WO2009134211A1 - Inorganic graded barrier film and methods for their manufacture - Google Patents
Inorganic graded barrier film and methods for their manufacture Download PDFInfo
- Publication number
- WO2009134211A1 WO2009134211A1 PCT/SG2009/000154 SG2009000154W WO2009134211A1 WO 2009134211 A1 WO2009134211 A1 WO 2009134211A1 SG 2009000154 W SG2009000154 W SG 2009000154W WO 2009134211 A1 WO2009134211 A1 WO 2009134211A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- barrier film
- layer
- metal
- graded barrier
- graded
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 title claims abstract description 188
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title claims description 37
- 229910052751 metal Inorganic materials 0.000 claims abstract description 128
- 239000002184 metal Substances 0.000 claims abstract description 128
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 73
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 72
- 150000004767 nitrides Chemical class 0.000 claims abstract description 55
- 238000004544 sputter deposition Methods 0.000 claims abstract description 33
- 239000010410 layer Substances 0.000 claims description 196
- 239000010408 film Substances 0.000 claims description 188
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 83
- 239000000758 substrate Substances 0.000 claims description 69
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 54
- 239000001301 oxygen Substances 0.000 claims description 54
- 229910052760 oxygen Inorganic materials 0.000 claims description 53
- 229910052757 nitrogen Inorganic materials 0.000 claims description 41
- 239000011575 calcium Substances 0.000 claims description 40
- 229910052791 calcium Inorganic materials 0.000 claims description 39
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 38
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 23
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 23
- -1 polypropylene Polymers 0.000 claims description 23
- 239000007789 gas Substances 0.000 claims description 20
- 238000000151 deposition Methods 0.000 claims description 19
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 19
- 238000005516 engineering process Methods 0.000 claims description 13
- 230000008021 deposition Effects 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 230000003472 neutralizing effect Effects 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 150000002739 metals Chemical class 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229920000592 inorganic polymer Polymers 0.000 claims description 6
- 229910052718 tin Inorganic materials 0.000 claims description 6
- 239000011135 tin Substances 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- 229920000620 organic polymer Polymers 0.000 claims description 5
- 239000011241 protective layer Substances 0.000 claims description 5
- 239000002033 PVDF binder Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229920000058 polyacrylate Polymers 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 229920001296 polysiloxane Polymers 0.000 claims description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 229910004613 CdTe Inorganic materials 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 239000012495 reaction gas Substances 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 2
- 229920000298 Cellophane Polymers 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 2
- 240000002329 Inga feuillei Species 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 239000000020 Nitrocellulose Substances 0.000 claims description 2
- 239000004677 Nylon Substances 0.000 claims description 2
- 239000004695 Polyether sulfone Substances 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 claims description 2
- 238000007743 anodising Methods 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229920001577 copolymer Polymers 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- HVMJUDPAXRRVQO-UHFFFAOYSA-N copper indium Chemical compound [Cu].[In] HVMJUDPAXRRVQO-UHFFFAOYSA-N 0.000 claims description 2
- ZZEMEJKDTZOXOI-UHFFFAOYSA-N digallium;selenium(2-) Chemical compound [Ga+3].[Ga+3].[Se-2].[Se-2].[Se-2] ZZEMEJKDTZOXOI-UHFFFAOYSA-N 0.000 claims description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 229910052732 germanium Inorganic materials 0.000 claims description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229920001220 nitrocellulos Polymers 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 2
- 229920002627 poly(phosphazenes) Polymers 0.000 claims description 2
- 229920002401 polyacrylamide Polymers 0.000 claims description 2
- 229920006393 polyether sulfone Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052716 thallium Inorganic materials 0.000 claims description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 claims 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims 1
- 229910001887 tin oxide Inorganic materials 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 48
- 229910052581 Si3N4 Inorganic materials 0.000 description 26
- 230000015556 catabolic process Effects 0.000 description 26
- 238000006731 degradation reaction Methods 0.000 description 26
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 26
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 19
- 238000012360 testing method Methods 0.000 description 18
- 230000007547 defect Effects 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 238000000576 coating method Methods 0.000 description 12
- 229910017083 AlN Inorganic materials 0.000 description 11
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 11
- 229910052786 argon Inorganic materials 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000005538 encapsulation Methods 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 9
- 239000004593 Epoxy Substances 0.000 description 8
- AYTAKQFHWFYBMA-UHFFFAOYSA-N chromium dioxide Chemical compound O=[Cr]=O AYTAKQFHWFYBMA-UHFFFAOYSA-N 0.000 description 8
- 238000010849 ion bombardment Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000012856 packing Methods 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- QXYJCZRRLLQGCR-UHFFFAOYSA-N dioxomolybdenum Chemical compound O=[Mo]=O QXYJCZRRLLQGCR-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 3
- 238000004581 coalescence Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910017109 AlON Inorganic materials 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 2
- 229910001632 barium fluoride Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000006059 cover glass Substances 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 238000010943 off-gassing Methods 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 230000004224 protection Effects 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 238000011158 quantitative evaluation Methods 0.000 description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- HEOCBCNFKCOKBX-RELGSGGGSA-N (1s,2e,4r)-4,7,7-trimethyl-2-[(4-methylphenyl)methylidene]bicyclo[2.2.1]heptan-3-one Chemical compound C1=CC(C)=CC=C1\C=C/1C(=O)[C@]2(C)CC[C@H]\1C2(C)C HEOCBCNFKCOKBX-RELGSGGGSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- 229910020056 Mg3N2 Inorganic materials 0.000 description 1
- 229910015659 MoON Inorganic materials 0.000 description 1
- 229910003228 N1–xOx Inorganic materials 0.000 description 1
- YBGZDTIWKVFICR-JLHYYAGUSA-N Octyl 4-methoxycinnamic acid Chemical compound CCCCC(CC)COC(=O)\C=C\C1=CC=C(OC)C=C1 YBGZDTIWKVFICR-JLHYYAGUSA-N 0.000 description 1
- 229910010282 TiON Inorganic materials 0.000 description 1
- 229910010303 TiOxNy Inorganic materials 0.000 description 1
- 239000004904 UV filter Substances 0.000 description 1
- 230000006750 UV protection Effects 0.000 description 1
- 229910007379 Zn3N2 Inorganic materials 0.000 description 1
- 229910007694 ZnSnO3 Inorganic materials 0.000 description 1
- 229910008322 ZrN Inorganic materials 0.000 description 1
- 229910006252 ZrON Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 125000003354 benzotriazolyl group Chemical class N1N=NC2=C1C=CC=C2* 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 229960004697 enzacamene Drugs 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910001502 inorganic halide Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000011369 optimal treatment Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000007699 photoisomerization reaction Methods 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002577 polybenzoxazole Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 230000003678 scratch resistant effect Effects 0.000 description 1
- 238000010900 secondary nucleation Methods 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229940071182 stannate Drugs 0.000 description 1
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Inorganic materials [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- GRUMUEUJTSXQOI-UHFFFAOYSA-N vanadium dioxide Chemical compound O=[V]=O GRUMUEUJTSXQOI-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- BNEMLSQAJOPTGK-UHFFFAOYSA-N zinc;dioxido(oxo)tin Chemical compound [Zn+2].[O-][Sn]([O-])=O BNEMLSQAJOPTGK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
- C23C14/0073—Reactive sputtering by exposing the substrates to reactive gases intermittently
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
- C23C14/0084—Producing gradient compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/564—Details not otherwise provided for, e.g. protection against moisture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/88—Passivation; Containers; Encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12044—OLED
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
- H10K50/8445—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/239—Complete cover or casing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
- Y10T428/24975—No layer or component greater than 5 mils thick
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31507—Of polycarbonate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31511—Of epoxy ether
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31609—Particulate metal or metal compound-containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31663—As siloxane, silicone or silane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31721—Of polyimide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
- Y10T428/31739—Nylon type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
- Y10T428/31765—Inorganic-containing or next to inorganic-containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31935—Ester, halide or nitrile of addition polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31938—Polymer of monoethylenically unsaturated hydrocarbon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31971—Of carbohydrate
Definitions
- the present invention relates generally to the field of barrier films, and more particularly to graded barrier films.
- OLEDs Organic Light Emitting Displays
- barrier films have been used to isolate the electroluminescent devices from the environment.
- the encapsulation around the reactive electroluminescent material of the OLED should have an oxygen transmission rate (OTR) less than about 5 to 10 cc/m 2 /day and a water vapor transmission rate (WVTR) of less than about 10 "5 g/m 2 /day at 39 0 C and 95% RH.
