[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2010095219A1 - 内燃機関の検出装置 - Google Patents

内燃機関の検出装置 Download PDF

Info

Publication number
WO2010095219A1
WO2010095219A1 PCT/JP2009/052772 JP2009052772W WO2010095219A1 WO 2010095219 A1 WO2010095219 A1 WO 2010095219A1 JP 2009052772 W JP2009052772 W JP 2009052772W WO 2010095219 A1 WO2010095219 A1 WO 2010095219A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sensor
heater
change
cover
Prior art date
Application number
PCT/JP2009/052772
Other languages
English (en)
French (fr)
Inventor
曲田 尚史
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011500385A priority Critical patent/JP5110200B2/ja
Priority to PCT/JP2009/052772 priority patent/WO2010095219A1/ja
Priority to US13/201,795 priority patent/US8751185B2/en
Priority to CN200980156877.7A priority patent/CN102317605B/zh
Priority to EP09840326.4A priority patent/EP2400136B1/en
Publication of WO2010095219A1 publication Critical patent/WO2010095219A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/06By-pass systems
    • F01N2550/12By-pass systems of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a detection device for an internal combustion engine that detects adhesion of an inhibitory substance such as a particulate matter.
  • Patent Document 1 describes whether the output value of the oxygen concentration sensor is within a predetermined value or more than a predetermined value when the engine operating state is in a steady state. A technique for incinerating particulate matter by raising the temperature of an electric heater for heating a detection element of the oxygen concentration sensor is described. Patent Documents 2 and 3 also describe techniques related to the present invention.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a detection device for an internal combustion engine that can accurately detect the adhesion of an inhibitory substance.
  • an internal combustion engine detection device applied to an internal combustion engine provided with a temperature change member that is provided in an exhaust system and causes a temperature change due to a gas flow in the exhaust system.
  • a temperature correlation value detection means for detecting a correlation value correlated with the temperature of the temperature member, and a change amount calculation for calculating a change amount of the correlation value detected by the temperature correlation value detection means in a period in which the gas flows. Means.
  • the above-described detection device for an internal combustion engine is preferably applied to an internal combustion engine provided with a temperature change member that is provided in an exhaust system and causes a temperature change due to a gas flow in the exhaust system.
  • the detection device for an internal combustion engine is, for example, an ECU (Electronic Control Unit), and functions as a temperature correlation value detection unit and a change amount calculation unit.
  • the temperature correlation value detecting means detects a correlation value correlated with the temperature of the temperature change member.
  • the correlation value here includes the impedance of the temperature change member, signal output values such as current and voltage transmitted by the temperature change member, and the value of the temperature of the temperature change member itself.
  • the change amount calculation means calculates the change amount of the correlation value detected by the temperature correlation value detection means during the period in which the gas flow occurs.
  • the difficulty in cooling or the temperature change of the temperature change member changes, and the amount of change in the correlation value also changes. Therefore, by calculating the change amount of the correlation value, it is possible to accurately detect whether or not an inhibitory substance is attached to the temperature change member.
  • the temperature changing member is an electric heater of a gas sensor
  • the temperature correlation value detecting means detects the impedance of the electric heater as the correlation value.
  • the temperature change member is a temperature sensor
  • the temperature correlation value detection means detects a signal output value of the temperature sensor as the correlation value.
  • an exhaust gas temperature sensor that detects a temperature of the gas is provided on substantially the same flow line as the temperature change member
  • the change amount calculation unit includes: The ratio of the change in the correlation value with respect to the exhaust temperature detected by the exhaust temperature sensor is calculated. This also makes it possible to accurately detect whether or not an inhibitory substance is attached to the temperature change member. Further, according to this, it is possible to detect whether or not an inhibitory substance is attached to the temperature change member as long as the gas flow rate is kept substantially constant with respect to the time for a predetermined time when the exhaust gas temperature changes. Can do.
  • a filter member is provided in the exhaust system, and the temperature change member is provided on the downstream side of the filter member. This makes it possible to determine whether or not the filter is functioning normally.
  • the change amount threshold value is set in accordance with the amount of the inhibitor substance attached to the temperature change member, and the change amount calculated by the change amount calculation means Determination means for determining whether or not is smaller than the threshold value.
  • the determination unit is realized by an ECU, for example. By doing in this way, it can be determined whether the amount of the inhibitory substance adhering to the temperature-variable substance is larger than the amount of the inhibitory substance corresponding to the threshold value.
  • FIG. 1 is a configuration diagram showing the configuration of the internal combustion engine according to the first embodiment.
  • a solid line arrow indicates a gas flow
  • a broken line arrow indicates a signal flow.
  • the internal combustion engine is, for example, a diesel engine mounted as a driving power source in a vehicle such as an automobile, and includes a plurality of cylinders 12, an intake passage 13 and an exhaust passage 14 respectively connected to each cylinder 12, And a turbocharger 18 arranged in series in the intake passage 13 and the exhaust passage 14.
  • the internal combustion engine may be a gasoline engine instead of a diesel engine.
  • the exhaust passage 14 is provided with an EGR (Exhaust Gas Recirculation) passage 17 for returning a part of the exhaust gas from the exhaust passage 14 to the intake passage 13.
  • EGR exhaust Gas Recirculation
  • the EGR passage 17 is provided with an EGR cooler 23 for cooling the EGR gas and an EGR valve 33 for adjusting the amount of EGR gas.
  • the EGR valve 33 is controlled by a control signal S33 from the ECU 50.
  • the air flow meter 41 detects the intake air amount and transmits a detection signal S41 corresponding to the detected intake air amount to the ECU 50.
  • the throttle valve 34 is controlled by a control signal S34 from the ECU 50.
  • a turbine 18b of the turbocharger 18, an air-fuel ratio sensor (A / F sensor) 42, and a filter 24 are provided.
  • the A / F sensor 42 detects the air-fuel ratio in the exhaust gas, and transmits a detection signal S42 corresponding to the detected air-fuel ratio to the ECU 50.
  • the filter 24 collects particulate matter in the exhaust gas.
  • the filter 24 is not limited to a filter having only a filter function. Instead, in addition to the filter function, a filter having a function of a NOx storage reduction catalyst that stores and reduces and purifies NOx in exhaust gas. It may be used.
  • the turbocharger 18 is configured such that the compressor 18a and the turbine 18b rotate integrally.
  • the turbocharger 18 may be, for example, a variable capacity turbocharger including a variable nozzle vane 19 and capable of adjusting a supercharging pressure.
  • the supercharging pressure is adjusted by controlling the exhaust gas amount by adjusting the opening of the variable nozzle vane 19.
  • another supercharger such as a supercharger or an electric supercharger may be used.
  • An intake passage 13 and an exhaust passage 14 are connected to the combustion chamber 12b of the cylinder 12, and a fuel injection valve 5 for injecting fuel into the combustion chamber 12b is provided.
  • the fuel injection valve 5 is controlled by a control signal S5 from the ECU 50.
  • the cylinder 12 is provided with an intake valve 3 and an exhaust valve 4.
  • the intake valve 3 controls conduction / interruption between the intake passage 13 and the combustion chamber 12b by opening and closing.
  • the exhaust valve 4 is opened and closed to control conduction / interruption between the exhaust passage 14 and the combustion chamber 12b.
  • the force that pushes down the piston 12c to the bottom dead center is transmitted to the crankshaft 15 via the connecting rod 12d, and the crankshaft 15 rotates.
  • a crank angle sensor 44 is provided in the vicinity of the crankshaft 15. The crank angle sensor 44 detects the rotation angle (crank angle) of the crankshaft 15 and transmits a detection signal S44 corresponding to the detected crank angle to the ECU 50.
  • An ECU (Electronic Control Unit) 50 has a CPU, ROM, RAM, A / D converter, input / output interface, and the like (not shown), and controls the engine based on detection signals from various sensors. Specifically, the ECU 50 receives detection signals from the air flow meter 41, the crank angle sensor 44, and the A / F sensor 42. The ECU 50 detects the operating state of the engine based on detection signals from these various sensors. Further, the ECU 50 receives detection signals corresponding to the respective pedal opening degrees of the accelerator pedal and the brake pedal from the accelerator sensor 45 and the brake sensor 46. The ECU 50 detects a driving request based on detection signals from these various sensors. The ECU 50 transmits a control signal to the EGR valve 33, the throttle valve 34, and the fuel injection valve 5 based on the detected engine operating state and operation request.
  • FIG. 2 is a cross-sectional view showing the configuration of the A / F sensor 42.
  • the A / F sensor 42 is, for example, a cup-type A / F sensor, and includes a sensor element 60, a cover 65, and a heater 68.
  • the sensor element 60 includes a solid electrolyte 61, an atmosphere side electrode 62 provided on the inner surface of the solid electrolyte 61, an exhaust side electrode 63 provided on the outer surface of the solid electrolyte 61, and a ceramic coating that covers the exhaust side electrode 63. 64.
  • the heater 68 is provided inside the atmosphere side electrode 62.
  • the solid electrolyte 61 is made of zirconia, for example, and is configured to function (activate) as an oxygen ion conductor under a high temperature condition of, for example, 300 degrees or more.
  • the heater 68 is an electric heater for heating and activating the solid electrolyte 61.
  • the heater 68 is controlled by the ECU 50.
  • the exhaust side electrode 63 and the atmosphere side electrode 62 are porous platinum electrodes.
  • the inside of the solid electrolyte 61 is in a state in which oxygen ions can move freely, and if there is an oxygen concentration difference (difference in oxygen partial pressure) on both sides, the oxygen ions move from one side to the other side so as to reduce the concentration difference. To do.
  • This oxygen ion movement phenomenon becomes electron movement, and generates an electromotive force between a pair of electrodes including the exhaust side electrode 63 and the atmosphere side electrode 61.
  • This electromotive force becomes an output voltage of the A / F sensor 42, and becomes larger as the oxygen concentration difference is larger.
  • the cover 65 is provided so as to cover the sensor element 60 and includes an inner cover 66 and an outer cover 67.
  • the cover 65 is provided with a plurality of small holes for allowing the exhaust gas to pass therethrough.
  • the inner cover 66 and the outer cover 67 are each provided with a plurality of small holes 66a and 67a.
  • the hole 66 a of the inner cover 66 and the hole 67 a of the outer cover 67 are provided so as not to overlap.
  • the ECU 50 determines whether or not the hole of the cover 65 of the A / F sensor is clogged based on the temperature change amount of the heater 68 during a predetermined period. It is determined whether or not. This will be specifically described below.
  • FIG. 3 is a graph showing a change with respect to time for the temperature of the heater 68 of the A / F sensor 42.
  • a graph 101 shows a graph when the hole of the cover 65 of the A / F sensor 42 is not clogged, and a graph 102 shows a case where the hole of the cover 65 of the A / F sensor 42 is clogged. The graph is shown.
  • the temperature of the heater 68 is L1 both when the hole of the cover 65 is not clogged and when the hole of the cover 65 is clogged.
