass comprises at least 15% w/w algal glycoprotein.
- the biomass or oil derived from the biomass comprises between 0-200, 0-115, or 50-115 mcg/g total carotenoids, and in specific emodiments 20-70 or 50-60 mcg/g of the total carotenoid content is lutein.
- the biomass comprises at least 0.5% algal phospholipids.
- the biomass or oil derived from the algal biomass contains at least 0.10, 0.02-0.5, or 0.05-0.3 mg/g total tocotrienols, and in specific emodiments 0.05-0.25 mg/g is alpha tocotrienol.
- the biomass or oil derived from the algal biomass contains between 0.125 mg/g to 0.35 mg/g total tocotrienols. In some cases, the oil derived from the algal biomass contains at least 5.0, 1-8, 2-6 or 3-5 mg/lOOg total tocopherols, and in specific emodiments 2-6 mg/lOOg is alpha tocopherol. In some cases, the oil derived from the algal biomass contains between 5.0mg/100g to lOmg/10Og tocopherols.
- the composition of other components of microalgal biomass is different for high protein biomass as compared to high lipid biomass.
- the high protein biomass contains between 0.18-0.79 mg/100g of total tocopherol and in specific embodiments, the high protein biomass contains about 0.01-0.03 mg/g tocotrienols.
- the high protein biomass also contains between l-3g/100g total sterols, and in specific embodiments, 1.299-2.46g/100g total sterols.
- tocotrienols and tocopherols composition in Chlorella protothecoid.es is included in the Examples below.
- the microalgal biomass comprises 20-45% carbohydrate by dry weight. In other embodiments, the biomass comprises 25-40% or 30-35% carbohydrate by dry weight. Carbohydrate can be dietary fiber as well as free sugars such as sucrose and glucose. In some embodiments the free sugar in microialgal biomass is 1-10%, 2-8%, or 3- 6% by dry weight. In certain embodiments the free sugar component comprises sucrose. [0248] In some cases, the microalgal biomass comprises at least 10% soluble fiber. In other embodiments, the microalgal biomass comprises at least 20% to 25% soluble fiber. In some embodiments, the microalgal biomass comprises at least 30% insoluble fiber. In other embodiments, the microalgal biomass comprises at least 50% to at least 70% insoluble fiber.
- Total dietary fiber is the sum of soluble fiber and insoluble fiber.
- the microalgal biomass comprises at least 40% total dietary fiber. In other embodiments, the microalgal biomass comprises at least 50%, 55%, 60%, 75%, 80%, 90%, to 95% total dietary fiber.
- the monosaccharide content of the total fiber is 0.1-3% arabinose; 5-15% mannose; 15-35% galactose; and 50-70% glucose. In other embodiments the monosaccharide content of the total fiber is about 1-1.5% arabinose; about 10-12% mannose; about 22-28% galactose; and 55-65% glucose.
- the concentrated microalgal biomass produced in accordance with the methods of the invention is itself a finished food ingredient and may be used in foodstuffs without further, or with only minimal, modification.
- the cake can be vacuum-packed or frozen.
- the biomass may be dried via lyophilization, a "freeze-drying" process, in which the biomass is frozen in a freeze-drying chamber to which a vacuum is applied.
- the application of a vacuum to the freeze-drying chamber results in sublimation (primary drying) and desorption (secondary drying) of the water from the biomass.
- the present invention provides a variety of microalgal derived finished food ingredients with enhanced properties resulting from processing methods of the invention that can be applied to the concentrated microalgal biomass.
- Drying the microalgal biomass is advantageous to facilitate further processing or for use of the biomass in the methods and compositions described herein. Drying refers to the removal of free or surface moisture/water from predominantly intact biomass or the removal of surface water from a slurry of homogenized (e.g., by micronization) biomass. Different textures and flavors can be conferred on food products depending on whether the algal biomass is dried, and if so, the drying method. Drying the biomass generated from the cultured microalgae described herein removes water that may be an undesirable component of finished food products or food ingredients. In some cases, drying the biomass may facilitate a more efficient microalgal oil extraction process.
- the concentrated microalgal biomass is drum dried to a flake form to produce algal flake, as described in part A of this section.
- the concentrated micralgal biomass is spray or flash dried (i.e., subjected to a pneumatic drying process) to form a powder containing predominantly intact cells to produce algal powder, as described in part B of this section.
- the concentratedmicroalgal biomass is micronized (homogenized) to form a homogenate of predominantly lysed cells that is then spray or flash dried to produce algal flour, as described in part C of this section.
- oil is extracted from the concentrated microalgal biomass to form algal oil, as described in part D of this section.
- the flour, flake or powder is 15% or less, 10% or less, 5% or less, 2-6%, or 3-5% moisture by weight after drying.
- Algal flake of the invention is prepared from concentrated microalgal biomass that is applied as a film to the surface of a rolling, heated drum. The dried solids are then scraped off with a knife or blade, resulting in a small flakes.
- U.S. Patent No. 6,607,900 describes drying microalgal biomass using a drum dryer without a prior centrifugation (concentration) step, and such a process may be used in accordance with the methods of the invention.
- an antioxidant may be advantageous to add to the biomass prior to drying. The addition of an antioxidant will not only protect the biomass during drying, but also extend the shelf-life of the dried microalgal biomass when stored.
- an antioxidant is added to the microalgal biomass prior to subsequent processing such as drying or homogenization. Antioxidants that are suitable for use are discussed in detail below. [0256] Additionally, if there is significant time between the production of the dewatered microalgal biomass and subsequent processing steps, it may be advantageous to pasteurize the biomass prior to drying. Free fatty acids from lipases may form if there is significant time between producing and drying the biomass. Pasteurization of the biomass inactivates these lipases and prevents the formation of a "soapy" flavor in the resulting dried biomass product. Thus, in one embodiment, the invention provides pasteurized microalgal biomass. In another embodiment, the pasteurized microalgal biomass is an algal flake.
- Algal powder (or microalgal powder) of the invention is prepared from concentrated microalgal biomass using a pneumatic or spray dryer (see for example U.S. Patent No. 6,372,460).
- a spray dryer material in a liquid suspension is sprayed in a fine droplet dispersion into a current of heated air. The entrained material is rapidly dried and forms a dry powder.
- a pulse combustion dryer can also be used to achieve a powdery texture in the final dried material.
- a combination of spray drying followed by the use of a fluid bed dryer is used to achieve the optimal conditions for dried microbial biomass (see, for example, U.S. Patent No. 6,255,505).
- pneumatic dryers can also be used in the production of algal powder.
- Pneumatic dryers draw or entrain the material that is to be dried in a stream of hot air. While the material is entrained in the hot air, the moisture is rapidly removed. The dried material is then separated from the moist air and the moist air is then recirculated for further drying.
- Algal flour of the invention is prepared from concentrated microalgal biomass that has been mechanically lysed and homogenized and the homogenate spray or flash dried into a powder form (or dried using another pneumatic drying system).
- the production of algal flour requires that cells be lysed to release their oil and that cell wall and intracellular components be micronized or at least reduced in particle size.
- the average size of particles measured immediately after homogenation or as soon is practical thereafter is preferably no more than 10, no more than 25, or no more than 100 ⁇ m. In some embodiments, the average particle size is 1-10, 1-15, 10-100 or 1-40 ⁇ m. In some embodiments, the average particle size is greater than 10 ⁇ m and up to 100 ⁇ m. In some embodiments, the average particle size is 0.1- 100 ⁇ m.
- average size of particles are preferably measured immediately after homogenization has occurred or as soon as practical thereafter (e.g., within 2 weeks) to avoid or minimize potential distortions of measurement of particle size due to clumping.
- the emulsions resulting from homogenization can usually be stored at least two weeks in a refrigerator without material change in particle size.
- Some techniques for measuring particle size, such as laser diffraction measure the size of clumps of particles rather than individual particles. The clumps of particles measured have a larger average size than individual particles (e.g., 1-100 microns).
- a pressure disrupter can be used to pump a cell containing slurry through a restricted orifice valve to lyse the cells. High pressure (up to 1500 bar) is applied, followed by an instant expansion through an exiting nozzle. Cell disruption is accomplished by three different mechanisms: impingement on the valve, high liquid shear in the orifice, and sudden pressure drop upon discharge, causing an explosion of the cell. The method releases intracellular molecules.
- a Niro (Niro Soavi GEA) homogenizer can be used to process cells to particles predominantly 0.2 to 5 microns in length. Processing of algal biomass under high pressure (approximately 1000 bar) typically lyses over 90% of the cells and reduces particle size to less than 5 microns.
- a ball mill can be used. In a ball mill, cells are agitated in suspension with small abrasive particles, such as beads. Cells break because of shear forces, grinding between beads, and collisions with beads. The beads disrupt the cells to release cellular contents.
- algal biomass is disrupted and formed into a stable emulsion using a Dyno-mill ECM Ultra (CB Mills) ball mill.
- Cells can also be disrupted by shear forces, such as with the use of blending (such as with a high speed or Waring blender as examples), the french press, or even centrifugation in case of weak cell walls, to disrupt cells.
- a suitable ball mill including specifics of ball size and blade is described in US Patent No. 5,330,913.
- the immediate product of homogenization is a slurry of particles smaller in size than the original cells that is suspended in in oil and water.
- the particles represent cellular debris.
- the oil and water are released by the cells. Additional water may be contributed by aqueous media containing the cells before homogenization.
- the particles are preferably in the form of a micronized homogenate. If left to stand, some of the smaller particles may coalesce. However, an even dispersion of small particles can be preserved by seeding with a macrocrystalline stabilizer, such as macrocrystalline cellulose.
- the slurry is spray or flash dried, removing water and leaving a dry powder-like material containing cellular debris and oil.
- the oil content of the flour ie: disrupted cells as a powder-like material
- the powder can have a dry rather than greasy feel and appearance (e.g., lacking visible oil) and can also flow freely when shaken.
- Various flow agents including silica-derived products such as precipitated silica, fumed silica, calcium silicate, and sodium aluminum silicates) can also be added.
- the oil content of algal flour can vary depending on the percent oil of the algal biomass.
- Algal flour can be produced from algal biomass of varying oil content.
- the algal flour is produced from algal biomass of the same oil content.
- the algal flour is produced from alglal biomass of different oil content.
- algal biomass of varying oil content can be combined and then the homogenization step performed.
- algal flour of varying oil content is produced first and then blended together in various proportions in order to achieve an algal flour product that contains the final desired oil content.
- algal biomass of different lipid profiles can be combined together and then homogenized to produce algal flour.
- algal flour of different lipid profiles is produced first and then blended together in various proportions in order to achieve an algal flour product that contains the final desired lipid profile.
- algal flour of the invention is useful for a wide range of food preparations. Because of the oil content, fiber content and the micronized particles, algal flour is a multifunctional food ingredient. Algal flour can be used in baked goods, quick breads, yeast dough products, egg products, dressing, sauces, nutritional beverages, algal milk, pasta and gluten free products.
- Gluten-free products can be made using algal flour and another gluten- free product such as amaranth flour, arrow root flour, buckwheat flour, rice flour, chickpea flour, cornmeal, maize flour, millet flour, potato flour, potato starch flour, quinoa flour, sorghum flour, soy flour, bean flour, legume flour, tapioca (cassava) flour, teff flour, artichoke flour, almond flour, acorn flour, coconut flour, chestnut flour, corn flour and taro flour.
- another gluten- free product such as amaranth flour, arrow root flour, buckwheat flour, rice flour, chickpea flour, cornmeal, maize flour, millet flour, potato flour, potato starch flour, quinoa flour, sorghum flour, soy flour, bean flour, legume flour, tapioca (cassava) flour, teff flour, artichoke flour, almond flour, acorn flour, coconut flour, chestnut flour, corn flour
- Algal flour in combination with other gluten-free ingredients is useful in making gluten-free food products such as baked goods (cakes, cookie, brownies and cake-like products (e.g., muffins)), breads, cereal, crackers and pastas. Additional details of formulating these food products and more with algal flour is described in the Examples below.
- Algal flour can be used in baked goods in place of convention fat sources (e.g., oil, butter or margarine) and eggs.
- Baked goods and gluten free products have superior moisture content and a cumb structure that is indistinguishable from conventional baked goods made with butter and eggs. Because of the superior moisture content, these baked goods have a longer shelf life and retain their original texture longer than conventional baked goods that are produced without algal flour.
- the water activity (Aw) of a food can be an indicator of shelf-life retention in a prepared food product.
- Water activity (ranging from 0 to 1) is a measure of how efficiently the water present in a food product can take part in a chemical or physical reaction.
- the water activity of some common foods representing the spectrum of Aw are: fresh fruit/meat/milk (1.0-0.95); cheese (0.95-0.90); margarine (0.9-0.85); nuts (0.75-0.65); honey (0.65-0.60); salted meats (0.85-0.80); jam (0.8-7.5); pasta (0.5); cookies (0.3); and dried vegetables/crackers (0.2).
- Most bacteria will not grow at water activities below 0.91. Below 0.80 most molds cannot be grown and below 0.60 no microbiological growth is possible.
- Algal flour can also act as a fat extender with used in smoothies, sauces, or dressings.
- the composition of algal flour is unique in its ability to convey organoleptic qualities and mouth-feel comparable to a food product with a higher fat content. This also demonstrates the ability of the algal flour to act as texture modifier. Dressings, sauces and beverages made with algal flour have a rheology and opacity that is close to conventional higher fat recipes although these food products contains about half the fat/oil levels.
- Algal flour is also a superior emulsifier and is suitable in use in food preparation that requires thickness, opacity and viscosity, such as, sauces, dressings and soups. Additionally the lipid profile found in algal flour of the inventions described herein does not contain trans-fat and have a higher level of healthy, unsaturated fats as compared to butter or margarine (or other animal fats). Thus, products made with algal flour can have a lower fat content (with healthier fats) without sacrificing the mouthfeel and organoleptic qualities of the same food product that is made using a conventional recipe using a conventional fat source.
- a senory panel evaluated a food product made with algal flour that had the same fat content as a low fat control. A non-fat control and full-fat control was also tested.
- Figure 6 demonstrates fat extending qualities of the algal flour. The algal flour product tracked similarly to the full-fat control, especially in the thickness, mouthcoating and how it mixes with saliva sensory categories.
- Algal flour can also be added to powdered or liquid eggs, which are typically served in a food service setting.
- the combination of a powdered egg product and algal flour is itself a powder, which can be combined with an edible liquid or other edible ingredient, typically followed by cooking to form a food product.
- the algal flour can be combined with a liquid product that will then be sprayed dried to form a powdered food ingredient (e.g., powdered eggs, powdered sauce mix, powdered soup mix, etc).
- a powdered food ingredient e.g., powdered eggs, powdered sauce mix, powdered soup mix, etc.
- Algal flour can be used to formulate reconstituted food products by combining flour with one or more edible ingredients and liquid, such as water.
- the reconstituted food product can be a beverage, dressing (such as salad dressing), sauce (such as a cheese sauce), or an intermediate such as a dough that can then be baked.
- the reconstituted food product is then subjected to shear forces such as pressure disruption or homogenization.
- shear forces such as pressure disruption or homogenization.
- This has the effect of reducing particle size of the algal flour in the finished product because the high oil content of the flour can cause agglomeration during the reconstitution process.
- a preferred algal flour particle size in a reconstituted food product is an average of 1 to 15 micrometers.
- the present invention is directed to a method of preparing algal oil by harvesting algal oil from an algal biomass comprising at least 15% oil by dry weight under GMP conditions, in which the algal oil is greater than 50% 18:1 lipid.
- the algal biomass comprises a mixture of at least two distinct species of microalgae. In some cases, at least two of the distinct species of microalgae have been separately cultured. In at least one embodiment, at least two of the distinct species of microalgae have different glycerolipid profiles.
- the algal biomass is derived from algae grown heterotrophically. In some cases, all of the at least two distinct species of microalgae contain at least 15% oil by dry weight.
- the present invention is directed to a method of making a food composition
- a method of making a food composition comprising combining algal oil obtained from algal cells containing at least 10%, or at least 15% oil by dry weight with one or more other edible ingredients to form the food composition.
- the method further comprises preparing the algal oil under GMP conditions.
- Algal oil can be separated from lysed biomass for use in food product (among other applications).
- the algal biomass remaining after oil extraction is referred to as delipi dated meal.
- Delipidated meal contains less oil by dry weight or volume than the microalgae contained before extraction. Typically 50-90% of oil is extracted so that delipidated meal contains, for example, 10-50% of the oil content of biomass before extraction.
- the biomass still has a high nutrient value in content of protein and other constituents discussed above.
- the delipidated meal can be used in animal feed or in human food applications.
- the algal oil is at least 50% w/w oleic acid and contains less than 5% DHA.
- the algal oil is at least 50% w/w oleic acid and contains less than 0.5% DHA. In some embodiments of the method, the algal oil is at least 50% w/w oleic acid and contains less than 5% glycerolipid containing carbon chain length greater than 18.
- the algal cells from which the algal oil is obtained comprise a mixture of cells from at least two distinct species of microalgae. In some cases, at least two of the distinct species of microalgae have been separately cultured. In at least one embodiment, at least two of the distinct species of microalgae have different glycerolipid profiles. In some cases, the algal cells are cultured under heterotrophic conditions. In some cases, all of the at least two distinct species of microalgae contain at least 10%, or at least 15% oil by dry weight.
- the present invention is directed to algal oil containing at least 50% monounsaturated oil and containing less than 1 % DHA prepared under GMP conditions.
- the monounsaturated oil is 18:1 lipid.
- the algal oil is packaged in a capsule for delivery of a unit dose of oil.
- the algal oil is derived from a mixture of at least two distinct species of microalgae. In some cases, at least two of the distinct species of microalgae have been separately cultured. In at least one embodiment, at least two of the distinct species of microalgae have different glycerolipid profiles.
- the algal oil is derived from algal cells cultured under heterotrophic conditions. In some embodiments, the algal oil contains the same components as discussed in the preceding section entitled "Chemical Composition of Microalgal Biomass".
- the present invention is directed to oil comprising greater than 60% 18:1, and at least 0.20mg/g tocotrienol.
- the present invention is directed to a fatty acid alkyl ester composition
- a fatty acid alkyl ester composition comprising greater than 60% 18:1 ester (preferably as triglyceride), and at least 0.20mg/g tocotrienol.
- Algal oil of the invention is prepared from concentrated, washed microalgal biomass by extraction.
- the cells in the biomass are lysed prior to extraction.
- the microbial biomass may also be dried (oven dried, lyophilized, etc.) prior to lysis (cell disruption).
- cells can be lysed without separation from some or all of the fermentation broth when the fermentation is complete.
- the cells can be at a ratio of less than 1 :1 v:v cells to extracellular liquid when the cells are lysed.
- Microalgae containing lipids can be lysed to produce a lysate.
- the step of lysing a microorganism can be achieved by any convenient means, including heat-induced lysis, adding a base, adding an acid, using enzymes such as proteases and polysaccharide degradation enzymes such as amylases, using ultrasound, mechanical pressure-based lysis, and lysis using osmotic shock.
- a microorganism can be used as a single method or in combination simultaneously or sequentially.
