WO2010104761A2 - Anti-cd40 antibodies and uses thereof - Google Patents
Anti-cd40 antibodies and uses thereof Download PDFInfo
- Publication number
- WO2010104761A2 WO2010104761A2 PCT/US2010/026375 US2010026375W WO2010104761A2 WO 2010104761 A2 WO2010104761 A2 WO 2010104761A2 US 2010026375 W US2010026375 W US 2010026375W WO 2010104761 A2 WO2010104761 A2 WO 2010104761A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- seq
- nos
- cells
- sequence
- Prior art date
Links
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 244
- 239000000427 antigen Substances 0.000 claims abstract description 229
- 102000036639 antigens Human genes 0.000 claims abstract description 228
- 108091007433 antigens Proteins 0.000 claims abstract description 228
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 130
- 238000000034 method Methods 0.000 claims abstract description 62
- 239000012634 fragment Substances 0.000 claims abstract description 59
- 239000000203 mixture Substances 0.000 claims abstract description 49
- 239000013598 vector Substances 0.000 claims abstract description 41
- 210000004027 cell Anatomy 0.000 claims description 140
- 241000282414 Homo sapiens Species 0.000 claims description 99
- 238000009739 binding Methods 0.000 claims description 74
- 230000027455 binding Effects 0.000 claims description 73
- 210000004443 dendritic cell Anatomy 0.000 claims description 57
- 229920001184 polypeptide Polymers 0.000 claims description 56
- 150000007523 nucleic acids Chemical class 0.000 claims description 42
- 230000001580 bacterial effect Effects 0.000 claims description 27
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 24
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 24
- 239000013604 expression vector Substances 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 21
- 210000004602 germ cell Anatomy 0.000 claims description 17
- 102000039446 nucleic acids Human genes 0.000 claims description 16
- 108020004707 nucleic acids Proteins 0.000 claims description 16
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 15
- 108010047041 Complementarity Determining Regions Proteins 0.000 claims description 14
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 claims description 14
- 108090001005 Interleukin-6 Proteins 0.000 claims description 14
- -1 MIP-Ia Proteins 0.000 claims description 14
- 210000004408 hybridoma Anatomy 0.000 claims description 14
- 230000004913 activation Effects 0.000 claims description 13
- 230000002538 fungal effect Effects 0.000 claims description 13
- 102000014158 Interleukin-12 Subunit p40 Human genes 0.000 claims description 12
- 108010011429 Interleukin-12 Subunit p40 Proteins 0.000 claims description 12
- 230000004663 cell proliferation Effects 0.000 claims description 10
- 210000004962 mammalian cell Anatomy 0.000 claims description 9
- 102000006992 Interferon-alpha Human genes 0.000 claims description 7
- 108010047761 Interferon-alpha Proteins 0.000 claims description 7
- 239000003937 drug carrier Substances 0.000 claims description 7
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 5
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 5
- 239000003085 diluting agent Substances 0.000 claims description 5
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 4
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 4
- 230000004071 biological effect Effects 0.000 claims description 4
- 241000238631 Hexapoda Species 0.000 claims description 2
- 101150013553 CD40 gene Proteins 0.000 claims 8
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 claims 8
- 101100117488 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) mip-1 gene Proteins 0.000 claims 1
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 229960005486 vaccine Drugs 0.000 abstract description 68
- 230000014509 gene expression Effects 0.000 abstract description 36
- 210000000612 antigen-presenting cell Anatomy 0.000 abstract description 14
- 230000000890 antigenic effect Effects 0.000 abstract description 12
- 230000028327 secretion Effects 0.000 abstract description 5
- 241000725303 Human immunodeficiency virus Species 0.000 description 106
- 108090000623 proteins and genes Proteins 0.000 description 79
- 210000001744 T-lymphocyte Anatomy 0.000 description 74
- 150000001413 amino acids Chemical group 0.000 description 74
- 235000018102 proteins Nutrition 0.000 description 65
- 102000004169 proteins and genes Human genes 0.000 description 65
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 44
- 108020001507 fusion proteins Proteins 0.000 description 36
- 102000037865 fusion proteins Human genes 0.000 description 36
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 35
- 102000007066 Prostate-Specific Antigen Human genes 0.000 description 35
- 229940024606 amino acid Drugs 0.000 description 33
- 108020004414 DNA Proteins 0.000 description 31
- 206010028980 Neoplasm Diseases 0.000 description 31
- 235000001014 amino acid Nutrition 0.000 description 31
- 229940023041 peptide vaccine Drugs 0.000 description 30
- 230000004044 response Effects 0.000 description 27
- 230000028993 immune response Effects 0.000 description 25
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 22
- 230000003612 virological effect Effects 0.000 description 21
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 20
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 20
- 108020004705 Codon Proteins 0.000 description 18
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 238000003556 assay Methods 0.000 description 18
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 18
- 239000012636 effector Substances 0.000 description 17
- 102000005962 receptors Human genes 0.000 description 17
- 108020003175 receptors Proteins 0.000 description 17
- 108091026890 Coding region Proteins 0.000 description 14
- 102000004127 Cytokines Human genes 0.000 description 14
- 108090000695 Cytokines Proteins 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 102000040430 polynucleotide Human genes 0.000 description 14
- 108091033319 polynucleotide Proteins 0.000 description 14
- 239000002157 polynucleotide Substances 0.000 description 14
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 12
- 238000013461 design Methods 0.000 description 12
- 230000003834 intracellular effect Effects 0.000 description 12
- 238000010186 staining Methods 0.000 description 12
- 108091008874 T cell receptors Proteins 0.000 description 11
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 11
- 229940127121 immunoconjugate Drugs 0.000 description 11
- 206010022000 influenza Diseases 0.000 description 11
- 230000008685 targeting Effects 0.000 description 11
- 108060003951 Immunoglobulin Proteins 0.000 description 10
- 102000018358 immunoglobulin Human genes 0.000 description 10
- 239000011780 sodium chloride Substances 0.000 description 10
- 235000002639 sodium chloride Nutrition 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 230000004927 fusion Effects 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 238000002255 vaccination Methods 0.000 description 9
- 108050006400 Cyclin Proteins 0.000 description 8
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- 102000000588 Interleukin-2 Human genes 0.000 description 8
- 108010002350 Interleukin-2 Proteins 0.000 description 8
- 239000002671 adjuvant Substances 0.000 description 8
- 210000004899 c-terminal region Anatomy 0.000 description 8
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 230000002163 immunogen Effects 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 208000023275 Autoimmune disease Diseases 0.000 description 7
- 102000016736 Cyclin Human genes 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 230000005867 T cell response Effects 0.000 description 7
- 230000016396 cytokine production Effects 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 241000282412 Homo Species 0.000 description 6
- 101710176384 Peptide 1 Proteins 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 230000037396 body weight Effects 0.000 description 6
- KQNZDYYTLMIZCT-KQPMLPITSA-N brefeldin A Chemical compound O[C@@H]1\C=C\C(=O)O[C@@H](C)CCC\C=C\[C@@H]2C[C@H](O)C[C@H]21 KQNZDYYTLMIZCT-KQPMLPITSA-N 0.000 description 6
- JUMGSHROWPPKFX-UHFFFAOYSA-N brefeldin-A Natural products CC1CCCC=CC2(C)CC(O)CC2(C)C(O)C=CC(=O)O1 JUMGSHROWPPKFX-UHFFFAOYSA-N 0.000 description 6
- 239000012228 culture supernatant Substances 0.000 description 6
- 238000005304 joining Methods 0.000 description 6
- 201000001441 melanoma Diseases 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 6
- OBMZMSLWNNWEJA-XNCRXQDQSA-N C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 Chemical compound C1=CC=2C(C[C@@H]3NC(=O)[C@@H](NC(=O)[C@H](NC(=O)N(CC#CCN(CCCC[C@H](NC(=O)[C@@H](CC4=CC=CC=C4)NC3=O)C(=O)N)CC=C)NC(=O)[C@@H](N)C)CC3=CNC4=C3C=CC=C4)C)=CNC=2C=C1 OBMZMSLWNNWEJA-XNCRXQDQSA-N 0.000 description 5
- 108010088729 HLA-A*02:01 antigen Proteins 0.000 description 5
- 101100099884 Homo sapiens CD40 gene Proteins 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 102100024952 Protein CBFA2T1 Human genes 0.000 description 5
- 206010037742 Rabies Diseases 0.000 description 5
- 241000725643 Respiratory syncytial virus Species 0.000 description 5
- 239000007983 Tris buffer Substances 0.000 description 5
- 239000000556 agonist Substances 0.000 description 5
- 239000005557 antagonist Substances 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 230000003053 immunization Effects 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 102100035359 Cerebellar degeneration-related protein 2-like Human genes 0.000 description 4
- 206010014596 Encephalitis Japanese B Diseases 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- 101000737792 Homo sapiens Cerebellar degeneration-related protein 2-like Proteins 0.000 description 4
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 4
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 4
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 4
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 4
- 201000005807 Japanese encephalitis Diseases 0.000 description 4
- 241000710842 Japanese encephalitis virus Species 0.000 description 4
- 101150090410 NEFL gene Proteins 0.000 description 4
- 102000011931 Nucleoproteins Human genes 0.000 description 4
- 108010061100 Nucleoproteins Proteins 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 229920002684 Sepharose Polymers 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 230000030741 antigen processing and presentation Effects 0.000 description 4
- 230000014102 antigen processing and presentation of exogenous peptide antigen via MHC class I Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 229940030156 cell vaccine Drugs 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 238000003501 co-culture Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000013270 controlled release Methods 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 230000000763 evoking effect Effects 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 238000002649 immunization Methods 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 210000001616 monocyte Anatomy 0.000 description 4
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 230000004936 stimulating effect Effects 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 210000000605 viral structure Anatomy 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 description 3
- 241000193738 Bacillus anthracis Species 0.000 description 3
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 3
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 3
- 108010029697 CD40 Ligand Proteins 0.000 description 3
- 102100032937 CD40 ligand Human genes 0.000 description 3
- 241000699800 Cricetinae Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241000606768 Haemophilus influenzae Species 0.000 description 3
- 208000005176 Hepatitis C Diseases 0.000 description 3
- 208000009889 Herpes Simplex Diseases 0.000 description 3
- 208000007514 Herpes zoster Diseases 0.000 description 3
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 3
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- 102000043129 MHC class I family Human genes 0.000 description 3
- 108091054437 MHC class I family Proteins 0.000 description 3
- 102000043131 MHC class II family Human genes 0.000 description 3
- 108091054438 MHC class II family Proteins 0.000 description 3
- 102000000440 Melanoma-associated antigen Human genes 0.000 description 3
- 108050008953 Melanoma-associated antigen Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 108010063954 Mucins Proteins 0.000 description 3
- 102000015728 Mucins Human genes 0.000 description 3
- 108010033276 Peptide Fragments Proteins 0.000 description 3
- 102000007079 Peptide Fragments Human genes 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 208000026935 allergic disease Diseases 0.000 description 3
- 230000007815 allergy Effects 0.000 description 3
- 239000008365 aqueous carrier Substances 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 108010078428 env Gene Products Proteins 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 208000002672 hepatitis B Diseases 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 210000001165 lymph node Anatomy 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 210000003071 memory t lymphocyte Anatomy 0.000 description 3
- 239000003094 microcapsule Substances 0.000 description 3
- 239000004005 microsphere Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 229950010131 puromycin Drugs 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000000241 respiratory effect Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- JEPVUMTVFPQKQE-AAKCMJRZSA-N 2-[(1s,2s,3r,4s)-1,2,3,4,5-pentahydroxypentyl]-1,3-thiazolidine-4-carboxylic acid Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C1NC(C(O)=O)CS1 JEPVUMTVFPQKQE-AAKCMJRZSA-N 0.000 description 2
- 102100038222 60 kDa heat shock protein, mitochondrial Human genes 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 102100035526 B melanoma antigen 1 Human genes 0.000 description 2
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 108010063916 CD40 Antigens Proteins 0.000 description 2
- 102000000844 Cell Surface Receptors Human genes 0.000 description 2
- 108010001857 Cell Surface Receptors Proteins 0.000 description 2
- 108010058432 Chaperonin 60 Proteins 0.000 description 2
- 101710098119 Chaperonin GroEL 2 Proteins 0.000 description 2
- 108010009685 Cholinergic Receptors Proteins 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 208000011231 Crohn disease Diseases 0.000 description 2
- 108010068150 Cyclin B Proteins 0.000 description 2
- 102000002427 Cyclin B Human genes 0.000 description 2
- 108090000259 Cyclin D Proteins 0.000 description 2
- 102000003910 Cyclin D Human genes 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 201000004624 Dermatitis Diseases 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 108010008655 Epstein-Barr Virus Nuclear Antigens Proteins 0.000 description 2
- 108091022930 Glutamate decarboxylase Proteins 0.000 description 2
- 208000031886 HIV Infections Diseases 0.000 description 2
- 208000037357 HIV infectious disease Diseases 0.000 description 2
- 101710154606 Hemagglutinin Proteins 0.000 description 2
- 241000700721 Hepatitis B virus Species 0.000 description 2
- 241000228402 Histoplasma Species 0.000 description 2
- 101000874316 Homo sapiens B melanoma antigen 1 Proteins 0.000 description 2
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 2
- 101000856513 Homo sapiens Inactive N-acetyllactosaminide alpha-1,3-galactosyltransferase Proteins 0.000 description 2
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 2
- 101000917839 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-B Proteins 0.000 description 2
- 101000850762 Homo sapiens TNF receptor-associated factor 3 Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 241000701806 Human papillomavirus Species 0.000 description 2
- 101150106931 IFNG gene Proteins 0.000 description 2
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 2
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 2
- 102100025509 Inactive N-acetyllactosaminide alpha-1,3-galactosyltransferase Human genes 0.000 description 2
- 102100034353 Integrase Human genes 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- 108010028921 Lipopeptides Proteins 0.000 description 2
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 101710085938 Matrix protein Proteins 0.000 description 2
- 102000011961 Maturation-Promoting Factor Human genes 0.000 description 2
- 108010075942 Maturation-Promoting Factor Proteins 0.000 description 2
- 201000005505 Measles Diseases 0.000 description 2
- 241000712079 Measles morbillivirus Species 0.000 description 2
- 101710127721 Membrane protein Proteins 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 241000709664 Picornaviridae Species 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 241000223960 Plasmodium falciparum Species 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 101710176177 Protein A56 Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 208000021386 Sjogren Syndrome Diseases 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- 230000006052 T cell proliferation Effects 0.000 description 2
- 102100033082 TNF receptor-associated factor 3 Human genes 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 206010043376 Tetanus Diseases 0.000 description 2
- 102000011923 Thyrotropin Human genes 0.000 description 2
- 108010061174 Thyrotropin Proteins 0.000 description 2
- 206010052779 Transplant rejections Diseases 0.000 description 2
- 241000700647 Variola virus Species 0.000 description 2
- 108010093857 Viral Hemagglutinins Proteins 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 102000034337 acetylcholine receptors Human genes 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012148 binding buffer Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000022131 cell cycle Effects 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 230000007969 cellular immunity Effects 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 108010045512 cohesins Proteins 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 108010074605 gamma-Globulins Proteins 0.000 description 2
- 239000000185 hemagglutinin Substances 0.000 description 2
- 208000006454 hepatitis Diseases 0.000 description 2
- 231100000283 hepatitis Toxicity 0.000 description 2
- 208000005252 hepatitis A Diseases 0.000 description 2
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 2
- 230000016784 immunoglobulin production Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 230000021633 leukocyte mediated immunity Effects 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 108700025647 major vault Proteins 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000012737 microarray-based gene expression Methods 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 238000012243 multiplex automated genomic engineering Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000002088 nanocapsule Substances 0.000 description 2
- 239000002077 nanosphere Substances 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 230000037452 priming Effects 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 201000005404 rubella Diseases 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical compound [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- VZQHRKZCAZCACO-PYJNHQTQSA-N (2s)-2-[[(2s)-2-[2-[[(2s)-2-[[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]propanoyl]amino]prop-2-enoylamino]-3-methylbutanoyl]amino]propanoic acid Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C(C)C)NC(=O)C(=C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCNC(N)=N VZQHRKZCAZCACO-PYJNHQTQSA-N 0.000 description 1
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 1
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 102100024321 Alkaline phosphatase, placental type Human genes 0.000 description 1
- 102100035248 Alpha-(1,3)-fucosyltransferase 4 Human genes 0.000 description 1
- 229940122450 Altered peptide ligand Drugs 0.000 description 1
- 208000032467 Aplastic anaemia Diseases 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 101100446590 Arabidopsis thaliana FIM5 gene Proteins 0.000 description 1
- 241000712891 Arenavirus Species 0.000 description 1
- 206010003399 Arthropod bite Diseases 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 102100022717 Atypical chemokine receptor 1 Human genes 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- 241000304886 Bacilli Species 0.000 description 1
- 241000606125 Bacteroides Species 0.000 description 1
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 1
- 102000015735 Beta-catenin Human genes 0.000 description 1
- 108060000903 Beta-catenin Proteins 0.000 description 1
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 1
- 208000033222 Biliary cirrhosis primary Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000014644 Brain disease Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 102100028667 C-type lectin domain family 4 member A Human genes 0.000 description 1
- 102100040840 C-type lectin domain family 7 member A Human genes 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 102100035793 CD83 antigen Human genes 0.000 description 1
- 101150012716 CDK1 gene Proteins 0.000 description 1
- 101100298998 Caenorhabditis elegans pbs-3 gene Proteins 0.000 description 1
- 101100189913 Caenorhabditis elegans pept-1 gene Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 241000242722 Cestoda Species 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 241000498849 Chlamydiales Species 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 206010008909 Chronic Hepatitis Diseases 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 206010010741 Conjunctivitis Diseases 0.000 description 1
- 101710139375 Corneodesmosin Proteins 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 241000557626 Corvus corax Species 0.000 description 1
- 240000005109 Cryptomeria japonica Species 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 206010011891 Deafness neurosensory Diseases 0.000 description 1
- 208000001490 Dengue Diseases 0.000 description 1
- 206010012310 Dengue fever Diseases 0.000 description 1
- 108010054576 Deoxyribonuclease EcoRI Proteins 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 208000002699 Digestive System Neoplasms Diseases 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 208000019872 Drug Eruptions Diseases 0.000 description 1
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 1
- 206010013774 Dry eye Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 101100059559 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) nimX gene Proteins 0.000 description 1
- 208000032274 Encephalopathy Diseases 0.000 description 1
- 101001095863 Enterobacteria phage T4 RNA ligase 1 Proteins 0.000 description 1
- 101710126487 Envelope glycoprotein B Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 101001065501 Escherichia phage MS2 Lysis protein Proteins 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 101150106011 FIM2 gene Proteins 0.000 description 1
- 101150048576 FIM3 gene Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 101710154643 Filamentous hemagglutinin Proteins 0.000 description 1
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 1
- 239000012743 FreeStyle Max reagent Substances 0.000 description 1
- 230000004668 G2/M phase Effects 0.000 description 1
- 102100032340 G2/mitotic-specific cyclin-B1 Human genes 0.000 description 1
- 101710177291 Gag polyprotein Proteins 0.000 description 1
- 102100021260 Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1 Human genes 0.000 description 1
- 208000034951 Genetic Translocation Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000008214 Glutamate decarboxylase Human genes 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010070675 Glutathione transferase Proteins 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 206010072579 Granulomatosis with polyangiitis Diseases 0.000 description 1
- 208000003084 Graves Ophthalmopathy Diseases 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 102000006354 HLA-DR Antigens Human genes 0.000 description 1
- 108010058597 HLA-DR Antigens Proteins 0.000 description 1
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 1
- 241000590002 Helicobacter pylori Species 0.000 description 1
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 1
- 206010019755 Hepatitis chronic active Diseases 0.000 description 1
- 206010019799 Hepatitis viral Diseases 0.000 description 1
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 1
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 description 1
- 101001022185 Homo sapiens Alpha-(1,3)-fucosyltransferase 4 Proteins 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- 101000678879 Homo sapiens Atypical chemokine receptor 1 Proteins 0.000 description 1
- 101000766908 Homo sapiens C-type lectin domain family 4 member A Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000946856 Homo sapiens CD83 antigen Proteins 0.000 description 1
- 101000868643 Homo sapiens G2/mitotic-specific cyclin-B1 Proteins 0.000 description 1
- 101000894906 Homo sapiens Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1 Proteins 0.000 description 1
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 description 1
- 101000935040 Homo sapiens Integrin beta-2 Proteins 0.000 description 1
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 description 1
- 101000608935 Homo sapiens Leukosialin Proteins 0.000 description 1
- 101000972485 Homo sapiens Lupus La protein Proteins 0.000 description 1
- 101001063392 Homo sapiens Lymphocyte function-associated antigen 3 Proteins 0.000 description 1
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 1
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 1
- 101001072338 Homo sapiens Proliferating cell nuclear antigen Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 1
- 101000934346 Homo sapiens T-cell surface antigen CD2 Proteins 0.000 description 1
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 1
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 description 1
- 108010073807 IgG Receptors Proteins 0.000 description 1
- 102000009490 IgG Receptors Human genes 0.000 description 1
- 108010007403 Immediate-Early Proteins Proteins 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 241000712431 Influenza A virus Species 0.000 description 1
- 102100034349 Integrase Human genes 0.000 description 1
- 102100025304 Integrin beta-1 Human genes 0.000 description 1
- 102100025390 Integrin beta-2 Human genes 0.000 description 1
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 1
- 102100037850 Interferon gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 1
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 208000029523 Interstitial Lung disease Diseases 0.000 description 1
- 208000003456 Juvenile Arthritis Diseases 0.000 description 1
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 1
- 208000009319 Keratoconjunctivitis Sicca Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 241000222732 Leishmania major Species 0.000 description 1
- 206010024229 Leprosy Diseases 0.000 description 1
- 102100039564 Leukosialin Human genes 0.000 description 1
- 241000209082 Lolium Species 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 102100022742 Lupus La protein Human genes 0.000 description 1
- 102000009151 Luteinizing Hormone Human genes 0.000 description 1
- 108010073521 Luteinizing Hormone Proteins 0.000 description 1
- 208000016604 Lyme disease Diseases 0.000 description 1
- 102100030984 Lymphocyte function-associated antigen 3 Human genes 0.000 description 1
- 241000282553 Macaca Species 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 208000032271 Malignant tumor of penis Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000025205 Mantle-Cell Lymphoma Diseases 0.000 description 1
- 108010057081 Merozoite Surface Protein 1 Proteins 0.000 description 1
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 1
- 102100034263 Mucin-2 Human genes 0.000 description 1
- 108010008705 Mucin-2 Proteins 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 102000047918 Myelin Basic Human genes 0.000 description 1
- 102000055324 Myelin Proteolipid Human genes 0.000 description 1
- 101710107068 Myelin basic protein Proteins 0.000 description 1
- 101710094913 Myelin proteolipid protein Proteins 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 1
- 241000588650 Neisseria meningitidis Species 0.000 description 1
- 241000244206 Nematoda Species 0.000 description 1
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 101100494726 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) pep-4 gene Proteins 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 241000713112 Orthobunyavirus Species 0.000 description 1
- 241000150452 Orthohantavirus Species 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 102000036673 PRAME Human genes 0.000 description 1
- 108060006580 PRAME Proteins 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 208000002471 Penile Neoplasms Diseases 0.000 description 1
- 206010034299 Penile cancer Diseases 0.000 description 1
- 108010088535 Pep-1 peptide Proteins 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 108010081690 Pertussis Toxin Proteins 0.000 description 1
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 1
- 101710183389 Pneumolysin Proteins 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 206010065159 Polychondritis Diseases 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 1
- 206010036774 Proctitis Diseases 0.000 description 1
- 102000003946 Prolactin Human genes 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 101710194807 Protective antigen Proteins 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 101710192141 Protein Nef Proteins 0.000 description 1
- 241000125945 Protoparvovirus Species 0.000 description 1
- 101000762949 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Exotoxin A Proteins 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 1
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 239000012979 RPMI medium Substances 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 241000702263 Reovirus sp. Species 0.000 description 1
- 108010073443 Ribi adjuvant Proteins 0.000 description 1
- 108010081734 Ribonucleoproteins Proteins 0.000 description 1
- 102000004389 Ribonucleoproteins Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000606651 Rickettsiales Species 0.000 description 1
- 241000702670 Rotavirus Species 0.000 description 1
- 241000710799 Rubella virus Species 0.000 description 1
- 241000193448 Ruminiclostridium thermocellum Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 208000009966 Sensorineural Hearing Loss Diseases 0.000 description 1
- 241000607768 Shigella Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 101001039853 Sonchus yellow net virus Matrix protein Proteins 0.000 description 1
- 206010042033 Stevens-Johnson syndrome Diseases 0.000 description 1
- 231100000168 Stevens-Johnson syndrome Toxicity 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 101710137302 Surface antigen S Proteins 0.000 description 1
- 108010002687 Survivin Proteins 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 1
- 102100025237 T-cell surface antigen CD2 Human genes 0.000 description 1
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 108010055044 Tetanus Toxin Proteins 0.000 description 1
- 108010034949 Thyroglobulin Proteins 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 241000130764 Tinea Species 0.000 description 1
- 208000002474 Tinea Diseases 0.000 description 1
- 241000223996 Toxoplasma Species 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 102000005937 Tropomyosin Human genes 0.000 description 1
- 108010030743 Tropomyosin Proteins 0.000 description 1
- 241000223109 Trypanosoma cruzi Species 0.000 description 1
- 208000034784 Tularaemia Diseases 0.000 description 1
- 206010070517 Type 2 lepra reaction Diseases 0.000 description 1
- 241001467018 Typhis Species 0.000 description 1
- 102100039094 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 206010046914 Vaginal infection Diseases 0.000 description 1
- 201000008100 Vaginitis Diseases 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- 108010059722 Viral Fusion Proteins Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 241000710886 West Nile virus Species 0.000 description 1
- 101100273808 Xenopus laevis cdk1-b gene Proteins 0.000 description 1
- 208000003152 Yellow Fever Diseases 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 108060000200 adenylate cyclase Proteins 0.000 description 1
- 102000030621 adenylate cyclase Human genes 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 229960004784 allergens Drugs 0.000 description 1
- 201000009961 allergic asthma Diseases 0.000 description 1
- 208000004631 alopecia areata Diseases 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 229940038444 antibody-based vaccine Drugs 0.000 description 1
- 230000008349 antigen-specific humoral response Effects 0.000 description 1
- 238000002617 apheresis Methods 0.000 description 1
- 208000002399 aphthous stomatitis Diseases 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 230000006472 autoimmune response Effects 0.000 description 1
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 1
- 201000004982 autoimmune uveitis Diseases 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 210000003445 biliary tract Anatomy 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 208000020670 canker sore Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 208000019069 chronic childhood arthritis Diseases 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000006957 competitive inhibition Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000000205 computational method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 208000004921 cutaneous lupus erythematosus Diseases 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 108010025838 dectin 1 Proteins 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 208000025729 dengue disease Diseases 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 108700004025 env Genes Proteins 0.000 description 1
- 239000006167 equilibration buffer Substances 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 108700004026 gag Genes Proteins 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 210000000973 gametocyte Anatomy 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000004554 glutamine Nutrition 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 108010072094 gp100(280-288) melanoma antigen peptide Proteins 0.000 description 1
- 229940046528 grass pollen Drugs 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 229940037467 helicobacter pylori Drugs 0.000 description 1
- 244000000013 helminth Species 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 230000005745 host immune response Effects 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 208000037797 influenza A Diseases 0.000 description 1
- 239000003978 infusion fluid Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 201000004614 iritis Diseases 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 206010023332 keratitis Diseases 0.000 description 1
- 201000010666 keratoconjunctivitis Diseases 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 201000011486 lichen planus Diseases 0.000 description 1
- 210000000088 lip Anatomy 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 229940040129 luteinizing hormone Drugs 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 239000012516 mab select resin Substances 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 239000012577 media supplement Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 229940051875 mucins Drugs 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 210000001989 nasopharynx Anatomy 0.000 description 1
- 230000002956 necrotizing effect Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 238000012510 peptide mapping method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 108010021711 pertactin Proteins 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 108010031345 placental alkaline phosphatase Proteins 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 108700004029 pol Genes Proteins 0.000 description 1
- 229920001992 poloxamer 407 Polymers 0.000 description 1
- 229940044476 poloxamer 407 Drugs 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 229940023143 protein vaccine Drugs 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000012205 qualitative assay Methods 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 239000009342 ragweed pollen Substances 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 231100000879 sensorineural hearing loss Toxicity 0.000 description 1
- 208000023573 sensorineural hearing loss disease Diseases 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000003046 sporozoite Anatomy 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000012134 supernatant fraction Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 229940118376 tetanus toxin Drugs 0.000 description 1
- 229960000814 tetanus toxoid Drugs 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 231100000402 unacceptable toxicity Toxicity 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 229940125575 vaccine candidate Drugs 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 208000020416 vascular bone neoplasm Diseases 0.000 description 1
- 201000011531 vascular cancer Diseases 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
- 201000001862 viral hepatitis Diseases 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2878—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/04—Antipruritics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/14—Drugs for dermatological disorders for baldness or alopecia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/16—Otologicals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/14—Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
- A61K2039/6056—Antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/54—F(ab')2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/626—Diabody or triabody
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/74—Inducing cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/80—Immunoglobulins specific features remaining in the (producing) cell, i.e. intracellular antibodies or intrabodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16211—Human Immunodeficiency Virus, HIV concerning HIV gagpol
- C12N2740/16222—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16311—Human Immunodeficiency Virus, HIV concerning HIV regulatory proteins
- C12N2740/16322—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates in general to the field of immunization, and more particularly, to novel anti- CD40 antibodies and anti-CD40 antibody-based vaccines.