  • the ECU 50 stops the fuel injection from the fuel injection valve 5 to stop the combustion in the cylinder 12, and blows the gas from the intake passage 13 to the exhaust passage 14. In this case, since a cold gas is blown onto the A / F sensor 42, the temperature of the heater 68 gradually decreases with the passage of time.
  • the temperature of the heater 68 is L2a as indicated by the white arrow in FIG.
  • the temperature of the heater 68 is L2b (> L2a) as shown by the black arrow in FIG.
  • the ECU 50 determines whether or not the temperature decrease amount of the heater 68 is smaller than a predetermined clogging determination value at time t2.
  • the clogging determination value is set to, for example, the temperature drop amount
  • the ECU 50 determines that the hole in the cover 65 is clogged, and the temperature drop amount of the heater 68 exceeds the clogging determination value. If it is, it is determined that the hole in the cover 65 is not clogged. In this way, the ECU 50 can detect whether or not the hole in the cover 65 of the A / F sensor 42 is clogged.
  • FIG. 4 is a flowchart showing the clogging detection process.
  • step S101 when the ECU 50 recognizes an engine stop request based on the operating state of the engine, the process proceeds to step S102.
  • the ECU 50 recognizes the engine stop request by entering a motoring period when the engine is in an idle operation state or when the engine is mounted on the hybrid vehicle, for example.
  • step S102 the ECU 50 detects the temperature of the heater 68 and determines whether or not the temperature of the heater 68 is equal to or higher than a predetermined temperature.
  • the predetermined temperature is, for example, the temperature of the heater 68 when the A / F sensor 42 is activated.
  • the ECU 50 can measure the impedance of the heater 68 and detect the temperature of the heater 68 based on the measured impedance. If the ECU 50 determines that the temperature of the heater 68 is equal to or higher than the predetermined temperature (step S102: Yes), the ECU 50 proceeds to the process of step S103. On the other hand, when it is determined that the temperature of the heater 68 is lower than the predetermined temperature (step S102: No), the ECU 50 performs a normal engine stop control process and ends this control process.
  • step S103 the ECU 50 acquires the temperature L1 of the heater 68 at this time. Thereafter, the ECU 50 proceeds to the process of step S104.
  • step S104 the ECU 50 performs engine stop preparation control. Specifically, the ECU 50 stops combustion in the cylinder 12 by transmitting a control signal S5 to the fuel injection valve 5 to stop fuel injection. Further, the ECU 50 transmits the control signal S33 to the EGR valve 33 to fully close the EGR valve 33, for example, and transmits the control signal S34 to the throttle valve 34 to adjust the opening, thereby flowing in the exhaust passage 14. The gas flow rate is kept substantially constant. In the variable capacity turbocharger, the ECU 50 further adjusts the opening of the variable nozzle vane 19 in order to keep the flow rate of the gas flowing through the exhaust passage 14 substantially constant. Thereby, cold gas (air) can be blown through from the intake passage 13 to the exhaust passage 14. Thereafter, the ECU 50 proceeds to the process of step S105.
  • step S105 the ECU 50 determines whether or not the predetermined time ⁇ t has elapsed since the engine stop preparation control is performed. If it is determined that the predetermined time ⁇ t has not elapsed (step S105: No), the ECU 50 performs step S105. Repeat the process. On the other hand, when the ECU 50 determines that the predetermined time ⁇ t has elapsed (step S105: Yes), the ECU 50 proceeds to the process of step S106, and measures the impedance of the heater 68, for example, thereby measuring the temperature L2 of the heater 68 at this time. To get. Thereafter, the ECU 50 proceeds to the process of step S107.
  • step S107 the ECU 50 performs engine stop control. Specifically, the ECU 50 reduces the engine speed to 0 and stops the engine completely. Thereafter, the ECU 50 proceeds to the process of step S108.
  • step S108 the ECU 50 determines whether or not the temperature difference
  • the clogging determination value ⁇ Lc is a temperature decrease amount of the heater 68 when a predetermined time ⁇ t has elapsed when it is assumed that the hole of the cover 65 is not clogged.
  • the ECU 50 determines that the temperature difference
  • the A / F sensor 42 is functioning normally, that is, the A / F sensor. It is determined that no clogging has occurred in the holes of the cover 65 (step S109).
  • step S108 when the ECU 50 determines that the temperature difference
  • the ECU 50 ends this control process after the processes of steps S109 and S110.
  • the processing in steps S108 to S110 and the processing in step S107 may be performed in the reverse order. That is, the ECU 50 may perform engine stop control in step S107 after performing the processes in steps S108 to S110.
  • the ECU 50 blows cold gas (air) through the exhaust passage 14 for a predetermined period, and the heater 68 during the predetermined period. Calculate the temperature drop.
  • the amount of temperature drop of the heater 68 varies depending on whether or not the hole in the cover 65 of the A / F sensor 42 is clogged. Therefore, the ECU 50 can detect whether or not the hole of the cover 65 of the A / F sensor 42 is clogged by calculating the temperature decrease amount of the heater 68.
  • the detection method of the internal combustion engine according to the first embodiment since the amount of change in the temperature of the heater 68 is used, the hole in the cover 65 is clogged without being affected by the degree of deterioration of the sensor element 60. It is possible to accurately detect whether or not it is.
  • FIG. 5 is a configuration diagram showing a part of the exhaust passage of the internal combustion engine according to the second embodiment.
  • the configuration of the internal combustion engine according to the second embodiment is a configuration in which an exhaust temperature sensor 43 is provided in the exhaust passage 14 in addition to the configuration of the internal combustion engine according to the first embodiment.
  • the exhaust temperature sensor 43 is provided on substantially the same streamline as the A / F sensor 42 and is exposed to exhaust gas having substantially the same temperature as the A / F sensor 42.
  • the exhaust temperature sensor 43 for example, an exhaust temperature sensor for estimating the temperature of the filter 24 originally attached to the exhaust passage 14 on the upstream side of the filter 24 can be used.
  • FIG. 6A is a graph showing changes with respect to time for the temperatures of the heater 68 and the exhaust temperature sensor 43 of the A / F sensor 42.
  • a graph 201 shows a change in the temperature of the heater 68 when the hole of the cover 65 of the A / F sensor 42 is not clogged, and a graph 202 is clogged in the hole of the cover 65 of the A / F sensor 42. The change of the temperature of the heater 68 in the case of doing is shown.
  • a graph 203 shows a change in temperature detected by the exhaust temperature sensor 43.
  • exhaust temperature the temperature detected by the exhaust temperature sensor 43 is referred to as “exhaust temperature”.
  • the ECU 50 stops the fuel injection from the fuel injection valve 5 to stop the combustion in the cylinder 12, and blows the gas from the intake passage 13 to the exhaust passage 14.
  • the temperature detected by the exhaust temperature sensor at time t1 is “M0”, and the temperature of the heater 68 of the A / F sensor 42 at time t1 is “L1”.
  • FIG. 6B is a graph showing the relationship between the temperature of the heater 68 and the exhaust temperature.
  • FIG. 6B is a graph obtained by converting the graph shown in FIG. 6A to a graph showing the relationship between the temperature of the heater 68 and the exhaust temperature.
  • a graph 301 is a graph showing a relationship between the temperature of the heater 68 and the exhaust temperature when the hole of the cover 65 of the A / F sensor 42 is not clogged.
  • a graph 302 is a graph showing the relationship between the temperature of the heater 68 and the exhaust temperature when the hole of the cover 65 of the A / F sensor 42 is clogged.
  • the graph 301 is a substantially straight line
  • the graph 302 is a graph curved in a direction in which the temperature of the heater 68 increases.
  • the ratio of the change in the temperature of the heater 68 to the change in the exhaust temperature is substantially constant.
  • the ratio of the change in the temperature of the heater 68 with respect to the change in the exhaust temperature greatly changes.
  • the rate of the temperature drop of the heater 68 when the hole of the cover 65 of the A / F sensor 42 is not clogged becomes substantially constant as shown in the graph 301.
  • the slope of the tangent line of the graph 302 gradually increases as the exhaust gas temperature decreases from the temperature M0. That is, as the exhaust gas temperature falls below the temperature M0, the rate of temperature drop of the heater 68 when the hole of the cover 65 of the A / F sensor 42 is clogged gradually increases.
  • the ECU 50 determines the rate of change in the temperature of the heater 68 with respect to the change in the exhaust temperature, and determines whether the rate of change is substantially constant. I will do it. For example, the ECU 50 detects the temperature of the heater 68 at regular intervals during a predetermined time during which the exhaust temperature changes, and shows the relationship between the exhaust temperature and the temperature of the heater 68 as shown in FIG. Ask for a map. Then, the ECU 50 obtains the rate of change in the temperature of the heater 68 with respect to the change in the exhaust temperature using the map, and determines whether or not the obtained rate is substantially constant.
  • the ECU 50 determines that the hole in the cover 65 of the A / F sensor 42 is not clogged when the obtained ratio is substantially constant. On the other hand, when the calculated ratio is not substantially constant, as shown in the graph 302, the ECU 50 changes in a direction in which the temperature of the heater 68 increases with respect to the change in the exhaust temperature. It is determined that the hole in the cover 65 of the A / F sensor 42 is clogged. For example, the ECU 50 determines that the temperature of the heater 68 is increasing when the rate of temperature decrease of the heater 68 gradually increases as the exhaust gas temperature decreases from the temperature M0. It is determined that the hole of the cover 65 is clogged.
  • the detection method for the internal combustion engine according to the second embodiment also uses the amount of change in the temperature of the heater 68 as in the detection method for the internal combustion engine according to the first embodiment. It is possible to accurately detect whether or not the hole of the cover 65 is clogged without being affected by the degree of deterioration. Further, in the internal combustion engine detection method according to the second embodiment, the ECU 50 performs a clogging detection process for the cover 65 of the A / F sensor 42 based on the temperature change of the exhaust temperature detected by the exhaust temperature sensor 43. Therefore, according to the detection method of the internal combustion engine according to the second embodiment, the exhaust gas temperature is changed without stopping the combustion in the cylinder 12 and significantly reducing the temperature of the gas flowing through the exhaust passage.
  • FIG. 7 is a graph showing the change of the temperature of the heater 68 of the A / F sensor 42 with respect to time, as in FIG.
  • a graph 401 shows a change in temperature of the heater 68 when the hole of the cover 65 of the A / F sensor 42 is not clogged, and graphs 402 to 404 are clogged in the hole of the cover 65 of the A / F sensor 42. This shows a change in the temperature of the heater 68 in a case where the above has occurred.
  • the state of the A / F sensor 42 indicated by the graph 404 has the largest degree of clogging of the hole of the cover 65. It is the state of the A / F sensor 42 shown by the graph 402 that the degree of clogging of the 65 holes is the smallest.
  • the temperature of the heater 68 is L1 both when the hole of the cover 65 is not clogged and when the hole of the cover 65 is clogged.
  • the ECU 50 stops the fuel injection from the fuel injection valve 5 to stop the combustion in the cylinder 12, and blows the gas from the intake passage 13 to the exhaust passage 14.
  • the temperature of the heater 68 when the hole in the cover 65 is not clogged is L2a as indicated by the white arrow.
  • the temperature of the heater 68 when the hole in the cover 65 is clogged becomes L2b to L2d. That is, as the degree of clogging of the hole in the cover 65 increases, the temperature drop amount (the length of the black arrow) of the heater 68 decreases. This is because the greater the degree of clogging of the holes in the cover 65, the more difficult the gas passes through the holes.