- the extent of cell disruption can be observed by microscopic analysis. Using one or more of the methods above, typically more than 70% cell breakage is observed. Preferably, cell breakage is more than 80%, more preferably more than 90% and most preferred about 100%.
- Lipids and oils generated by the microalgae in accordance with the present invention can be recovered by extraction.
- extraction can be performed using an organic solvent or an oil, or can be performed using a solventless-extraction procedure.
- the preferred organic solvent is hexane.
- the organic solvent is added directly to the lysate without prior separation of the lysate components.
- the lysate generated by one or more of the methods described above is contacted with an organic solvent for a period of time sufficient to allow the lipid components to form a solution with the organic solvent. In some cases, the solution can then be further refined to recover specific desired lipid components.
- the mixture can then be filtered and the hexane removed by, for example, rotoevaporation.
- Hexane extraction methods are well known in the art. See, e.g., Frenz et al., Enzyme Microb. TechnoL, 11 :717 (1989).
- Miao and Wu describe a protocol of the recovery of microalgal lipid from a culture of Chlorella protothecoides in which the cells were harvested by centrifugation, washed with distilled water and dried by freeze drying. The resulting cell powder was pulverized in a mortar and then extracted with ⁇ -hexane. Miao and Wu, Biosource Technology 97:841-846 (2006).
- microalgal oils can be extracted using liquefaction (see for example Sawayama et al., Biomass and Bioenergy 17:33-39 (1999) and Inoue et al., Biomass Bioenergy 6(4):269-274 (1993)); oil liquefaction (see for example Minowa et al., Fuel 74(12):1735-1738 (1995)); or supercritical CO 2 extraction (see for example Mendes et al, Inorganica Chimica Acta 356:328-334 (2003)).
- liquefaction see for example Sawayama et al., Biomass and Bioenergy 17:33-39 (1999) and Inoue et al., Biomass Bioenergy 6(4):269-274 (1993)
- oil liquefaction see for example Minowa et al., Fuel 74(12):1735-1738 (1995)
- supercritical CO 2 extraction see for example Mendes et al, Inorganica Chimica Acta 356:328-334
- Algal oil extracted via supercritical CO2 extraction contains all of the sterols and carotenoids from the algal biomass and naturally do not contain phospholipids as a function of the extraction process.
- the residual from the processes essentially comprises delipidated algal biomass devoid of oil, but still retains the protein and carbohydrates of the pre-extraction algal biomass.
- the residual delipidated algal biomass is suitable feedstock for the production of algal protein concentrate/isolate and also as a source of dietary fiber.
- Oil extraction includes the addition of an oil directly to a lysate without prior separation of the lysate components. After addition of the oil, the lysate separates either of its own accord or as a result of centrifugation or the like into different layers.
- the layers can include in order of decreasing density: a pellet of heavy solids, an aqueous phase, an emulsion phase, and an oil phase.
- the emulsion phase is an emulsion of lipids and aqueous phase.
- the force of centrifugation if any, volume of aqueous media and other factors, either or both of the emulsion and oil phases can be present.
- the oil used in the extraction process is selected from the group consisting of oil from soy, rapeseed, canola, palm, palm kernel, coconut, corn, waste vegetable oil, Chinese tallow, olive, sunflower, cotton seed, chicken fat, beef tallow, porcine tallow, microalgae, macroalgae, Cuphea, flax, peanut, choice white grease (lard), Camelina sativa mustard seedcashew nut, oats, lupine, kenaf, calendula, hemp, coffee, linseed, hazelnut, euphorbia, pumpkin seed, coriander, camellia, sesame, safflower, rice, tung oil tree, cocoa, copra,
- the amount of oil added to the lysate is typically greater than 5% (measured by v/v and/or w/w) of the lysate with which the oil is being combined.
- a preferred v/v or w/w of the oil is greater than 5%, 10%, 20%, 25%, 50%, 70%, 90%, or at least 95% of the cell lysate.
- Lipids can also be extracted from a lysate via a solventless extraction procedure without substantial or any use of organic solvents or oils by cooling the lysate. Soni cation can also be used, particularly if the temperature is between room temperature and 65 0 C. Such a lysate on centrifugation or settling can be separated into layers, one of which is an aqueous:lipid layer. Other layers can include a solid pellet, an aqueous layer, and a lipid layer. Lipid can be extracted from the emulsion layer by freeze thawing or otherwise cooling the emulsion. In such methods, it is not necessary to add any organic solvent or oil. If any solvent or oil is added, it can be below 5% v/v or w/w of the lysate. IV. COMBINING MICRO ALGAL BIOMASS OR MATERIALS DERIVED
- the present invention is directed to a food composition
- a food composition comprising at least 0.1% w/w algal biomass and one or more other edible ingredients, wherein the algal biomass comprises at least 10% oil by dry weight, optionally wherein at least 90% of the oil is glycerolipid.
- the algal biomass contains at least 25%, 40%, 50% or 60% oil by dry weight.
- the algal biomass contains 10-90%, 25-75%, 40-75% or 50-70% oil by dry weight, optionally wherein at least 90% of the oil is glycerolipid.
- at least 50% by weight of the oil is monounsaturated glycerolipid oil.
- At least 50% by weight of the oil is an 18:1 lipid in glycerolipid form. In some cases, less than 5% by weight of the oil is docosahexanoic acid (DHA) (22:6). In at least one embodiment, less than 1% by weight of the oil is DHA.
- DHA docosahexanoic acid
- An algal lipid content with low levels of polyunsaturated fatty acids (PUFA) is preferred to ensure chemical stability of the biomass.
- the algal biomass is grown under heterotrophic conditions and has reduced green pigmentation.
- the microalgae is a color mutant that lacks or is reduced in pigmentation.
- the present invention is directed to a food composisiton comprising at least 0.1% w/w algal biomass and one or more other edible ingredients, wherein the algal biomass comprises at least 30% protein by dry weight, at least 40% protein by dry weight, at least 45% protein by dry weight, at least 50% protein by dry weight, at least 55% protein by dry weight, at least 60% protein by dry weight or at least 75% protein by dry weight. In some cases, the algal biomass contains 30-75% or 40-60% protein by dry weight.
- the algal biomass is grown under heterotrophic conditions. In at least one embodiment, the algal biomass is grown under nitrogen-replete conditions. In other embodiments, the microalgae is a color mutant that lacks or is reduced in pigmentation.
- the algal biomass comprises predominantly intact cells.
- the food composition comprises oil which is predominantly or completely encapsulated inside cells of the biomass.
- the food composition comprises predominantly intact microalgal cells.
- the algal oil is predominantly encapsulated in cells of the biomass.
- the biomass comprises predominantly lysed cells (e.g., a homogenate). As discussed above, such a homogenate can be provided as a slurry, flake, powder, or flour.
- the algal biomass further comprises at least 10 ppm selenium. In some cases, the biomass further comprises at least 15% w/w algal polysaccharide. In some cases, the biomass further comprises at least 5% w/w algal glycoprotein. In some cases, the biomass comprises between 0 and 115 mcg/g total carotenoids. In some cases, the biomass comprises at least 0.5% w/w algal phospholipids. In all cases, as just noted, these components are true cellular components and not extracellular. [0291] In some cases, the algal biomass of the food composition contains components that have antioxidant qualities.
- the strong antioxidant qualities can be attributed to the multiple antioxidants present in the algal biomass, which include, but are not limited to carotenoids, essential minerals such as zinc, copper, magnesium, calcium, and manganese.
- Algal biomass has also been shown to contain other antioxidants such as tocotrienols and tocopherols.
- These members of the vitamin E family are important antioxidants and have other health benefits such as protective effects against stroke-induced injuries, reversal of arterial blockage, growth inhibition of breast and prostate cancer cells, reduction in cholesterol levels, a reduced -risk of type II diabetes and protective effects against glaucomatous damage.
- compositions of the present invention contain algal oil comprising at least 5mg/100g, at least 7mg/100g or at least 8mg/100g total tocopherol. In some cases, food compositions of the present invention contain algal oil comprising at least 0.15mg/g, at least 0.20mg/g or at least 0.25mg/g total tocotrienol.
- the microalgae can produce carotenoids.
- the carotenoids produced by the microalgae can be co-extracted with the lipids or oil produced by the microalgae (i.e., the oil or lipid will contain the carotenoids).
- the carotenoids produced by the microalgae are xanthophylls.
- the carotenoids produced by the microalgae are carotenes.
- the carotenoids produced by the microalgae are a mixture of carotenes and xanthophylls.
- the carotenoids produced by the microalgae comprise at least one carotenoid selected from the group consisting of astaxanthin, lutein, zeaxanthin, alpha-carotene, trans-beta carotene, cis-beta carotene, lycopene and any combination thereof.
- a carotenoid profile of oil from Chlorella protothecoides is included below in the Examples.
- the algal biomass is derived from algae cultured and dried under good manufacturing practice (GMP) conditions.
- the algal biomass is combined with one or more other edible ingredients, including without limitation, grain, fruit, vegetable, protein, lipid, herb and/or spice ingredients.
- the food composition is a salad dressing, egg product, baked good, bread, bar, pasta, sauce, soup drink, beverage, frozen dessert, butter or spread.
- the food composition is not a pill or powder.
- the food composition in accordance with the present invention weighs at least 5Og, or at least 10Og.
- Biomass can be combined with one or more other edible ingredients to make a food product.
- the biomass can be from a single algal source ⁇ e.g. , strain) or algal biomass from multiple sources ⁇ e.g., different strains).
- the biomass can also be from a single algal species, but with different composition profile.
- a manufacturer can blend microalgae that is high in oil content with microalgae that is high in protein content to the exact oil and protein content that is desired in the finished food product.
- the combination can be performed by a food manufacturer to make a finished product for retail sale or food service use.
- a manufacturer can sell algal biomass as a product, and a consumer can incorporate the algal biomass into a food product, for example, by modification of a conventional recipe.
- the algal biomass is typically used to replace all or part of the oil, fat, eggs, or the like used in many conventional food products.
- the present invention is directed to a food composition
- a food composition comprising at lest 0.1% w/w algal biomass and one or more other edible ingredients, wherein the algal biomass is formulated thorugh blending of algal biomass that contains at least 40% protein by dry weight with algal biomass that contains 40% lipid by dry weight to obtain a blend of a desired percent protein and lipid by dry weight.
- the biomass is from the same strain of algae.
- algal biomass that contains at least 40% lipid by dry weight containing less than 1% of its lipid as DHA is blended with algal biomass that contains at lest 20% lipid by dry weight containing at least 5% of its lipid as DHA to obtain a blend of dry biomass that contains in the aggregate at least 10% lipid and 1% DHA by dry weight.
- the present invention is directed to a method of preparing algal biomass by drying an algal culture to provide algal biomass comprising at least 15% oil by dry weight under GMP conditions, in which the algal oil is greater than 50% monounsaturated lipid.
- the present invention is directed to algal biomass containing at least 15% oil by dry weight manufactured under GMP conditions, in which the algal oil is greater than 50% 18:1 lipid. In one aspect, the present invention is directed to algal biomass containing at least 40% oil by dry weight manufactured under GMP conditions. In one aspect, the present invention is directed to algal biomass containing at least 55% oil by dry weight manufactured under GMP conditions. In some cases, the algal biomass is packaged as a tablet for delivery of a unit dose of biomass. In some cases, the algal biomass is packaged with or otherwise bears a label providing directions for combining the algal biomass with other edible ingredients.
- the present invention is directed to methods of combining microalgal biomass and/or materials derived therefrom, as described above, with at least one other finished food ingredient, as described below, to form a food composition or foodstuff.
- the food composition formed by the methods of the invention comprises an egg product (powdered or liquid), a pasta product, a dressing product, a mayonnaise product, a cake product, a bread product, an energy bar, a milk product, a juice product, a spread, or a smoothie.
- the food composition is not a pill or powder.
- the food composition weighs at least 10 g, at least 25 g, at least 50 g, at least 100 g, at least 250 g, or at least 500 g or more.
- the food composition formed by the combination of microalgal biomass and/or product derived therefrom is an uncooked product.
- the food composition is a cooked product.
- the food composition is a cooked product.
- the food composition contains less than 25% oil or fat by weight excluding oil contributed by the algal biomass. Fat, in the form of saturated triglycerides (TAGs or trans fats), is made when hydrogenating vegetable oils, as is practiced when making spreads such as margarines.
- TAGs or trans fats saturated triglycerides
- the fat contained in algal biomass has no trans fats present.
- the food composition contains less than 10% oil or fat by weight excluding oil contributed by the biomass.
- the food composition is free of oil or fat excluding oil contributed by the biomass.
- the food composition is free of oil other than oil contributed by the biomass.
- the food composition is free of egg or egg products.
- the present invention is directed to a method of making a food composition in which the fat or oil in a conventional food product is fully or partially substituted with algal biomass containing at least 10% by weight oil.
- the method comprises determining an amount of the algal biomass for substitution using the proportion of algal oil in the biomass and the amount of oil or fat in the conventional food product, and combining the algal biomass with at least one other edible ingredient and less than the amount of oil or fat contained in the conventional food product to form a food composition.
- the amount of algal biomass combined with the at least one other ingredient is 1 -4 times the mass or volume of oil and/or fat in the conventional food product.
- the method described above further includes providing a recipe for a conventional food product containing the at least one other edible ingredient combined with an oil or fat, and combining 1-4 times the mass or volume of the algal biomass with the at least one other edible ingredient as the mass or volume of fat or oil in the conventional food product.
- the method further includes preparing the algal biomass under GMP conditions.
- the food composition formed by the combination of microalgal biomass and/or product derived therefrom comprises at least 0.1%, at least 0.5%, at least 1%, at least 5%, at least 10%, at least 25%, or at least 50% w/w or v/v microalgal biomass or microalgal oil.
- food compositions formed as described herein comprise at least 2%, at least 5%, at least 10%, at least 25%, at least 50%, at least 75%, at least 90%, or at least 95% w/w microalgal biomass or product derived therefrom.
- the food composition comprises 5-50%, 10-40%, or 15-35% algal biomass or product derived therefrom by weight or by volume.
- microalgal biomass can be substituted for other components that would otherwise be conventionally included in a food product.
- the food composition contains less than 50%, less than 40%, or less than 30% oil or fat by weight excluding microalgal oil contributed by the biomass or from microalgal sources. In some cases, the food composition contains less than 25%, less than 20%, less than 15%, less than 10%, or less than 5% oil or fat by weight excluding microalgal oil contributed by the biomass or from microalgal sources. In at least one embodiment, the food composition is free of oil or fat excluding microalgal oil contributed by the biomass or from microalgal sources.
- the food composition is free of eggs, butter, or other fats/oils or at least one other ingredient that would ordinarily be included in a comparable conventional food product.
- Some food products are free of dairy products (e.g., butter, cream and/or cheese).
- the amount of algal biomass used to prepare a food composition depends on the amount of non-algal oil, fat, eggs, or the like to be replaced in a conventional food product and the percentage of oil in the algal biomass.
- the methods of the invention include determining an amount of the algal biomass to combine with at least one other edible ingredient from a proportion of oil in the biomass and a proportion of oil and/or fat that is ordinarily combined with the at least one other edible ingredient in a conventional food product.
- the algal biomass is 50% w/w microalgal oil, and complete replacement of oil or fat in a conventional recipe is desired, then the oil can for example be replaced in a 2:1 ratio.
- the ratio can be measured by mass, but for practical purposes, it is often easier to measure volume using a measuring cup or spoon, and the replacement can be by volume.
- the volume or mass of oil or fat to be replaced is replaced by (100/100-X) volume or mass of algal biomass, where X is the percentage of microalgal oil in the biomass.
- oil and fats to be replaced in conventional recipes can be replaced in total by algal biomass, although total replacement is not necessary and any desired proportion of oil and/or fats can be retained and the remainder replaced according to taste and nutritional needs.
- the algal biomass contains proteins and phospholipids, which function as emulsifiers, items such as eggs can be replaced in total or in part with algal biomass. If an egg is replaced in total with biomass, it is sometimes desirable or necessary to augment the emulsifying properties in the food composition with an additional emulsifying agent(s) and/or add additional water or other liquid(s) to compensate for the loss of these components that would otherwise be provided by the egg. Because an egg is not all fat, the amount of biomass used to replace an egg may be less than that used to replace pure oil or fat. An average egg weighs about 58 g and comprises about 11.2% fat. Thus, about 13 g of algal biomass comprising 50% microalgal oil by weight can be used to replace the total fat portion of an egg in total.
- substitution ratios can also be provided in terms of mass or volume of oil, fat and/or eggs replaced with mass or volume of biomass.
- the mass or volume of oil, fat and/or eggs in a conventional recipe is replaced with 5-150%, 25-100% or 25-75% of the mass or volume of oil, fat and/or eggs.
- the replacement ratio depends on factors such as the food product, desired nutritional profile of the food product, overall texture and appearance of the food product, and oil content of the biomass.
- percentages i.e., weight or volume
- the percentage of algal biomass can increase during the cooking process because of loss of liquids. Because some algal biomass cells may lyse in the course of the cooking process, it can be difficult to measure the content of algal biomass directly in a cooked product. However, the content can be determined indirectly from the mass or volume of biomass that went into the raw product as a percentage of the weight or volume of the finished product (on a biomass dry solids basis), as well as by methods of analyzing components that are unique to the algal biomass such as genomic sequences or compounds that are delivered solely by the algal biomass, such as certain carotenoids.
- algal biomass with the at least one other edible ingredient in an amount that exceeds the proportional amount of oil, fat, eggs, or the like that is present in a conventional food product.
- one may replace the mass or volume of oil and/or fat in a conventional food product with 1, 2, 3, 4, or more times that amount of algal biomass.
- Some embodiments of the methods of the invention include providing a recipe for a conventional food product containing the at least one other edible ingredient combined with an oil or fat, and combining 1 -4 times the mass or volume of algal biomass with the at least one other edible ingredient as the mass or volume of fat or oil in the conventional food product.
- Algal biomass (predominantly intact or homogenized or micronized) and/or algal oil are combined with at least one other edible ingredient to form a food product.
- the algal biomass and/or algal oil is combined with 1-20, 2-10, or 4-8 other edible ingredients.
- the edible ingredients can be selected from all the major food groups, including without limitation, fruits, vegetables, legumes, meats, fish, grains (e.g., wheat, rice, oats, cornmeal, barley), herbs, spices, water, vegetable broth, juice, wine, and vinegar.
- at least 2, 3, 4, or 5 food groups are represented as well as the algal biomass or algal oil.
- Oils, fats, eggs and the like can also be combined into food compositions, but, as has been discussed above, are usually present in reduced amounts (e.g., less than 50%, 25%, or 10% of the mass or volume of oil, fat or eggs compared with conventional food products.
- Some food products of the invention are free of oil other than that provided by algal biomass and/or algal oil. Some food products are free of oil other than that provided by algal biomass. Some food products are free of fats other than that provided by algal biomass or algal oil. Some food products are free of fats other than that provided by algal biomass. Some food products are free of both oil and fats other than that provided by algal biomass or algal oil. Some food products are free of both oil and fats other than that provided by algal biomass.
- the oils produced by the microalgae can be tailored by culture conditions or strain selection to comprise a particular fatty acid component(s) or levels.
