[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010016457A1 - エピタキシャルシリコンウェーハ及びその製造方法 - Google Patents

エピタキシャルシリコンウェーハ及びその製造方法 Download PDF

Info

Publication number
WO2010016457A1
WO2010016457A1 PCT/JP2009/063740 JP2009063740W WO2010016457A1 WO 2010016457 A1 WO2010016457 A1 WO 2010016457A1 JP 2009063740 W JP2009063740 W JP 2009063740W WO 2010016457 A1 WO2010016457 A1 WO 2010016457A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
epitaxial
carrier dopant
silicon
single crystal
Prior art date
Application number
PCT/JP2009/063740
Other languages
English (en)
French (fr)
Inventor
英一 浅山
尚志 足立
民雄 本山
光二 松本
和尚 鳥越
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Publication of WO2010016457A1 publication Critical patent/WO2010016457A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering

Definitions

  • the present invention relates to an epitaxial silicon wafer and a manufacturing method thereof.
  • CZ-Si substrates grown by the CZ method have been used for highly integrated silicon semiconductor devices.
  • supersaturated interstitial oxygen is in the order of about 10 18 atoms / cm 3 for these CZ-Si substrates. It is well known that crystal defects such as oxygen precipitates, dislocations and stacking faults are induced in the device manufacturing process.
  • an epitaxial silicon wafer obtained by growing an epitaxial layer almost completely free of crystal defects on a CZ-Si substrate is often used for highly integrated devices.
  • Gettering technologies include intrinsic gettering (IG) using crystal defects caused by oxygen naturally induced during heat treatment of device processes as a sink, and sand blasting, Si 3 N 4 film, or Poly-Si film growth. There is an extrinsic gettering (EG) typified by back surface distortion.
  • IG intrinsic gettering
  • EG extrinsic gettering
  • MCPs multi-chip packages
  • Patent Document 1 and Patent Document 2 propose an epitaxial wafer including a layer containing a non-carrier dopant on a Si substrate.
  • the problem to be solved by the present invention is to provide an epitaxial silicon wafer having high gettering ability even if the integrated circuit substrate is thinned.
  • An epitaxial silicon wafer and a manufacturing method thereof according to the present invention are epitaxial silicon wafers having a silicon epitaxial layer on a main surface of a silicon single crystal substrate, and at least a non-carrier dopant is added to the silicon single crystal substrate and the silicon epitaxial layer.
  • a first layer including a second layer including a non-carrier dopant is formed.
  • the first layer containing at least the non-carrier dopant and the second layer containing the non-carrier dopant are formed on the silicon single crystal substrate and the silicon epitaxial layer
  • heat treatment such as an epitaxial growth step or a subsequent device step is performed.
  • Oxygen contained in the silicon single crystal substrate flows into the first layer containing the non-carrier dopant, and the distortion of the first layer containing the non-carrier dopant is relaxed. Almost no oxygen flows into the second layer containing the non-carrier dopant formed in (1).
  • the strain of the second layer containing the non-carrier dopant is maintained, and as a result, the gettering ability of the impurity metal by the second layer containing the non-carrier dopant is maintained in a high state.
  • an epitaxial silicon wafer having high gettering ability can be obtained even if the integrated circuit substrate is thinned.
  • 1A to 1E are sectional views of a wafer showing a method of manufacturing an epitaxial silicon wafer according to the first embodiment.
  • the silicon single crystal grown by the CZ method is first subjected to processing such as slicing, grinding, etching, mirror polishing, and the like to obtain the silicon single crystal substrate 1.
  • the diameter and thickness of the silicon single crystal substrate 1 are not particularly limited, but the initial interstitial oxygen concentration is limited to 2.7 ⁇ 10 18 atoms / cc (ASTM F-121, 1979) or less from the solid solubility.
  • the silicon single crystal substrate 1 is set in an ion implantation apparatus, and carbon ions are ion-implanted into one surface (upper surface in FIG. 1) of the silicon single crystal substrate 1 as shown in FIG. 1A, as shown in FIG. 1B.
  • a first layer 2 containing a non-carrier dopant is formed near the surface of the silicon single crystal substrate 1.
  • Carbon ions can be implanted under the conditions of an acceleration energy of 1 to 2000 keV, a peak density of 10 15 to 10 22 atoms / cc, and a depth from the surface of 0.01 to 2.0 ⁇ m.
  • ions to be ion-implanted may be any non-carrier dopant, and Si, Ge, Sn, Pb, He, Ne, Ar, Kr, Xe, and the like can also be used.
  • the first layer 2 including the non-carrier dopant of this example has a function of capturing oxygen existing in the silicon single crystal substrate 1, it is more preferable to use a dopant such as carbon that easily binds to the oxygen. preferable.
  • the depth of the first layer 2 containing the non-carrier dopant is not particularly limited, but in consideration of the function of capturing oxygen present in the silicon single crystal substrate 1, it is formed as close to the surface of the silicon single crystal substrate 1 as possible. More preferably.
  • the silicon single crystal substrate 1 on which the first layer 2 containing the non-carrier dopant is formed is set in a vapor phase growth apparatus, and the silicon epitaxial layer 3 is formed on the surface of the silicon single crystal substrate 1 as shown in FIG. 1C. Form.
  • a monosilane gas or a hydrogen-diluted chlorosilane-based gas added with a diborane (P-type) or phosphine or arsine (N-type) dopant source gas is used.
  • a silicon epitaxial layer 3 is formed on the surface of the silicon single crystal substrate 1 by a thermal CVD reaction. The thickness of the silicon epitaxial layer 3 is appropriately selected according to the target device.
  • the silicon single crystal substrate 1 on which the silicon epitaxial layer 3 is formed is set in an ion implantation apparatus, and as shown in FIG. 1D, carbon ions are ion-implanted into the surface of the silicon epitaxial layer 3 (upper surface in the figure).
  • a second layer 4 containing a non-carrier dopant is formed in the silicon epitaxial layer 3.
  • This carbon ion implantation can be performed under the conditions of an acceleration energy of 1 to 2000 keV, a peak density of 10 15 to 10 22 atoms / cc, and a depth from the surface of 0.01 to 2 ⁇ m.
  • ions to be ion-implanted may be any non-carrier dopant, and Si, Ge, Sn, Pb, He, Ne, Ar, Kr, Xe and the like can also be used.
  • the second layer 4 containing a non-carrier dopant in this example is responsible for the function of trapping metal impurities in the device process. It is more preferable to use a dopant that easily binds to impurities.
  • the depth of the second layer 4 containing the non-carrier dopant is not particularly limited, but in consideration of the metal impurity trapping function, the second layer 4 is formed at a position deeper than the device active region and in the vicinity of the device active region. Is more preferable.
  • the oxygen present in the silicon single crystal substrate 1 tends to diffuse outward by the heat treatment in the vapor phase growth process and the heat treatment in the subsequent device process, but as shown by arrows in FIG. 1E, Oxygen present on the back side of the first layer 2 containing the non-carrier dopant is attracted to the strain generated by the first layer 2 containing the non-carrier dopant and is bonded to carbon.
  • the second layer 4 containing the non-carrier dopant formed in the silicon epitaxial layer 3 is very small. Since only a small amount of oxygen is captured (oxygen present in the region on the surface side of the silicon single crystal substrate 1 from the first layer 2 containing the non-carrier dopant), the non-carrier dopant is It is possible to suppress a decrease in the metal impurity capturing function of the second layer 4 that is included.