  • the ECU 50 sets a threshold value for the temperature drop amount of the heater 68 according to the amount of the inhibitory substance adhering to the hole of the cover 65, and the temperature of the heater 68 is set. It is determined whether or not the decrease amount is smaller than the threshold value. By doing in this way, it can be determined whether the amount of the inhibitory substance adhering to the hole of the cover 65 is larger than the amount of the inhibitory substance corresponding to the threshold value. For example, if a threshold value corresponding to the limit amount of the inhibitor that can be removed by washing the A / F sensor 42 is set in advance, the ECU 50 may cause an amount of the inhibitor that can be removed by washing.
  • the ECU 50 determines whether or not is attached to the A / F sensor 42. Specifically, when the temperature decrease amount of the heater 68 is smaller than the threshold value, the ECU 50 determines that an amount of an inhibitor that cannot be removed by cleaning is attached to the A / F sensor 42. To do. At this time, the ECU 50 can notify the driver of an abnormal state such as prompting the driver to replace the A / F sensor 42 by turning on a warning lamp provided in the driver's seat, for example.
  • the first embodiment has been described as an example, but the second embodiment and the third embodiment may be combined.
  • the ECU 50 determines that the temperature of the heater 68 has increased in the direction of increasing when the temperature decrease rate of the heater 68 gradually increases as the exhaust temperature is decreased from the temperature M0.
  • / F sensor 42 has determined that the hole in cover 65 is clogged.
  • the degree to which the temperature of the heater 68 increases is increased. That is, the graph 302 shown in FIG. 6B is curved in the direction in which the temperature of the heater 68 becomes higher.
  • the threshold value is set according to the amount of the inhibitory substance adhering to the hole of the cover 65 for the rate of temperature decrease of the heater 68 when the exhaust temperature is decreased from the temperature M0, the same as in the above example.
  • the ECU 50 can determine whether or not the amount of the inhibitory substance attached to the hole of the cover 65 is larger than the amount of the inhibitory substance corresponding to the threshold value.
  • FIG. 8 is a configuration diagram showing a part of the exhaust passage of the internal combustion engine according to the fourth embodiment.
  • the A / F sensor 42 is provided in the exhaust passage 14 on the downstream side of the filter 24.
  • the other configuration is the same as the configuration of the internal combustion engine according to the first embodiment (FIG. 1).
  • the filter 24 has a partition wall having a plurality of pores, and traps an inhibitory substance in the exhaust gas by allowing the exhaust gas to pass through the partition wall.
  • the partition wall carries an oxidation catalyst such as platinum (Pt) or cerium oxide (CeO2), and the collected inhibitor is oxidized by the oxidation catalyst. Therefore, when the filter 24 is functioning normally, the inhibitory substance hardly adheres to the hole of the cover 65 of the A / F sensor 42 provided in the exhaust passage 14 on the downstream side of the filter 24.
  • the filter 24 has a reduced function of collecting the inhibitory substance in the exhaust gas due to a crack in the partition wall or the like, the inhibitory substance is present in the exhaust passage 14 on the downstream side of the filter 24. leak. Therefore, in this case, an obstructing substance adheres to the hole of the cover 65 of the A / F sensor 42 provided in the exhaust passage 14 on the downstream side of the filter 24 and clogging occurs.
  • the ECU 50 calculates the temperature change of the heater 68 of the A / F sensor 42 provided in the exhaust passage 14 on the downstream side of the filter 24, and the first or first Whether or not the hole of the cover 65 of the A / F sensor 42 is clogged is determined using the detection method for the internal combustion engine according to the second embodiment. Thereby, it is possible to determine whether or not the filter 24 is functioning normally. Specifically, when the ECU 50 determines that the hole in the cover 65 of the A / F sensor 42 is clogged, the ECU 50 can determine that the function of the filter 24 has deteriorated. If it is determined that the hole in the cover 65 of the F sensor 42 is not clogged, it can be determined that the filter 24 is functioning normally.
  • the ECU 50 determines whether or not the hole in the cover 65 is clogged based on the amount of change in the temperature of the heater 68. In these detection methods, the flow rate of the gas applied to the heater 68 when the cover 65 is clogged is smaller than the flow rate of the gas applied to the heater 68 when the cover 65 is not clogged. It is a thing using.
  • the flow rate of the gas hitting the heater 68 when the cover 65 is cracked is larger than the flow rate of the gas hitting the heater 68 when the cover 65 is not cracked.
  • FIG. 9A is a graph showing the change of the temperature of the heater 68 of the A / F sensor 42 with respect to time, as in FIG.
  • a graph 501 shows a change in temperature of the heater 68 when the cover 65 of the A / F sensor 42 is not clogged or cracked, and a graph 502 is clogged in the hole of the cover 65 of the A / F sensor 42. The change of the temperature of the heater 68 in the case of doing is shown.
  • a graph 503 shows a change in the temperature of the heater 68 when the cover 65 of the A / F sensor 42 is cracked.
  • the ECU 50 stops the fuel injection from the fuel injection valve 5 to stop the combustion in the cylinder 12, and blows the gas from the intake passage 13 to the exhaust passage 14.
  • the temperature of the heater 68 when the cover 65 is not clogged or cracked is L2a.
  • the temperature of the heater 68 when the hole in the cover 65 is clogged is L2b (> L2a)
  • the temperature of the heater 68 when the cover 65 is cracked is L2bb ( ⁇ L2a).
  • the ECU 50 only determines whether or not the hole of the cover 65 is clogged based on the amount of change in the temperature of the heater 68. In addition, it is also determined whether or not the cover 65 is broken.
  • the ECU 50 determines whether or not the temperature decrease amount of the heater 68 is smaller than a predetermined clogging determination value, and also determines a predetermined crack determination value. It is determined whether or not it is smaller.
  • the crack determination value is an adaptive value obtained in advance by experiments or the like, and is set to a value smaller than the clogging determination value.
  • the ECU 50 determines that the cover 65 is cracked, and the temperature decrease amount of the heater 58 becomes equal to or greater than the crack determination value. If it is, it is determined that the cover 65 is not cracked. That is, the ECU 50 determines that the cover 65 of the A / F sensor 42 has not been clogged or cracked when the temperature drop amount of the heater 58 is smaller than the clogging determination value and equal to or greater than the crack determination value. .
  • FIG. 9 (b) is a graph showing the relationship between the temperature of the heater 68 and the exhaust temperature, as in FIG. 6 (b).
  • a graph 601 is a graph showing the relationship between the temperature of the heater 68 and the exhaust temperature when the cover 65 of the A / F sensor 42 is not clogged or cracked.
  • a graph 602 is a graph showing a relationship between the temperature of the heater 68 and the exhaust temperature when the hole of the cover 65 of the A / F sensor 42 is clogged.
  • a graph 603 is a graph showing the relationship between the temperature of the heater 68 and the exhaust temperature when the cover 65 of the A / F sensor 42 is cracked.
  • the graph 601 is a substantially straight line
  • the graph 603 is a graph curved in a direction in which the temperature of the heater 68 decreases.
  • the temperature of the heater 68 when the cover 65 of the A / F sensor 42 is not clogged or cracked changes at a substantially constant rate with respect to the change of the exhaust temperature.
  • the exhaust temperature is the same as when the hole of the cover 65 is clogged (graph 602). The ratio of the change in the temperature of the heater 68 with respect to the change in the temperature greatly changes.
  • the tangential slope of the graph 603 gradually decreases as the exhaust gas temperature falls below the temperature M0. That is, as the exhaust gas temperature falls below the temperature M0, the rate of the temperature drop of the heater 68 when the cover 65 of the A / F sensor 42 is cracked gradually decreases.
  • the ECU 50 changes the temperature of the heater 68 with respect to the change in the exhaust temperature when the ratio of the change in the temperature of the heater 68 to the change in the exhaust temperature is not substantially constant. It is determined how the ratio of the change gradually changes. Specifically, when the temperature of the heater 68 increases in the direction in which the temperature of the heater 68 increases as shown in the graph 602 with respect to the change in the exhaust gas temperature, the ECU 50 opens the hole in the cover 65 of the A / F sensor 42. It is determined that clogging has occurred.
  • the ECU 50 causes a crack in the cover 65 of the A / F sensor 42 when the temperature of the heater 68 decreases as shown in the graph 603 with respect to the change in the exhaust temperature. It is determined that For example, the ECU 50 determines that the hole in the cover 65 of the A / F sensor 42 is clogged when the rate of decrease in the temperature of the heater 68 gradually increases as the exhaust temperature decreases from the temperature M0. When the rate of temperature decrease of the heater 68 gradually decreases, it is determined that the cover 65 of the A / F sensor 43 is cracked.
  • the detection method of the internal combustion engine not only is it determined whether or not the hole of the cover 65 is clogged based on the amount of change in the temperature of the heater 68. It can also be determined whether or not the cover 65 is cracked. In the application example described above, it is also determined whether or not the hole in the cover 65 is clogged. However, the present invention is not limited to this, and only whether or not the cover 65 is cracked is determined. Needless to say, it may be judged.
  • the ECU 50 detects the temperature of the heater 68 based on the impedance of the heater 68, and clogs the hole of the cover 65 (or the cover 65) based on the amount of change in the temperature of the heater 68. It is determined whether or not (crack) has occurred. However, the ECU 50 may determine whether or not the hole of the cover 65 is clogged (or the cover 65 is cracked) by using the impedance change amount of the heater 68 instead of using the temperature change amount. good.
  • the ECU 50 instead of determining whether or not the temperature change amount between times t1 and t2 is smaller than the clogging determination value, determines the impedance between times t1 and t2. It may be determined whether or not the amount of change is smaller than the impedance corresponding to the clogging determination value.
  • the present invention is not limited to being applied to an A / F sensor, but can be applied to other various sensors. Furthermore, in each of the above-described embodiments and application examples, the above-described detection process is performed in order to determine whether or not the hole in the cover is clogged. However, the present invention is not limited to this. That is, it is possible to accurately determine whether or not an inhibitor has directly adhered to the sensor by performing the above-described detection process even on a sensor that does not have a cover.
  • the present invention can be applied when a temperature sensor is used instead of the A / F sensor.
  • the ECU 50 uses the detection method according to each of the above-described embodiments and application examples based on the amount of change in temperature detected by the temperature sensor to determine whether an inhibitory substance is attached to the temperature sensor. Can be determined.
  • the ECU 50 is not limited to using the amount of change in temperature, but instead uses the amount of change in the signal output value (voltage value or current value) of the temperature sensor that correlates with the temperature to determine whether the inhibitor is present. Needless to say, it may be determined whether or not it adheres.
  • the present invention is not limited to being applied to a sensor, and it is needless to say that the present invention can be applied to any temperature changing member that changes in temperature with respect to the gas flow in the exhaust passage.
  • the present invention can be used for an internal combustion engine provided with a temperature changing member such as a sensor that changes in accordance with the exhaust gas temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 内燃機関の検出装置は、排気系に設けられ、当該排気系におけるガスの流れに起因して温度変化が生じる変温部材を備えた内燃機関に好適に適用される。温度相関値検出手段は、前記変温部材の温度に相関する相関値を検出する。ここでいう相関値とは、変温部材のインピーダンスや、変温部材により発信された電流や電圧などの信号出力値、変温部材の温度自体の値を含む。変化量算出手段は、前記温度相関値検出手段により検出された前記相関値の変化量を算出する。