- the vaccine may comprise antigen(s) linked to a domain that binds at least one receptor or a DNA plasmid encoding antigen(s) linked to a domain that binds at least one receptor.
- a preferred embodiment of the invention targets HIV- 1 env antigen to the CD40 receptor, resulting in delivery of antigen to CD40 positive cells, and selective activation of the CD40 receptor on cells presenting HIV-I env antigens to T cells.
- Another example is found in United States Patent Application No. 20080254026, filed by Li, et al., for antagonist anti-CD40 monoclonal antibodies and methods for their use.
- compositions and methods for use in therapy for treating diseases mediated by stimulation of CD40 signaling on CD40- expressing cells are provided.
- the methods comprise administering a therapeutically effective amount of an antagonist anti-CD40 antibody or antigen-binding fragment thereof to a patient in need thereof.
- the antagonist anti-CD40 antibody or antigen-binding fragment thereof is free of significant agonist activity, but exhibits antagonist activity when the antibody binds a CD40 antigen on a human CD40-expressing cell.
- Antagonist activity of the anti-CD40 antibody or antigen-binding fragment thereof beneficially inhibits proliferation and/or differentiation of human CD40-expressing cells, such as B cells.
- United States Patent Application No. 20080199471 filed by Bernett, et al., is directed to optimized CD40 antibodies and methods of using the same. Briefly, this application is said to teach antibodies that target CD40, wherein the antibodies comprise at least one modification relative to a parent antibody, wherein the modification alters affinity to an Fc ⁇ R or alters effector function as compared to the parent antibody. Also disclosed are methods of using the antibodies of the invention. Finally, United States Patent Application No. 20080181915, file by Tripp, et al., is directed to a CD40 ligand adjuvant for respiratory syncytial virus.
- this application is said to teach methods and adjuvants for enhancing an immune response to RSV in a host, wherein the methods and adjuvants comprise a source of a CD40 binding protein.
- the CD40 binding protein is CD40L and the source is a vector comprising a promoter operatively linked to a CD40L coding region.
- the enhanced immune response produced by the adjuvants and methods of the current invention includes both increased expression of ThI cytokines and increased production of antibody.
- the present invention is a recombinant antibody or an antigen binding fragment thereof, both of which bind to CD40, comprising: at least one antibody light chain variable region of SEQ ID NOS: 2, 4, 5 or 7; and at least one antibody heavy chain variable region of SEQ ID NOS: 1, 3 or 7.
- the antibody further comprises a heavy chain constant region, wherein the heavy chain constant region comprises a gamma- 1, gamma-2, gamma-3, or gamma-4 human heavy chain constant region or a variant of the human heavy chain constant region.
- the antibody further comprises a light chain constant region, wherein the light chain constant region comprises a lambda or a kappa human light chain constant region.
- the binding fragment is selected from group consisting of Fab, Fab 1 , Fab'-SH, Fv, scFv, F(ab')2, and a diabody.
- the antibody comprises the polypeptide sequence of SEQ ID NOS: 1, 3 or 6, and/or the antibody comprises the polypeptide sequence of SEQ ID NOS: 2, 4, 5, or 7.
- the antibody is produced by a hybridoma anti-CD40_12E12.3F3 (ATCC Accession No. PTA-9854), anti-CD40_12B4.2C10 (Deposit submission No. HS446, ATCC Accession No. ), and anti-
- the antibody alone is capable of causing dendritic cells to secrete at least one of IL-6, MIP-Ia, IL- 12p40 or TNFalpha without prior activation of the dendritic cells.
- the antibody is capable of causing dendritic cells activated with GM-CSF and Interferon alpha to secrete at least one of IL-6, MIP-Ia, IP-IO, IL- 10 or IL-12p40.
- the recombinant antibody comprises at least 90, 95, 99 or 100% sequence identity with at least one antibody light chain variable region of SEQ ID NOS: 2, 4, 5 or 7; and at least one antibody heavy chain variable region of SEQ ID NOS: 1, 3 or 7.
- the antibody is humanized.
- Another embodiment of the present invention is a composition comprising an antibody or an antigen binding fragment thereof, in combination with a pharmaceutically acceptable carrier or diluent, wherein the antibody is the antibody of claim 1.
- Another embodiment of the present invention is a humanized recombinant antibody or an antigen binding fragment thereof, both of which bind to CD40, comprising: a) at least one antibody light chain variable region of SEQ ID NOS.: 2, 4, 5 or 7; and b) at least one antibody heavy chain variable region of SEQ ID NOS.: 1, 3 or 7.
- the antibody further comprises a heavy chain constant region, wherein the heavy chain constant region comprises a gamma- 1, gamma-2, gamma-3, or gamma-4 human heavy chain constant region or a variant of the human heavy chain constant region.
- the antibody further comprises a light chain constant region, wherein the light chain constant region comprises a lambda or a kappa human light chain constant region.
- the binding fragment is selected from group consisting of Fab, Fab', Fab'-SH, Fv, scFv, F(ab')2, and a diabody.
- the antibody, or antigen binding fragment thereof comprises the polypeptide sequence of SEQ ID NOS.: 1, 3 or 6, and/or the polypeptide sequence of SEQ ID NOS.: 2, 4, 5, or 7.
- the antibody comprises at least the variable region of anti-CD40_12E12.3F3 (ATCC Accession No. PTA-9854), anti-CD40_12B4.2C10 (Deposit submission No. HS446, ATCC Accession No. ), and anti-CD40 11B6.1C3 (Deposit
- the humanized antibody comprises the complementarity determining regions of: a) at least one antibody light chain variable region of SEQ ID NOS: 2, 4, 5 or 7; and b) at least one antibody heavy chain variable region of SEQ ID NOS: 1, 3 or 7 on a human antibody framework.
- Another embodiment of the present invention is a composition comprising an antibody or an antigen binding fragment thereof, in combination with a pharmaceutically acceptable carrier or diluent, wherein the antibody is the antibody of claim a recombinant antibody or an antigen binding fragment thereof, both of which bind to CD40, comprising: at least one antibody light chain variable region of SEQ ID NO.: 2, 4, 5 or 7; and at least one antibody heavy chain variable region of SEQ ID NO.: 1, 3 or 7.
- the antibody comprises at least the variable region of the antibody anti-CD40_12E12.3F3 (ATCC Accession No. PTA- 9854), anti-CD40_12B4.2C10 (ATCC submission No. HS446, Accession No. ), and anti-
- the antibody comprises at least one variable domain having 90, 95 99 or 100% sequence identity with a heavy chain variable domain of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS.: 2, 4, 5, or 7.
- nucleic acids further comprise nucleic acid sequences from human antibodies that humanize the antibody.
- the antibody comprises at least one variable domain having 90, 95 99 or 100% sequence identity with a heavy chain variable domain of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS.: 2, 4, 5, or 7.
- Another embodiment of the present invention is an expression vector comprising the isolated nucleic acid encoding the polypeptide of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 2, 4, 5, or 7, operably linked to control sequences recognized by a host cell transfected with the vector.
- the antibody comprises at least one variable domain having 90, 95 99 or 100% sequence identity with a heavy chain variable domain of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS.: 2, 4, 5, or 7.
- Another embodiment of the present invention is a host cell comprising the vector that encodes the isolated nucleic acid encoding the polypeptide of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 2, 4, 5, or 7.
- the antibody comprises at least one variable domain having 90, 95 99 or 100% sequence identity with a heavy chain variable domain of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS.: 2, 4, 5, or 7.
- Another embodiment of the present is a method of producing a polypeptide, comprising culturing the host cell comprising isolated nucleic acid encoding the polypeptide of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NO
- the antibody comprises at least one variable domain having 90, 95 99 or 100% sequence identity with a heavy chain variable domain of
- Another embodiment of the present invention is an expression vector comprising the isolated nucleic acid encoding the polypeptide of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 2, 4, 5, or 7, operably linked to control sequences recognized by a host cell transfected with the vector.
- the antibody comprises at least one variable domain having 90, 95 99 or 100% sequence identity with a heavy chain variable domain of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS.: 2, 4, 5, or 7.
- Another embodiment of the present invention is a method of producing a polypeptide, comprising culturing the host cell comprising a vector that comprises isolated nucleic acid encoding the polypeptide of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS: 2, 4, 5, or 7, under conditions wherein the nucleic acid sequence is expressed, thereby producing the polypeptide, and recovering the polypeptide from the host cell.
- Another embodiment of the present invention is an isolated nucleic acid sequence encoding an antibody specific for CD40 comprising a light chain having the nucleic acid sequence of SEQ ID NO: 9, 11, 12 or 14 and a heavy chain having the nucleic acid sequence of SEQ ID NO: 8, 10 or 13.
- the binding fragment is an antibody fragment selected from the group consisting of Fab, Fab', Fab'- SH, Fv, scFv, F(ab')2, and a diabody.
- the antibody comprises at least one variable domain having 90, 95 99 or 100% sequence identity with a heavy chain variable domain of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS.: 2, 4, 5, or 7.
- Another embodiment of the present invention is a method to identify an acceptor germline sequence for a humanized antibody, which method comprises the steps of: a) identifying a non-human antibody that has the desired biological activity selected from at least one antibody light chain variable region of SEQ ID NO: 2, 4, 5 or 7; and at least one antibody heavy chain variable region of SEQ ID NO: 1, 3 or 7; b) determining the amino acid sequence of a non-human antibody VH and VL domains; and c) comparing the nonhuman antibody sequence to a group of human germline sequences, wherein the comparison comprises the substeps of: 1) assigning the sequence of non-human VH and VL domain sequences residue numbers; 2) delineating the CDR and FR regions in the sequence; 3) assigning a predetermined numerical score at each residue position for which the non-human and human germline sequences are identical; and 4) totaling all of the residue scores to generate a total score for each human germline sequence; and d) identifying the human germline sequence with the highest total residue score as the
- the non-human antibody is specific for CD40.
- the antibody comprises at least one variable domain having 90, 95 99 or 100% sequence identity with a heavy chain variable domain of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS.: 2, 4, 5, or 7.
- Another embodiment of the present invention is an antibody generated by the method comprising a) identifying a non-human antibody that has the desired biological activity selected from at least one antibody light chain variable region of SEQ ID NO: 2, 4, 5 or 7; and at least one antibody heavy chain variable region of SEQ ID NO: 1, 3 or 7; b) determining the amino acid sequence of a non-human antibody VH and VL domains; and c) comparing the nonhuman antibody sequence to a group of human germline sequences, wherein the comparison comprises the substeps of: 1) assigning the sequence of non-human VH and VL domain sequences residue numbers; 2) delineating the CDR and FR regions in the sequence; 3) assigning a predetermined numerical score at each residue position for which the non-human and human germline sequences are identical; and 4) totaling all of the residue scores to generate a total score for each human germline sequence; and d) identifying the human germline sequence with the highest total residue score as the acceptor germline sequence.
- the non-human antibody is specific for CD40.
- the antibody comprises at least one variable domain having 90, 95 99 or 100% sequence identity with a heavy chain variable domain of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS.: 2, 4, 5, or 7.
- Another embodiment of the present invention is a method of making an antibody comprising expressing in a host cell a recombinant antibody or an antigen binding fragment thereof, both of which bind to CD40, comprising: at least one antibody light chain variable region of SEQ ID NO: 2, 4, 5 or 7; and at least one antibody heavy chain variable region of SEQ ID NO: 1, 3 or 7.
- the host cell is a bacterial, fungal, insect, or mammalian cell.
- the antibody is a humanized antibody.
- the antibody comprises at least one variable domain having 90, 95 99 or 100% sequence identity with a heavy chain variable domain of SEQ ID NOS: 1, 3 or 6, and/or SEQ ID NOS.: 2, 4, 5, or 7.
- Another embodiment of the present invention is a recombinant antibody or an antigen binding fragment thereof that binds to CD40, wherein the antibody alone is capable of causing dendritic cells to secrete at least one of IL-6, MIP-Ia, IL-12p40 or TNFalpha without prior activation of the dendritic cells.
- the antibody comprises at least one variable domain having 90% sequence identity with at least one antibody light chain variable region of SEQ ID NOS: 2, 4, 5 or 7; and at least one variable domain having 90% sequence identity with one antibody heavy chain variable region of SEQ ID NOS: 1, 3 or 7.
- the antibody comprises the polypeptide sequence of SEQ ID NOS: 1, 3 or 6, the polypeptide sequence of SEQ ID NOS: 2, 4, 5, or 7, or both.
- the antibody is produced by a hybridoma selected from anti-CD40_12E12.3F3 (ATCC Accession No. PTA-9854), anti-CD40_12B4.2C10 (ATCC submission
- the antibody is humanized.
- the antibody is capable of causing dendritic cells activated with GM-CSF and Interferon alpha to secrete at least one of IL-6, MIP-Ia, IP-IO, IL-IO or IL-12p40.
- the antibody the antibody alone is capable of causing B cell proliferation of at least 10%, 20%, 25%, 28%, 30% or 35%.
- Another embodiment of the present invention is a recombinant antibody or an antigen binding fragment thereof that binds to CD40, wherein the antibody alone is capable of causing B cell proliferation of at least 10% of the B cells.
- the percentage of B cells that proliferate is at least 15%, 20%, 25%, 28%, 30% or 35%.
- the antibody comprises at least one variable domain having 90% sequence identity with at least one antibody light chain variable region of SEQ ID NOS: 2, 4, 5 or 7; and at least one variable domain having 90% sequence identity with one antibody heavy chain variable region of SEQ ID NOS: 1, 3 or 7.
- the antibody comprises the polypeptide sequence of SEQ ID NOS: 1, 3 or 6, the polypeptide sequence of SEQ ID NOS: 2, 4, 5, or 7, or both.
- the antibody is produced by a hybridoma selected from anti-CD40_12E12.3F3 (ATCC Accession No. PTA-9854), anti-
- CD40 12B4.2C10 (ATCC submission No. HS446, Accession No. ), and anti-CD40 11B6.1C3
- the antibody is humanized.
- antibody alone is capable of causing dendritic cells to secrete at least one of IL-6, MIP-Ia, IL- 12p40 or TNFalpha without prior activation of the dendritic cells.
- the antibody is capable of causing dendritic cells activated with GM-CSF and Interferon alpha to secrete at least one of IL-6, MIP- Ia, IP-IO, IL-IO or IL-12p40.
- Fig. 1 shows protein A affinity recombinant antibodies fused to various HIV peptides (lanes 1 to 5) secreted from transfected 293F cells, analyzed by reducing SDS-PAGE and Coomassie Brilliant Blue staining.
- Fig. 2 shows protein A affinity purified recombinant antibodies fused to various HIV peptides (Lanes 1 and 2) secreted from transfected 293F cells, then analyzed by reducing SDS-PAGE and Coomassie Brilliant Blue staining.
- Fig. 3 shows protein A affinity purified recombinant antibodies fused to various HIV peptide strings (Lanes 1 to 5) secreted from transfected 293F cells, then analyzed by reducing SDS.PAGE and Coomassie Brilliant Blue staining.
- Fig. 4 shows protein A affinity purified recombinant antibodies fused to various HIV peptide strings (Lanes 1 to 6) secreted from transfected 293F cells, then analyzed by reducing SDS.PAGE and Coomassie Brilliant Blue staining.
- Fig. 5 describes the protocol used in vitro to assay the potency of ⁇ CD40.LIPO5 HIV peptide fusion recombinant antibody ( ⁇ CD40.LIPO5 rAb) to elicit the expansion of antigen-specific T cells in the context of a PBMC culture.
- Fig. 6A-C shows HIV peptide-specific IFN ⁇ production in PBMCs from HIV patients incubated with various concentrations of anti-CD40.LIPO5 peptide string vaccine.
- C is the control group, which received no vaccine, and defines the baseline response of the culture to each peptide.
- Fig. 7 is a summary of ⁇ CD40.LIPO5 peptide vaccine responses against the 5 peptide regions from 8 HIV patients.
- Fig. 8A-C shows that the ⁇ CD40.LIPO5 HIV peptide vaccine elicits expansion of HIV peptide-specific T cells capable of secreting multiple cytokines - a desirable feature in a vaccine.
- Fig. 8A-C also shows that the ⁇ CD40.LIPO5 HIV peptide vaccine elicits gag253, nef66, nefl l ⁇ and pol325 peptide-specific responses characterized by production of multiple cytokines (patient A5).