- the algal biomass used in making the food composition comprises a mixture of at least two distinct species of microalgae. In some cases, at least two of the distinct species of microalgae have been separately cultured. In at least one embodiment, at least two of the distinct species of microalgae have different glycerolipid profiles. In some cases, the method described above further comprises culturing algae under heterotrophic conditions and preparing the biomass from the algae.
- all of the at least two distinct species of microalgae contain at least 10%, or at least 15% oil by dry weight.
- a food composition contains a blend of two distinct preparations of biomass of the same species, wherein one of the preparations contains at least 30% oil by dry weight and the second contains less than 15% oil by dry weight.
- a food composition contains a blend of two distinct preparations of biomass of the same species, wherein one of the preparations contains at least 50% oil by dry weight and the second contains less than 15% oil by dry weight, and further wherein the species is Chlorella protothecoides.
- algal biomass can be used as a supplement in foods that do not normally contain oil, such as a smoothie.
- the combination of oil with products that are mainly carbohydrate can have benefits associated with the oil, and from the combination of oil and carbohydrate by reducing the glycemic index of the carbohydrate.
- the provision of oil encapsulated in biomass is advantageous in protecting the oil from oxidation and can also improve the taste and texture of the smoothie.
- Oil extracted from algal biomass can be used in the same way as the biomass itself, that is, as a replacement for oil, fat, eggs, or the like in conventional recipes.
- the oil can be used to replace conventional oil and/or fat on about a 1 : 1 weight/weight or volume/volume basis.
- the oil can also be incorporated into dressings, sauces, soups, margarines, creamers, shortenings and the like.
- the oil is particularly useful for food products in which combination of the oil with other food ingredients is needed to give a desired taste, texture and/or appearance.
- the content of oil by weight or volume in food products can be at least 5, 10, 25, 40 or 50%.
- oil extracted from algal biomass can also be used as a cooking oil by food manufacturers, restaurants and/or consumers.
- algal oil can replace conventional cooking oils such as safflower oil, canola oil, olive oil, grape seed oil, corn oil, sunflower oil, coconut oil, palm oil, or any other conventionally used cooking oil.
- the oil obtained from algal biomass as with other types of oil can be subjected to further refinement to increase its suitability for cooking (e.g., increased smoke point).
- Oil can be neutralized with caustic soda to remove free fatty acids.
- the free fatty acids form a removable soap stock.
- the color of oil can be removed by bleaching with chemicals such as carbon black and bleaching earth.
- the bleaching earth and chemicals can be separated from the oil by filtration.
- Oil can also be deodorized by treating with steam.
- Predominantly intact biomass, homogenized or micronized biomass (aslurry, flake, powder or flour) and purified algal oil can all be combined with other food ingredients to form food products.
- microalgal biomass (either predominantly intact or homogenized (or micronized) or both) as a protein source is that it is a vegan/vegetarian protein source that is not from a major allergen source, such as soy, eggs or dairy.
- algal biomass and/or algal oil include, without limitation, grains, fruits, vegetables, proteins, meats, herbs, spices, carbohydrates, and fats.
- the other edible ingredients with which the algal biomass and/or algal oil is combined to form food compositions depend on the food product to be produced and the desired taste, texture and other properties of the food product.
- any of these sources of algal oil can be used in any food product, the preferred source depends in part whether the oil is primarily present for nutritional or caloric purposes rather than for texture, appearance or taste of food, or alternatively whether the oil in combination with other food ingredients is intended to contribute a desired taste, texture or appearance of the food as well as or instead of improving its nutritional or caloric profile.
- the food products can be cooked by conventional procedures as desired. Depending on the length and temperature, the cooking process may break down some cell walls, releasing oil such that it combines with other ingredients in the mixture. However, at least some algal cells often survive cooking intact. Alternatively, food products can be used without cooking. In this case, the algal wall remains intact, protecting the oil from oxidation.
- the algal biomass if provided in a form with cells predominantly intact, or as a homogenate powder, differs from oil, fat or eggs in that it can be provided as a dry ingredient, facilitating mixing with other dry ingredients, such as flour. In one embodiment the algal biomass is provided as a dry homogenate that contains between 25 and 40% oil by dry weight.
- a biomass homogenate can also be provided as slurry. After mixing of dry ingredients (and biomass homogenate slurry, if used), liquids such as water can be added. In some food products, the amount of liquid required is somewhat higher than in a conventional food product because of the non-oil component of the biomass and/or because water is not being supplied by other ingredients, such as eggs. However, the amount of water can readily be determined as in conventional cooking.
- the present invention is directed to a food ingredient composition
- a food ingredient composition comprising at least 0.5% w/w algal biomass containing at least 10% algal oil by dry weight and at least one other edible ingredient, in which the food ingredient can be converted into a reconstituted food product by addition of a liquid to the food ingredient composition.
- the liquid is water.
- Homogenized or micronized high-oil biomass is particularly advantageous in liquid,and/or emulsified food products (water in oil and oil in water emulsions), such as sauces, soups, drinks, salad dressings, butters, spreads and the like in which oil contributed by the biomass forms an emulsion with other liquids.
- emulsified food products water in oil and oil in water emulsions
- sauces soups, drinks, salad dressings, butters, spreads and the like in which oil contributed by the biomass forms an emulsion with other liquids.
- Products that benefit from improved rheology, such as dressings, sauces and spreads are described below in the Examples.
- Using homogenized biomass an emulsion with desired texture (e.g., mouth-feel), taste and appearance (e.g., opacity) can form at a lower oil content (by weight or volume of overall product) than is the case with conventional products employing conventional oils, thus can be used as a fat extender.
- Purified algal oil is also advantageous for such liquid and/or emulsified products. Both homogenized or micronized high-oil biomass and purified algal oil combine well with other edible ingredients in baked goods achieving similar or better taste, appearance and texture to otherwise similar products made with conventional oils, fats and/or eggs but with improved nutritional profile (e.g., higher content of monosaturated oil, and/or higher content or quality of protein, and/or higher content of fiber and/or other nutrients).
- Predominantly intact biomass is particularly useful in situations in which it is desired to change or increase the nutritional profile of a food (e.g., higher oil content, different oil content (e.g., more monounsaturated oil), higher protein content, higher calorie content, higher content of other nutrients). Such foods can be useful for example, for athletes or patients suffering from wasting disorders.
- Predominantly intact biomass can be used as a bulking agent. Bulking agents can be used, for example, to augment the amount of a more expensive food (e.g., meat helper and the like) or in simulated or imitation foods, such as vegetarian meat substitutes. Simulated or imitation foods differ from natural foods in that the flavor and bulk are usually provided by different sources.
- flavors of natural foods can be imparted into a bulking agent holding the flavor.
- Predominantly intact biomass can be used as a bulking agent in such foods.
- Predominantly intact biomass is also particularly useful in dried food, such as pasta because it has good water binding properties, and can thus facilitate rehydration of such foods.
- Predominantly intact biomass is also useful as a preservative, for example, in baked goods. The predominantly intact biomass can improve water retention and thus shelf-life.
- Disrupted or micronized algal biomass can also be useful as a binding agent, bulking agent or to change or increase the nutritional profile a food product.
- Disrupted algal biomass can be combined with another protein source such as meat, soy protein, whey protein, wheat protein, bean protein, rice protein, pea protein, milk protein, etc., where the algal biomass functions as a binding and/or bulking agent.
- Algal biomass that has been disrupted or micronized can also improve water retention and thus shelf-life. Increased moisture retention is especially desirable in gluten-free products, such as gluten-free baked goods.
- a detailed description of formulation of a gluten- free cookie using disrupted algal biomass and subsequent shelf-life study is described in the Examples below.
- the algal biomass can be used in egg preparations.
- algal biomass e.g., algal flour
- algal biomass is added to whole liquid eggs in order to improve the overall texture and moisture of eggs that are prepared and then held on a steam table. Specific examples of the foregoing preparations are described in the Examples below.
- Algal biomass predominantly intact and/or homogenized or micronized
- algal oil can be incorporated into virtually any food composition.
- Some examples include baked goods, such as cakes, brownies, yellow cake, bread including brioche, cookies including sugar cookies, biscuits, and pies.
- Other examples include products often provided in dried form, such as pastas or powdered dressing, dried creamers, commuted meats and meat substitutes.
- Incorporation of predominantly intact biomass into such products as a binding and/or bulking agent can improve hydration and increase yield due to the water binding capacity of predominantly intact biomass.
- Re-hydrated foods such as scrambled eggs made from dried powdered eggs, may also have improved texture and nutritional profile.
- liquid food products such as sauces, soups, dressings (ready to eat), creamers, milk drinks, juice drinks, smoothies, creamers.
- liquid food products include nutritional beverages that serve as a meal replacement or algal milk.
- Other food products include butters or cheeses and the like including shortening, margarine/spreads, nut butters, and cheese products, such as nacho sauce.
- Other food products include energy bars, chocolate confections-lecithin replacement, meal replacement bars, granola bar-type products.
- Another type of food product is batters and coatings.
- the food can retain the benefits of high monounsaturated oil content of coating without picking up less desirable oils (e.g., trans fats, saturated fats, and by products from the cooking oil).
- the coating of biomass can also provide a desirable (e.g. , crunchy) texture to the food and a cleaner flavor due to less absorption of cooking oil and its byproducts.
- uncooked products such as a salad dressing
- oil imparts a desired mouth feeling e.g., as an emulsion with an aqueous solution such as vinegar
- purified algal oil or micronized biomass is preferred.
- some algal cells of original intact biomass may be lysed but other algal cells may remain intact. The ratio of lysed to intact cells depends on the temperature and duration of the cooking process.
- dispersion of oil in a uniform way with other ingredients is desired for taste, texture and/or appearance (e.g., baked goods)
- use of micronized biomass or purified algal oil is preferred.
- Algal biomass can also be useful in increasing the satiety index of a food product (e.g., a meal -replacement drink or smoothie) relative to an otherwise similar conventional product made without the algal biomass.
- the satiety index is a measure of the extent to which the same number of calories of different foods satisfy appetite. Such an index can be measured by feeding a food being tested and measuring appetite for other foods at a fixed interval thereafter. The less appetite for other foods thereafter, the higher the satiety index. Values of satiety index can be expressed on a scale in which white bread is assigned a value of 100.
- algal biomass is believed to increase the satiety index of a food by increasing the protein and/or fiber content of the food for a given amount of calories.
- Algal biomass (predominantly intact and homogenized or micronized) and/or algal oil can also be manufactured into nutritional or dietary supplements.
- algal oil can be encapsulated into digestible capsules in a manner similar to fish oil. Such capsules can be packaged in a bottle and taken on a daily basis (e.g., 1-4 capsules or tablets per day).
- a capsule can contain a unit dose of algal biomass or algal oil.
- biomass can be optionally compressed with pharmaceutical or other excipients into tablets.
- the tablets can be packaged, for example, in a bottle or blister pack, and taken daily at a dose of, e.g., 1-4 tablets per day.
- the tablet or other dosage formulation comprises a unit dose of biomass or algal oil.
- Manufacturing of capsule and tablet products and other supplements is preferably performed under GMP conditions appropriate for nutritional supplements as codified at 21 C.F.R. 111 , or comparable regulations established by foreign jurisdictions.
- the algal biomass can be mixed with other powders and be presented in sachets as a ready- to-mix material (e.g., with water, juice, milk or other liquids).
- the algal biomass can also be mixed into products such as yogurts.
- algal biomass and/or algal oil can be incorporated into nutritional supplements
- the functional food products discussed above have distinctions from typical nutritional supplements, which are in the form of pills, capsules, or powders.
- the serving size of such food products is typically much larger than a nutritional supplement both in terms of weight and in terms of calories supplied.
- food products often have a weight of over lOOg and/or supply at least 100 calories when packaged or consumed at one time.
- food products contain at least one ingredient that is either a protein, a carbohydrate or a liquid and often contain two or three such other ingredients.
- the protein or carbohydrate in a food product often supplies at least 30%, 50%, or 60% of the calories of the food product.
- algal biomass can be made by a manufacturer and sold to a consumer, such as a restaurant or individual, for use in a commercial setting or in the home.
- Such algal biomass is preferably manufactured and packaged under Good Manufacturing Practice (GMP) conditions for food products.
- GMP Good Manufacturing Practice
- the algal biomass in predominantly intact form or homogenized or micronized form as a powder is often packaged dry in an airtight container, such as a sealed bag.
- Homogenized or micronized biomass in slurry form can be conveniently packaged in a tub among other containers.
- the algal biomass can be packaged under vacuum to enhance shelf life. Refrigeration of packaged algal biomass is not required.
- the packaged algal biomass can contain instructions for use including directions for how much of the algal biomass to use to replace a given amount of oil, fat or eggs in a conventional recipe, as discussed above.
- the directions can state that oil or fat are to be replaced on a 2:1 ratio by mass or volume of biomass, and eggs on a ratio of 1 Ig biomass or 1 teaspoon of algal oil per egg.
- other ratios are possible, for example, using a ratio of 10-175% mass or volume of biomass to mass or volume of oil and/or fat and/or eggs in a conventional recipe.
- the instructions may direct the user to keep the algal biomass in an airtight container, such as those widely commercially available (e.g., Glad), optionally with refrigeration.
- Algal biomass (predominantly intact or homogenized or micronized powder) can also be packaged in a form combined with other dry ingredients (e.g., sugar, flour, dry fruits, flavorings) and portioned packed to ensure uniformity in the final product.
- the mixture can then be converted into a food product by a consumer or food service company simply by adding a liquid, such as water or milk, and optionally mixing, and/or cooking without adding oils or fats. In some cases, the liquid is added to reconstitute a dried algal biomass composition.
- Cooking can optionally be performed using a microwave oven, convection oven, conventional oven, or on a cooktop.
- Such mixtures can be used for making cakes, breads, pancakes, waffles, drinks, sauces and the like. Such mixtures have advantages of convenience for the consumer as well as long shelf life without refrigeration. Such mixtures are typically packaged in a sealed container bearing instructions for adding liquid to convert the mixture into a food product.
- Algal oil for use as a food ingredient is likewise preferably manufactured and packaged under GMP conditions for a food.
- the algal oil is typically packaged in a bottle or other container in a similar fashion to conventionally used oils.
- the container can include an affixed label with directions for using the oil in replacement of conventional oils, fats or eggs in food products, and as a cooking oil.
- the oil When packaged in a sealed container, the oil has a long shelf-life (at least one year) without substantial deterioration.
- algal oil comprised primarily of monounsaturated oils is not acutely sensitive to oxidation. However, unused portions of the oil can be kept longer and with less oxidation if kept cold and/or out of direct sunlight ⁇ e.g., within an enclosed space, such as a cupboard).
- the directions included with the oil can contain such preferred storage information.
- the algal biomass and/or the algal oil may contain a food approved preservative/antioxidant to maximize shelf-life, including but not limited to, carotenoids ⁇ e.g., astaxanthin, lutein, zeaxanthin, alpha-carotene, beta-carotene and lycopene), phospholipids ⁇ e.g., N-acylphosphatidylethanolamine, phosphatidic acid, phosphatidyl ethanolamine, phosphatidylcholine, phosphatidylinositol and lysophosphatidylcholine), tocopherols ⁇ e.g., alpha tocopherol, beta tocopherol, gamma tocopherol and delta tocopherol), tocotrienols ⁇ e.g., alpha tocotrienol, beta tocotrienol, gamma tocotrienol and delta tocotrienol), Butylated hydroxyto, carotenoids
- the biomass imparts high quality oil or proteins or both in such foods.
- the content of algal oil is preferably at least 10 or 20% by weight as is the content of algal protein.
- Obtaining at least some of the algal oil and/or protein from predominantly intact biomass is sometimes advantageous for food for high performance animals, such as sport dogs or horses.
- Predominantly intact biomass is also useful as a preservative.
- Algal biomass or oil is combined with other ingredients typically found in animal foods ⁇ e.g., a meat, meat flavor, fatty acid, vegetable, fruit, starch, vitamin, mineral, antioxidant, probiotic) and any combination thereof.
- Such foods are also suitable for companion animals, particularly those having an active life style. Inclusion of taurine is recommended for cat foods.
- the food can be provided in bite-size particles appropriate for the intended animal.
- Delipidated meal is useful as a feedstock for the production of an algal protein concentrate and/or isolate, especially delipidated meal from high protein-containing algal biomass.
- the algal protein concentrate and/or isolate can be produced using standard processes used to produce soy protein concentrate/isolate.
- An algal protein concentrate would be prepared by removing soluble sugars from delipidated algal biomass or meal. The remaining components would mainly be proteins and insoluble polysaccharides. By removing the soluble sugars from the delipidated meal, the protein content is increased, thus creating an algal protein concentrate.
- An algal protein concentrate would contain at least 45% protein by dry weight.
- an algal protein concentrate would contain at least 50%- 75% protein by dry weight.
- Algal protein isolate can also be prepared using standard processes used to produce soy protein isolate. This process usually involves a temperature and basic pH extraction step using NaOH. After the extraction step, the liquids and solids are separated and the proteins are precipitated out of the liquid fraction using HCl. The solid fraction can be re-extracted and the resulting liquid fractions can be pooled prior to precipitation with HCl. The protein is then neutralized and spray dried to produce a protein isolate. An algal protein isolate would typically contain at least 90% protein by dry weight.
- Delipidated meal is useful as animal feed for farm animals, e.g., ruminants, poultry, swine, and aquaculture. Delipidated meal is a byproduct of preparing purified algal oil either for food or other purposes.
- the resulting meal although of reduced oil content still contains high quality proteins, carbohydrates, fiber, ash and other nutrients appropriate for an animal feed. Because the cells are predominantly lysed, delipidated meal is easily digestible by such animals. Delipidated meal can optionally be combined with other ingredients, such as grain, in an animal feed. Because delipidated meal has a powdery consistency, it can be pressed into pellets using an extruder or expanders, which are commercially available. [0338] The following examples are offered to illustrate, but not to limit, the claimed invention.
- Microalgae strains were cultivated in shake flasks with a goal to achieve over 20% of oil by dry cell weight.
- the flask media used was as follows: K 2 HPO 4 : 4.2 g/L, NaH 2 PO 4 : 3.1g/L, MgSO 4 -7H 2 O: 0.24g/L, Citric Acid monohydrate: 0.25g/L, CaCl 2 2H 2 O: 0.025g/L, yeast extract: 2g/L, and 2% glucose.
- Cryopreserved cells were thawed at room temperature and 500 ul of cells were added to 4.5 ml of medium and grown for 7 days at 28°C with agitation (200 rpm) in a 6-well plate.
- Dry cell weights were determined by centrifuging 1 ml of culture at 14,000 rpm for 5 min in a pre- weighed Eppendorf tube. The culture supernatant was discarded and the resulting cell pellet washed with 1 ml of deionized water. The culture was again centrifuged, the supernatant discarded, and the cell pellets placed at -80 0 C until frozen. Samples were then lyophyllized for 24 hrs and dry cell weights calculated. For determination of total lipid in cultures, 3 ml of culture was removed and subjected to analysis using an Ankom system (Ankom Inc., Ard, NY) according to the manufacturer's protocol.