  • the initial oxygen concentration of the silicon single crystal substrate 1 is high, oxygen can be captured by the first layer 2 containing the non-carrier dopant, and the second layer 4 containing the non-carrier dopant exhibits the gettering function. Therefore, a wafer having a high gettering ability can be obtained without using a silicon single crystal having a low initial oxygen concentration.
  • the first layer 2 containing the non-carrier dopant and the second layer 4 containing the non-carrier dopant can be formed even if the wafer itself is thinned, it is applied to a device wafer such as MCP. be able to.
  • Second Embodiment are cross-sectional views of a wafer showing a method of manufacturing an epitaxial silicon wafer according to the second embodiment.
  • a first layer 2 containing a non-carrier dopant and a second layer 4 containing a non-carrier dopant are formed on the silicon epitaxial layer 3.
  • the silicon single crystal grown by the CZ method is subjected to processing such as slicing, grinding, etching, mirror polishing, etc., and the silicon single crystal substrate 1 is obtained.
  • the diameter and thickness of the silicon single crystal substrate 1 are not particularly limited, but the initial interstitial oxygen concentration is limited to 2.7 ⁇ 10 18 atoms / cc (ASTM F-121, 1979) or less from the solid solubility. This is the same as in the first embodiment.
  • this silicon single crystal substrate 1 is set in a vapor phase growth apparatus, and a silicon epitaxial layer 3 is formed on the surface of the silicon single crystal substrate 1 as shown in FIG. 2B.
  • diborane (P-type) or phosphine or arsine (N-type) is added to a monosilane gas or a hydrogen-diluted chlorosilane-based gas, as in the first embodiment.
  • a material to which a dopant source gas is added can be used.
  • a silicon epitaxial layer 3 is formed on the surface of the silicon single crystal substrate 1 by a thermal CVD reaction. The thickness of the silicon epitaxial layer 3 is appropriately selected according to the target device.
  • the silicon single crystal substrate 1 on which the silicon epitaxial layer 3 is formed is set in an ion implantation apparatus, and as shown in FIG. 2C, carbon ions are ion-implanted into the surface of the silicon epitaxial layer 3 (upper surface in the figure).
  • a first layer 2 containing a non-carrier dopant is formed in the silicon epitaxial layer 3.
  • This carbon ion implantation can be performed under the conditions of an acceleration energy of 1 to 2000 keV, a peak density of 10 15 to 10 22 atoms / cc, and a depth from the surface of 0.01 to 2 ⁇ m.
  • ions to be ion-implanted may be any non-carrier dopant, and Si, Ge, Sn, Pb, He, Ne, Ar, Kr, Xe, and the like can also be used.
  • the first layer 2 including the non-carrier dopant of this example has a function of capturing oxygen existing in the silicon single crystal substrate 1, it is more preferable to use a dopant such as carbon that easily binds to the oxygen. preferable.
  • the depth of the first layer 2 containing the non-carrier dopant is not particularly limited, but in consideration of the function of capturing oxygen present in the silicon single crystal substrate 1, it is formed as close to the surface of the silicon single crystal substrate 1 as possible. More preferably.
  • carbon ions are ion-implanted into the surface (upper surface in FIG. 2) of the silicon epitaxial layer 3 on which the first layer 2 containing the non-carrier dopant is formed by an ion implantation apparatus.
  • the second layer 4 containing the non-carrier dopant is formed on the surface side of the first layer 2 containing the non-carrier dopant of the silicon epitaxial layer 3.
  • This carbon ion implantation can be performed under the conditions of an acceleration energy of 1 to 2000 keV, a peak density of 10 15 to 10 22 atoms / cc, and a depth from the surface of 0.01 to 2 ⁇ m.
  • ions to be ion-implanted may be any non-carrier dopant, and Si, Ge, Sn, Pb, He, Ne, Ar, Kr, Xe, and the like can also be used.
  • the second layer 4 containing a non-carrier dopant in this example is responsible for the function of trapping metal impurities in the device process. It is more preferable to use a dopant that easily binds to impurities.
  • the depth of the second layer 4 containing the non-carrier dopant is not particularly limited, but in consideration of the metal impurity trapping function, the second layer 4 is formed at a position deeper than the device active region and in the vicinity of the device active region. Is more preferable.
  • a wafer is obtained in which the first layer 2 containing a non-carrier dopant is formed at a deep position of the silicon epitaxial layer 3 and the second layer 4 containing a non-carrier dopant is formed at a shallow position. .
  • the oxygen present in the silicon single crystal substrate 1 tends to diffuse outward by the heat treatment in the subsequent device process, but as shown by the arrow in FIG. 2F, the oxygen present in the silicon single crystal substrate 1 Is attracted to the strain generated by the first layer 2 containing a non-carrier dopant and bonds to carbon.
  • the second layer 4 containing the non-carrier dopant formed in a shallow position of the silicon epitaxial layer 3. In this case, almost no oxygen is trapped (the silicon epitaxial layer does not contain oxygen), so that the metal impurity trapping function of the second layer 4 containing the non-carrier dopant can be maintained.
  • the initial oxygen concentration of the silicon single crystal substrate 1 is high, oxygen can be captured by the first layer 2 containing the non-carrier dopant, and the second layer 4 containing the non-carrier dopant exhibits the gettering function. Therefore, a wafer having a high gettering ability can be obtained without using a silicon single crystal having a low initial oxygen concentration.
  • the first layer 2 containing the non-carrier dopant and the second layer 4 containing the non-carrier dopant can be formed even if the wafer itself is thinned, it is applied to a device wafer such as MCP. be able to.
  • 3A to 3E are cross-sectional views of a wafer showing a method of manufacturing an epitaxial silicon wafer according to a third embodiment.
  • a first layer 2 containing a non-carrier dopant and a second layer 4 containing a non-carrier dopant are formed on a silicon single crystal substrate 1.
  • a silicon single crystal grown by the CZ method is subjected to processing such as slicing, grinding, etching, mirror polishing, and the like to obtain a silicon single crystal substrate 1.
  • the diameter and thickness of the silicon single crystal substrate 1 are not particularly limited, but the initial interstitial oxygen concentration is limited to 2.7 ⁇ 10 18 atoms / cc (ASTM F-121, 1979) or less from the solid solubility. This is the same as in the first embodiment.
  • the silicon single crystal substrate 1 is set in an ion implantation apparatus, and carbon ions are ion-implanted into one surface (upper surface in FIG. 3) of the silicon single crystal substrate 1 as shown in FIG. First, a first layer 2 containing a non-carrier dopant is formed near the surface of the silicon single crystal substrate 1.
  • Carbon ions can be implanted under the conditions of an acceleration energy of 1 to 2000 keV, a peak density of 10 15 to 10 22 atoms / cc, and a depth from the surface of 0.01 to 2000 ⁇ m.
  • ions to be ion-implanted may be any non-carrier dopant, and Si, Ge, Sn, Pb, He, Ne, Ar, Kr, Xe, and the like can also be used.
  • the first layer 2 including the non-carrier dopant of this example has a function of capturing oxygen existing in the silicon single crystal substrate 1, it is more preferable to use a dopant such as carbon that easily binds to the oxygen. preferable.
  • the depth of the first layer 2 containing the non-carrier dopant is not particularly limited, but in consideration of the function of capturing oxygen present in the silicon single crystal substrate 1, it is formed as close to the surface of the silicon single crystal substrate 1 as possible. More preferably.
  • carbon ions are ion-implanted into the surface of the silicon single crystal substrate 1 on which the first layer 2 containing the non-carrier dopant is formed by an ion implantation apparatus, as shown in FIG. 3D.