- Fig. 9 shows the protocol for testing ⁇ CD40.LIPO5 HIV peptide vaccine for its ability to direct the expansion of antigen-specific T cells resulting from targeted uptake by DCs and presentation of peptide epitopes on their surface MHC complex.
- Fig. 1 OA-B shows the cytokine secretion in response to HIV peptides from DC-T cell co-cultures treated with various doses of ⁇ CD40.LIPO5 HIV peptide vaccine (patient AlO).
- Fig. HA-B shows PBMCs from patient A4 treated with the ⁇ CD40.LIPO5 HIV peptide vaccine elicit expansion of antigen-specific T cells with specificity to the gag253 region, but not to the flexible linker sequences.
- Fig. 12A is the ⁇ CD40.LIPO5 HIV peptide vaccine heavy chain sequence showing flexible linker regions in bold, joining sequences underlined and HIV peptide regions shaded in grey.
- Fig. 12A shows PBMCs from patient A3 treated with the ⁇ CD40.LIPO5 HIV peptide vaccine elicit expansion of antigen-specific T cells with specificities to the gag253, nef66, and nefl l ⁇ regions, but not to the flexible linker sequences.
- Fig. 12B-1 and B-2 shows HIV antigen-specific T cell responses evoked from HIV patient A17 PBMCs incubated with 30 nM of three different HIV5 peptide DC targeting vaccines.
- FIG. 12C-1 and C-2 is a similar study to that show in Fig. 12B-1 and B-2, except that the PBMCs are from a different HIV patient (A2).
- Fig. 12D shows 15 different HIV peptide responses [5 peptide regions sampled in 3 patients], it was found that the anti-CD40.HIV5pep vaccine was superior to anti-DCIR.HIV5pep, anti-LOX-l.HIV5pep and non-LIPO5 mix for eliciting a broad range of HIV peptide-specific CD8+ and CD4+ T responses.
- Fig. 13 shows the internalization of anti-CD40 mAb:IL-4DC.
- IL-4DCs were treated with 500 ng/ml of anti- CD40-Alexa 568.
- Fig. 14 shows CD4 and CD8 T cell proliferation by DCs targeted with anti-CD40-HAl.
- 5xl ⁇ e3 IFNDCs loaded with 2 ug/ml of anti-CD40-HA or control Ig-HAl were co-cultured with CFSE-labeled autologous CD4+ or CD8+ T cells (2x10e5) for 7 days. Cells were then then stained with anti-CD4 or anti-CD8 antibodies. Cell proliferation was tested by measuring CFSE-dilution.
- Fig. 15 shows a titration of HAl fusion protein on CD4+ T proliferation.
- IFNDCs (5K) loaded with fusion proteins were co-cultured with CFSE-labeled CD4+ T cells (200K) for 7 days.
- Fig. 16 shows IFNDCs targeted with anti-CD40-HAl activate HAl -specific CD4+ T cells.
- CD4+ T cells were re-stimulated with DCs loaded with 5 uM of indicated peptides, and then intracellular IFN ⁇ was stained.
- Fig. 17 shows IFNDCs targeted with anti-CD40-HAl activate HAl -specific CD4+ T cells.
- CD4+ T cells were re-stimulated with DCs loaded with indicated peptides for 36h, and then culture supernatant was analyzed for measuring IFN ⁇ .
- Fig. 18 shows that targeting CD40 results in enhanced cross-priming of MART-I specific CD8+ T cells.
- IFNDCs (5K/well) loaded with fusion proteins were co-cultured with purified CD8+ T cells for 10 days. Cells were stained with anti-CD8 and tetramer. Cells are from healthy donors (HLA-A*0201+).
- Fig. 19 shows targeting CD40 results in enhanced cross-priming of MART-I specific CD 8+ T cells (Summary of 8-repeated experiments using cells from different healthy donors).
- Fig. 18 shows that targeting CD40 results in enhanced cross-priming of MART-I specific CD 8+ T cells.
- CD8+ CTL induced with IFNDCs targeted with anti-CD40-MART-l are functional.
- CD8+ T cells co-cultured with IFNDCs targeted with fusion proteins were mixed with T2 cells loaded with 10 uM peptide epitope.
- Fig. 21 shows CD8+ CTL induced with IFNDCs targeted with anti-CD40-Flu Ml are functional.
- CD8+ T cells co-cultured with IFNDCs targeted with fusion proteins were mixed with T2 cells loaded with 1.0 nM peptide epitope.
- Fig. 22 shows an outline of protocol to test the ability a vaccine composed of anti-CD4012E12 linked to PSA (prostate specific antigen) to elicit the expansion from a na ⁇ ve T cell population.
- PSA-specific CD4+ T cells corresponding to a broad array of PSA epitopes. Briefly, DCs derived by culture with IFN ⁇ and GM-CSF of monocytes from a healthy donor are incubated with the vaccine. The next day, cells are placed in fresh medium and pure CD4+ T cells from the same donor are added. Several days later, PSA peptides are added and, after four hours, secreted gamma-IFN levels in the culture supernatants are determined. Fig.
- Fig. 24 shows DCs targeted with anti-CD40-PSA induce PSA-specific CD8+ T cell responses.
- IFNDCs were targeted with 1 ug mAb fusion protein with PSA.
- Purified autologous CD8+ T cells were co-cultured for 10 days.
- Cells were stained with anti-CD8 and PSA (KLQCVDLHV)-tetramer.
- Cells are from a HLA-A*0201 positive healthy donor. The results demonstrate that anti-CD40 effectively deliver PSA to the DCs, which in turn elicit the expansion of PSA-specific CD8+ T cells.
- Fig. 25 a scheme (left) and the IFN ⁇ production by T cells of the pools of peptides and control for Donor 2.
- 5x10e3 IFNDCs loaded with 2 ug/ml of anti-CD40-Cyclin Dl were co-cultured with purified autologous CD4+ T cells (2x10e5) for 8 days. Cells were then re-stimulated with with 5 uM of individual peptides derived from CyclinDl for 5h in the presence of Brefeldin A. Cells were stained for measuring intracellular IFN ⁇ expression.
- Fig. 26 shows a peptide scan and IFN ⁇ production by T cells obtained from the pools of peptides shown in Fig. 25 and control for Donor 2.
- 5x10e3 IFNDCs loaded with 2 ug/ml of anti-CD40-Cyclin Dl were co- cultured with purified autologous CD4+ T cells (2x10e5) for 8 days. Cells were then re-stimulated with 5 uM of individual peptides derived from CyclinDl for 5h in the presence of Brefeldin A. Cells were stained for measuring intracellular IFN ⁇ expression.
- Fig. 27 shows the expression and construct design for anti-CD40-MART-l peptide antibodies.
- Fig. 28 is a summary of the CD4 + and CD8 + immunodominant epitopes for MART-I.
- Fig. 29 shows the expression and construct design for anti-CD40-gpl00 peptide antibodies.
- Fig. 30 shows the design for additional anti-CD40-gpl00 peptide antibodies.
- Fig. 31 shows the expression and construct design for additional anti-CD40-gpl00 peptide antibodies.
- Fig. 32 is a summary of the CD4 + and CD8 + immunodominant epitopes for gplOO.
- Fig. 33 shows the expression and construct design for additional anti-CD40-gpl00 peptide antibodies.
- Fig. 34 shows the results obtained with the various antibodies using an assay that detects signaling via CD40 ligation - read out as cell death.
- Fig. 35 shows the binding of various constructs when the antibody has been made into a fusion protein with doc and then captures.
- Figs. 36 and 37 compare cytokine production with our without the addition of GM-CSF and IFNa (Fig. 36 A- D), and soluble antibodies alone (Fig. 37 A-D) incubated with the DCs for 24 hours.
- Figure 38A-B demonstrates the effect of various concentrations of anti-CD40 antibodies of the present invention on B cell proliferation.
- the terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.
- the invention includes also variants and other modification of an antibody (or "Ab") of fragments thereof, e.g., anti-CD40 fusion protein (antibody is used interchangeably with the term “immunoglobulin”).
- antibody is used interchangeably with the term “immunoglobulin”
- the term “antibodies or fragments thereof” includes whole antibodies or fragments of an antibody, e.g., Fv, Fab, Fab', F(ab') 2 , Fc, and single chain Fv fragments (ScFv) or any biologically effective fragments of an immunoglobulins that binds specifically to, e.g., CD40.
- Antibodies from human origin or humanized antibodies have lowered or no immunogenicity in humans and have a lower number or no immunogenic epitopes compared to non-human antibodies. Antibodies and their fragments will generally be selected to have a reduced level or no antigenicity in humans.
- the terms "Ag” or "antigen” refer to a substance capable of either binding to an antigen binding region of an immunoglobulin molecule or of eliciting an immune response, e.g., a T cell-mediated immune response by the presentation of the antigen on Major Histocompatibility Antigen (MHC) cellular proteins.
- MHC Major Histocompatibility Antigen
- antigen includes, but is not limited to, antigenic determinants, haptens, and immunogens which may be peptides, small molecules, carbohydrates, lipids, nucleic acids or combinations thereof.
- antigen refers to those portions of the antigen (e.g., a peptide fragment) that is a T cell epitope presented by MHC to the T cell receptor.
- the portion of the antigen that binds to the complementarity determining regions of the variable domains of the antibody (light and heavy) the bound portion may be a linear or three-dimensional epitope.
- the term antigen is used on both contexts, that is, the antibody is specific for a protein antigen (CD40), but also carries one or more peptide epitopes for presentation by MHC to T cells.
- the antigens delivered by the vaccine or fusion protein of the present invention are internalized and processed by antigen presenting cells prior to presentation, e.g., by cleavage of one or more portions of the antibody or fusion protein.
- antigenic peptide refers to that portion of a polypeptide antigen that is specifically recognized by either B-cells or T-cells.
- B-cells respond to foreign antigenic determinants via antibody production, whereas T-lymphocytes are the mediate cellular immunity.
- antigenic peptides are those parts of an antigen that are recognized by antibodies, or in the context of an MHC, by T-cell receptors.
- epitopic determinants refers to any protein determinant capable of specific binding to an immunoglobulin or of being presented by a Major Histocompatibility Complex (MHC) protein (e.g., Class I or Class II) to a T-cell receptor.
- MHC Major Histocompatibility Complex
- Epitopic determinants are generally short peptides 5-30 amino acids long that fit within the groove of the MHC molecule that presents certain amino acid side groups toward the T cell receptor and has certain other residues in the groove, e.g., due to specific charge characteristics of the groove, the peptide side groups and the T cell receptor.
- an antibody specifically binds to an antigen when the dissociation constant is 1 mM, 100 nM or even 10 nM.
- a vector is used in two different contexts.
- a vector is used to describe a non-antigenic portion that is used to direct or deliver the antigenic portion of the vaccine.
- an antibody or fragments thereof may be bound to or form a fusion protein with the antigen that elicits the immune response.
- the vector for delivery and/or presentation of the antigen is the antigen presenting cell, which is delivered by the cell that is loaded with antigen.
- the cellular vector itself may also process and present the antigen(s) to T cells and activate an antigen-specific immune response.
- a “vector” refers a construct, which is capable of delivering, and preferably expressing, one or more genes or polynucleotide sequences of interest in a host cell.
- vectors include, but are not limited to, viral vectors, naked DNA or RNA expression vectors, DNA or RNA expression vectors associated with cationic condensing agents, DNA or RNA expression vectors encapsulated in liposomes, and certain eukaryotic cells, such as producer cells.
- the terms “stable” and “unstable” when referring to proteins is used to describe a peptide or protein that maintains its three-dimensional structure and/or activity (stable) or that loses immediately or over time its three-dimensional structure and/or activity (unstable).
- the term “insoluble” refers to those proteins that when produced in a cell (e.g., a recombinant protein expressed in a eukaryotic or prokaryotic cell or in vitro) are not soluble in solution absent the use of denaturing conditions or agents (e.g., heat or chemical denaturants, respectively).
- the antibody or fragment thereof and the linkers taught herein have been found to convert antibody fusion proteins with the peptides from insoluble and/or unstable into proteins that are stable and/or soluble.
- Another example of stability versus instability is when the domain of the protein with a stable conformation has a higher melting temperature (T m ) than the unstable domain of the protein when measured in the same solution.
- T m melting temperature
- a domain is stable compared to another domain when the difference in the T m is at least about 2° C, more preferably about 4° C, still more preferably about 7° C, yet more preferably about 10° C, even more preferably about 15° C, still more preferably about 20° C, even still more preferably about 25° C, and most preferably about 30° C, when measured in the same solution.
- polynucleotide or “nucleic acid” refers to a strand of deoxyribonucleotides or ribonucleotides in either a single- or a double-stranded form (including known analogs of natural nucleotides).
- a double-stranded nucleic acid sequence will include the complementary sequence.
- the polynucleotide sequence may encode variable and/or constant region domains of immunoglobulin that are formed into a fusion protein with one or more linkers.
- multiple cloning sites may be engineered into the locations at the carboxy-terminal end of the heavy and/or light chains of the antibodies to allow for in-frame insertion of peptide for expression between the linkers.
- isolated polynucleotide refers to a polynucleotide of genomic, cDNA, or synthetic origin or some combination thereof.
- the "isolated polynucleotide” (1) is not associated with all or a portion of a polynucleotide in which the "isolated polynucleotides” are found in nature, (2) is operably linked to a polynucleotide which it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence.
- the skilled artisan will recognize that to design and implement a vector can be manipulated at the nucleic acid level by using techniques known in the art, such as those taught in Current Protocols in Molecular Biology, 2007 by John Wiley and Sons, relevant portions incorporated herein by reference.
- the encoding nucleic acid sequences can be inserted using polymerase chain reaction, enzymatic insertion of oligonucleotides or polymerase chain reaction fragments in a vector, which may be an expression vector.
- a multiple cloning site may be engineered in sequence with the antibody sequences.
- polypeptide refers to a polymer of amino acids and does not refer to a specific length of the product; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide. This term also does not refer to or exclude post expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like. Included within the definition are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, etc.), polypeptides with substituted linkages, as well as other modifications known in the art, both naturally occurring and non-naturally occurring.
- domain refers to that sequence of a polypeptide that folds into a single globular region in its native conformation, and that may exhibit discrete binding or functional properties.
- a polypeptide or amino acid sequence "derived from” a designated nucleic acid sequence refers to a polypeptide having an amino acid sequence identical to that of a polypeptide encoded in the sequence, or a portion thereof wherein the portion consists of at least 3-5 amino acids, preferably at least 4-7 amino acids, more preferably at least 8-10 amino acids, and even more preferably at least 11- 15 amino acids, or which is immunologically identifiable with a polypeptide encoded in the sequence.
- This terminology also includes a polypeptide expressed from a designated nucleic acid sequence.
- pharmaceutically acceptable carrier refers to any material that when combined with an immunoglobulin (Ig) fusion protein of the present invention allows the Ig to retain biological activity and is generally non-reactive with the subject's immune system.
- examples include, but are not limited to, standard pharmaceutical carriers such as a phosphate buffered saline solution, water, emulsions such as an oil/water emulsion, and various types of wetting agents.
- Certain diluents may be used with the present invention, e.g., for aerosol or parenteral administration, that may be phosphate buffered saline or normal (0.85%) saline.
- An antibody for use with the present invention comprises at least the variable region of anti- CD40J2E12.3F3 (ATCC Accession No. PTA-9854), anti-CD40_12B4.2C10 (Deposit No. HS446, ATCC Accession No. ), and anti-CD40_l 1B6.1C3 (Deposit No. HS440, ATCC Accession No. ).
- the invention provides an CD40 binding molecule comprising at least one immunoglobulin light chain variable domain (VL) which comprises in sequence hypervariable regions CDRlL, CDR2L and CDR3L, the CDRILhaving the amino acid sequence SASQGISNYLN (SEQ ID NO.:41) the CDR2L having the amino acid sequence YTSILHS (SEQ ID NO.:42) and the CDR3L having the amino acid sequence QQFNKLPPT (SEQ ID NO.:43) the amino acid sequences of which are shown in SEQ ID NO. 37; and direct equivalents thereof for the anti-CD40_l lB6.1C3, or the anti-CD40_12B4.2C10 antibodies.
- VL immunoglobulin light chain variable domain
- the invention provides an CD40 binding molecule which comprises an antigen binding site comprising at least one immunoglobulin heavy chain variable domain (VH) which comprises in sequence hypervariable regions CDRlH, CDR2H and CDR3H, the CDRlH having the amino acid sequence GFTFSDYYMY (SEQ ID NO.:44), the CDR2H having the amino acid sequence YINSGGGSTYYPDTVKG (SEQ ID NO.:45), and the CDR3H having the amino acid sequence RGLPFHAMDY (SEQ ID NO.:46), the amino acid sequences of which are shown in SEQ ID NO. 38; and direct equivalents thereof the anti- CD40 11B6.1C3, or the anti-CD40 12B4.2C10 antibodies.
- VH immunoglobulin heavy chain variable domain
- the invention provides a single domain CD40 binding molecule comprising an isolated immunoglobulin light chain comprising a heavy chain variable domain (VL) as defined above. In another aspect the invention provides a single domain CD40 binding molecule comprising an isolated immunoglobulin heavy chain comprising a heavy chain variable domain (VH) as defined above.
- the invention also provides an CD40 binding molecule comprising both heavy (VH) and light chain (VL) variable domains in which the CD40 binding molecule comprises at least one antigen binding site comprising: a) an immunoglobulin heavy chain variable domain (VL) which comprises in sequence hypervariable regions CDRlL, CDR2L and CDR3L, the CDRlL having the amino acid sequence SASQGISNYLN (SEQ ID NO.:41), the CDR2L having the amino acid sequence YTSILHS (SEQ ID NO.:42), and the CDR3L having the amino acid sequence QQFNKLPPT (SEQ ID NO.:43), the amino acid sequences of which are shown in SEQ ID. NO.
- VH immunoglobulin light chain variable domain
- any polypeptide chain is herein described as having an amino acid sequence starting at the N-terminal end and ending at the C-terminal end.
- the antigen binding site comprises both the VH and VL domains, these may be located on the same polypeptide molecule or, preferably, each domain may be on a different chain, the VH domain being part of an immunoglobulin heavy chain or fragment thereof and the VL being part of an immunoglobulin light chain or fragment thereof.
- CD40 binding molecule refers to any molecule capable of binding to the CD40 antigen either alone or associated with other molecules having one or more the V L and V H CDRs taught herein, in some cases 2, 3, 4, 5, or all 6 CDRs.
- the binding reaction may be shown by standard methods (qualitative assays) including, for example, a bioassay for determining by blocking the binding of other molecules to CD40 or any kind of binding or activity assays (e.g., activation, reduction or modulation of an immune response), with reference to a negative control test in which an antibody of unrelated specificity but of the same isotype, e.g., an anti-CD25 or anti-CD80 antibody, is used.
- the present invention may also be made into a single chain antibody having the variable domains of the heavy and light chains of an antibody covalently bound by a peptide linker usually including from 10 to 30 amino acids, preferably from 15 to 25 amino acids. Therefore, such a structure does not include the constant part of the heavy and light chains and it is believed that the small peptide spacer should be less antigenic than a whole constant part.
- a peptide linker usually including from 10 to 30 amino acids, preferably from 15 to 25 amino acids. Therefore, such a structure does not include the constant part of the heavy and light chains and it is believed that the small peptide spacer should be less antigenic than a whole constant part.
- the term "chimeric antibody” refers to an antibody in which the constant regions of heavy or light chains or both are of human origin while the variable domains of both heavy and light chains are of non-human (e.g., mouse, hamster or rat) origin or of human origin but derived from a different human antibody.
- CDR-grafted antibody refers to an antibody in which the hypervariable complementarity determining regions (CDRs) are derived from a donor antibody, such as a non- human (e.g., mouse) antibody or a different human antibody, while all or substantially all the other parts of the immunoglobulin (e.g., the conserved regions of the variable domains, i.e., framework regions), are derived from an acceptor antibody (in the case of a humanized antibody -an antibody of human origin).
- a CDR- grafted antibody may include a few amino acids of the donor sequence in the framework regions, for instance in the parts of the framework regions adjacent to the hypervariable regions.
- human antibody refers to an antibody in which the constant and variable regions of both the heavy and light chains are all of human origin, or substantially identical to sequences of human origin, not necessarily from the same antibody and includes antibodies produced by mice in which the mouse, hamster or rat immunoglobulin variable and constant part genes have been replaced by their human counterparts, e.g. as described in general terms in EP 0546073 Bl, U.S. Pat. No. 5,545,806, U.S. Pat. No. 5,569,825, U.S. Pat. No. 5,625,126, U.S. Pat. No. 5,633,425, U.S. Pat. No. 5,661,016, U.S. Pat. No.
- the CD40 binding molecule of the invention can be a humanized antibody that comprises the CDRs obtained from the anti-CD40_12E12.3F3, the anti-CD40_HB6.1C3, or the anti-CD40_12B4.2C10 antibodies.
- variable domains of both heavy and light chains are of human origin, for instance those variable domains of the anti-CD40_12E12.3F3 antibody that are part of SEQ ID NO.: 1 and SEQ ID NO.: 2, anti-CD40_12B4.2C10 in SEQ ID NO.: 3 and SEQ ID NO.: 4 or SEQ ID NO.: 5; and/or anti-CD40 11B6.1C3, SEQ ID NO.: 6 and SEQ ID NO.: 7, or combination thereof.
- the constant region domains preferably also comprise suitable human constant region domains, for instance as described in "Sequences of Proteins of Immunological Interest", Kabat E. A.
- Hypervariable regions may be associated with any kind of framework regions, e.g., of human origin. Suitable framework regions were described Kabat E. A.
- One heavy chain framework is a heavy chain framework, for instance that of anti-CD40_12E12.3F3 antibody that are part of SEQ ID NO.: 2; anti- CD40J2B4.2C10 - SEQ ID NO.: 4 or SEQ ID NO.: 5, and/or anti-CD40_HB6.1C3 - SEQ ID NO.: 7, or combination thereof, e.g., FR1 L , FR2 L , FR3 L and FR4 L regions.
- FIG. 1 shows the anti-CD40 12E12.3F3 (or the equivalents for anti-CD40 12B4.2C10 and anti-CD40 11B6.1C3, SEQ ID NOS.: 3 and 6, respectively) heavy chain framework that includes the sequence of FR1 H , FR2 H , FR3 H and FR4 H regions.
- the CDRs may be added to a human antibody framework, such as those described in 7,456,260, issued to Rybak, et al., which teach new human variable chain framework regions and humanized antibodies comprising the framework regions, relevant portions and framework sequences incorporated herein by reference.
- the present invention also includes the underlying nucleic acid sequences for the V L AND V H regions as well as the complete antibodies and the humanized versions thereof.
- the nucleic acid sequences of the present invention include SEQ ID NOS.: 8 and 9, which are the anti-CD40 antibody light and the heavy chains, respectively, as well as those nucleic acid sequences that include variable codon usage for the same amino acid sequences and conservative variations thereof having 85, 90, 95 or 100 % sequence identity at the nucleic or amino acid level.
- the CDRs may have 85, 90, 95 or 100 % sequence identity at the nucleic or amino acid level, individually, in groups or 2, 3, 4 or 5 or all together.