Description

内燃機関の検出装置
 本発明は、粒子状物質などの阻害物質の付着を検出する内燃機関の検出装置に関する。
 内燃機関の排気系には、例えば、排気ガスの空燃比を検出するための空燃比センサ(A/Fセンサ)など、種々のセンサが取り付けられている。このようなセンサの検出部に排気ガス中の粒子状物質などの阻害物質が付着すると、センサは正確な検出値を得ることができなくなり検出精度が低下する。これに対処するための技術として、特許文献1には、エンジン運転状態が定常状態である場合に、酸素濃度センサの出力値が所定値以内か所定値以上かを判定し、所定値以上の時には、当該酸素濃度センサの検出素子を加熱するための電気ヒータを昇温させて粒子状物質を焼却する技術が記載されている。特許文献2及び3にも本発明と関連のある技術が記載されている。
特開平11-82112号公報 特許第3744486号公報 特許第3958755号公報
 しかしながら、特許文献1に記載の技術では、センサの出力値のずれが、阻害物質の付着により発生したのか、センサ自体の劣化に起因するものなのかが不明であった。センサの出力値のずれがセンサ自体の劣化に起因する場合には、粒子状物質を焼却しても無意味となる。
 本発明は、上記のような課題を解決するためになされたものであり、阻害物質の付着を正確に検出することが可能な内燃機関の検出装置を提供することを課題とする。
 本発明の1つの観点では、排気系に設けられ、前記排気系におけるガスの流れに起因して温度変化が生じる変温部材を備えた内燃機関に適用される内燃機関の検出装置は、前記変温部材の温度に相関する相関値を検出する温度相関値検出手段と、前記ガスの流れの生じる期間において、前記温度相関値検出手段により検出された前記相関値の変化量を算出する変化量算出手段と、を備える。
 上記の内燃機関の検出装置は、排気系に設けられ、当該排気系におけるガスの流れに起因して温度変化が生じる変温部材を備えた内燃機関に好適に適用される。内燃機関の検出装置は、例えばECU(Electronic Control Unit)であり、温度相関値検出手段及び変化量算出手段として機能する。温度相関値検出手段は、前記変温部材の温度に相関する相関値を検出する。ここでいう相関値とは、変温部材のインピーダンスや、変温部材により発信された電流や電圧などの信号出力値、変温部材の温度自体の値を含む。変化量算出手段は、ガスの流れの生じる期間における、温度相関値検出手段により検出された相関値の変化量を算出する。変温部材に阻害物質が付着しているか否かによって、当該変温部材の冷め難さや温め難さが変化し、相関値の変化量も変化する。従って、相関値の変化量を算出することにより、変温部材に阻害物質が付着しているか否かを正確に検出することができる。
 上記の内燃機関の検出装置の好適な実施例は、前記変温部材はガスセンサの電気ヒータであり、前記温度相関値検出手段は、前記電気ヒータのインピーダンスを前記相関値として検出する。
 上記の内燃機関の検出装置の好適な実施例は、前記変温部材は温度センサであり、前記温度相関値検出手段は、前記温度センサの信号出力値を前記相関値として検出する。
 上記の内燃機関の検出装置の他の一態様では、前記排気系において、前記変温部材と略同じ流線上に、前記ガスの温度を検出する排気温度センサが設けられ、前記変化量算出手段は、前記排気温度センサにより検出された排気温度に対する前記相関値の変化の割合を算出する。これによっても、変温部材に阻害物質が付着しているか否かを正確に検出することができる。また、これによれば、排気温度が変化する所定時間の間、ガスの流量を時間に対し略一定に保持しさえすれば、変温部材に阻害物質が付着しているか否かを検出することができる。
 上記の内燃機関の検出装置の他の一態様は、前記排気系にはフィルタ部材が設けられ、前記変温部材は、前記フィルタ部材の下流側に設けられる。これにより、フィルタが正常に機能しているか否かを判定することが可能となる。
 上記の内燃機関の検出装置の他の一態様は、前記変温部材に付着した前記阻害物質の量に応じて前記変化量の閾値が設定され、前記変化量算出手段により算出された前記変化量が前記閾値よりも小さいか否かを判定する判定手段を備える。判定手段は、例えばECUにより実現される。このようにすることで、変温物質に付着した阻害物質の量が当該閾値に対応する阻害物質の量よりも多いか否かを判定することができる。
第1実施形態に係る内燃機関の構成を示す構成図である。 A/Fセンサの構成を示す断面図である。 A/Fセンサのヒータの温度について時間に対する変化を示すグラフである。 A/Fセンサの詰り検出処理を示すフローチャートである。 第2実施形態に係る内燃機関の排気通路の一部を示す構成図である。 A/Fセンサのヒータ及び排気温度センサのそれぞれの温度について時間に対する変化を示すグラフ、及び、ヒータの温度と排気温度との関係を示すグラフである。 第3実施形態に係る内燃機関の排気通路の一部を示す構成図である。 A/Fセンサのヒータの温度について時間に対する変化を示すグラフである。 A/Fセンサのヒータの温度について時間に対する変化を示すグラフ、及び、ヒータの温度と排気温度との関係を示すグラフである。
符号の説明
 3 吸気弁
 4 排気弁
 5 燃料噴射弁
 12 気筒
 13 吸気通路
 14 排気通路
 17 EGR通路
 18 ターボ過給機
 34 スロットルバルブ
 42 A/Fセンサ
 50 ECU
 以下、図面を参照して本発明の好適な実施の形態について説明する。
 [第1実施形態]
 本発明の第1実施形態について説明する。図1は、第1実施形態に係る内燃機関の構成を示す構成図である。図1では、実線矢印がガスの流れを示し、破線矢印が信号の流れを示している。
 内燃機関(エンジン)は、例えば、自動車などの車両に走行用動力源として搭載されるディーゼルエンジンであり、複数の気筒12と、各気筒12にそれぞれ接続される吸気通路13及び排気通路14と、吸気通路13及び排気通路14に直列に配列されたターボ過給機18とを備えている。なお、内燃機関としては、ディーゼルエンジンの代わりに、ガソリンエンジンであるとしても良い。
 排気通路14には、排気通路14から排気ガスの一部を吸気通路13に還流させるためのEGR(Exhaust Gas Recirculation)通路17が設けられている。以下では、EGR通路17によって還流される排気ガスの一部をEGRガスと称する。EGR通路17には、EGRガスを冷却するためのEGRクーラ23と、EGRガスの量を調整するためのEGRバルブ33と、が設けられている。EGRバルブ33は、ECU50からの制御信号S33によって制御される。
 吸気通路13には、エアクリーナ21と、外部から吸入された空気(吸入空気)の量を検出するエアフロメータ41と、吸入空気量を調整するためのスロットルバルブ34と、ターボ過給機18のコンプレッサ18aと、インタークーラ22と、吸気ガス(EGRガスと吸入空気の混合ガス)を貯蔵可能なサージタンク16とが設けられている。エアフロメータ41は、吸入空気量を検出して、検出された吸入空気量に対応する検出信号S41をECU50へ送信する。スロットルバルブ34は、ECU50からの制御信号S34によって制御される。
 排気通路14には、ターボ過給機18のタービン18bと、空燃比センサ(A/Fセンサ)42と、フィルタ24と、が設けられている。A/Fセンサ42は、排気ガス中の空燃比を検出して、検出された空燃比に対応する検出信号S42をECU50へ送信する。フィルタ24は、排気ガス中の粒子状物質を捕集する。ここで、フィルタ24としては、フィルタ機能のみを有するものには限られず、代わりに、フィルタ機能に加えて、排気ガス中のNOxを吸蔵して還元浄化するNOx吸蔵還元触媒の機能を有するものを用いるとしても良い。
 ターボ過給機18は、コンプレッサ18aとタービン18bとが一体回転するように構成されている。ここで、ターボ過給機18は、図1に示すように、例えば、可変ノズルベーン19を備えた、過給圧を調整可能な可変容量型のターボ過給機であるとしても良い。可変容量型のターボ過給機では、可変ノズルベーン19の開度を調整して排気ガス量を制御することにより、過給圧が調整される。なお、過給機としては、ターボ過給機18を用いる代わりに、スーパーチャージャや電動式過給機等の他の過給機を用いるとしても良い。
 気筒12の燃焼室12bには、吸気通路13と排気通路14とが接続されているとともに、燃焼室12b内に燃料を噴射するための燃料噴射弁5が設けられている。燃料噴射弁5は、ECU50からの制御信号S5によって制御される。また、気筒12には、吸気弁3と排気弁4とが設けられている。吸気弁3は、開閉することによって、吸気通路13と燃焼室12bとの導通/遮断を制御する。排気弁4は、開閉することによって、排気通路14と燃焼室12bとの導通/遮断を制御する。気筒12において、ピストン12cが下死点まで押し下げられる力が、コンロッド12dを介してクランク軸15に伝達され、クランク軸15が回転する。ここで、クランク軸15近傍には、クランク角センサ44が設けられている。クランク角センサ44は、クランク軸15の回転角(クランク角)を検出して、検出されたクランク角に対応する検出信号S44をECU50へ送信する。
 ECU(Electronic Control Unit)50は、図示しないCPU、ROM、RAM、A/D変換器及び入出力インターフェイスなどを有し、各種センサからの検出信号に基づいて、エンジンの制御を行う。具体的には、ECU50は、エアフロメータ41、クランク角センサ44、A/Fセンサ42より検出信号を受信する。ECU50は、これらの各種センサからの検出信号に基づいてエンジンの運転状態を検出する。また、ECU50は、アクセルセンサ45及びブレーキセンサ46より、アクセルペダル及びブレーキペダルのそれぞれのペダル開度に応じた検出信号を受信する。ECU50は、これらの各種センサからの検出信号に基づいて運転要求を検出する。ECU50は、検出したエンジンの運転状態及び運転要求に基づいて、EGRバルブ33、スロットルバルブ34、燃料噴射弁5に制御信号を送信する。