  • the second layer 4 containing the non-carrier dopant is formed on the surface side of the first layer 2 containing the non-carrier dopant.
  • This carbon ion implantation can be performed under the conditions of an acceleration energy of 1 to 2000 keV, a peak density of 10 15 to 10 22 atoms / cc, and a depth from the surface of 0.01 to 2 ⁇ m.
  • ions to be ion-implanted may be any non-carrier dopant, and Si, Ge, Sn, Pb, He, Ne, Ar, Kr, Xe, and the like can also be used.
  • the second layer 4 containing a non-carrier dopant in this example is responsible for the function of trapping metal impurities in the device process. It is more preferable to use a dopant that easily binds to impurities.
  • the depth of the second layer 4 containing the non-carrier dopant is not particularly limited, but considering the metal impurity trapping function, the depth is deeper than the device active region and in the vicinity of the device active region, that is, silicon single layer. More preferably, it is formed near the surface of the crystal substrate 1.
  • the silicon single crystal substrate 1 on which the first layer 2 containing the non-carrier dopant and the second layer 4 containing the non-carrier dopant are formed is set in a vapor phase growth apparatus, and silicon as shown in FIG. 3E. Silicon epitaxial layer 3 is formed on the surface of single crystal substrate 1.
  • diborane (P-type) or phosphine or arsine (N-type) is added to a monosilane gas or a hydrogen-diluted chlorosilane-based gas, as in the first embodiment.
  • a material to which a dopant source gas is added can be used.
  • a silicon epitaxial layer 3 is formed on the surface of the silicon single crystal substrate 1 by a thermal CVD reaction. The thickness of the silicon epitaxial layer 3 is appropriately selected according to the target device.
  • oxygen present in the silicon single crystal substrate 1 tends to diffuse outward by the heat treatment in the vapor phase growth process and the heat treatment in the subsequent device process, but as shown by arrows in FIG. Oxygen present on the back side of the first layer 2 containing the non-carrier dopant is attracted to the strain generated by the first layer 2 containing the non-carrier dopant and is bonded to carbon.
  • the distortion of the first layer 2 containing the non-carrier dopant is relaxed and the function of capturing the metal impurity is lowered, the first layer 2 containing the non-carrier dopant formed on the silicon epitaxial layer 3 side of the silicon single crystal substrate 1 is reduced. Only a small amount of oxygen is trapped in the second layer 4 (oxygen present in the region on the surface side of the silicon single crystal substrate 1 from the layer 2 containing the first non-carrier dopant is trapped). Therefore, it is possible to suppress a decrease in the function of trapping metal impurities in the second layer 4 containing the non-carrier dopant.
  • the initial oxygen concentration of the silicon single crystal substrate 1 is high, oxygen can be captured by the first layer 2 containing the non-carrier dopant, and the second layer 4 containing the non-carrier dopant exhibits the gettering function. Therefore, a wafer having a high gettering ability can be obtained without using a silicon single crystal having a low initial oxygen concentration.
  • the first layer 2 containing the non-carrier dopant and the second layer 4 containing the non-carrier dopant can be formed even if the wafer itself is thinned, it is applied to a device wafer such as MCP. be able to.
  • ⁇ 4th Embodiment are sectional views of a wafer showing a method for manufacturing an epitaxial silicon wafer according to the fourth embodiment.
  • a first layer 2 containing a non-carrier dopant and a second layer 4 containing a non-carrier dopant are formed on a silicon epitaxial layer 3, and the structure is the same as in the second embodiment.
  • the first and second layers 2 and 4 containing a non-carrier dopant are formed by vapor deposition instead of ion implantation.
  • the silicon single crystal grown by the CZ method is subjected to processing such as slicing, grinding, etching, mirror polishing, and the like to obtain the silicon single crystal substrate 1.
  • the diameter and thickness of the silicon single crystal substrate 1 are not particularly limited, but the initial interstitial oxygen concentration is limited to 2.7 ⁇ 10 18 atoms / cc (ASTM F-121, 1979) or less from the solid solubility. This is the same as in the second embodiment.
  • this silicon single crystal substrate 1 is set in a vapor phase growth apparatus, and a silicon epitaxial layer 3a is formed on the surface of the silicon single crystal substrate 1 as shown in FIG. 4B.
  • diborane (P-type) or phosphine or arsine (N-type) is added to monosilane gas or hydrogen-diluted chlorosilane-based gas, as in the second embodiment.
  • a material to which a dopant source gas is added can be used.
  • a silicon epitaxial layer 3a is formed on the surface of the silicon single crystal substrate 1 by a thermal CVD reaction.
  • reaction gas of the vapor phase growth apparatus is switched, carbon as a non-carrier dopant is contained in the reaction gas, and vapor phase growth is performed, whereby non-carriers are formed on the surface of the silicon epitaxial layer 3a as shown in FIG. 4C.
  • a first layer 2 containing a conductive dopant is formed.
  • the reaction gas of the vapor phase growth apparatus is switched to the reaction gas in which the silicon epitaxial layer 3a is grown, and the silicon epitaxial layer 3b is formed on the surface of the first layer 2 containing the non-carrier dopant as shown in FIG. 4D. It is formed by vapor phase growth.
  • reaction gas of the vapor phase growth apparatus is switched, carbon as a non-carrier dopant is contained in the reaction gas, and vapor phase growth is performed, whereby non-carrier is formed on the surface of the silicon epitaxial layer 3b as shown in FIG. 4E.
  • a second layer 4 containing a conductive dopant is formed.
  • the reaction gas of the vapor phase growth apparatus is switched to the reaction gas in which the silicon epitaxial layers 3a and 3b are grown, and a silicon epitaxial layer is formed on the surface of the second layer 4 containing a non-carrier dopant as shown in FIG. 4F. 3c is formed by vapor phase growth.
  • the total thickness of the silicon epitaxial layers 3a, 3b, 3c, the first layer 2 containing a non-carrier dopant, and the second layer 4 containing a non-carrier dopant is appropriately selected according to the target device. .
  • the first layer 2 containing the non-carrier dopant is formed in the deep position of the silicon epitaxial layer 3, and the second layer containing the non-carrier dopant in the shallow position.
  • a wafer having 4 formed thereon is obtained.
  • oxygen existing in the silicon single crystal substrate 1 tends to diffuse outward by the heat treatment in the subsequent device process.
  • oxygen present in the silicon single crystal substrate 1 Is attracted to the strain generated by the first layer 2 containing a non-carrier dopant and bonds to carbon.
  • the second layer 4 containing the non-carrier dopant formed at a shallow position of the silicon epitaxial layer 3. Almost no oxygen is trapped (the silicon epitaxial layers 3a, 3b, 3c do not contain oxygen), so that the function of trapping metal impurities of the second layer 4 containing the non-carrier dopant can be maintained. .
  • the initial oxygen concentration of the silicon single crystal substrate 1 is high, oxygen can be captured by the first layer 2 containing the non-carrier dopant, and the second layer 4 containing the non-carrier dopant exhibits the gettering function. Therefore, a wafer having a high gettering ability can be obtained without using a silicon single crystal having a low initial oxygen concentration.
  • the first layer 2 containing the non-carrier dopant and the second layer 4 containing the non-carrier dopant can be formed even if the wafer itself is thinned, it is applied to a device wafer such as MCP. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明のエピタキシャルシリコンウェーハ及びその製造方法は、シリコン単結晶基板1の主面にシリコンエピタキシャル層3を有するエピタキシャルシリコンウェーハであって、前記シリコン単結晶基板及び前記シリコンエピタキシャル層に、少なくとも非キャリア性ドーパントを含む第1の層2と非キャリア性ドーパントを含む第2の層4が形成されていることを特徴とする。

