[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009123058A1 - Epoxy resin composition and molded object - Google Patents

Epoxy resin composition and molded object Download PDF

Info

Publication number
WO2009123058A1
WO2009123058A1 PCT/JP2009/056310 JP2009056310W WO2009123058A1 WO 2009123058 A1 WO2009123058 A1 WO 2009123058A1 JP 2009056310 W JP2009056310 W JP 2009056310W WO 2009123058 A1 WO2009123058 A1 WO 2009123058A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
epoxy
curing agent
inorganic filler
Prior art date
Application number
PCT/JP2009/056310
Other languages
French (fr)
Japanese (ja)
Inventor
梶 正史
大神 浩一郎
智美 福永
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to CN200980108795.5A priority Critical patent/CN101970526B/en
Priority to KR1020107023424A priority patent/KR101507933B1/en
Priority to JP2010505845A priority patent/JP5312447B2/en
Publication of WO2009123058A1 publication Critical patent/WO2009123058A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Definitions

  • the present invention relates to an epoxy resin composition useful for insulating materials for electrical and electronic parts such as semiconductor sealing, laminates, and heat dissipation boards having excellent reliability, and a molded article using the same.
  • a sealing material composed of an epoxy resin and a resin composition containing a phenol resin as a main component of a resin component as a curing agent is generally used. .
  • an epoxy resin composition used for the purpose of protecting elements such as power devices is filled with an inorganic filler such as crystalline silica at a high density in order to cope with a large amount of heat released from the elements.
  • power devices include one-chip devices incorporating IC technology and those made modular, and further improvements in heat dissipation and thermal expansion properties for sealing materials are desired. ing.
  • Patent Documents 1 and 2 In order to meet these requirements, attempts have been made to use crystalline silica, silicon nitride, aluminum nitride, and spherical alumina powder to improve thermal conductivity (Patent Documents 1 and 2). Increasing the content causes a problem that the fluidity decreases as the viscosity increases during molding, and the moldability is impaired. Therefore, there is a limit to the method of simply increasing the content of the inorganic filler.
  • Patent Document 3 and Patent Document 4 propose a resin composition using a liquid crystalline resin having a rigid mesogenic group.
  • these epoxy resins having a mesogenic group are highly crystalline and high melting point epoxy compounds having rigid structures such as a biphenyl structure and an azomethine structure, they have a disadvantage that they are inferior in handleability when making an epoxy resin composition. there were.
  • special operations such as curing by applying a strong magnetic field are necessary, and there are significant equipment restrictions for wide industrial use. .
  • the thermal conductivity of the inorganic filler is overwhelmingly larger than the thermal conductivity of the matrix resin, and even if the thermal conductivity of the matrix resin itself is increased, There is a reality that it does not greatly contribute to the improvement of thermal conductivity, and a sufficient effect of improving thermal conductivity has not been obtained.
  • Patent Document 5 discloses a 4,4′-benzophenone type epoxy resin, but only a cured product obtained using an acid anhydride as a curing agent is disclosed as an example, and exhibits high thermal conductivity. It does not give a controlled cured product of higher order structure.
  • the object of the present invention is to cure the above-mentioned problems, excellent moldability, high thermal conductivity when combined with an inorganic filler, low thermal expansion, excellent heat resistance and moisture resistance. It is to provide an epoxy resin composition that gives a product, and further to provide a molded product using the same.
  • the present inventors can obtain a molded product having a higher order structure after curing, and have high thermal conductivity, low thermal expansion, high heat resistance and high resistance. The inventors have found that the moisture resistance is specifically improved and have reached the present invention.
  • the present invention relates to a 4,4′-benzophenone-based epoxy represented by the following general formula (1) in an epoxy resin composition containing (A) an epoxy resin and (B) a curing agent.
  • a resin 50 wt% or more of the curing agent is a 4,4′-benzophenone phenolic resin represented by the following general formula (2), and the equivalent ratio of the epoxy group in the epoxy resin to the functional group in the curing agent is 0.
  • the present invention relates to an epoxy resin composition characterized by having a range of 8 to 1.5. (However, n represents a number from 0 to 15.) (However, m represents a number from 0 to 15.)
  • the epoxy resin composition of the present invention can contain an inorganic filler.
  • the content of the inorganic filler is preferably 50 to 95 wt%.
  • the epoxy resin composition of this invention is suitable as an epoxy resin composition for semiconductor sealing.