- OTR oxygen transmission rate
- WVTR water vapor transmission rate
- polymer films 110 do not typically show high barrier performance even if they are coated with a metal oxide coating 106 to improve their barrier properties, as they suffer from imperfections such as pinholes 103, cracks 102, gaps occurring at grain boundaries 101 etc. (see Figure 4)
- Integrity of the deposited coatings, such as metal oxide or metal nitride layers is a crucial factor in determining overall gas barrier performance, and control of defects, such as pinholes, cracks and gram boundaries within the oxide or nitride layers is a critical requirement.
- defects such as pinholes, cracks and gram boundaries within the oxide or nitride layers.
- Barrier properties of thickness optimized barrier film having typical thickness range of 30 - 60 nm, are limited by large pore size defects. The size of pinholes can be further reduced if the coating thickness is increased, but the intrinsic stress would be the limiting factor for the improvement of barrier properties because the intrinsic stress increases as thicker the oxide layer becomes (see Figure 9).
- the present invention refers to a graded barrier film comprising a layered structure, wherein the layered structure comprises: a first layer of a metal oxide; a intermediate (second) layer of a metal nitride or a metal oxynitride which is arranged on the first layer; and a third layer of a metal oxide which is arranged on the intermediate layer.
- the present invention refers to a method of manufacturing a graded barrier film according to any of the preceding claims in a single deposition cycle using sputtering technology, wherein the method comprises: depositing alternating layers of metal oxide and metal nitride or metal oxide and metal oxynitride on a substrate by mixing working gas used in the magnetron alternatively with a reaction gas which is either oxygen or nitrogen or a mixture of oxygen and nitrogen.
- the present invention refers to a device encapsulated with a graded barrier film obtained according to a method of manufacturing such a graded barrier film.
- Figure 1 shows the general structure of a graded barrier film according to an embodiment of the invention.
- An intermediate layer of a metal oxide nitride or metal oxynitride 55 is interposed between a first 52 and a second 51 metal oxide layer.
- Introducing an intermediate layer of a metal nitride or metal oxynitride allows to increase the thickness of the metal oxide barrier layer without increasing the intrinsic stress which leads to defects in the metal oxide barrier layer.
- Figure 2 shows another embodiment of a graded barrier film.
- the graded barrier film as shown in Figure 1 is arranged on a substrate 56.
- Figure 3 shows the general structure of a graded barrier film according to a further embodiment of the invention.
- the graded barrier film comprises more than three layers.
- two intermediate layers 55 are inserted in the metal oxide layer 52 thus creating a layered structure consisting of alternating layers of metal oxide and metal nitride or metal oxynitride. This structure can be further extended by adding further alternating layers of metal nitride or metal oxynitride and metal oxide.
- FIG. 4 illustrates the operation method of a barrier film known in the art and the limitations of such barrier films.
- This barrier film includes three different layers. Two metal oxide layers 106 which are interposed by a polymer layer 110. The metal oxide layers are applied on the top and bottom of the polymer layer to improve the barrier properties. Compared to polymers, metal oxides are known to adsorb water vapour (adsorption indicated by arrow 107) much better than polymer films. However, as already explained in the introductory part, the metal oxide layers comprise inherent structural defects, such as defects which occur at the boundaries of metal grains 101 which form the metal oxide layer; cracks 102, which can form upon bending of the flexible barrier film; and pinholes 103.
- the water molecules 108 can pass the metal oxide layer through these defects, diffuse through the polymer layer 110 (diffusion indicated by diagonal arrow 104) and are released from or through the surface (desorption) of the metal oxide layer 106 into the area in which the moisture sensitive device to be protected is positioned.
- Figures 5 and 6 show a setup for carrying out an investigation of the barrier film properties of fabricated barrier films using a calcium sensor.
- Figure 7 illustrates the general set-up of a magnetron sputtering system using a pulsed reactive plasma system which is used in one embodiment of the invention for manufacturing the graded barrier film.
- Magnetron sputtering can be used to deposit the graded barrier layer onto the planarising substrate.
- Unbalanced magnetron sputtering technique can be used to form high density oxide barrier films. In this sputtering technique, a metal layer of typically a few mono-layers will be deposited from an unbalanced magnetron, and then oxygen or nitrogen will be introduced to the system to create oxygen or nitrogen plasma, directed towards the' substrate to provide argon and oxygen or nitrogen ion bombardment for a high packing-density graded barrier film.
- Plasma helps to increase the reactivity of the oxygen and nitrogen directed onto the growing film surface and provides for more desirable film stoichiometry.
- a high flux greater than 2 mA/cm 2
- low energy ⁇ 25 eV
- Figure 8 shows the results of a calcium degradation test study carried out at a temperature of 60°C with a relative humidity of 90% to determine the barrier properties of three different inorganic barrier film configurations.
- a 100 ⁇ m scale bar is indicated at the right bottom of every image.
- the first row in Figure 8 shows the results of the degradation test using a 50 nm aluminium oxide film (Al 2 O 3 ) while the second row shows the results of the degradation test using a 50 nm aluminium nitride film (AlN).
- Al 2 O 3 aluminium aluminium aluminium oxide film
- AlN aluminium aluminium aluminium nitride film
- the third row in Figure 8 shows the results of the degradation test using a 125 nm graded barrier film consisting of a 50 nm Al 2 O 3 layer, a 25 nm AlN layer and a further 50 nm Al 2 O 3 layer. Only after 207 h the calcium sensor showed first signs of degradation and was less degraded after 414 hours than the AIN film (second row) after 50 hours.
- FIG. 9 illustrates the relationship between metal nitride thickness, water vapor transmission rate and diffusion rate.
- WVTR water vapor transmission rate
- D diffusion coefficient
- FIG. 9 illustrates the relationship between metal nitride thickness, water vapor transmission rate and diffusion rate.
- WVTR water vapor transmission rate
- D diffusion coefficient
- FIG. 9 illustrates the relationship between metal nitride thickness, water vapor transmission rate and diffusion rate.
- WVTR water vapor transmission rate
- D m 2 /s
- the thickness of a metal nitride barrier layer is plotted.
- the graph shows that the barrier property increases with the thickness of the metal nitride layer (WVTR and D decrease). This is due to the fact that initially with an increasing layer thickness the size of the defects formed in the layer is small.
- the best barrier properties are obtained with a metal nitride layer thickness between about 30 nm to about 60 nm.
- FIG. 10 shows the calcium degradation pattern of a SiN film with a thickness of 5 nm on PET substrate after 1.5 h, 3 h and 4 h (from left to right).
- Figure 11 shows the calcium degradation pattern of a SiN film with a thickness of 15 nm on PET substrate after 0 h, 3 h, 4 h and 6 h (from left to right).
- Figure 12 shows the calcium degradation pattern of a SiN film with a thickness of
- Figure 13 shows the calcium degradation pattern of a SiN film with a thickness of
- Figure 14 shows the calcium degradation pattern of a SiN film with a thickness of
- Layers of metal oxide or metal nitride are used in the art to avoid degradation of moisture sensitive devices, such as OLEDs. Such layers of metal oxide or metal nitride are capable of adsorbing moisture and thus reduce the gas permeability in a more efficient manner than common plastic. As it is also known such layers of metal oxide or metal nitride comprise small defects, such as pinholes and cracks. As has been demonstrated in experiments (results shown in Figure 9) using a metal nitride layer, the size of such defects decreases when increasing the thickness of the metal nitride layer. However, when increasing the thickness of the metal nitride layer the intrinsic stress within the layer leads to larger defects.
- the best barrier properties are obtained with a metal nitride layer between about 30 to 60 nm while the barrier properties drop when the metal nitride layer is exceeding 60 nm because the defect size in the metal nitride layer increases due to the increasing intrinsic stress. Similar results (not shown) are obtained when testing a metal oxide layer and increasing its thickness.
- the present invention provides in a first embodiment an inorganic graded barrier film having a layered structure, wherein the layered structure comprises: ⁇ a first layer comprising or consisting of a metal oxide; a second (intermediate) layer comprising or consisting of a metal nitride or metal oxynitride which is arranged on the first layer; and a third layer comprising or consisting of a metal oxide which is arranged on the second
- the second layer is an intermediate layer or stress release layer comprising or consisting of a metal oxynitride or metal nitride.
- Introduction of the intermediate layer reduces the intrinsic stress which inevitable occurs if the thickness of the metal oxide layer is increased. Due to this intermediate layer the thickness of the metal oxide layer can be increased and thus the barrier properties improved.
- the advantageous effect of such a graded barrier film is illustrated by the results shown in Figure 8 which were obtained in experiments conducted with a calcium sensor.
- a graded barrier film as described above prevents degradation for up to 207 h at a temperature of 6O 0 C and a relative humidity of 90%.
- With “graded” barrier film it is meant that the layers are arranged in a series.
- the graded barrier film comprises alternating layers of metal oxide and metal oxynitride or metal nitride.
- the metal nitride or metal oxynitride layer is arranged on the first metal oxide layer. With arranged on it is meant that the layers are put in a specific sequence and are connected to each other.