Description

エピタキシャルシリコンウェーハ及びその製造方法
 本発明は、エピタキシャルシリコンウェーハ及びその製造方法に関するものである。
 高集積化デバイスにおいて、デバイス活性領域に結晶欠陥あるいはドーパント以外の金属不純物が含まれていると、リーク電流の増大などのデバイスの電気的特性の劣化を招く。従来、高集積化シリコン半導体デバイスは、CZ法で育成されたCZ-Si基板が用いられてきたが、これらのCZ-Si基板には過飽和の格子間酸素が約1018atoms/cmのオーダーで含まれており、デバイス製造プロセスにおいて酸素析出物や転位、積層欠陥などの結晶欠陥が誘起されることは良く知られている。
 従来、LOCOS(Local Oxidation of Silicon)形成やWELL拡散層形成のために1100~1200℃の高温で数時間の熱処理が行われていたため、基板表面近傍では格子間酸素の外方拡散によって表面近傍数10μmには結晶欠陥のないいわゆるDZ(Denuded Zone)層が自然に形成され、ウェーハ表面のデバイス活性領域での結晶欠陥の発生が自然に抑制されていた。
 しかし、半導体デバイスの微細化に伴い、WELL形成に高エネルギーイオン注入が用いられ、デバイスプロセスが1000℃以下の低温で行われるようになると、上記の酸素外方拡散が充分に起こらず表面近傍でのDZ層の形成が困難となってきた。このためにSi基板の低酸素化が行われてきたが、結晶欠陥の発生を完全に抑制することは困難であった。
 このようなことから、結晶欠陥をほぼ完全に含まないエピタキシャル層をCZ-Si基板上に成長させたエピタキシャルシリコンウェーハが、高集積化デバイスに多用されている。
 ところで、結晶の完全性が高いエピタキシャルウェーハを用いても、その後のデバイス工程におけるエピタキシャル膜の金属不純物汚染はデバイスの特性を悪化させる。従って、金属不純物をデバイス活性領域から離れた場所(シンク)に捕獲させる、いわゆるゲッタリング技術が必要となる。
 ゲッタリング技術としては、デバイスプロセスの熱処理中に自然に誘起される酸素起因の結晶欠陥をシンクとするイントリンシックゲッタリング(IG)と、サンドブラスト、Si膜あるいはPoly-Si膜の成長などによる裏面歪付けに代表されるイクストリンシックゲッタリング(EG)とがある。
 しかしながら、高集積化デバイスが薄型化されると、Si基板に分散して存在していたシンクの数が減少するためIG効果が期待できないという問題がある。また、抗折強度維持のため研削後のダメージが除去されることになり、EG効果も期待できないという問題がある。
 こうした高集積化デバイスの薄型化は、高画素カメラや音楽プレーヤー等が搭載された携帯電話などの小型モバイル機器に特に顕著である。大容量データを保存・高速処理する能力が求められているため、1パッケージあたりに複数タイプのメモリを搭載するMCP(マルチチップパッケージ)のニーズが高まっている。
 特許文献1や特許文献2には、Si基板に非キャリア性ドーパントを含む層を含むエピタキシャルウェーハが提案されている。
特開2006-216934号公報 特開2007-36250号公報
 しかしながら、上記特許文献1及び2に記載されたウェーハでは、その後のエピタキシャル成長を含む熱プロセスの際に、非キャリア性ドーパントを含む層及びその周辺の歪により、Si基板中の酸素が非キャリア性ドーパントを含む層に引き寄せられる。
 したがって、金属不純物ゲッタリングのために導入した非キャリア性ドーパントを含む層による歪が拡散してきた酸素により緩和されてしまい、金属不純物をゲッタリングする能力が低減してしまうという問題があった。
 本発明が解決しようとする課題は、集積回路基板が薄型化しても高いゲッタリング能力を有するエピタキシャルシリコンウェーハを提供することである。
 本発明のエピタキシャルシリコンウェーハ及びその製造方法は、シリコン単結晶基板の主面にシリコンエピタキシャル層を有するエピタキシャルシリコンウェーハであって、前記シリコン単結晶基板及び前記シリコンエピタキシャル層に、少なくとも非キャリア性ドーパントを含む第1の層と非キャリア性ドーパントを含む第2の層が形成されていることを特徴とする。
 このようにシリコン単結晶基板及びシリコンエピタキシャル層に、少なくとも非キャリア性ドーパントを含む第1の層と非キャリア性ドーパントを含む第2の層を形成すると、エピタキシャル成長工程やその後のデバイス工程などの熱処理により非キャリア性ドーパントを含む第1の層にシリコン単結晶基板に含まれる酸素が流入し、当該非キャリア性ドーパントを含む第1の層の歪が緩和されていくが、それよりもウェーハの表面側に形成された非キャリア性ドーパントを含む第2の層へは酸素の流入は殆ど生じない。
 したがって、非キャリア性ドーパントを含む第2の層の歪は維持され、その結果、当該非キャリア性ドーパントを含む第2の層による不純物金属のゲッタリング能力は高い状態で維持される。
 本発明によれば、集積回路基板が薄型化しても高いゲッタリング能力を有するエピタキシャルシリコンウェーハを得ることができる。
発明の実施形態に係る製造方法を示す断面図である。 発明の実施形態に係る製造方法を示す断面図である。 発明の実施形態に係る製造方法を示す断面図である。 発明の実施形態に係る製造方法を示す断面図である。 発明の実施形態に係る製造方法を示す断面図である。 発明の他の実施形態に係る製造方法を示す断面図である。 発明の他の実施形態に係る製造方法を示す断面図である。 発明の他の実施形態に係る製造方法を示す断面図である。 発明の他の実施形態に係る製造方法を示す断面図である。 発明の他の実施形態に係る製造方法を示す断面図である。 発明の他の実施形態に係る製造方法を示す断面図である。 発明のさらに他の実施形態に係る製造方法を示す断面図である。 発明のさらに他の実施形態に係る製造方法を示す断面図である。 発明のさらに他の実施形態に係る製造方法を示す断面図である。 発明のさらに他の実施形態に係る製造方法を示す断面図である。 発明のさらに他の実施形態に係る製造方法を示す断面図である。 発明のさらに他の実施形態に係る製造方法を示す断面図である。 発明のさらに他の実施形態に係る製造方法を示す断面図である。 発明のさらに他の実施形態に係る製造方法を示す断面図である。 発明のさらに他の実施形態に係る製造方法を示す断面図である。 発明のさらに他の実施形態に係る製造方法を示す断面図である。 発明のさらに他の実施形態に係る製造方法を示す断面図である。
 以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
 図1A~図1Eは第1実施形態に係るエピタキシャルシリコンウェーハの製造方法を示すウェーハの断面図である。
 本例の製造方法では、まずCZ法により育成されたシリコン単結晶にスライス、研削、エッチング、鏡面研磨等の処理を施し、シリコン単結晶基板1を得る。シリコン単結晶基板1の直径や厚さは特に限定されないが、固溶度から初期格子間酸素濃度は2.7×1018atoms/cc(ASTM F-121,1979)以下に限定される。
 次いで、上記シリコン単結晶基板1をイオン注入装置にセットし、図1Aに示すようにシリコン単結晶基板1の一方の表面(同図の上面)に炭素イオンをイオン注入し、図1Bに示すようにシリコン単結晶基板1の表面近傍に非キャリア性ドーパントを含む第1の層2を形成する。
 炭素イオンの注入は、加速エネルギが1~2000keV、ピーク密度が1015~1022atoms/cc、表面からの深さが0.01~2.0μmの条件ですることができる。
 また、イオン注入されるイオンは炭素以外にも非キャリア性を有するドーパントであればよく、Si,Ge,Sn,Pb,He,Ne,Ar,Kr,Xeなども用いることができる。ただし、本例の非キャリア性ドーパントを含む第1の層2はシリコン単結晶基板1に存在する酸素を捕獲する機能を司ることから、当該酸素と結合し易い炭素などのドーパントを用いることがより好ましい。
 また、非キャリア性ドーパントを含む第1の層2の深さは特に限定されないが、シリコン単結晶基板1に存在する酸素の捕獲機能を考慮すると、できる限りシリコン単結晶基板1の表面近傍に形成することがより好ましい。
 次いで、非キャリア性ドーパントを含む第1の層2が形成されたシリコン単結晶基板1を気相成長装置にセットし、図1Cに示すようにシリコン単結晶基板1の表面にシリコンエピタキシャル層3を形成する。
 この気相成長反応の原料ガスとしては、目的とするデバイスに応じて、モノシランガスや水素希釈したクロロシラン系ガスにジボラン(P型)又はホスフィンやアルシン(N型)のドーパント原料ガスを添加したものを使用することができる。これにより、シリコン単結晶基板1の表面において熱CVD反応によるシリコンエピタキシャル層3が形成される。なお、シリコンエピタキシャル層3の厚さは目的とするデバイスに応じて適宜選択される。
