WO2010055573A1 - 内燃機関の排気浄化装置 - Google Patents
内燃機関の排気浄化装置 Download PDFInfo
- Publication number
- WO2010055573A1 WO2010055573A1 PCT/JP2008/070708 JP2008070708W WO2010055573A1 WO 2010055573 A1 WO2010055573 A1 WO 2010055573A1 JP 2008070708 W JP2008070708 W JP 2008070708W WO 2010055573 A1 WO2010055573 A1 WO 2010055573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nox
- internal combustion
- combustion engine
- catalyst
- exhaust
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/042—Introducing corrections for particular operating conditions for stopping the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
- F02D41/062—Introducing corrections for particular operating conditions for engine starting or warming up for starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/14—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/70—Input parameters for engine control said parameters being related to the vehicle exterior
- F02D2200/701—Information about vehicle position, e.g. from navigation system or GPS signal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the above-described conventional technology is configured to prevent the reducing agent for the catalyst from being discharged when the internal combustion engine is started.
- the NOx occlusion reduction type catalyst often remains in a state where the NOx component in the exhaust gas is occluded even after the internal combustion engine is stopped.
- the sulfur component in the fuel easily adheres to the catalyst, this sulfur component may remain in the catalyst in some cases. For this reason, at the time of the next start, the above-mentioned residual component is discharged as NOx or H 2 S, which causes a problem that exhaust emission deteriorates.
- a first invention is provided in an exhaust passage of an internal combustion engine mounted on a vehicle, and stores a NOx catalyst that stores and reduces NOx components in exhaust gas, Information acquisition means for acquiring information including the current position of the vehicle and the travel history as travel information; Catalyst regeneration control means for making the exhaust air-fuel ratio of the internal combustion engine richer than during normal operation when it is predicted that the stop timing of the internal combustion engine is close based on the travel information; It is characterized by providing.
- the 4th invention is equipped with the NOx occlusion amount acquisition means which acquires the quantity of the NOx component occluded by the NOx catalyst,
- the catalyst regeneration control means is configured to enrich the exhaust air-fuel ratio in order to perform reduction processing of the NOx component when the storage amount of the NOx component is equal to or greater than the NOx reference determination value.
- the catalyst regeneration control means is configured to adjust the execution state of the desorption process based on road traffic information or travel time obtained as the travel information.
- the catalyst regeneration control means stops the internal combustion engine when, for example, the distance or time from the current position of the vehicle to the destination falls below a certain level, that is, when the vehicle reaches near the destination. It can be predicted that the time will be near.
- the catalyst regeneration control means can enrich the exhaust air-fuel ratio only when, for example, the NOx occlusion amount is so large as to require reduction processing. For this reason, when the NOx occlusion amount is small, unnecessary enrichment can be avoided and fuel can be saved.
- the catalyst regeneration control means can enrich the exhaust air-fuel ratio only when, for example, the amount of sulfur component deposited is so large that it requires desorption treatment. For this reason, when there is little adhesion amount of a sulfur component, unnecessary enrichment can be avoided and fuel can be saved.
- Embodiment 1 of this invention it is a whole block diagram for demonstrating the system configuration
- Embodiment 1 of this invention it is a flowchart of the control performed by ECU.
- Embodiment 2 of this invention it is a flowchart of the control performed by ECU.
- Embodiment 3 of this invention it is a flowchart of the control performed by ECU.
- Embodiment 4 of this invention it is a flowchart of the control performed by ECU.
- FIG. 1 is an overall configuration diagram for explaining a system configuration on the internal combustion engine side in the first embodiment of the present invention.
- the system according to the present embodiment includes an internal combustion engine 10 formed of, for example, a lean combustion engine.
- a piston 14 is provided in the cylinder 12 of the internal combustion engine 10, and the piston 14 forms a combustion chamber 16 in the cylinder 12 and is connected to a crankshaft (not shown).
- the internal combustion engine 10 includes an intake passage 18 that sucks intake air into the combustion chamber 16 and an exhaust passage 20 that discharges exhaust gas from the combustion chamber 16.
- the intake passage 18 is provided with an electronically controlled throttle valve 22 that increases or decreases the amount of intake air in accordance with the driver's accelerator operation or the like.
- the exhaust passage 20 is provided with a start catalyst 24 and a NOx catalyst 26.
- a fuel injection valve 30 that injects the fuel in the fuel tank 28 to the intake port, an ignition plug 32 that ignites the air-fuel mixture in the combustion chamber 16, and the intake passage 18 to the combustion chamber 16.
- An intake valve 34 that opens and closes and an exhaust valve 36 that opens and closes the exhaust passage 20 with respect to the combustion chamber 16 are provided.
- the NOx catalyst 26 is a so-called NOx storage reduction type catalyst. That is, the NOx catalyst 26 temporarily stores the NOx component in the exhaust gas, and reduces and purifies the NOx component by a reduction process described later.
- the NOx catalyst 26 has a catalyst component in which a noble metal such as platinum Pt and a NOx occlusion material are disposed on the surface of alumina (Al 2 O 3 ), for example.
- a noble metal such as platinum Pt
- a NOx occlusion material are disposed on the surface of alumina (Al 2 O 3 ), for example.
- the NOx storage material include at least selected from alkali metals such as potassium K, sodium Na, lithium Li, and cesium Cs, alkaline earths such as barium Ba and calcium Ca, and rare earths such as lanthanum La and yttrium Y.
- alkali metals such as potassium K, sodium Na, lithium Li, and cesium Cs
- alkaline earths such as barium
- the system of the present embodiment includes a sensor system including an A / F sensor 38, an oxygen concentration sensor 40, an outside air temperature sensor 42, and the like, and an ECU (Electronic Control Unit) 50 for controlling the operating state of the internal combustion engine 10.
- the A / F sensor 38 detects the exhaust air-fuel ratio upstream of the NOx catalyst 26, and the oxygen concentration sensor 40 determines whether the exhaust air-fuel ratio is rich or lean downstream of the NOx catalyst 26. Is detected.