- Monoclonal antibodies raised against a protein naturally found in all humans are typically developed in a non-human system e.g. in mice, and as such are typically non-human proteins.
- a xenogenic antibody as produced by a hybridoma when administered to humans, elicits an undesirable immune response that is predominantly mediated by the constant part of the xenogenic immunoglobulin.
- Xenogeneic antibodies tend to elicit a host immune response, thereby limiting the use of such antibodies as they cannot be administered over a prolonged period of time. Therefore, it is particularly useful to use single chain, single domain, chimeric, CDR-grafted, or especially human antibodies that are not likely to elicit a substantial allogenic response when administered to humans.
- the present invention includes antibodies with minor changes in an amino acid sequence such as deletion, addition or substitution of one, a few or even several amino acids which are merely allelic forms of the original protein having substantially identical properties.
- the inhibition of the binding of CD40 to its receptor may be conveniently tested in various assays including such assays are described hereinafter in the text.
- the reference and the equivalent molecules exhibit, on a statistical basis, essentially identical CD40 binding inhibition curves in one of the assays referred to above.
- the assay used may be an assay of competitive inhibition of binding of CD40 by the binding molecules of the invention.
- the human anti-CD40 antibody comprises at least: (a) one light chain which comprises a variable domain having an amino acid sequence substantially identical to that shown in SEQ ID NO.: 1 starting with the amino acid at position 1 and ending with the amino acid at position 107 and the constant part of a human light chain; and (b) one heavy chain which comprises a variable domain having an amino acid sequence substantially identical to that shown in SEQ ID NO. 2 and the constant part of a human heavy chain.
- the constant part of a human heavy chain may be of the ⁇ l, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ , ⁇ 2, or ⁇ or ⁇ type, preferably of the ⁇ - type, whereas the constant part of a human light chain may be of the K or ⁇ type (which includes the ⁇ i, ⁇ 2 and ⁇ 3 subtypes) but is preferably of the K type.
- the amino acid sequences of the general locations of the variable and constant domains are well known in the art and generally follow the Kabat nomenclature.
- a CD40 binding molecule of the invention may be produced by recombinant DNA techniques. In view of this, one or more DNA molecules encoding the binding molecule must be constructed, placed under appropriate control sequences and transferred into a suitable host organism for expression.
- DNA molecules encoding a single domain CD40 binding molecule of the invention, a single chain CD40 binding molecule of the invention, a heavy or light chain or fragments thereof of a CD40 binding molecule of the invention are accordingly provided: (i) DNA molecules encoding a single domain CD40 binding molecule of the invention, a single chain CD40 binding molecule of the invention, a heavy or light chain or fragments thereof of a CD40 binding molecule of the invention; and (ii) the use of the DNA molecules of the invention for the production of a CD40 binding molecule of the invention by recombinant methods.
- a method for constructing a variable domain gene is for example described in EPA 239 400, relevant portions incorporated herein by reference. Briefly, a gene encoding a variable domain of a MAb is cloned. The DNA segments encoding the framework and hypervariable regions are determined and the DNA segments encoding the hypervariable regions are removed so that the DNA segments encoding the framework regions are fused together with suitable restriction sites at the junctions. The restriction sites may be generated at the appropriate positions by mutagenesis of the DNA molecule by standard procedures.
- Double stranded synthetic CDR cassettes are prepared by DNA synthesis according to the sequences given in SEQ ID NO.: 1 and 3 or 2 and 4 (amino acid and nucleic acid sequences, respectively). These cassettes are often provided with sticky ends so that they can be ligated at the junctions of the framework.
- PCT application WO 90/07861 gives full instructions for the production of an antibody by recombinant DNA techniques given only written information as to the nucleotide sequence of the gene, relevant portions incorporated herein by reference. Briefly, the method comprises the synthesis of a number of oligonucleotides, their amplification by the PCR method, and their splicing to give the desired DNA sequence.
- Expression vectors comprising a suitable promoter or genes encoding heavy and light chain constant parts are publicly available.
- DNA molecules of the invention may be conveniently transferred in an appropriate expression vector.
- DNA molecules encoding single chain antibodies may also be prepared by standard methods, for example, as described in WO 88/1649.
- no hybridoma or cell line deposit is necessary to comply with the criteria of sufficiency of description.
- first and second DNA constructs are made that bind specifically to CD40.
- a first DNA construct encodes a light chain or fragment thereof and comprises a) a first part which encodes a variable domain comprising alternatively framework and hypervariable regions, the hypervariable regions being in sequence CDR1 L , CDR2 L and CDR3 L the amino acid sequences of which are shown in SEQ ID NO.: 1; this first part starting with a codon encoding the first amino acid of the variable domain and ending with a codon encoding the last amino acid of the variable domain, and b) a second part encoding a light chain constant part or fragment thereof which starts with a codon encoding the first amino acid of the constant part of the heavy chain and ends with a codon encoding the last amino acid of the constant part or fragment thereof, followed by a stop codon.
- the first part encodes a variable domain having an amino acid sequence substantially identical to the amino acid sequence as shown in SEQ ID NO.: 1, 2, 3, 4, 5, 6 or 7.
- a second part encodes the constant part of a human heavy chain, more preferably the constant part of the human ⁇ l chain.
- This second part may be a DNA fragment of genomic origin (comprising introns) or a cDNA fragment (without introns).
- the second DNA construct encodes a heavy chain or fragment thereof and comprises a) a first part which encodes a variable domain comprising alternatively framework and hypervariable regions; the hypervariable regions being CDRl n and optionally CDR2 H and CDR3 H , the amino acid sequences of which are shown in SEQ ID NO. 2; this first part starting with a codon encoding the first amino acid of the variable domain and ending with a codon encoding the last amino acid of the variable domain, and b) a second part encoding a heavy chain constant part or fragment thereof which starts with a codon encoding the first amino acid of the constant part of the light chain and ends with a codon encoding the last amino acid of the constant part or fragment thereof followed by a stop codon.
- the first part encodes a variable domain having an amino acid sequence substantially identical to the amino acid sequence as shown in SEQ ID NO. 2.
- the first part has the nucleotide sequence as shown in SEQ ID NO. 2 starting with the nucleotide at position 1 and ending with the nucleotide at position 321.
- the second part encodes the constant part of a human light chain, more preferably the constant part of the human K chain.
- the invention also includes CD40 binding molecules in which one or more of the residues of CDR 1 L , CDR2 L , CDR3 L , CDRl n , CDR2 H or CDR3 H or the frameworks, typically only a few (e.g. FRl -4 L or H ), are changed from the residues shown in SEQ ID NO. 37 and SEQ ID NO. 38; by, e.g., site directed mutagenesis of the corresponding DNA sequences.
- the invention includes the DNA sequences coding for such changed CD40 binding molecules.
- the invention includes a CD40 binding molecules in which one or more residues of CDR1 L , CDR2 L and/or CDR3 L have been changed from the residues shown in SEQ ID NO. 37 and one or more residues of CDRl n , CDR2 H and/or CDR3 H have been changed from the residues shown in SEQ ID NO. 38, or the equivalents from SEQ ID NOS.: 1, 3 and 6.
- Each of the DNA constructs are placed under the control of suitable control sequences, in particular under the control of a suitable promoter.
- Any kind of promoter may be used, provided that it is adapted to the host organism in which the DNA constructs will be transferred for expression. However, if expression is to take place in a mammalian cell, an immunoglobulin gene promoter may be used in B cells.
- the first and second parts may be separated by an intron, and, an enhancer may be conveniently located in the intron between the first and second parts. The presence of such an enhancer that is transcribed but not translated, may assist in efficient transcription.
- the first and second DNA constructs comprise the enhancer of, e.g., a heavy chain human gene.
- the desired antibody may be produced in a cell culture or in a transgenic animal.
- a suitable transgenic animal may be obtained according to standard methods that include micro injecting into eggs the first and second DNA constructs placed under suitable control sequences transferring the so prepared eggs into appropriate pseudo -pregnant females and selecting a descendant expressing the desired antibody.
- the invention also provides an expression vector able to replicate in a prokaryotic or eukaryotic cell line, which comprises at least one of the DNA constructs above described. Each expression vector containing a DNA construct is then transferred into a suitable host organism. When the DNA constructs are separately inserted on two expression vectors, they may be transferred separately, i.e. one type of vector per cell, or co- transferred, this latter possibility being preferred.
- a suitable host organism may be a bacterium, a yeast or a mammalian cell line, this latter being preferred. More preferably, the mammalian cell line is of lymphoid origin, e.g., a myeloma, hybridoma or a normal immortalized B-cell, which conveniently does not express any endogenous antibody heavy or light chain.
- the mammalian cell line is of lymphoid origin, e.g., a myeloma, hybridoma or a normal immortalized B-cell, which conveniently does not express any endogenous antibody heavy or light chain.
- the DNA constructs When the antibody chains are produced in a cell culture, the DNA constructs must first be inserted into either a single expression vector or into two separate but compatible expression vectors, the latter possibility being preferred.
- the coding sequence of the CD40 binding molecule is integrated into the host cell DNA within a locus which permits or favors high level expression of the CD40 binding molecule.
- a process for the product of a CD40 binding molecule that comprises: (i) culturing an organism which is transformed with an expression vector as defined above; and (ii) recovering the CD40 binding molecule from the culture.
- the anti-CD40_12E12.3F3, anti- CD40 12B4.2C10 and/or anti-CD40 1 1B6.1C3 antibody appears to have binding specificity for human CD40. It is therefore most surprising that antibodies to this epitope, e.g. the anti-CD40_12E12.3F3, anti- CD40 12B4.2C10 and/or anti-CD40_l lB6.1C3 antibody, are capable of delivering antigen efficiently into dendritic cells (DCs).
- DCs dendritic cells
- Antibodies in particular chimeric and CDR-grafted antibodies and especially human antibodies, which have binding specificity for the antigenic epitope of mature human CD40; and use of such antibodies for DC antigen loading are novel and are included within the scope of the present invention.
- the appropriate dosage will, of course, vary depending upon, for example, the antibody disclosed herein to be employed, the host, the mode of administration and the nature and severity of the condition being treated. However, in prophylactic use, satisfactory results are generally found at dosages from about 0.05 mg to about 10 mg per kilogram body weight more usually from about 0.1 mg to about 5 mg per kilogram body weight.
- the frequency of dosing for prophylactic uses will normally be in the range from about once per week up to about once every 3 months, more usually in the range from about once every 2 weeks up to about once every 10 weeks, e.g., once every 4 to 8 weeks.
- the anti-CD40 antibody of the present can be administered parenterally, intravenously, e.g., into the antecubital or other peripheral vein, intramuscularly, or subcutaneously.
- Pharmaceutical compositions of the invention may be manufactured in conventional manner, e.g., in a lyophilized form. For immediate administration it is dissolved in a suitable aqueous carrier, for example sterile water for injection or sterile buffered physiological saline.
- an immunoconjugate comprising a humanized antibody of the invention, e.g., a humanized anti-CD40 antibody, linked to one or more effector molecules, antigen(s) and/or a detectable label(s).
- the effector molecule is a therapeutic molecule such as, for example, one or more peptides that comprise one or more T cell epitopes, a toxin, a small molecule, a cytokine or a chemokine, an enzyme, or a radiolabel.
- Exemplary toxins include, but are not limited to, Pseudomonas exotoxin or diphtheria toxin.
- Examples of small molecules include, but are not limited to, chemotherapeutic compounds such as taxol, doxorubicin, etoposide, and bleiomycin.
- Exemplary cytokines include, but are not limited to, IL-I, IL-2, IL-4, IL-5, IL-6, and IL- 12, IL- 17, and IL-25.
- Exemplary enzymes include, but are not limited to, RNAses, DNAses, proteases, kinases, and caspases.
- Exemplary radioisotopes include, but are not limited to, 32 P and 125 I.
- epitopes refers to a molecule or substance capable of stimulating an immune response.
- epitopes include but are not limited to a polypeptide and a nucleic acid encoding a polypeptide, wherein expression of the nucleic acid into a polypeptide is capable of stimulating an immune response when the polypeptide is processed and presented on a Major Histocompatibility Complex (MHC) molecule.
- MHC Major Histocompatibility Complex
- epitopes include peptides presented on the surface of cells non-covalently bound to the binding groove of Class I or Class II MHC, such that they can interact with T cell receptors and the respective T cell accessory molecules. Proteolytic Processing of Antigens.
- Epitopes that are displayed by MHC on antigen presenting cells are cleavage peptides or products of larger peptide or protein antigen precursors.
- protein antigens are often digested by proteasomes resident in the cell. Intracellular proteasomal digestion produces peptide fragments of about 3 to 23 amino acids in length that are then loaded onto the MHC protein. Additional proteolytic activities within the cell, or in the extracellular milieu, can trim and process these fragments further. Processing of MHC Class II epitopes generally occurs via intracellular proteases from the lysosomal/endosomal compartment.
- the present invention includes, in one embodiment, pre-processed peptides that are attached to the anti-CD40 antibody (or fragment thereof) that directs the peptides against which an enhanced immune response is sought directly to antigen presenting cells.
- the present invention includes methods for specifically identifying the epitopes within antigens most likely to lead to the immune response sought for the specific sources of antigen presenting cells and responder T cells.
- the present invention allows for a rapid and easy assay for the identification of those epitopes that are most likely to produce the desired immune response using the pateint's own antigen presenting cells and T cell repertoire.
- compositions and methods of the present invention are applicable to any protein sequence, allowing the user to identify the epitopes that are capable of binding to MHC and are properly presented to T cells that will respond to the antigen. Accordingly, the invention is not limited to any particular target or medical condition, but instead encompasses and MHC epitope(s) from any useful source.
- the term "veneered” refers to a humanized antibody framework onto which antigen-binding sites or CDRs obtained from non-human antibodies (e.g., mouse, rat or hamster), are placed into human heavy and light chain conserved structural framework regions (FRs), for example, in a light chain or heavy chain polynucleotide to "graft" the specificity of the non- human antibody into a human framework.
- the polynucleotide expression vector or vectors that express the veneered antibodies can be transfected mammalian cells for the expression of recombinant human antibodies which exhibit the antigen specificity of the non-human antibody and will undergo posttranslational modifications that will enhance their expression, stability, solubility, or combinations thereof. Antigens.
- retroviral antigens examples include, but are not limited to, e.g., HIV, HCV, CMV, adenoviruses, retroviruses, picornaviruses, etc.
- retroviral antigens such as retroviral antigens from the human immunodeficiency virus (HIV) antigens such as gene products of the gag, pol, and env genes, the Nef protein, reverse transcriptase, and other HIV components
- hepatitis viral antigens such as the S, M, and L proteins of hepatitis B virus, the pre-S antigen of hepatitis B virus, and other hepatitis, e.g., hepatitis A, B, and C, viral components such as hepatitis C viral RNA
- influenza viral antigens such as hemagglutinin and neuraminidase and other influenza viral components
- measles viral antigens such as the measles virus fusion protein and
- the at least one viral antigen may be peptides from an adenovirus, retrovirus, picornavirus, herpesvirus, rotaviruses, hantaviruses, coronavirus, togavirus, flavirvirus, rhabdovirus, paramyxovirus, orthomyxovirus, bunyavirus, arenavirus, reovirus, papilomavirus, parvovirus, poxvirus, hepadnavirus, or spongiform virus.
- the at least one viral antigen are peptides obtained from at least one of HIV, CMV, hepatitis A, B, and C, influenza, measles, polio, smallpox, rubella; respiratory syncytial, herpes simplex, varicella zoster, Epstein-Barr, Japanese encephalitis, rabies, flu, and/or cold viruses.
- the one or more of the antigenic peptides are selected from at least one of: Nef (66-97): VGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGL (SEQ ID NO.: 148); Nef (116-145): HTQGYFPDWQNYTPGPGVRYPLTFGWLYKL (SEQ ID NO.: 149); Gag pl7 (17-35): EKIRLRPGGKKKYKLKHIV (SEQ ID NO.: 150); Gag pl7-p24 (253-284): NPPIPVGEIYKRWIILGLNKIVRMYSPTSILD (SEQ ID NO.: 151); or Pol 325-355 (RT 158-188) is: AIFQSSMTKILEPFRKQNPDIVIYQYMDDLY (SEQ ID NO.: 152).
- the fusion protein peptides are separated by one or more linkers selected from: SSVSPTTSVHPTPTSVPPTPTKSSP (SEQ ID NO.: 11); PTSTP ADSSTITPTATPTATPTIKG (SEQ ID NO.: 12); TVTPTATATPSAIVTTITPTATTKP (SEQ ID NO.: 13); or TNGSITVAATAPTVTPTVNATPSAA (SEQ ID NO.: 14).
- linkers selected from: SSVSPTTSVHPTPTSVPPTPTPTKSSP (SEQ ID NO.: 11); PTSTP ADSSTITPTATPTATPTIKG (SEQ ID NO.: 12); TVTPTATATPSAIVTTITPTATTKP (SEQ ID NO.: 13); or TNGSITVAATAPTVTPTVNATPSAA (SEQ ID NO.: 14).
- Antigenic targets that may be delivered using the anti-CD40-antigen vaccines of the present invention include genes encoding antigens such as viral antigens, bacterial antigens, fungal antigens or parasitic antigens.
- Pathogens include trypanosomes, tapeworms, roundworms, helminthes, malaria.
- Tumor markers such as fetal antigen or prostate specific antigen, may be targeted in this manner.
- Other examples include: HIV env proteins and hepatitis B surface antigen.
- Administration of a vector according to the present invention for vaccination purposes would require that the vector-associated antigens be sufficiently non- immunogenic to enable long-term expression of the transgene, for which a strong immune response would be desired.
- vaccination of an individual may only be required infrequently, such as yearly or biennially, and provide long-term immunologic protection against the infectious agent.
- organisms, allergens and nucleic and amino sequences for use in vectors and ultimately as antigens with the present invention may be found in U.S. Patent No. 6,541,011, relevant portions incorporated herein by reference, in particular, the tables that match organisms and specific sequences that may be used with the present invention.
- Bacterial antigens for use with the anti-CD40-antigen vaccines disclosed herein include, but are not limited to, e.g., bacterial antigens such as pertussis toxin, filamentous hemagglutinin, pertactin, FIM2, FIM3, adenylate cyclase and other pertussis bacterial antigen components; diptheria bacterial antigens such as diptheria toxin or toxoid and other diptheria bacterial antigen components; tetanus bacterial antigens such as tetanus toxin or toxoid and other tetanus bacterial antigen components; streptococcal bacterial antigens such as M proteins and other streptococcal bacterial antigen components; gram-negative bacilli bacterial antigens such as lipopolysaccharides and other gram-negative bacterial antigen components, Mycobacterium tuberculosis bacterial antigens such as mycolic
- Partial or whole pathogens may also be: haemophilus influenza; Plasmodium falciparum; neisseria meningitidis; streptococcus pneumoniae; neisseria gonorrhoeae; salmonella serotype typhi; shigella; vibrio cholerae; Dengue Fever; Encephalitides; Japanese Encephalitis; lyme disease; Yersinia pestis; west nile virus; yellow fever; tularemia; hepatitis (viral; bacterial); RSV (respiratory syncytial virus); HPIV 1 and HPIV 3; adenovirus; small pox; allergies and cancers.
- Fungal antigens for use with compositions and methods of the invention include, but are not limited to, e.g., Candida fungal antigen components; histoplasma fungal antigens such as heat shock protein 60 (HSP60) and other histoplasma fungal antigen components; cryptococcal fungal antigens such as capsular polysaccharides and other cryptococcal fungal antigen components; coccidiodes fungal antigens such as spherule antigens and other coccidiodes fungal antigen components; and tinea fungal antigens such as trichophytin and other coccidiodes fungal antigen components.
- Candida fungal antigen components histoplasma fungal antigens such as heat shock protein 60 (HSP60) and other histoplasma fungal antigen components
- cryptococcal fungal antigens such as capsular polysaccharides and other cryptococcal fungal antigen components
- coccidiodes fungal antigens such as spherule antigens and
- protozoal and other parasitic antigens include, but are not limited to, e.g., Plasmodium falciparum antigens such as merozoite surface antigens, sporozoite surface antigens, circumsporozoite antigens, gametocyte/gamete surface antigens, blood-stage antigen pf 155/RESA and other plasmodial antigen components; toxoplasma antigens such as SAG-I, p30 and other toxoplasmal antigen components; schistosomae antigens such as glutathione-S-transferase, paramyosin, and other schistosomal antigen components; leishmania major and other leishmaniae antigens such as gp63, lipophosphoglycan and its associated protein and other leishmanial antigen components; and trypanosoma cruzi antigens such as the 75- 77 kDa antigen, the 56 kDa antigen and other trypanosom
- Antigen that can be targeted using the anti-CD40-antigen vaccines of the present invention will generally be selected based on a number of factors, including: likelihood of internalization, level of immune cell specificity, type of immune cell targeted, level of immune cell maturity and/or activation and the like.
- the antibodies may be mono- or bi-specific antibodies that include one anti-CD40 binding domain and one binding domain against a second antigen, e.g., cell surface markers for dendritic cells such as, MHC class I, MHC Class II, B7-2, CD18, CD29, CD31, CD43, CD44, CD45, CD54, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR and/or Dectin-1 and the like; while in some cases also having the absence of CD2, CD3, CD4, CD8, CD14, CD15, CD16, CD 19, CD20, CD56, and/or CD57.
- a second antigen e.g., cell surface markers for dendritic cells such as, MHC class I, MHC Class II, B7-2, CD18, CD29, CD31, CD43, CD44, CD45, CD54, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR and/or Dectin-1 and the like; while in
- cell surface markers for antigen presenting cells include, but are not limited to, MHC class I, MHC Class II, CD45, B7-1, B7-2, IFN- ⁇ receptor and IL-2 receptor, ICAM-I and/or Fc ⁇ receptor.
- cell surface markers for T cells include, but are not limited to, CD3, CD4, CD8, CD 14, CD20, CDl Ib, CD16, CD45 and HLA-DR.
- Target antigens on cell surfaces for delivery include those characteristic of tumor antigens typically derived from the cell surface, cytoplasm, nucleus, organelles and the like of cells of tumor tissue.
- tumor targets for the antibody portion of the present invention include, without limitation, hematological cancers such as leukemias and lymphomas, neurological tumors such as astrocytomas or glioblastomas, melanoma, breast cancer, lung cancer, head and neck cancer, gastrointestinal tumors such as gastric or colon cancer, liver cancer, pancreatic cancer, genitourinary tumors such cervix, uterus, ovarian cancer, vaginal cancer, testicular cancer, prostate cancer or penile cancer, bone tumors, vascular tumors, or cancers of the lip, nasopharynx, pharynx and oral cavity, esophagus, rectum, gall bladder, biliary tree, larynx, lung and bronchus, bladder, kidney, brain and other parts of the nervous system, thyroid, Hodgkin's disease, non- Hodgkin's lymphoma, multiple myeloma and leukemia.
- hematological cancers such as leukemia
- antigens examples include tumor proteins, e.g., mutated oncogenes; viral proteins associated with tumors; and tumor mucins and glycolipids.