  • the present invention also relates to a prepreg characterized in that a sheet-like fiber base material is impregnated with the epoxy resin composition to be in a semi-cured state.
  • the present invention relates to a molded product obtained by curing and molding the above epoxy resin composition.
  • This cured molded article preferably satisfies any one or more of the following. 1)
  • the thermal conductivity is 4 W / m ⁇ K or higher, 2)
  • the melting point peak in the scanning differential thermal analysis is in the range of 150 ° C to 300 ° C, and 3)
  • the resin component conversion in the scanning differential thermal analysis Endotherm must be 5 J / g or more.
  • the 4,4′-benzophenone-based epoxy resin (also referred to as a benzophenone-based epoxy resin) represented by the general formula (1) can be produced by reacting 4,4′-dihydroxybenzophenone and epichlorohydrin. .
  • This reaction can be performed in the same manner as a normal epoxidation reaction.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide
  • 50 to 150 ° C. preferably 60 to 100 ° C.
  • a method of reacting in the range of 1 to 10 hours can be mentioned.
  • the amount of the alkali metal hydroxide used is 0.8 to 1.2 mol, preferably 0.9 to 1.0 mol, relative to 1 mol of the hydroxyl group in 4,4′-dihydroxybenzophenone.
  • Epichlorohydrin is used in an excess amount relative to the hydroxyl groups in 4,4'-dihydroxybenzophenone, and is usually 1.5 to 15 moles per mole of hydroxyl groups in 4,4'-dihydroxybenzophenone.
  • n is a number from 0 to 15, but the value of n can be easily adjusted by changing the molar ratio of epichlorohydrin to 4,4′-dihydroxybenzophenone used in the epoxy resin synthesis reaction. can do.
  • the value of n can be appropriately selected according to the application to be applied. For example, in semiconductor sealing applications where a high filler filling rate is required, those having low viscosity and crystallinity are preferred, and those having an average value of n in the range of 0.01 to 1.0 are preferred. Selected. When larger than this, a viscosity will become high and a handleability will fall.
  • the benzophenone-based epoxy resin used in the present invention can be synthesized using a mixture of 4,4'-dihydroxybenzophenone and another phenolic compound as a raw material.
  • the mixing ratio of 4,4′-dihydroxybenzophenone is 50 wt% or more.
  • the epoxy resin used in the present invention contains 50 wt% or more, preferably 80 wt% or more, more preferably 90 wt% or more of the benzophenone-based epoxy resin represented by the general formula (1) in the epoxy resin component.
  • the epoxy equivalent of this benzophenone-based epoxy resin is usually in the range of 160 to 20,000, but a suitable epoxy equivalent is appropriately selected according to the application.
  • low viscosity is preferable from the viewpoint of increasing the filling rate of inorganic filler and improving fluidity
  • the form of the benzophenone-based epoxy resin represented by the general formula (1) is also appropriately selected according to the application.
  • a crystalline material that is solid at room temperature is preferable, a desirable melting point is 80 ° C. or higher, and a preferred melt viscosity at 150 ° C. is 0.005. To 0.2 Pa ⁇ s.
  • applications such as laminates there are many cases where they are used after being dissolved in a solvent, so that there are no particular restrictions on the form of the epoxy resin.
  • the purity of the epoxy resin used in the present invention is better from the viewpoint of improving the reliability of the applied electronic component.
  • it does not specifically limit, Preferably it is 1000 ppm or less, More preferably, it is 500 ppm or less.
  • the hydrolyzable chlorine as used in the field of this invention means the value measured by the following method. That is, the potential difference the sample 0.5g were dissolved in dioxane 30 ml, 1N-KOH, after the added boiled under reflux for 30 minutes 10 ml, cooled to room temperature, 80% aqueous acetone 100ml was added, with 0.002 N-AgNO 3 aqueous solution This is a value obtained by titration.
  • the epoxy resin composition of the present invention includes other epoxy resins having two or more epoxy groups in the molecule. You may use together. Examples include bisphenol A, 4,4′-dihydroxydiphenylmethane, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenylsulfone, 4,4 ′.
  • the epoxy resin composition of the present invention contains another type of epoxy resin as long as the blending ratio in the epoxy resin composition of the benzophenone-based epoxy resin represented by the general formula (1) is 50 wt% or more in the epoxy resin component.