- Each of the layers of the graded barrier film can have a thickness of between about 10 Angstrom to about 150 nm or 1 nm to about 100 nm or 1 nm to about 50 nm or 1 ran to about 25 nm or 10 nm to about 50 nm.
- the second metal nitride or metal oxynitride layer is thinner than the first and third layer.
- the second layer is about 90, 91, 92, 93, 94, 95 or 96 % thinner than the metal oxide layer it is arranged on.
- the thickness of the first and third metal oxide layer can be the same or different depending on the maximum desired thickness of the entire graded barrier film within the thickness ranges indicated herein.
- the second layer can have a thickness of between about 10 Angstrom, 50 Angstrom, 100 Angstrom, 500 Angstrom or 1 nm and 29 or 25 nm.
- the second metal nitride or metal oxynitride layer has a thickness of between about 10 Angstrom, 50 Angstrom, 100 Angstrom, 500 Angstrom or 1 nm to about 20 nm, about 1 to about 15 nm, about 1 to about 10 nm, or about 1 to about 5 nm, or about 1 to about 3 nm, or about 1 to about 2 nm.
- the second layer is about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or 28 nm thick, hi case more than one intermediate layer is comprised in the graded barrier film, the thickness of the intermediate layers can be the same or different from each other within the thickness ranges indicated herein.
- the metal oxide layer has a thickness between about 30 to about 60 nm, or about 40 to about 60 nm, or about 40 to about 50 nm, or about 50 to about 60 nm.
- the second layer is about 30, 35, 40, 45, 50, 55 or 60 nm thick.
- the graded barrier film comprises further layers; wherein a metal oxide layer is always followed by a metal nitride layer or metal oxynitride layer which is arranged on the metal oxide layer.
- FIG. 3 An illustrative example of this embodiment ( Figure 3) shows a graded barrier film with three layers of metal oxide 53 interposed with second intermediate layers of metal nitride or metal oxynitride 55.
- the number of layers and thus the thickness of the graded barrier film can be farther increased to farther enhance the barrier properties if necessary.
- the entire graded barrier film can have a thickness (including every layer) between about 50 nm to about 1 ⁇ m, or about 50 nm to about 500 nm, or about 50 nm to about 300 nm, or about 50 nm to about 200 nm, or about 50 nm to about 100 nm.
- the entire thickness of the graded barrier film (without any substrate) is 50 nm, 60 nm, 70 nm, 80 nm, 90 nm, 100 nm, 110 nm, 120 nm, 125 nm, 130 nm, or 140 nm, or 200 nm, or 250 nm, or 300 nm.
- the metal oxide, metal nitride or metal oxynitride can consist of metals which are reactive towards water and/or oxygen, i.e. metals which are above hydrogen in the reactivity series, including metals from Group 2 to 14 (IUPAC considering the IUPAC recommendations till 2006).
- Some preferred metals include those from Groups 2, 4, 10, 12, 13 and 14.
- these metals may be selected from Al, Mg, Ba and Ca.
- Reactive transition metals may also be used, including Ti 3 Zn, Sn, Ni, and Fe for instance.
- the metals include aluminium, gallium, indium, indium-doped tin, thallium, titanium, zirconium, hafnium, molybdenum, chromium, tungsten, zinc, silicon, germanium, tin, barium, strontium, calcium, magnesium, manganese, tantalum, yttrium and vanadium.
- metal oxides that can be used in the graded barrier film include TiO 2 , Al 2 O 3 , ZrO 2 , ZnO, BaO, SrO, CaO and MgO, VO 2 , CrO 2 , MoO 2 , or LiMn 2 O 4 .
- the metal oxide may be a transparent conductive metal oxide selected from the group consisting of cadmium stannate (Cd 2 SnO 4 ), cadmium indate (CdIn 2 O 4 ), zinc stannate (Z ⁇ SnO 4 and ZnSnO 3 ), and zinc indium oxide (Z ⁇ ftiaOs).
- Exampels of metal nitrides that can be used in the graded barrier film include TiN, AlN, ZrN, Zn 3 N 2 , Ba 3 N 2 , Sr 3 N 2 , Ca 3 N 2 and Mg 3 N 2 , VN, CrN or MoN.
- Exampels of metal oxynitrides that can be used in the graded barrier film include TiO x Ny such as TiON, AlON, ZrON, Zn 3 (N 1-x O x ) 2 -y, SrON, VON, CrON, MoON and stoichiometric equivalents thereof.
- the metals in the first and third layer can be the same or different.
- the metal used in the second (stress release) layer can be the same as used in the first or third layer.
- the metal oxide of the first and third layer can be different or the same.
- the intermediate metal nitride or metal oxynitride layers can be of the same metal nitride or metal oxynitride or they can differ from each other.
- the intermediate layers can be all metal nitride or metal oxynitride or can consist of a mixed layered structure including metal nitride as well as metal oxynitride layers.
- the first metal layer can be made of Al 2 O 3 followed by an intermediate CrN layer followed by a MoO 2 or CrO 2 layer.
- the graded barrier film comprises of multiple alternating layers of metal oxide and metal nitride or metal oxynitride.
- the first metal layer can be made of Al 2 O 3 followed by an AlN layer, followed by a CrO 2 layer, followed by an AlON layer, followed by another CrO 2 layer and so on.
- the first metal oxide layer can be followed by a metal oxynitride layer followed by a metal nitride layer, followed by the second metal oxide layer.
- the intermediate layer comprises alternating layers of metal nitride and metal oxynitride.
- a substrate may be provided to support the graded barrier film.
- the substrate may be flexible or rigid.
- the substrate can be an organic or inorganic polymer.
- the substrate may comprise any suitable variety of materials such as polyacetate, polypropylene, cellophane, poly(l-trimethylsilyl-l-propyne, poly(ethylene-2,6-naphthalene dicarboxylate) (PEN), polyethylene terephthalate) (PET), poly(4-methyl-2-pentyne), polyimide, polycarbonate (PC), polyethylene, polyethersulfone, epoxy resins, polyethylene terephthalate, polystyrene, polyurethane, polyacrylate, polyacrylamide or polydimethylphenylene oxide.
- microporous and macroporous polymers such as styrene-divinylbenzene copolymers, polyvinylidene fluoride (PVDF), nylon, nitrocellulose, cellulose or acetate.
- inorganic polymers that can be used as substrate include silica (glass), indium tin oxide, nano-clays, silicones, polydimethylsiloxanes, biscyclopentadienyl iron, or polyphosphazenes and derivatives thereof, to name some illustrative examples.
- the substrate can also comprise a mixture of organic and inorganic polymers. These polymers can be transparent, semi transparent or completely opaque.
- Polycarbonate is a useful substrate because it is compatible with plastic electronics fabrication processes. Polycarbonate is also transparent and can be cut into any desired dimension. Pneumatically operated hollow die punch-cutting equipment or any other conventional slitting machine can be used to slit samples into desired dimensions.
- the substrate may be arranged to face the external environment and or it may face the environment encapsulated be the graded barrier film. In food packaging, the substrate may face the internal surface that is in contact with food while the graded barrier film forms the external surface in contact with atmospheric conditions. [042] The graded barrier film can be coated with further layers.
- the graded barrier film may be capped or overlaid with a terminal protective layer.
- the protective layer may comprise any material having good mechanical strength and is scratch resistant, hi one embodiment, the protective layer comprises an acrylic film.
- the acrylic film can comprise LiF and/or MgF 2 particles distributed in the acrylic film.
- the graded barrier film can also be coated with a UV neutralizing layer.
- a ultraviolet (UV) light neutralizing layer comprises a layer of material capable of filtering UV light.
- Many types of polymers can be used as basis for forming a UV neutralizing layer.
- Such polymer can include hydrocarbon plastics, thermoplastics, rubbers and inorganic polymers.
- suitable organic polymers are ultraviolet (UV) curable epoxies, polysulfides, silicone, polyurethane, polystyrene, polyalkylenes, polyimides, polybenzoxazoles and polyacrylates.
- the polymers of the UV neutralizing layer can further include inorganic as well as organic materials, for example protective coatings which include titanium oxide and zinc oxide nanoparticles, and chemical compounds that are able to absorb the UV rays.
- exemplary UV filter material include, but are not limited to, oxides such hafnium dioxide (HfO 2 ), magnesium oxide (MgO) or barium oxide (BaO) all of which can provide low refractive oxide optical films. Titanium dioxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), silicone oxide (SiO 2 ), zirconium oxide (ZrO 2 ), indium tin oxide (ITO), and zinc oxide (ZnO) nanoparticles may also be used.