- the antigens may be viral proteins associated with tumors would be those from the classes of viruses noted above.
- Certain antigens may be characteristic of tumors (one subset being proteins not usually expressed by a tumor precursor cell), or may be a protein which is normally expressed in a tumor precursor cell, but having a mutation characteristic of a tumor.
- Other antigens include mutant variant(s) of the normal protein having an altered activity or subcellular distribution, e.g., mutations of genes giving rise to tumor antigens.
- tumor antigens for use in an anti-CD40-fusion protein vaccine include, e.g., CEA, prostate specific antigen (PSA), HER-2/neu, BAGE, GAGE, MAGE 1-4, 6 and 12, MUC (Mucin) (e.g., MUC-I, MUC-2, etc.), GM2 and GD2 gangliosides, ras, myc, tyrosinase, MART (melanoma antigen), Pmel 17(gpl00), GnT-V intron V sequence (N-acetylglucoaminyltransferase V intron V sequence), Prostate Ca psm, PRAME (melanoma antigen), ⁇ -catenin, MUM-I-B (melanoma ubiquitous mutated gene product), GAGE (melanoma antigen) 1, MAGE, BAGE (melanoma antigen) 2-10, C-ERB2 (Her2/neu), DAGE, EBNA
- a Th2-type immune response to the relevant autoantigen towards a cellular (i.e., a ThI -type) immune response.
- a ThI -type immune response to the relevant autoantigen
- Autoantigens of interest include, without limitation: (a) with respect to SLE, the Smith protein, RNP ribonucleoprotein, and the SS-A and SS-B proteins; and (b) with respect to MG, the acetylcholine receptor.
- miscellaneous antigens involved in one or more types of autoimmune response include, e.g., endogenous hormones such as luteinizing hormone, follicular stimulating hormone, testosterone, growth hormone, prolactin, and other hormones.
- endogenous hormones such as luteinizing hormone, follicular stimulating hormone, testosterone, growth hormone, prolactin, and other hormones.
- Antigens involved in autoimmune diseases, allergy, and graft rejection can be used in the compositions and methods of the invention.
- an antigen involved in any one or more of the following autoimmune diseases or disorders can be used in the present invention: diabetes, diabetes mellitus, arthritis (including rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, psoriatic arthritis), multiple sclerosis, myasthenia gravis, systemic lupus erythematosis, autoimmune thyroiditis, dermatitis (including atopic dermatitis and eczematous dermatitis), psoriasis, Sjogren's Syndrome, including keratoconjunctivitis sicca secondary to Sjogren's Syndrome, alopecia areata, allergic responses due to arthropod bite reactions, Crohn's disease, aphthous ulcer, ulceris, conjunctivitis, keratoconjunctivitis, ulcerative colitis, asthma, allergic asthma, cutaneous lupus erythematosus, scleroderma, vaginit
- antigens involved in autoimmune disease include glutamic acid decarboxylase 65 (GAD 65), native DNA, myelin basic protein, myelin proteolipid protein, acetylcholine receptor components, thyroglobulin, and the thyroid stimulating hormone (TSH) receptor.
- GID 65 glutamic acid decarboxylase 65
- native DNA myelin basic protein
- myelin proteolipid protein myelin proteolipid protein
- acetylcholine receptor components acetylcholine receptor components
- thyroglobulin thyroglobulin
- TSH thyroid stimulating hormone
- antigens involved in allergy include pollen antigens such as Japanese cedar pollen antigens, ragweed pollen antigens, rye grass pollen antigens, animal derived antigens such as dust mite antigens and feline antigens, histocompatiblity antigens, and penicillin and other therapeutic drugs.
- antigens involved in graft rejection include antigenic components of the graft to be transplanted into the graft recipient such as heart, lung, liver, pancreas, kidney, and neural graft components.
- the antigen may be an altered peptide ligand useful in treating an autoimmune disease.
- any protein effector molecule may be altered in a manner that does not substantially affect the functional advantages of the effector protein.
- glycine and alanine are typically considered to be interchangeable as are aspartic acid and glutamic acid and asparagine and glutamine.
- effector sequences will encode effectors with roughly the same activity as the native effector.
- the effector molecule and the antibody may be conjugated by chemical or by recombinant means as described above. Chemical modifications include, for example, derivitization for the purpose of linking the effector molecule and the antibody to each other, either directly or through a linking compound, by methods that are well known in the art of protein chemistry.
- Both covalent and noncovalent attachment means may be used with the humanized antibodies of the present invention.
- the procedure for attaching an effector molecule to an antibody will vary according to the chemical structure of the moiety to be attached to the antibody.
- Polypeptides typically contain a variety of functional groups; e.g., carboxylic acid (COOH), free amine (--NH 2 ) or sulfhydryl (-SH) groups, which are available for reaction with a suitable functional group on an antibody to result in the binding of the effector molecule.
- the antibody can be derivatized to expose or to attach additional reactive functional groups, e.g., by attachment of any of a number of linker molecules such as those available from Pierce Chemical Company, Rockford 111.
- the linker is capable of forming covalent bonds to both the antibody and to the effector molecule.
- Suitable linkers are well known to those of skill in the art and include, but are not limited to, straight or branched- chain carbon linkers, heterocyclic carbon linkers, or peptide linkers.
- the linkers may be joined to the constituent amino acids through their side groups (e.g., through a disulfide linkage to cysteine).
- the linkers will be joined to the alpha carbon amino and carboxyl groups of the terminal amino acids.
- immunoconjugates will comprise linkages that are cleavable in the vicinity of the target site. Cleavage of the linker to release the effector molecule from the antibody may be prompted by enzymatic activity or conditions to which the immunoconjugate is subjected either inside the target cell or in the vicinity of the target site.
- a linker that is cleavable under conditions present at the tumor site e.g. when exposed to tumor-associated enzymes or acidic pH
- Exemplary chemical modifications of the effector molecule and the antibody of the present invention also include derivitization with polyethylene glycol (PEG) to extend time of residence in the circulatory system and reduce immunogenicity, according to well known methods (See for example, Lisi, et al., Applied Biochem. 4: 19 (1982); Beauchamp, et al., Anal Biochem. 131 :25 (1982); and Goodson, et al., Bio/Technology 8:343 (1990)).
- PEG polyethylene glycol
- the present invention contemplates vaccines for use in both active and passive immunization embodiments.
- Immunogenic compositions proposed to be suitable for use as a vaccine, may be prepared most readily directly from immunogenic T-cell stimulating peptides prepared in a manner disclosed herein. The final vaccination material is dialyzed extensively to remove undesired small molecular weight molecules and/or lyophilized for more ready formulation into a desired vehicle.
- the compositions and methods of the present invention are used to manufacture a cellular vaccine, e.g., the antigen-delivering anti-CD40 binding portion of the antibody is used to direct the antigen(s) to an antigen presenting cell, which then "loads" the antigen onto MHC proteins for presentation.
- the cellular vaccine is, therefore, the antigen presenting cell that has been loaded using the compositions of the present invention to generate antigen-loaded antigen presenting cells.
- these "active ingredients" can be made into vaccines using methods understood in the art, e.g., U.S. Patent Nos. 4,608,251 ; 4,601,903; 4,599,231; 4,599,230; and 4.578,770, relevant portions incorporated herein by reference.
- such vaccines are prepared as injectables, e.g., as liquid solutions or suspensions or solid forms suitable for re-suspension in liquid prior to injection. The preparation may also be emulsified.
- the active immunogenic ingredient is often mixed with excipients, which are pharmaceutically acceptable and compatible with the active ingredient.
- Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, or the like and combinations thereof.
- the vaccine may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, or adjuvants, which enhance the effectiveness of the vaccines.
- the vaccines are administered in a manner compatible with the dosage formulation, and in such amount as will be therapeutically effective and immunogenic.
- the quantity to be administered depends on the subject to be treated, including, e.g., the capacity of the individual's immune system to generate an immune response. Precise amounts of cells or active ingredient required to be administered depend on the judgment of the practitioner. However, suitable dosage ranges are of the order of a few thousand cells (to millions of cells) for cellular vaccines. For standard epitope or epitope delivery vaccines then the vaccine may be several hundred micrograms active ingredient per vaccination Suitable regimes for initial administration and booster shots are also variable, but are typified by an initial administration followed by subsequent inoculations or other administrations.
- any of the conventional methods for administration of a vaccine are applicable.
- the dosage of the vaccine will depend on the route of administration and will vary according to the size of the host.
- a vaccine of the present invention may be provided in one or more "unit doses" depending on whether the nucleic acid vectors are used, the final purified proteins, or the final vaccine form is used.
- Unit dose is defined as containing a predetermined-quantity of the therapeutic composition calculated to produce the desired responses m association with its administration, i e., the appropriate route and treatment regimen.
- the quantity to be administered, and the particular route and formulation, are within the skill of those m the clinical arts.
- Unit dose of the present invention may conveniently be described m terms of DNA/kg (or protein/Kg) body weight, with ranges between about 0 05, 0 10, 0 15, 0 20, 0 25, 0 5, 1 , 10, 50, 100, 1 ,000 or more mg/DNA or protein/kg body weight are administered Likewise, the amount of anti-CD40-antigen vaccine delivered can vary from about 0 2 to about 8 0 mg/kg body weight Thus, in particular embodiments, 0 4 mg, 0 5 mg, 0 8 mg, 1 0 mg, 1 5 mg, 2 0 mg, 2 5 mg, 3 0 mg, 4 0 mg, 5.0 mg, 5.5 mg, 6.0 mg, 6.5 mg, 7.0 mg and 7.5 mg of the vaccine may be delivered to an individual in vivo.
- a pharmaceutical composition that includes a naked polynucleotide prebound to a liposomal or viral delivery vector may be administered in amounts ranging from 1 ⁇ g to 1 mg polynucleotide to 1 ⁇ g to 100 mg protein.
- compositions may include between about 1 ⁇ g, 5 ⁇ g, 10 ⁇ g, 20 ⁇ g, 30 ⁇ g, 40 ⁇ g, 50 ⁇ g, 60 ⁇ g, 70 ⁇ g, 80 ⁇ g, 100 ⁇ g, 150 ⁇ g, 200 ⁇ g, 250 ⁇ g, 500 ⁇ g, 600 ⁇ g, 700 ⁇ g, 800 ⁇ g, 900 ⁇ g or 1,000 ⁇ g polynucleotide or protein that is bound independently to 1 ⁇ g, 5 ⁇ g, 10 ⁇ g, 20 ⁇ g, 3.0 ⁇ g, 40 ⁇ g 50 ⁇ g, 60 ⁇ g, 70 ⁇ g, 80 ⁇ g, 100 ⁇ g, 150 ⁇ g, 200 ⁇ g, 250 ⁇ g, 500 ⁇ g, 600 ⁇ g, 700 ⁇ g, 800 ⁇ g, 900 ⁇ g, 1 mg, 1.5 mg, 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg or
- Antibodies of the present invention may optionally be covalently or non-covalently linked to a detectable label.
- Detectable labels suitable for such use include any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical methods.
- Useful labels in the present invention include magnetic beads (e.g.
- DYNABEADS fluorescent dyes (e.g., fluorescein isothiocyanate, Texas red, rhodamine, green fluorescent protein, and the like), radiolabels (e.g., 3 H, 125 1, 35 S, 14 C, or 32 P), enzymes (e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic (e.g. polystyrene, polypropylene, latex, etc.) beads.
- fluorescent dyes e.g., fluorescein isothiocyanate, Texas red, rhodamine, green fluorescent protein, and the like
- radiolabels e.g., 3 H, 125 1, 35 S, 14 C, or 32 P
- enzymes e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA
- radiolabels may be detected using photographic film or scintillation counters
- fluorescent markers may be detected using a photodetector to detect emitted illumination
- Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting the reaction product produced by the action of the enzyme on the substrate, and colorimetric labels are detected by simply visualizing the colored label.
- the antibody and/or immunoconjugate compositions of this invention are particularly useful for parenteral administration, such as intravenous administration or administration into a body cavity.
- the compositions for administration will commonly comprise a solution of the antibody and/or immunoconjugate dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier.
- a pharmaceutically acceptable carrier preferably an aqueous carrier.
- aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter.
- These compositions may be sterilized by conventional, well-known sterilization techniques.
- compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example, sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like.
- concentration of fusion protein in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs.
- a typical pharmaceutical immunoconjugate composition of the present invention for intravenous administration would be about 0.1 to 10 mg per patient per day. Dosages from 0.1 up to about 100 mg per patient per day may be used.
- compositions of the present invention can be administered for therapeutic treatments.
- compositions are administered to a patient suffering from a disease, in an amount sufficient to cure or at least partially arrest the disease and its complications.
- An amount adequate to accomplish this is defined as a "therapeutically effective dose.” Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. An effective amount of the compound is that which provides either subjective relief of a symptom(s) or an objectively identifiable improvement as noted by the clinician or other qualified observer.
- compositions are administered depending on the dosage and frequency as required and tolerated by the patient.
- the composition should provide a sufficient quantity of the proteins of this invention to effectively treat the patient.
- the dosage is administered once but may be applied periodically until either a therapeutic result is achieved or until side effects warrant discontinuation of therapy.
- the dose is sufficient to treat or ameliorate symptoms or signs of disease without producing unacceptable toxicity to the patient.
- Controlled release parenteral formulations of the immunoconjugate compositions of the present invention can be made as implants, oily injections, or as particulate systems. For a broad overview of protein delivery systems see, Banga, A.
- Particulate systems include microspheres, microparticles, microcapsules, nanocapsules, nanospheres, and nanoparticles.
- Microcapsules contain the therapeutic protein as a central core. In microspheres the therapeutic is dispersed throughout the particle. Particles, microspheres, and microcapsules smaller than about 1 ⁇ m are generally referred to as nanoparticles, nanospheres, and nanocapsules, respectively.
- Capillaries have a diameter of approximately 5 ⁇ m so that only nanoparticles are administered intravenously.
- Microparticles are typically around 100 ⁇ m in diameter and are administered subcutaneous Iy or intramuscularly.
- Polymers can be used for ion-controlled release of immunoconjugate compositions of the present invention.
- Various degradable and non-degradable polymeric matrices for use in controlled drug delivery are known in the art (Langer, R., Accounts Chem. Res. 26:537-542 (1993)).
- the block copolymer, poloxamer 407® exists as a viscous yet mobile liquid at low temperatures but forms a semisolid gel at body temperature
- hydroxyapatite has been used as a microcarrier for controlled release of proteins
- liposomes may be used for controlled release as well as drug targeting of the lipid-capsulated drug.
- antibodies of the invention are included a variety of disease conditions caused by specific human cells.
- a humanized version of the mouse anti-CD40_12E12.3F3 (ATCC Accession No. PTA-9854), anti-CD40_12B4.2C10 (Deposit No. HS446, ATCC Accession No. ), and anti-CD40 11B6.1C3 (Deposit No. HS440, ATCC Accession No. )
- antibodies disclosed herein one application for antibodies is the treatment, contacting,, imaging, activation or deactivation of cells expressing
- kits for the delivery of antigens e.g., CD40 or an immunoreactive fragment thereof, conjugated or in the form of a fusion protein with one or more T cell or B cell epitopes.
- a "biological sample” as used herein is a sample of biological tissue or fluid that contains the antigen. Such samples include, but are not limited to, tissue from biopsy, blood, and blood cells (e.g., white cells). Preferably, the cells are lymphocytes, e.g., dendritic cells. Biological samples also include sections of tissues, such as frozen sections taken for histological purposes.
- a biological sample is typically obtained from a multicellular eukaryote, preferably a mammal such as rat, mouse, cow, dog, guinea pig, or rabbit, and more preferably a primate, such as a macaque, chimpanzee, or human. Most preferably, the sample is from a human.
- the antibodies of the invention may also be used in vivo, for example, as a diagnostic tool for in vivo imaging. Kits will typically comprise a nucleic acid sequence that encodes an antibody of the present invention (or fragment thereof) with one or more framework portions or multiple cloning sites at the carboxy-terminal end into which the coding sequences for one or more antigens may be inserted.
- the antibody will be a humanized anti-CD40 Fv fragment, such as an scFv or dsFv fragment.
- the kits will typically include instructional materials disclosing methods of use of an antibody of the present invention (e.g. for loading into dendritic cells prior to immunization with the dendritic cells, which can be autologous dendritic cells).
- the kits may also include additional components to facilitate the particular application for which the kit is designed.
- the kit may additionally contain methods of detecting the label (e.g. enzyme substrates for enzymatic labels, filter sets to detect fluorescent labels, appropriate secondary labels such as a sheep anti-mouse-HRP, or the like).
- the kits may additionally include buffers and other reagents routinely used for the practice of a particular method. Such kits and appropriate contents are well known to those of skill in the art.
- antibodies targeted by antibodies of the invention can be used to purge targeted cells from a population of cells in a culture.
- the antibodies of the present invention may be used to enrich a population of T cells having the opposite effect of the on-going immune response.
- cells cultured from a patient having a cancer can be purged of cancer cells by providing the patient with dendritic cells that were antigen loaded using the antibodies of the invention as a targeting moiety for the antigens that will trigger an immune response against the cancer, virus or other pathogen.
- anti-CD40_12E12.3F3 anti-CD40 12E12.3F3 H-V-hIgG4H-C - underlined region shows the Heavy chain V region amino acid sequence: MNLGLSLIFLVLVLKGVOCEVKLVESGGGLVOPGGSLKLSCATSGFTFSDYYMYWVROTPEKRLE WVAYINSGGGSTYYPDTVKGRFTISRDNAKNTLYLOMSRLKSEDTAMYYCARRGLPFHAMDYWG OGTSVTVSSAKTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLO SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPK PKDTLMISRTPEVTCVVVDVSQEDPEVQFNWY
- CTL cytotoxic T lymphocyte
- the five HIV peptides were then modified in C-terminal position by a (Palm)-NH2 group and the five HIV peptide sequences have been well described in the scientific literature [e.g., Characterization of a multi-lipopeptides mixture used as an HIV-I vaccine candidate (1999) Klinguer et al., Vaccine, Volume 18, 259-267] and in a patent application [Cytotoxic T lymphocyte-inducing lipopeptides and use as vaccines. Gras-Masse H. et al., Patent No. EP0491628 (1992-06-24); US 5871746 (1999-02-16)].
- a very desirable HIV vaccine would be composed of recombinant anti-dendritic cell receptor antibody fused to the above HIV peptides.
- the present invention includes compositions and methods to efficiently produce proteins and HIV vaccines.
- sequences shown below are the amino-acid sequences of the five selected HIV peptides and the amino- acid positions within each HIV protein are in brackets.
- Nef (66-97) is: VGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGL (SEQ ID NO.: 16)
- Nef (116-145) is: HTQGYFPDWQNYTPGPGVRYPLTFGWLYKL (SEQ ID NO.: 17)
- Gag pl7 (17-35) is: EKIRLRPGGKKKYKLKHIV (SEQ ID NO.: 18)
- Gag pl7-p24 (253-284) is: NPPIPVGEIYKRWIILGLNKIVRMYSPTSILD (SEQ ID NO.: 19)
- Pol 325-355 (RT 158-188) is: AIFQSSMTKILEPFRKQNPDIVIYQYMDDLY (SEQ ID NO.: 20)
- the present invention includes compositions and methods for assembling constructs encoding HIV peptides and Flexible linker sequences.
- the Heavy chain expression vectors typically have a Nhe I site [g
- Flexible linker sequences or HIV peptide sequences have an Spe I site [a
- Such flexible linker or HIV peptide Spe I - Not I fragments are inserted into the Heavy chain vector prepared with Nhe I - Not I digestion. Nhe I and Spe I are compatible sites, but when ligated [g
- FIG. 1 shows protein A affinity recombinant antibodies fused to various HIV peptides (lanes 1 to 5) secreted from transfected 293F cells, analyzed by reducing SDS-PAGE and Coomassie Brilliant Blue staining.
- Fig. 2 shows protein A affinity purified recombinant antibodies fused to various HIV peptides (Lanes 1 and 2) secreted from transfected 293F cells, then analyzed by reducing SDS-PAGE and Coomassie Brilliant Blue staining.
- Fig. 3 shows protein A affinity purified recombinant antibodies fused to various HIV peptide strings (Lanes 1 to 5) secreted from transfected 293F cells, then analyzed by reducing SDS.PAGE and Coomassie Brilliant Blue staining.
- Fig. 4 shows protein A affinity purified recombinant antibodies fused to various HIV peptide strings (Lanes 1 to 6) secreted from transfected 293F cells, then analyzed by reducing SDS.PAGE and Coomassie Brilliant Blue staining.
- ⁇ CD40.LIPO5 HIV peptide fusion recombinant antibody ⁇ CD40.LIPO5 rAb
- the fusion rAb was added to blood cells from HIV-infected individuals and measured cytokine production form peripheral blood mononuclear cells (PBMCs).
- PBMCs peripheral blood mononuclear cells
- Fig. 5 describes the protocol used in vitro to assay the potency of ⁇ CD40.LIPO5 HIV peptide fusion recombinant antibody ( ⁇ CD40.LIPO5 rAb) to elicit the expansion of antigen-specific T cells in the context of a PBMC culture.
- PBMCs (2x10 6 cells/ml) from apheresis of HIV patients are incubated with a dose range of ⁇ CD40.LIPO5 HIV peptide vaccine.
- 100 U/ml IL-2 are added to the culture and then, the media is refreshed every 2 days with 100 U/ml IL-2.
- the expanded cells are challenged for 48 h with the individual long peptides corresponding to the 5 HIV peptide sequences incorporated in the ⁇ CD40.LIPO5 HIV peptide fusion rAb.
- culture supernatants are harvested and assessed for cytokine production (by the T cells with T cell receptor [TCR] specificities for peptide sequences) using multiplex beads assay (Luminex).
- Antigen-specific cytokine production detected in such an assay if it depends on the presence of the anti-CD40.LIPO5 HIV peptide vaccine, reflects vaccine uptake by antigen presenting cells [APC] in the culture, and processing [proteolytic degradation] and presentation of peptides on MHC.
- the antigen-MHC complexes are recognized by T cells with TCR that recognize only the particular HIV antigen- MHC complex. In a HIV patient, such cells are likely to be memory T cells that expanded in the patient in response to the HIV infection. Epitopes from all 5 HIV peptide regions of the vaccine can be presented by APCs. The scheme in Fig.
- Fig. 6A-C shows the HIV peptide-specific IFN ⁇ production in PBMCs from HIV patients incubated with various concentrations of anti-CD40.LIPO5 peptide string vaccine.
- C is the control group, which received no vaccine, and defines the baseline response of the culture to each peptide.
- Fig. 7 is a summary of ⁇ CD40.LIPO5 peptide vaccine responses against the 5 peptide regions from 8 HIV patients. The data are based on peptide-specific IFN ⁇ production. Fig. 7 shows that the antigen-specific responses observed in 8 HIV patients. The data demonstrate that all HIV peptide regions on the vaccine have the capacity to be processed and presented to T cells — assuming the likely situation that responses to these peptides will only be observed if the appropriate TCR-bearing cells are present. Thus, each patient has a characteristic spectrum of such cells.