- lipid profile was determined for each of these Chlorella protothecoides strains using standard gas chromatography (GC/FID) procedures described briefly in Example 2.
- GC/FID gas chromatography
- a summary of the lipid profile is included below. Values are expressed as area percent of total lipids.
- the collection numbers with UTEX are algae strains from the UTEX Algae Collection at the Univeristy of Texas, Austin (1 University Station A6700, Austin, Texas 78712-0183).
- the collections numbers with CCAP are algae strains from the Culture Collection of Algae and Protozoa (SAMS Research Services, Ltd. Scottish Marine Institute, OBAN, Argull PA37 IQA, Scotland, United Kingdom).
- the collection number with SAG are algae strains from the Culture Collection of Algae at Goettingen University (Nikolausberger Weg 18, 37073 Gottingen, Germany). Collection Number C12:0 C14:0 C16:0 C16:l C18:0 C18:l C18:2 C18 :3 C20:0 C20:l
- KH 2 PO 4 0.7g
- K 2 HPO 4 0.3g
- MgSO 4 - 7H 2 O 0.3g
- FeSO 4 -7H 2 O 3mg
- thiamine hydrochloride 10 ⁇ g
- glucose, 2Og glycine, O.lg
- H 3 BO 3 2.9mg
- MnCl 2 -4H 2 O 1.8mg
- the second medium (Media 2) was derived from the flask media described in Example 1 and consisted of per liter: K 2 HPO 4 , 4.2g; NaH 2 PO 4 , 3.1g; MgSO 4 - 7H 2 O, 0.24g; citric acid monohydrate, 0.25g; calcium chloride dehydrate, 25mg; glucose, 2Og; yeast extract, 2g.
- the third medium (Media 3) was a hybrid and consisted of per liter: K 2 HPO 4 , 4.2g; NaH 2 PO 4 , 3.1g; MgSO 4 -7H 2 O, 0.24g; citric acid monohydrate, 0.25g; calcium chloride dehydrate, 25mg; glucose, 2Og; yeast extract, 2g; H 3 BO 3 , 2.9mg; MnCl 2 - 4H 2 O, 1.8 mg; ZnSO 4 -7H 2 O, 220 ⁇ g; CuSO 4 -5H 2 O, 80 ⁇ g; and NaMoO 4 -2H 2 O, 22.9mg. All three media formulations were prepared and autoclave sterilized in lab scale fermentor vessels for 30 minutes at 121 0 C. Sterile glucose was added to each vessel following cool down post autoclave sterilization.
- Inoculum for each fermentor was Chlorella protothecoides (UTEX 250), prepared in two flask stages using the medium and temperature conditions of the fermentor inoculated. Each fermentor was inoculated with 10% (v/v) mid-log culture. The three lab scale fermentors were held at 28°C for the duration of the experiment. The microalgal cell growth in Media 1 was also evaluated at a temperature of 23°C. For all fermentor evaluations, pH was maintained at 6.6-6.8, agitations at 500rpm, and airflow at 1 wm. Fermentation cultures were cultivated for 11 days. Biomass accumulation was measured by optical density at 750 nm and dry cell weight.
- Lipid/oil concentration was determined using direct transesterification with standard gas chromatography methods. Briefly, samples of fermentation broth with biomass was blotted onto blotting paper and transferred to centrifuge tubes and dried in a vacuum oven at 65-70 0 C for 1 hour. When the samples were dried, 2mL of 5% H 2 SO 4 in methanol was added to the tubes. The tubes were then heated on a heat block at 65-70°C for 3.5hours, while being vortexed and sonicated intermittently. 2ml of heptane was then added and the tubes were shaken vigorously. 2Ml of 6% K 2 CO 3 was added and the tubes were shaken vigorously to mix and then centrifuged at 800rpm for 2 minutes.
- Percent oil/lipid was based on a dry cell weight basis.
- the lipid profiles (in area %, after normalizing to the internal standard) for algal biomass generated using the three different media formulations at 28°C are summarized below in Table 2.
- Microalgal biomass is generated by culturing microalgae as described in any one of Examples 1-2.
- the microalgal biomass is harvested from the fermentor, flask, or other bioreactor.
- the methods for maintaining cleanliness include, but are not limited to: (1) Wearing outer garments suitable to the operation in a manner that protects against the contamination of biomass, biomass-contact surfaces, or biomass packaging materials. (2) Maintaining adequate personal cleanliness. (3) Washing hands thoroughly (and sanitizing if necessary to protect against contamination with undesirable microorganisms) in an adequate hand- washing facility before starting work, after each absence from the work station, and at any other time when the hands may have become soiled or contaminated. (4) Removing all unsecured jewelry and other objects that might fall into biomass, equipment, or containers, and removing hand jewelry that cannot be adequately sanitized during periods in which biomass is manipulated by hand.
- Such hand jewelry cannot be removed, it may be covered by material which can be maintained in an intact, clean, and sanitary condition and which effectively protects against the contamination by these objects of the biomass, biomass-contact surfaces, or biomass-packaging materials.
- Maintaining gloves if they are used in biomass handling, in an intact, clean, and sanitary condition.
- the gloves should be of an impermeable material.
- Wearing where appropriate, in an effective manner, hair nets, headbands, caps, beard covers, or other effective hair restraints.
- microalgal biomass can optionally be subjected to a cell disruption procedure to generate a lysate and/or optionally dried to form a microalgal biomass composition.
- Chlorella protothecoides (UTEX 250) biomass was produced using 5,00OL fermentation tanks using processes described in Examples 2 and 3.
- Glucose (corn syrup) concentration was between was monitored throughout the run. When the glucose concentration was low, more glucose was added to the fermentation tank. After all nitrogen was consumed, the cells began accumulating lipid. Samples of biomass were taken throughout the run to monitor lipid levels and the run was stopped when the biomass reached the desired lipid content (over 40% lipid by dry cell weight). In this case, the biomass was harvested when it reached approximately 50% lipid by dry cell weight.
- the harvested Chlorella protothecoides biomass was separated from the culture medium using centrifugation and dried on a drum dryer using standard methods at approximately 150-170 0 C.
- the resulting drum-dried Chlorella protothecoides biomass with approximately 50% lipid by dry cell weight (high lipid) was packaged and stored for use as algal flakes.
- the crude protein determined by the amount of nitrogen released from burning each biomass, was 5% for the high lipid biomass and 50% for the high protein biomass.
- Carbohydrate content was calculated by difference, taking the above known values for fat, crude fiber, moisture, ash and crude protein and subtracting that total from 100.
- the calculated carbohydrate content for the high lipid biomass was 36% and the carbohydrate content for the high protein biomass as 24%.
- GC/MS gas chromatography/mass spectrometry
- methyl glycosides were first prepared from the dried Chlorella protothecoides sample by methanolysis in IM HCl in methanol at 80 0 C for 18-22 0 C, followed by re-N- acetylation with pyridine and acetic anhydride in methanol (for detection of amino sugars). The samples were then per-O-trimethylsilylated by treatment with Tri-Sil (Pierce) at 80 0 C for 30 minutes. These procedures were previously described in Merkle and Poppe (1994) Methods Enzymol. 230:1-15 and York et al. (1985) Methods Enzymol. 118:3-40.
- a sample of dried Chlorella protothecoides (UTEX 250) biomass with approximately 50% lipid by dry cell weight, grown and prepared using the methods described in Example 4 was analyzed for amino acid content in accordance with Official Methods of AOAC International (tryptophan analysis: AOAC method 988.15; methionine and cystine analysis: AOAC method 985.28 and the other amino acids: AOAC method 994.12).
- the amino acid profile from the dried algal biomass (expressed in percentage of total protein) was compared to the amino acid profile of dried whole egg (profile from product specification sheet for Whole Egg, Protein Factory Inc., New Jersey), and the results show that the two sources have comparable protein nutritional values.
- the carotenoid-containing fraction of the biomass was isolated and analyized fpr carotenoids using HPLC methods.
- the carotenoid-containing fraction was prepared by mixing lyophilized algal biomass (produced using methods described in Example 3) with silicon carbide in an aluminum mortar and ground four times for 1 minute each time, with a mortar and pestle. The ground biomass and silicon mixture was then rinsed with tetrahydrofuran (THF) and the supernatant was collected. Extraction of the biomass was repeated until the supernatant was colorless and the THF supernatant from all of the extractions were pooled and analyzed for carotenoid content using standard HPLC methods. The carotenoid content for algal biomass that was dried using a drum dryer was also analyzed using the methods described above.
- the carotenoid content of freeze dried algal biomass was: total lutein (66.9- 68.9mcg/g: with cis-lutein ranging from 12.4-12.7mcg/g and trans-lutein ranging from 54.5- 56.2mcg/g); trans-zeaxanthin (31.427-33.45 lmcg/g); cis-zeaxanthin (1.201-1.315mcg/g); t- alpha cryptoxanthin (3.092-3.773mcg/g); t-beta cryptoxanthin (1.061-1.354mcg/g); 15-cis- beta carotene (0.625-.0675nicg/g); 13-cis-beta carotene (.0269-.0376mcg/g); t-alpha carotene (0.269-.0376mcg/g); c-alpha carotene (0.043-.010mcg/g); t
- the carotenoid content of the drum-dried algal biomass was significantly lower: total lutein (0.709mcg/g: with trans-lutein being 0.091mcg/g and cis-lutein being 0.618mcg/g); trans-zeaxanthin (0.252mcg/g); cis-zeaxanthin (0.037mcg/g); alpha- cryptoxanthin (0.010mcg/g); beta-cryptoxanthin (O.OlOmcg/g) and t-beta-carotene (0.008mcg/g).
- the total reported carotenoids were 1.03mcg/g.
- Phospholipid analysis was also performed on the algal biomasss.
- the phospholipid containing fraction was extracted using the Folch extraction method (chloroform, methanol and water mixture) and the oil sample was analyzed using AOCS Official Method Ja 7b-91, HPLC determination of hydrolysed lecithins (International Lecithin and Phopholipid Society 1999), and HPLC analysis of phospholipids with light scatting detection (International Lecithin and Phospholipid Society 1995) methods for phospholipid content.
- the total phospholipids by percent w/w was 1.18%.
- the phospholipid profile of algal oil was phosphatidylcholine (62.7%), phosphatidylethanolamine (24.5%), lysophosphatidiylcholine (1.7%) and phosphatidylinositol (11%). Similar analysis using hexane extraction of the phospholipid-containing fraction from the algal biomass was also performed. The total phospholipids by percent w/w was 0.5%. The phospholipid profile was phosphatidylethanolamine (44%), phosphatidylcholine (42%) and phosphatidylinositol
- Cardio Daily Shot (a liquid food containing intact high oil algal biomass)
- the ingredients of the fruit-based smoothie consisted of distilled water (815.365g), stabilizer (4.5g), apple juice concentrate (58g), orange juice concentrate (46.376g), lemon juice concentrate (1.913g), mango puree concentrate (42.5g), banana puree (40.656g), passionfruit juice concentrate (8.4g), ascorbic acid (0.32Og), algal flakes (46.4Ig), orange flavor extract (Ig), pineapple flavor (0.4g) and mango flavor (0.16g). The ingredients were combined and blended until smooth.
- Chlorella protothecoides dried microalgae biomass (UTEX 250, over 40% lipid dry cell weight) (1000 mg/tablet), betatene beta carotene (beta carotene 20% from Dunaliella) (15 mg/tablet), vitamin C as ascorbic acid (100 mg/tablet), and bioperine (piper nigrem bioavailability enhancer) (2.5 mg/tablet).
- the ingredients of the algae snack chips consisted of unbleached white flour (1 cup), potato flour (1/2 cup), algal biomass (over 40% lipid dry cell weight) (3 tablespoons), salt (3/4 teaspoon, adjust to taste), barley flour (2 tablespoons), water (1/3 - 1 cup), and seasonings (e.g., cumin, curry, ranch dressing) (to taste).
- Preparation procedure The dry ingredients were mixed and 1/3 cup of water was added to the dry ingredients. Additional water was added (up to 1 cup total) to form dough.
- the dough was kneaded into a uniformed product and then was allowed to rest for 30 minutes at room temperature.
- the rested dough was cut and formed into thin chips and baked at
- the ingredients of the algae raisin cookies consisted of butter or margarine (1/2 cup, conventional food recipe calls for 3/4 cup), barley flakes or oatmeal ( 1 3/4 cup), nutmeg (1/4 teaspoon), water or milk (2-3 tablespoons), brown sugar (1 cup), salt (1/2 teaspoon), baking powder (1/2 teaspoon), vanilla (1 teaspoon), cinnamon (1 teaspoon), raisins (optionally presoaked in brandy or orange juice) (3/4 cup), and dried algal biomass (over 30% oil) (1/3 cup). This recipe made about 2 dozen cookies.
- the conventional food recipe calls for 2 eggs and % cup of butter or margarine.
- Preparation procedure Cream the butter and sugar. Beat until fairly fluffy. Add the vanilla. Combine the flour and barley flakes and algae. Combine the butter mixture with the flour-flakes mixture. Add the raisins. Drop by teaspoonfuls, and flatten, slightly. Bake about
- the ingredients of the barley pasta with algae consisted of barley flour (3/4 cup), dried algal biomass with at least 20% lipid by dry cell weight (2 tablespoons), large egg (1), and salt (1/2 teaspoon). [0375] Preparation procedure: Place flour in bowl and add algae and salt. Whisk together.
- This example compares pasta made by a conventional recipe and a whole cell high- lipid biomass (Chlorella protothecoides (strain UTEX 250) with 48% lipid by dry cell weight) to replace the egg in the conventional recipe.
- Algal milk contains about 8% solids, which is comprised of 4% heart healthy lipids,
- Algal milk is extremely healthy; it is vegan, and can be used as a substitute for cow's milk and soy milk. Unlike cow's milk, it is very low in saturated fat, and unlike soy milk, the fat is primarily a mono-unsaturate (over 50% Cl 8: 1). The algal milk has a bland taste; not "beany" as in soy milk. Flavors can be added, such as strawberry or raspberry.
- the ingredients of the algal milk consisted of dried whole algal cells containing about 40% lipid (8%), vitamin D (200 units), vitamin A (200 units), xanthan gum (0.2%), and water (to 100%). The water was warmed the the xanthan gum was dispersed. The whole, dried algal cells were then dispersed in the warm xanthan gum solution and vitamins were added. The solution was then homogenized using a high pressure homogenizer and pasteurized. An additional formulation is included below using algal flour.
- High lipid containing Chlorella protothecoides grown using the methods and conditions described in Example 4 was processed into a high lipid algal homogenate.
- the harvested Chlorella protothecoides biomass was first processed into algal flakes (see Example 4). The dried algal flakes were then rehydrated in deionized water at approximately 40% solids concentration.
- the resulting algal flake suspension was then micronized using a high pressure homogenizer
- the low fat control brownies did not have the same crumb structure as compared to the brownies made with the algal flakes or the conventional brownies.
- the algal flakes brownies had a nice, visible crumb structure, but were a little denser and gummier than the full fat brownies.
- the brownies made with the algal flakes had about a 64% reduction in the fat content when compared to the conventional brownies.
- This example compares yellow cake made by a conventional recipe, a low fat recipe, high-lipid algal homogenate (HL-AH) to replace the eggs and butter in the conventional recipe, and high lipid algal flakes to replace the eggs in the conventional recipe.
- HL-AH high-lipid algal homogenate
- Table 10 Conventional yellow cake recipe.
- This example compares biscuits made by a conventional recipe, high-lipid algal flake to replace the eggs and shortening in the conventional recipe, and high-lipid algal homogenate (HL-AH) to replace the eggs and shortening in the conventional recipe.
- Both the algal flake and the algal homogenate biomass were from Chlorella protothecoides (strain UTEX 250) with 48% lipid by dry cell weight.
- Table 14 Conventional recipe for biscuits. Component Recipe Measures Weight(g) Percent % Fat, Wet Wt.
- This example compares mayonnaise/salad dressing using a conventional recipe with 40% fat control, a low fat recipe with 20% fat control, and a recipe with high-lipid algal homogenate (HL-AH) (with -20% fat by weight) from Chlorella protothecoides (strain UTEX 250) with 48% lipid by dry cell weight .
- the 20% fat control dressing (made with canola oil) did not have any viscosity and failed to form an emulsion.
- the surface was foamy and oil droplets formed after letting the dressing sit.
- the dressing made with the HL-AH had an algal biomass flavor, good opacity and viscosity, and a creamy mouthfeel.
- the HL-AH imparted a better opacity and viscosity to the dressing when compared to both the 20% and the 40% fat dressings.
- the HL- AH functioned as a great emulsifier and produced a dressing that had the properties of a 40% fat dressing with the proper mouthfeel at half the fat content.
- This example compares a model chocolate nutritional beverage made with a conventional recipe, with high lipid algal homogenate (HL-AH)to replace milk and oil in the conventional recipe, and one with high-lipid algal flake biomass to replace milk and oil in the conventional recipe.
- HL-AH high lipid algal homogenate
- Both the algal flake biomass and the HL-AH were from Chlorella protothecoides (strain UTEX 250) with 48% lipid by dry cell weight.
- Soy Protein Isolate 8.12 g 24.36 g 2.436%
- Table 21 Recipe for the chocolate beverage using HL-AH to replace milk and oil.
- Soy Protein Isolate 8.12 g 24.98 g 2.498%
- Table 22 Recipe for a chocolate beverage using algal flake biomass to replace milk and oil.
- the chocolate beverage containing the HL-AH had a thicker, richer appearance than the chocolate beverage containing the algal flakes, and was closer in appearance to the conventional chocolate beverage. Overall, the micronized HL-AH sample more closely resembled the conventional chocolate beverage control, imparting a good viscosity and with slightly more opacity than the conventional chocolate beverage control.
- the harvested Chlorella protothecoides biomass was separated from the culture medium and then concentrated using centrifugation and dried using a spray dryer according to standard methods.
- the resulting algal powder was separated from the culture medium and then concentrated using centrifugation and dried using a spray dryer according to standard methods.
- the harvested Chlorella protothecoides biomass was separated from the culture medium using centrifugation.
- the resulting concentrated biomass containing over 40% moisture, was micronized using a high pressure homogenizer ((GEA model NSlOOl) operating at a pressure level of 1000-1200 Bar until the average particle size of the biomass was less than 10 ⁇ m.
- the algal homogenate was then spray dried using standard methods.
- the resulting algal flour (micronized algal cell that have been spray dried into a powder form) was packaged and stored until use. [0418] A sample of high lipid flour was analyzed for particle size.
- algal flour in water dispersion was created and the algal flour particle size was deterimined using laser diffraction on a Malvern® Mastersizer 2000 machine using a Hydro 2000S attachment.
- a control dispersion was created by gentle mixing and other dispersions were created using 100 bar, 300 bar, 600 bar and 1000 bar of pressure.
- the results showed that the mean particle size of the algal flour is smaller in the condition with higher pressure (3.039 ⁇ m in the gentle mixing condition and 2.484 ⁇ m in the 1000 bar condition).
- the distribution of the particle sizes were shifted in the higher pressure conditions, with a decrease in larger sized particles (above 10 ⁇ m) and an increase in smaller particles (less than 1 ⁇ m).