- ITO Indium tin oxide
- ZnO zinc oxide
- UV light neutralizing layer such as an epoxy adhesive layer
- suitable materials that be used as UV filtering material include inorganic halides such as magnesium fluoride (MgF 2 ) or barium fluoride (BaF 2 ).
- hafnium dioxide may be combined in multilayers with silicon dioxide to obtain hard, scratch-free, dense and adherent coatings, hi addition, it is also possible to use organic materials such as carbon nanotubes as UV absorbing material.
- organic materials such as carbon nanotubes
- chemical coatings which absorb incident UV and radiate it in a secondary form of energy may also be used in place of or in conjunction with physical coatings.
- the UV neutralizing layer comprises a layer of UV light absorber material. Examples include 4-Methylbenzylidene camphor and benzotriazole. Another compound that can be used is 2-ethylhexyl methoxy cinnamate, which uses incident UV to bring about cis-trans photo isomerization of the compound.
- the UV neutralizing layer comprises copolymerisable benzotriazole compounds such as those disclosed in US Patent No. 4,260,768. Due to the availability of an unsaturated double bond in such compounds, contributed by side chains comprising acryloyl and methacryloyl radicals for example, such compounds can be advantageously copolymerised with the above-mentioned monomers that are used to form the UV neutralizing layer, thereby adding an additional layer of UV protection.
- the graded barrier film may be laminated over any part of an encapsulation for isolating the active component of the OLED device.
- the graded barrier film is used to form a base substrate for supporting the reactive layers of the electroluminescent component, hi a rim-sealing structure, the graded barrier film may be used to form a rigid cover that is arranged over the reactive layers of the electroluminescent component.
- the rigid cover may be attached to the base substrate by means of an adhesive layer, the adhesive layer being arranged at least substantially along the edge of the cover substrate for forming an enclosure around the reactive component.
- the width of the covering layer or the adhesive layer may be made larger than the thickness of the graded barrier film.
- the graded barrier layer can be used to protect any device from moisture, e.g. by encapsulating such devices with the graded barrier film.
- encapsulating it is meant that the graded barrier film is used to enclose the device to isolate it from the outside environment. Encapsulation does not necessarily require that the graded barrier film is coated onto the device but only that it surrounds the environment in which the device is positioned. Therefore, in one embodiment the invention refers to a device encapsulated with a graded barrier film.
- the graded barrier film is suitable for encapsulation of any object or device, including electronic components.
- electronic components include passive and active Organic Light Emitting Devices (OLEDs), charged-coupled devices (CCDs), micro-electro-mechanical sensors (MEMS), thinfilm transistors (TFT), and organic or inorganic photovoltaic devices based on a thin film solar cell including but not limited to a Cu(InGa)Se 2 solar cell, a Dye-sensitized solar cell (DSSC), a CdS/CdTe solar cell, a Copper- Indium Selenide solar cell (CIS) and a copper indium/gallium diselenide solar cell (CIGS).
- OLEDs Organic Light Emitting Devices
- CCDs charged-coupled devices
- MEMS micro-electro-mechanical sensors
- TFT thinfilm transistors
- organic or inorganic photovoltaic devices based on a thin film solar cell including but not limited to a Cu(InGa)Se
- TFPV Thin Film Photovoltaics
- CdTe CdTe
- DSSC DSSC technologies
- TFPV also has the ability to operate under low light conditions.
- R2R roll-to-roll
- the currently used encapsulation methods do not provide sufficient barrier properties and therefore, the life time of flexible PVs is estimated only 2 to 3 years life time.
- current DSSC photovoltaic devices are highly sensitive to oxygen and moisture.
- the indium tin oxide, electrolyte and sensitizing dye of the devices are sensitive with water vapor and oxygen.
- the graded barrier film described herein can also be used to improve the barrier properties of existing barrier film materials which are known in the art.
- the graded barrier film can be manufactured by means of sputtering. Sputtering is a physical process of depositing thin films by controllably transferring atoms from a source to a substrate which is known in the art. The substrate is placed in a vacuum chamber with the source material, named a target, and an inert working gas (such as argon) is introduced at low pressure. A gas plasma is struck in radio frequency (RF) or direct current (DC) glow (ejection of secondary electrons) discharged in the inter gas, which causes the gas to become ionized. The ions formed during this process are accelerated towards the surface of the target, causing atoms of the source material to break off from the target in vapor form and condense on the substrate.
- RF radio frequency
- DC direct current
- magnetron sputtering is known as third sputtering technique.
- DC, pulsed DC, AC and RF power supplies can be used, depending upon target material, if reactive sputtering is desired and other factors.
- Plasma confinement on the target surface is achieved by locating a permanent magnet structure behind the target surface.
- the resulting magnetic field forms a closed-loop annular path acting as an electron trap that reshapes the trajectories of the secondary electrons ejected from target into a cycloidal path, greatly increasing the probability of ionization of the sputtering gas within the confinement zone.
- Positively charged argon ions from this plasma are accelerated toward the negatively biased target (cathode), resulting in material being sputtered from the target surface.
- Magnetron sputtering differentiates between balanced and unbalanced magnetron sputtering.
- An "unbalanced” magnetron is simply a design where the magnetic flux from one pole of the magnets located behind the target is greatly unequal to the other while in a “balanced” magnetron the magnetic flux between the poles of the magnet are equal.
- unbalanced magnetron sputtering increases the substrate ion current and thus the density of the substrate coating.
- the novelty of the sputtering process is based on the use of oxygen and nitrogen reactive ions in an alternating sequence.
- oxygen and nitrogen reactive ions the process for manufacturing a graded barrier film is as follows. A metal layer of a few monolayers is deposited. Subsequently, oxygen is introduced to the system to create oxygen plasma which is directed towards the substrate to provide argon and oxygen ion bombardment to achieve a high packing-density oxide film. A metal nitride or oxynitride layer is formed in the same manner.
- a metal layer of a few monolayers is deposited and subsequently the nitrogen or the mixture of nitrogen and oxygen (for a metal oxynitride layer) is introduced into the reaction chamber of the sputtering device to create a nitrogen plasma or a oxygen/nitrogen plasma.
- the plasma also increases reactivity of oxygen or nitrogen or the mixture of oxygen and nitrogen directed onto the growing film surface, and provides for more desirable structures.
- the first layer of metal oxide grows to the desired thickness. After the metal oxide layer reaches the desired thickness the oxygen flow into the reaction chamber of the sputtering device is switched of and another few monolayers of metal are deposited on the already existing metal oxide layer. After formation of these initial monolayers, nitrogen is fed into the reaction chamber to form a metal nitride layer. In case a layer of metal oxynitride is to be manufactured a mixture of nitrogen and oxygen is fed into the reaction chamber. The elemental deposition and anodization can be continuously repeated until the desired thickness of the graded barrier layer is obtained.
- the present invention refers to a method of manufacturing a graded barrier film in a single deposition cycle using sputtering technology, wherein the method comprises: depositing alternating layers of metal oxide and metal nitride or metal oxide and metal oxynitride on a substrate by mixing working gas used in the magnetron alternatively with a reaction gas which is either oxygen or nitrogen or a mixture of oxygen and nitrogen.
- the depositing is carried out by sputtering monolayers of a metal onto the substrate; feeding oxygen or nitrogen or a mixture of oxygen and nitrogen with the working gas to form reactive oxygen or nitrogen or oxygen and nitrogen for anodizing the metal layer for the formation of metal oxide and metal nitride or metal oxynitride, respectively.
- the sputtering technology used can be RF sputtering or DC sputtering or magnetron sputtering, either a DC or AC magnetron.
- the magnetron sputtering is balanced or unbalanced magnetron sputtering.
- the sputtering technique can provide self bias at the substrate from -10 V to - 30 or - 25 V.
- the incident current density can be between about 2 niA/cm 2 to about 10 mA/cm 2 , or between about 2 mA/cm 2 to about 5 mA/cm 2 , or between about 4 mA/cm 2 to about 10 mA/cm 2 .
- a high current density allows depositing dense layers of metal oxide, metal nitride or metal oxynitride without introducing excessive intrinsic stresses.
- the deposition of metal oxide, metal nitride or metal oxynitride can occur at room temperature.
- a suitable continuous feed back control loop e.g. plasma emission monitor control loop
- a precise flow controller is placed within the control loop to adjust oxygen and nitrogen flow in an alternating sequence for any given time period.
- FIG. 7 illustrates an embodiment in which a magnetron is used for the manufacture of a graded barrier film.
- the flow of gases in the reaction chamber of the magnetron 206 is controlled by a Plasma Emission/Voltage Pulsing Unit 204.
- the Plasma Emission/Voltage Pulsing Unit 204 which controls the flow of oxygen and nitrogen through the valves 203 (oxygen) and 202 (nitrogen) is connected to the flow controller 205 which controls the valves, such as piezoelectric valves 201.