- the ⁇ CD40.LIPO5 peptide vaccine can evoke the proliferation of antigen-specific T cells capable of secreting a wide spectrum of cytokines
- Fig. 8A-C shows that ⁇ CD40.LIPO5 HIV peptide vaccine elicits expansion of HIV peptide-specific T cells capable of secreting multiple cytokines - a desirable feature in a vaccine.
- ⁇ CD40.LIPO5 HIV peptide vaccine elicits gag253, nef66, nefl l ⁇ and pol325 peptide-specific responses characterized by production of multiple cytokines. This is patient A5. Anti-CD40.LIPO5 HIV peptide vaccination of ex vivo DCs.
- HIV patient monocytes are differentiated into DCs by culture for 2 days with IFN ⁇ and GM-CSF.
- Different doses ⁇ CD40.LIPO5 HIV peptide vaccine or a mix of the 5 peptides are then added for 18 h.
- Autologous T cells were added to the co-culture (at a ratio of 1:20) on day 3.
- 100 U/ml IL-2 are added to the culture and then, the media is refreshed every 2 days with 100 U/ml IL-2.
- Fig. 1 OA-B shows the cytokine secretion in response to HIV peptides from DC-T cell co-cultures treated with various doses of ⁇ CD40.LIPO5 HIV peptide vaccine. This is patient AlO.
- the results in the patient AlO shown in Fig. 10 A-B demonstrate expansion of antigen-specific T cells corresponding to epitopes within the gagl7, gag253, and pol325 HIV peptide regions.
- ⁇ CD40.LIPO5 HIV peptide vaccine possible immune effect of the flexible linker regions. It is possible that the flexible linker sequences interspersing the HIV peptide sequences within the ⁇ CD40.LIPO5 HIV peptide vaccine themselves contain T cell epitopes.
- Fig. 11 A-B shows that patient A4 does not appear to have a significant pool of memory T cells with specificities to the five flexible linker sequences within ⁇ CD40.LIPO5 HIV peptide vaccine.
- PBMCs from patient A4 treated with the ⁇ CD40.LIPO5 HIV peptide vaccine elicit expansion of antigen-specific T cells with specificity to the gag253 region, but not to the flexible linker sequences.
- HIV peptides 9 were used, with the flexible linker long peptides corresponding in sequence to the bold areas, the HIV peptides are in bold-italics, shown in the sequence below.
- ⁇ CD40.LIPO5 HIV peptide vaccine heavy chain sequence showing flexible linker regions in bold, joining sequences underlined and HIV peptide regions shaded in bold italics.
- Fig. 12A the PBMCs from patient A3 treated with the ⁇ CD40.LIPO5 HIV peptide vaccine elicit expansion of antigen-specific T cells with specificities to the gag253, nef66, and nefl l ⁇ regions, but not to the flexible linker sequences.
- the protocol described in Fig. 1 was used, with the flexible linker long peptides corresponding in sequence to the bold areas shown in Fig. 8.
- Fig. 12B-1 and B-2 shows HIV antigen-specific T cell responses evoked from HIV patient Al 7 PBMCs incubated with 30 nM of three different HIV5 peptide DC targeting vaccines.
- anti-CD40 Heavy chain is anti- CD40_12E12.3F3_H-LV-hIgG4H-C-Flex-vl-Pep-gagl7-fl-gag253-f2-nefl l6-O-nef66-f4-poll58] with sequence:
- Fig. 12C-1 and C-2 is a similar study to that show in Fig. 12B, except that the PBMCs are from a different HIV patient (A2).
- the data show antigen-specific CD4+ and CD8+ T cell responses evoked by anti- CD40.HIV5pep but not the other DC-targeting vaccines, or by a mixture of the peptides themselves.
- Fig. 12C-1 and C-2 is a similar study to that show in Fig. 12B, except that the PBMCs are from a different HIV patient (A2).
- the data show antigen-specific CD4+ and CD8+ T cell responses evoked by anti- CD40.HIV5pep but not the other DC-targeting vaccines, or by a mixture of the peptides themselves.
- the immunogenicity of the flexible linker sequences is of concern for the ⁇ CD40.LIPO5 HIV peptide vaccine design.
- a humanized antibody includes the heavy chain variable region (V H ) and a light chain variable region (V L ), wherein the framework regions of the heavy chain and light chain variable regions are from a donor human antibody, and wherein the light chain complementarity determining regions (CDRs) have at least 80%, 90%, 95% or higher identity to CDR1 L having the amino acid sequence SASQGISNYLN (SEQ ID NO.:41), the CDR2 L having the amino acid sequence YTSILHS (SEQ ID NO.:23) and the CDR3 L having the amino acid sequence QQFNKLPPT (SEQ ID NO.:23); and wherein the heavy chain complementarity determining regions comprise at least 80%, 90%, 95% or higher identity to the CDRl n , CDR2 H and CDR3 H , the CDR1 H having the amino acid sequence GFTFSDYYMY (SEQ ID NO.:24), the CDR2 H having the amino acid sequence YINSGGGSTYYPDTVKG (SEQ ID NO.:25
- the humanized antibody may comprise a VL framework having at least 95% identity to the framework of SEQ ID NOS.: 2, 4, 5 or 7 and a VH framework that has at least 95% identity to the framework of SEQ ID NO.: 1, 3 or 6.
- the donor CDR sequences are from anti-CD40_12E12.3F3, anti-CD40_12B4.2C10, anti-CD40 1 1B6.1C3 or combinations of their heavy or light chains, and/or their variable regions and further, wherein the antibody or fragment thereof specifically binds to CD40.
- Example 3 Prostate-specific antigen (PSA), Cycline Dl, MART-I, influenza viral nucleoprotein (NP) and HAl subunit of influenza viral hemagglutinin (HlNl, PR8) and peptide screen.
- PSA Prostate-specific antigen
- Cycline Dl Cycline Dl
- MART-I influenza viral nucleoprotein
- NP influenza viral nucleoprotein
- HlNl hemagglutinin
- IxIO 6 IL-4DCs were incubated for 1 h in ice with 3 mg/ml human gamma globulin in PBS containing 3% BSA to block non-specific binding. Cells were pulsed for 30 minutes on ice with Alexa 568 labeled anti-CD40 mAb (all at 20 ng/ml final concentration in non-specific block). Cells were then washed and allowed to internalize surface bound antibodies for different times, between 0 and 90 minutes, at 37 0 C.
- IFNDCs cells were fed on day 1 with IFNa and GM-CSF.
- IL-4DCs the same amounts of cytokines were supplemented into the media on day one and day three.
- PBMCs were isolated from Buffy coats using PercollTM gradients (GE Healthcare, Buckinghamshire, UK) by density gradient centrifugation.
- Total CD4+ and CD8+ T cells were purified by using StemCell kits (CA).
- Peptides 15-mers (11 amino acid overlapping) for prostate-specific antigen (PSA), Cycline Dl, MART-I, influenza viral nucleoprotein (NP) and HAl subunit of influenza viral hemagglutinin (HlNl, PR8), were synthesized (Mimotopes).
- PSA prostate-specific antigen
- Cycline Dl Cycline Dl
- MART-I influenza viral nucleoprotein
- NP influenza viral nucleoprotein
- HlNl, PR8 HAl subunit of influenza viral hemagglutinin
- DCs and T cell co-culture and cytokine expressions 5x10 3 DCs loaded with recombinant fusion proteins (anti-CD40-HAl, Control Ig-HAl, anti-CD40-PSA, anti-CD40-Cyclin Dl, anti-CD40-MART- 1 , anti- MARCO-MART-I, and control Ig-MART-I) were co-cultured with 2x10 5 CFSE-labeled CD4+ T cells for 8 days. Proliferation was tested by measuring CFSE dilution after staining cells with anti-CD4 antibody labeled with APC.
- CD4+ T cells were restimulated with 1 -5 uM of indicated peptides for 5h in the presence of Brefeldin A.
- CD4+ T cells were restimulated with peptides indicated for 36h, and then cytokines secreted by CD4+ T cells were measured by the Luminex.
- CD8+ T cells were co-cultured with DCs for 10 days in the presence of 20 units/ml IL-2 and 20 units/ml IL- 7. On day 10 of the culture, CD8+ T cells were stained with anti-CD8 and tetramers indicated.
- Receptor ectodomain.hlgG human IgGlFc
- AP human placental alkaline phosphatase
- the mammalian expression vector for receptor ectodomain.AP proteins was generated using PCR to amplify cDNA for AP resides 133-1581 (gb
- Receptor ectodomain.hIgG was purified by 1 ml HiTrap protein A affinity chromatography (GE Healthcare, CA) eluted with 0.1 M glycine, pH 2.7. Fractions were neutralized with 2M Tris, and then dialyzed against PBS.
- Mouse mAbs were generated by conventional technology. Briefly, six-week-old BALB/c mice were immunized i.p. with 20 ⁇ g of receptor ectodomain.hlgGFc fusion protein with Ribi adjuvant, then boosted with 20 ⁇ g antigen ten days and fifteen days later. After three months, the mice were boosted again three days prior to taking the spleens. Three to four days after a final boosting, draining lymph nodes (LN) were harvested. B cells from spleen or LN cells were fused with SP2/O-Ag 14 cells (ATCC).
- LN draining lymph nodes
- Hybridoma supernatants were screened to analyze mAbs specific to the receptor ectodomain fusion protein compared to the fusion partner alone, or to the receptor ectodomain fused to alkaline phosphatase [J. Immunol. 163: 1973- 1983 (1999)]. Positive wells were then screened in FACS using 293F cells transiently transfected with expression plasmids encoding full-length receptor cDNAs. Selected hybridomas were single cell cloned and expanded in CELLine flasks (Integra, CA).
- Hybridoma supernatants were mixed with an equal volume of 1.5 M glycine, 3 M NaCl, I x PBS, pH 7.8 (binding buffer) and tumbled with MabSelect resin (GE Healthcare, CA) (800 ml /5ml supernatant). The resin was washed with binding buffer and eluted with 0.1 M glycine, pH 2.7. Following neutralization with 2 M Tris, mAbs were dialyzed against PBS. Expression and purification of recombinant mAbs.
- Total RNA was prepared from hybridoma cells using RNeasy kit (Qiagen, CA) and used for cDNA synthesis and PCR (SMART RACE kit, BD Biosciences) using supplied 5' primers and gene specific 3' primers (mIgG ⁇ , 5'ggatggtgggaagatggatacagttggtgcagcatc3' (SEQ ID NO.:48); mIgG2a, 5'ccaggcatcctagagtcaccgaggagccagt3') (SEQ ID NO.:49). PCR products were then cloned (pCR2.1 TA kit, Invitrogen) and characterized by DNA sequencing (MC Lab, CA).
- PCR was used to amplify the mAb Vk region from the initiator codon, appending a Nhe I or Spe I site then CACC, to the region encoding (e.g., residue 126 of gi
- the PCR fragment was then cloned into the Nhe I - Not I interval of the above vector.
- the control human IgG ⁇ sequence corresponds to gi
- the control human IgG4H vector corresponds to residues 12-1473 of gi
- PCR was used to amplify the niAb VH region from the initiator codon, appending CACC then a BgI II site, to the region encoding residue 473 of gi
- the Flu HAl antigen coding sequence is a CipA protein [Clostridium, thermocellum] gi
- recombinant antibody-PSA fusion proteins were encoded by inserting gi
- Recombinant antibody proteins were expressed and purified as described above for hFc fusion proteins.
- the rAb. antigen coding region and the corresponding L chain coding region were transferred to separate cetHS-puro UCOE vectors (Millipore, CA).
- CHO-S cells grown in CD-CHO with GlutaMAX and HT media supplement (Invitrogen) were seeded at 5x10 5 ml 24h prior to transfection in 500 ml Corning Ehrlenmyer flasks and incubated in 8% CO 2 at 125 rpm. On the day of transfection, 1.2x 10 7 cells with viability at least 95% were added to a final volume of 30 ml in a 125 ml flask in CD-CHO with GlutaMAX.
- Cells were split in selection medium when cell density exceeded 2x 10 6 ZmI until scaled to 4x250 ml in 500 ml flasks. Supernatant was harvested when cell viability dropped below 80% with a maximum final cell density ⁇ 7x lO 6 /ml. Endotoxin levels were less than 0.2 units/ml.
- PCR was used to amplify the ORF of Influenza A/Puerto Rico/8/34/Mount Sinai (HlNl) Ml gene while incorporating an Nhe I site distal to the initiator codon and a Not I site distal to the stop codon.
- the digested fragment was cloned into pET- 28b(+) (Novagen), placing the Ml ORF in- frame with a His6 tag, thus encoding His.Flu Ml protein.
- a pET28b (+) derivative encoding an N-terminal 169 residue cohesin domain from C.
- thermocellum (unpublished) inserted between the Nco I and Nhe I sites expressed Coh.His.
- Cohesin- Flex-hMART- 1 -PeptideA-His the sequence GACACCACCGAGGCCCGCCACCCCCACCCCCGTGACCACCCCCACCACCACCACCGACCGGAAG GGCACCACCGCCGAGGAGCTGGCCGGCATCGGCATCCTGACCGTGATCCTGGGCGGCAAGCGG ACCAACAACAGCACCCCCACCAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCG (SEQ ID NO.:28) (encoding
- DTTEARHPHPPVTTPTTDRKGTT AE ⁇ L ⁇ G/G/Z ⁇ LGGKRTNNSTPTKGEFCRYPSHWRP (SEQ ID NO.:29) - the italicized residues are the immunodominant HLA-A2-restricted peptide and the underlined residues surrounding the peptide are from MART- 1 ) was inserted between the Nhe I and Xho I sites of the above vector.
- the proteins were expressed in E. coll strain BL21 (DE3) (Novagen) or T7 Express (NEB), grown in LB at 37 0 C with selection for kanamycin resistance (40 ⁇ g/ml) and shaking at 200 rounds/min to mid log phase growth when 120 mg/L IPTG was added.
- E. coli cells from each 1 L fermentation were resuspended in 30 ml ice- cold 50 mM Tris, 1 mM EDTA pH 8.0 (buffer B) with 0.1 ml of protease inhibitor Cocktail II (Calbiochem, CA). The cells were sonicated on ice 2x 5 min at setting 18 (Fisher Sonic Dismembrator 60) with a 5 min rest period and then spun at 17,000 r.p.m. (Sorvall SA-600) for 20 min at 4 0 C.
- Fig. 13 shows the internalization of anti-CD40 niAb:IL-4DC. IL-4DCs were treated with 500 ng/ml of anti- CD40-Alexa 568. Fig.
- FIG. 14 shows CD4 and CD8 T cell proliferation by DCs targeted with anti-CD40-HAl .
- 5x10e3 IFNDCs loaded with 2 ug/ml of anti-CD40-HA or control Ig-HAl were co-cultured with CFSE- labeled autologous CD4+ or CD8+ T cells (2x10e5) for 7 days. Cells were then stained with anti-CD4 or anti-CD8 antibodies. Cell proliferation was tested by measuring CFSE-dilution.
- Fig. 15 shows a titration of HAl fusion protein on CD4+ T proliferation.
- IFNDCs (5K) loaded with fusion proteins were co-cultured with CFSE-labeled CD4+ T cells (200K) for 7 days.
- FIG. 16 shows IFNDCs targeted with anti-CD40-HAl activate HAl -specific CD4+ T cells.
- CD4+ T cells were restimulated with DCs loaded with 5 uM of indicated peptides, and then intracellular IFN ⁇ was stained.
- Fig. 17 shows IFNDCs targeted with anti-CD40- HAl activate HAl-specific CD4+ T cells.
- CD4+ T cells were restimulated with DCs loaded with indicated peptides for 36h, and then culture supernatant was analyzed for measuring IFN ⁇ .
- Fig. 18 shows that targeting CD40 results in enhanced cross-priming of MART- I specific CD8+ T cells.
- IFNDCs (5K/well) loaded with fusion proteins were co-cultured with purified CD8+ T cells for 10 days. Cells were stained with anti-CD8 and tetramer. Cells are from healthy donors (HLA-A*0201+).
- Fig. 19 shows targeting CD40 results in enhanced cross-priming of MART-I specific CD8+ T cells (Summary of 8-repeated experiments using cells from different healthy donors).
- Fig. 20 shows CD8+ CTL induced with IFNDCs targeted with anti-CD40-MART-l are functional. CD8+ T cells co-cultured with IFNDCs targeted with fusion proteins were mixed with T2 cells loaded with 10 uM peptide epitope.
- Fig. 19 shows targeting CD40 results in enhanced cross-priming of MART-I specific CD8+ T cells (Summary of 8-repeated experiments using cells from different healthy donors).
- Fig. 20 shows CD8+ CTL induced with IFNDCs targeted with anti-CD40-
- FIG. 21 shows CD8+ CTL induced with IFNDCs targeted with anti-CD40-Flu Ml are functional.
- CD8+ T cells co-cultured with IFNDCs targeted with fusion proteins were mixed with T2 cells loaded with 1.0 nM peptide epitope.
- Fig. 22 shows an outline of protocol to test the ability a vaccine composed of anti-CD4012E12 linked to PSA (prostate specific antigen) to elicit the expansion from a na ⁇ ve T cell population.
- PSA-specific CD4+ T cells corresponding to a broad array of PSA epitopes. Briefly, DCs derived by culture with IFN ⁇ and GM-CSF of monocytes from a healthy donor are incubated with the vaccine.
- Fig. 23 shows that many PSA peptides elicit potent gamma-IFN-production responses indicating that anti- CD4012E12 and similar anti-CD40 agents can efficiently deliver antigen to DCs, resulting in the priming of immune responses against multiple epitopes of the antigen.
- the peptide mapping of PSA antigens 5x10e3 IFNDCs loaded with 2 ug/ml of anti-CD40-PSA were co-cultured with purified autologous CD4+ T cells (2x10e5) for 8 days. Cells were then restimulated with 5 uM of individual peptides derived from PSA for 36h. The amount of IFN ⁇ was measured by Luminex. Cells are from healthy donors.
- Fig. 24 shows DCs targeted with anti-CD40-PSA induce PSA-specific CD8+ T cell responses.
- IFNDCs were targeted with 1 ug mAb fusion protein with PSA.
- Purified autologous CD8+ T cells were co-cultured for 10 days.
- Cells were stained with anti-CD8 and PSA (KLQCVDLHV)-tetramer.
- Cells are from a HLA-A*0201 positive healthy donor. The results demonstrate that anti-CD40 effectively deliver PSA to the DCs, which in turn elicit the expansion of PSA-specific CD8+ T cells.
- IFNDCs loaded with 2 ug/ml of anti-CD40-PSA were co-cultured with purified autologous CD8+ T cells (2x10e5) for 10 days. Cells were then stained with tetramer. Cells are from HLA-0*201 positive healthy donor.
- Fig. 25 a scheme (left) and the IFN ⁇ production by T cells of the pools of peptides and control for Donor 2.
- 5x10e3 IFNDCs loaded with 2 ug/ml of anti-CD40-Cyclin Dl were co-cultured with purified autologous CD4+ T cells (2x10e5) for 8 days. Cells were then restimulated with with 5 uM of individual peptides derived from CyclinDl for 5h in the presence of Brefeldin A. Cells were stained for measuring intracellular IFN ⁇ expression.
- Fig. 26 shows a peptide scan and IFN ⁇ production by T cells obtained from the pools of peptides shown in Fig. 25 and control for Donor 2.
- 5x10e3 IFNDCs loaded with 2 ug/ml of anti-CD40-Cyclin Dl were co- cultured with purified autologous CD4+ T cells (2x10e5) for 8 days. Cells were then restimulated with with 5 uM of individual peptides derived from CyclinDl for 5h in the presence of Brefeldin A. Cells were stained for measuring intracellular IFN ⁇ expression.
- Peptide 45 GNLIAPWYAFALSRGFG (SEQ ID NO.:37)
- Peptide 46 WYAFALSRGFGSGIITS (SEQ ID NO.:38)
- MSNEGSYFFGDNAEEYDN SEQ ID NO. :48
- Peptide 22 GKWVRELVLYDKEEIRR (SEQ ID NO.:49)
- Peptide 33 RTGMDPRMCSLMQGSTL (SEQ ID NO.:50)
- Peptide 46 MCNILKGKFQTAAQKAM (SEQ ID NO.:51) Prostate specific antigen (PSA) sequence
- Peptide 1 APLILSRIVGGWECE (SEQ ID NO.:57)
- Peptide 4 EKHSQPWQVLVAS (SEQ ID NO.:58)
- Peptide 26 SHDLMLLRLSEPAEL (SEQ ID NO.:60)
- Peptide 49 SGDSGGPLVCNGVLQ (SEQ ID NO.:61)
- Peptide 54 GSEPCALPERPSLYT (SEQ ID NO.:62)
- Peptide 56 ERPSLYTKWHYRKW (SEQ ID NO.:63)
- Peptide 7 DRVLRAMLKAEETCA (SEQ ID NO.:71)
- Peptide 8 RAMLKAEETCAPSVS (SEQ ID NO.:72)
- MART-I Antigen is a tumor-associated melanocytic differentiation antigen. Vaccination with MART-I antigen may stimulate a host cytotoxic T-cell response against tumor cells expressing the melanocytic differentiation antigen, resulting in tumor cell lysis.
- Fig. 27 shows the expression and construct design for anti-CD40-MART- 1 peptide antibodies.
- Fig. 28 is a summary of the CD4 + and CD8 + immunodominant epitopes for MART-I .
- Figs. 27 and 28 show the use of the flexible linker technology to permit the successful expression of recombinant anti-DC receptor targeting antibodies fused to significant (—2/3) parts of human MART-I .
- Recombinant antibody fused at the Heavy chain C-terminus to the entire MART-I coding region is not at all secreted from production mammalian cells [not shown].
- the Flex-vl-hMART-l-Pep-3-f4-Pep-l adduct is particularly well expressed and is one preferred embodiment of a MART-I -targeting vaccine, as is the Flex-vl-hMART-l-Pep-3-f4-Pep-l-f3-Pep-2 adduct which bears a maximum load of MART-I epitopes.
- Slide 2 of the MART-I powerpoint presentation shows that these adducts can be successfully appended to multiple anti-DC receptor vehicles.
- the sequence below is a Heavy chain - hMART-1 peptides string of pep3-pepl-pep2 fusion protein where each hMARTl peptide sequence [bold- italics] is separated by a inter-peptide spacer f [shown in bold].
- a 27-amino-acid long linker flex-vl(vl) [italics] derived from cellulosomal anchoring scaffoldin B precursor [Bacteroides cellulosolvens- described in the gag-nef vaccine invention disclosure] was inserted between the Heavy chain C-terminus and the hMARTl peptides-flexible spaces string.
- the underlined AS residues are joining sequences.