 ここで、A/Fセンサ42の構成について図2を用いて説明する。図2は、A/Fセンサ42の構成を示す断面図である。
 図2に示すように、A/Fセンサ42は、例えばコップ型A/Fセンサであり、センサ素子60、カバー65、ヒータ68を有する。
 センサ素子60は、固体電解質61と、固体電解質61の内表面に設けられた大気側電極62と、固体電解質61の外表面に設けられた排気側電極63と、排気側電極63を覆うセラミックコーティング64とを有する。ヒータ68は、大気側電極62の内側に設けられている。
 固体電解質61は、例えばジルコニアで構成されており、例えば300度以上の高温条件下で酸素イオン導電体として機能(活性化)するように構成されている。ヒータ68は、電気ヒータであり、固体電解質61を加熱して活性化させるためのものである。ヒータ68は、ECU50により制御される。排気側電極63及び大気側電極62は、多孔質白金電極である。固体電解質61の内部は酸素イオンが自由に動ける状態にあり、その両側に酸素濃度差(酸素分圧の差)があると、その濃度差を減らすように酸素イオンが一方側から他方側に移動する。この酸素イオンの移動現象は、電子の移動となり、排気側電極63及び大気側電極61からなる一対の電極間に起電力を発生させる。この起電力は、A/Fセンサ42の出力電圧となり、酸素濃度差が大きいほど、大きな電圧となる。
 カバー65は、センサ素子60を覆うように設けられ、インナーカバー66とアウターカバー67とを有する。
 カバー65には、排気ガスを通過させるための小さな孔が複数設けられる。具体的には、図2に示すように、インナーカバー66及びアウターカバー67にそれぞれ、小さな孔66a、67aが複数設けられる。図2に示す例では、インナーカバー66の孔66aとアウターカバー67の孔67aとが重複しないように設けられる。なお、インナーカバー66の孔66aとアウターカバー67の孔67aとが重複するように設けてもよい。
 ここで、カバー65の孔には、排気ガスの通過時に、当該排気ガス中の粒子状物質などの阻害物質が付着することにより詰りが発生する可能性がある。例えば、A/Fセンサ42の上流側の排気通路14に還元剤添加弁が取り付けられている場合には、これらのカバー65の孔に対し、当該還元剤の液滴が付着し、付着した当該液滴をバインダとして阻害物質が付着して詰りが発生する。カバー65の孔に詰りが発生してしまうと、センサ素子60に排気ガスが到達し難くなり、A/Fセンサ42の検出精度が低下してしまう。このような理由から、A/Fセンサ42のカバー65の孔に詰りが発生しているか否かを知ることが重要となる。
 そこで、第1実施形態に係る内燃機関の検出方法では、ECU50は、所定期間の間におけるヒータ68の温度変化量を基に、A/Fセンサのカバー65の孔に詰りが発生しているか否かを判定することとする。以下で具体的に説明する。
 図3は、A/Fセンサ42のヒータ68の温度について時間に対する変化を示すグラフである。グラフ101は、A/Fセンサ42のカバー65の孔に詰りが発生していない場合のグラフを示し、グラフ102は、A/Fセンサ42のカバー65の孔に詰りが発生している場合のグラフを示している。
 時刻t1では、カバー65の孔に詰りが発生していない場合、及び、カバー65の孔に詰りが発生している場合のいずれにおいても、ヒータ68の温度はL1になっている。時刻t1において、ECU50は、燃料噴射弁5からの燃料の噴射を停止して気筒12内における燃焼を停止させ、吸気通路13から排気通路14へとガスを吹き抜けさせることとする。この場合、A/Fセンサ42には、冷たいガスが吹き付けることとなるので、ヒータ68の温度は時間の経過とともに次第に低下する。
 ここで、カバー65の孔に詰りが発生していない場合と比較して、カバー65の孔に詰りが発生している場合には、ガスが孔を通過し難くなるため、A/Fセンサ42のセンサ素子60へのガスの風当たりは弱くなり、ヒータ68はガスにより冷却され難くなる。そのため、図3に示すように、カバー65の孔に詰りが発生していない場合(グラフ101)と比較して、カバー65の孔に詰りが発生している場合(グラフ102)には、時間の経過に対するヒータ68の温度低下量は小さくなる。例えば、時刻t1より所定時間Δt経過した時刻t2では、カバー65の孔に詰りが発生していない場合、図3の白矢印で示すように、ヒータ68の温度はL2aとなる。それに対し、カバー65の孔に詰りが発生している場合、図3の黒矢印で示すように、ヒータ68の温度はL2b(>L2a)となる。
 そこで、第1実施形態に係る内燃機関の検出方法では、ECU50は、時刻t2において、ヒータ68の温度低下量が、予め決められた詰り判定値よりも小さくなっているか否かを判定することとする。ここで、詰り判定値は、例えば、カバー65の孔に詰りが発生していない場合のヒータ68の温度低下量|L2a-L1|(図3白矢印の長さに対応)に設定される。ECU50は、ヒータ68の温度低下量が詰り判定値よりも小さくなっている場合には、カバー65の孔に詰りが発生していると判定し、ヒータ68の温度低下量が詰り判定値以上になっている場合には、カバー65の孔に詰りが発生していないと判定する。このようにすることで、ECU50は、A/Fセンサ42のカバー65の孔に詰りが発生しているか否かを検出することができる。
 次に、上述のA/Fセンサ42のカバー65の詰りを検出する詰り検出処理について図4に示すフローチャートを用いて説明する。図4は、詰り検出処理を示すフローチャートである。
 ステップS101において、ECU50は、エンジンの運転状態を基に、エンジン停止要求を認識すると、ステップS102の処理へ進む。ECU50は、例えば、アイドル運転状態になった場合や、エンジンがハイブリッド車両に搭載されている場合にモータリング期間となること等により、エンジン停止要求を認識する。
 ステップS102において、ECU50は、ヒータ68の温度を検出して、ヒータ68の温度が所定温度以上になっているか否かについて判定する。ここで、所定温度とは、例えば、A/Fセンサ42を活性化するときのヒータ68の温度である。ECU50は、例えば、ヒータ68のインピーダンスを計測し、計測されたインピーダンスを基にヒータ68の温度を検出することができる。ECU50は、ヒータ68の温度が所定温度以上になっていると判定した場合には(ステップS102:Yes)、ステップS103の処理へ進む。一方、ECU50は、ヒータ68の温度が所定温度よりも小さくなっていると判定した場合には(ステップS102:No)、通常のエンジン停止制御処理を行い、本制御処理を終了する。
 ステップS103において、ECU50は、このときのヒータ68の温度L1を取得する。この後、ECU50は、ステップS104の処理へ進む。
 ステップS104において、ECU50は、エンジン停止準備制御を行う。具体的には、ECU50は、燃料噴射弁5に制御信号S5を送信して燃料噴射を停止することにより気筒12内での燃焼を停止させる。また、ECU50は、EGR弁33に制御信号S33を送信してEGR弁33を例えば全閉にし、スロットルバルブ34に制御信号S34を送信して開度を調整することにより、排気通路14内を流れるガスの流量を略一定に保持する。なお、可変容量型のターボ過給機では、さらに、ECU50は、排気通路14内を流れるガスの流量を略一定に保持するため、可変ノズルベーン19の開度を調整する。これにより、吸気通路13から排気通路14へと冷たいガス(空気)を吹き抜けさせることができる。この後、ECU50は、ステップS105の処理へ進む。
 ステップS105において、ECU50は、エンジン停止準備制御を行ってから所定時間Δt経過したか否かを判定し、所定時間Δt経過していないと判定した場合には(ステップS105:No)、ステップS105の処理を繰り返す。一方、ECU50は、所定時間Δt経過したと判定した場合には(ステップS105:Yes)、ステップS106の処理へ進み、例えば、ヒータ68のインピーダンスを計測することにより、このときのヒータ68の温度L2を取得する。この後、ECU50は、ステップS107の処理へ進む。
 ステップS107において、ECU50は、エンジン停止制御を行う。具体的には、ECU50は、エンジン回転数を0に低下させてエンジンを完全に停止させる。この後、ECU50は、ステップS108の処理へ進む。
 ステップS108において、ECU50は、ヒータ68の温度の温度差|L2-L1|が詰り判定値ΔLcよりも小さいか否かを判定する。ここで、詰り判定値ΔLcは、カバー65の孔に詰りが発生していないとした場合における所定時間Δt経過時のヒータ68の温度低下量である。ECU50は、温度差|L2-L1|が詰り判定値ΔLcよりも小さいと判定した場合には(ステップS108:Yes)、A/Fセンサ42は正常に機能している、即ち、A/Fセンサ42のカバー65の孔に詰りは発生していないと判定する(ステップS109)。一方、ECU50は、温度差|L2-L1|が詰り判定値ΔLc以上であると判定した場合には(ステップS108:No)、A/Fセンサ42には異常が発生している、即ち、A/Fセンサ42のカバー65の孔に詰りが発生していると判定する(ステップS110)。ECU50は、ステップS109、S110の処理の後、本制御処理を終了する。なお、ステップS108~110の処理とステップS107の処理とは逆順に行うとしても良い。つまり、ECU50は、ステップS108~110の処理を行った後、ステップS107のエンジン停止制御を行うとしても良い。