- the outside air temperature sensor 42 detects the temperature of the outside air.
- the sensor system described above includes a rotation sensor that detects the engine speed of the internal combustion engine, an air flow meter that detects the intake air amount, a water temperature sensor that detects the cooling water temperature, an accelerator opening sensor that detects the accelerator opening, and the like. These sensors are connected to the input side of the ECU 50. On the other hand, various actuators including a throttle valve 22, a fuel injection valve 30, a spark plug 32, and the like are connected to the output side of the ECU 50.
- the ECU 50 controls the operation by driving the actuators while detecting the operation state of the internal combustion engine using the sensor system. That is, the ECU 50 causes the fuel injection valve 30 to inject fuel according to the intake air amount detected by the air flow meter while opening and closing the throttle valve 22 according to the accelerator opening degree of the driver. Further, the ECU 50 calculates an appropriate ignition timing according to, for example, the engine speed of the internal combustion engine 10, the load state, and the like, and ignites the spark plug 32 when the target ignition timing arrives.
- a navigation system 52 as information acquisition means is mounted on a vehicle on which the internal combustion engine 10 is mounted.
- the navigation system 52 includes a GPS device for detecting the position of the vehicle, map data in which the travel route is converted into data, a destination, and the like. And a memory circuit for storing data, which are generally known. More specifically, the navigation system 52 determines the optimum travel route to the destination based on the map data by registering the destination by the driver of the vehicle. And while driving
- the navigation system 52 can acquire information including the current position of the vehicle, past travel history, current date and time, traffic congestion information on the travel path, destination, and the like (hereinafter referred to as travel information). it can.
- the navigation system 52 is connected to the ECU 50, and the ECU 50 can obtain travel information from the navigation system 52.
- the ECU 50 is configured to execute rich spike control at an appropriate timing based on the travel information while executing lean combustion control during operation of the internal combustion engine.
- these controls will be described.
- Lean combustion control is executed as combustion control during normal operation. For example, in an operation region that does not require high output, the exhaust air-fuel ratio is maintained leaner than the stoichiometric air-fuel ratio (stoichiometric). . More specifically, in lean combustion control, the exhaust air-fuel ratio is leaned by controlling the fuel injection amount according to the output while detecting the exhaust air-fuel ratio by the A / F sensor 38 and the oxygen concentration sensor 40. Therefore, according to the lean combustion control, fuel efficiency and exhaust emission can be improved in a medium / low speed operation region.
- the rich spike control is executed to reduce the NOx component occluded in the NOx catalyst 26 or to eliminate sulfur poisoning of the catalyst 26. More specifically, in rich spike control, the exhaust air-fuel ratio is made richer than during normal operation (during lean combustion), for example, by performing extra fuel injection. That is, the exhaust air-fuel ratio is changed to the stoichiometric or richer side than the stoichiometric.
- the NOx catalyst 26 is exposed to a rich atmosphere (reducing atmosphere)
- the NOx component stored in the catalyst is reduced by the action of the catalyst to become N 2 or the like and purified.
- the sulfur component adhering to the catalyst can be desorbed by exposing it to a rich atmosphere. Therefore, according to the rich spike control, the regeneration process of the NOx catalyst 26 can be performed.
- the internal combustion engine may be stopped in a state where a relatively large amount of NOx is occluded in the catalyst 26.
- the exhaust air-fuel ratio is controlled to the stoichiometric or rich side by the warm-up operation.
- the NOx catalyst 26 is in an inactive state, that is, in a state where the NOx reducing ability is insufficient, the stored NOx is desorbed from the catalyst 26 and discharged as it is, and the exhaust emission is deteriorated. There is a problem of doing.
- the rich spike control is executed and the reduction process of the NOx catalyst 26 is performed. Yes.
- the ECU 50 first determines the current position of the host vehicle acquired by the navigation system 52 and the destination of the guidance operation by the navigation system 52 while the vehicle is traveling. Compare. This destination is a destination selected as a destination by the driver from a plurality of destinations registered in the navigation system 52. When the vehicle arrives at the destination, the internal combustion engine is likely to be stopped.
- the ECU 50 closes the stop timing of the internal combustion engine when, for example, the distance or time from the current position of the vehicle to the destination is below a certain level, that is, when the vehicle reaches the destination. Predict that it is, and execute rich spike control.
- the ECU 50 predicts whether or not the stop time of the internal combustion engine is long enough to require the warm-up operation based on the past travel history acquired by the navigation system 52.
- rich spike control is executed prior to the stop.
- the ECU 50 first acquires a specific place where the parking time of the vehicle is likely to be long from the past travel history. These places are places where parking has been performed for a long time in the past. Specific examples include a parking lot at a work place and a parking lot near a station. In such a place, the internal combustion engine becomes cold after being stopped for a long time, and at the next start-up, there is a high possibility that the warm-up operation at the rich air-fuel ratio is performed.
- the ECU 50 for example, when the distance or time from the current position of the vehicle to the specific location is below a certain level, that is, when the vehicle approaches a place where the vehicle may park for a long time. In addition, it is predicted that the internal combustion engine will be stopped for a long time, and rich spike control is executed before the vehicle arrives at these locations.
- the stop time of the internal combustion engine becomes long, this can be predicted using the past travel history, and the internal combustion engine can be stopped after executing the rich spike control.
- the NOx component remaining in the catalyst 26 can be removed before the engine is stopped, and NOx can be avoided from being discharged due to the warm-up operation at the time of starting.
- the rich spike control can be executed at an appropriate timing before the engine stops. For this reason, the traveling information of the navigation system 52 can be used more effectively, and fine control can be performed.
- the stop time of the internal combustion engine is short and the warm-up operation is unnecessary, it is not necessary to execute the rich spike control, so that fuel can be saved.