- C981 is: EVKLVESGGGLVQPGGSLKLSCATSGFTFSDYYMYWVRQTPEKRLEWVAYINSGGGSTYYPDTVK GRFTISRDNAKNTLYLQMSRLKSEDTAMYYCARRGLPFHAMD YWGQGTSVTVSSAKTKGPSVFPL APCSRSTSESTAALGCL VKD YFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTK TYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS QEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK
- C 1012 is: QVTLKESGPGILQPSQTLSLTCSFSGFSLSTSGMGLSWIRQPSGKGLEWLAHIYWDDDKRYNPSLKSR LTISKDTSSNQVFLKITIVDTADAATYYCARS SHYYGYGYGGYFDVWGAGTTVTVSSAKTKGPSVF PLAPCSRSTSESTAALGCLVKD YFPEPVTVSWNSGALTSGVHTFP AVLQSSGLYSLSSVVTVPSSSLG TKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCWV DVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCK
- the italicized portion is the CD4+ immunodominant epitope.
- MARTl -Peptide 1 the italicized portion is the CD4+ immunodominant epitope and the underlined-italicized portion is the CD8+ immunodominant epitope
- Flex-3 ASTVTPTATATPSAIVTTITPTATTKPAS (SEQ ID NO.: 82) MARTl - Peptide 2 the italicized portion is the CD4+ immunodominant epitope.
- Peptide 3 is bold-italics-underlined
- flex-4 is bold
- Peptide 1 is bold-italics-underlined:
- GPlOO Antigen is a melanoma-associated antigen.
- gplOO antigen When administered in a vaccine formulation, gplOO antigen may stimulate a cytotoxic T cell HLA- A2.1 -restricted immune response against tumors that express this antigen, which may result in a reduction in tumor size.
- GPlOO ectodomain coding region fused to recombinant antibody Heavy chain coding region is not at all secreted by production mammalian cells [not shown].
- the total sequence is shown below - italics residues are the leader sequence and the transmembrane domain, the peptides are in bold-italics and the transmembrane domain is italics-underlined.
- Fig. 29-33 show the gplOO adducts which were successfully expressed as secreted anti-DC receptor targeting vaccines. These employed the use of the flexible linker sequences and fragmentation and shuffling of the gplOO ectodomain coding region. Preferred embodiments of gplOO vaccine adducts are described.
- Fig. 29 shows the expression and construct design for anti-CD40-gpl00 peptide antibodies.
- Fig. 30 shows the design for additional anti-CD40-gpl00 peptide antibodies.
- Fig. 31 shows the expression and construct design for additional anti-CD40-gp 100 peptide antibodies.
- Fig. 32 is a summary of the CD4 + and CD8 + immunodominant epitopes for gplOO.
- Fig. 33 shows the expression and construct design for additional anti- CD40-gpl00 peptide antibodies.
- CTCGGGCACYTGTGGTCACTCA TA CTTA CCTGGAGCCTGGCCCA GTCA CTGCCCA GGTGGTCCTG CAGGCTGCCATTCCTCTCACCTCCTGTGGCTCCTCCCCAGTTCCA GCTAGC TGA (SEQ ID NO.:95)
- Cyclin Bl Antigen Cyclin B l, also known as CCNB l, is a human gene that encodes a regulatory protein involved in mitosis. Cyclin Bl complexes with p34(cdc2) to form the maturation-promoting factor (MPF).
- MPF maturation-promoting factor
- a first transcript encodes a constitutively expressed transcript.
- the second transcript is a cell cycle-regulated transcript expressed predominantly during G2/M phase.
- the following amino acid sequence is human cyclin Bl. Two peptide regions known to contain T cell epitopes are highlighted in bold-underlined and italics-underlined.
- Fig. 35 shows a summary of relative expression levels of prototype Cyclin Bl vaccines secreted from transfected mammalian 293F cells.
- the flexible linker sequences facilitate secretion.
- D-type cyclins are predominantly expressed in the G 1 phase of the cell cycle.
- the expression pattern of cyclin Dl has been extensively studied in certain cancer types including lymphoma and non-small cell lung cancer. Approximately 30 percent of breast carcinomas are Cyclin Dl positive.
- Over expression of Cyclin Dl is now a well established criterion for the diagnosis of Mantle Cell Lymphoma, a malignant, non-Hodgkin's lymphoma which is characterized by a unique chromosomal translocation t(l 1 ; 14). Cyclin D 1 - Peptide 1 -bold, Peptide 2-bold-underlined, Peptide-3 italics, Peptide 4-underlined.
- Fig. 34 shows the results obtained with the various antibodies using an assay that detects signaling via CD40 ligation - read out as cell death.
- CD40 itself can send such signals, but the intracellular domain of FAS is used for comparison when expressed in CHO cells (Fas CHO v. CHO). Briefly, CHS-S cells were transfected with expression vectors for either hCD40ectodomainTM fused to FAS intracellular domain, or hCD40. These cells proliferate normally, but signaling through CD40 ligation activated apoptotic signals. After 48 hours, MTT is added to the culture and reduction in dye is measured, which is directly proportional to the content of active mitochondria (i.e., live cells). ELISA.
- CD40 ecto human or NHP coh
- anti-mlgG HRP or CBD doc/then CD40 ecto cohesin
- NHP non human primate
- HRP horseradish peroxidase
- Cytokine production was measured as described in the examples above.
- Figs. 35 shows the binding of various constructs when the antibody has been made into a fusion protein with doc and then captures.
- Figs. 36 and 37 compare cytokine production with our without the addition of GM- CSF and IFNa (Fig. 36 A-D), and soluble antibodies alone (Fig. 37A-D) incubated with the DCs for 24 hours.
- Figure 38A-B demonstrates the effect of various concentrations of anti-CD40 antibodies of the present invention on direct B cell proliferation.
- B cell Proliferation B cells from PBMC of healthy donors were enriched by B cell enrichment kit (from BD). CFSE-labeled 5xl0e4 B cells were cultured in RPMI medium containing 10 % FCS in the presence of 50 units/ml IL-2 for 6 days. B cell proliferation was tested by measuring CFSE dilution using flow cytometry. Surprisingly, it was found that antibodies were able to cause B cell proliferation at various dilutions, while an immunoglobulin control and an anti-CD40 antibody (data not shown) did not.
- CD40 antibodies e.g., 12E12
- the various constructs shown herein demonstrate the that CD40 antibodies (e.g., 12E12) are capable of strong activation as variable domains when: (1) the antibody is reconfigured as a recombinant mouse v region human IgG4 C region chimera, and (2) the activity can be retained in the context of (1) with H-chain - C-terminal antigen added.
- CD40 antibodies e.g., 12E12
- variable region-peptide fusion proteins and/or complexes enhance greatly vaccine efficacy.
- the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), "including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps.
- A, B, C, or combinations thereof refers to all permutations and combinations of the listed items preceding the term.
- A, B, C, or combinations thereof is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB.
- expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, MB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth.
- the skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.
- compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Diabetes (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Dermatology (AREA)
- Pulmonology (AREA)
- Oncology (AREA)
- Virology (AREA)
- Gastroenterology & Hepatology (AREA)
- Communicable Diseases (AREA)
- Physical Education & Sports Medicine (AREA)
- Endocrinology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Neurology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Reproductive Health (AREA)
- Rheumatology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Transplantation (AREA)
- Obesity (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2011009438A MX2011009438A (en) | 2009-03-10 | 2010-03-05 | Anti-cd40 antibodies and uses thereof. |
DK10751218.8T DK2406286T3 (en) | 2009-03-10 | 2010-03-05 | Anti-cd40 antibodies and uses thereof |
CN201080020544.4A CN102448989B (en) | 2009-03-10 | 2010-03-05 | Anti-CD 40 antibodies and uses thereof |
BRPI1009455A BRPI1009455A2 (en) | 2009-03-10 | 2010-03-05 | anti-c40 antibodies and uses thereof |
ES10751218.8T ES2584956T3 (en) | 2009-03-10 | 2010-03-05 | Anti-CD40 antibodies and uses thereof |
EP10751218.8A EP2406286B1 (en) | 2009-03-10 | 2010-03-05 | Anti-cd40 antibodies and uses thereof |
JP2011554097A JP5653945B2 (en) | 2009-03-10 | 2010-03-05 | Anti-CD40 antibody and use thereof |
AU2010222942A AU2010222942B2 (en) | 2009-03-10 | 2010-03-05 | Anti-CD40 antibodies and uses thereof |
EP16159238.1A EP3091034B1 (en) | 2009-03-10 | 2010-03-05 | Anti-cd40 antibodies and uses thereof |
CA2754862A CA2754862C (en) | 2009-03-10 | 2010-03-05 | Anti-cd40 antibodies and uses thereof |
HK12108934.8A HK1168117A1 (en) | 2009-03-10 | 2012-09-12 | Anti-cd40 antibodies and uses thereof -cd40 |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15905909P | 2009-03-10 | 2009-03-10 | |
US15905509P | 2009-03-10 | 2009-03-10 | |
US15906209P | 2009-03-10 | 2009-03-10 | |
US61/159,059 | 2009-03-10 | ||
US61/159,062 | 2009-03-10 | ||
US61/159,055 | 2009-03-10 | ||
US12/718,365 US9562104B2 (en) | 2009-03-10 | 2010-03-05 | Anti-CD40 antibodies |
US12/718,365 | 2010-03-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010104761A2 true WO2010104761A2 (en) | 2010-09-16 |
WO2010104761A3 WO2010104761A3 (en) | 2011-01-06 |
Family
ID=42729029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/026375 WO2010104761A2 (en) | 2009-03-10 | 2010-03-05 | Anti-cd40 antibodies and uses thereof |
Country Status (15)
Country | Link |
---|---|
US (6) | US9562104B2 (en) |
EP (1) | EP2406286B1 (en) |
JP (3) | JP5653945B2 (en) |
CN (2) | CN106432493B (en) |
AR (1) | AR076106A1 (en) |
AU (1) | AU2010222942B2 (en) |
BR (1) | BRPI1009455A2 (en) |
CA (2) | CA3032548C (en) |
DK (1) | DK2406286T3 (en) |
ES (1) | ES2584956T3 (en) |
HK (1) | HK1168117A1 (en) |
MX (1) | MX2011009438A (en) |
PT (1) | PT2406286T (en) |
TW (1) | TWI571264B (en) |
WO (1) | WO2010104761A2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2688592A4 (en) * | 2011-03-25 | 2015-07-22 | Baylor Res Inst | Compositions and methods to immunize against hepatitis c virus |
US9562104B2 (en) | 2009-03-10 | 2017-02-07 | Baylor Research Institute | Anti-CD40 antibodies |
WO2017220989A1 (en) | 2016-06-20 | 2017-12-28 | Kymab Limited | Anti-pd-l1 and il-2 cytokines |
EP3151858A4 (en) * | 2014-06-05 | 2018-01-17 | The Board of Trustees of the University of Arkansas | Antibody guided vaccines and methods of use for generation of rapid mature immune responses |
IL255961A (en) * | 2015-05-29 | 2018-01-31 | Abbvie Inc | Anti-cd40 antibodies and uses thereof |
US10286058B2 (en) | 2014-01-13 | 2019-05-14 | Baylor Research Institute | Vaccines against HPV and HPV-related diseases |
WO2019241730A2 (en) | 2018-06-15 | 2019-12-19 | Flagship Pioneering Innovations V, Inc. | Increasing immune activity through modulation of postcellular signaling factors |
US10610585B2 (en) | 2017-09-26 | 2020-04-07 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods and compositions for treating and preventing HIV |
WO2020227159A2 (en) | 2019-05-03 | 2020-11-12 | Flagship Pioneering Innovations V, Inc. | Methods of modulating immune activity |
US10980869B2 (en) | 2009-03-10 | 2021-04-20 | Baylor Research Institute | Fusion proteins comprising an anti-CD40 antibody and cancer antigens |
WO2021127217A1 (en) | 2019-12-17 | 2021-06-24 | Flagship Pioneering Innovations V, Inc. | Combination anti-cancer therapies with inducers of iron-dependent cellular disassembly |
WO2022006179A1 (en) | 2020-06-29 | 2022-01-06 | Flagship Pioneering Innovations V, Inc. | Viruses engineered to promote thanotransmission and their use in treating cancer |
WO2024151687A1 (en) | 2023-01-09 | 2024-07-18 | Flagship Pioneering Innovations V, Inc. | Genetic switches and their use in treating cancer |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10293040B1 (en) * | 2006-11-06 | 2019-05-21 | Microvax, Llc | Pharmaceutical compositions and methods of blocking Bacillus anthracis |
AU2010222929B2 (en) * | 2008-07-16 | 2013-07-25 | Baylor Research Institute | Antigen presenting cell targeted anti-viral vaccines |
GB201006096D0 (en) * | 2010-04-13 | 2010-05-26 | Alligator Bioscience Ab | Novel compositions and uses thereof |
WO2011137245A2 (en) | 2010-04-30 | 2011-11-03 | Esperance Pharmaceuticals, Inc. | Lytic-peptide-her2/neu (human epidermal growth factor receptor 2) ligand conjugates and methods of use |
US9850296B2 (en) | 2010-08-10 | 2017-12-26 | Ecole Polytechnique Federale De Lausanne (Epfl) | Erythrocyte-binding therapeutics |
CN108117586A (en) | 2010-08-10 | 2018-06-05 | 洛桑聚合联合学院 | Erythrocyte binding therapeutic agent |
US9517257B2 (en) | 2010-08-10 | 2016-12-13 | Ecole Polytechnique Federale De Lausanne (Epfl) | Erythrocyte-binding therapeutics |
AU2011289234B2 (en) * | 2010-08-13 | 2014-09-11 | Baylor Research Institute | Novel vaccine adjuvants based on targeting adjuvants to antibodies directly to antigen-presenting cells |
WO2012122396A1 (en) * | 2011-03-08 | 2012-09-13 | Baylor Research Institute | Novel vaccine adjuvants based on targeting adjuvants to antibodies directly to antigen-presenting cells |
PL2683406T3 (en) | 2011-03-11 | 2019-11-29 | Beth Israel Deaconess Medical Ct Inc | Anti-cd40 antibodies and uses thereof |
JP6125489B2 (en) | 2011-04-29 | 2017-05-10 | アペクシジェン, インコーポレイテッド | Anti-CD40 antibodies and methods of use |
JP2015502356A (en) | 2011-11-30 | 2015-01-22 | ウェルスタット ダイアグノスティクス,エルエルシー | Assays, antibodies, immunogens and compositions related to 5-FU |
EP2914627B1 (en) | 2012-10-30 | 2021-04-07 | Apexigen, Inc. | Anti-cd40 antibodies and methods of use |
CA2916694C (en) | 2013-06-28 | 2023-01-17 | Baylor Research Institute | Dendritic cell asgpr targeting immunotherapeutics for multiple sclerosis |
US10953101B2 (en) | 2014-02-21 | 2021-03-23 | École Polytechnique Fédérale De Lausanne (Epfl) | Glycotargeting therapeutics |
US10046056B2 (en) | 2014-02-21 | 2018-08-14 | École Polytechnique Fédérale De Lausanne (Epfl) | Glycotargeting therapeutics |
JP6744227B2 (en) | 2014-02-21 | 2020-08-19 | エコール・ポリテクニーク・フェデラル・ドゥ・ローザンヌ(ウペエフエル)Ecole Polytechnique Federale de Lausanne (EPFL) | Sugar-targeted therapeutic agent |
US10946079B2 (en) | 2014-02-21 | 2021-03-16 | Ecole Polytechnique Federale De Lausanne | Glycotargeting therapeutics |
EP3157950A4 (en) * | 2014-06-20 | 2018-01-10 | Stephen D. Gillies | Influenza vaccines and methods of use thereof |
CN116063481A (en) | 2015-09-04 | 2023-05-05 | 普里玛托普医疗股份有限公司 | Humanized anti-CD 40 antibodies and uses thereof |
CN110267989B (en) * | 2017-06-01 | 2023-04-04 | 江苏恒瑞医药股份有限公司 | anti-CD 40 antibodies, antigen binding fragments thereof and medical uses thereof |
US11242397B2 (en) * | 2017-06-01 | 2022-02-08 | Pb Immune Therapeutics Inc. | Anti-CD40 antibody and methods for blocking CD40-CD40L signaling |
EP3638296A1 (en) | 2017-06-16 | 2020-04-22 | The University Of Chicago | Compositions and methods for inducing immune tolerance |
CN109384848A (en) * | 2017-08-10 | 2019-02-26 | 深圳市雅臣智能生物工程有限公司 | Double targeting antibodies of anti-human papilloma virus (anti-HPV) and anti-CD humanization and combinations thereof, preparation method and application |
AU2018432434A1 (en) * | 2018-07-20 | 2021-01-28 | Eucure (Beijing) Biopharma Co., Ltd | Anti-CD40 antibodies and uses thereof |
MX2022007688A (en) * | 2019-12-20 | 2022-07-19 | Amgen Inc | Mesothelin-targeted cd40 agonistic multispecific antibody constructs for the treatment of solid tumors. |
CA3214085A1 (en) | 2021-03-31 | 2022-10-06 | Darby Rye Schmidt | Thanotransmission polypeptides and their use in treating cancer |
AU2022303363A1 (en) | 2021-06-29 | 2024-01-18 | Flagship Pioneering Innovations V, Inc. | Immune cells engineered to promote thanotransmission and uses thereof |
US20240174732A1 (en) | 2022-10-05 | 2024-05-30 | Flagship Pioneering Innovations V, Inc. | Nucleic acid molecules encoding trif and additional polypeptides and their use in treating cancer |
Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4235871A (en) | 1978-02-24 | 1980-11-25 | Papahadjopoulos Demetrios P | Method of encapsulating biologically active materials in lipid vesicles |
US4501728A (en) | 1983-01-06 | 1985-02-26 | Technology Unlimited, Inc. | Masking of liposomes from RES recognition |
US4578770A (en) | 1982-08-30 | 1986-03-25 | Musashi Engineering Kabushiki Kaisha | Method of discriminating sheet |
US4599231A (en) | 1984-03-09 | 1986-07-08 | Scripps Clinic And Research Foundation | Synthetic hepatitis B virus vaccine including both T cell and B cell determinants |
US4599230A (en) | 1984-03-09 | 1986-07-08 | Scripps Clinic And Research Foundation | Synthetic hepatitis B virus vaccine including both T cell and B cell determinants |
US4601903A (en) | 1985-05-01 | 1986-07-22 | The United States Of America As Represented By The Department Of Health And Human Services | Vaccine against Neisseria meningitidis Group B serotype 2 invasive disease |
US4608251A (en) | 1984-11-09 | 1986-08-26 | Pitman-Moore, Inc. | LHRH analogues useful in stimulating anti-LHRH antibodies and vaccines containing such analogues |
WO1988001649A1 (en) | 1986-09-02 | 1988-03-10 | Genex Corporation | Single polypeptide chain binding molecules |
US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US4902505A (en) | 1986-07-30 | 1990-02-20 | Alkermes | Chimeric peptides for neuropeptide delivery through the blood-brain barrier |
WO1990007861A1 (en) | 1988-12-28 | 1990-07-26 | Protein Design Labs, Inc. | CHIMERIC IMMUNOGLOBULINS SPECIFIC FOR p55 TAC PROTEIN OF THE IL-2 RECEPTOR |
US4957735A (en) | 1984-06-12 | 1990-09-18 | The University Of Tennessee Research Corporation | Target-sensitive immunoliposomes- preparation and characterization |
US5004697A (en) | 1987-08-17 | 1991-04-02 | Univ. Of Ca | Cationized antibodies for delivery through the blood-brain barrier |
US5019369A (en) | 1984-10-22 | 1991-05-28 | Vestar, Inc. | Method of targeting tumors in humans |
US5055303A (en) | 1989-01-31 | 1991-10-08 | Kv Pharmaceutical Company | Solid controlled release bioadherent emulsions |
EP0491628A2 (en) | 1990-12-18 | 1992-06-24 | Institut Pasteur De Lille | Lipopeptide inducing T-cytotoxic lymphocytes and their use as vaccines |
US5188837A (en) | 1989-11-13 | 1993-02-23 | Nova Pharmaceutical Corporation | Lipsopheres for controlled delivery of substances |
US5254342A (en) | 1991-09-30 | 1993-10-19 | University Of Southern California | Compositions and methods for enhanced transepithelial and transendothelial transport or active agents |
US5268164A (en) | 1990-04-23 | 1993-12-07 | Alkermes, Inc. | Increasing blood-brain barrier permeability with permeabilizer peptides |
US5271961A (en) | 1989-11-06 | 1993-12-21 | Alkermes Controlled Therapeutics, Inc. | Method for producing protein microspheres |
US5413797A (en) | 1992-03-12 | 1995-05-09 | Alkermes Controlled Therapeutics, Inc. | Controlled release ACTH containing microspheres |
US5514670A (en) | 1993-08-13 | 1996-05-07 | Pharmos Corporation | Submicron emulsions for delivery of peptides |
EP0438474B1 (en) | 1988-10-12 | 1996-05-15 | Medical Research Council | Production of antibodies from transgenic animals |
EP0463151B1 (en) | 1990-01-12 | 1996-06-12 | Cell Genesys, Inc. | Generation of xenogeneic antibodies |
US5534496A (en) | 1992-07-07 | 1996-07-09 | University Of Southern California | Methods and compositions to enhance epithelial drug transport |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5569825A (en) | 1990-08-29 | 1996-10-29 | Genpharm International | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5770429A (en) | 1990-08-29 | 1998-06-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5871746A (en) | 1990-12-18 | 1999-02-16 | Institut National De La Sainte Et De La Recherche Medicale (Inserm) | Cytotoxic T lymphocyte-inducing lipopeptides and use as vaccines |
US6541011B2 (en) | 1998-02-11 | 2003-04-01 | Maxygen, Inc. | Antigen library immunization |
US20080181915A1 (en) | 2000-02-02 | 2008-07-31 | Government Of The United States Of America As Repreented By The Secretary Of The Department Of | Cd40 ligand adjuvant for respiratory syncytial virus |
US20080199471A1 (en) | 2002-03-01 | 2008-08-21 | Bernett Matthew J | Optimized cd40 antibodies and methods of using the same |
US7456260B2 (en) | 2002-06-17 | 2008-11-25 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Humanized antibody |
Family Cites Families (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4012A (en) * | 1845-04-26 | Improvement in electrographic printing | ||
GB8607679D0 (en) | 1986-03-27 | 1986-04-30 | Winter G P | Recombinant dna product |
DE4233152A1 (en) * | 1992-10-02 | 1994-04-07 | Behringwerke Ag | Antibody-enzyme conjugates for prodrug activation |