 以上に述べたように、第1実施形態に係る内燃機関の検出方法では、ECU50は、所定期間の間、排気通路14へ冷たいガス(空気)を吹き抜けさせ、当該所定期間の間におけるヒータ68の温度低下量を算出する。A/Fセンサ42のカバー65の孔に詰りが発生しているか否かによって、ヒータ68の温度低下量は変化する。従って、ECU50は、ヒータ68の温度低下量を算出することにより、A/Fセンサ42のカバー65の孔に詰りが発生しているか否かを検出することができる。また、第1実施形態に係る内燃機関の検出方法によれば、ヒータ68の温度の変化量を用いるので、センサ素子60の劣化の度合いに影響されることなく、カバー65の孔に詰りが発生しているか否かを正確に検出することができる。
 [第2実施形態]
 次に、本発明の第2実施形態について説明する。
 図5は、第2実施形態に係る内燃機関の排気通路の一部を示す構成図である。第2実施形態に係る内燃機関の構成は、第1実施形態に係る内燃機関の構成に加えて、排気通路14に排気温度センサ43が設けられた構成となっている。具体的には、排気温度センサ43は、A/Fセンサ42と概ね同じ流線上に設けられており、A/Fセンサ42と概ね同じ温度の排気ガスにさらされる。この排気温度センサ43としては、例えば、フィルタ24の上流側の排気通路14に元々取り付けられた、フィルタ24の温度を推定するための排気温度センサを用いることができる。
 図6(a)は、A/Fセンサ42のヒータ68及び排気温度センサ43のそれぞれの温度について時間に対する変化を示すグラフである。グラフ201は、A/Fセンサ42のカバー65の孔に詰りが発生していない場合のヒータ68の温度の変化を示し、グラフ202は、A/Fセンサ42のカバー65の孔に詰りが発生している場合のヒータ68の温度の変化を示している。グラフ203は、排気温度センサ43により検出された温度の変化を示している。なお、以下では、排気温度センサ43により検出された温度を「排気温度」と称する。
 時刻t1において、ECU50は、燃料噴射弁5からの燃料の噴射を停止して気筒12内における燃焼を停止させ、吸気通路13から排気通路14へとガスを吹き抜けさせることとする。この時刻t1における排気温度センサにより検出された温度を「M0」とし、時刻t1におけるA/Fセンサ42のヒータ68の温度を「L1」とする。
 図6(b)は、ヒータ68の温度と排気温度との関係を示すグラフである。図6(b)は、図6(a)に示すグラフをヒータ68の温度と排気温度との関係を示すグラフに直したものである。グラフ301は、A/Fセンサ42のカバー65の孔に詰りが発生していない場合のヒータ68の温度と排気温度との関係を示すグラフである。グラフ302は、A/Fセンサ42のカバー65の孔に詰りが発生している場合のヒータ68の温度と排気温度との関係を示すグラフである。
 図6(b)に示すように、グラフ301は略直線となっているのに対し、グラフ302は、ヒータ68の温度が高くなる方向に湾曲したグラフとなっている。グラフ301に示すように、A/Fセンサ42のカバー65の孔に詰りが発生していない場合には、排気温度の変化に対するヒータ68の温度の変化の割合は略一定となる。それに対し、グラフ302に示すように、A/Fセンサ42のカバー65の孔に詰りが発生している場合には、排気温度の変化に対するヒータ68の温度の変化の割合は大きく変わる。
 例えば、排気温度が温度M0より低下するに従い、A/Fセンサ42のカバー65の孔に詰りが発生していない場合のヒータ68の温度低下の割合は、グラフ301に示すように略一定となる。一方、グラフ302の接線IL1、IL2に示すように、排気温度が温度M0より低下するに従い、グラフ302の接線の傾きは次第に大きくなる。つまり、排気温度が温度M0より低下するに従い、A/Fセンサ42のカバー65の孔に詰りが発生している場合のヒータ68の温度低下の割合は次第に大きくなる。
 そこで、第2実施形態に係る内燃機関の検出方法では、ECU50は、排気温度の変化に対するヒータ68の温度の変化の割合を求め、当該変化の割合が略一定になっているか否かを判定することとする。例えば、ECU50は、排気温度が変化する所定時間の間、ヒータ68の温度を一定時間毎に検出し、図6(b)に示したような、排気温度とヒータ68の温度との関係を示すマップを求める。そして、ECU50は、当該マップを用いて、排気温度の変化に対するヒータ68の温度の変化の割合を求め、求められた当該割合が略一定となっているか否かについて判定する。ECU50は、求められた当該割合が略一定となっている場合には、A/Fセンサ42のカバー65の孔に詰りが発生していないと判定する。一方、ECU50は、求められた当該割合が略一定となっておらず、グラフ302に示したように、排気温度の変化に対し、ヒータ68の温度が高くなる方向に変化している場合には、A/Fセンサ42のカバー65の孔に詰りが発生していると判定する。例えば、ECU50は、排気温度を温度M0から低下させるに従い、ヒータ68の温度低下の割合が次第に大きくなる場合には、ヒータ68の温度が高くなる方向に変化しているとして、A/Fセンサ42のカバー65の孔に詰りが発生していると判定する。
 以上に述べたように、第2実施形態に係る内燃機関の検出方法によっても、第1実施形態に係る内燃機関の検出方法と同様、ヒータ68の温度の変化量を用いるので、センサ素子60の劣化の度合いに影響されることなく、カバー65の孔に詰りが発生しているか否かを正確に検出することができる。さらに、第2実施形態に係る内燃機関の検出方法では、ECU50は、排気温度センサ43により検出される排気温度の温度変化を基準として、A/Fセンサ42のカバー65の詰り検出処理を行う。従って、第2実施形態に係る内燃機関の検出方法によれば、気筒12内の燃焼を停止させて、排気通路を流れるガスの温度を大幅に低下させなくても、排気温度が変化している所定期間の間、排気ガスの流量を略一定に保持しさえすれば、A/Fセンサ42のカバー65の孔に詰りが発生したことを検出することが可能となる。従って、第2実施形態に係る内燃機関の検出方法によれば、例えばアイドル運転状態の場合にも、A/Fセンサ42のカバー65の孔に詰りが発生したことを検出することが可能となる。
 [第3実施形態]
 次に、本発明の第3実施形態について説明する。第3実施形態に係る内燃機関の構成は、第1実施形態に係る内燃機関の構成(図1)と同様である。
 図7は、図3と同様、A/Fセンサ42のヒータ68の温度について時間に対する変化を示すグラフである。グラフ401は、A/Fセンサ42のカバー65の孔に詰りが発生していない場合のヒータ68の温度の変化を示し、グラフ402~404は、A/Fセンサ42のカバー65の孔に詰りが発生している場合のヒータ68の温度の変化を示している。図7において、グラフ402~404で示されるA/Fセンサ42の状態のうち、カバー65の孔の詰り具合が最も大きいのは、グラフ404で示されるA/Fセンサ42の状態であり、カバー65の孔の詰り具合が最も小さいのは、グラフ402で示されるA/Fセンサ42の状態である。
 時刻t1では、カバー65の孔に詰りが発生していない場合、及び、カバー65の孔に詰りが発生している場合のいずれにおいても、ヒータ68の温度はL1になっている。時刻t1において、ECU50は、燃料噴射弁5からの燃料の噴射を停止して気筒12内における燃焼を停止させ、吸気通路13から排気通路14へとガスを吹き抜けさせることとする。
 時刻t1より所定時間Δt経過した時刻t2において、白矢印に示すように、カバー65の孔に詰りが発生していない場合のヒータ68の温度はL2aとなる。一方、時刻t2において、黒矢印に示すように、カバー65の孔に詰りが発生している場合のヒータ68の温度はL2b~L2dとなる。つまり、カバー65の孔の詰り具合が大きくなるほど、ヒータ68の温度低下量(黒矢印の長さ)は小さくなっている。これは、カバー65の孔の詰り具合が大きいほどガスが孔を通過し難くなるためである。
 そこで、第3実施形態に係る内燃機関の検出方法では、ECU50は、カバー65の孔に付着した阻害物質の量に応じてヒータ68の温度低下量の閾値を設定しておき、ヒータ68の温度低下量が当該閾値よりも小さくなっているか否かを判定することとする。このようにすることで、カバー65の孔に付着した阻害物質の量が当該閾値に対応する阻害物質の量よりも多いか否かを判定することができる。例えば、A/Fセンサ42を洗浄することにより除去することが可能な阻害物質の限界量に応じた閾値を予め設定しておけば、ECU50は、洗浄により除去することが可能な量の阻害物質がA/Fセンサ42に付着しているか否かを判定することができる。具体的には、ECU50は、ヒータ68の温度低下量が当該閾値よりも小さい場合には、洗浄により除去することが不可能な量の阻害物質がA/Fセンサ42に付着していると判定する。このとき、ECU50は、例えば運転席に設けられた警告ランプを点灯すること等することにより、運転者にA/Fセンサ42の交換を促すなどの異常状態を通知することができる。
 なお、上述の例では、第1実施形態を例に述べたが、第2実施形態と第3実施形態を組み合わせることも可能である。第2実施形態では、ECU50は、排気温度を温度M0から低下させるに従い、ヒータ68の温度低下の割合が次第に大きくなる場合には、ヒータ68の温度が高くなる方向に変化しているとして、A/Fセンサ42のカバー65の孔に詰りが発生していると判定していた。カバー65の孔に付着した阻害物質の量が多くなるほど、ヒータ68の温度が高くなる度合いは大きくなる。つまり、図6(b)に示したグラフ302は、よりヒータ68の温度が高くなる方向に湾曲する。従って、排気温度を温度M0から低下させた場合におけるヒータ68の温度低下の割合について、カバー65の孔に付着した阻害物質の量に応じて閾値を設定しておけば、上述の例と同様に、ECU50は、カバー65の孔に付着した阻害物質の量が当該閾値に対応する阻害物質の量よりも多いか否かを判定することができる。
 [第4実施形態]
 次に、本発明の第4実施形態について説明する。
 図8は、第4実施形態に係る内燃機関の排気通路の一部を示す構成図である。図8に示すように、第4実施形態に係る内燃機関では、A/Fセンサ42は、フィルタ24の下流側の排気通路14に設けられている。なお、これ以外の構成は、第1実施形態に係る内燃機関の構成(図1)と同様である。