- the ECU 50 estimates the NOx amount in the exhaust gas in accordance with, for example, the engine speed, the throttle opening, the air-fuel ratio, and the like, and integrates this NOx amount to thereby obtain the NOx catalyst.
- the amount of NOx occluded in 26 is acquired.
- the NOx reference determination value ⁇ is the level of the occlusion amount that requires the NOx reduction process, and is stored in the ECU 50 in advance.
- the ECU 50 executes the rich spike control before stopping the engine only when the NOx occlusion amount is equal to or greater than the NOx reference determination value ⁇ .
- the amount of NOx desorbed from the NOx catalyst 26 by the warm-up operation at the start is also affected by the temperature environment. That is, at the time of low temperature start, the degree of enrichment of the air-fuel ratio is increased by the warm-up operation, and NOx stored in the catalyst 26 is easily desorbed accordingly. For this reason, for example, in winter and cold regions, it is preferable to keep the residual amount of the NOx component occluded in the catalyst 26 after the engine is stopped to a smaller amount.
- the temperature of the internal combustion engine at the next start is estimated based on the current position and current date of the vehicle acquired by the navigation system 52 and the outside air temperature acquired by the outside air temperature sensor 42. . And it is set as the structure which adjusts NOx residual amount after an engine stop according to the estimated temperature. More specifically, the ECU 50 first determines the climate, season, etc. of the current location based on the current position and date of the host vehicle, and determines the temperature around the vehicle, the degree of cooling, etc. based on the outside air temperature. Next, the temperature at the next start is estimated according to these determination results. Then, as the estimated temperature at the next start-up becomes lower, the residual amount of NOx component occluded in the catalyst 26 is reduced.
- An example of a method of reducing the residual amount of NOx component is as follows: (1) Extending the execution time of rich spike control or increasing the number of executions (2) Allowable limit of NOx residual amount (upper limit determination value ⁇ described later) ) Is made small so that the rich spike control is executed even if the residual amount of NOx is small.
- the current position of the host vehicle, the current date, and the outside air temperature are used when estimating the engine temperature at the next start.
- the present invention is not limited to this, and the engine temperature at the next start may be estimated using at least one of these three parameters.
- the engine temperature at the next start can be estimated according to the temperature environment around the vehicle, and the NOx residual amount after engine stop can be appropriately adjusted in advance according to the estimated temperature. it can.
- warm-up operation is performed in an extremely rich atmosphere, for example, in winter or in a cold region, it is possible to prevent NOx in the occluded state from being discharged.
- summer or in a warm area it is not necessary to execute useless rich spike control before stopping the engine, and the execution timing can be set accurately.
- FIG. 2 is a flowchart of control executed by the ECU in the first embodiment of the present invention.
- the routine shown in this figure is repeatedly executed during operation of the vehicle.
- the travel information is read from the navigation system 52 (step 100).
- the NOx occlusion amount of the catalyst 26 is estimated, and the estimated value is read (step 102).
- step 104 based on the acquired travel information, it is determined whether or not the current position of the vehicle is near the destination including the home (step 104).
- the stop timing of the internal combustion engine is predicted to be close as described above, so the NOx reference determination value ⁇ is set to a small value ⁇ 1 in order to execute rich spike control (step 106).
- the past travel history is read from the navigation system 52 (step 108).
- it is determined whether or not it is in the vicinity of a place where a long parking is expected (step 110).
- the NOx reference determination value ⁇ is set to a small value ⁇ 1 in step 106.
- step 110 When the determination in step 110 is not established, the stop timing of the internal combustion engine is not close, so that the NOx reference determination value ⁇ is larger than the small value ⁇ 1 in order to perform rich spike control according to the normal determination reference.
- the value ⁇ 2 ( ⁇ 2> ⁇ 1) is set (step 112).
- step 114 it is determined whether or not the storage amount of NOx is equal to or greater than the upper limit determination value ⁇ .
- the ECU 50 first estimates the engine temperature at the next start as described above, and sets the target value of the remaining amount of NOx according to the estimated temperature (step 116).
- the execution time and the number of executions of rich spike control are set according to the target value of the remaining amount of NOx, and rich spike control is executed based on these settings (step 118).
- FIG. 1 a system configuration (FIG. 1) that is substantially the same as that of the first embodiment.
- the present embodiment deals with sulfur poisoning of the NOx catalyst, and is different from the first embodiment in this respect.
- the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the present embodiment when it is predicted that the stop timing of the internal combustion engine is close based on the travel information obtained from the navigation system 52, rich spike control is executed, and the sulfur component in the NOx catalyst 26 is desorbed.
- the configuration is to let Here, almost the same method as in the first embodiment is used for the prediction of the stop time.
- whether or not the stop time of the internal combustion engine requires a warm-up operation is determined based on the past travel history acquired by the navigation system 52. Predict. When it is predicted that the stop time is long, rich spike control is executed prior to the stop, and the sulfur component in the NOx catalyst 26 is desorbed.
- the amount of sulfur component adhering to the NOx catalyst 26 is estimated based on the control parameters of the internal combustion engine.
- the rich spike control before the engine is stopped is executed only when the sulfur component adhesion amount is equal to or greater than the sulfur reference determination value ⁇ .
- the sulfur reference determination value ⁇ is a level of an adhesion amount that requires a sulfur component desorption process, and is stored in the ECU 50 in advance.
- the sulfur component adhering to the NOx catalyst 26 can be desorbed before the engine is stopped, and it is possible to avoid the discharge of hydrogen sulfide due to the warm-up operation at the start. Even when the parking location of the vehicle is not related to the destination registered in advance in the navigation system 52, when the parking is performed for a long time, the sulfur component can be desorbed at an appropriate timing before the engine stops. . Furthermore, when the amount of sulfur component attached is small, unnecessary rich spike control can be avoided.
- FIG. 3 is a flowchart of control executed by the ECU in the second embodiment of the present invention.