- FIG. 5A Distribution graphs of the gentle mixing condition (Figure 5A), the 300 bar condition ( Figure 5B), and the 1000 bar condition (Figure 5C) are shown in Figure 5.
- Figure 4 shows a picture of algal flour in water dispersion under light microscopy immediately after homogenization. The arrows point to individual algal flour particles (less than lO ⁇ m) and the arrow heads point to agglomerated or clumped algal flour particles (more than 10 ⁇ m).
- Table 25 Algal flour brownie recipe.
- the conventional reduced fat recipe produced a brownie that had a dry texture and was more cake-like than a brownie texture.
- the brownies made with algal flour (which had similar fat percentage as the reduced fat recipe brownies, approximately 8% fat) were very moist and had a brownie texture, but had a more fragile crumb structure when compared to the conventional brownie recipe (approximately 19% fat).
- the brownies made with algal flour were not as dense, had a softer crumb structure.
- the algal flour was an effective replacement for butter and eggs in a baked good recipe, and produced a product similar in texture, taste and appearance to the conventional recipie product.
- the algal flour exhibit unique functionality (e.g., finer crumb structure, not as gummy, and light texture) not seen with the use of algal flakes.
- a gluten-free, flourless chocolate cake was prepared using algal flour (8% algal flour in water to make a slurry) in place of egg yolks and butter.
- algal flour 8% algal flour in water to make a slurry
- the following ingredients with the quanitity in parenthesis were used: granulated sugar (130 grams); semi-sweet chocolate (150 grams); water (20 grams); 8% algal flour slurry (100 grams); salt (2.45 grams); baking powder (4.5 grams); vanilla extract (4 grams); and egg whites (91.5 grams).
- the chocolate was combined with the water and melted slowly over barely simmering water. The algal slurry was then wisked into the chocolate mixture at room temperature.
- the sugar (reserve 5 grams sugar for egg whites) and vanilla were then added to the chocolate mixture and then the baking powder and salt (reserve 0.15 grams salt for egg whites) were added.
- the egg whites were beaten at medium speed until foamy and then the reserved salt was added.
- the egg whites were then beaten until soft peaks were formed and then the reserved sugar was added.
- the egg whites were then beaten until stiff peaks were formed.
- the egg whites were then folded into the chocolate mixture until completely blended.
- the batter was then poured into individual sized ramekins and baked at 375 0 F for 14-15 minutes (rotated at 8 minutes).
- This gluten- free flourless chocolate cake had the texture and appearance of a conventional flourless chocolate cake made with butter and egg yolks.
- the algal flour was a successful replacement for butter and egg yolks in this formulation for a gluten- free flourless chocolate cake. Mayonnaise
- Lemon juice concentrate 1.25 2.08 0.21 0.00
- Table 27 Conventional reduced fat mayonnaise recipe.
- Lemon juice concentrate 1.25 2.08 0.21 0.00
- Table 28 Recipe for mayonnaise made with algal flour slurry.
- Liquid egg yolk 0.00 0.00 0.00 0.00 0.00
- Lemon juice concentrate 1.25 2.08 0.21 0.00
- Garlic powder 1.50 2.50 0.25 0.00
- the mayonnaise made with the algal flour slurry had the viscosity of between the conventional and the reduced fat mayonnaise.
- the mouthfeel of the algal flour slurry mayonnaise was comparable to that of the conventional mayonnaise (but contains less than 50% of total fat).
- Instant food starch was needed in both the reduced fat mayonnaise and the algal flour slurry mayonnaise in order to bind more water and tighten the product to be more "spreadable”.
- using the algal flour slurry to replace all of the fat sources (e.g., oil and egg yolks) in a conventional mayonnaise recipe produced a mayonnaise with good viscosity and a mouthfeel that was indistinguishable from conventional mayonnaise.
- the algal flour slurry functioned as an effective emulsifier, successfully replacing the functionality of oil and egg yolks found in conventional mayonnaise.
- high lipid algal flour slurry was used to make a reduced fat honey mustard dipping sauce/dressing.
- Honey, mustard, white vinegar, lemon juice flavor and sea salt was added to the prepared mayonnaise (modified slightly to achieve the proper consistency of a dipping sauce/dressing) described above. All ingredients were combined and mixed in a food processor until homogenous and smooth.
- the end product contained approximately 14% algal flour by weight, and had approximately 8% total fat.
- the honey mustard dipping sauce/dressing containing algal flour had a creamy mouthfeel comparable to a conventional (full fat) honey mustard dipping sauce. Miso Salad Dressing
- miso salad dressing was prepared using a conventional recipe and a recipe containing high lipid algal flour reconstituted as a slurry (40% solids), produced using methods as described in the preceeding mayonnaise formulation.
- Table 30 Recipe for miso salad dressing made with algal flour slurry.
- the dry ingredients were blended together set aside.
- the water, vinegar and acid were blended together and set aside.
- the miso paste was measured out separately.
- the oils were combined together and set aside.
- the algal flour-containing recipe the algal flour slurry, oil, and titanium dioxide was weighed out separately and combined.
- the water/vinegar mixture was then blended with a high shear blender.
- the dry ingredients were added into the water/vinegar mixture.
- the oils mixture was then streamed in slowly while the water/vinegar and dry ingredients were being blended with a high shear blender.
- the dressing was then heated to 190 0 F for 2 minutes and then the dressing was run through a colloid mill on the tightest setting.
- the finished dressing was then bottled and refiidgerated until use.
- both the conventional and the algal flour containing recipes produced a thick and opaque creamy salad dressing.
- the two dressings were comparable in color and texture.
- the miso salad dressing made with the convention recipe contained approximately 30% fat
- the miso salad dressing made with the algal flour slurry contained approximately 12.65% fat.
- the miso dressing made with the algal flour slurry contained less than half the fat of the miso dressing made with the conventional recipe, while preserving the creamy mouthfeel and opacity.
- the ability of the algal flour to function in a yeast dough application was tested using a conventional pizza dough/breakstick recipe and a pizzadough/breadstick recipe containing 5% or 10% by weight algal flour.
- the pizzadough/breadsticks containing algal flour was made with high lipid algal flour slurry (40% solids), produced using the methods as described in the preceeding mayonnaise formulation.
- the conventional recipe pizza dough and breadsticks were chewy with a traditional crust.
- the pizza dough containing 5% algal flour slurry had a more cracker-like texture and was crisper than the conventional recipe pizza dough.
- the pizza dough containing 10% algal flour slurry was crisper than the pizza dough containing 5% algal flour slurry.
- the 5% algal breadsticks had a moist, chewy center when compared to the conventional recipe breadsticks.
- the breadsticks containing 10% algal flour slurry was even more moist than the 5% algal breadsticks.
- the baking time was increased with both breadsticks containing algal flour.
- algal flour slurry increased the crispness of the pizza dough and gave it a more cracker-like texture, and increased the moistness of the breadsticks when compared to the conventional recipe breadsticks.
- high lipid algal flour slurry (40% solids) were used in a corn tortilla recipe and compared to corn tortillas made from a conventional recipe. Similar to the pizza dough results, the corn tortillas containing algal flour slurry were more cracker-like in texture and crunchier than the conventional recipe tortillas. Brioche
- a brioche using algal flour in place of egg yolks and butter was prepared using the following ingredients with the quantities in parenthesis: warm water, approx. 110 0 F (54.77 grams); rapid-rise yeast (3.5 grams); scalded whole milk (58.47 grams); algal flour (45.5 grams); granulated sugar (10 grams); all purpose flour (237 grams); Vital gluten flour (15 grams); salt (3.5 grams); and egg whites (42 grams).
- the yeast was sprinkled over the warm water and let sit for 5 minutes.
- the scalded milk was added to the yeast solution when the temperature of the milk reached 110-115 0 F and mixed to combine.
- the sugar was added and mixed to dissolve.
- the algal flour was then added and mixed until thoroughly combined.
- the remaining dry ingredients were combined and the yeast/milk mixture was added to the remaining dry ingredients.
- the egg whites were then immediately added to the mixture and mixed using a food processor (10 times, pulsing the dough 1-2 each time).
- the dough was then pulsed five more times for 3-5 seconds, adding more water if needed.
- the finished dough was soft and slightly sticky.
- the dough was covered with a cloth and let rest in a warm place for one hour and had doubled in size about 2-3 times its original size.
- the dough was then pulsed again with the food processor 2-3 times for 1 -2 seconds, to deflate and allowed to rest until it had doubled in size again.
- the dough was then turned out onto a surface and flattened to remove air.
- the dough was then rolled out into a rectangle and rolled up and the edges were sealed.
- the brioche had the appearance and texture of a conventional brioche and represented a successful formulation of a brioche recipe using algal flour and no butter or egg yolks.
- algal flour The ability of the algal flour to function in a gluten-free, yeast dough condition was tested by preparing a gluten-free bread containing algal flour. Being gluten-free and not a wheat, algal flour is suitable for incorporation into the diets of people with gluten and/or wheat allergies/intolerance.
- all- purpose gluten-free flour mix (3 cups) consisting of: 2 cups sorghum flour, 2 cups brown rice rice flour, 1.5 cups potato starch, 0.5 cup white rice flour, 0.5 cup sweet rice flour, 0.5 cup tapioca flour, 0.5 cup amaranth flour and 0.5 cup quinoa flour; dry milk powder (1/3 cup); guar gum (2 teaspoons); xanthan gum (1 1 A teaspoons); unflavored gelatin or agar powder (1 1 A teaspoons); sugar (3 teaspoons); salt (1 teaspoon); egg substitute (1 1 A teaspoons); Baker's yeast (1 package or 2 1 A teaspoon); whole eggs (2); butter (5 tablespoon, cut in small pieces); water or plain club soda (1 1 A cups); honey (1 tablespoon); and apple cider vinegar (1 teaspoon).
- a bread loaf pan was lightly greased and dusted with sweet rice flour.
- the dry ingredients were wished in a mixing bowl until thoroughly blended.
- the eggs, butter, vinegar and honey were blended in a large bowl and then 1 cup of water or club soda was added to the egg mixture.
- the mixed dry ingredients were slowly combined with the egg mixture.
- the remaining water was added slowly and the rest of dry ingredients were then added and mixed until the batter waas the consistency of a thick cake batter.
- This batter was then mixed at high speed for approximately 5 minutes.
- the batter was then poured into the bread loaf pan and covered and let rise in a warm location for 1 hour.
- the dough was then baked for 55-60 minutes in a pre-heated 375 0 F oven, tenting with foil after 15 minutes to prevent over-browning of crust.
- the bread was then removed immediately from the oven and cooled completely on a wire rack before cutting.
- the gluten- free bread had the appearance and texture of a conventional bread loaf. This demonstrates the successful use of the algal flour in a gluten-free yeast dough application.
- Table 33 Recipe for soft-baked chocolate chip cookies with algal flour slurry.
- the conventional recipe cookie had good spreading during baking and was soft and fluffy out of the oven.
- the dough did not spread in the first batch, so in subsequent batches, the dough was flattened prior to baking.
- the reduced fat cookie was soft out of the oven, and firmed into a dense cookie upon cooling.
- the reduced fat cookie also had pronounced upfront corn syrup flavor.
- the algal flour cookie had similar spreading during baking as the conventional recipe cookie and was texturally better than the reduced fat cookie. After three days at ambient temperature, the algal flour cookie was more moist than both the conventional recipe cookie and the reduced fat cookie.
- the algal biomass slurry was effective as a replacement for butter and eggs in a cookie application. Functionally, the algal biomass slurry extended the shelf-life of the cookie, in that the cookie retained more moisture after three days in ambient temperature.
- Gluten-free oatmeal raisin cookie shelf-life study
- a gluten- free oatmeal raisin cookie was made using high lipid algal flour (approximately 53% lipid by dry weight), produced using methods described in Example 13.
- the cookies were baked and then held at ambient temperature for seven days. Initial sensory tests and water activity were performed on the cookies immediately after baking and cooling. Additional sensory tests and water activity tests were performed on day 1, 3 and 7. On each test day, one cookie was chopped into small pieces so the raisins and oats were evenly distributed in the sample. At least two samples per cookie were assayed in the water activity test to ensure accuracy of the measurement. Water activity (Aw) tests were performed according to manufacturer's protocols using an Aqua Lab, Model Series 3 TE (Decagon Devices, Inc.) instrument.
- water activity measures the water vapor pressure which quantifies the available, non-chemically bound water in a product; the higher the Aw value, the more moist the product. In this cookie application, the higher the Aw value correlates with a longer shelf-life. An Aw level of 0.65 was the desired target.
- Table 34 Recipe for gluten-free oatmeal raisin cookies made with algal flour slurry.
- Table 35 Sensory scores and water activity results for oatmeal raisin cookies at ambient temperature.
- Table 36 Conventional recipe for scrambled eggs from powdered eggs.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Nutrition Science (AREA)
- Mycology (AREA)
- Marine Sciences & Fisheries (AREA)
- Zoology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Fodder In General (AREA)
- Bakery Products And Manufacturing Methods Therefor (AREA)
- Meat, Egg Or Seafood Products (AREA)
- Dairy Products (AREA)
- Non-Alcoholic Beverages (AREA)
- General Preparation And Processing Of Foods (AREA)
- Grain Derivatives (AREA)
- Edible Oils And Fats (AREA)
- Seeds, Soups, And Other Foods (AREA)
- Noodles (AREA)
- Seasonings (AREA)
- Confectionery (AREA)
Abstract
Description
Claims
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012506177A JP5636039B2 (en) | 2009-04-14 | 2010-04-14 | Novel microalgal food composition |
BRPI1013431-0A BRPI1013431B1 (en) | 2009-04-14 | 2010-04-14 | food product |
CN201080026237.7A CN102946738B (en) | 2009-04-14 | 2010-04-14 | Novel microalgal food compositions |
CA2758479A CA2758479C (en) | 2009-04-14 | 2010-04-14 | Novel microalgal food compositions |
US13/263,724 US20120128851A1 (en) | 2008-10-14 | 2010-04-14 | Novel microalgal food compositions |
MX2011010829A MX339665B (en) | 2009-04-14 | 2010-04-14 | Novel microalgal food compositions. |
ES10765119T ES2749850T3 (en) | 2009-04-14 | 2010-04-14 | New food compositions based on algae |
KR1020117026943A KR101769121B1 (en) | 2009-04-14 | 2010-04-14 | Novel microalgal food compositions |
AU2010236491A AU2010236491B2 (en) | 2009-04-14 | 2010-04-14 | Novel microalgal food compositions |
KR1020177022458A KR101899933B1 (en) | 2009-04-14 | 2010-04-14 | Novel microalgal food compositions |
EP19187845.3A EP3622828B1 (en) | 2009-04-14 | 2010-04-14 | Novel microalgal food compositions |
EP10765119.2A EP2418959B1 (en) | 2009-04-14 | 2010-04-14 | Novel microalgal food compositions |
HK13109969.3A HK1182595A1 (en) | 2009-04-14 | 2013-08-26 | Novel microalgal food compositions |
US15/158,469 US20160324167A1 (en) | 2008-10-14 | 2016-05-18 | Novel microalgal food compositions |
US17/236,460 US20210244064A1 (en) | 2008-10-14 | 2021-04-21 | Novel microalgal food compositions |
Applications Claiming Priority (30)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16927109P | 2009-04-14 | 2009-04-14 | |
US61/169,271 | 2009-04-14 | ||
US17316609P | 2009-04-27 | 2009-04-27 | |
US61/173,166 | 2009-04-27 | ||
US24607009P | 2009-09-25 | 2009-09-25 | |
US61/246,070 | 2009-09-25 | ||
USPCT/US2009/060692 | 2009-10-14 | ||
PCT/US2009/060692 WO2010045368A2 (en) | 2008-10-14 | 2009-10-14 | Food compositions of microalgal biomass |