- the control of the valves 201 through the flow controller 205 allows controlling the flow of oxygen and nitrogen into the reaction chamber of the magnetron 206.
- the light emitted by the sputtering metal in the intense plasma of the magnetron reaction chamber is an indicator of the metal sputtering rate and the oxygen partial pressure and is measured by the photomultiplier 208. This indicator can be used to control the process and hence achieve an accurate oxide film stoichiometry.
- the photomultiplier is connected to the Plasma Emission/Voltage Pulsing Unit 204 for data transmission.
- the magnetron 206 is connected to a power supply 207 which is controlled by the Plasma Emission/Voltage Pulsing Unit 204.
- a substrate 211 is shown to be coated with a graded barrier film having already two layers of metal oxide 209 and an intermediate metal nitride or metal oxynitride layer 212.
- the magnetron shown in Figure 7 uses a continuous feedback control unit, namely the Plasma Emission/Voltage
- Pulsing Unit 204 from a plasma emission monitor, which allows obtaining reproducible films and desirable barrier properties.
- Substrates that are used as support structure for the graded barrier film are rinsed with isopropyl alcohol (IPA) and blown dry with nitrogen. These processes help to remove macro scale adsorbed particles on the substrate surface. Acetone and methanol cleaning or rinsing can be carried out but is not recommended.
- IPA isopropyl alcohol
- substrates are placed in a vacuum oven at a pressure of 10 "1 mbar for degassing absorbed moisture or oxygen.
- the vacuum oven is equipped with fore line traps to prevent back migration of hydrocarbon oil from vacuum pump to the vacuum oven.
- RF Radio Frequency
- Base pressure in the chamber was maintained below 4 x 10 "6 mbar.
- Argon flow rate is 70 seem (116.2*10 "3 Pa*m 3 /s).
- RF power is set at 200 W, and an optimal treatment time, depending on the surface condition, of usually 5 to 8 eight minutes was used.
- Sputtering technique was used to deposit the metal oxide barrier layer.
- An unbalanced magnetron sputter system is used to develop high density oxide barrier films.
- a metal layer of typically a few mono-layers is deposited from an unbalanced magnetron.
- oxygen is introduced to the system to create oxygen plasma which is directed towards the substrate to provide argon and oxygen ion bombardment to achieve a high packing-density oxide film.
- This plasma also increases reactivity of oxygen directed onto the growing film surface, and provides for more desirable structures.
- a high flux (greater than 2 mA/cm 2 ) of low energy ( ⁇ 25 eV) oxygen and argon ions are used to bombard the growing barrier oxide films.
- a continuous feedback control unit is used to control the reactive sputtering processes.
- the light emitted by the sputtering metal in the intense plasma of the magnetron racetrack is one indicator of the metal sputtering rate and the oxygen partial pressure. This indication can be used to control the process and hence achieve an accurate oxide film stoichiometry.
- barrier layers including silicon nitride (SiN), aluminium oxide (Al 2 O 3 ), and indium tin oxide (ITO) are prepared by conventional and unbalanced magnetron sputtering techniques and the single barrier layer properties are tested.
- the barrier films are transferred to a vacuum evaporation chamber (thermal evaporation) under vacuum.
- the barrier films are then evaluated for their barrier properties using the calcium sensor described in WO 2005/095924.
- the calcium sensors referred to in WO 2005/095924 allow qualitative evaluation and quantitative evaluation.
- An example for a calcium sensor that allows qualitative evaluation is illustrated in Figure 5, while a calcium sensor that allows a quantitative evaluation is illustrated in Figure 6.
- test cell as shown in Figure. 5 is formed using the fabricated encapsulation barrier firms. Briefly, two metal tracks with dimensions of 2 cm by 2 cm are fabricated. A sensing element having dimensions of 1 cm length, 2 cm width and 150 nm thickness is formed in between the two electrodes. The measured resistivity of the sensing element is 0.37 ⁇ -cm. After the deposition process, a load lock system is used to transfer the sample to a glove box under dry nitrogen at atmospheric pressure. After the calcium deposition 303, a 100 nm silver protection layer 301 was deposited for the qualitative analysis in the test cell shown in Figure 5.
- the test cell shown in Figure 5 comprises of a substrate 306 coated with the barrier film 305 to be tested.
- the calcium sensor 303 is coated with a silver layer 301 and arranged in a chamber which is isolated at its side with a UV curable epoxy resin 302 and is sealed off to the top with a glass slide 307.
- a getter material 308 is attached to the cover glass slide to adsorb any water vapor produced as a result of out gassing or permeation through the epoxy sealing.
- test cell shown in Figure 6 was used.
- test cell comprises a calcium sensor cell which incorporates an encapsulation/sealant 404 comprising an UV curable epoxy and a glass cover substrate 401.
- encapsulation/sealant 404 comprising an UV curable epoxy and a glass cover substrate 401.
- a layer of encapsulation 404 epoxy sealant is applied on a pair of metal (conductive) tracks
- the glass cover substrate 401 is placed on the encapsulation, thereby sealing the sensing element.
- the hollow space 403 enclosed above the sensing element is filled with nitrogen.
- a UV curable epoxy 404 was applied on the rim of the barrier film 406 (please note that in Figure 6 it appears due to the way of graphical presentation that the UV curable epoxy is applied on the metal tracks. However, in fact the UV curable epoxy is applied on the barrier film) and the whole substrate was sealed with a 35mm x 35mm glass slide 401.
- the getter material 402 was attached to the 35mm x 35mm cover glass slide 401 to absorb any water vapor as a result of out gassing or permeation through the epoxy sealing 404.
- a load lock system was used for the entire process and the test cells were encapsulated in the glove box under dry nitrogen at atmospheric pressure.
- the samples were viewed optically at regular intervals for the qualitative degradation test and analysis of the defects, and measured electrically for the quantitative degradation test.
- the calcium test cell's conductive track terminals are connected to a constant current source (Keithey source meter), which is interfaced with a computer. Resistance of the calcium sensor / silver track is monitored every second and plotted automatically by the computer using Lab VIEW software. A Dynamic Signal Analyzer with a Fast Fourier Transform (FFT) analysis is used to take the noise spectrum measurement automatically at periodic intervals of one second.
- FFT Fast Fourier Transform
- the barrier properties of SiN films on poly(ethylene terephthalate) (PET) substrates depend on their microstructure and film growth conditions, hi order to understand the film growth, SiN film of thickness 5 nm, 15 nm, 30 nm, 60 nm, & 90 nm were deposited on PET substrates.
- Heterogeneous micleation film modification at the gas/solid interfaces is an important first step in the growth of a thin film.
- the quasi-stable islands grow in size rather than in number, eventually growing large enough to touch each other.
- atoms arrive at the surface and expend their energy received from the plasma and ion bombardment.
- Island growth depends strongly on mobility of atoms, which in turn scales with energy received from ion bombardment. Growth of the islands is also dependent on substrate morphology, deposition rate and surface energy.
- PET substrate Image with calcium degradation at 3 h showed that initial film growth with a thickness of 5 nm was not continuous, and could be related to island growth stage in nucleation theory. Clusters of calcium degradation show that there is poor coverage of SiN across the surface and which mirrors the island growth of SiN.
- Coalescence of two-rounded island is characterized by a decrease in total projected area of islands on the substrate and increase in height. This behaviour leads to secondary nucleation of the uncovered areas on the polymer substrate.
- Figure 11 shows the coalescence behaviour of 15 nm thick SiN film.
- SiN films were prepared with RF sputtering. However, no substrate bias was used during film growth. If the substrate bias is not used, then there is no ion bombardment during the film growth. Ion bombardment during the film growth provides an increased packing density of the film. Holes, channels, crack and pores could be observed in the continuous SiN film in Figures 12 and 13.
- Vapor Transport Rate (WVTR) dependence with film thickness is shown in Figure 9.
- 5 nm thick of SiN coated on PET substrates demonstrated a WVTR of 2 g/m 2 /day, close to WVTR values for plain PET.
- 15 nm SiN coated on PET substrate demonstrated an improvement of a factor of 10, compared to 5 nm thick SiN.
- 60 nm showed an improvement of a factor of 18, compared to 5 nm thick SiN films.
- the new graded barrier film structure tested herein consists of aluminium oxide/aluminium nitride/aluminium oxide, which is fabricated on a plastic substrate in a single deposition cycle using magnetron sputtering method with alternate oxygen and nitrogen gas flow.
- the role of aluminium nitride in reducing intrinsic stresses of graded barrier structure, as well as a comparison of the overall water vapor permeation properties versus conventional single barrier layer with an optimized thickness of 50 nm is investigated.
- a conventional magnetron sputtering system is used to demonstrate the concept of graded barrier structure.
- the aluminium oxide and aluminium films were deposited on PET substrates at the rate of 8 nrn/min and 7 nm/min, respectively.