- the routine shown in this figure is repeatedly executed during operation of the vehicle.
- the S poisoning amount that is the amount of the sulfur component adhering to the NOx catalyst 26 is estimated (step 200).
- the upper limit determination value L is a level of an excessive amount of adhesion that immediately requires the desorption treatment of the sulfur component, and is set to a value larger than the reference determination value ⁇ for sulfur. If the determination in step 202 is not established, the process proceeds to step 210 described later.
- the operating state of the internal combustion engine is read (step 204), and it is determined whether or not it is the execution timing of the sulfur component desorption process (S recovery control) (step 206).
- the execution timing of the S recovery control is a timing (an operating state) at which the exhaust temperature can be raised and the exhaust air-fuel ratio can be enriched.
- the determination in step 206 is satisfied, the exhaust gas temperature is raised and the exhaust air-fuel ratio is enriched to execute strong S recovery control (step 208).
- the sulfur component in the fuel may be fixed in the NOx catalyst 26 as a sulfate such as BaSO 4 .
- a sulfur component is difficult to desorb compared to a sulfur component attached to a site that is easily desorbed, such as alumina or a noble metal.
- strong S recovery control can desorb strongly adhering sulfur components by realizing a rich air-fuel ratio at high temperatures.
- step 206 the driving information is read from the navigation system 52 (step 210) as in the first embodiment, and it is determined whether or not the current position of the vehicle is near the destination including the home. Determination is made (step 212). When this determination is established, it is predicted that the stop time of the internal combustion engine is near, so the routine proceeds to step 218 described later. If the determination in step 212 is not established, the past travel history is read from the navigation system 52 (step 214). Then, based on this travel history, it is determined whether or not it is in the vicinity of a place where a long parking is expected (step 216). When this determination is established, the process proceeds to step 218, and when the determination is not established, the process ends.
- step 218 is performed when the current position of the vehicle is near the destination or near a place where long-time parking is expected.
- step 218 it is determined whether the S poisoning amount is equal to or greater than the sulfur reference determination value ⁇ described above. When this determination is satisfied, rich spike control that is weak S recovery control is executed (step 220).
- the weak S recovery control (rich spike control) is to maintain the exhaust air-fuel ratio on the stoichiometric or rich side, and to perform the desorption processing of the sulfur component adhering to the portion that is easily desorbed in the NOx catalyst 26. is there.
- the sulfur component adhering to this part is relatively easily desorbed by the warm-up operation at the next start and discharged as hydrogen sulfide.
- the weak S recovery control it is possible to complete the desorption treatment of sulfur components that are likely to be hydrogen sulfide at the start-up before the engine is stopped.
- the rich spike control during NOx reduction generates a rich spike of 1 to 2 seconds every minute, for example.
- the rich spike control at the time of sulfur desorption is generally performed over a longer time (for example, about 5 to 10 minutes) than the time required for NOx reduction. That is, in this embodiment, the sulfur spike desorption process and the NOx component reduction process can be efficiently performed together by using the minimum necessary fuel by the rich spike control in step 220.
- Embodiment 3 FIG. Next, Embodiment 3 of the present invention will be described with reference to FIG.
- This embodiment employs a system configuration (FIG. 1) that is substantially the same as in the first and second embodiments.
- the present embodiment is configured to use road traffic information for control in addition to the control contents of the first or second embodiment, and is different from the first embodiment in this respect.
- the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the sulfur component adhering to the NOx catalyst 26 is discharged outside as SOx or the like when the desorption treatment is performed. For this reason, it is preferable that the desorption process is performed in a place that does not affect the surrounding environment as much as possible. Therefore, in the present embodiment, the execution state of the detachment process is adjusted based on road traffic information (VICS traffic jam information) obtained as travel information from the navigation system 52.
- VICS Vehicle Information and Communication System
- VICS Vehicle Information and Communication System
- VICS Center Vehicle Information and Communication System
- the ECU 50 determines that the vehicle is traveling in a congested state based on the VICS information
- the ECU 50 increases the allowable limit (reference determination value) of the sulfur adhesion amount (S poisoning amount) in the catalyst compared to that during normal driving.
- the desorption process is made difficult to be executed. According to this control, it is possible to prevent SOx and the like from being discharged due to the detachment process in spite of traffic congestion where vehicles and humans are crowded around, and it is possible to consider the surrounding environment.
- FIG. 4 is a flowchart of control executed by the ECU in the third embodiment of the present invention.
- the routine shown in this figure is executed in parallel with at least one of the controls in the first and second embodiments (FIGS. 2 and 3).
- the sulfur poisoning amount of the NOx catalyst 26 is estimated by the same processing as in step 200 of the second embodiment (step 300).
- the VICS traffic jam information and the current position of the own vehicle are read from the navigation system 52 (steps 302 and 304).
- step 306 it is determined based on the VICS traffic information whether or not the current travel route is in traffic (step 306).
- the reference determination value is set to a large value a for traffic jam (step 308), and it is determined whether or not the S poisoning amount is equal to or greater than the reference determination value a (step 310).
- the reference judgment value “a” for traffic jam travel is an excessive amount of adhesion level that immediately requires the desorption treatment of the sulfur component even during traffic jam travel, and is stored in the ECU 50 in advance.
- the reference judgment value is set to a small value b for normal running (for non-traffic running) (step 314), and the S poisoning amount is the standard. It is determined whether or not the determination value is equal to or greater than b (step 316).
- the reference determination value b for normal travel is the level of the amount of sulfur to be desorbed in a travel state where there is no traffic jam, and is a value smaller than the reference determination value a for traffic jam travel. (A> b).
- S recovery control is executed in step 312. If this determination is not established, the S recovery control is not executed and the process ends.
- Embodiment 4 FIG. Next, a fourth embodiment of the present invention will be described with reference to FIG.
- This embodiment employs a system configuration (FIG. 1) that is substantially the same as in the first and second embodiments.