  • the total amount of the bifunctional epoxy resin is preferably 80 wt% or more, more preferably 90 wt% or more, from the viewpoint of improving the thermal conductivity when a cured product is obtained.
  • a particularly preferable epoxy resin is a bisphenol-based epoxy resin represented by the following general formula (3).
  • R 1 to R 3 represent a halogen atom, a hydrocarbon group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, m is a number from 0 to 5, X is a single bond, methylene group Represents an oxygen atom, a sulfone group, or a sulfur atom.
  • the above bisphenol-based epoxy resins are 4,4′-dihydroxybiphenyl, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenylmethane, 3,3 ′, 5 , 5′-tetramethyl-4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, and 4,4′-dihydroxydiphenyl sulfide can be synthesized by carrying out a normal epoxidation reaction. These epoxy resins can be synthesized using those mixed with 4,4'-dihydroxybenzophenone at the raw material stage.
  • epoxy resins synthesized from 4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenylmethane, and 4,4′-dihydroxydiphenyl ether which are crystalline epoxy resins having excellent handling properties. While giving resin, the molding excellent also in heat conductivity can be given.
  • the epoxy resin composition of the present invention uses, as an essential component, a benzophenone-based phenolic resin represented by the above general formula (2) as a curing agent.
  • a benzophenone-based phenolic resin having an average value greater than 0 is preferably used.
  • a preferable value of m is 1 to 15 as an average value, and more preferably 2 to 15.
  • the production method of the benzophenone-based phenolic resin having an increased m number is not limited.
  • an excessive amount of 4,4′-dihydroxy with respect to the benzophenone-based epoxy resin of the general formula (1) is used.
  • a method of reacting benzophenone can be mentioned. Alternatively, it can be synthesized by reacting 1 mol or less of epichlorohydrin with 1 mol of hydroxyl group in 4,4'-dihydroxybenzophenone and 4,4'-dihydroxybenzophenone.
  • the hydroxyl group equivalent of the benzophenone-based phenolic resin represented by the general formula (2) is usually in the range of 100 to 20,000, but as with the epoxy resin, a suitable hydroxyl group equivalent is appropriately selected depending on the application. Is done. For example, in semiconductor sealing applications, low viscosity is preferable from the viewpoint of increasing the filling rate of inorganic filler and improving fluidity.
  • the curing agent used in the epoxy resin composition of the present invention is generally known as an epoxy resin curing agent in addition to the benzophenone-based phenolic resin represented by the general formula (2) which is an essential component of the present invention.
  • curing agent which has a phenolic hydroxyl group is selected.
  • phenolic curing agents include bisphenol A, bisphenol F, 4,4′-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) benzene, 1,3-bis (4-hydroxyphenoxy) benzene 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenyl ketone, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 10- (2,5 -Dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, phenol novolak, bisphenol A novolak, o-cresol novolak, m-cresol novolak, p-cresol novolak, xylenol novolak , Poly-p-hydroxystyrene, hydroquinone, resorcin, catechol, t-buty
  • the epoxy resin composition of the present invention contains another type of phenolic compound (resin) if the blending ratio of the benzophenone-based phenolic resin represented by the general formula (2) is 50 wt% or more in the curing agent component.
  • the total amount of the bifunctional phenolic compound (resin) is preferably 80 wt% or more, more preferably 90 wt% or more, from the viewpoint of improving the thermal conductivity when the cured product is obtained. .
  • phenolic compounds (resins) other than benzophenone-based phenolic resins are specifically hydroquinone, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenylmethane, and 4,4′-dihydroxydiphenyl ether. 1,4-bis (4-hydroxyphenoxy) benzene, 4,4′-dihydroxydiphenyl sulfide, 1,5-naphthalenediol, 2,7-naphthalenediol, and 2,6-naphthalenediol.
  • the amount of these bifunctional phenolic compounds or phenolic resins used is 50 wt% or less in the curing agent component, but preferably 20 wt% or less.
  • curing agent used in the epoxy resin composition of the present invention in addition to the above-mentioned phenolic curing agent, other curing agents generally known as curing agents can be used in combination. Examples include amine curing agents, acid anhydride curing agents, phenolic curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, block isocyanate curing agents, and the like. What is necessary is just to set the compounding quantity of these hardening
  • amine curing agent examples include aliphatic amines, polyether polyamines, alicyclic amines, aromatic amines and the like.