 次いで、上記シリコンエピタキシャル層3が形成されたシリコン単結晶基板1をイオン注入装置にセットし、図1Dに示すようにシリコンエピタキシャル層3の表面(同図の上面)に炭素イオンをイオン注入し、図1Eに示すようにシリコンエピタキシャル層3に非キャリア性ドーパントを含む第2の層4を形成する。
 この炭素イオンの注入は、加速エネルギが1~2000keV、ピーク密度が1015~1022atoms/cc、表面からの深さが0.01~2μmの条件ですることができる。
 また、イオン注入されるイオンは炭素以外にも非キャリア性を有するドーパントであればよく、Si,Ge,Sn,Pb,He,Ne,Ar,Kr,Xeなども用いることができる。特に上述した非キャリア性ドーパントを含む第1の層2とは異なり、本例の非キャリア性ドーパントを含む第2の層4は、デバイスプロセスにおける金属不純物を捕獲する機能を司ることから、当該金属不純物と結合し易いドーパントを用いることがより好ましい。
 また、非キャリア性ドーパントを含む第2の層4の深さは特に限定されないが、金属不純物の捕獲機能を考慮すると、デバイス活性領域より深い位置であって当該デバイス活性領域の近傍に形成することがより好ましい。
 以上の工程により、シリコン単結晶基板1に非キャリア性ドーパントを含む第1の層2が形成され、シリコンエピタキシャル層3に非キャリア性ドーパントを含む第2の層4が形成されたウェーハが得られる。
 このウェーハによれば、上述した気相成長工程の熱処理やその後のデバイス工程の熱処理によって、シリコン単結晶基板1に存在する酸素は外方拡散しようとするが、図1Eに矢印で示すように、非キャリア性ドーパントを含む第1の層2よりも裏面側に存在する酸素は非キャリア性ドーパントを含む第1の層2により発生している歪に引き寄せられて炭素と結合する。
 これにより非キャリア性ドーパントを含む第1の層2の歪みは緩和され金属不純物の捕獲機能は低下するものの、シリコンエピタキシャル層3に形成された非キャリア性ドーパントを含む第2の層4にはごく少数の酸素が捕獲されるだけであるため(非キャリア性ドーパントを含む第1の層2よりシリコン単結晶基板1の表面側の領域に存在する酸素が捕獲される)、当該非キャリア性ドーパントを含む第2の層4の金属不純物の捕獲機能の低下を抑制することができる。
 また、シリコン単結晶基板1の初期酸素濃度が高くても非キャリア性ドーパントを含む第1の層2により酸素を捕獲でき、非キャリア性ドーパントを含む第2の層4がゲッタリング機能を発揮するので、初期酸素濃度が低いシリコン単結晶を用いなくても高いゲッタリング能力を有するウェーハを得ることができる。
 特に、ウェーハ自体が薄型化しても非キャリア性ドーパントを含む第1の層2及び非キャリア性ドーパントを含む第2の層4は形成可能であることから、たとえばMCPなどのデバイス用ウェーハに適用することができる。
《第2実施形態》
 図2A~図2Fは第2実施形態に係るエピタキシャルシリコンウェーハの製造方法を示すウェーハの断面図である。本例はシリコンエピタキシャル層3に非キャリア性ドーパントを含む第1の層2と非キャリア性ドーパントを含む第2の層4を形成したものである。
 本例の製造方法では、図2Aに示すように、CZ法により育成されたシリコン単結晶にスライス、研削、エッチング、鏡面研磨等の処理を施し、シリコン単結晶基板1を得る。シリコン単結晶基板1の直径や厚さは特に限定されないが、固溶度から初期格子間酸素濃度は2.7×1018atoms/cc(ASTM F-121,1979)以下に限定される。これについては上記第1実施形態と同様である。
 次いで、このシリコン単結晶基板1を気相成長装置にセットし、図2Bに示すようにシリコン単結晶基板1の表面にシリコンエピタキシャル層3を形成する。
 この気相成長反応の原料ガスとしては、上記第1実施形態と同様に、目的とするデバイスに応じて、モノシランガスや水素希釈したクロロシラン系ガスにジボラン(P型)又はホスフィンやアルシン(N型)のドーパント原料ガスを添加したものを使用することができる。これにより、シリコン単結晶基板1の表面において熱CVD反応によるシリコンエピタキシャル層3が形成される。なお、シリコンエピタキシャル層3の厚さは目的とするデバイスに応じて適宜選択される。
 次いで、上記シリコンエピタキシャル層3が形成されたシリコン単結晶基板1をイオン注入装置にセットし、図2Cに示すようにシリコンエピタキシャル層3の表面(同図の上面)に炭素イオンをイオン注入し、図2Dに示すようにシリコンエピタキシャル層3に非キャリア性ドーパントを含む第1の層2を形成する。
 この炭素イオンの注入は、加速エネルギが1~2000keV、ピーク密度が1015~1022atoms/cc、表面からの深さが0.01~2μmの条件ですることができる。
 また、イオン注入されるイオンは炭素以外にも非キャリア性を有するドーパントであればよく、Si,Ge,Sn,Pb,He,Ne,Ar,Kr,Xeなども用いることができる。ただし、本例の非キャリア性ドーパントを含む第1の層2はシリコン単結晶基板1に存在する酸素を捕獲する機能を司ることから、当該酸素と結合し易い炭素などのドーパントを用いることがより好ましい。
 また、非キャリア性ドーパントを含む第1の層2の深さは特に限定されないが、シリコン単結晶基板1に存在する酸素の捕獲機能を考慮すると、できる限りシリコン単結晶基板1の表面近傍に形成することがより好ましい。
 続いて、図2Eに示すように、イオン注入装置により、非キャリア性ドーパントを含む第1の層2が形成されたシリコンエピタキシャル層3の表面(同図の上面)に炭素イオンをイオン注入し、図2Fに示すようにシリコンエピタキシャル層3の非キャリア性ドーパントを含む第1の層2より表面側に非キャリア性ドーパントを含む第2の層4を形成する。
 この炭素イオンの注入は、加速エネルギが1~2000keV、ピーク密度が1015~1022atoms/cc、表面からの深さが0.01~2μmの条件ですることができる。
 また、イオン注入されるイオンは炭素以外にも非キャリア性を有するドーパントであればよく、Si,Ge,Sn,Pb,He,Ne,Ar,Kr,Xeなども用いることができる。特に上述した非キャリア性ドーパントを含む第1の層2とは異なり、本例の非キャリア性ドーパントを含む第2の層4は、デバイスプロセスにおける金属不純物を捕獲する機能を司ることから、当該金属不純物と結合し易いドーパントを用いることがより好ましい。
 また、非キャリア性ドーパントを含む第2の層4の深さは特に限定されないが、金属不純物の捕獲機能を考慮すると、デバイス活性領域より深い位置であって当該デバイス活性領域の近傍に形成することがより好ましい。
 以上の工程により、シリコンエピタキシャル層3の深い位置に非キャリア性ドーパントを含む第1の層2が形成され、浅い位置に非キャリア性ドーパントを含む第2の層4が形成されたウェーハが得られる。
 このウェーハによれば、その後のデバイス工程の熱処理によって、シリコン単結晶基板1に存在する酸素は外方拡散しようとするが、図2Fに矢印で示すように、シリコン単結晶基板1に存在する酸素は非キャリア性ドーパントを含む第1の層2により発生している歪に引き寄せられて炭素と結合する。
 これにより非キャリア性ドーパントを含む第1の層2の歪みは緩和され金属不純物の捕獲機能は低下するものの、シリコンエピタキシャル層3の浅い位置に形成された非キャリア性ドーパントを含む第2の層4には殆ど酸素が捕獲されないため(シリコンエピタキシャル層には酸素が含まれない)、当該非キャリア性ドーパントを含む第2の層4の金属不純物の捕獲機能を維持することができる。
 また、シリコン単結晶基板1の初期酸素濃度が高くても非キャリア性ドーパントを含む第1の層2により酸素を捕獲でき、非キャリア性ドーパントを含む第2の層4がゲッタリング機能を発揮するので、初期酸素濃度が低いシリコン単結晶を用いなくても高いゲッタリング能力を有するウェーハを得ることができる。
 特に、ウェーハ自体が薄型化しても非キャリア性ドーパントを含む第1の層2及び非キャリア性ドーパントを含む第2の層4は形成可能であることから、たとえばMCPなどのデバイス用ウェーハに適用することができる。
《第3実施形態》
 図3A~図3Eは第3実施形態に係るエピタキシャルシリコンウェーハの製造方法を示すウェーハの断面図である。本例はシリコン単結晶基板1に非キャリア性ドーパントを含む第1の層2と非キャリア性ドーパントを含む第2の層4を形成したものである。
 本例の製造方法では、図3Aに示すように、CZ法により育成されたシリコン単結晶にスライス、研削、エッチング、鏡面研磨等の処理を施し、シリコン単結晶基板1を得る。シリコン単結晶基板1の直径や厚さは特に限定されないが、固溶度から初期格子間酸素濃度は2.7×1018atoms/cc(ASTM F-121,1979)以下に限定される。これについては上記第1実施形態と同様である。
 次いで、上記シリコン単結晶基板1をイオン注入装置にセットし、図3Aに示すようにシリコン単結晶基板1の一方の表面(同図の上面)に炭素イオンをイオン注入し、図3Bに示すようにシリコン単結晶基板1の表面近傍に非キャリア性ドーパントを含む第1の層2を形成する。