- the present embodiment is configured to use the traveling time for control in addition to the control contents of the first or second embodiment, and is different from the first embodiment in this respect.
- the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the sulfur component desorption process is preferably performed in a place that does not affect the surrounding environment as much as possible. Therefore, in the present embodiment, the execution state of the detachment process is adjusted based on the travel time obtained as travel information from the navigation system 52. More specifically, when the ECU 50 determines that the travel time is nighttime (midnight), the ECU 50 sets the allowable limit (reference determination value) of the S poison amount to be smaller than that during normal travel, and the desorption process is executed. Make it easy. According to this control, the detachment process can be performed positively during nighttime traveling with few vehicles and people around. Therefore, it is possible to increase the efficiency of the desorption treatment while considering the surrounding environment.
- FIG. 5 is a flowchart of control executed by the ECU in the fourth embodiment of the present invention.
- the routine shown in this figure is executed in parallel with at least one of the controls in the first and second embodiments (FIGS. 2 and 3).
- the S poisoning amount of the NOx catalyst 26 is estimated (step 400). Further, the current time is read from the navigation system 52 (step 402).
- step 404 it is determined whether or not the current time is midnight (step 404).
- the reference determination value is set to a small value c for night driving (step 406), and it is determined whether the S poisoning amount is equal to or greater than the reference determination value c (step 408).
- the reference determination value c for night driving is set to a relatively small value in order to positively perform sulfur component desorption processing during night driving without any problem even if desorption processing is performed. .
- S recovery control is executed as in the third embodiment (step 410).
- the reference determination value is set to a large value d for normal driving (for daytime driving) (step 412), and the S poisoning amount is the reference. It is determined whether or not it is greater than or equal to the determination value d (step 414).
- the reference determination value d for normal travel is the level of the amount of adhesion to which the sulfur component should be desorbed during daytime travel, and is set to a value larger than the reference determination value c for night travel. (D> c).
- Step 102 in FIG. 2 shows a specific example of the NOx occlusion amount acquisition means
- steps 200, 300, and 400 in FIGS. 3 to 5 show specific examples of the sulfur adhesion amount acquisition means.
- the control is performed with a focus on the NOx occlusion amount
- the control is performed with a focus on the sulfur poisoning amount.
- the first embodiment and the second embodiment may be combined and performed together.
- the third embodiment and the fourth embodiment may be combined and performed together.
- the location where parking for a long time is performed is determined based on the past traveling history.
- the present invention is not limited to this.
- a time zone in which parking for a long time is likely to be performed is acquired from the navigation system 52 as travel information, and rich spike control may be performed when the time zone approaches.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
Description
車両の現在位置および走行履歴を含む情報を走行情報として取得する情報取得手段と、
前記走行情報に基いて内燃機関の停止時期が近いと予測されるときに、内燃機関の排気空燃比を通常運転時よりもリッチ化する触媒再生制御手段と、
を備えることを特徴とする。
前記触媒再生制御手段は、前記NOx成分の吸蔵量がNOx用基準判定値以上であるときに、当該NOx成分の還元処理を行うために排気空燃比をリッチ化する構成としている。
前記触媒再生制御手段は、前記硫黄成分の付着量が硫黄用基準判定値以上であるときに、当該硫黄成分の脱離処理を行うために排気空燃比をリッチ化する構成としている。
12 気筒
14 ピストン
16 燃焼室
18 吸気通路
20 排気通路
22 スロットルバルブ
24 スタート触媒
26 NOx触媒
28 燃料タンク
30 燃料噴射弁
32 点火プラグ
34 吸気バルブ
36 排気バルブ
38 A/Fセンサ
40 酸素濃度センサ
42 外気温センサ
50 ECU
52 ナビゲーションシステム(情報取得手段)
[実施の形態1の構成]