US12/684,886 | 2010-01-08 | ||
US12/684,887 | 2010-01-08 | ||
US12/684,891 | 2010-01-08 | ||
US12/684,893 | 2010-01-08 | ||
US12/684,888 | 2010-01-08 | ||
US12/684,891 US20100297323A1 (en) | 2008-10-14 | 2010-01-08 | Gluten-free Foods Containing Microalgae |
US12/684,889 US20100297292A1 (en) | 2008-10-14 | 2010-01-08 | Reduced Pigmentation Microalgae Strains and Products Therefrom |
US12/684,887 US20100297331A1 (en) | 2008-10-14 | 2010-01-08 | Reduced Fat Foods Containing High-Lipid Microalgae with Improved Sensory Properties |
US12/684,893 US20100303990A1 (en) | 2008-10-14 | 2010-01-08 | High Protein and High Fiber Algal Food Materials |
US12/684,884 | 2010-01-08 | ||
US12/684,884 US20100303989A1 (en) | 2008-10-14 | 2010-01-08 | Microalgal Flour |
US12/684,886 US20100297296A1 (en) | 2008-10-14 | 2010-01-08 | Healthier Baked Goods Containing Microalgae |
US12/684,894 US20100303957A1 (en) | 2008-10-14 | 2010-01-08 | Edible Oil and Processes for Its Production from Microalgae |
US12/684,892 US20100303961A1 (en) | 2008-10-14 | 2010-01-08 | Methods of Inducing Satiety |
US12/684,888 US20100297325A1 (en) | 2008-10-14 | 2010-01-08 | Egg Products Containing Microalgae |
US12/684,889 | 2010-01-08 | ||
US12/684,892 | 2010-01-08 | ||
US12/684,894 | 2010-01-08 | ||
US12/684,885 | 2010-01-08 | ||
US12/684,885 US20100297295A1 (en) | 2008-10-14 | 2010-01-08 | Microalgae-Based Beverages |
US29925010P | 2010-01-28 | 2010-01-28 | |
US61/299,250 | 2010-01-28 |
Related Parent Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2009/060692 Continuation-In-Part WO2010045368A2 (en) | 2000-01-28 | 2009-10-14 | Food compositions of microalgal biomass |
US12/684,886 Continuation-In-Part US20100297296A1 (en) | 2008-10-14 | 2010-01-08 | Healthier Baked Goods Containing Microalgae |
US12/684,888 Continuation-In-Part US20100297325A1 (en) | 2008-10-14 | 2010-01-08 | Egg Products Containing Microalgae |
US12/684,894 Continuation-In-Part US20100303957A1 (en) | 2008-10-14 | 2010-01-08 | Edible Oil and Processes for Its Production from Microalgae |
US12/684,892 Continuation-In-Part US20100303961A1 (en) | 2008-10-14 | 2010-01-08 | Methods of Inducing Satiety |
US12/684,884 Continuation-In-Part US20100303989A1 (en) | 2008-10-14 | 2010-01-08 | Microalgal Flour |
US12/684,885 Continuation-In-Part US20100297295A1 (en) | 2008-10-14 | 2010-01-08 | Microalgae-Based Beverages |
US12/684,887 Continuation-In-Part US20100297331A1 (en) | 2008-10-14 | 2010-01-08 | Reduced Fat Foods Containing High-Lipid Microalgae with Improved Sensory Properties |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/263,724 A-371-Of-International US20120128851A1 (en) | 2008-10-14 | 2010-04-14 | Novel microalgal food compositions |
US15/158,469 Continuation US20160324167A1 (en) | 2008-10-14 | 2016-05-18 | Novel microalgal food compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010120923A1 true WO2010120923A1 (en) | 2010-10-21 |
Family
ID=42982842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/031088 WO2010120923A1 (en) | 2008-10-14 | 2010-04-14 | Novel microalgal food compositions |
Country Status (10)
Country | Link |
---|---|
EP (2) | EP2418959B1 (en) |
JP (3) | JP5636039B2 (en) |
KR (2) | KR101899933B1 (en) |
CN (1) | CN102946738B (en) |
AU (1) | AU2010236491B2 (en) |
BR (1) | BRPI1013431B1 (en) |
CA (1) | CA2758479C (en) |
ES (1) | ES2749850T3 (en) |
HK (1) | HK1182595A1 (en) |
WO (1) | WO2010120923A1 (en) |
Cited By (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013032333A1 (en) * | 2011-09-01 | 2013-03-07 | Algae Biotech S.L. | Oral dosage units containing astaxanthin, phospholipids and omega-3 fatty acids |
WO2013035797A1 (en) * | 2011-09-09 | 2013-03-14 | 株式会社カネカ | Method for cultivating seaweed and method for producing alginic acid-containing composition |
US8435767B2 (en) | 2008-11-28 | 2013-05-07 | Solazyme, Inc. | Renewable chemical production from novel fatty acid feedstocks |
US8450083B2 (en) | 2008-04-09 | 2013-05-28 | Solazyme, Inc. | Modified lipids produced from oil-bearing microbial biomass and oils |
KR101269624B1 (en) * | 2011-03-10 | 2013-05-30 | 한국식품연구원 | Food composition containing taro and method of manufacturing the same |
US8476059B2 (en) | 2007-06-01 | 2013-07-02 | Solazyme, Inc. | Sucrose feedstock utilization for oil-based fuel manufacturing |
JP2013150602A (en) * | 2011-12-28 | 2013-08-08 | Suntory Holdings Ltd | Beverage containing chlorophylls |
WO2013166374A2 (en) | 2012-05-04 | 2013-11-07 | Norris Leslie | Flavor, odor, and/or colorant compositions with oleaginous microorganisms and related methods |
US8592188B2 (en) | 2010-05-28 | 2013-11-26 | Solazyme, Inc. | Tailored oils produced from recombinant heterotrophic microorganisms |
US8633012B2 (en) | 2011-02-02 | 2014-01-21 | Solazyme, Inc. | Tailored oils produced from recombinant oleaginous microorganisms |
EP2710904A1 (en) * | 2012-09-20 | 2014-03-26 | PM-International AG | Sports drink with algae powder |
EP2710905A1 (en) * | 2012-09-20 | 2014-03-26 | PM-International AG | Sports drink |
EP2710906A1 (en) * | 2012-09-20 | 2014-03-26 | PM-International AG | Sports drink with short- and long-chained carbohydrate components |
WO2014062882A1 (en) | 2012-10-17 | 2014-04-24 | Solazyme Roquette Nutritionals, LLC | Microalgal flour granules and process for preparation thereof |
EP2724625A1 (en) | 2012-10-26 | 2014-04-30 | Roquette Freres | Microalgal flour granules and process for preparation thereof |
EP2777400A1 (en) * | 2013-03-15 | 2014-09-17 | Roquette Freres | Microalgal flour granules and process for preparation thereof |
US8846352B2 (en) | 2011-05-06 | 2014-09-30 | Solazyme, Inc. | Genetically engineered microorganisms that metabolize xylose |
US8846375B2 (en) | 2012-04-18 | 2014-09-30 | Solazyme, Inc. | Tailored oils |
WO2014207376A1 (en) * | 2013-06-26 | 2014-12-31 | Roquette Freres | Method for the production of a microalgal biomass of optimised sensory quality |
WO2014207377A1 (en) | 2013-06-26 | 2014-12-31 | Roquette Freres | Microalgal flour compositions of optimised sensory quality |
WO2015007999A2 (en) | 2013-07-19 | 2015-01-22 | Roquette Freres | Lipid-rich microalgal flour and method for preparing same |
WO2015007997A1 (en) | 2013-07-19 | 2015-01-22 | Roquette Freres | Optimised method for breaking chlorella cell walls by means of very high pressure homogenisation |
WO2015022469A2 (en) | 2013-08-13 | 2015-02-19 | Roquette Freres | Method for preparing lipid-rich compositions of microalga flour with optimised organoleptic properties |
WO2015025111A1 (en) | 2013-08-23 | 2015-02-26 | Roquette Freres | Method for the industrial production of flour from lipid-rich microalga biomass with no "off-notes" by controlling the oxygen availability |
WO2015055965A1 (en) * | 2013-10-18 | 2015-04-23 | Roquette Freres | Process for texturing a microalgal biomass |
WO2015075378A1 (en) | 2013-11-19 | 2015-05-28 | Roquette Freres | Novel non-allergenic snacks containing vegetable proteins |
US9066527B2 (en) | 2010-11-03 | 2015-06-30 | Solazyme, Inc. | Microbial oils with lowered pour points, dielectric fluids produced therefrom, and related methods |
US20150201649A1 (en) * | 2012-07-17 | 2015-07-23 | Cornell University | Algal-based animal feed composition, animal feed supplement, and uses thereof |
ES2542051A1 (en) * | 2014-01-29 | 2015-07-29 | Juan DOMÉNECH MANSILLA | Salsa for coeliacs suitable for fish and seafood (Machine-translation by Google Translate, not legally binding) |
WO2015168136A1 (en) * | 2014-04-28 | 2015-11-05 | Cornell University | Compositions comprising defatted microalgae, and treatment methods |
WO2015200888A1 (en) | 2014-06-27 | 2015-12-30 | Solazyme, Inc. | High-protein food products made using high-protein microalgae |
WO2016014912A1 (en) | 2014-07-24 | 2016-01-28 | Solazyme, Inc. | High-protein gelled food products made using high-protein microalgae |
US9249252B2 (en) | 2013-04-26 | 2016-02-02 | Solazyme, Inc. | Low polyunsaturated fatty acid oils and uses thereof |
CN105452443A (en) * | 2013-07-25 | 2016-03-30 | 罗盖特兄弟公司 | Method for optimising the production efficiency, organoleptic quality and stability over time of a protein-rich microalgae biomass |
JP2016041082A (en) * | 2010-04-14 | 2016-03-31 | ソラザイム ロケット ニュートリショナルズ, エルエルシー | Lipid-rich microalgal flour food compositions |
EP3001916A1 (en) * | 2014-10-02 | 2016-04-06 | Nikken Kagaku Co., Ltd. | Food or drink comprising an algae extract oil |
WO2016097617A1 (en) | 2014-12-18 | 2016-06-23 | Roquette Freres | Low-fat fried product and method for producing same |
US9394550B2 (en) | 2014-03-28 | 2016-07-19 | Terravia Holdings, Inc. | Lauric ester compositions |
EP2948001A4 (en) * | 2013-01-28 | 2016-10-19 | Solazyme Roquette Nutritionals Llc | Improved microalgal flour |
CN106615769A (en) * | 2016-10-26 | 2017-05-10 | 深圳市裕农科技股份有限公司 | Feed for producing pork containing DHA and use method thereof |
US9719114B2 (en) | 2012-04-18 | 2017-08-01 | Terravia Holdings, Inc. | Tailored oils |
US20170298318A1 (en) * | 2014-10-02 | 2017-10-19 | Evonik Degussa Gmbh | Method for producing a granular biomass which contains an oxidation-sensitive valuable substance |
CN107635411A (en) * | 2015-05-19 | 2018-01-26 | 罗盖特兄弟公司 | For bleaching the fermentation process of Chlorella protothecoides biomass |
US9969990B2 (en) | 2014-07-10 | 2018-05-15 | Corbion Biotech, Inc. | Ketoacyl ACP synthase genes and uses thereof |
US10053715B2 (en) | 2013-10-04 | 2018-08-21 | Corbion Biotech, Inc. | Tailored oils |
EP3381301A1 (en) | 2017-03-30 | 2018-10-03 | Golden Chlorella SA | Methods of preparation of food products comprising microalgae & products thereof |
WO2018202852A1 (en) | 2017-05-04 | 2018-11-08 | Odontella | Plant substitutes for meat food products |
CN109452566A (en) * | 2018-12-24 | 2019-03-12 | 湖南唐人神肉制品有限公司 | A kind of high protein, high dietary-fiber, prepared food of low fat and preparation method thereof |
US10299500B2 (en) | 2013-11-29 | 2019-05-28 | Corbion Biotech, Inc. | Granules of protein-rich microalgal biomass flour and method for preparing same |
US10465159B2 (en) | 2013-07-04 | 2019-11-05 | Corbion Biotech, Inc. | Optimised method for breaking chlorella walls by mechanical crushing |
US10519204B2 (en) | 2014-07-18 | 2019-12-31 | Corbion Biotech, Inc. | Method for extracting soluble proteins from microalgal biomass |
US10619175B2 (en) | 2014-10-02 | 2020-04-14 | Evonik Operations Gmbh | Process for producing a PUFA-containing feedstuff by extruding a PUFA-containing biomass |
US10842174B2 (en) | 2014-10-02 | 2020-11-24 | Evonik Operations Gmbh | Method for producing biomass which has a high exopolysaccharide content |
CZ308610B6 (en) * | 2017-02-07 | 2020-12-30 | Ecofuel Laboratories S R O | A liquid or pastelike product based on microalgae and/or cyanobacteria and/or myxomycetes |
CN112841490A (en) * | 2021-02-20 | 2021-05-28 | 李树森 | Solid beverage with prolonged service life |
US11077158B2 (en) | 2014-07-17 | 2021-08-03 | Cornell University | Omega-3 fatty acid enrichment of poultry products with defatted microalgae animal feed |
US11118134B2 (en) | 2019-02-11 | 2021-09-14 | Checkerspot, Inc. | Triglyceride oil compositions |
WO2021234316A1 (en) * | 2020-05-20 | 2021-11-25 | Algama | Vegan alternative to spread based on fish and/or crustaceans |
US11193105B2 (en) | 2013-03-29 | 2021-12-07 | Corbion Biotech, Inc. | Microalgal biomass protein enrichment method |
US11208369B2 (en) | 2018-08-30 | 2021-12-28 | Checkerspot, Inc. | Hydroformylated triglycerides and uses thereof |
AU2017290744B2 (en) * | 2016-07-01 | 2022-02-17 | Corbion Biotech, Inc. | Feed ingredients comprising lysed microbial cells |
US11324234B2 (en) | 2014-10-02 | 2022-05-10 | Evonik Operations Gmbh | Method for raising animals |
US11464244B2 (en) | 2014-10-02 | 2022-10-11 | Evonik Operations Gmbh | Feedstuff of high abrasion resistance and good stability in water, containing PUFAs |
US11473050B2 (en) | 2016-02-08 | 2022-10-18 | Corbion Biotech, Inc. | Method for the protein enrichment of microalgal biomass |
EP3622828B1 (en) | 2009-04-14 | 2022-11-16 | Corbion Biotech, Inc. | Novel microalgal food compositions |
US11691382B2 (en) | 2019-12-18 | 2023-07-04 | Checkerspot, Inc. | Uses of microbial derived materials in polymer applications |
SE2250075A1 (en) * | 2022-01-28 | 2023-07-29 | Mycorena Ab | Fungi-based fat tissue |
WO2024003816A1 (en) * | 2022-06-30 | 2024-01-04 | The Live Green Group, Inc., | Plant only seafood flavoring replacement system |
US11873405B2 (en) | 2021-09-17 | 2024-01-16 | Checkerspot, Inc. | High oleic oil compositions and uses thereof |
US11976212B2 (en) | 2021-12-01 | 2024-05-07 | Checkerspot, Inc. | Polyols, polyurethane dispersions, and uses thereof |
US11981806B2 (en) | 2021-11-19 | 2024-05-14 | Checkerspot, Inc. | Recycled polyurethane formulations |
RU2821908C1 (en) * | 2023-12-07 | 2024-06-27 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кузбасский государственный аграрный университет имени В.Н. Полецкова" | Method for production of gluten-free shortbread cookies |
WO2024160737A1 (en) * | 2023-01-30 | 2024-08-08 | Unilever Ip Holdings B.V. | Food composition comprising chlorophyll-deficient chlorella biomass with high protein content >50wt% |
WO2024161109A1 (en) * | 2023-01-30 | 2024-08-08 | Algenuity Holdings Limited | Algae biomass |
US12059006B2 (en) | 2008-10-14 | 2024-08-13 | Corbion Biotech, Inc. | Microalgal flour |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101226097B1 (en) * | 2012-08-07 | 2013-01-25 | 이철기 | Sauce for cooking and method for producing the same |
FR3003872B1 (en) * | 2013-03-29 | 2017-02-10 | Roquette Freres | PROCESS FOR STABILIZING OXIDATION-SENSITIVE METABOLITES PRODUCED BY MICROALGUES OF THE GENUS CHLORELLA |
FR3009619B1 (en) | 2013-08-07 | 2017-12-29 | Roquette Freres | BIOMASS COMPOSITIONS OF MICROALGUES RICH IN PROTEINS OF SENSORY QUALITY OPTIMIZED |
EP3054782B1 (en) * | 2013-10-08 | 2019-05-22 | Evonik Degussa GmbH | Method for drying biomass |
CN105793433A (en) * | 2013-11-29 | 2016-07-20 | 罗盖特兄弟公司 | Process for enrichment of microalgal biomass with carotenoids and with proteins |
KR20170105498A (en) * | 2015-01-26 | 2017-09-19 | 로께뜨프레르 | Method for preparing a flour of lipid-rich crushed microalgae |
JP2018514224A (en) * | 2015-05-19 | 2018-06-07 | ロケット フレールRoquette Freres | Noodles and dough containing fine algae powder |
KR101728815B1 (en) * | 2015-05-22 | 2017-05-02 | 씨제이푸드빌 주식회사 | Functional Dough Composition and Bread using Seaweed Fulvescens, and Manufacturing method for the same |
CN106093365A (en) * | 2016-06-03 | 2016-11-09 | 齐齐哈尔大学 | A kind of method that rare aquatic bird environmental health is evaluated |
GB2551237B (en) * | 2016-06-08 | 2019-10-02 | Lo Dough Ltd | Bakery food product |
US11085820B2 (en) | 2016-10-06 | 2021-08-10 | Konica Minolta, Inc. | Diagnosis assistance device for optical characteristic measurement device, and diagnosis assistance method for optical characteristic measurement device |
JP7042024B2 (en) * | 2017-01-20 | 2022-03-25 | 日清食品ホールディングス株式会社 | Chlorophyll-reduced plant powder-containing foods |
JP2019092413A (en) * | 2017-11-21 | 2019-06-20 | 株式会社タベルモ | Algae for food and drink-containing composition and manufacturing method therefor |
CN108130334B (en) * | 2017-12-27 | 2021-04-13 | 中国科学院青岛生物能源与过程研究所 | Application of switchgrass S-adenosylmethionine synthetase gene SAMS1 in regulation and control of lignin synthesis |
EP3858152A4 (en) * | 2018-11-06 | 2022-07-27 | ABL Co.,Ltd | Method for long-term storage of chlorophyll-containing extract |
CN109170987A (en) * | 2018-11-16 | 2019-01-11 | 无棣县兴亚生物科技有限公司 | A kind of digested tankage production equipment and process |
EP4013245A1 (en) * | 2019-08-15 | 2022-06-22 | Abbott Laboratories | Nutritional powder manufacturing process using micronization, and powder composition |
ES2956949T3 (en) * | 2019-12-13 | 2024-01-05 | Unilever Ip Holdings B V | Dressing composition comprising microalgae protein |
KR102107539B1 (en) * | 2019-12-18 | 2020-05-07 | 송성은 | Method for Manufacturing Microalgae Micro Powder Containing Astaxanthin and Fatty Acids with Enhanced Penetration Performance and Food Availability |
WO2021219562A1 (en) * | 2020-04-27 | 2021-11-04 | Société des Produits Nestlé S.A. | Food composition comprising heat treated algae |
KR102636793B1 (en) * | 2020-08-28 | 2024-02-15 | 대상 주식회사 | A process for preparing wet noodles using chlorophyll-deficient chlorella |
KR102614724B1 (en) * | 2020-08-28 | 2023-12-15 | 대상 주식회사 | A beverage composition containing chlorophyll-deficient chlorella and a process for preparing the same |
CN112120109A (en) * | 2020-10-10 | 2020-12-25 | 天津科技大学 | Microalgae energy bar and manufacturing method thereof |
KR102490870B1 (en) * | 2021-01-18 | 2023-01-20 | 씨제이제일제당 주식회사 | Composition for cryopreservation of microalgae of Thraustochytriaceae and method for cryopreservation of the microalgae of Thraustochytriaceae using thereof |
WO2023131656A1 (en) * | 2022-01-05 | 2023-07-13 | Biotrino Aps | Chlorella vulgaris strain with reduced chlorophyll content |