  • Aliphatic amines include ethylenediamine, 1,3-diaminopropane, 1,4-diaminopropane, hexamethylenediamine, 2,5-dimethylhexamethylenediamine, trimethylhexamethylenediamine, diethylenetriamine, iminobispropylamine, bis ( Hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-hydroxyethylethylenediamine, tetra (hydroxyethyl) ethylenediamine and the like.
  • polyether polyamines examples include triethylene glycol diamine, tetraethylene glycol diamine, diethylene glycol bis (propylamine), polyoxypropylene diamine, and polyoxypropylene triamines.
  • Cycloaliphatic amines include isophorone diamine, metacene diamine, N-aminoethylpiperazine, bis (4-amino-3-methyldicyclohexyl) methane, bis (aminomethyl) cyclohexane, 3,9-bis (3-amino).
  • Aromatic amines include tetrachloro-p-xylenediamine, m-xylenediamine, p-xylenediamine, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, 2,4-diaminoanisole, 2, 4-toluenediamine, 2,4-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diamino-1,2-diphenylethane, 2,4-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone , M-aminophenol, m-aminobenzylamine, benzyldimethylamine, 2-dimethylaminomethyl) phenol, triethanolamine, methylbenzylamine, ⁇ - (m-aminophenyl) ethylamine, ⁇ -
  • acid anhydride curing agents include dodecenyl succinic anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysebacic acid anhydride, poly (ethyloctadecanedioic acid) anhydride, poly (phenylhexadecanedioic acid) Anhydride, Methyltetrahydrophthalic anhydride, Methylhexahydrophthalic anhydride, Hexahydrophthalic anhydride, Methylhymic anhydride, Tetrahydrophthalic anhydride, Trialkyltetrahydrophthalic anhydride, Methylcyclohexene dicarboxylic anhydride, Methylcyclohexene tetracarboxylic Acid anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol
  • the blending ratio of the epoxy resin and the curing agent is in the range of 0.8 to 1.5 in terms of an equivalent ratio of the epoxy group and the functional group in the curing agent. Outside this range, an unreacted epoxy group or a functional group in the curing agent remains even after curing, which is not preferable because reliability as an electrical insulating material is lowered.
  • An inorganic filler may be added to the epoxy resin composition of the present invention.
  • the addition amount of the inorganic filler is 50 to 95 wt% with respect to the epoxy resin composition, preferably 80 to 95 wt%. If it is less than this, effects such as high thermal conductivity, low thermal expansion, and high heat resistance will not be sufficiently exhibited. These effects are better as the added amount of the inorganic filler is larger. However, the effect is not improved according to the volume fraction, but dramatically improved from a specific added amount. These physical properties are due to the effect of controlling the higher order structure in the polymer state, and since this higher order structure is achieved mainly on the surface of the inorganic filler, a specific amount of inorganic filler is required. It is thought to be. On the other hand, when the added amount of the inorganic filler is larger than this, the viscosity becomes high and the moldability deteriorates, which is not preferable.
  • the inorganic filler is preferably spherical and is not particularly limited as long as it has a spherical shape including those having a cross section on an ellipse, but from the viewpoint of improving fluidity, it should be as close to a true sphere as possible. Is particularly preferred. Thereby, it is easy to take a close-packed structure such as a face-centered cubic structure or a hexagonal close-packed structure, and a sufficient filling amount can be obtained. In the case of a non-spherical shape, when the filling amount is increased, friction between the fillers is increased, and before reaching the above upper limit, the fluidity is extremely lowered to increase the viscosity and the moldability is deteriorated.
  • an inorganic filler having a thermal conductivity of 5 W / m ⁇ K or more among inorganic fillers and alumina, aluminum nitride, crystalline silica, etc. are preferable. Used for. Of these, spherical alumina is particularly preferable. In addition, an amorphous inorganic filler such as fused silica or crystalline silica may be used in combination, if necessary, regardless of the shape.
  • the average particle diameter of the inorganic filler is preferably 30 ⁇ m or less. If the average particle size is larger than this, the fluidity of the epoxy resin composition is impaired, and the strength is also lowered, which is not preferable.
  • the inorganic filler may be a fibrous base material such as glass fiber, or a combination of a fibrous base material and a particulate inorganic filler.
  • a prepreg of the present invention by using a solvent as a varnish and impregnating the sheet-like fibrous base material and drying it.
  • the prepreg thus prepared is made of a metal substrate such as copper foil, aluminum foil or stainless steel foil, or a polymer such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, liquid crystal polymer, polyamide, polyimide, or Teflon (registered trademark). It can be applied as a printed wiring board, a heat radiating substrate, etc. by laminating with a base material and thermoforming.