以下、図1及び図2を参照しつつ、本発明の実施の形態1について説明する。まず、図1は、本発明の実施の形態1において、内燃機関側のシステム構成を説明するための全体構成図である。図1に示すように、本実施の形態のシステムは、例えば希薄燃焼型のエンジンからなる内燃機関10を備えている。内燃機関10の気筒12内には、ピストン14が設けられており、ピストン14は気筒12内に燃焼室16を形成すると共に、図示しないクランク軸に連結されている。
希薄燃焼制御は、通常運転時の燃焼制御として実行されるもので、例えば高出力を必要としない運転領域等において、排気空燃比を理論空燃比(ストイキ)よりもリーン側に保持するものである。具体的に述べると、希薄燃焼制御では、A/Fセンサ38と酸素濃度センサ40により排気空燃比を検出しつつ、その出力に応じて燃料噴射量を制御し、排気空燃比をリーン化する。従って、希薄燃焼制御によれば、中・低速の運転領域等において、燃費性能や排気エミッションを向上させることができる。
リッチスパイク制御は、一般的に知られているように、NOx触媒26に吸蔵されたNOx成分を還元したり、触媒26の硫黄被毒を解消するために実行される。具体的に述べると、リッチスパイク制御では、例えば余分な燃料噴射を行うことにより、排気空燃比を通常運転時(希薄燃焼時)よりもリッチ化する。即ち、排気空燃比をストイキまたはストイキよりもリッチ側に変化させる。これにより、NOx触媒26がリッチ雰囲気(還元雰囲気)に晒されると、触媒内に吸蔵されていたNOx成分は、触媒の作用により還元されてN2等になり、浄化される。また、NOx触媒26の硫黄被毒時にも、これをリッチ雰囲気に晒すことにより、触媒中に付着した硫黄成分を脱離させることができる。従って、リッチスパイク制御によれば、NOx触媒26の再生処理を行うことができる。
図2は、本発明の実施の形態1において、ECUにより実行される制御のフローチャートである。この図に示すルーチンは、車両の運転中に繰返し実行されるものとする。そして、図2に示すルーチンでは、まず、ナビゲーションシステム52から走行情報を読込む(ステップ100)。また、前述したように、触媒26のNOx吸蔵量を推定し、その推定値を読込む(ステップ102)。
次に、図3を参照して、本発明の実施の形態2について説明する。本実施の形態は、前記実施の形態1とほぼ同様のシステム構成(図1)を採用している。しかし、本実施の形態は、NOx触媒の硫黄被毒に対処しており、この点で実施の形態1と異なるものである。なお、本実施の形態では、前記実施の形態1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
NOx触媒は、燃料中に含まれる硫黄成分が付着することにより、硫黄被毒を受けることが知られている。従来技術では、触媒26に比較的多量の硫黄成分が付着した状態で内燃機関が停止されることがある。この状態で、次回の始動時に暖機運転が行われると、例えば触媒内のアルミナや貴金属等のように脱離し易い部位に付着していた硫黄成分は、比較的低温でも触媒から脱離する。そして、脱離した硫黄成分は、ストイキまたはリッチ雰囲気において排気ガス中に存在する水素と反応し、有害な硫化水素(H2S)を生成するという問題がある。
図3は、本発明の実施の形態2において、ECUにより実行される制御のフローチャートである。この図に示すルーチンは、車両の運転中に繰返し実行されるものとする。そして、図3に示すルーチンでは、まず、前述したように、内燃機関の制御パラメータ等に基いて、NOx触媒26に付着した硫黄成分の量であるS被毒量を推定する(ステップ200)。そして、S被毒量が上限判定値L以上であるか否かを判定する(ステップ202)。ここで、上限判定値Lとは、硫黄成分の脱離処理が直ちに必要とされる過大な付着量のレベルであり、硫黄用基準判定値βよりも大きな値に設定されている。そして、ステップ202の判定が不成立のときには、後述のステップ210に移る。
次に、図4を参照して、本発明の実施の形態3について説明する。本実施の形態は、前記実施の形態1,2とほぼ同様のシステム構成(図1)を採用している。しかし、本実施の形態は、実施の形態1または2の制御内容に加えて、道路交通情報を制御に用いる構成としており、この点で実施の形態1と異なるものである。なお、本実施の形態では、前記実施の形態1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
NOx触媒26内に付着していた硫黄成分は、脱離処理が行われると、SOx等となって外部に排出される。このため、脱離処理は、出来るだけ周囲の環境に影響を与えない場所で実行されるのが好ましい。そこで、本実施の形態では、ナビゲーションシステム52から走行情報として得た道路交通情報(VICS渋滞情報)に基いて、脱離処理の実行状態を調整する構成としている。VICS(Vehicle Information and Communication System)とは、特定の機関(VICSセンター)で編集された渋滞や交通規制等の道路交通情報を、個々の車両のナビゲーションシステム52等にリアルタイムで送信するもので、一般的に公知なものである。
図4は、本発明の実施の形態3において、ECUにより実行される制御のフローチャートである。この図に示すルーチンは、前記実施の形態1,2の制御(図2,図3)のうち少なくとも一方の制御と並行して実施されるものである。図4に示すルーチンでは、まず、前記実施の形態2のステップ200と同様の処理により、NOx触媒26のS被毒量を推定する(ステップ300)。また、ナビゲーションシステム52からVICS渋滞情報と、自車の現在位置とを読込む(ステップ302,304)。
次に、図5を参照して、本発明の実施の形態4について説明する。本実施の形態は、前記実施の形態1,2とほぼ同様のシステム構成(図1)を採用している。しかし、本実施の形態は、実施の形態1または2の制御内容に加えて、走行時刻を制御に用いる構成としており、この点で実施の形態1と異なるものである。なお、本実施の形態では、前記実施の形態1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
前記実施の形態3で述べたように、硫黄成分の脱離処理は、出来るだけ周囲の環境に影響を与えない場所で実行されるのが好ましい。そこで、本実施の形態では、ナビゲーションシステム52から走行情報として得た走行時刻に基いて、脱離処理の実行状態を調整する構成としている。より詳しく述べると、ECU50は、走行時刻が夜間(深夜)であると判定したときに、S被毒量の許容限度(基準判定値)を通常走行時よりも小さくし、脱離処理が実行され易いようにする。この制御によれば、周囲に車両や人間が少ない夜間走行中には、脱離処理を積極的に行うことができる。従って、周囲の環境に配慮しつつ、脱離処理の効率を高めることができる。
図5は、本発明の実施の形態4において、ECUにより実行される制御のフローチャートである。この図に示すルーチンは、前記実施の形態1,2の制御(図2,図3)のうち少なくとも一方の制御と並行して実施されるものである。図5に示すルーチンでは、まず、前記実施の形態3と同様に、NOx触媒26のS被毒量を推定する(ステップ400)。また、ナビゲーションシステム52から現在の時刻を読込む(ステップ402)。
Claims (8)
- 車両に搭載された内燃機関の排気通路に設けられ、排気ガス中のNOx成分を吸蔵して還元するNOx触媒と、
車両の現在位置および走行履歴を含む情報を走行情報として取得する情報取得手段と、
前記走行情報に基いて内燃機関の停止時期が近いと予測されるときに、内燃機関の排気空燃比を通常運転時よりもリッチ化する触媒再生制御手段と、
を備えることを特徴とする内燃機関の排気浄化装置。 - 前記触媒再生制御手段は、前記走行情報として得られた車両の現在位置と、前記情報取得手段に登録された目的地とを比較することにより、内燃機関の停止時期が近いか否かを予測する構成としてなる請求項1に記載の内燃機関の排気浄化装置。
- 前記触媒再生制御手段は、前記走行情報として得られた車両の走行履歴に基いて、内燃機関の停止時間が暖機運転を必要とするほど長いか否かを予測し、停止時間が長いと予測したときには、停止に先立って排気空燃比をリッチ化する構成としてなる請求項1または2に記載の内燃機関の排気浄化装置。
- 前記NOx触媒に吸蔵されたNOx成分の量を取得するNOx吸蔵量取得手段を備え、
前記触媒再生制御手段は、前記NOx成分の吸蔵量がNOx用基準判定値以上であるときに、当該NOx成分の還元処理を行うために排気空燃比をリッチ化する構成としてなる請求項1乃至3のうち何れか1項に記載の内燃機関の排気浄化装置。 - 前記NOx触媒に付着した硫黄成分の量を取得する硫黄付着量取得手段を備え、
前記触媒再生制御手段は、前記硫黄成分の付着量が硫黄用基準判定値以上であるときに、当該硫黄成分の脱離処理を行うために排気空燃比をリッチ化する構成としてなる請求項1乃至4のうち何れか1項に記載の内燃機関の排気浄化装置。 - 前記触媒再生制御手段は、前記硫黄成分の脱離処理を行うときに、前記NOx触媒に吸蔵されたNOx成分の還元処理に必要な時間よりも長い時間にわたって排気空燃比をリッチ化する構成としてなる請求項5に記載の内燃機関の排気浄化装置。
- 前記触媒再生制御手段は、前記走行情報として得られる道路交通情報または走行時刻に基いて前記脱離処理の実行状態を調整する構成としてなる請求項5または6に記載の内燃機関の排気浄化装置。