WO2023148344A1 (en) * | 2022-02-03 | 2023-08-10 | Algama | Specialized plant-based egg substitute for the production of emulsified sauces |
WO2023198689A1 (en) | 2022-04-11 | 2023-10-19 | Algama | Process for obtaining a texturising protein extract from microalgae |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3617431A (en) | 1966-03-03 | 1971-11-02 | Mo Och Domsjoe Ab | Process for preparing cellulose pulp by alkaline digestion while inhibiting extraction of hemicellulose |
US4331808A (en) | 1978-07-24 | 1982-05-25 | Miles Laboratories, Inc. | Chemiluminescent naphthalene-1,2-dicarboxylic acid hydrazide-labeled haptens |
US4362008A (en) | 1979-12-22 | 1982-12-07 | Alan Parker | Method and apparatus for forming composite yarn |
US4390561A (en) * | 1981-11-04 | 1983-06-28 | The Procter & Gamble Company | Margarine oil product |
US5330913A (en) | 1991-09-11 | 1994-07-19 | Hideo Nakayama | Method of disrupting the chlorella cell wall by cell rupture |
US5547699A (en) * | 1993-04-30 | 1996-08-20 | Kawasaki Steel Corporation | Marine micro-algae food material containing docosahexaenoic acid, food containing the same and manufacturing method therefor |
US5711983A (en) * | 1990-02-13 | 1998-01-27 | Martek Biosciences Corporation | Dinoflagellate biomass, methods for its production, and compositions containing the same |
US6372460B1 (en) | 1997-08-01 | 2002-04-16 | Martek Biosciences | DHA-containing nutritional compositions and methods for their production |
US20070167396A1 (en) * | 2006-01-19 | 2007-07-19 | Solazyme, Inc. | Methods and compositions for cholesterol reduction in mammals |
US7252979B2 (en) | 2003-10-02 | 2007-08-07 | Martek Bioscience Corporation | Production of DHA in microalgae in low pH medium |
US7413882B2 (en) | 2004-03-25 | 2008-08-19 | Novozymes, Inc. | Methods for degrading or converting plant cell wall polysaccharides |
WO2008151149A2 (en) | 2007-06-01 | 2008-12-11 | Solazyme, Inc. | Production of oil in microorganisms |
US20090068315A1 (en) * | 2005-05-19 | 2009-03-12 | Danielle Christa Hundscheid | Composite nutritional products |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4843872B1 (en) * | 1970-04-23 | 1973-12-21 | ||
JPS6261568A (en) * | 1985-09-13 | 1987-03-18 | Iwao Sasaki | Production of fine chlorella powder |
US5244921A (en) * | 1990-03-21 | 1993-09-14 | Martek Corporation | Eicosapentaenoic acids and methods for their production |
JPH04108374A (en) * | 1990-08-27 | 1992-04-09 | Kyowa Hakko Kogyo Co Ltd | New alga of chlorella |
US6255505B1 (en) | 1996-03-28 | 2001-07-03 | Gist-Brocades, B.V. | Microbial polyunsaturated fatty acid containing oil from pasteurised biomass |
JP4545235B2 (en) * | 1996-03-28 | 2010-09-15 | ディーエスエム アイピー アセッツ ビー.ブイ. | Process for producing granular microbial biomass and isolation of valuable compounds from the biomass |
ES2653545T3 (en) | 2000-01-28 | 2018-02-07 | Dsm Ip Assets B.V. | Improved production of lipids containing polyenoic fatty acids by high-density cultures of microorganisms of the order Thraustochytriales in fermenters |
JP2001292751A (en) * | 2000-04-13 | 2001-10-23 | Yaeyama Shokusan Kk | Powder for chlorella drink |
JP2004049079A (en) * | 2002-07-18 | 2004-02-19 | Ishikawa Tennen Yakko Busshitsu Kenkyu Center | Ultramicronized chlorella preparation |
JP2004275173A (en) * | 2003-03-17 | 2004-10-07 | Teruo Kumagai | Method for producing soybean milk by using fine powder of raw soybean |
WO2004083401A2 (en) * | 2003-03-18 | 2004-09-30 | Timothy Nicholas Ray | Broken cell wall chlorella and process for preparation thereof |
JP2005143480A (en) * | 2003-11-17 | 2005-06-09 | Hasegawa Hidetoshi | Method for producing industrial waste such as rice bran, soybean-curd refuse, beer lees and the like |
WO2006047445A2 (en) * | 2004-10-22 | 2006-05-04 | Martek Biosciences Corporation | Process for preparing materials for extraction |
JP2007215507A (en) * | 2006-02-17 | 2007-08-30 | Kobayashi Pharmaceut Co Ltd | Food composition containing both spirulina and chlorella |
JP2008253146A (en) * | 2007-03-30 | 2008-10-23 | Adeka Corp | Mix liquid for baked pudding |
FR2924126B1 (en) * | 2007-11-28 | 2011-04-15 | Roquette Freres | NOVEL PROCESS FOR CULTURING A HETEROTROPIC MICROALGUE |
CN104770424A (en) * | 2008-10-14 | 2015-07-15 | 索拉兹米公司 | Food compositions of microalgal biomass |
EP2418959B1 (en) | 2009-04-14 | 2019-07-24 | Corbion Biotech, Inc. | Novel microalgal food compositions |
-
2010
- 2010-04-14 EP EP10765119.2A patent/EP2418959B1/en active Active
- 2010-04-14 CA CA2758479A patent/CA2758479C/en active Active
- 2010-04-14 EP EP19187845.3A patent/EP3622828B1/en active Active
- 2010-04-14 JP JP2012506177A patent/JP5636039B2/en active Active
- 2010-04-14 ES ES10765119T patent/ES2749850T3/en active Active
- 2010-04-14 AU AU2010236491A patent/AU2010236491B2/en active Active
- 2010-04-14 WO PCT/US2010/031088 patent/WO2010120923A1/en active Application Filing
- 2010-04-14 BR BRPI1013431-0A patent/BRPI1013431B1/en active IP Right Grant
- 2010-04-14 KR KR1020177022458A patent/KR101899933B1/en active IP Right Grant
- 2010-04-14 CN CN201080026237.7A patent/CN102946738B/en not_active Ceased
- 2010-04-14 KR KR1020117026943A patent/KR101769121B1/en active IP Right Grant
-
2013
- 2013-08-26 HK HK13109969.3A patent/HK1182595A1/en unknown
-
2014
- 2014-04-30 JP JP2014093851A patent/JP2014138620A/en not_active Withdrawn
-
2016
- 2016-09-02 JP JP2016171644A patent/JP2016198117A/en active Pending
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3617431A (en) | 1966-03-03 | 1971-11-02 | Mo Och Domsjoe Ab | Process for preparing cellulose pulp by alkaline digestion while inhibiting extraction of hemicellulose |
US4331808A (en) | 1978-07-24 | 1982-05-25 | Miles Laboratories, Inc. | Chemiluminescent naphthalene-1,2-dicarboxylic acid hydrazide-labeled haptens |
US4362008A (en) | 1979-12-22 | 1982-12-07 | Alan Parker | Method and apparatus for forming composite yarn |
US4390561A (en) * | 1981-11-04 | 1983-06-28 | The Procter & Gamble Company | Margarine oil product |
US5711983A (en) * | 1990-02-13 | 1998-01-27 | Martek Biosciences Corporation | Dinoflagellate biomass, methods for its production, and compositions containing the same |
US5330913A (en) | 1991-09-11 | 1994-07-19 | Hideo Nakayama | Method of disrupting the chlorella cell wall by cell rupture |
US5547699A (en) * | 1993-04-30 | 1996-08-20 | Kawasaki Steel Corporation | Marine micro-algae food material containing docosahexaenoic acid, food containing the same and manufacturing method therefor |
US6812009B2 (en) | 1997-08-01 | 2004-11-02 | Martek Biosciences Corporation | DHA-containing nutritional compositions and methods for their production |
US6372460B1 (en) | 1997-08-01 | 2002-04-16 | Martek Biosciences | DHA-containing nutritional compositions and methods for their production |
US7252979B2 (en) | 2003-10-02 | 2007-08-07 | Martek Bioscience Corporation | Production of DHA in microalgae in low pH medium |
US7413882B2 (en) | 2004-03-25 | 2008-08-19 | Novozymes, Inc. | Methods for degrading or converting plant cell wall polysaccharides |
US20090068315A1 (en) * | 2005-05-19 | 2009-03-12 | Danielle Christa Hundscheid | Composite nutritional products |
US20070167396A1 (en) * | 2006-01-19 | 2007-07-19 | Solazyme, Inc. | Methods and compositions for cholesterol reduction in mammals |
WO2008151149A2 (en) | 2007-06-01 | 2008-12-11 | Solazyme, Inc. | Production of oil in microorganisms |
US20090011480A1 (en) | 2007-06-01 | 2009-01-08 | Solazyme, Inc. | Use of Cellulosic Materials for Cultivation of Microorganisms |
US20090035842A1 (en) | 2007-06-01 | 2009-02-05 | Solazyme, Inc. | Sucrose Feedstock Utilization for Oil-Based Fuel Manufacturing |
US20090148918A1 (en) | 2007-06-01 | 2009-06-11 | Solazyme, Inc. | Glycerol Feedstock Utilization for Oil-Based Fuel Manufacturing |
Non-Patent Citations (33)
Title |
---|
"The Glossary of Genetics", 1991, SPRINGER VERLAG |
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410 |
BANERJEE ET AL., CRITICAL REVIEWS IN BIOTECHNOLOGY, vol. 22, no. 3, 2002, pages 245 - 279 |
CARMICHAEL ET AL., APPL ENVIRON MICROBIOL, vol. 63, no. 8, 1997, pages 3104 - 3110 |
CHAHAL, D.S. ET AL., PROCEEDINGS OF THE 2ND WORLD CONGRESS OF CHEMICAL ENGINEERING, 1981 |
DALE, B.E. ET AL., BIOTECHNOLOGY AND BIOENGINEERING, vol. 12, 1982, pages 31 - 43 |
HALE; MARHAM: "The Harper Collins Dictionary of Biology", 1991 |
HASE ET AL.: "Nutritional control of cell pigmentation in Chlorella Protothecoides with special reference to the degeneration of chloroplast induced by glucose", PLANT AND CELL PHYSIOLOGY, vol. 5, no. 2, 1964, pages 227 - 240, XP008164642, Retrieved from the Internet <URL:http://pcp.oxfordjournals.org/cgi/content/abstract/5/2/227> [retrieved on 20100603] * |
INOUE ET AL., BIOMASS BIOENERGY, vol. 6, no. 4, 1993, pages 269 - 274 |
KAAR ET AL., BIOMASS AND BIOENERGY, vol. 14, no. 3, 1998, pages 277 - 87 |
KAMIYA, PLANT CELL PHYSIOL., vol. 30, no. 4, 1989, pages 513 - 521 |
MATTHEW ET AL., J NAT PROD., vol. 71, no. 6, 2008, pages 1113 - 6 |
MENDES ET AL., INORGANICA CHIMICA ACTA, vol. 356, 2003, pages 328 - 334 |
MERKLE; POPPE, METHODS ENZYMOL., vol. 230, 1994, pages 1 - 15 |
MIAO; WU, BIOSOURCE TECHNOLOGY, vol. 97, 2006, pages 841 - 846 |
MIAO; WU, J. BIOTECHNOLOGY, vol. 11, 2004, pages 85 - 93 |
MINOWA ET AL., FUEL, vol. 74, no. 12, 1995, pages 1735 - 1738 |
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 |
PEARSON; LIPMAN, PROC. NAT'L. ACAD. SCI. USA, vol. 85, 1988, pages 2444 |
SAWAYAMA ET AL., BIOMASS AND BIO ENERGY, vol. 17, 1999, pages 33 - 39 |
See also references of EP2418959A4 |
SINGLETON ET AL., DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOGY, 1994 |
SMITH; WATERMAN, ADV. APPL. MATH., vol. 2, 1981, pages 482 |
TAKAGI ET AL., JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 101, no. 3, 2006, pages 223 - 226 |
TAKEDA: "Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae)", JOURNAL OF PHYCOLOGY, vol. 27, no. ISSUE, 1991, pages 224 - 232, XP055078094, Retrieved from the Internet <URL:http://www3.interscience.wiley.com/journal/119345932/abstract> [retrieved on 20100604] * |
TECHNOLOGY, vol. 27, 2000, pages 631 - 635 |
TENEVA, ENVIRONMENTAL TOXICOLOGY, vol. 18, no. 1, 2003, pages 9 - 20 |
THE CAMBRIDGE DICTIONARY OF SCIENCE AND TECHNOLOGY, 1988 |
URANO ET AL., JBIOSCIENCE BIOENGINEERING, vol. 90, no. 5, 2000, pages 567 - 569 |
WU ET AL., SCIENCE IN CHINA, vol. 37, no. 3, 1994, pages 326 - 335 |
XU ET AL.: "High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters", JOURNAL OF BIOTECHNOLOGY, vol. 126, no. ISS. 4, 1 December 2006 (2006-12-01), pages 499 - 507, XP024956582 * |
YORK ET AL., METHODS ENZYMOL., vol. 118, 1985, pages 3 - 40 |
ZHENG ET AL., BIOTECHNOLOGY LETTERS, vol. 17, no. 8, 1995, pages 845 - 850 |
Cited By (155)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8518689B2 (en) | 2007-06-01 | 2013-08-27 | Solazyme, Inc. | Production of oil in microorganisms |
US8512999B2 (en) | 2007-06-01 | 2013-08-20 | Solazyme, Inc. | Production of oil in microorganisms |
US8889402B2 (en) | 2007-06-01 | 2014-11-18 | Solazyme, Inc. | Chlorella species containing exogenous genes |
US8790914B2 (en) | 2007-06-01 | 2014-07-29 | Solazyme, Inc. | Use of cellulosic materials for cultivation of microorganisms |
US8889401B2 (en) | 2007-06-01 | 2014-11-18 | Solazyme, Inc. | Production of oil in microorganisms |
US8476059B2 (en) | 2007-06-01 | 2013-07-02 | Solazyme, Inc. | Sucrose feedstock utilization for oil-based fuel manufacturing |
US8647397B2 (en) | 2007-06-01 | 2014-02-11 | Solazyme, Inc. | Lipid pathway modification in oil-bearing microorganisms |
US10138435B2 (en) | 2007-06-01 | 2018-11-27 | Corbion Biotech, Inc. | Renewable diesel and jet fuel from microbial sources |
US8497116B2 (en) | 2007-06-01 | 2013-07-30 | Solazyme, Inc. | Heterotrophic microalgae expressing invertase |
US9434909B2 (en) | 2007-06-01 | 2016-09-06 | Solazyme, Inc. | Renewable diesel and jet fuel from microbial sources |
US8802422B2 (en) | 2007-06-01 | 2014-08-12 | Solazyme, Inc. | Renewable diesel and jet fuel from microbial sources |
US8822176B2 (en) | 2008-04-09 | 2014-09-02 | Solazyme, Inc. | Modified lipids produced from oil-bearing microbial biomass and oils |
US8822177B2 (en) | 2008-04-09 | 2014-09-02 | Solazyme, Inc. | Modified lipids produced from oil-bearing microbial biomass and oils |
US8450083B2 (en) | 2008-04-09 | 2013-05-28 | Solazyme, Inc. | Modified lipids produced from oil-bearing microbial biomass and oils |
US12059006B2 (en) | 2008-10-14 | 2024-08-13 | Corbion Biotech, Inc. | Microalgal flour |
US10260076B2 (en) | 2008-11-28 | 2019-04-16 | Corbion Biotech, Inc. | Heterotrophically cultivated recombinant microalgae |
US9353389B2 (en) | 2008-11-28 | 2016-05-31 | Solazyme, Inc. | Nucleic acids useful in the manufacture of oil |
US9062294B2 (en) | 2008-11-28 | 2015-06-23 | Solazyme, Inc. | Renewable fuels produced from oleaginous microorganisms |
US8697427B2 (en) | 2008-11-28 | 2014-04-15 | Solazyme, Inc. | Recombinant microalgae cells producing novel oils |
US9464304B2 (en) | 2008-11-28 | 2016-10-11 | Terravia Holdings, Inc. | Methods for producing a triglyceride composition from algae |
US8951777B2 (en) | 2008-11-28 | 2015-02-10 | Solazyme, Inc. | Recombinant microalgae cells producing novel oils |
US9593351B2 (en) | 2008-11-28 | 2017-03-14 | Terravia Holdings, Inc. | Recombinant microalgae including sucrose invertase and thioesterase |
US8772575B2 (en) | 2008-11-28 | 2014-07-08 | Solazyme, Inc. | Nucleic acids useful in the manufacture of oil |
US8435767B2 (en) | 2008-11-28 | 2013-05-07 | Solazyme, Inc. | Renewable chemical production from novel fatty acid feedstocks |
US8674180B2 (en) | 2008-11-28 | 2014-03-18 | Solazyme, Inc. | Nucleic acids useful in the manufacture of oil |
EP3622828B1 (en) | 2009-04-14 | 2022-11-16 | Corbion Biotech, Inc. | Novel microalgal food compositions |
JP2016041082A (en) * | 2010-04-14 | 2016-03-31 | ソラザイム ロケット ニュートリショナルズ, エルエルシー | Lipid-rich microalgal flour food compositions |
US9109239B2 (en) | 2010-05-28 | 2015-08-18 | Solazyme, Inc. | Hydroxylated triacylglycerides |
US9657299B2 (en) | 2010-05-28 | 2017-05-23 | Terravia Holdings, Inc. | Tailored oils produced from recombinant heterotrophic microorganisms |
US9255282B2 (en) | 2010-05-28 | 2016-02-09 | Solazyme, Inc. | Tailored oils produced from recombinant heterotrophic microorganisms |
US8592188B2 (en) | 2010-05-28 | 2013-11-26 | Solazyme, Inc. | Tailored oils produced from recombinant heterotrophic microorganisms |
US9279136B2 (en) | 2010-05-28 | 2016-03-08 | Solazyme, Inc. | Methods of producing triacylglyceride compositions comprising tailored oils |
US8765424B2 (en) | 2010-05-28 | 2014-07-01 | Solazyme, Inc. | Tailored oils produced from recombinant heterotrophic microorganisms |
US10006034B2 (en) | 2010-05-28 | 2018-06-26 | Corbion Biotech, Inc. | Recombinant microalgae including keto-acyl ACP synthase |
US10167489B2 (en) | 2010-11-03 | 2019-01-01 | Corbion Biotech, Inc. | Microbial oils with lowered pour points, dielectric fluids produced therefrom, and related methods |
US9066527B2 (en) | 2010-11-03 | 2015-06-30 | Solazyme, Inc. | Microbial oils with lowered pour points, dielectric fluids produced therefrom, and related methods |
US10344305B2 (en) | 2010-11-03 | 2019-07-09 | Corbion Biotech, Inc. | Microbial oils with lowered pour points, dielectric fluids produced therefrom, and related methods |
US9388435B2 (en) | 2010-11-03 | 2016-07-12 | Terravia Holdings, Inc. | Microbial oils with lowered pour points, dielectric fluids produced therefrom, and related methods |
US8633012B2 (en) | 2011-02-02 | 2014-01-21 | Solazyme, Inc. | Tailored oils produced from recombinant oleaginous microorganisms |
US9249436B2 (en) | 2011-02-02 | 2016-02-02 | Solazyme, Inc. | Tailored oils produced from recombinant oleaginous microorganisms |
US8852885B2 (en) | 2011-02-02 | 2014-10-07 | Solazyme, Inc. | Production of hydroxylated fatty acids in Prototheca moriformis |
US10100341B2 (en) | 2011-02-02 | 2018-10-16 | Corbion Biotech, Inc. | Tailored oils produced from recombinant oleaginous microorganisms |
KR101269624B1 (en) * | 2011-03-10 | 2013-05-30 | 한국식품연구원 | Food composition containing taro and method of manufacturing the same |
US8846352B2 (en) | 2011-05-06 | 2014-09-30 | Solazyme, Inc. | Genetically engineered microorganisms that metabolize xylose |
US9499845B2 (en) | 2011-05-06 | 2016-11-22 | Terravia Holdings, Inc. | Genetically engineered microorganisms that metabolize xylose |
WO2013032333A1 (en) * | 2011-09-01 | 2013-03-07 | Algae Biotech S.L. | Oral dosage units containing astaxanthin, phospholipids and omega-3 fatty acids |
WO2013035797A1 (en) * | 2011-09-09 | 2013-03-14 | 株式会社カネカ | Method for cultivating seaweed and method for producing alginic acid-containing composition |
EP2754710A1 (en) * | 2011-09-09 | 2014-07-16 | Kaneka Corporation | Method for cultivating seaweed and method for producing alginic acid-containing composition |