ES2102815T5 (en) * | 1993-01-16 | 2001-11-16 | Manfred Schawaller | PROCEDURE FOR OBTAINING NATIVE, OLIGOMERAL, GLYCOSYLED ECTODOMINES OF VIRAL MEMBRANE PROTEINS, THEIR USE, SPECIALLY AS A VACCINE AGAINST HIV. |
US6040137A (en) * | 1995-04-27 | 2000-03-21 | Tripep Ab | Antigen/antibody specification exchanger |
US5888773A (en) | 1994-08-17 | 1999-03-30 | The United States Of America As Represented By The Department Of Health And Human Services | Method of producing single-chain Fv molecules |
US6440418B1 (en) * | 1995-11-07 | 2002-08-27 | Idec Pharmaceuticals Corporation | Methods of treating autoimmune diseases with gp39-specific antibodies |
EP1033406A4 (en) | 1997-10-27 | 2005-03-09 | Sumitomo Electric Industries | Inducer for production of antigen-specific antibody, expression vector containing gene therefor, and method of inducing production of antigen-specific antibody |
FR2771640B1 (en) | 1997-12-03 | 2000-02-11 | Inst Nat Sante Rech Med | MIXED MICELLES OF LIPOPEPTIDES FOR INDUCING AN IMMUNE RESPONSE AND THEIR USES FOR THERAPEUTIC PURPOSES |
KR100692227B1 (en) * | 1998-04-07 | 2007-03-09 | 코릭사 코포레이션 | Fusion proteins of mycobacterium tuberculosis antigens and their uses |
EP1073667A2 (en) * | 1998-04-28 | 2001-02-07 | Galenica Pharmaceuticals, Inc. | Polysaccharide-antigen conjugates |
US6946129B1 (en) | 1999-06-08 | 2005-09-20 | Seattle Genetics, Inc. | Recombinant anti-CD40 antibody and uses thereof |
AU1084901A (en) * | 1999-10-14 | 2001-04-23 | Martha S. Hayden-Ledbetter | Dna vaccines encoding antigen linked to a domain that binds cd40 |
GB9926084D0 (en) | 1999-11-03 | 2000-01-12 | King S College London | Recombinant fusion molecules |
US20030059427A1 (en) * | 2000-04-28 | 2003-03-27 | Force Walker R. | Isolation and characterization of highly active anti-CD40 antibody |
WO2001083755A2 (en) * | 2000-04-28 | 2001-11-08 | La Jolla Institute For Allergy And Immunology | Human anti-cd40 antibodies and methods of making and using same |
US7560534B2 (en) | 2000-05-08 | 2009-07-14 | Celldex Research Corporation | Molecular conjugates comprising human monoclonal antibodies to dendritic cells |
CN1452636B (en) | 2000-05-08 | 2011-06-15 | 塞尔德克斯医疗公司 | Human monoclonal antibodies to dendritis cells |
US20030232055A1 (en) | 2000-07-31 | 2003-12-18 | Ruslan Medzhitov | Innate immune system-directed vaccines |
JP4202127B2 (en) * | 2000-10-02 | 2008-12-24 | ノバルティス バクシンズ アンド ダイアグノスティックス,インコーポレーテッド | B cell malignancy treatment method using antagonist anti-CD40 antibody |
JP4025881B2 (en) | 2001-04-27 | 2007-12-26 | キリンファーマ株式会社 | Anti-CD40 monoclonal antibody |
EP2009027B1 (en) * | 2001-04-27 | 2014-05-21 | Kyowa Hakko Kirin Co., Ltd. | Anti-CD40 monoclonal antibody |
AU2002347404A1 (en) | 2001-09-14 | 2003-04-01 | Cytos Biotechnology Ag | In vivo activation of antigen presenting cells for enhancement of immune responses induced by virus like particles |
WO2003029296A1 (en) * | 2001-10-02 | 2003-04-10 | Chiron Corporation | Human anti-cd40 antibodies |
AR039067A1 (en) * | 2001-11-09 | 2005-02-09 | Pfizer Prod Inc | ANTIBODIES FOR CD40 |
WO2003074679A2 (en) | 2002-03-01 | 2003-09-12 | Xencor | Antibody optimization |
FR2837104B1 (en) | 2002-03-14 | 2004-08-06 | Dev Des Antigenes Combinatoire | USE OF LIPOPEPTIDE MIXTURE FOR THE MANUFACTURE OF VACCINES |
US8025873B2 (en) * | 2002-06-20 | 2011-09-27 | Paladin Labs, Inc. | Chimeric antigens for eliciting an immune response |
CN100381463C (en) * | 2002-09-18 | 2008-04-16 | 中国人民解放军免疫学研究所 | Immunogen for producing vaccine or medicine to treat hepatitis B, its preparation process and use |
US20040146948A1 (en) | 2002-10-18 | 2004-07-29 | Centenary Institute Of Cancer Medicine And Cell Biology | Compositions and methods for targeting antigen-presenting cells with antibody single-chain variable region fragments |
JP2004192125A (en) | 2002-12-09 | 2004-07-08 | Mitsue-Links Co Ltd | Project management system, data structure used therefor, and project management method |
GB0228796D0 (en) | 2002-12-11 | 2003-01-15 | Adjuvantix Ltd | Valency |
CA2514270A1 (en) | 2003-02-06 | 2004-08-19 | Tripep Ab | Antigen/antibody or ligand/receptor glycosylated specificity exchangers |
AR045563A1 (en) * | 2003-09-10 | 2005-11-02 | Warner Lambert Co | ANTIBODIES DIRECTED TO M-CSF |
US8277810B2 (en) * | 2003-11-04 | 2012-10-02 | Novartis Vaccines & Diagnostics, Inc. | Antagonist anti-CD40 antibodies |
WO2005063981A1 (en) | 2003-12-25 | 2005-07-14 | Kirin Beer Kabushiki Kaisha | Mutants of anti-cd40 antibody |
US7691579B2 (en) | 2005-04-15 | 2010-04-06 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Methods and compositions for producing an enhanced immune response to a human papillomavirus immunogen |
EP1885399B1 (en) | 2005-05-26 | 2010-10-20 | Seattle Genetics, Inc. | Humanized anti-cd40 antibodies and their methods of use |
JP2007026135A (en) | 2005-07-19 | 2007-02-01 | Shimizu Corp | Program management chart creation support system |
ATE461295T1 (en) * | 2005-08-30 | 2010-04-15 | Univ Nebraska | METHOD AND COMPOSITIONS FOR VACCINATION OF ANIMALS WITH PRRSV ANTIGENS WITH IMPROVED IMMUNOGENICITY |
EP1948802A4 (en) | 2005-10-13 | 2009-01-14 | Virexx Medical Corp | Chimeric antigen containing hepatitis c virus polypeptide and fc fragment for eliciting an immune response |
WO2007051169A2 (en) * | 2005-10-28 | 2007-05-03 | Centocor, Inc. | Use of b cell expansion agents in generating antibodies |
WO2007103048A2 (en) * | 2006-03-01 | 2007-09-13 | Regents Of The University Of Colorado | Tlr agonist (flagellin)/cd40 agonist/antigen protein and dna conjugates and use thereof for inducing synergistic enhancement in immunity |
EP2019857B1 (en) | 2006-05-03 | 2016-09-28 | The Regents of the University of Colorado, a body corporate | Cd40 agonist antibody/type1 interferon synergistic adjuvant combination, conjugates containing and use thereof as a therapeutic to enhance cellular immunity |
US7804955B2 (en) | 2006-06-21 | 2010-09-28 | Sony Ericsson Mobile Communications Ab | Flexible key plate |
KR101493779B1 (en) * | 2006-10-12 | 2015-02-16 | 츄가이 세이야꾸 가부시키가이샤 | Diagnosis and treatment of cancer using anti-ereg antibody |
US20080241139A1 (en) * | 2006-10-31 | 2008-10-02 | Regents Of The University Of Colorado | Adjuvant combinations comprising a microbial tlr agonist, a cd40 or 4-1bb agonist, and optionally an antigen and the use thereof for inducing a synergistic enhancement in cellular immunity |
CA2715042C (en) | 2007-02-02 | 2021-02-02 | Baylor Research Institute | Multivariable antigens complexed with targeting humanized monoclonal antibody |
AU2008214032B2 (en) * | 2007-02-02 | 2012-06-28 | Baylor Research Institute | Vaccines based on targeting antigen to DCIR expressed on antigen-presenting cells |
TWI422594B (en) | 2007-02-02 | 2014-01-11 | Baylor Res Inst | Agents that engage antigen-presenting cells through dendritic cell asialoglycoprotein receptor (dc-asgpr) |
CA3028038C (en) | 2007-05-11 | 2021-08-10 | Altor Bioscience Corporation | Fusion molecules and il-15 variants |
US20090023822A1 (en) * | 2007-07-19 | 2009-01-22 | Tijm Peter J | Method for activating and regenerating catalyst for a fischer-tropsch synthesis reaction |
JP5233505B2 (en) | 2008-03-17 | 2013-07-10 | 株式会社リコー | Joint work support device, joint work support system, joint work support method, program, and recording medium |
WO2010009346A2 (en) * | 2008-07-16 | 2010-01-21 | Baylor Research Institute | Hiv vaccine based on targeting maximized gag and nef to dendritic cells |
WO2010104747A2 (en) | 2009-03-10 | 2010-09-16 | Baylor Research Institute | Antigen presenting cell targeted vaccines |
AU2010222929B2 (en) * | 2008-07-16 | 2013-07-25 | Baylor Research Institute | Antigen presenting cell targeted anti-viral vaccines |
CN106432493B (en) * | 2009-03-10 | 2020-01-31 | 贝勒研究院 | anti-CD40 antibodies and uses thereof |
JP2013503140A (en) * | 2009-08-27 | 2013-01-31 | ノヴォ ノルディスク アー/エス | Targeting tissue factor to activated platelets |
AR078423A1 (en) | 2009-09-14 | 2011-11-09 | Baylor Res Inst | VACCINES DIRECTED TO LANGERHANS CELLS |
MX2012012833A (en) | 2010-05-07 | 2012-11-30 | Baylor Res Inst | Dendritic cell immunoreceptors (dcir)-mediated crosspriming of human cd8+ t cells. |
JP2012052007A (en) | 2010-08-31 | 2012-03-15 | Fujifilm Corp | Cyclic phosphorus carbonate compound, flame retardant, resin composition, and housing for electric and electronic equipment |
US20120244155A1 (en) * | 2011-03-22 | 2012-09-27 | Baylor Research Institute | Dendritic Cells (DCs) Targeting for Tuberculosis (TB) Vaccine |
JP2014157365A (en) * | 2014-04-30 | 2014-08-28 | Canon Inc | Electrophotographic image forming apparatus |
-
2010
- 2010-03-05 CN CN201510634642.1A patent/CN106432493B/en active Active
- 2010-03-05 US US12/718,365 patent/US9562104B2/en active Active
- 2010-03-05 CA CA3032548A patent/CA3032548C/en active Active
- 2010-03-05 ES ES10751218.8T patent/ES2584956T3/en active Active
- 2010-03-05 BR BRPI1009455A patent/BRPI1009455A2/en not_active IP Right Cessation
- 2010-03-05 JP JP2011554097A patent/JP5653945B2/en active Active
- 2010-03-05 DK DK10751218.8T patent/DK2406286T3/en active
- 2010-03-05 CN CN201080020544.4A patent/CN102448989B/en active Active
- 2010-03-05 CA CA2754862A patent/CA2754862C/en active Active
- 2010-03-05 MX MX2011009438A patent/MX2011009438A/en active IP Right Grant
- 2010-03-05 EP EP10751218.8A patent/EP2406286B1/en active Active
- 2010-03-05 WO PCT/US2010/026375 patent/WO2010104761A2/en active Application Filing
- 2010-03-05 PT PT107512188T patent/PT2406286T/en unknown
- 2010-03-05 AU AU2010222942A patent/AU2010222942B2/en not_active Ceased
- 2010-03-10 AR ARP100100734A patent/AR076106A1/en unknown
- 2010-03-10 TW TW099106977A patent/TWI571264B/en not_active IP Right Cessation
-
2012
- 2012-09-12 HK HK12108934.8A patent/HK1168117A1/en not_active IP Right Cessation
-
2014
- 2014-01-27 US US14/165,400 patent/US9567401B2/en active Active
- 2014-08-01 JP JP2014157365A patent/JP6329842B2/en active Active
-
2016
- 2016-10-06 JP JP2016198376A patent/JP2017061463A/en not_active Ceased
-
2017
- 2017-01-09 US US15/401,856 patent/US10087256B2/en active Active
-
2018
- 2018-09-27 US US16/143,995 patent/US10683361B2/en active Active
-
2020
- 2020-06-15 US US16/946,302 patent/US11267895B2/en active Active
-
2022
- 2022-03-07 US US17/687,971 patent/US20220340670A1/en active Pending
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4235871A (en) | 1978-02-24 | 1980-11-25 | Papahadjopoulos Demetrios P | Method of encapsulating biologically active materials in lipid vesicles |
US4578770A (en) | 1982-08-30 | 1986-03-25 | Musashi Engineering Kabushiki Kaisha | Method of discriminating sheet |
US4501728A (en) | 1983-01-06 | 1985-02-26 | Technology Unlimited, Inc. | Masking of liposomes from RES recognition |
US4599231A (en) | 1984-03-09 | 1986-07-08 | Scripps Clinic And Research Foundation | Synthetic hepatitis B virus vaccine including both T cell and B cell determinants |
US4599230A (en) | 1984-03-09 | 1986-07-08 | Scripps Clinic And Research Foundation | Synthetic hepatitis B virus vaccine including both T cell and B cell determinants |
US4957735A (en) | 1984-06-12 | 1990-09-18 | The University Of Tennessee Research Corporation | Target-sensitive immunoliposomes- preparation and characterization |
US5019369A (en) | 1984-10-22 | 1991-05-28 | Vestar, Inc. | Method of targeting tumors in humans |
US4608251A (en) | 1984-11-09 | 1986-08-26 | Pitman-Moore, Inc. | LHRH analogues useful in stimulating anti-LHRH antibodies and vaccines containing such analogues |
US4601903A (en) | 1985-05-01 | 1986-07-22 | The United States Of America As Represented By The Department Of Health And Human Services | Vaccine against Neisseria meningitidis Group B serotype 2 invasive disease |
US4902505A (en) | 1986-07-30 | 1990-02-20 | Alkermes | Chimeric peptides for neuropeptide delivery through the blood-brain barrier |
WO1988001649A1 (en) | 1986-09-02 | 1988-03-10 | Genex Corporation | Single polypeptide chain binding molecules |
US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5004697A (en) | 1987-08-17 | 1991-04-02 | Univ. Of Ca | Cationized antibodies for delivery through the blood-brain barrier |
EP0438474B1 (en) | 1988-10-12 | 1996-05-15 | Medical Research Council | Production of antibodies from transgenic animals |
WO1990007861A1 (en) | 1988-12-28 | 1990-07-26 | Protein Design Labs, Inc. | CHIMERIC IMMUNOGLOBULINS SPECIFIC FOR p55 TAC PROTEIN OF THE IL-2 RECEPTOR |
US5055303A (en) | 1989-01-31 | 1991-10-08 | Kv Pharmaceutical Company | Solid controlled release bioadherent emulsions |
US5271961A (en) | 1989-11-06 | 1993-12-21 | Alkermes Controlled Therapeutics, Inc. | Method for producing protein microspheres |
US5188837A (en) | 1989-11-13 | 1993-02-23 | Nova Pharmaceutical Corporation | Lipsopheres for controlled delivery of substances |
EP0463151B1 (en) | 1990-01-12 | 1996-06-12 | Cell Genesys, Inc. | Generation of xenogeneic antibodies |
US5268164A (en) | 1990-04-23 | 1993-12-07 | Alkermes, Inc. | Increasing blood-brain barrier permeability with permeabilizer peptides |
US5506206A (en) | 1990-04-23 | 1996-04-09 | Alkermes, Inc. | Increasing blood-brain barrier permeability with permeabilizer peptides |
US5770429A (en) | 1990-08-29 | 1998-06-23 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5569825A (en) | 1990-08-29 | 1996-10-29 | Genpharm International | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
EP0546073B1 (en) | 1990-08-29 | 1997-09-10 | GenPharm International, Inc. | production and use of transgenic non-human animals capable of producing heterologous antibodies |
US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
EP0491628A2 (en) | 1990-12-18 | 1992-06-24 | Institut Pasteur De Lille | Lipopeptide inducing T-cytotoxic lymphocytes and their use as vaccines |
US5871746A (en) | 1990-12-18 | 1999-02-16 | Institut National De La Sainte Et De La Recherche Medicale (Inserm) | Cytotoxic T lymphocyte-inducing lipopeptides and use as vaccines |
US5254342A (en) | 1991-09-30 | 1993-10-19 | University Of Southern California | Compositions and methods for enhanced transepithelial and transendothelial transport or active agents |
US5413797A (en) | 1992-03-12 | 1995-05-09 | Alkermes Controlled Therapeutics, Inc. | Controlled release ACTH containing microspheres |
US5534496A (en) | 1992-07-07 | 1996-07-09 | University Of Southern California | Methods and compositions to enhance epithelial drug transport |
US5514670A (en) | 1993-08-13 | 1996-05-07 | Pharmos Corporation | Submicron emulsions for delivery of peptides |
US6541011B2 (en) | 1998-02-11 | 2003-04-01 | Maxygen, Inc. | Antigen library immunization |
US20080181915A1 (en) | 2000-02-02 | 2008-07-31 | Government Of The United States Of America As Repreented By The Secretary Of The Department Of | Cd40 ligand adjuvant for respiratory syncytial virus |
US20080199471A1 (en) | 2002-03-01 | 2008-08-21 | Bernett Matthew J | Optimized cd40 antibodies and methods of using the same |
US7456260B2 (en) | 2002-06-17 | 2008-11-25 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Humanized antibody |
Non-Patent Citations (10)
Title |
---|
"Current Protocols in Molecular Biology", 2007, JOHN WILEY AND SONS |
"Fundamental Virology", 1991, RAVEN PRESS |
BANGA, A. J.: "THERAPEUTIC PEPTIDES AND PROTEINS: FORMULATION, PROCESSING, AND DELIVERY SYSTEMS", 1995, TECHNOMIC PUBLISHING COMPANY, INC. |
BEAUCHAMP ET AL., ANAL BIOCHEM., vol. 131, 1982, pages 25 |
GOODSON ET AL., BIO/TECHNOLOGY, vol. 8, 1990, pages 343 |
KABAT E. A. ET AL.: "Sequences of Proteins of Immunological Interest", NATIONAL INSTITUTE OF HEALTH |
KLINGUER ET AL.: "Characterization of a multi-lipopeptides mixture used as an HN -1 vaccine candidate", VACCINE, vol. 18, 1999, pages 259 - 267 |
LANGER, R., ACCOUNTS CHEM. RES., vol. 26, 1993, pages 537 - 542 |
LISI ET AL., APPLIED BIOCHEM., vol. 4, 1982, pages 19 |
See also references of EP2406286A4 |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10087256B2 (en) | 2009-03-10 | 2018-10-02 | Baylor Research Institute | Method of making an anti-CD40 antibody |
US9562104B2 (en) | 2009-03-10 | 2017-02-07 | Baylor Research Institute | Anti-CD40 antibodies |
US9567401B2 (en) | 2009-03-10 | 2017-02-14 | Baylor Research Institute | Anti-CD40 antibodies |
US10980869B2 (en) | 2009-03-10 | 2021-04-20 | Baylor Research Institute | Fusion proteins comprising an anti-CD40 antibody and cancer antigens |
US10683361B2 (en) | 2009-03-10 | 2020-06-16 | Baylor Research Institute | Anti-CD40 antibodies |
US11267895B2 (en) | 2009-03-10 | 2022-03-08 | Baylor Research Institute | Nucleic acids encoding anti-CD40 antibodies |
US11806390B2 (en) | 2009-03-10 | 2023-11-07 | Baylor Research Institute | Fusion proteins comprising an anti-CD40 antibody and cancer antigens |
EP2688592A4 (en) * | 2011-03-25 | 2015-07-22 | Baylor Res Inst | Compositions and methods to immunize against hepatitis c virus |
US10286058B2 (en) | 2014-01-13 | 2019-05-14 | Baylor Research Institute | Vaccines against HPV and HPV-related diseases |
US11717567B2 (en) | 2014-01-13 | 2023-08-08 | Baylor Research Institute | Vaccines against HPV and HPV-related diseases |
EP3992210A1 (en) | 2014-01-13 | 2022-05-04 | Baylor Research Institute | Novel vaccines against hpv and hpv-related diseases |
US10940195B2 (en) | 2014-01-13 | 2021-03-09 | Baylor Research Institute | Vaccines against HPV and HPV-related diseases |
EP3151858A4 (en) * | 2014-06-05 | 2018-01-17 | The Board of Trustees of the University of Arkansas | Antibody guided vaccines and methods of use for generation of rapid mature immune responses |
IL255961A (en) * | 2015-05-29 | 2018-01-31 | Abbvie Inc | Anti-cd40 antibodies and uses thereof |
EP3626744A1 (en) * | 2015-05-29 | 2020-03-25 | AbbVie Inc. | Anti-cd40 antibodies and uses thereof |
WO2017220988A1 (en) | 2016-06-20 | 2017-12-28 | Kymab Limited | Multispecific antibodies for immuno-oncology |
WO2017220990A1 (en) | 2016-06-20 | 2017-12-28 | Kymab Limited | Anti-pd-l1 antibodies |
WO2017220989A1 (en) | 2016-06-20 | 2017-12-28 | Kymab Limited | Anti-pd-l1 and il-2 cytokines |
US10610585B2 (en) | 2017-09-26 | 2020-04-07 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Methods and compositions for treating and preventing HIV |
US11219683B2 (en) | 2017-09-26 | 2022-01-11 | INSTITUT NATIONAL DE LA SANTÉ ET DE LA RECHERCHE M{circumflex over (D)}DICALE (INSERM) | Methods and compositions for treating and preventing HIV |
US10722572B2 (en) | 2017-09-26 | 2020-07-28 | Institut National De La Sante Et De La Recherche Medicale Inserm | Methods and compositions for treating and preventing HIV |
WO2019241730A2 (en) | 2018-06-15 | 2019-12-19 | Flagship Pioneering Innovations V, Inc. | Increasing immune activity through modulation of postcellular signaling factors |
WO2020227159A2 (en) | 2019-05-03 | 2020-11-12 | Flagship Pioneering Innovations V, Inc. | Methods of modulating immune activity |
WO2021127217A1 (en) | 2019-12-17 | 2021-06-24 | Flagship Pioneering Innovations V, Inc. | Combination anti-cancer therapies with inducers of iron-dependent cellular disassembly |
WO2022006179A1 (en) | 2020-06-29 | 2022-01-06 | Flagship Pioneering Innovations V, Inc. | Viruses engineered to promote thanotransmission and their use in treating cancer |
WO2024151687A1 (en) | 2023-01-09 | 2024-07-18 | Flagship Pioneering Innovations V, Inc. | Genetic switches and their use in treating cancer |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11267895B2 (en) | Nucleic acids encoding anti-CD40 antibodies | |
US20210308242A1 (en) | Fusion proteins comprising an anti-cd40 antibody and cancer antigens | |
EP3091034B1 (en) | Anti-cd40 antibodies and uses thereof | |
AU2012261572B2 (en) | Antigen Presenting Cell Targeted Vaccines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080020544.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10751218 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011554097 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2754862 Country of ref document: CA Ref document number: MX/A/2011/009438 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010222942 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7291/DELNP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2010222942 Country of ref document: AU Date of ref document: 20100305 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010751218 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1009455 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1009455 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110912 |