- 前記触媒再生制御手段は、前記走行情報として得られる車両の現在位置と現在の日付、および外気温度のうち少なくとも1つの情報に基いて、次回の始動時における内燃機関の温度を推定し、当該推定温度に応じて内燃機関の停止時に前記NOx触媒に残留するNOx成分の量を予め調整する構成としてなる請求項1乃至7のうち何れか1項に記載の内燃機関の排気浄化装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/056,002 US20110126523A1 (en) | 2008-11-13 | 2008-11-13 | Exhaust emission purifier of internal combustion engine |
CN2008801305673A CN102132017A (zh) | 2008-11-13 | 2008-11-13 | 内燃机排气净化装置 |
PCT/JP2008/070708 WO2010055573A1 (ja) | 2008-11-13 | 2008-11-13 | 内燃機関の排気浄化装置 |
EP08878119A EP2348203A1 (en) | 2008-11-13 | 2008-11-13 | Exhaust purification device for internal combustion engine |
JP2010537640A JPWO2010055573A1 (ja) | 2008-11-13 | 2008-11-13 | 内燃機関の排気浄化装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/070708 WO2010055573A1 (ja) | 2008-11-13 | 2008-11-13 | 内燃機関の排気浄化装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010055573A1 true WO2010055573A1 (ja) | 2010-05-20 |
Family
ID=42169722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/070708 WO2010055573A1 (ja) | 2008-11-13 | 2008-11-13 | 内燃機関の排気浄化装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110126523A1 (ja) |
EP (1) | EP2348203A1 (ja) |
JP (1) | JPWO2010055573A1 (ja) |
CN (1) | CN102132017A (ja) |
WO (1) | WO2010055573A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017025886A (ja) * | 2015-07-28 | 2017-02-02 | 富士重工業株式会社 | 車両 |
DE102011117906B4 (de) | 2010-11-12 | 2019-04-04 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Steuerverfahren zur Ammoniakspeicherung mit Katalysator für selektive katalytische Reduktion |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8822887B2 (en) | 2010-10-27 | 2014-09-02 | Shaw Arrow Development, LLC | Multi-mode heater for a diesel emission fluid tank |
DE102013205541A1 (de) * | 2012-07-30 | 2014-05-15 | Ford Global Technologies, Llc | Verfahren zum Betrieb eines Verbrennungsmotors, Verfahren zum Ausschalten eines Verbrennungsmotors und Motorsteuervorrichtung |
GB2520148B (en) * | 2013-09-16 | 2017-10-18 | Johnson Matthey Plc | Exhaust system with a modified lean NOx trap |
US9599052B2 (en) * | 2014-01-09 | 2017-03-21 | Ford Global Technologies, Llc | Methods and system for catalyst reactivation |
USD729722S1 (en) | 2014-05-28 | 2015-05-19 | Shaw Development LLC | Diesel emissions fluid tank floor |
USD729141S1 (en) | 2014-05-28 | 2015-05-12 | Shaw Development LLC | Diesel emissions fluid tank |
US20180149059A1 (en) * | 2015-06-11 | 2018-05-31 | Scania Cv Ab | Method and system for controlling a catalytic converter system |
DE102016222012B4 (de) * | 2015-12-18 | 2022-09-29 | Ford Global Technologies, Llc | Verfahren zum Steuern eines NOx-Speicher-Katalysators |
DE102016204144A1 (de) * | 2016-03-14 | 2017-09-14 | Robert Bosch Gmbh | Verfahren und Steuereinrichtung zur Steuerung und/oder Regelung eines Funktionssystems in einem Kraftfahrzeug |
DE102016216892A1 (de) * | 2016-09-06 | 2018-03-08 | Robert Bosch Gmbh | Verfahren und Steuereinrichtung zur Steuerung und/oder Regelung einer Abgasnachbehandlungsanlage in einem Fahrzeug |
FR3063770A1 (fr) * | 2017-03-13 | 2018-09-14 | Peugeot Citroen Automobiles Sa | Procede de purge d’un piege a oxydes d’azote dans une ligne d’echappement de vehicule automobile |
CN111058955B (zh) * | 2018-10-17 | 2022-09-27 | 上海汽车集团股份有限公司 | 车辆、发动机的降排放控制装置及其降排放控制方法 |
DE102018221243A1 (de) * | 2018-12-07 | 2020-06-10 | Robert Bosch Gmbh | Verfahren und Steuergerät zum Betreiben eines Verbrennungsmotors |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000240431A (ja) * | 1999-02-18 | 2000-09-05 | Nissan Motor Co Ltd | 内燃機関の排気浄化装置 |
JP2000352308A (ja) * | 1999-06-10 | 2000-12-19 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2002030955A (ja) * | 2000-07-12 | 2002-01-31 | Denso Corp | 内燃機関の排気浄化制御装置 |
JP2003511601A (ja) * | 1999-10-06 | 2003-03-25 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | 自動車の吸蔵触媒の浄化のための制御機器 |
JP2005105949A (ja) * | 2003-09-30 | 2005-04-21 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
WO2005047681A1 (ja) * | 2003-11-12 | 2005-05-26 | Hitachi, Ltd. | 内燃機関の排ガス浄化装置及び排ガス浄化方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6032461A (en) * | 1995-10-30 | 2000-03-07 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control apparatus for internal combustion engine |