JPWO2013035797A1 (en) * | 2011-09-09 | 2015-03-23 | 株式会社カネカ | Method for culturing algae and method for producing alginate-containing composition |
EP2754710A4 (en) * | 2011-09-09 | 2015-04-01 | Kaneka Corp | Method for cultivating seaweed and method for producing alginic acid-containing composition |
JP2013150602A (en) * | 2011-12-28 | 2013-08-08 | Suntory Holdings Ltd | Beverage containing chlorophylls |
US8945908B2 (en) | 2012-04-18 | 2015-02-03 | Solazyme, Inc. | Tailored oils |
US9249441B2 (en) | 2012-04-18 | 2016-02-02 | Solazyme, Inc. | Tailored oils |
US9719114B2 (en) | 2012-04-18 | 2017-08-01 | Terravia Holdings, Inc. | Tailored oils |
US9551017B2 (en) | 2012-04-18 | 2017-01-24 | Terravia Holdings, Inc. | Structuring fats and methods of producing structuring fats |
US11401538B2 (en) | 2012-04-18 | 2022-08-02 | Corbion Biotech, Inc. | Structuring fats and methods of producing structuring fats |
US9068213B2 (en) | 2012-04-18 | 2015-06-30 | Solazyme, Inc. | Microorganisms expressing ketoacyl-CoA synthase and uses thereof |
US8846375B2 (en) | 2012-04-18 | 2014-09-30 | Solazyme, Inc. | Tailored oils |
JP2015521033A (en) * | 2012-04-18 | 2015-07-27 | ソラザイム, インコーポレイテッドSolazyme Inc | Adjustment oil |
US10683522B2 (en) | 2012-04-18 | 2020-06-16 | Corbion Biotech, Inc. | Structuring fats and methods of producing structuring fats |
US9102973B2 (en) | 2012-04-18 | 2015-08-11 | Solazyme, Inc. | Tailored oils |
US9909155B2 (en) | 2012-04-18 | 2018-03-06 | Corbion Biotech, Inc. | Structuring fats and methods of producing structuring fats |
US10287613B2 (en) | 2012-04-18 | 2019-05-14 | Corbion Biotech, Inc. | Structuring fats and methods of producing structuring fats |
US9200307B2 (en) | 2012-04-18 | 2015-12-01 | Solazyme, Inc. | Tailored oils |
WO2013166374A2 (en) | 2012-05-04 | 2013-11-07 | Norris Leslie | Flavor, odor, and/or colorant compositions with oleaginous microorganisms and related methods |
US20150201649A1 (en) * | 2012-07-17 | 2015-07-23 | Cornell University | Algal-based animal feed composition, animal feed supplement, and uses thereof |
EP2710904A1 (en) * | 2012-09-20 | 2014-03-26 | PM-International AG | Sports drink with algae powder |
EP2710905A1 (en) * | 2012-09-20 | 2014-03-26 | PM-International AG | Sports drink |
EP2710906A1 (en) * | 2012-09-20 | 2014-03-26 | PM-International AG | Sports drink with short- and long-chained carbohydrate components |
WO2014062882A1 (en) | 2012-10-17 | 2014-04-24 | Solazyme Roquette Nutritionals, LLC | Microalgal flour granules and process for preparation thereof |
CN104918497A (en) * | 2012-10-26 | 2015-09-16 | 罗盖特兄弟公司 | Microalgal flour granules and process for preparation thereof |
EP2724625A1 (en) | 2012-10-26 | 2014-04-30 | Roquette Freres | Microalgal flour granules and process for preparation thereof |
WO2014064231A1 (en) | 2012-10-26 | 2014-05-01 | Roquette Freres | Microalgal flour granules and process for preparation thereof |
US10098371B2 (en) | 2013-01-28 | 2018-10-16 | Solazyme Roquette Nutritionals, LLC | Microalgal flour |
US10264809B2 (en) | 2013-01-28 | 2019-04-23 | Corbion Biotech, Inc. | Microalgal flour |
EP2948001A4 (en) * | 2013-01-28 | 2016-10-19 | Solazyme Roquette Nutritionals Llc | Improved microalgal flour |
EP2983478B1 (en) | 2013-03-15 | 2019-08-21 | Corbion Biotech, Inc. | Baked product comprising microalgal flour granules and process of preparation |
WO2014140247A1 (en) * | 2013-03-15 | 2014-09-18 | Roquette Freres | Cooking product comprising microalgal flour in the form of granules and production method |
EP2777400A1 (en) * | 2013-03-15 | 2014-09-17 | Roquette Freres | Microalgal flour granules and process for preparation thereof |
WO2014140244A1 (en) * | 2013-03-15 | 2014-09-18 | Roquette Freres | Microalgal-flour-based vegetable fat and its use in breadmaking and patisserie |
WO2014140242A1 (en) * | 2013-03-15 | 2014-09-18 | Roquette Freres | Microalgal flour granules and process for preparation thereof |
EP2983478B2 (en) † | 2013-03-15 | 2022-11-16 | Corbion Biotech, Inc. | Use of microalgal flour for the preparation of baked products |
WO2014140245A1 (en) | 2013-03-15 | 2014-09-18 | Roquette Freres | Lightened fat and its use in breadmaking and patisserie |
CN105050410A (en) * | 2013-03-15 | 2015-11-11 | 罗盖特兄弟公司 | Microalgal-flour-based vegetable fat and its use in breadmaking and patisserie |
US11193105B2 (en) | 2013-03-29 | 2021-12-07 | Corbion Biotech, Inc. | Microalgal biomass protein enrichment method |
US9249252B2 (en) | 2013-04-26 | 2016-02-02 | Solazyme, Inc. | Low polyunsaturated fatty acid oils and uses thereof |
WO2014207377A1 (en) | 2013-06-26 | 2014-12-31 | Roquette Freres | Microalgal flour compositions of optimised sensory quality |
FR3007625A1 (en) * | 2013-06-26 | 2015-01-02 | Roquette Freres | PROCESS FOR PRODUCING MICROALGUES BIOMASS WITH OPTIMIZED SENSORY QUALITY |
WO2014207376A1 (en) * | 2013-06-26 | 2014-12-31 | Roquette Freres | Method for the production of a microalgal biomass of optimised sensory quality |
US11016071B2 (en) | 2013-06-26 | 2021-05-25 | Corbion Biotech, Inc. | Microalgal flour compositions of optimised sensory quality |
US10465159B2 (en) | 2013-07-04 | 2019-11-05 | Corbion Biotech, Inc. | Optimised method for breaking chlorella walls by mechanical crushing |
WO2015007999A2 (en) | 2013-07-19 | 2015-01-22 | Roquette Freres | Lipid-rich microalgal flour and method for preparing same |
US11559074B2 (en) | 2013-07-19 | 2023-01-24 | Corbion Biotech, Inc. | Lipid-rich microalgal flour and method for preparing same |
WO2015007997A1 (en) | 2013-07-19 | 2015-01-22 | Roquette Freres | Optimised method for breaking chlorella cell walls by means of very high pressure homogenisation |
FR3008712A1 (en) * | 2013-07-19 | 2015-01-23 | Roquette Freres | OPTIMIZED METHOD OF BREAKING CHLORELIC WALLS BY HOMOGENIZATION AT VERY HIGH PRESSURE |
US10501722B2 (en) | 2013-07-25 | 2019-12-10 | Corbion Biotech, Inc. | Method for optimizing the production efficiency, organoleptic quality and stability over time of a protein-rich microalgae biomass |
CN105452443A (en) * | 2013-07-25 | 2016-03-30 | 罗盖特兄弟公司 | Method for optimising the production efficiency, organoleptic quality and stability over time of a protein-rich microalgae biomass |
CN105452443B (en) * | 2013-07-25 | 2019-07-16 | 科比恩生物技术有限公司 | Production efficiency, the method for aesthetic quality and time stability of microalgae biomass of the optimization rich in protein |
WO2015022469A2 (en) | 2013-08-13 | 2015-02-19 | Roquette Freres | Method for preparing lipid-rich compositions of microalga flour with optimised organoleptic properties |
WO2015022469A3 (en) * | 2013-08-13 | 2015-04-16 | Roquette Freres | Method for preparing lipid-rich compositions of microalga flour with optimised organoleptic properties |
US10351814B2 (en) | 2013-08-23 | 2019-07-16 | Corbion Biotech, Inc. | Method for the industrial production of flour from lipid-rich microalga biomass with no “off-notes” by controlling the oxygen availability |
WO2015025111A1 (en) | 2013-08-23 | 2015-02-26 | Roquette Freres | Method for the industrial production of flour from lipid-rich microalga biomass with no "off-notes" by controlling the oxygen availability |
US10053715B2 (en) | 2013-10-04 | 2018-08-21 | Corbion Biotech, Inc. | Tailored oils |
WO2015055965A1 (en) * | 2013-10-18 | 2015-04-23 | Roquette Freres | Process for texturing a microalgal biomass |
WO2015075378A1 (en) | 2013-11-19 | 2015-05-28 | Roquette Freres | Novel non-allergenic snacks containing vegetable proteins |
US10299500B2 (en) | 2013-11-29 | 2019-05-28 | Corbion Biotech, Inc. | Granules of protein-rich microalgal biomass flour and method for preparing same |
ES2542051A1 (en) * | 2014-01-29 | 2015-07-29 | Juan DOMÉNECH MANSILLA | Salsa for coeliacs suitable for fish and seafood (Machine-translation by Google Translate, not legally binding) |
US9394550B2 (en) | 2014-03-28 | 2016-07-19 | Terravia Holdings, Inc. | Lauric ester compositions |
US9796949B2 (en) | 2014-03-28 | 2017-10-24 | Terravia Holdings, Inc. | Lauric ester compositions |
WO2015168136A1 (en) * | 2014-04-28 | 2015-11-05 | Cornell University | Compositions comprising defatted microalgae, and treatment methods |
WO2015200888A1 (en) | 2014-06-27 | 2015-12-30 | Solazyme, Inc. | High-protein food products made using high-protein microalgae |
US10316299B2 (en) | 2014-07-10 | 2019-06-11 | Corbion Biotech, Inc. | Ketoacyl ACP synthase genes and uses thereof |
US9969990B2 (en) | 2014-07-10 | 2018-05-15 | Corbion Biotech, Inc. | Ketoacyl ACP synthase genes and uses thereof |
US11077158B2 (en) | 2014-07-17 | 2021-08-03 | Cornell University | Omega-3 fatty acid enrichment of poultry products with defatted microalgae animal feed |
US10519204B2 (en) | 2014-07-18 | 2019-12-31 | Corbion Biotech, Inc. | Method for extracting soluble proteins from microalgal biomass |
US10815281B2 (en) | 2014-07-18 | 2020-10-27 | Corbion Biotech, Inc. | Method for extracting soluble proteins from microalgal biomass |
WO2016014912A1 (en) | 2014-07-24 | 2016-01-28 | Solazyme, Inc. | High-protein gelled food products made using high-protein microalgae |
US10842174B2 (en) | 2014-10-02 | 2020-11-24 | Evonik Operations Gmbh | Method for producing biomass which has a high exopolysaccharide content |
US11464244B2 (en) | 2014-10-02 | 2022-10-11 | Evonik Operations Gmbh | Feedstuff of high abrasion resistance and good stability in water, containing PUFAs |
US20170298318A1 (en) * | 2014-10-02 | 2017-10-19 | Evonik Degussa Gmbh | Method for producing a granular biomass which contains an oxidation-sensitive valuable substance |
JP2016067340A (en) * | 2014-10-02 | 2016-05-09 | 日健化学株式会社 | Food and drink |
US10619175B2 (en) | 2014-10-02 | 2020-04-14 | Evonik Operations Gmbh | Process for producing a PUFA-containing feedstuff by extruding a PUFA-containing biomass |
US11324234B2 (en) | 2014-10-02 | 2022-05-10 | Evonik Operations Gmbh | Method for raising animals |
EP3001916A1 (en) * | 2014-10-02 | 2016-04-06 | Nikken Kagaku Co., Ltd. | Food or drink comprising an algae extract oil |
WO2016097617A1 (en) | 2014-12-18 | 2016-06-23 | Roquette Freres | Low-fat fried product and method for producing same |
CN107635411A (en) * | 2015-05-19 | 2018-01-26 | 罗盖特兄弟公司 | For bleaching the fermentation process of Chlorella protothecoides biomass |
US11473050B2 (en) | 2016-02-08 | 2022-10-18 | Corbion Biotech, Inc. | Method for the protein enrichment of microalgal biomass |
AU2017290744B2 (en) * | 2016-07-01 | 2022-02-17 | Corbion Biotech, Inc. | Feed ingredients comprising lysed microbial cells |
US11419350B2 (en) | 2016-07-01 | 2022-08-23 | Corbion Biotech, Inc. | Feed ingredients comprising lysed microbial cells |
CN106615769A (en) * | 2016-10-26 | 2017-05-10 | 深圳市裕农科技股份有限公司 | Feed for producing pork containing DHA and use method thereof |
CZ308610B6 (en) * | 2017-02-07 | 2020-12-30 | Ecofuel Laboratories S R O | A liquid or pastelike product based on microalgae and/or cyanobacteria and/or myxomycetes |
EP3381301A1 (en) | 2017-03-30 | 2018-10-03 | Golden Chlorella SA | Methods of preparation of food products comprising microalgae & products thereof |
WO2018178214A1 (en) | 2017-03-30 | 2018-10-04 | Golden Chlorella Sa | Methods of preparation of food products comprising microalgae & products thereof |
WO2018202852A1 (en) | 2017-05-04 | 2018-11-08 | Odontella | Plant substitutes for meat food products |
FR3065862A1 (en) * | 2017-05-04 | 2018-11-09 | Odontella | VEGETABLE SUBSTITUTES TO CARNES FOOD PRODUCTS |
US11208369B2 (en) | 2018-08-30 | 2021-12-28 | Checkerspot, Inc. | Hydroformylated triglycerides and uses thereof |
US11673850B2 (en) | 2018-08-30 | 2023-06-13 | Checkerspot, Inc. | Hydroformylated triglycerides and uses thereof |
US12144799B2 (en) | 2018-11-06 | 2024-11-19 | ABL Co., Ltd | Method for long-term storage of chlorophyll-containing extract |
CN109452566A (en) * | 2018-12-24 | 2019-03-12 | 湖南唐人神肉制品有限公司 | A kind of high protein, high dietary-fiber, prepared food of low fat and preparation method thereof |
US11118134B2 (en) | 2019-02-11 | 2021-09-14 | Checkerspot, Inc. | Triglyceride oil compositions |
US11667870B2 (en) | 2019-02-11 | 2023-06-06 | Checkerspot, Inc. | Triglyceride oil compositions |
US11691382B2 (en) | 2019-12-18 | 2023-07-04 | Checkerspot, Inc. | Uses of microbial derived materials in polymer applications |
FR3110340A1 (en) * | 2020-05-20 | 2021-11-26 | Algama | Vegan alternative to spreads made from fish and / or shellfish. |
WO2021234316A1 (en) * | 2020-05-20 | 2021-11-25 | Algama | Vegan alternative to spread based on fish and/or crustaceans |
CN112841490A (en) * | 2021-02-20 | 2021-05-28 | 李树森 | Solid beverage with prolonged service life |
US11873405B2 (en) | 2021-09-17 | 2024-01-16 | Checkerspot, Inc. | High oleic oil compositions and uses thereof |
US11981806B2 (en) | 2021-11-19 | 2024-05-14 | Checkerspot, Inc. | Recycled polyurethane formulations |
US11976212B2 (en) | 2021-12-01 | 2024-05-07 | Checkerspot, Inc. | Polyols, polyurethane dispersions, and uses thereof |
SE2250075A1 (en) * | 2022-01-28 | 2023-07-29 | Mycorena Ab | Fungi-based fat tissue |
WO2024003816A1 (en) * | 2022-06-30 | 2024-01-04 | The Live Green Group, Inc., | Plant only seafood flavoring replacement system |
WO2024160737A1 (en) * | 2023-01-30 | 2024-08-08 | Unilever Ip Holdings B.V. | Food composition comprising chlorophyll-deficient chlorella biomass with high protein content >50wt% |
WO2024161109A1 (en) * | 2023-01-30 | 2024-08-08 | Algenuity Holdings Limited | Algae biomass |
WO2024161108A1 (en) * | 2023-01-30 | 2024-08-08 | Algenuity Holdings Limited | Chlorella microalgae |
WO2024160738A1 (en) * | 2023-01-30 | 2024-08-08 | Unilever Ip Holdings B.V. | Food composition |
RU2821908C1 (en) * | 2023-12-07 | 2024-06-27 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кузбасский государственный аграрный университет имени В.Н. Полецкова" | Method for production of gluten-free shortbread cookies |
Also Published As
Publication number | Publication date |
---|---|
ES2749850T3 (en) | 2020-03-24 |
EP3622828A1 (en) | 2020-03-18 |
KR101899933B1 (en) | 2018-09-19 |
JP2016198117A (en) | 2016-12-01 |
KR101769121B1 (en) | 2017-08-17 |
KR20110138407A (en) | 2011-12-27 |
EP3622828B1 (en) | 2022-11-16 |
JP5636039B2 (en) | 2014-12-03 |
CA2758479C (en) | 2019-09-10 |
HK1182595A1 (en) | 2014-07-11 |
EP2418959A1 (en) | 2012-02-22 |
JP2012523843A (en) | 2012-10-11 |
BRPI1013431B1 (en) | 2020-10-20 |
CN102946738A (en) | 2013-02-27 |
EP2418959A4 (en) | 2015-05-27 |
EP2418959B1 (en) | 2019-07-24 |
KR20170096218A (en) | 2017-08-23 |
AU2010236491A1 (en) | 2011-11-10 |
AU2010236491B2 (en) | 2015-10-01 |
CA2758479A1 (en) | 2010-10-21 |
BRPI1013431A2 (en) | 2015-09-01 |
CN102946738B (en) | 2015-04-01 |
JP2014138620A (en) | 2014-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12059006B2 (en) | Microalgal flour | |
US20210244064A1 (en) | Novel microalgal food compositions | |
US20190254292A1 (en) | Gluten-free foods containing microalgae | |
AU2010236491B2 (en) | Novel microalgal food compositions | |
US20180139994A1 (en) | Microalgal food compositions | |
AU2009303354B2 (en) | Food compositions of microalgal biomass | |
CA2796395C (en) | Lipid-rich microalgal flour food compositions | |
US20120128851A1 (en) | Novel microalgal food compositions | |
US20100297295A1 (en) | Microalgae-Based Beverages | |
US20100297292A1 (en) | Reduced Pigmentation Microalgae Strains and Products Therefrom | |
US20100303990A1 (en) | High Protein and High Fiber Algal Food Materials | |
US20100297331A1 (en) | Reduced Fat Foods Containing High-Lipid Microalgae with Improved Sensory Properties | |
US20100297296A1 (en) | Healthier Baked Goods Containing Microalgae | |
US20100303957A1 (en) | Edible Oil and Processes for Its Production from Microalgae | |
US20100303961A1 (en) | Methods of Inducing Satiety | |
US20100297325A1 (en) | Egg Products Containing Microalgae | |
AU2015261580B2 (en) | Food compositions of microalgal biomass | |
AU2015271929A1 (en) | Novel microalgal food compositions | |
MX2011010829A (en) | Novel microalgal food compositions. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080026237.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10765119 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2758479 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012506177 Country of ref document: JP Ref document number: MX/A/2011/010829 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8086/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13263724 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2010236491 Country of ref document: AU Date of ref document: 20100414 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117026943 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010765119 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1013431 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1013431 Country of ref document: BR Kind code of ref document: A2 Effective date: 20111013 |