 フィルタ24は、複数の細孔が開いた隔壁を有し、排気ガスを当該隔壁に通過させることにより、排気ガス中の阻害物質を当該隔壁で捕集する。当該隔壁には、白金(Pt)や酸化セリウム(CeO2)等の酸化触媒が担持され、捕集された阻害物質は当該酸化触媒により酸化される。従って、フィルタ24が正常に機能している場合、フィルタ24の下流側の排気通路14に設けられえたA/Fセンサ42のカバー65の孔には阻害物質は殆ど付着しない。
 これに対し、フィルタ24が、隔壁等が割れるなどして、排気ガス中の阻害物質を捕集する機能が低下している場合には、当該フィルタ24の下流側の排気通路14に阻害物質が流出する。そのため、この場合には、フィルタ24の下流側の排気通路14に設けられたA/Fセンサ42のカバー65の孔には阻害物質が付着して詰りが発生する。
 そこで、第4実施形態に係る内燃機関の検出方法では、ECU50は、フィルタ24の下流側の排気通路14に設けられたA/Fセンサ42のヒータ68の温度変化を算出し、第1又は第2実施形態に係る内燃機関の検出方法を用いて、A/Fセンサ42のカバー65の孔に詰りが発生しているか否かを判定することとする。これにより、フィルタ24が正常に機能しているか否かを判定することが可能となる。具体的には、ECU50は、A/Fセンサ42のカバー65の孔に詰りが発生していると判定した場合には、フィルタ24の機能は低下していると判定することができ、A/Fセンサ42のカバー65の孔に詰りが発生していないと判定した場合には、フィルタ24は正常に機能していると判定することができる。
 [応用例]
 次に、応用例について説明する。上述の各実施形態では、ECU50は、ヒータ68の温度の変化量に基づいて、カバー65の孔に詰りが発生しているか否かを判定するとしていた。これらの検出方法は、カバー65の孔に詰りが発生していない場合のヒータ68に当たるガスの流量と比較して、カバー65に詰りが発生している場合のヒータ68に当たるガスの流量が少なくなることを利用したものである。
 これとは反対に、カバー65に割れが発生している場合のヒータ68に当たるガスの流量は、カバー65に割れが発生していない場合におけるヒータ68に当たるガスの流量と比較して、大きくなる。
 図9(a)は、図3と同様、A/Fセンサ42のヒータ68の温度について時間に対する変化を示すグラフである。グラフ501は、A/Fセンサ42のカバー65に詰りも割れも発生していない場合のヒータ68の温度の変化を示し、グラフ502は、A/Fセンサ42のカバー65の孔に詰りが発生している場合のヒータ68の温度の変化を示している。グラフ503は、A/Fセンサ42のカバー65に割れが発生している場合のヒータ68の温度の変化を示している。
 時刻t1において、ECU50は、燃料噴射弁5からの燃料の噴射を停止して気筒12内における燃焼を停止させ、吸気通路13から排気通路14へとガスを吹き抜けさせることとする。
 時刻t1より所定時間Δt経過した時刻t2において、カバー65に詰りも割れも発生していない場合のヒータ68の温度はL2aとなる。一方、時刻t2において、カバー65の孔に詰りが発生している場合のヒータ68の温度はL2b(>L2a)となり、カバー65に割れが発生している場合のヒータ68の温度はL2bb(<L2a)となる。
 図9(a)より分かるように、カバー65に割れが発生していない場合と比較して、A/Fセンサ42のカバー65に割れが発生している場合には、ヒータ68に当たるガスの流量が大きくなるため、時間の経過に対するヒータ68の温度低下量は大きくなる。
 そこで、上述の各実施形態の応用例に係る内燃機関の検出方法では、ECU50は、ヒータ68の温度の変化量に基づいて、カバー65の孔に詰りが発生しているか否かを判定するだけでなく、カバー65が割れているか否かをも判定することとする。
 第1実施形態の応用例では、ECU50は、ヒータ68の温度低下量が、予め決められた詰り判定値よりも小さくなっているか否かを判定するのに加えて、予め決められた割れ判定値よりも小さくなっているか否かを判定する。ここで、割れ判定値は、実験などにより予め求められた適合値であり、詰り判定値よりも小さな値に設定される。ECU50は、ヒータ58の温度低下量が割れ判定値よりも小さくなっている場合には、カバー65に割れが発生していると判定し、ヒータ58の温度低下量が割れ判定値以上になっている場合には、カバー65に割れが発生していないと判定する。つまり、ECU50は、ヒータ58の温度低下量が詰り判定値よりも小さく、かつ、割れ判定値以上となるときに、A/Fセンサ42のカバー65に詰りも割れも発生していないと判定する。
 図9(b)は、図6(b)と同様、ヒータ68の温度と排気温度との関係を示すグラフである。グラフ601は、A/Fセンサ42のカバー65に詰りも割れも発生していない場合のヒータ68の温度と排気温度との関係を示すグラフである。グラフ602は、A/Fセンサ42のカバー65の孔に詰りが発生している場合のヒータ68の温度と排気温度との関係を示すグラフである。グラフ603は、A/Fセンサ42のカバー65に割れが発生している場合のヒータ68の温度と排気温度との関係を示すグラフである。
 図9(b)に示すように、グラフ601は略直線となっているのに対し、グラフ603は、ヒータ68の温度が低くなる方向に湾曲したグラフとなっている。グラフ601に示すように、A/Fセンサ42のカバー65に詰りも割れも発生していない場合のヒータ68の温度は、排気温度の変化に対し、略一定の割合で変化する。それに対し、グラフ603に示すように、A/Fセンサ42のカバー65に割れが発生している場合には、カバー65の孔に詰りが発生している場合(グラフ602)と同様、排気温度の変化に対するヒータ68の温度の変化の割合は大きく変わる。
 例えば、グラフ603の接線の傾きIL1a、IL2aに示すように、排気温度が温度M0より低下するに従い、グラフ603の接線の傾きは次第に小さくなる。つまり、排気温度が温度M0より低下するに従い、A/Fセンサ42のカバー65に割れが発生している場合のヒータ68の温度低下の割合は、次第に小さくなる。
 そこで、第2実施形態の応用例では、ECU50は、排気温度の変化に対するヒータ68の温度の変化の割合が略一定になっていない場合において、排気温度の変化に対し、ヒータ68の温度の変化の割合が次第にどのように変化するのかについて判定する。具体的には、ECU50は、排気温度の変化に対し、グラフ602に示すように、ヒータ68の温度が高くなる方向に変化している場合には、A/Fセンサ42のカバー65の孔に詰りが発生していると判定する。一方、ECU50は、排気温度の変化に対し、グラフ603に示すように、ヒータ68の温度が低くなる方向に変化している場合には、A/Fセンサ42のカバー65に割れが発生していると判定する。例えば、ECU50は、排気温度が温度M0より低下するに従い、ヒータ68の温度の低下の割合が次第に大きくなる場合には、A/Fセンサ42のカバー65の孔に詰りが発生していると判定し、ヒータ68の温度の低下の割合が次第に小さくなる場合には、A/Fセンサ43のカバー65に割れが発生していると判定する。
 以上に述べたように、応用例に係る内燃機関の検出方法によれば、ヒータ68の温度の変化量に基づいて、カバー65の孔に詰りが発生しているか否かを判定するだけでなく、カバー65に割れが発生しているか否かも判定することができる。なお、上述の応用例では、カバー65の孔に詰りが発生しているか否かをも判定するとしているが、これに限られるものではなく、カバー65に割れが発生しているか否かのみを判定するとしても良いのは言うまでもない。
 [変形例]
 上述の各実施形態及び応用例では、ECU50は、ヒータ68のインピーダンスを基にヒータ68の温度を検出し、ヒータ68の温度の変化量に基づいて、カバー65の孔に詰り(又はカバー65の割れ)が発生しているか否かを判定するとしている。しかしながら、ECU50は、温度の変化量を用いる代わりに、ヒータ68のインピーダンスの変化量を用いて、カバー65の孔に詰り(又はカバー65の割れ)が発生しているか否かを判定するとしても良い。例えば、第1実施形態の例で言えば、ECU50は、時刻t1~t2間における温度変化量が詰り判定値よりも小さくなっているか否かを判定する代わりに、時刻t1~t2間におけるインピーダンスの変化量が、詰り判定値に対応するインピーダンスよりも小さくなっているか否かを判定するとしても良い。
 また、本発明は、A/Fセンサに適用されるのには限られず、他の種々のセンサにも適用可能である。さらに、上述の各実施形態及び応用例では、カバーの孔に詰りが発生しているか否かを判定するために、上述の検出処理を行うとしていたが、これに限られない。即ち、カバーを有しないセンサに対しても、上述の検出処理を行うことにより、当該センサに阻害物質が直接付着したか否かを正確に判定することができる。
 例えば、A/Fセンサの代わりに、温度センサを用いた場合にも本発明を適用可能である。この場合、ECU50は、当該温度センサにより検出された温度の変化量に基づいて、上述の各実施形態及び応用例に係る検出方法を用いて、当該温度センサに阻害物質が付着しているか否かを判定することができる。なお、ここで、ECU50は、温度の変化量を用いるのには限られず、代わりに、温度と相関する温度センサの信号出力値(電圧値や電流値)の変化量を用いて、阻害物質が付着しているか否かを判定するとしても良いのは言うまでもない。
 また、本発明は、センサに適用されるのには限られず、排気通路のガスの流れに対し温度変化が生じる変温部材であれば適用可能なのは言うまでもない。
 さらに、本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う実施形態もまた本発明の技術的範囲に含まれるものである。
 本発明は、排気温度に応じて変化するセンサなどの変温部材を備えた内燃機関に利用することができる。