 炭素イオンの注入は、加速エネルギが1~2000keV、ピーク密度が1015~1022atoms/cc、表面からの深さが0.01~2000μmの条件ですることができる。
 また、イオン注入されるイオンは炭素以外にも非キャリア性を有するドーパントであればよく、Si,Ge,Sn,Pb,He,Ne,Ar,Kr,Xeなども用いることができる。ただし、本例の非キャリア性ドーパントを含む第1の層2はシリコン単結晶基板1に存在する酸素を捕獲する機能を司ることから、当該酸素と結合し易い炭素などのドーパントを用いることがより好ましい。
 また、非キャリア性ドーパントを含む第1の層2の深さは特に限定されないが、シリコン単結晶基板1に存在する酸素の捕獲機能を考慮すると、できる限りシリコン単結晶基板1の表面近傍に形成することがより好ましい。
 続いて、図3Cに示すように、イオン注入装置により、非キャリア性ドーパントを含む第1の層2が形成されたシリコン単結晶基板1の表面に炭素イオンをイオン注入し、図3Dに示すように非キャリア性ドーパントを含む第1の層2より表面側に非キャリア性ドーパントを含む第2の層4を形成する。
 この炭素イオンの注入は、加速エネルギが1~2000keV、ピーク密度が1015~1022atoms/cc、表面からの深さが0.01~2μmの条件ですることができる。
 また、イオン注入されるイオンは炭素以外にも非キャリア性を有するドーパントであればよく、Si,Ge,Sn,Pb,He,Ne,Ar,Kr,Xeなども用いることができる。特に上述した非キャリア性ドーパントを含む第1の層2とは異なり、本例の非キャリア性ドーパントを含む第2の層4は、デバイスプロセスにおける金属不純物を捕獲する機能を司ることから、当該金属不純物と結合し易いドーパントを用いることがより好ましい。
 また、非キャリア性ドーパントを含む第2の層4の深さは特に限定されないが、金属不純物の捕獲機能を考慮すると、デバイス活性領域より深い位置であって当該デバイス活性領域の近傍、すなわちシリコン単結晶基板1の表面近傍に形成することがより好ましい。
 次いで、非キャリア性ドーパントを含む第1の層2及び非キャリア性ドーパントを含む第2の層4が形成されたシリコン単結晶基板1を気相成長装置にセットし、図3Eに示すようにシリコン単結晶基板1の表面にシリコンエピタキシャル層3を形成する。
 この気相成長反応の原料ガスとしては、上記第1実施形態と同様に、目的とするデバイスに応じて、モノシランガスや水素希釈したクロロシラン系ガスにジボラン(P型)又はホスフィンやアルシン(N型)のドーパント原料ガスを添加したものを使用することができる。これにより、シリコン単結晶基板1の表面において熱CVD反応によるシリコンエピタキシャル層3が形成される。なお、シリコンエピタキシャル層3の厚さは目的とするデバイスに応じて適宜選択される。
 以上の工程により、シリコン単結晶基板1に非キャリア性ドーパントを含む第1の層2と非キャリア性ドーパントを含む第2の層4が形成された、シリコンエピタキシャル層3を有するウェーハが得られる。
 このウェーハによれば、上述した気相成長工程の熱処理やその後のデバイス工程の熱処理によって、シリコン単結晶基板1に存在する酸素は外方拡散しようとするが、図3Eに矢印で示すように、非キャリア性ドーパントを含む第1の層2よりも裏面側に存在する酸素は非キャリア性ドーパントを含む第1の層2により発生している歪に引き寄せられて炭素と結合する。
 これにより非キャリア性ドーパントを含む第1の層2の歪みは緩和され金属不純物の捕獲機能は低下するものの、シリコン単結晶基板1のシリコンエピタキシャル層3側に形成された非キャリア性ドーパントを含む第2の層4にはごく少数の酸素が捕獲されるだけであるため(第1の非キャリア性ドーパントを含む層2よりシリコン単結晶基板1の表面側の領域に存在する酸素が捕獲される)、当該非キャリア性ドーパントを含む第2の層4の金属不純物の捕獲機能の低下を抑制することができる。
 また、シリコン単結晶基板1の初期酸素濃度が高くても非キャリア性ドーパントを含む第1の層2により酸素を捕獲でき、非キャリア性ドーパントを含む第2の層4がゲッタリング機能を発揮するので、初期酸素濃度が低いシリコン単結晶を用いなくても高いゲッタリング能力を有するウェーハを得ることができる。
 特に、ウェーハ自体が薄型化しても非キャリア性ドーパントを含む第1の層2及び非キャリア性ドーパントを含む第2の層4は形成可能であることから、たとえばMCPなどのデバイス用ウェーハに適用することができる。
《第4実施形態》
 図4A~図4Fは第4実施形態に係るエピタキシャルシリコンウェーハの製造方法を示すウェーハの断面図である。本例はシリコンエピタキシャル層3に非キャリア性ドーパントを含む第1の層2と非キャリア性ドーパントを含む第2の層4を形成したものであり、構造的には上記第2実施形態と同じであるが、非キャリア性ドーパントを含む第1及び第2の層2,4をイオン注入法に代えて気相成長法により形成したものである。
 本例の製造方法では、図4Aに示すように、CZ法により育成されたシリコン単結晶にスライス、研削、エッチング、鏡面研磨等の処理を施し、シリコン単結晶基板1を得る。シリコン単結晶基板1の直径や厚さは特に限定されないが、固溶度から初期格子間酸素濃度は2.7×1018atoms/cc(ASTM F-121,1979)以下に限定される。これについては上記第2実施形態と同様である。
 次いで、このシリコン単結晶基板1を気相成長装置にセットし、図4Bに示すようにシリコン単結晶基板1の表面にシリコンエピタキシャル層3aを形成する。
 この気相成長反応の原料ガスとしては、上記第2実施形態と同様に、目的とするデバイスに応じて、モノシランガスや水素希釈したクロロシラン系ガスにジボラン(P型)又はホスフィンやアルシン(N型)のドーパント原料ガスを添加したものを使用することができる。これにより、シリコン単結晶基板1の表面において熱CVD反応によるシリコンエピタキシャル層3aが形成される。
 次いで、気相成長装置の反応ガスを切り替え、非キャリア性ドーパントである炭素を上記反応ガスに含有させ、気相成長を行うことにより、図4Cに示すようにシリコンエピタキシャル層3aの表面に非キャリア性ドーパントを含む第1の層2を形成する。
 次いで、気相成長装置の反応ガスを、上記シリコンエピタキシャル層3aを成長させた反応ガスに切り替え、図4Dに示すように非キャリア性ドーパントを含む第1の層2の表面にシリコンエピタキシャル層3bを気相成長により形成する。
 次いで、気相成長装置の反応ガスを切り替え、非キャリア性ドーパントである炭素を上記反応ガスに含有させ、気相成長を行うことにより、図4Eに示すようにシリコンエピタキシャル層3bの表面に非キャリア性ドーパントを含む第2の層4を形成する。
 次いで、気相成長装置の反応ガスを、上記シリコンエピタキシャル層3a,3bを成長させた反応ガスに切り替え、図4Fに示すように非キャリア性ドーパントを含む第2の層4の表面にシリコンエピタキシャル層3cを気相成長により形成する。
 なお、シリコンエピタキシャル層3a,3b,3c及び非キャリア性ドーパントを含む第1の層2、非キャリア性ドーパントを含む第2の層4の総合厚さは目的とするデバイスに応じて適宜選択される。
 以上の工程により、上記第2実施形態と同様に、シリコンエピタキシャル層3の深い位置に非キャリア性ドーパントを含む第1の層2が形成され、浅い位置に非キャリア性ドーパントを含む第2の層4が形成されたウェーハが得られる。
 このウェーハによれば、その後のデバイス工程の熱処理によって、シリコン単結晶基板1に存在する酸素は外方拡散しようとするが、図4Fに矢印で示すように、シリコン単結晶基板1に存在する酸素は非キャリア性ドーパントを含む第1の層2により発生している歪に引き寄せられて炭素と結合する。
 これにより非キャリア性ドーパントを含む第1の層2の歪みは緩和され金属不純物の捕獲機能は低下するものの、シリコンエピタキシャル層3の浅い位置に形成された非キャリア性ドーパントを含む第2の層4には殆ど酸素が捕獲されないため(シリコンエピタキシャル層3a,3b,3cには酸素が含まれない)、当該非キャリア性ドーパントを含む第2の層4の金属不純物の捕獲機能を維持することができる。
 また、シリコン単結晶基板1の初期酸素濃度が高くても非キャリア性ドーパントを含む第1の層2により酸素を捕獲でき、非キャリア性ドーパントを含む第2の層4がゲッタリング機能を発揮するので、初期酸素濃度が低いシリコン単結晶を用いなくても高いゲッタリング能力を有するウェーハを得ることができる。
 特に、ウェーハ自体が薄型化しても非キャリア性ドーパントを含む第1の層2及び非キャリア性ドーパントを含む第2の層4は形成可能であることから、たとえばMCPなどのデバイス用ウェーハに適用することができる。
1…シリコン単結晶基板
2…非キャリア性ドーパントを含む第1の層
3…シリコンエピタキシャル層
4…非キャリア性ドーパントを含む第2の層