- the oxygen and nitrogen partial pressure depends on the sputter chamber that is used.
- Sample 1 60 nm thickness of aluminium oxide coated on PET substrate
- Sample 2 50 nm thickness of aluminium nitride coated on PET substrate
- Sample 3 125 nm thickness of graded barrier structure which comprises of aluminium oxide (50 nm) / aluminium nitride (25 nm) / aluminium oxide (50 nm) on PET substrate
- Barrier properties of the above three samples were tested by calcium degradation test method with qualitative analysis.
- the calcium degradation test provides visual qualitative information on defects such as pinholes cracks and nano-pores, because the permeated water vapour diffuses through defects of the substrate and its barrier layer(s), and reacts with the calcium sensor. It is well known that micro-pores and sub-micron sized pores such as pinholes and cracks in a transparent coating are very difficult to discern or to study even by sophisticated surface microscopy techniques (e.g. SEM).
- FCVA - filtered cathodic vacuum arc technique n Based on preliminary data, the WVTR properties are about 10 "2 to 10 "3 g/m 2 /day at 6O 0 C & 90%
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Laminated Bodies (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09739088.4A EP2274163B1 (en) | 2008-04-29 | 2009-04-28 | Inorganic graded barrier film and methods for their manufacture |
US12/990,485 US10745795B2 (en) | 2008-04-29 | 2009-04-28 | Inorganic graded barrier film and methods for their manufacture |
KR1020107026797A KR101385262B1 (en) | 2008-04-29 | 2009-04-28 | Inorganic graded barrier film and methods for their manufacture |
JP2011507378A JP5714481B2 (en) | 2008-04-29 | 2009-04-28 | Inorganic gradient barrier film and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4882208P | 2008-04-29 | 2008-04-29 | |
US61/048,822 | 2008-04-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009134211A1 true WO2009134211A1 (en) | 2009-11-05 |
Family
ID=41255264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SG2009/000154 WO2009134211A1 (en) | 2008-04-29 | 2009-04-28 | Inorganic graded barrier film and methods for their manufacture |
Country Status (6)
Country | Link |
---|---|
US (1) | US10745795B2 (en) |
EP (1) | EP2274163B1 (en) |
JP (1) | JP5714481B2 (en) |
KR (1) | KR101385262B1 (en) |
TW (1) | TWI510361B (en) |
WO (1) | WO2009134211A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010140980A1 (en) * | 2009-06-02 | 2010-12-09 | Agency For Science, Technology And Research | Multilayer barrier film |
CN102214708A (en) * | 2010-04-08 | 2011-10-12 | 通用电气公司 | Thin film solar cell and manufacturing method thereof |
CN102400101A (en) * | 2010-09-09 | 2012-04-04 | 鸿富锦精密工业(深圳)有限公司 | Coated part and preparation method thereof |
JP2012158823A (en) * | 2011-02-02 | 2012-08-23 | Ulvac Japan Ltd | Film deposition method |
CN102737848A (en) * | 2011-04-15 | 2012-10-17 | 日东电工株式会社 | Dye-sensitized solar cell, and seal member to be used for the dye-sensitized solar cell |
US20130081688A1 (en) * | 2011-10-03 | 2013-04-04 | Intermolecular, Inc. | Back contacts for thin film solar cells |
CN103137884A (en) * | 2011-11-25 | 2013-06-05 | 海洋王照明科技股份有限公司 | Composite packaging structure and packaging method for organic light-emitting devices |
WO2013088451A1 (en) * | 2011-12-15 | 2013-06-20 | Council Of Scientific & Industrial Research | An improved solar selective coating having high thermal stability and a process for the preparation thereof |
DE102012207151A1 (en) * | 2012-04-30 | 2013-10-31 | Osram Opto Semiconductors Gmbh | ORGANIC LIGHT-EMITTING COMPONENT AND METHOD FOR PRODUCING AN ORGANIC LIGHT-EMITTING COMPONENT |
DE102012206967A1 (en) * | 2012-04-26 | 2013-10-31 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for producing an optoelectronic component |
WO2014022754A3 (en) * | 2012-08-02 | 2014-04-10 | Qualcomm Mems Technologies, Inc. | Thin film stack with stress compensating layers |
WO2014062135A1 (en) * | 2012-10-18 | 2014-04-24 | Tera-Barrier Films Pte Ltd | Encapsulation barrier stack |
CN110791740A (en) * | 2019-12-02 | 2020-02-14 | 武汉理工大学 | Preparation method of high-performance ZIF-L/vanadium dioxide composite film |
CN111755538A (en) * | 2020-06-24 | 2020-10-09 | 云南师范大学 | Preparation method of copper-zinc-tin-germanium-selenium absorption layer film with germanium gradient |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9177828B2 (en) * | 2011-02-10 | 2015-11-03 | Micron Technology, Inc. | External gettering method and device |
EP2276104A4 (en) * | 2008-05-12 | 2012-02-29 | Konica Minolta Business Tech | Dye-sensitized solar cell and method for manufacturing the same |
DE102008035575B4 (en) * | 2008-07-30 | 2016-08-11 | Soitec Solar Gmbh | Photovoltaic device for the direct conversion of solar energy into electrical energy containing a two-stage multi-element concentrator optics |
US9660218B2 (en) * | 2009-09-15 | 2017-05-23 | Industrial Technology Research Institute | Package of environmental sensitive element |
TWI493067B (en) * | 2010-10-14 | 2015-07-21 | 鴻海精密工業股份有限公司 | Housing and method for making the same |
TWI491096B (en) | 2010-12-06 | 2015-07-01 | Ind Tech Res Inst | Multilayer battery separator and method for manufacturing the same |
TWI496909B (en) * | 2010-12-06 | 2015-08-21 | Hon Hai Prec Ind Co Ltd | Articles coated with anti-fingerprint coating and mathod for making the articles |
TWI493072B (en) * | 2010-12-24 | 2015-07-21 | 鴻海精密工業股份有限公司 | Housing and method for making the same |
CN102560483A (en) * | 2010-12-30 | 2012-07-11 | 鸿富锦精密工业(深圳)有限公司 | Aluminium and aluminium alloy surface antiseptic treatment method and product prepared by same |
TWI477871B (en) * | 2011-01-27 | 2015-03-21 | E Ink Holdings Inc | E-paper display device and method for manufacturing the same |
US8574728B2 (en) | 2011-03-15 | 2013-11-05 | Kennametal Inc. | Aluminum oxynitride coated article and method of making the same |
CN102719796A (en) * | 2011-03-30 | 2012-10-10 | 深圳富泰宏精密工业有限公司 | Coated part with hard coating and preparation method thereof |
CN102732824A (en) * | 2011-03-31 | 2012-10-17 | 鸿富锦精密工业(深圳)有限公司 | Housing and its manufacturing method |
CN102842683A (en) * | 2011-06-21 | 2012-12-26 | 海洋王照明科技股份有限公司 | Organic electroluminescence device and manufacturing method thereof |
CN103137885A (en) * | 2011-11-25 | 2013-06-05 | 海洋王照明科技股份有限公司 | Composite packaging structure and packaging method for organic light-emitting devices |
CN103137886A (en) * | 2011-11-25 | 2013-06-05 | 海洋王照明科技股份有限公司 | Composite packaging structure and packaging method for organic light-emitting devices |
CN103137883B (en) * | 2011-11-25 | 2016-06-01 | 海洋王照明科技股份有限公司 | The compound encapsulation structure of a kind of organic electroluminescence device and method for packing thereof |
US9761830B1 (en) * | 2012-05-14 | 2017-09-12 | Eclipse Energy Systems, Inc. | Environmental protection film for thin film devices |
JP5759425B2 (en) * | 2012-07-20 | 2015-08-05 | 株式会社神戸製鋼所 | Quality evaluation method of target assembly used for forming thin film for semiconductor layer of thin film transistor |
US9530984B2 (en) * | 2012-09-04 | 2016-12-27 | Sharp Kabushiki Kaisha | Organic electroluminescence display and method of manufacturing the same |
TWI606986B (en) | 2012-10-03 | 2017-12-01 | 康寧公司 | Physical vapor deposited layers for protection of glass surfaces |
US9812338B2 (en) | 2013-03-14 | 2017-11-07 | Cree, Inc. | Encapsulation of advanced devices using novel PECVD and ALD schemes |
US9991399B2 (en) | 2012-10-04 | 2018-06-05 | Cree, Inc. | Passivation structure for semiconductor devices |
US8994073B2 (en) | 2012-10-04 | 2015-03-31 | Cree, Inc. | Hydrogen mitigation schemes in the passivation of advanced devices |
JP2014095122A (en) * | 2012-11-09 | 2014-05-22 | Ulvac Japan Ltd | Magnetron sputtering apparatus |
US10096533B2 (en) * | 2014-11-17 | 2018-10-09 | Sage Electrochromics, Inc. | Multiple barrier layer encapsulation stack |
WO2014109231A1 (en) * | 2013-01-11 | 2014-07-17 | 東レ株式会社 | Gas barrier film |
US9017809B2 (en) | 2013-01-25 | 2015-04-28 | Kennametal Inc. | Coatings for cutting tools |
US9138864B2 (en) | 2013-01-25 | 2015-09-22 | Kennametal Inc. | Green colored refractory coatings for cutting tools |
US9684097B2 (en) | 2013-05-07 | 2017-06-20 | Corning Incorporated | Scratch-resistant articles with retained optical properties |
US9359261B2 (en) | 2013-05-07 | 2016-06-07 | Corning Incorporated | Low-color scratch-resistant articles with a multilayer optical film |
US9110230B2 (en) | 2013-05-07 | 2015-08-18 | Corning Incorporated | Scratch-resistant articles with retained optical properties |
US9366784B2 (en) | 2013-05-07 | 2016-06-14 | Corning Incorporated | Low-color scratch-resistant articles with a multilayer optical film |
US9703011B2 (en) | 2013-05-07 | 2017-07-11 | Corning Incorporated | Scratch-resistant articles with a gradient layer |
KR102120896B1 (en) | 2013-07-25 | 2020-06-10 | 삼성디스플레이 주식회사 | Organic light emitting device display apparatus by using the facing targets sputtering apparatus and method for manufacturing the organic light emitting device display apparatus |
US9427808B2 (en) | 2013-08-30 | 2016-08-30 | Kennametal Inc. | Refractory coatings for cutting tools |
KR20150043890A (en) * | 2013-10-15 | 2015-04-23 | 삼성디스플레이 주식회사 | Organic light emitting diode display |
JP6722980B2 (en) * | 2014-05-09 | 2020-07-15 | 株式会社半導体エネルギー研究所 | Display device, light emitting device, and electronic device |
US9335444B2 (en) | 2014-05-12 | 2016-05-10 | Corning Incorporated | Durable and scratch-resistant anti-reflective articles |
US11267973B2 (en) | 2014-05-12 | 2022-03-08 | Corning Incorporated | Durable anti-reflective articles |
US9790593B2 (en) | 2014-08-01 | 2017-10-17 | Corning Incorporated | Scratch-resistant materials and articles including the same |
US9706607B2 (en) | 2014-12-10 | 2017-07-11 | Lg Display Co., Ltd. | Flexible display device with multiple types of micro-coating layers |
EP3300520B1 (en) | 2015-09-14 | 2020-11-25 | Corning Incorporated | High light transmission and scratch-resistant anti-reflective articles |
TWI631743B (en) * | 2015-11-24 | 2018-08-01 | 柯尼卡美能達股份有限公司 | Film sealing layer forming device |
JP2018012234A (en) * | 2016-07-20 | 2018-01-25 | コニカミノルタ株式会社 | Gas barrier film and electronic device |
KR102530072B1 (en) | 2018-01-10 | 2023-05-08 | 삼성전자주식회사 | Image sensor, imaging device and method of fabricating image sensor chip package |
US10975464B2 (en) * | 2018-04-09 | 2021-04-13 | International Business Machines Corporation | Hard mask films with graded vertical concentration formed using reactive sputtering in a radio frequency deposition chamber |
CN110752308A (en) * | 2018-07-24 | 2020-02-04 | Tcl集团股份有限公司 | Isolating film, top-emitting photoelectric device and manufacturing method and application thereof |
WO2020037042A1 (en) | 2018-08-17 | 2020-02-20 | Corning Incorporated | Inorganic oxide articles with thin, durable anti-reflective structures |
CN109346622A (en) * | 2018-10-19 | 2019-02-15 | 武汉华星光电半导体显示技术有限公司 | OLED array and preparation method thereof |
CN111261489B (en) * | 2020-01-29 | 2022-03-25 | 北方夜视技术股份有限公司 | Photocathode for photomultiplier, preparation method and photomultiplier |
TWI722860B (en) * | 2020-04-08 | 2021-03-21 | 新唐科技股份有限公司 | Gas sensing material and gas sensor |
CN112066804A (en) * | 2020-08-12 | 2020-12-11 | 西安理工大学 | W-based laminated composite material and preparation method thereof |
CN112376024B (en) | 2020-10-26 | 2022-08-16 | 北京北方华创微电子装备有限公司 | Preparation method of oxide film |
US20220139706A1 (en) * | 2020-11-02 | 2022-05-05 | Applied Materials, Inc. | Methods and apparatus for processing a substrate |
KR102608390B1 (en) * | 2021-07-06 | 2023-12-01 | 한국과학기술연구원 | Coloring metal member having excellent durability and manufacturing method of the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6495251B1 (en) * | 1997-06-20 | 2002-12-17 | Ppg Industries Ohio, Inc. | Silicon oxynitride protective coatings |
US20030008219A1 (en) * | 2001-06-26 | 2003-01-09 | Hideo Kaneko | Phase shift mask blank and method of manufacture |
WO2005073428A1 (en) * | 2004-01-23 | 2005-08-11 | Arkema Inc. | Method of depositing film stacks on a substrate |
US20070164376A1 (en) * | 1999-10-25 | 2007-07-19 | Burrows Paul E | Method for edge sealing barrier films |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4260768A (en) * | 1980-01-17 | 1981-04-07 | Gaf Corporation | Copolymerizable, ultraviolet light absorber 2-(2H-benzotriazol-2-yl)-4-alkylphenol acrylic acid esters |
JPH05198568A (en) * | 1992-01-23 | 1993-08-06 | Seiko Epson Corp | Manufacture of semiconductor device |
JP3637078B2 (en) * | 1994-08-29 | 2005-04-06 | 三井化学株式会社 | Gas barrier low moisture permeability insulating transparent electrode substrate and use thereof |
DE4438359C2 (en) * | 1994-10-27 | 2001-10-04 | Schott Glas | Plastic container with a barrier coating |
US6231999B1 (en) * | 1996-06-21 | 2001-05-15 | Cardinal Ig Company | Heat temperable transparent coated glass article |
US5851603A (en) * | 1997-07-14 | 1998-12-22 | Vanguard International Semiconductor Corporation | Method for making a plasma-enhanced chemical vapor deposited SiO2 Si3 N4 multilayer passivation layer for semiconductor applications |
TW392220B (en) * | 1997-11-24 | 2000-06-01 | United Microelectronics Corp | Structure of barrier layer and glue layer on polysilicon layer and method of manufacturing the same |
JP4399986B2 (en) * | 1998-11-30 | 2010-01-20 | 旭硝子株式会社 | Antireflection film for transportation equipment window, glass with antireflection film, laminated glass and method for producing the same |
US6255233B1 (en) * | 1998-12-30 | 2001-07-03 | Intel Corporation | In-situ silicon nitride and silicon based oxide deposition with graded interface for damascene application |
US6465953B1 (en) | 2000-06-12 | 2002-10-15 | General Electric Company | Plastic substrates with improved barrier properties for devices sensitive to water and/or oxygen, such as organic electroluminescent devices |
US6624568B2 (en) * | 2001-03-28 | 2003-09-23 | Universal Display Corporation | Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices |
US6733874B2 (en) * | 2001-08-31 | 2004-05-11 | Mitsubishi Materials Corporation | Surface-coated carbide alloy cutting tool |
US6737753B2 (en) * | 2001-09-28 | 2004-05-18 | Osram Opto Semiconductor Gmbh | Barrier stack |
JP2004256885A (en) * | 2003-02-27 | 2004-09-16 | Sumitomo Bakelite Co Ltd | Vacuum film-forming apparatus for film, and plastic film manufactured with the use of it |
JP2004284003A (en) * | 2003-02-28 | 2004-10-14 | Mitsubishi Materials Corp | Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer |
WO2005025853A1 (en) * | 2003-09-05 | 2005-03-24 | Helicon Research, L.L.C. | Nanophase multilayer barrier and process |
CN100445023C (en) * | 2003-12-22 | 2008-12-24 | 三菱综合材料株式会社 | Surface-coated cermet cutting tool with hard coating layer having excellend chipping resistance |
DE102004005313A1 (en) * | 2004-02-02 | 2005-09-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for producing an ultra-barrier layer system |
JP4460000B2 (en) | 2004-03-31 | 2010-04-28 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | Sensor for measuring gas permeability of test materials |
JP4518258B2 (en) * | 2004-08-11 | 2010-08-04 | 三菱マテリアル株式会社 | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
JP2006297730A (en) * | 2005-04-20 | 2006-11-02 | Dainippon Printing Co Ltd | Gas-barrier laminate |
JP2007118564A (en) | 2005-09-28 | 2007-05-17 | Fujifilm Corp | Gas barrier material, its production process, and method for mounting gas barrier layer |
JP2007216435A (en) * | 2006-02-14 | 2007-08-30 | Tomoegawa Paper Co Ltd | Gas barrier film substrate, gas barrier film substrate with electrode and display element using them |
MX2008012236A (en) * | 2006-03-28 | 2009-02-10 | Sumitomo Metal Ind | Cutting tool and process for manufacturing the same. |
US20070295388A1 (en) * | 2006-05-05 | 2007-12-27 | Nanosolar, Inc. | Solar assembly with a multi-ply barrier layer and individually encapsulated solar cells or solar cell strings |
JP2007305332A (en) * | 2006-05-09 | 2007-11-22 | Konica Minolta Holdings Inc | Manufacturing method of organic electroluminescent element |
JP5089586B2 (en) * | 2006-06-16 | 2012-12-05 | 東レエンジニアリング株式会社 | Silicon-based thin film and method for forming silicon-based thin film |
US8080323B2 (en) * | 2007-06-28 | 2011-12-20 | Kennametal Inc. | Cutting insert with a wear-resistant coating scheme exhibiting wear indication and method of making the same |
US8828527B2 (en) * | 2009-03-18 | 2014-09-09 | Mitsubishi Materials Corporation | Surface-coated cutting tool |
CN105026606B (en) * | 2013-05-15 | 2018-03-27 | 株式会社尼康 | The manufacture method of compound film |
-
2009
- 2009-04-28 TW TW098114110A patent/TWI510361B/en not_active IP Right Cessation
- 2009-04-28 JP JP2011507378A patent/JP5714481B2/en active Active
- 2009-04-28 EP EP09739088.4A patent/EP2274163B1/en active Active
- 2009-04-28 US US12/990,485 patent/US10745795B2/en not_active Expired - Fee Related
- 2009-04-28 WO PCT/SG2009/000154 patent/WO2009134211A1/en active Application Filing
- 2009-04-28 KR KR1020107026797A patent/KR101385262B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6495251B1 (en) * | 1997-06-20 | 2002-12-17 | Ppg Industries Ohio, Inc. | Silicon oxynitride protective coatings |
US20070164376A1 (en) * | 1999-10-25 | 2007-07-19 | Burrows Paul E | Method for edge sealing barrier films |
US20030008219A1 (en) * | 2001-06-26 | 2003-01-09 | Hideo Kaneko | Phase shift mask blank and method of manufacture |
WO2005073428A1 (en) * | 2004-01-23 | 2005-08-11 | Arkema Inc. | Method of depositing film stacks on a substrate |
Non-Patent Citations (1)
Title |
---|
See also references of EP2274163A4 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010140980A1 (en) * | 2009-06-02 | 2010-12-09 | Agency For Science, Technology And Research | Multilayer barrier film |
CN102214708A (en) * | 2010-04-08 | 2011-10-12 | 通用电气公司 | Thin film solar cell and manufacturing method thereof |
EP2375453A3 (en) * | 2010-04-08 | 2013-02-13 | General Electric Company | Thin film solar cell and method for making the same |
CN102400101A (en) * | 2010-09-09 | 2012-04-04 | 鸿富锦精密工业(深圳)有限公司 | Coated part and preparation method thereof |
JP2012158823A (en) * | 2011-02-02 | 2012-08-23 | Ulvac Japan Ltd | Film deposition method |
EP2511925A3 (en) * | 2011-04-15 | 2014-08-06 | Nitto Denko Corporation | Dye-sensitized solar cell, and seal member to be used for the dye-sensitized solar cell |
CN102737848A (en) * | 2011-04-15 | 2012-10-17 | 日东电工株式会社 | Dye-sensitized solar cell, and seal member to be used for the dye-sensitized solar cell |
US20130081688A1 (en) * | 2011-10-03 | 2013-04-04 | Intermolecular, Inc. | Back contacts for thin film solar cells |
CN103137884A (en) * | 2011-11-25 | 2013-06-05 | 海洋王照明科技股份有限公司 | Composite packaging structure and packaging method for organic light-emitting devices |
US9803891B2 (en) | 2011-12-15 | 2017-10-31 | Council Of Scientific & Industrial Research | Solar selective coating having high thermal stability and a process for the preparation thereof |
WO2013088451A1 (en) * | 2011-12-15 | 2013-06-20 | Council Of Scientific & Industrial Research | An improved solar selective coating having high thermal stability and a process for the preparation thereof |
AU2012354063B2 (en) * | 2011-12-15 | 2017-07-06 | Council Of Scientific & Industrial Research | An improved solar selective coating having high thermal stability and a process for the preparation thereof |
US9478761B2 (en) | 2012-04-26 | 2016-10-25 | Osram Oled Gmbh | Optoelectronic component having a UV-protecting substrate and method for producing the same |
DE102012206967A1 (en) * | 2012-04-26 | 2013-10-31 | Osram Opto Semiconductors Gmbh | Optoelectronic component and method for producing an optoelectronic component |
DE102012207151A1 (en) * | 2012-04-30 | 2013-10-31 | Osram Opto Semiconductors Gmbh | ORGANIC LIGHT-EMITTING COMPONENT AND METHOD FOR PRODUCING AN ORGANIC LIGHT-EMITTING COMPONENT |
US9935295B2 (en) | 2012-04-30 | 2018-04-03 | Osram Oled Gmbh | Organic light-emitting component and method for producing an organic light-emitting component |
US8817358B2 (en) | 2012-08-02 | 2014-08-26 | Qualcomm Mems Technologies, Inc. | Thin film stack with surface-conditioning buffer layers and related methods |
WO2014022754A3 (en) * | 2012-08-02 | 2014-04-10 | Qualcomm Mems Technologies, Inc. | Thin film stack with stress compensating layers |
CN105189103A (en) * | 2012-10-18 | 2015-12-23 | 泰拉屏障膜公司 | Encapsulation barrier stack |
WO2014062135A1 (en) * | 2012-10-18 | 2014-04-24 | Tera-Barrier Films Pte Ltd | Encapsulation barrier stack |
CN110791740A (en) * | 2019-12-02 | 2020-02-14 | 武汉理工大学 | Preparation method of high-performance ZIF-L/vanadium dioxide composite film |
CN110791740B (en) * | 2019-12-02 | 2021-08-24 | 武汉理工大学 | Preparation method of high-performance ZIF-L/vanadium dioxide composite film |
CN111755538A (en) * | 2020-06-24 | 2020-10-09 | 云南师范大学 | Preparation method of copper-zinc-tin-germanium-selenium absorption layer film with germanium gradient |
CN111755538B (en) * | 2020-06-24 | 2023-06-06 | 云南师范大学 | Preparation method of copper zinc tin germanium selenium absorption layer film with germanium gradient |
Also Published As
Publication number | Publication date |
---|---|
EP2274163A4 (en) | 2013-05-01 |
JP5714481B2 (en) | 2015-05-07 |
KR101385262B1 (en) | 2014-04-16 |
KR20110031415A (en) | 2011-03-28 |
TW201006668A (en) | 2010-02-16 |
EP2274163B1 (en) | 2019-12-18 |
TWI510361B (en) | 2015-12-01 |
US20110151173A1 (en) | 2011-06-23 |
US10745795B2 (en) | 2020-08-18 |
JP2011523977A (en) | 2011-08-25 |
EP2274163A1 (en) | 2011-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2274163B1 (en) | Inorganic graded barrier film and methods for their manufacture | |
AU2010254629B2 (en) | Multilayer barrier film | |
EP2882591B1 (en) | Barrier film, method of making the barrier film, and articles including the barrier film | |
KR101964265B1 (en) | Multilayer film for encapsulating oxygen and/or moisture sensitive electronic devices | |
US10522695B2 (en) | Inorganic multilayer stack and methods and compositions relating thereto | |
US20120145240A1 (en) | Barrier films for thin-film photovoltaic cells | |
AU2012211217A1 (en) | An inorganic multilayer stack and methods and compositions relating thereto | |
KR102076705B1 (en) | Method of Preparing Encapsulation Film for Solar Cells | |
WO2009098241A1 (en) | Encapsulation of optoelectronic devices | |
Moro et al. | OLED encapsulation | |
TW201032337A (en) | Protection of optoelectronic devices and method thereof | |
KR20070068402A (en) | A gas barrier transparent resin substrate, method for manufacturing thereof, and flexible display element useing gas barrier transparent resin substrate | |
MATSON et al. | Adhesion Aspects of Thin Films, Vol. 2, pp. 91–102 Ed. KL Mittal© VSP 2005 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09739088 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009739088 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011507378 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20107026797 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12990485 Country of ref document: US |