Claims (6)

  1.  排気系に設けられ、前記排気系におけるガスの流れに起因して温度変化が生じる変温部材を備えた内燃機関に適用される内燃機関の検出装置であって、
     前記変温部材の温度に相関する相関値を検出する温度相関値検出手段と、
     前記ガスの流れの生じる期間における、前記温度相関値検出手段により検出された前記相関値の変化量を算出する変化量算出手段と、を備えることを特徴とする内燃機関の検出装置。
  2.  前記変温部材はガスセンサの電気ヒータであり、
     前記温度相関値検出手段は、前記電気ヒータのインピーダンスを前記相関値として検出する請求項1に記載の内燃機関の検出装置
  3.  前記変温部材は温度センサであり、
     前記温度相関値検出手段は、前記温度センサの信号出力値を前記相関値として検出する請求項1に記載の内燃機関の検出装置。
  4.  前記排気系において、前記変温部材と略同じ流線上に前記ガスの温度を検出する排気温度センサが設けられ、
     前記変化量算出手段は、前記排気温度センサにより検出された排気温度の変化に対する前記相関値の変化の割合を算出する請求項1乃至3のいずれか一項に記載の内燃機関の検出装置。
  5.  前記排気系にはフィルタ部材が設けられ、
     前記変温部材は、前記フィルタ部材の下流側に設けられる請求項1乃至4のいずれか一項に記載の内燃機関の検出装置。
  6.  前記変温部材に付着した前記阻害物質の量に応じて前記変化量の閾値が設定され、前記変化量算出手段により算出された前記変化量が前記閾値よりも小さいか否かを判定する判定手段を備える請求項1乃至5のいずれか一項に記載の内燃機関の検出装置。
PCT/JP2009/052772 2009-02-18 2009-02-18 内燃機関の検出装置 WO2010095219A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011500385A JP5110200B2 (ja) 2009-02-18 2009-02-18 内燃機関の検出装置
PCT/JP2009/052772 WO2010095219A1 (ja) 2009-02-18 2009-02-18 内燃機関の検出装置
US13/201,795 US8751185B2 (en) 2009-02-18 2009-02-18 Detection device for internal combustion engine
CN200980156877.7A CN102317605B (zh) 2009-02-18 2009-02-18 内燃机的检测装置
EP09840326.4A EP2400136B1 (en) 2009-02-18 2009-02-18 Detector for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052772 WO2010095219A1 (ja) 2009-02-18 2009-02-18 内燃機関の検出装置

Publications (1)

Publication Number Publication Date
WO2010095219A1 true WO2010095219A1 (ja) 2010-08-26

Family

ID=42633521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052772 WO2010095219A1 (ja) 2009-02-18 2009-02-18 内燃機関の検出装置

Country Status (5)

Country Link
US (1) US8751185B2 (ja)
EP (1) EP2400136B1 (ja)
JP (1) JP5110200B2 (ja)
CN (1) CN102317605B (ja)
WO (1) WO2010095219A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136649A (zh) * 2021-10-20 2022-03-04 中国航发四川燃气涡轮研究院 一种涡轮发动机燃烧室部件模拟试验中流量分配结构及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011002502B4 (de) 2010-08-02 2023-06-07 Robert Bosch Gmbh Verfahren zur Diagnose eines Abgassensors und Vorrichtung zur Durchführung des Verfahrens
JP5440707B2 (ja) * 2010-09-08 2014-03-12 トヨタ自動車株式会社 Pm検出装置
DE102014223444A1 (de) * 2013-12-05 2015-06-11 Robert Bosch Gmbh Verfahren zur Überwachung eines Abgassensors
JP6317643B2 (ja) 2014-07-31 2018-04-25 日本特殊陶業株式会社 ガス検出装置
CN104848958A (zh) * 2014-11-25 2015-08-19 重庆斯凯力科技有限公司 排气温度传感器
EP3410079B1 (en) * 2017-06-02 2021-06-02 MEAS France Fluid sensor protection assembly
JP6969432B2 (ja) * 2018-02-21 2021-11-24 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
US11078859B2 (en) * 2019-10-11 2021-08-03 Fca Us Llc Oxygen sensor out of specification heater rationality monitor using cold start cycle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182112A (ja) 1997-09-05 1999-03-26 Denso Corp 内燃機関の酸素濃度センサ用ヒータ制御装置及びヒータ制御方法
JP2003232760A (ja) * 2002-02-06 2003-08-22 Figaro Eng Inc ガス検出方法とその装置
JP2003240617A (ja) * 2002-02-14 2003-08-27 Yazaki Corp フローセンサの異常検出方法及び装置並びにフローセンサ式ガスメータ
JP2004101274A (ja) * 2002-09-06 2004-04-02 Mitsubishi Electric Corp 排気ガスセンサの温度制御装置
JP3744486B2 (ja) 2002-11-25 2006-02-08 トヨタ自動車株式会社 酸素センサの劣化検出装置
JP3958755B2 (ja) 1996-11-06 2007-08-15 日本特殊陶業株式会社 全領域空燃比センサの劣化状態検出方法及び装置
JP2009002810A (ja) * 2007-06-21 2009-01-08 Ngk Spark Plug Co Ltd ガスセンサの劣化判定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4132008C2 (de) 1991-09-26 2000-04-06 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überprüfung der Funktionsfähigkeit einer Heizung einer Sauerstoffsonde
JP3886928B2 (ja) * 2003-04-23 2007-02-28 本田技研工業株式会社 酸素濃度センサの劣化検出装置
CN100348852C (zh) * 2003-07-08 2007-11-14 日产自动车株式会社 内燃机的燃烧控制设备和控制燃烧的方法
JP2006343306A (ja) * 2004-11-15 2006-12-21 Denso Corp ガス濃度検出装置
JP4645984B2 (ja) * 2005-07-05 2011-03-09 株式会社デンソー 排出ガスセンサの劣化検出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3958755B2 (ja) 1996-11-06 2007-08-15 日本特殊陶業株式会社 全領域空燃比センサの劣化状態検出方法及び装置
JPH1182112A (ja) 1997-09-05 1999-03-26 Denso Corp 内燃機関の酸素濃度センサ用ヒータ制御装置及びヒータ制御方法
JP2003232760A (ja) * 2002-02-06 2003-08-22 Figaro Eng Inc ガス検出方法とその装置
JP2003240617A (ja) * 2002-02-14 2003-08-27 Yazaki Corp フローセンサの異常検出方法及び装置並びにフローセンサ式ガスメータ
JP2004101274A (ja) * 2002-09-06 2004-04-02 Mitsubishi Electric Corp 排気ガスセンサの温度制御装置
JP3744486B2 (ja) 2002-11-25 2006-02-08 トヨタ自動車株式会社 酸素センサの劣化検出装置
JP2009002810A (ja) * 2007-06-21 2009-01-08 Ngk Spark Plug Co Ltd ガスセンサの劣化判定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136649A (zh) * 2021-10-20 2022-03-04 中国航发四川燃气涡轮研究院 一种涡轮发动机燃烧室部件模拟试验中流量分配结构及方法
CN114136649B (zh) * 2021-10-20 2023-08-18 中国航发四川燃气涡轮研究院 一种涡轮发动机燃烧室部件模拟试验中流量分配结构及方法

Also Published As

Publication number Publication date
JP5110200B2 (ja) 2012-12-26
US8751185B2 (en) 2014-06-10
CN102317605B (zh) 2014-10-01
EP2400136A4 (en) 2017-11-15
CN102317605A (zh) 2012-01-11
EP2400136A1 (en) 2011-12-28
JPWO2010095219A1 (ja) 2012-08-16
US20110301908A1 (en) 2011-12-08
EP2400136B1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
JP5110200B2 (ja) 内燃機関の検出装置
US8479494B2 (en) Exhaust gas sensor control system and control method
US7526914B2 (en) Heater control device for gas sensor
JP5246284B2 (ja) 内燃機関の制御装置
JP2011027073A (ja) 内燃機関の異常診断装置
JP2008180185A (ja) エンジンの排気還流制御装置
US8290685B2 (en) Control device for engine
JP2008069690A (ja) 排ガス還流制御装置
JP4618312B2 (ja) 排気ガスセンサの制御装置
EP3029304A1 (en) Exhaust system state detection device
JP5066556B2 (ja) Egrシステムの診断装置
JP4503498B2 (ja) 排気温度センサの異常診断装置
JP6701786B2 (ja) 故障診断方法及び故障診断装置
JP5360293B2 (ja) 内燃機関の排気浄化システム
JP6367735B2 (ja) 粒子状物質数量推定システム
US9354154B2 (en) Particulate matter amount detection system
JP4675284B2 (ja) 内燃機関の温度測定装置
JP2006291742A (ja) 内燃機関の触媒劣化検出装置
JP2013024175A (ja) エンジンのegr流量検出装置
JP2008121581A (ja) エンジンの触媒劣化診断装置
JP3729780B2 (ja) 内燃機関の排気浄化装置
JP2006257880A (ja) 内燃機関の排気浄化装置
JP2010116878A (ja) 内燃機関の排気浄化装置の故障診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156877.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840326

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011500385

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13201795

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009840326

Country of ref document: EP