Claims (17)

  1.  シリコン単結晶基板の主面にシリコンエピタキシャル層を有するエピタキシャルシリコンウェーハであって、
     前記シリコン単結晶基板及び前記シリコンエピタキシャル層に、少なくとも非キャリア性ドーパントを含む第1の層と非キャリア性ドーパントを含む第2の層が形成されていることを特徴とするエピタキシャルシリコンウェーハ。
  2.  請求項1に記載のエピタキシャルシリコンウェーハにおいて、
     前記非キャリア性ドーパントを含む第1の層は前記シリコン単結晶基板に形成され、前記非キャリア性ドーパントを含む第2の層は前記シリコンエピタキシャル層に形成されていることを特徴とするエピタキシャルシリコンウェーハ。
  3.  請求項1に記載のエピタキシャルシリコンウェーハにおいて、
     前記非キャリア性ドーパントを含む第1の層及び前記非キャリア性ドーパントを含む第2の層は前記シリコン単結晶基板に形成されていることを特徴とするエピタキシャルシリコンウェーハ。
  4.  請求項1に記載のエピタキシャルシリコンウェーハにおいて、
     前記非キャリア性ドーパントを含む第1の層及び前記非キャリア性ドーパントを含む第2の層は前記シリコンエピタキシャル層に形成されていることを特徴とするエピタキシャルシリコンウェーハ。
  5.  請求項1に記載のエピタキシャルシリコンウェーハにおいて、
     前記シリコン単結晶基板の初期格子間酸素濃度が2.7×1018atoms/cc(ASTM F-121,1979)以下であることを特徴とするエピタキシャルシリコンウェーハ。
  6.  請求項1~5のいずれか一項に記載のエピタキシャルシリコンウェーハにおいて、
     前記非キャリア性ドーパントを含む第1及び第2の層は、非キャリア性ドーパントをイオン注入することにより形成されることを特徴とするエピタキシャルシリコンウェーハ。
  7.  請求項6に記載のエピタキシャルシリコンウェーハにおいて、
     前記非キャリア性ドーパントを含む第1及び第2の層は、炭素イオンをイオン注入することにより形成されることを特徴とするエピタキシャルシリコンウェーハ。
  8.  請求項2に記載のエピタキシャルシリコンウェーハにおいて、
     前記非キャリア性ドーパントを含む第2の層は、非キャリア性ドーパントを含有する反応ガスを用いたエピタキシャル成長により形成されることを特徴とするエピタキシャルシリコンウェーハ。
  9.  請求項4に記載のエピタキシャルシリコンウェーハにおいて、
     前記非キャリア性ドーパントを含む第1及び第2の層は、非キャリア性ドーパントを含有する反応ガスを用いたエピタキシャル成長により形成されることを特徴とするエピタキシャルシリコンウェーハ。
  10.  シリコン単結晶基板の主面にシリコンエピタキシャル層を有するエピタキシャルシリコンウェーハの製造方法であって、
     前記シリコン単結晶基板に非キャリア性ドーパントを含む第1の層を形成する工程と、
     前記シリコン単結晶基板の主面にシリコンエピタキシャル層を形成する工程と、
     前記シリコンエピタキシャル層に非キャリア性ドーパントを含む第2の層を形成する工程と、を備えたことを特徴とするエピタキシャルシリコンウェーハの製造方法。
  11.  シリコン単結晶基板の主面にシリコンエピタキシャル層を有するエピタキシャルシリコンウェーハの製造方法であって、
     前記シリコン単結晶基板の主面にシリコンエピタキシャル層を形成する工程と、
     前記シリコンエピタキシャル層に非キャリア性ドーパントを含む第1の層を形成する工程と、
     前記シリコンエピタキシャル層に非キャリア性ドーパントを含む第2の層を形成する工程と、を備えたことを特徴とするエピタキシャルシリコンウェーハの製造方法。
  12.  シリコン単結晶基板の主面にシリコンエピタキシャル層を有するエピタキシャルシリコンウェーハの製造方法であって、
     前記シリコン単結晶基板に非キャリア性ドーパントを含む第1の層を形成する工程と、
     前記シリコン単結晶基板に非キャリア性ドーパントを含む第2の層を形成する工程と、
     前記シリコン単結晶基板の主面にシリコンエピタキシャル層を形成する工程と、を備えたことを特徴とするエピタキシャルシリコンウェーハの製造方法。
  13.  請求項10に記載のエピタキシャルシリコンウェーハの製造方法において、
     前記シリコン単結晶基板の初期格子間酸素濃度が2.7×1018atoms/cc(ASTM F-121,1979)以下であることを特徴とするエピタキシャルシリコンウェーハの製造方法。
  14.  請求項10~13のいずれか一項に記載のエピタキシャルシリコンウェーハの製造方法において、
     前記非キャリア性ドーパントを含む第1及び第2の層は、非キャリア性ドーパントをイオン注入することにより形成することを特徴とするエピタキシャルシリコンウェーハの製造方法。
  15.  請求項14に記載のエピタキシャルシリコンウェーハの製造方法において、
     前記非キャリア性ドーパントを含む第1及び第2の層は、炭素イオンをイオン注入することにより形成されることを特徴とするエピタキシャルシリコンウェーハの製造方法。
  16.  請求項10に記載のエピタキシャルシリコンウェーハの製造方法において、
     前記非キャリア性ドーパントを含む第2の層は、非キャリア性ドーパントを含有する反応ガスを用いたエピタキシャル成長により形成することを特徴とするエピタキシャルシリコンウェーハの製造方法。
  17.  請求項11に記載のエピタキシャルシリコンウェーハの製造方法において、
     前記非キャリア性ドーパントを含む第1及び第2の層は、非キャリア性ドーパントを含有する反応ガスを用いたエピタキシャル成長により形成することを特徴とするエピタキシャルシリコンウェーハの製造方法。
PCT/JP2009/063740 2008-08-06 2009-08-03 エピタキシャルシリコンウェーハ及びその製造方法 WO2010016457A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-203402 2008-08-06
JP2008203402A JP2010040864A (ja) 2008-08-06 2008-08-06 エピタキシャルシリコンウェーハ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2010016457A1 true WO2010016457A1 (ja) 2010-02-11