JP3550846B2 (ja) * | 1996-01-22 | 2004-08-04 | 日産自動車株式会社 | 内燃機関の排気浄化装置 |
US6370868B1 (en) * | 2000-04-04 | 2002-04-16 | Ford Global Technologies, Inc. | Method and system for purge cycle management of a lean NOx trap |
US6866610B2 (en) * | 2001-03-30 | 2005-03-15 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and method for vehicle having internal combustion engine and continuously variable transmission, and control apparatus and method for internal combustion engine |
JP4325264B2 (ja) * | 2003-04-23 | 2009-09-02 | トヨタ自動車株式会社 | 内燃機関の空燃比制御装置 |
ITTO20030999A1 (it) * | 2003-12-12 | 2005-06-13 | Fiat Ricerche | Metodo di attivazione della rigenerazione di un filtro del particolato in base ad una stima della quantita' di particolato accumulata nel filtro del particolato. |
JP2007224750A (ja) * | 2006-02-21 | 2007-09-06 | Toyota Motor Corp | 硫黄被毒回復制御装置 |
JP2008014760A (ja) * | 2006-07-05 | 2008-01-24 | Aisin Aw Co Ltd | ナビゲーション装置 |
US8281572B2 (en) * | 2008-04-30 | 2012-10-09 | Cummins Ip, Inc. | Apparatus, system, and method for reducing NOx emissions from an engine system |
-
2008
- 2008-11-13 CN CN2008801305673A patent/CN102132017A/zh active Pending
- 2008-11-13 WO PCT/JP2008/070708 patent/WO2010055573A1/ja active Application Filing
- 2008-11-13 JP JP2010537640A patent/JPWO2010055573A1/ja active Pending
- 2008-11-13 EP EP08878119A patent/EP2348203A1/en not_active Withdrawn
- 2008-11-13 US US13/056,002 patent/US20110126523A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000240431A (ja) * | 1999-02-18 | 2000-09-05 | Nissan Motor Co Ltd | 内燃機関の排気浄化装置 |
JP2000352308A (ja) * | 1999-06-10 | 2000-12-19 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2003511601A (ja) * | 1999-10-06 | 2003-03-25 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | 自動車の吸蔵触媒の浄化のための制御機器 |
JP2002030955A (ja) * | 2000-07-12 | 2002-01-31 | Denso Corp | 内燃機関の排気浄化制御装置 |
JP2005105949A (ja) * | 2003-09-30 | 2005-04-21 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
WO2005047681A1 (ja) * | 2003-11-12 | 2005-05-26 | Hitachi, Ltd. | 内燃機関の排ガス浄化装置及び排ガス浄化方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011117906B4 (de) | 2010-11-12 | 2019-04-04 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Steuerverfahren zur Ammoniakspeicherung mit Katalysator für selektive katalytische Reduktion |
JP2017025886A (ja) * | 2015-07-28 | 2017-02-02 | 富士重工業株式会社 | 車両 |
Also Published As
Publication number | Publication date |
---|---|
CN102132017A (zh) | 2011-07-20 |
JPWO2010055573A1 (ja) | 2012-04-05 |
US20110126523A1 (en) | 2011-06-02 |
EP2348203A1 (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010055573A1 (ja) | 内燃機関の排気浄化装置 | |
JP3680244B2 (ja) | 内燃機関の未燃燃料成分吸着材の吸着量算出装置 | |
US6233925B1 (en) | Exhaust discharge control device for internal combustion engine | |
JP3399466B2 (ja) | 内燃機関の排気浄化装置 | |
EP1291498A2 (en) | Emission control system for internal combustion engine | |
US9334821B2 (en) | Fuel injection control apparatus for engine | |
JP2002242663A (ja) | 内燃機関の排気浄化装置 | |
JP2003148211A (ja) | 内燃機関の排気浄化装置 | |
JP4867909B2 (ja) | NOx触媒の劣化診断装置 | |
EP2151555B1 (en) | Catalyst deterioration determination device and method | |
JP3632614B2 (ja) | 内燃機関の排気浄化装置 | |
JP2000240431A (ja) | 内燃機関の排気浄化装置 | |
EP1030043A2 (en) | Exhaust gas purification device for engine | |
JP3591320B2 (ja) | 内燃機関の排気浄化装置 | |
JP3552603B2 (ja) | 内燃機関の排気浄化装置 | |
JP2004308526A (ja) | 内燃機関の排気浄化装置 | |
JP2010112198A (ja) | 内燃機関の排気浄化装置 | |
JP3376954B2 (ja) | 内燃機関の排気浄化装置及びそのSOx被毒判定方法 | |
JP3591343B2 (ja) | 内燃機関の排気浄化装置 | |
JP3478135B2 (ja) | 内燃機関の排気浄化装置 | |
JP3997740B2 (ja) | 内燃機関の排気浄化装置 | |
JP3772554B2 (ja) | エンジンの排気浄化装置 | |
JP2004285841A (ja) | 内燃機関の排気浄化装置 | |
JP4635868B2 (ja) | 内燃機関の排気浄化装置 | |
JP4265123B2 (ja) | 内燃機関の排気浄化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880130567.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08878119 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010537640 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008878119 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13056002 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |