WO2010097376A1 - Verfahren zur anreicherung eines homogenkatalysators aus einem prozessstrom - Google Patents
Verfahren zur anreicherung eines homogenkatalysators aus einem prozessstrom Download PDFInfo
- Publication number
- WO2010097376A1 WO2010097376A1 PCT/EP2010/052242 EP2010052242W WO2010097376A1 WO 2010097376 A1 WO2010097376 A1 WO 2010097376A1 EP 2010052242 W EP2010052242 W EP 2010052242W WO 2010097376 A1 WO2010097376 A1 WO 2010097376A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- catalyst
- separation
- high boilers
- catalyst system
- Prior art date
Links
- JXISJBVJNUKKBK-UHFFFAOYSA-N N#Cc(c(F)c(nc1F)F)c1F Chemical compound N#Cc(c(F)c(nc1F)F)c1F JXISJBVJNUKKBK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/40—Regeneration or reactivation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/40—Regeneration or reactivation
- B01J31/4015—Regeneration or reactivation of catalysts containing metals
- B01J31/4023—Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
- B01J31/4038—Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals
- B01J31/4046—Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals containing rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1845—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
- B01J31/185—Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/76—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
- C07C29/80—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/02—Monohydroxylic acyclic alcohols
- C07C31/125—Monohydroxylic acyclic alcohols containing five to twenty-two carbon atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
- B01J2231/32—Addition reactions to C=C or C-C triple bonds
- B01J2231/321—Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/822—Rhodium
Definitions
- the present invention relates to a method for enriching a homogeneous catalyst from a process stream, which comprises this homogeneous catalyst
- Component contains. To enrich the process stream is passed over at least one membrane.
- catalyst systems used in homogeneous catalysis generally have to be completely or partially removed from the respective reaction mixture.
- Reasons for this may be requirements for product purity or the recovery of the catalyst system as a valuable material, which z. B. can be returned to the reaction directly or indirectly.
- transition metal complexes such as.
- rhodium As rhodium as a catalyst or when using expensive ligands, the separation of the catalyst system due to the catalyst costs is an important process step.
- Technical processes that are carried out using transition metal complexes in a homogeneous phase for example, telomerization, metathesis, hydrogenation or hydroformylation.
- Technically widespread and associated with relatively high catalyst costs are reactions with rhodium complexes.
- Rhodium complexes are used as catalyst z.
- B. used in the industrial hydroformylation of olefins to the richer in a C atom aldehydes and / or alcohols.
- rhodium complexes with phosphine, phosphite, phosphonite or phosphinite ligands are used as catalyst.
- Reaction mixture can be carried out in the simplest way exclusively by thermal separation processes, for example by the reaction product and optionally starting material from the catalyst-containing reaction mixture is separated by evaporation.
- a disadvantage of such processes is that the catalyst and / or the ligand can decompose during the distillation.
- the catalyst residues in the distillation residue often can not be converted into an active catalyst system during the process. They must therefore be rejected and processed consuming before being returned to the process. This applies in particular to the workup of hydroformylation mixtures which comprise, as catalysts, rhodium complexes with ligands which complex the rhodium more weakly than phosphines.
- these ligand complexes can decompose due to the lack of stabilization by carbon monoxide, which can lead to a clustering of rhodium.
- the rhodium clusters can not be converted to the active catalyst under hydroformylation conditions.
- a partial decomposition of the ligands may occur.
- a potentially gentle separation of homogeneous catalyst systems offers the concentration of homogeneous catalyst-containing process streams with membranes in single or multi-stage interconnection.
- EP 0 781 166 describes the separation of dissolved rhodium-organophosphite complex catalyst and free ligand from a nonaqueous hydroformylation reaction mixture on a membrane of at least 90% by mass of the catalyst and of the free ligand.
- a membrane polymer Teflon, polydimethylsiloxane (PDMS), polyethylene, polyisobutadiene, polystyrene, polymethyl methacrylate, polyvinyl chloride, cellulose diacetate, polyvinylidene chloride and polyacrylonitrile are listed. The separation of the high boiler from the catalyst system is not described.
- EP 1 232 008 describes the separation of high boilers from a catalyst recycle stream by means of a membrane (PDMS).
- the recycle stream is obtained during the work-up by distillation of a discharge of a metal-organically catalyzed reaction. This educts and the primary products are distilled off and as Sumpfeck remains a high-mix, in which the catalyst system is dissolved. This is returned to the reactor. Since small amounts of high boilers are formed in the process, part of it must be separated in order to keep the concentration of high boilers constant.
- the separation of the high boilers from the bottom product is carried out with the addition of a diluent.
- DE 10 2005 046250 describes a process for the separation of an organometallic catalyst system.
- the organic reaction product in a first step, is separated into a retentate with the major part of the catalyst system and into a permeate, which consists of educts, primary products, high boilers and catalyst system.
- the retentate is returned directly to the reactor.
- the permeate is converted by distillation into a top product, which contains mainly starting materials and primary reaction products, and in a bottom product with the
- Catalyst system dissolved in high boilers, separated.
- Catalyst system dissolved in high boilers, separated.
- PI polyimide
- PAI polyamide-imide
- the bottom stream is separated by a membrane into a permeate stream and a catalyst-enriched retentate stream which is completely or partially recycled to the reaction.
- MWCO cut-off
- polymer membranes with cut-offs of more than 10,000 daltons are specified. No statement is made about the activity as an essential measure of the quality of the retained catalyst system.
- the exemplified catalyst has a molecular weight of about 12,000 daltons and is thus over an order of magnitude over the usual catalysts used industrially. A transfer to technically relevant and smaller molecular weight catalyst systems is not possible with the disclosure of DE 10 2005 060784A1.
- soft retention refers to the cut-off and in which substance system the cut-off was determined.
- the information usually refers to depending on the manufacturer on a backing of 90 or 95%.
- the separation limit does not serve as an absolute limit but rather as a qualitative aid for the selection of a membrane for a specific separation problem (see MeNn, Rautenbach: Membranmaschine 2. Edition 2004 Springer-Verlag Berlin, Heidelberg.). It is therefore questionable whether the specified separation limits apply to the metal complex catalyst. The need for ligand retention is not mentioned.
- the listed membranes are exclusively porous membranes whose separation limits, as shown below, are not suitable for the catalyst system according to the invention.
- the listed membranes apart from various ceramic membranes, only polytetrafluoroethylene, polyvinylidene fluoride (PVDF), polysulfone, polyethersulfone, polydimethylsiloxane (PDMS), polyether ketone, polyamide and polyimide as possible membrane materials.
- PIM-based membranes are potentially also useful for the separation of chiral molecules such as amino acids, for the separation of organics z.
- chiral molecules such as amino acids
- a disadvantage of the processes known from the prior art is that the processes either can not separate the catalyst system sufficiently gently and thus maintain activity and / or the active catalyst systems can not be sufficiently retained.
- the processes either can not separate the catalyst system sufficiently gently and thus maintain activity and / or the active catalyst systems can not be sufficiently retained.
- an active catalyst system of less than 1500 g / mol which has a substantially lower molecular weight than the darkened catalyst species, there is the difficulty with a membrane components having a molecular weight of less than 100 g / mol to separate.
- the membrane must be sufficiently permeable to the organic components to enable an economical process.
- the object was to develop a method that the catalyst system containing Process stream (eg, reactor effluent or bottoms) in a catalyst system enriched stream and a catalyst system depleted stream separates and has a large degree of retention for the catalyst system, in particular for the metal component.
- Process stream eg, reactor effluent or bottoms
- the technical object of the invention is therefore to provide a method for the preparation of a homogeneous catalyst, in which the Catalyst system can be enriched or separated while maintaining its activity, the process must have a large retention rate for the catalyst system, no diluents for the recovery are necessary and also no clustering of the metal content of the catalyst or decomposition of the catalyst complex is observed.
- This technical object is achieved by a method for enriching a homogeneous catalyst from a process stream containing this homogeneous catalyst as an ingredient, wherein the process stream is passed over at least one membrane and wherein the membranes wholly or partly consists of a polymer having planar polymer units, which are interconnected via a rigid linker, wherein the linker is twisted in such that at least one planar polymer unit is connected via the linker in a non-coplanar arrangement with at least one second planar polymer unit.
- PIM intrinsic microporosity
- high boilers are produced from an organic reaction product of a metal-catalyzed reaction as well as from a distillate bottoms enriched with high-boiling components containing high-boiling components, metal complexes, clusters and free ligands by means of one or more membrane (s) .
- Product and educts can be separated from the catalyst system, wherein the retention for the metal component per membrane is greater than 70% and greater than 60% for the free ligand, when the separation on membranes containing polymers with intrinsic microporosity (PIM), he follows.
- PIM intrinsic microporosity
- the process is preferably carried out with a separation limit of 400 to 2000 g / mol in the temperature range of 40 to 150 ° C. and in a range of the transmembrane pressure (differential pressure across the membrane) of 5 to 60 bar.
- a separation limit 400 to 2000 g / mol in the temperature range of 40 to 150 ° C. and in a range of the transmembrane pressure (differential pressure across the membrane) of 5 to 60 bar.
- High boilers for the purposes of the invention are substances which boil higher than the primary hydroformylation products (aldehydes and / or alcohols having one carbon atom more than the olefin used) and have higher molecular weights and are formed during the hydroformylation. These include aldolization products and acetalization products as well as esters formed by the reaction of alcohols and acids, where the alcohols and acids are formed by disproportionation of aldehydes. High boilers present in hydroformylation process streams generally have boiling points above 55 ° C. at 0.1 MPa.
- the polymers within the polymer structures have spirobisind bonds which function as linkers.
- the polymers within the polymer structures have substituted or unsubstituted spiro-bis (indane) substuctures which function as linkers.
- Spirobisindanitatien in the context of the invention are 1, 1 '-spirobis [indane], 1, 2'-spirobispndan] and 2,2'-spirobis [indan]; their structures can be represented as follows:
- the spirobisindane bond is not a chemical bond in the strict sense, but rather a substructure located between the polymers.
- An especially preferred spirobisindane bond is the substructure of 3,3,3,3'-tetramethyl-1,1-spirobispanane]:
- release-active membrane material are polymers which have repeating units of one or more of the following formula, where n represents the number of units and is preferably between 10 and 100,000.
- PIM intrinsic microporosity polymers
- PIM-based membranes have a particularly high retention of dissolved solids in organic solvents such as homogeneous catalysts and their ligands and at the same time have a high permeate flux compared to previous membranes.
- the amount of synthesis gas should be superimposed during separation at least in the stoichiometric amount needed to form the active catalyst species in order to prevent the formation of inactive or even irreversibly precipitated catalyst species.
- the process according to the invention can be carried out using one, two or more membrane (s) or using one, two or more membrane separation steps. Depending on the separation performance of the membrane and the desired retention, the desired retention can be achieved by connecting several membrane separation steps in series.
- two or more membrane separation steps can be carried out.
- the membrane separation steps can be carried out directly one after the other.
- the series connection can be carried out in such a way that either the retentate or the permeate, preferably the permeate of a first membrane separation step is passed as a feed stream in a further membrane separation step.
- the membrane separation steps optionally following the first membrane separation step according to the invention may also be carried out under similar conditions as the first one.
- one or more membranes may be used.
- two or more membranes are used in a membrane separation step.
- the membrane separation steps In a multi-stage membrane separation process, it may be advantageous to use different membranes in the membrane separation steps.
- a membrane which is more permeable is preferably used in a membrane separation step preceding a membrane separation step.
- the resulting classification leads to a better permeability in the downstream membrane separation step.
- the upper temperature limit in the membrane separation steps is predetermined by the stability of the membrane used and the stability of the catalyst system.
- the lower temperature limit is dependent on the viscosity of the solution to be separated and the temperature-dependent solubility of the catalyst system therein.
- a membrane separation step in particular the first membrane separation step, at a temperature of 40 to 150 ° C., more preferably at a temperature of 60 to 90 ° C.
- the membrane step, in particular the first membrane step is preferably carried out at a temperature of 60 to 90 0 C.
- the membrane step, in particular the first membrane step is preferably carried out at a temperature of 40 to 80 0 C.
- Temperature ranges avoided decomposition of the catalyst which can otherwise lead to losses of active catalyst and to a deposition of decomposition products of the catalyst on the membrane.
- By depositing the flow through the membrane can be reduced. In extreme cases, the flow of mass can come to a standstill by blocking.
- the transmembrane pressure (pressure at the membrane between retentate and permeate side), in which the process according to the invention is preferably carried out, is preferably from 5 to 60 bar, more preferably from 10 to 30 bar.
- PIM membranes can be used which are suitable on the basis of their chemical or physical properties are metal complex catalysts, in particular organophosphorus metal complex catalyst, to retain at a level of at least 60%, in particular of more than 80% and have a separation limit of 400 to 2000 g / mol.
- metal complex catalysts in particular organophosphorus metal complex catalyst
- Another prerequisite for the usability of the membrane is that the membrane must be stable to all present in the reaction mixture compounds, in particular to the solvents.
- microporous also means materials that could be termed nanoporous. There are so far two classes of intrinsically microporous materials. Zeolites and amorphous activated carbon. Due to the lack of solubility in organic solvents, no films and thus no membranes can be produced from these materials. This is different with polymers.
- PIM polymer with intrinsic microporosity
- PIM-1 polymer with intrinsic microporosity
- the CA Index name is 1,4 benzenedicarbonitrile, 2,3,5,6-tetrafluoropolymer with 2,2 ', 3,3'-tetrahydro-3,3,3', 3'-tetramethyl-1, 1 ' -spirobi [1 H-indene] -5,5 ', 6,6'-tetrol with the CA number 676450-48-9.
- PIM-1 is obtained from the reaction of 5,5 ', 6,6'-tetrahydroxy-3,3,3', 3'-tetramethyl-1, 1-spirobisindane with 2,3,5,6-tetrafluorophthalonitrile:
- Comonomer 6 The comonomer 3 is generated by bromination of spirobisindane.
- starting substances are 9,9'-spirobifluorenes, modified as 2,2'-dicarboxy-9,9'-spiroflourene or 2,2'-diamino-9,9'-spirobifluorene, which are suitable for the preparation of intrinsically microporous polyamides and polyimides are suitable.
- the membranes may have other materials.
- the membranes may have support or support materials to which the PIM is applied as a thin, release-active layer.
- the inventively usable membrane reinforcing materials such as.
- particles of inorganic oxides or inorganic fibers such as.
- ceramic or glass fibers which increase the stability of the membrane especially against pressure fluctuations or high pressure differences.
- the thickness of the separating layer of the membrane for the method according to the invention is preferably 10-1000 nm, more preferably 100-700 nm.
- the membranes are preferably used in the process according to the invention in the form of membrane modules.
- the membranes are arranged so that the retentate side of the membrane can be overflowed such that the concentration polarization of the separated components, here
- Catalyst ligand system counteracted and also the necessary driving force (pressure) can be impressed.
- the permeate is combined in the permeate collection space on the permeate side of the membrane and removed from the module.
- Common membrane modules have the membrane in the form of membrane discs, membrane pads or membrane pockets.
- the membranes are preferably used in the form of membrane modules, the membrane modules with open-channel pillow module systems, in which the Membranes to membrane pockets or pads are thermally welded or glued, or open-channel (wide-spacer) winding modules in which the membranes are bonded or welded to membrane pockets or membrane pads and are wound with feed spacers around a Permeatsammelrohr.
- the Reynolds number is between 55 and 13500, preferably between 100 and 3500, and very particularly preferably between 170 and 900.
- the kinematic viscosity should be less than 10 mPas and preferably 1 mPas. At these flow conditions deposits are avoided.
- the process is preferably carried out when using wound membranes with a tube length of 1 m and a pressure drop of 1.5 bar and a kinematic viscosity of the medium of 1 mPas to avoid deposits on the membrane, that the membrane separation step, in particular first membrane separation step with an overflow velocity at the membrane of 0.1 to 15 m / se ⁇ , preferably 0.2 to 4 m / sec, preferably from 0.3 to 1 m / sec is present.
- the inventive method is operated such that the solution to be separated is driven as an influx on the membrane and the retentate is partially recycled to the membrane.
- the partial flow which is returned to the membrane, previously combined with the solution to be separated.
- the portion of the retentate stream that is not recycled to the membrane is either used as a feed stream for one or more subsequent separation stages, or recycled to the reaction.
- the membrane separation step a stream with low content of high boilers and high proportion of primary products, as is the case in a reactor without prior constriction of high boilers supplied, the volume flow ratio of permeate stream to feed stream from the reactor (without recycled retentate) 1 to 1, 1 to 1 to 5, preferably from 1 to 1, 4 to 1 to 3 and more preferably from 1 to 1, 6 to 1 to 2.
- the volume flow ratio of permeate stream to feed stream from the reactor is preferably 1 to 5 to 1 to 20, preferably from 1 to 7.5 to 1 to 12.5, and more preferably from 1 to 9 to 1 to 11.
- the volumetric flow ratio of the flow conducted to the membrane, in particular to the first membrane of the first membrane separation step (inflow from the reactor including recycled retentate) to permeate flow is from 10 to 10,000 to 1, preferably from 50 to 5,000 to 1 and more preferably from 200 to 2,000 to 1. It is therefore preferably a relatively high volume flow in a circle over the membrane.
- the size of the part of the retentate stream which is recycled to the reaction or fed to a further separation results from the difference between feed stream (without recycled retentate) and permeate stream.
- the reaction effluent of an organic metal complex catalyzed reaction directly or a concentrate prepared therefrom can be used as a feed stream for membrane separation.
- the reaction effluents contain educts, primary products, by-products such as high boilers, the catalyst system and optionally a solvent.
- the catalyst system in particular the metal complex, remains predominantly in the retentate.
- the permeate which is worked up in a further separation stage, starting materials, products and high boilers are separated together. In this case, the permeate stream is much larger than the retentate stream, which is not recycled to the membrane. This requires a large membrane area and a non-optimal retention of the catalyst system.
- thermal separation step may, for. B. by one or more thermal separation equipment, such.
- thermal separation equipment such as thin-film evaporator, falling film evaporator, flash evaporator or distillation columns can be realized.
- starting materials and primary products are separated off as the top product.
- the bottom product is a mixture of high boilers and the catalyst system. If the reaction mixture is a hydroformylation mixture, the overhead product usually contains the
- Hydroformylation product such as. As aldehyde and / or alcohol and possibly unreacted hydrocarbons, such as. For example, olefins or aliphatics and optionally used in the hydroformylation solvent, which has a boiling point in the range of hydroformylation or lower, which can be fed to a further workup.
- hydroformylation solvent which has a boiling point in the range of hydroformylation or lower, which can be fed to a further workup.
- a mixture is obtained, which contains the complex catalyst and / or free ligand, optionally a solvent boiling higher than the hydroformylation product as well as high boilers formed during the hydroformylation.
- the proportion of high boilers in the bottom product is between 50 and 98% by mass, in particular between 60 and 90% by mass.
- the reaction mixture can be separated by means of a membrane into a stream with a higher catalyst concentration and a stream with a lower catalyst concentration.
- the stream with the higher catalyst concentration is returned to the reactor.
- the stream with the lower catalyst concentration is fed to the thermal separation step.
- a method of this type is described for example in DE 10 2005 046250.2.
- mixtures can be separated which are formed in reactions using homogeneously dissolved metal catalysts.
- Examples of such reactions include hydrogenations, hydroformylations, metatheses, hydrocyanations and hydrocarboxyalkylations of olefins.
- Hydroformylation mixtures containing rhodium complex catalysts are preferably worked up.
- the hydroformylation reaction mixtures can be prepared from processes for the hydroformylation of olefins, preferably having 2 to 25 carbon atoms, more preferably 4 to 16, most preferably 6 to 12 and especially 8, 9, 10, 11 or 12 carbon atoms, to the corresponding aldehydes come.
- the hydroformylation reaction mixture very particularly preferably comprises, as hydroformylation product, an aldehyde which is selected from aldehydes having 5 to 17 hydrocarbon atoms, preferably 9 or 13 hydrocarbon atoms, in particular isononanal and isotridecanal.
- the complex catalysts present in the hydroformylation reaction mixture and / or free organophosphorus ligands may be the compounds and complexes known in the art.
- the complex catalysts or the free ligands have such ligands selected from the phosphines, phosphites, phosphinites, phosphonites.
- the Ligands may have one or more phosphino, phosphito-, phosphonito- or phosphinito groups. It is also possible that the ligands have two or more different groups selected from the phosphino, phosphito-, phosphonito- or phosphinito groups.
- the ligands may be bisphosphites, bisphosphines, bisphosphonites, bisphosphinites, phosphine phosphites, phosphine phosphonites, phosphine phosphinites, phosphite phosphonites, phosphite phosphinites or phosphonite phosphinites.
- the ligands of the complex catalyst and the free ligands may be the same or different.
- the organophosphorus ligands of the complex catalyst and the free ligands are the same.
- Examples of usable complex catalysts or ligands and their preparation and use in the hydroformylation can, for.
- EP 0 213 639, EP 0 214 622, EP 0 155 508, EP 0 781 166, EP 1209164, EP 1201675, DE 10114868, DE 10140083, DE 10140086, DE 10210918 or WO 2003/078444 are hereby expressly incorporated herein by reference Reference is made.
- Phosphines triphenylphosphine, tris (p-tolyl) phosphine, ths (m-tolyl) phosphine, tris (o-tolyl) phosphine, tris (p-methoxyphenyl) phosphine, ths (p-dimethylaminophenyl) phosphine, tricyclohexylphosphine, tricyclopentylphosphine, Triethylphosphine, tri- (1-naphthyl) phosphine, tribenzylphosphine, tri-n-butylphosphine, Th-t-butylphosphine.
- Phosphites trimethyl phosphite, triethyl phosphite, tri-n-propyl phosphite, tri-i-propyl phosphite, tri-n-butyl phosphite, tri-i-butyl phosphite, tri-t-butyl phosphite, tris (2-ethylhexyl) phosphite, triphenyl phosphite, Ths (2, 4-di-t-butylphenyl) phosphite, tris (2-t-butyl-4-methoxyphenyl) phosphite, Ths (2-t-butyl-4-methylphenyl) phosphite, tris (p-cresyl) phosphite.
- Phosphonites methyldiethoxyphosphine, phenyldimethoxyphosphine,
- Common phosphinite ligands are diphenyl (phenoxy) phosphine and its derivatives diphenyl (methoxy) phosphine and diphenyl (ethoxy) phosphine.
- the hydroformylation mixtures may comprise an acyl or heteroacyl phosphite or an acyl or heteroacyl phosphite group-containing ligand as the organophosphorus ligand.
- Acyl phosphites or acyl phosphite groups having ligands, their preparation and their use in the hydroformylation are described for example in DE 100 53 272.
- Heteroacyl phosphites and heteroacyl phosphite-containing ligands, their preparation and their use in the hydroformylation are described for example in DE 10 2004 013 514.
- PIM intrinsic microporosity
- the reactants (1) of the hydroformylation, olefin and synthesis gas are fed to the reactor (R).
- the oxidation of the olefin to aldehyde takes place.
- Reacted educt such as aldehyde and by-products and secondary products including high boilers such as aldol condensation products and unreacted starting material and the
- Catalyst system are discharged as reaction mixture (2) from the reactor and fed to a selective membrane separation step (M). It finds Retentatter (3) an enrichment and permeate side (4) a depletion of the catalyst or the catalyst system instead.
- FIG. 2 shows an extension of the process from FIG. 1 in that the permeate (4) of the membrane separation step is fed to a thermal separation step (D).
- the permeate stream (4) is separated into a stream of higher-boiling components, such as by-products of the reaction section and catalyst separation non-retained catalyst components (6), and into a product stream (5) containing lower boiling predominantly aldehyde.
- stream (6) or a partial stream (8) of stream (6) can be discharged from the process. Unless it is necessary to remove the entire stream (6), it may be advantageous to recycle the remaining stream (7) of the reaction, especially if stream (7) still contains parts of the catalyst system.
- stream 6 it may be advantageous to pass stream 6 through a second membrane separation step into a stream (7) enriched with catalyst (6) and a catalyst depleted stream (8) for discharging high boiling components to separate (see Fig. 3).
- a catalyst depleted stream (8) for discharging high boiling components to separate (see Fig. 3).
- the interconnection according to FIG. 3 can also be advantageous without the membrane separation step after the reaction discharge. Such an interconnection is shown in FIG. 4.
- a further subject of the invention is a process for the preparation of tridecanal which comprises the following steps: a. Hydroformylation of tributene to thdecanal using a homogeneous catalyst system consisting of rhodium and an organophosphorus compound,
- a tributene prepared by oligomerization of linear butenes to nickel-containing solid catalysts is used to prepare the tride channel.
- the organophosphorus compound is Ths (2,4-di-tert-butylphenyl) phosphite.
- the reaction is a rhodium / phosphite-catalyzed hydrofomylation of a dodecene mixture (tri-n-butene).
- the rhodium precursor used is rhodium acetylacetonatodicarbonyl and the ligand used is Ths (2,4-di-tert-butyl-phenyl) phosphite.
- Rhodium concentration was 10 mg / kg.
- the rhodium to ligand ratio was 20.
- Reacted educt such as the aldehyde (isotridecanal) and by-products and secondary products including high boilers such as aldol condensation products and unreacted educt and the catalyst system are fed to a thermal separation step, the high-boiling and catalyst-enriched bottom is fed to the membrane separation step.
- the high boiler share is over 50%.
- the molar mass difference between active catalyst species and the high boilers is less than 500 g / mol.
- the rhodium retention with a PIM membrane in the high-boiler stream is more than 95% (FIG. 5).
- the membrane filtration was carried out by way of example at a transmembrane pressure of 25 bar and a temperature of 60 ° C.
- the feed-side overflow was 1.7 m / s, the pipe pressure loss was less than 1 bar, the Reynolds number was about 1200.
- This high retention could be demonstrated for a test duration of more than 20 days.
- the resulting permeate fluxes are between 0.63 and 1.41 kg / (m 2 h).
- the rhodium concentrations in the feed of the membrane separation step are 50 to 133 mg / kg. Comparative example
- Tab. 1 shows the corresponding results for a selection of membrane types mentioned in DE 10 2005 060784A1.
- the feed of the membrane separation step is a rhodium / phosphite-catalyzed hydrofomylation of dodecene enriched in a high-boiling reaction by a thermal separation step. Accordingly, this stream contains reacted starting material such as the aldehyde (isotridecanal) and by-products and secondary products, including high boilers such as aldol condensation products and unreacted educt and the aldehyde (isotridecanal) and by-products and secondary products, including high boilers such as aldol condensation products and unreacted educt and the aldehyde (isotridecanal) and by-products and secondary products, including high boilers such as aldol condensation products and unreacted educt and the
- the ceramic membranes of Inopor ® and Velterop ® have a good permeate flux, but they can not sufficiently retain the catalyst system.
- the polymer membranes have an increased, but insufficient retention for the catalyst compared to the ceramic membranes.
- the polyimide membrane Starmem 240 ® also has an unsuitably low permeability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Catalysts (AREA)
- Polyethers (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10711629.5A EP2401078B1 (de) | 2009-02-27 | 2010-02-23 | Verfahren zur anreicherung eines homogenkatalysators aus einem prozessstrom |
BRPI1009755-4A BRPI1009755B1 (pt) | 2009-02-27 | 2010-02-23 | Processo para o enriquecimento de um catalisador homogêneo de um fluxo de processo e processo para produção de tridecanol |
PL10711629T PL2401078T3 (pl) | 2009-02-27 | 2010-02-23 | Sposób wzbogacania katalizatora jednorodnego ze strumienia procesowego |
CN201080009645.1A CN102333593B (zh) | 2009-02-27 | 2010-02-23 | 从工艺流富集均相催化剂的方法 |
RU2011139168/04A RU2011139168A (ru) | 2009-02-27 | 2010-02-23 | Способ концентрирования гомогенного катализатора из технологического потока |
MX2011009008A MX2011009008A (es) | 2009-02-27 | 2010-02-23 | Metodo para enriquecer un catalizador homogeneo a partir de un flujo de proceso. |
ES10711629.5T ES2442769T3 (es) | 2009-02-27 | 2010-02-23 | Procedimiento para el enriquecimiento de un catalizador homogéneo a partir de una corriente de proceso |
US13/203,639 US8969628B2 (en) | 2009-02-27 | 2010-02-23 | Method for enriching a homogeneous catalyst from a process flow |
SG2011062072A SG174170A1 (en) | 2009-02-27 | 2010-02-23 | Method for enriching a homogenous catalyst from a process flow |
JP2011551482A JP5623435B2 (ja) | 2009-02-27 | 2010-02-23 | プロセス流から均一系触媒を富化する方法 |
ZA2011/05351A ZA201105351B (en) | 2009-02-27 | 2011-07-20 | Method for enriching a homogenous catalyst from a process flow |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009001225A DE102009001225A1 (de) | 2009-02-27 | 2009-02-27 | Verfahren zur Anreicherung eines Homogenkatalysators aus einem Prozessstrom |
DE102009001225.7 | 2009-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010097376A1 true WO2010097376A1 (de) | 2010-09-02 |
Family
ID=42144907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/052242 WO2010097376A1 (de) | 2009-02-27 | 2010-02-23 | Verfahren zur anreicherung eines homogenkatalysators aus einem prozessstrom |
Country Status (15)
Country | Link |
---|---|
US (1) | US8969628B2 (de) |
EP (1) | EP2401078B1 (de) |
JP (1) | JP5623435B2 (de) |
KR (1) | KR101593259B1 (de) |
CN (1) | CN102333593B (de) |
BR (1) | BRPI1009755B1 (de) |
DE (1) | DE102009001225A1 (de) |
ES (1) | ES2442769T3 (de) |
MX (1) | MX2011009008A (de) |
MY (1) | MY153102A (de) |
PL (1) | PL2401078T3 (de) |
RU (1) | RU2011139168A (de) |
SG (1) | SG174170A1 (de) |
WO (1) | WO2010097376A1 (de) |
ZA (1) | ZA201105351B (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012202779A1 (de) | 2012-02-23 | 2013-08-29 | Evonik Oxeno Gmbh | Verfahren und Vorrichtung zur technischen Hydroformylierung von Isobuten und zum Auftrennen des Produktgemisches |
DE102012223572A1 (de) | 2012-12-18 | 2014-06-18 | Evonik Industries Ag | Steuerung der Viskosität von Reaktionslösungen in Hydroformylierungverfahren |
US9643153B2 (en) | 2014-05-19 | 2017-05-09 | Evonik Degussa Gmbh | Membrane-supported catalyst removal in the epoxidation of cyclic unsaturated C12 compounds, for example cyclododecene (CDEN) |
EP3945085A1 (de) | 2020-07-30 | 2022-02-02 | Evonik Operations GmbH | Verfahren zur herstellung von aldehyden und abtrennung des katalysatorsystems mittels membrantrennung |
EP4183768A1 (de) * | 2021-11-19 | 2023-05-24 | Evonik Operations GmbH | Verfahren zur herstellung von aldehyden und kühlung eines stoffstroms |
US11773041B2 (en) | 2021-11-19 | 2023-10-03 | Evonik Operations Gmbh | Process for preparing aldehydes and cooling a stream of matter |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007054885A1 (de) * | 2007-11-15 | 2009-05-20 | Evonik Degussa Gmbh | Verfahren zur Fraktionierung oxidischer Nanopartikel durch Querstrom-Membranfiltration |
DE102008043422B3 (de) | 2008-11-03 | 2010-01-07 | Evonik Degussa Gmbh | Verfahren zur Aufreinigung niedermolekularer Hydridosilane |
DE102009001230A1 (de) | 2009-02-27 | 2010-09-02 | Evonik Oxeno Gmbh | Verfahren zur Abtrennung und teilweiser Rückführung von Übergangsmetallen bzw. deren katalytisch wirksamen Komplexverbindungen aus Prozessströmen |
MY160267A (en) | 2009-07-23 | 2017-02-28 | Evonik Fibres Gmbh | Polyimide membranes made of polymerization solutions |
DE102009047351A1 (de) | 2009-12-01 | 2011-06-09 | Evonik Goldschmidt Gmbh | Komposit-Siliconmembranen mit hoher Trennwirkung |
DE102011082441A1 (de) | 2011-09-09 | 2013-03-14 | Evonik Oxeno Gmbh | Strahlschlaufenreaktor mit Nanofiltration |
GB201117950D0 (en) * | 2011-10-18 | 2011-11-30 | Imp Innovations Ltd | Membranes for separation |
KR101717864B1 (ko) | 2012-10-12 | 2017-03-17 | 에보니크 데구사 게엠베하 | 비스포스파이트 혼합물 및 히드로포르밀화에서의 촉매 혼합물로서의 그의 용도 |
DE102013203117A1 (de) | 2013-02-26 | 2014-08-28 | Evonik Industries Ag | Optimierte Trenntechnik zur Aufarbeitung von homogen katalysierten Hydroformylierungsmischungen |
WO2014156910A1 (ja) * | 2013-03-29 | 2014-10-02 | Jsr株式会社 | 組成物、パターンが形成された基板の製造方法、膜及びその形成方法並びに化合物 |
DE102013215004A1 (de) | 2013-07-31 | 2015-02-05 | Evonik Industries Ag | Membrankaskade mit sinkender Trenntemperatur |
EP3271414A1 (de) | 2015-03-17 | 2018-01-24 | Dow Global Technologies LLC | Polymere mit intrinsischer mikroporosität |
DE112016002429T5 (de) | 2015-05-29 | 2018-02-22 | Dow Global Technologies Llc | Isatincopolymere mit intrinsischer microporosität |
US10189948B2 (en) | 2015-06-24 | 2019-01-29 | Dow Global Technologies Llc | Isatin copolymers having intrinsic microporosity |
US10414866B2 (en) | 2015-11-24 | 2019-09-17 | Dow Global Technologies Llc | Troger's base polymers having intrinsic microporosity |
WO2017153347A1 (en) * | 2016-03-07 | 2017-09-14 | Shell Internationale Research Maatschappij B.V. | Process for recovering a metallic component |
US10590239B2 (en) | 2016-09-12 | 2020-03-17 | Dow Global Technologies Llc | Polymer including Troger'S base and isatin moieties and having intrinsic microporosity |
CN109689731A (zh) * | 2016-09-20 | 2019-04-26 | 陶氏环球技术有限责任公司 | 包括具有特勒格碱和螺双茚部分的子单元的具有固有微孔性的聚合物 |
WO2019173646A1 (en) | 2018-03-08 | 2019-09-12 | Exxonmobil Research And Engineering Company | Spirocentric compounds and polymers thereof |
EP4183900A4 (de) * | 2020-07-17 | 2024-10-16 | Panasonic Ip Man Co Ltd | Elektrodenkatalysator für wasserelektrolysezellen, wasserelektrolysezelle und wasserelektrolysevorrichtung |
WO2022014243A1 (ja) * | 2020-07-17 | 2022-01-20 | パナソニックIpマネジメント株式会社 | 水電解セルの電極触媒、水電解セル、及び水電解装置 |
EP4223737A1 (de) * | 2022-02-08 | 2023-08-09 | Evonik Operations GmbH | Optimierte thermische trennung durch vorherigen gasaustausch |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0155508A1 (de) | 1984-02-17 | 1985-09-25 | Union Carbide Corporation | Durch Übergangsmetall-Komplexverbindungen katalysierte Reaktionen |
EP0213639A2 (de) | 1985-09-05 | 1987-03-11 | Union Carbide Corporation | Bis-phosphit-Verbindungen |
EP0214622A2 (de) | 1985-09-05 | 1987-03-18 | Union Carbide Corporation | Durch Übergangsmetallkomplexe katalysierte Herstellungsverfahren |
EP0781166A1 (de) | 1995-05-01 | 1997-07-02 | Union Carbide Chemicals & Plastics Technology Corporation | Membrantrennung |
EP0850905A1 (de) * | 1996-12-24 | 1998-07-01 | Hüls Aktiengesellschaft | Verfahren zur Herstellung von höheren Oxo-Alkoholen |
DE19801437A1 (de) * | 1998-01-16 | 1999-07-22 | Basf Ag | Verfahren zur Herstellung von Aldehyden |
EP1201675A1 (de) | 2000-10-27 | 2002-05-02 | Oxeno Olefinchemie GmbH | Bisphosphitverbindungen und deren Metallkomplexe |
EP1209164A1 (de) | 2000-11-24 | 2002-05-29 | Oxeno Olefinchemie GmbH | Neue Phosphininverbindung und deren Metallkomplexe |
EP1232008A1 (de) | 1999-11-23 | 2002-08-21 | Dsm N.V. | Verfahren zur abtrennung eines rhodiumphosphitligandkomplexes und freien phosphitligandes aus hydroformylierungsmischungen |
DE10114868C1 (de) | 2001-03-26 | 2002-10-31 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von Diphosphinen und deren Verwendung |
DE10140083A1 (de) | 2001-08-16 | 2003-02-27 | Oxeno Olefinchemie Gmbh | Neue Phosphitverbindungen und deren Metallkomplexe |
DE10140086A1 (de) | 2001-08-16 | 2003-02-27 | Oxeno Olefinchemie Gmbh | Neue Phosphitverbindungen und neue Phosphitmetallkomplexe |
WO2003078444A2 (en) | 2002-03-11 | 2003-09-25 | Union Carbide Chemicals & Plastics Technology Corporation | Bisphosphite ligands for carbonylation processes |
DE10210918A1 (de) | 2002-03-13 | 2003-10-02 | Oxeno Olefinchemie Gmbh | Verbessertes Verfahren zur Herstellung von Bisphosphiten |
WO2003095406A1 (de) * | 2002-05-10 | 2003-11-20 | Oxeno Olefinchemie Gmbh | Verfahren zur rhodium-katalysierten hydroformylierung von olefinen unter reduzierung der rhodiumverluste |
WO2003095402A1 (de) * | 2002-05-10 | 2003-11-20 | Oxeno Olefinchemie Gmbh | Verfahren zur herstellung von c13-alkoholgemischen |
DE102004013514A1 (de) | 2004-03-19 | 2005-10-06 | Oxeno Olefinchemie Gmbh | Verfahren zur Hydroformylierung von Olefinen in Anwesenheit von neuen phosphororganischen Verbindungen |
WO2005113121A1 (en) | 2004-05-22 | 2005-12-01 | The University Of Manchester | Thin layer composite membrane |
US20060246273A1 (en) | 2003-07-26 | 2006-11-02 | Mckeown Neil B | Microporous polymer material |
DE102005046250A1 (de) | 2005-09-27 | 2007-03-29 | Oxeno Olefinchemie Gmbh | Verfahren zur Abtrennung von organischen Übergangsmetallkomplexkatalysatoren |
DE102005060784A1 (de) | 2005-12-16 | 2007-06-28 | Basf Ag | Verfahren zur Rückgewinnung eines an Hydroformylierungskatalysator angereicherten Stroms |
DE102006003618A1 (de) * | 2006-01-26 | 2007-08-02 | Oxeno Olefinchemie Gmbh | Verfahren zur Abtrennung von Metall-Komplexkatalysatoren aus Telomerisationsgemischen |
Family Cites Families (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4759776A (en) | 1986-12-08 | 1988-07-26 | Air Products And Chemicals, Inc. | Polytrialkylgermylpropyne polymers and membranes |
DE3820294C1 (de) | 1988-06-15 | 1989-10-05 | Th. Goldschmidt Ag, 4300 Essen, De | |
DE3933420C1 (de) | 1989-10-06 | 1991-03-07 | Th. Goldschmidt Ag, 4300 Essen, De | |
DE4009889C1 (de) | 1990-03-28 | 1991-06-13 | Th. Goldschmidt Ag, 4300 Essen, De | |
US5260402A (en) | 1990-06-21 | 1993-11-09 | Th. Goldschmidt Ag | Curable organopolysiloxanes with oxyalkylene ether groups linked through SiOC groups, their synthesis and use |
KR100338136B1 (ko) | 1998-03-03 | 2002-05-24 | 울프 크라스텐센, 스트라쎄 로텐베르그 | 오르가노폴리실록산 및 오르가노폴리실록산의 제조방법 |
DE19836246A1 (de) | 1998-08-11 | 2000-02-24 | Goldschmidt Ag Th | Strahlenhärtbare Beschichtungsmassen |
DE10248111A1 (de) | 2002-10-15 | 2004-04-29 | Goldschmidt Ag | Verwendung von Photoinitiatoren vom Typ Hydroxyalkylphenon in strahlenhärtbaren Organopolysiloxanen für die Herstellung von abhäsiven Beschichtungen |
DE10341137A1 (de) | 2003-09-06 | 2005-03-31 | Goldschmidt Ag | Verwendung von hydroxyfunktionellen Polyalkylorganosiloxanen als Lösungsmittel für kationische Photoinitiatoren für die Verwendung in strahlenhärtbaren Siliconen |
DE10359764A1 (de) | 2003-12-19 | 2005-07-14 | Goldschmidt Ag | Polysiloxane mit über SiOC-Gruppen gebundenen (Meth)acrylsäureestergruppen, Verfahren zu deren Herstellung sowie deren Verwendung als strahlenhärtbare abhäsive Beschichtung |
DE102005001039B4 (de) | 2005-01-07 | 2017-11-09 | Evonik Degussa Gmbh | Verfahren zur Herstellung von Äquilibrierungsprodukten von Organosiloxanen und die so erhältlichen Organopolysiloxane |
DE102005001041A1 (de) | 2005-01-07 | 2006-07-20 | Goldschmidt Gmbh | Neuartige Siloxanblockcopolymere |
DE102005004706A1 (de) | 2005-02-02 | 2006-08-10 | Goldschmidt Gmbh | UV-Licht absorbierende quaternäre Polysiloxane |
DE102005043742A1 (de) | 2005-09-14 | 2007-03-22 | Goldschmidt Gmbh | Verwendung von Epoxy-funktionellen Silanen als Haftungsadditiv für kationisch strahlenhärtende Silikontrennbeschichtungen |
DE102005051939A1 (de) | 2005-10-29 | 2007-05-03 | Goldschmidt Gmbh | Verfahren zur Herstellung von organisch modifizierten Polyorganosiloxanen |
DE102005056246A1 (de) | 2005-11-25 | 2007-06-06 | Goldschmidt Gmbh | Gepfropfte Polyether-Copolymerisate und deren Verwendung zur Stabilisierung von Schaumstoffen |
DE102005061782A1 (de) | 2005-12-23 | 2007-06-28 | Goldschmidt Gmbh | Silikonhaltige Pfropfmischpolymere auf Basis styroloxidbasierter Silikonpolyether |
DE102006005100A1 (de) | 2006-02-04 | 2007-08-09 | Goldschmidt Gmbh | Verfahren zur Herstellung organomodifizierter Siloxane |
DE102006008387A1 (de) | 2006-02-21 | 2007-08-30 | Goldschmidt Gmbh | Verfahren zur Herstellung von siloxanhaltigen Trennbeschichtungen |
DE102006027339A1 (de) | 2006-06-13 | 2007-12-20 | Goldschmidt Gmbh | Kationisch strahlenhärtende Controlled Release Beschichtungsmassen |
DE102006041088A1 (de) | 2006-09-01 | 2008-03-06 | Evonik Goldschmidt Gmbh | Siliconhaltige, blockweise aufgebaute Pfropfmischpolymere |
DE102006041089A1 (de) | 2006-09-01 | 2008-03-06 | Evonik Goldschmidt Gmbh | Verwendung von gepfropften Polyethersiloxanmischpolymeren zur Verbesserung der Kältestabilität von Entschäumern in wässrigen Dispersionen |
DE102006041971A1 (de) | 2006-09-07 | 2008-03-27 | Evonik Goldschmidt Gmbh | Verwendung von partikulären Emulgatoren in abhäsiven siloxanhaltigen Beschichtungsmassen |
DE102007005508A1 (de) | 2007-02-03 | 2008-08-07 | Evonik Goldschmidt Gmbh | Verfahren zur Reduktion des Trennwert-Anstiegs bei der Herstellung von No-Label-Look-Etiketten |
DE102007041028A1 (de) | 2007-08-29 | 2009-03-05 | Evonik Goldschmidt Gmbh | Verwendung estermodifizierter Organopolysiloxane zur Herstellung kosmetischer oder pharmazeutischer Kompositionen |
DE102007044148A1 (de) | 2007-09-15 | 2009-03-26 | Evonik Goldschmidt Gmbh | Neuartige siloxanhaltige Blockcopolymere, Verfahren zu deren Herstellung und deren Verwendung für Schmiermittel |
DE102007054885A1 (de) | 2007-11-15 | 2009-05-20 | Evonik Degussa Gmbh | Verfahren zur Fraktionierung oxidischer Nanopartikel durch Querstrom-Membranfiltration |
DE102008000243A1 (de) | 2008-02-06 | 2009-08-13 | Evonik Goldschmidt Gmbh | Neuartige Kompatibilisierungsmittel zur Verbesserung der Lagerstabilität von Polyolmischungen |
DE102008000287A1 (de) | 2008-02-13 | 2009-08-20 | Evonik Goldschmidt Gmbh | Reaktives, flüssiges Keramikbindemittel |
DE102008001786A1 (de) | 2008-05-15 | 2009-11-26 | Evonik Goldschmidt Gmbh | Verwendung organomodifizierter Siloxanblockcopolymere als Pflegewirkstoff zur Pflege von menschlichen oder tierischen Körperteilen |
DE102008001788A1 (de) | 2008-05-15 | 2009-11-26 | Evonik Goldschmidt Gmbh | Verwendung organomodifizierter Siloxanblockcopolymere zur Herstellung kosmetischer oder pharmazeutischer Zusammensetzungen |
DE102008040986A1 (de) | 2008-08-05 | 2010-02-11 | Evonik Goldschmidt Gmbh | Hydrophobierung von Bauelementen aus Mineralfasern |
DE102008041601A1 (de) | 2008-08-27 | 2010-03-04 | Evonik Goldschmidt Gmbh | Verfahren zur Herstellung verzweigter SiH-funtioneller Polysiloxane und deren Verwendung zur Herstellung flüssiger, SiC- oder SiOC-verknüpfter, verzweigter organomodifizierter Polysiloxane |
DE102008041652A1 (de) | 2008-08-28 | 2010-03-04 | Evonik Oxeno Gmbh | Vorrichtung und Verfahren für die kontinuierliche Umsetzung einer Flüssigkeit mit einem Gas |
DE102008041870A1 (de) | 2008-09-08 | 2010-03-11 | Evonik Degussa Gmbh | Reaktor mit Titansilikat-Rezyklierung |
DE102008042381A1 (de) | 2008-09-26 | 2010-04-01 | Evonik Goldschmidt Gmbh | Emulgator-Systeme für kosmetische und pharmazeutische Öl-in-Wasser-Emulsionen |
CN102159071A (zh) | 2008-10-17 | 2011-08-17 | 赢创高施米特有限公司 | 含有具有高有机硅特征的烷基聚硅氧烷佐剂的农用化学油组合物 |
DE102008043422B3 (de) | 2008-11-03 | 2010-01-07 | Evonik Degussa Gmbh | Verfahren zur Aufreinigung niedermolekularer Hydridosilane |
DE102009001230A1 (de) | 2009-02-27 | 2010-09-02 | Evonik Oxeno Gmbh | Verfahren zur Abtrennung und teilweiser Rückführung von Übergangsmetallen bzw. deren katalytisch wirksamen Komplexverbindungen aus Prozessströmen |
DE102009015211A1 (de) | 2009-03-31 | 2010-10-14 | Evonik Goldschmidt Gmbh | Selbstvernetzende Polysiloxane in Beschichtungen von Enzymimmobilisaten |
DE102009002415A1 (de) | 2009-04-16 | 2010-10-21 | Evonik Goldschmidt Gmbh | Emulgator enthaltend glycerinmodifizierte Organopolysiloxane |
DE102009003275A1 (de) | 2009-05-20 | 2010-11-25 | Evonik Goldschmidt Gmbh | Verzweigte Polydimethylsiloxan-Polyoxyalkylen Copolymere, ein Verfahren zu ihrer Herstellung und ihre Verwendung als Anti-Vernebelungsadditiv in UV-härtenden Silikonen |
DE102009028636A1 (de) | 2009-08-19 | 2011-02-24 | Evonik Goldschmidt Gmbh | Neuartige Urethangruppen enthaltende silylierte Präpolymere und Verfahren zu deren Herstellung |
DE102009028640A1 (de) | 2009-08-19 | 2011-02-24 | Evonik Goldschmidt Gmbh | Härtbare Masse enthaltend Urethangruppen aufweisende silylierte Polymere und deren Verwendung in Dicht- und Klebstoffen, Binde- und/oder Oberflächenmodifizierungsmitteln |
DE102010002180A1 (de) | 2010-02-22 | 2011-08-25 | Evonik Goldschmidt GmbH, 45127 | Stickstoffhaltige silizium-organische Pfropfmischpolymere |
DE102010002178A1 (de) | 2010-02-22 | 2011-08-25 | Evonik Goldschmidt GmbH, 45127 | Verfahren zur Herstellung von Amin-Amid-funktionellen Siloxanen |
DE102010031087A1 (de) | 2010-07-08 | 2012-01-12 | Evonik Goldschmidt Gmbh | Neuartige polyestermodifizierte Organopolysiloxane |
-
2009
- 2009-02-27 DE DE102009001225A patent/DE102009001225A1/de not_active Withdrawn
-
2010
- 2010-02-23 WO PCT/EP2010/052242 patent/WO2010097376A1/de active Application Filing
- 2010-02-23 CN CN201080009645.1A patent/CN102333593B/zh not_active Expired - Fee Related
- 2010-02-23 JP JP2011551482A patent/JP5623435B2/ja not_active Expired - Fee Related
- 2010-02-23 MY MYPI2011004020 patent/MY153102A/en unknown
- 2010-02-23 US US13/203,639 patent/US8969628B2/en not_active Expired - Fee Related
- 2010-02-23 SG SG2011062072A patent/SG174170A1/en unknown
- 2010-02-23 KR KR1020117019820A patent/KR101593259B1/ko active IP Right Grant
- 2010-02-23 EP EP10711629.5A patent/EP2401078B1/de not_active Not-in-force
- 2010-02-23 BR BRPI1009755-4A patent/BRPI1009755B1/pt not_active IP Right Cessation
- 2010-02-23 ES ES10711629.5T patent/ES2442769T3/es active Active
- 2010-02-23 MX MX2011009008A patent/MX2011009008A/es active IP Right Grant
- 2010-02-23 PL PL10711629T patent/PL2401078T3/pl unknown
- 2010-02-23 RU RU2011139168/04A patent/RU2011139168A/ru not_active Application Discontinuation
-
2011
- 2011-07-20 ZA ZA2011/05351A patent/ZA201105351B/en unknown
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0155508A1 (de) | 1984-02-17 | 1985-09-25 | Union Carbide Corporation | Durch Übergangsmetall-Komplexverbindungen katalysierte Reaktionen |
EP0213639A2 (de) | 1985-09-05 | 1987-03-11 | Union Carbide Corporation | Bis-phosphit-Verbindungen |
EP0214622A2 (de) | 1985-09-05 | 1987-03-18 | Union Carbide Corporation | Durch Übergangsmetallkomplexe katalysierte Herstellungsverfahren |
EP0781166A1 (de) | 1995-05-01 | 1997-07-02 | Union Carbide Chemicals & Plastics Technology Corporation | Membrantrennung |
EP0850905A1 (de) * | 1996-12-24 | 1998-07-01 | Hüls Aktiengesellschaft | Verfahren zur Herstellung von höheren Oxo-Alkoholen |
DE19801437A1 (de) * | 1998-01-16 | 1999-07-22 | Basf Ag | Verfahren zur Herstellung von Aldehyden |
EP1232008A1 (de) | 1999-11-23 | 2002-08-21 | Dsm N.V. | Verfahren zur abtrennung eines rhodiumphosphitligandkomplexes und freien phosphitligandes aus hydroformylierungsmischungen |
EP1201675A1 (de) | 2000-10-27 | 2002-05-02 | Oxeno Olefinchemie GmbH | Bisphosphitverbindungen und deren Metallkomplexe |
DE10053272A1 (de) | 2000-10-27 | 2002-05-08 | Oxeno Olefinchemie Gmbh | Neue Bisphosphitverbindungen und deren Metallkomplexe |
EP1209164A1 (de) | 2000-11-24 | 2002-05-29 | Oxeno Olefinchemie GmbH | Neue Phosphininverbindung und deren Metallkomplexe |
DE10114868C1 (de) | 2001-03-26 | 2002-10-31 | Oxeno Olefinchemie Gmbh | Verfahren zur Herstellung von Diphosphinen und deren Verwendung |
DE10140083A1 (de) | 2001-08-16 | 2003-02-27 | Oxeno Olefinchemie Gmbh | Neue Phosphitverbindungen und deren Metallkomplexe |
DE10140086A1 (de) | 2001-08-16 | 2003-02-27 | Oxeno Olefinchemie Gmbh | Neue Phosphitverbindungen und neue Phosphitmetallkomplexe |
WO2003078444A2 (en) | 2002-03-11 | 2003-09-25 | Union Carbide Chemicals & Plastics Technology Corporation | Bisphosphite ligands for carbonylation processes |
DE10210918A1 (de) | 2002-03-13 | 2003-10-02 | Oxeno Olefinchemie Gmbh | Verbessertes Verfahren zur Herstellung von Bisphosphiten |
WO2003095406A1 (de) * | 2002-05-10 | 2003-11-20 | Oxeno Olefinchemie Gmbh | Verfahren zur rhodium-katalysierten hydroformylierung von olefinen unter reduzierung der rhodiumverluste |
WO2003095402A1 (de) * | 2002-05-10 | 2003-11-20 | Oxeno Olefinchemie Gmbh | Verfahren zur herstellung von c13-alkoholgemischen |
US20060246273A1 (en) | 2003-07-26 | 2006-11-02 | Mckeown Neil B | Microporous polymer material |
DE102004013514A1 (de) | 2004-03-19 | 2005-10-06 | Oxeno Olefinchemie Gmbh | Verfahren zur Hydroformylierung von Olefinen in Anwesenheit von neuen phosphororganischen Verbindungen |
WO2005113121A1 (en) | 2004-05-22 | 2005-12-01 | The University Of Manchester | Thin layer composite membrane |
DE102005046250A1 (de) | 2005-09-27 | 2007-03-29 | Oxeno Olefinchemie Gmbh | Verfahren zur Abtrennung von organischen Übergangsmetallkomplexkatalysatoren |
DE102005060784A1 (de) | 2005-12-16 | 2007-06-28 | Basf Ag | Verfahren zur Rückgewinnung eines an Hydroformylierungskatalysator angereicherten Stroms |
DE102006003618A1 (de) * | 2006-01-26 | 2007-08-02 | Oxeno Olefinchemie Gmbh | Verfahren zur Abtrennung von Metall-Komplexkatalysatoren aus Telomerisationsgemischen |
Non-Patent Citations (2)
Title |
---|
FRITSCH ET AL., J.MEM.SCI., vol. 251, 2005, pages 263 - 269 |
MCKEOWN N B ET AL: "Polymers of intrinsic microporosity (PIMs): Bridging the void between microporous and polymeric materials", CHEMISTRY - A EUROPEAN JOURNAL, WILEY - V C H VERLAG GMBH & CO. KGAA, WEINHEIM, DE LNKD- DOI:10.1002/CHEM.200400860, vol. 11, no. 9, 22 April 2005 (2005-04-22), pages 2610 - 2620, XP002493889, ISSN: 0947-6539 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012202779A1 (de) | 2012-02-23 | 2013-08-29 | Evonik Oxeno Gmbh | Verfahren und Vorrichtung zur technischen Hydroformylierung von Isobuten und zum Auftrennen des Produktgemisches |
WO2013124176A1 (de) | 2012-02-23 | 2013-08-29 | Evonik Oxeno Gmbh | Verfahren und vorrichtung zur hydroformylierung von isobuten und zum auftrennen des produktgemisches |
JP2015509491A (ja) * | 2012-02-23 | 2015-03-30 | エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH | イソブテンのヒドロホルミル化のための、及び、生成物混合物の分離のための、方法及び装置 |
DE102012223572A1 (de) | 2012-12-18 | 2014-06-18 | Evonik Industries Ag | Steuerung der Viskosität von Reaktionslösungen in Hydroformylierungverfahren |
WO2014095452A1 (de) | 2012-12-18 | 2014-06-26 | Evonik Industries Ag | Steuerung der viskosität von reaktionslösungen in hydroformylierungverfahren |
US9643153B2 (en) | 2014-05-19 | 2017-05-09 | Evonik Degussa Gmbh | Membrane-supported catalyst removal in the epoxidation of cyclic unsaturated C12 compounds, for example cyclododecene (CDEN) |
EP3945085A1 (de) | 2020-07-30 | 2022-02-02 | Evonik Operations GmbH | Verfahren zur herstellung von aldehyden und abtrennung des katalysatorsystems mittels membrantrennung |
US11396488B2 (en) | 2020-07-30 | 2022-07-26 | Evonik Operations Gmbh | Process for preparing aldehydes and separation of the catalyst system by membrane separation |
EP4183768A1 (de) * | 2021-11-19 | 2023-05-24 | Evonik Operations GmbH | Verfahren zur herstellung von aldehyden und kühlung eines stoffstroms |
US11773041B2 (en) | 2021-11-19 | 2023-10-03 | Evonik Operations Gmbh | Process for preparing aldehydes and cooling a stream of matter |
US11820739B2 (en) | 2021-11-19 | 2023-11-21 | Evonik Operations Gmbh | Process for preparing aldehydes and cooling a stream of matter |
Also Published As
Publication number | Publication date |
---|---|
JP2012519061A (ja) | 2012-08-23 |
ZA201105351B (en) | 2012-10-31 |
CN102333593A (zh) | 2012-01-25 |
CN102333593B (zh) | 2014-08-27 |
MY153102A (en) | 2014-12-31 |
KR101593259B1 (ko) | 2016-02-12 |
US20120046503A1 (en) | 2012-02-23 |
ES2442769T3 (es) | 2014-02-13 |
SG174170A1 (en) | 2011-10-28 |
BRPI1009755B1 (pt) | 2018-02-14 |
JP5623435B2 (ja) | 2014-11-12 |
MX2011009008A (es) | 2011-11-29 |
US8969628B2 (en) | 2015-03-03 |
PL2401078T3 (pl) | 2014-03-31 |
DE102009001225A1 (de) | 2010-09-02 |
EP2401078A1 (de) | 2012-01-04 |
EP2401078B1 (de) | 2013-10-23 |
KR20110124759A (ko) | 2011-11-17 |
BRPI1009755A2 (pt) | 2016-03-15 |
RU2011139168A (ru) | 2013-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2401078B1 (de) | Verfahren zur anreicherung eines homogenkatalysators aus einem prozessstrom | |
EP1931472B1 (de) | Verfahren zur abtrennung von organischen übergangsmetallkomplexkatalysatoren | |
EP2935187B1 (de) | Steuerung der viskosität von reaktionslösungen in hydroformylierungverfahren | |
EP3027298B1 (de) | Membrankaskade mit sinkender trenntemperatur | |
DE69518426T2 (de) | Membrantrennung | |
EP2817284B1 (de) | Verfahren und vorrichtung zur hydroformylierung von isobuten und zum auftrennen des produktgemisches | |
DE102009001230A1 (de) | Verfahren zur Abtrennung und teilweiser Rückführung von Übergangsmetallen bzw. deren katalytisch wirksamen Komplexverbindungen aus Prozessströmen | |
EP3060334B1 (de) | Strahlschlaufenreaktor mit nanofiltration und gasseparator | |
EP3750627B1 (de) | Verfahren zur abtrennung von einer oder mehreren komponente(n) aus einem gemisch | |
DE102013203117A1 (de) | Optimierte Trenntechnik zur Aufarbeitung von homogen katalysierten Hydroformylierungsmischungen | |
DE102013208759A1 (de) | Abtrennung von Homogenkatalysatoren mittels einer geregelten Membrantrenneinheit | |
EP3112373B1 (de) | Neuer vierzähniger phosphor-ligand mit hostanox o3 leitstruktur | |
DE102005060784A1 (de) | Verfahren zur Rückgewinnung eines an Hydroformylierungskatalysator angereicherten Stroms | |
WO2015028281A1 (de) | Geträgerte zusammensetzung und deren verwendung in verfahren zur hydroformylierung von ungesättigten verbindungen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080009645.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10711629 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010711629 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117019820 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2011/009008 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011551482 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6781/CHENP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011139168 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13203639 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1009755 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1009755 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110829 |