Family

ID=41663674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063740 WO2010016457A1 (ja) 2008-08-06 2009-08-03 エピタキシャルシリコンウェーハ及びその製造方法

Country Status (3)

Country Link
JP (1) JP2010040864A (ja)
TW (1) TW201013753A (ja)
WO (1) WO2010016457A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099456A (ja) * 2012-11-13 2014-05-29 Sumco Corp 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2014099457A (ja) * 2012-11-13 2014-05-29 Sumco Corp 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2017175145A (ja) * 2017-05-01 2017-09-28 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2017183736A (ja) * 2017-05-11 2017-10-05 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012059849A (ja) * 2010-09-08 2012-03-22 Shin Etsu Handotai Co Ltd シリコンエピタキシャルウェーハおよびシリコンエピタキシャルウェーハの製造方法
CN103534791B (zh) * 2011-05-13 2016-05-11 胜高股份有限公司 半导体外延晶片的制造方法、半导体外延晶片及固体摄像元件的制造方法
JP6278591B2 (ja) * 2012-11-13 2018-02-14 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP5799935B2 (ja) * 2012-11-13 2015-10-28 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP5776670B2 (ja) * 2012-11-13 2015-09-09 株式会社Sumco エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP6107068B2 (ja) * 2012-11-13 2017-04-05 株式会社Sumco エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP5799936B2 (ja) * 2012-11-13 2015-10-28 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP5776669B2 (ja) * 2012-11-13 2015-09-09 株式会社Sumco エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP6065848B2 (ja) * 2014-01-07 2017-01-25 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP6427894B2 (ja) * 2014-02-21 2018-11-28 株式会社Sumco エピタキシャルウェーハの製造方法
JP2015220242A (ja) * 2014-05-14 2015-12-07 株式会社Sumco 半導体エピタキシャルウェーハの製造方法および固体撮像素子の製造方法
JP2018098266A (ja) * 2016-12-08 2018-06-21 キヤノン株式会社 光電変換装置、光電変換装置の製造方法およびカメラ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166032A (ja) * 1985-01-17 1986-07-26 Matsushita Electronics Corp 半導体基板
JPH04130731A (ja) * 1990-09-21 1992-05-01 Hitachi Ltd 半導体集積回路装置の製造方法
JP2001177086A (ja) * 1999-12-21 2001-06-29 Sony Corp 撮像素子及びその製造方法
JP2004281591A (ja) * 2003-03-14 2004-10-07 Hitachi Ltd 半導体エピタキシャルウエハとその製法,半導体装置及びその製法
WO2009004889A1 (ja) * 2007-07-04 2009-01-08 Shin-Etsu Handotai Co., Ltd. 薄膜シリコンウェーハ及びその作製法
JP2009164590A (ja) * 2007-12-13 2009-07-23 Sumco Corp エピタキシャルウェーハ及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166032A (ja) * 1985-01-17 1986-07-26 Matsushita Electronics Corp 半導体基板
JPH04130731A (ja) * 1990-09-21 1992-05-01 Hitachi Ltd 半導体集積回路装置の製造方法
JP2001177086A (ja) * 1999-12-21 2001-06-29 Sony Corp 撮像素子及びその製造方法
JP2004281591A (ja) * 2003-03-14 2004-10-07 Hitachi Ltd 半導体エピタキシャルウエハとその製法,半導体装置及びその製法
WO2009004889A1 (ja) * 2007-07-04 2009-01-08 Shin-Etsu Handotai Co., Ltd. 薄膜シリコンウェーハ及びその作製法
JP2009164590A (ja) * 2007-12-13 2009-07-23 Sumco Corp エピタキシャルウェーハ及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099456A (ja) * 2012-11-13 2014-05-29 Sumco Corp 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2014099457A (ja) * 2012-11-13 2014-05-29 Sumco Corp 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2017175145A (ja) * 2017-05-01 2017-09-28 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2017183736A (ja) * 2017-05-11 2017-10-05 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法

Also Published As

Publication number Publication date
TW201013753A (en) 2010-04-01
JP2010040864A (ja) 2010-02-18

Similar Documents

Publication Publication Date Title
WO2010016457A1 (ja) エピタキシャルシリコンウェーハ及びその製造方法
US7776723B2 (en) Method of manufacturing an epitaxial semiconductor substrate and method of manufacturing a semiconductor device
US7755085B2 (en) Semiconductor device and method for fabricating same
WO2015034075A1 (ja) シリコンウェーハおよびその製造方法
WO2007125863A1 (ja) Soiウエーハの製造方法
US7910455B2 (en) Method for producing SOI wafer
JP2010010615A (ja) 固体撮像素子用シリコン基板およびその製造方法
JP2010153815A6 (ja) 半導体基板の製造方法、および半導体基板
US6339011B1 (en) Method of forming semiconductive active area having a proximity gettering region therein and method of processing a monocrystalline silicon substrate to have a proximity gettering region
JP5625239B2 (ja) 貼り合わせウェーハの製造方法
TWI688002B (zh) 磊晶矽晶圓的製造方法、磊晶矽晶圓及固體攝像元件的製造方法
JP6442818B2 (ja) シリコンウェーハおよびその製造方法
JP5439801B2 (ja) エピタキシャルウェーハ及びその製造方法
JP5292810B2 (ja) Soi基板の製造方法
TWI643250B (zh) Method for manufacturing epitaxial wafer and epitaxial wafer
WO2012086122A1 (ja) Soiウェーハの製造方法
JP2006216934A (ja) エピタキシャル半導体基板の製造方法及び半導体装置の製造方法
KR101184380B1 (ko) 에피택셜 웨이퍼 제조 방법, 이를 적용한 에피택셜 웨이퍼,및 반도체 소자
JP7334698B2 (ja) Soiウェーハの製造方法及びsoiウェーハ
US20110298094A1 (en) Epitaxial wafer and method of producing the same
TWI887466B (zh) Soi晶圓之製造方法及soi晶圓
JP7380517B2 (ja) Soiウェーハの製造方法及びsoiウェーハ
JP2018137278A (ja) 貼り合わせsoiウェーハの製造方法
JPWO2004086488A1 (ja) 半導体エピタキシャルウェーハ
JP2011054654A (ja) 薄厚化デバイス素子用シリコンウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09804940

Country of ref document: EP

Kind code of ref document: A1