  • a conventionally well-known hardening accelerator can be used for the epoxy resin composition of this invention.
  • examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, Tertiary amines such as ethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, Organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphon
  • the addition amount of the curing catalyst is preferably 0.1 to 10.0% by mass with respect to the total of the epoxy resin (including the halogen-containing epoxy resin as a flame retardant) and the curing agent. If it is less than 0.1% by mass, the molding time becomes long, resulting in a decrease in workability due to a reduction in rigidity at the time of molding. Conversely, if it exceeds 10.0% by mass, curing proceeds during molding and unfilling occurs. It becomes easy.
  • a wax can be used as a release agent generally used for epoxy resin compositions.
  • the wax for example, stearic acid, montanic acid, montanic acid ester, phosphoric acid ester and the like can be used.
  • a coupling agent generally used for an epoxy resin composition can be used in order to improve the adhesion between the inorganic filler and the resin component.
  • the coupling agent for example, epoxy silane can be used.
  • the addition amount of the coupling agent is preferably 0.1 to 2.0% by mass with respect to the epoxy resin composition. If it is less than 0.1% by mass, the compatibility between the resin and the base material is poor, and the moldability becomes poor.
  • thermoplastic oligomers can be added to the epoxy resin composition of the present invention from the viewpoint of improving fluidity during molding and improving adhesion to a substrate such as a lead frame.
  • Thermoplastic oligomers include C5 and C9 petroleum resins, styrene resins, indene resins, indene / styrene copolymer resins, indene / styrene / phenol copolymer resins, indene / coumarone copolymer resins, indene / benzothiophenes. Examples thereof include copolymer resins.
  • the addition amount is usually in the range of 2 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • epoxy resin composition of the present invention can be used by appropriately blending those generally usable for epoxy resin compositions.
  • phosphorus-based flame retardants flame retardants such as bromine compounds and antimony trioxide
  • colorants such as carbon black and organic dyes can be used.
  • the epoxy resin composition of the present invention is prepared by uniformly mixing an epoxy resin, a curing agent, an inorganic filler, and other components other than the coupling agent with a mixer, and then adding a coupling agent, a heating roll, a kneader, etc. Kneaded and manufactured.
  • a coupling agent a heating roll, a kneader, etc. Kneaded and manufactured.
  • the melt-kneaded material can be pulverized to be powdered or tableted.
  • the epoxy resin composition of this invention has an epoxy resin and a hardening
  • the epoxy resin composition of the present invention is useful as an electrical insulating material, and is particularly suitably used for sealing in semiconductor devices.
  • a molded product using the epoxy resin composition of the present invention for example, methods such as transfer molding, press molding, cast molding, injection molding, and extrusion molding are applied, but from the viewpoint of mass productivity.
  • Transfer molding is preferred. During this molding, heating is performed and curing (polymerization) occurs. Therefore, since the obtained molded product is a molded product of polymerized resin (thermoplastic or thermosetting resin), it is also called a cured molded product.
  • the term “curing” used in the present specification is used in the sense of including polymerization, and the cured resin is used in the sense of including a thermoplastic resin.
  • the molded product of the present invention is generally one that is three-dimensionally cross-linked, but is not necessarily a three-dimensional cross-linked product, and may be a molded product made of a thermoplastic two-dimensional polymer. .
  • a bifunctional epoxy resin is reacted with a bifunctional curing agent
  • a secondary hydroxyl group formed by a ring-opening reaction of an epoxy group usually reacts with the epoxy group to form a three-dimensional crosslinked product.
  • a thermoplastic two-dimensional polymer molded body can be obtained. From the viewpoint of high thermal conductivity, it is desirable to form a crystalline molded product.
  • the three-dimensional crosslinking point generally inhibits the crystallinity, the number of crosslinking is reduced and a molded product mainly composed of a two-dimensional polymer is used. That is good.
  • the expression of the crystallinity of the molded product can be confirmed by observing the endothermic peak accompanying melting of the crystal as a melting point by scanning differential thermal analysis.
  • the melting point range is 120 ° C to 320 ° C, preferably 150 ° C to 300 ° C, more preferably 200 ° C to 280 ° C.
  • the endothermic amount is 5 J / g or more per unit weight of the resin component excluding the filler, and the preferred endothermic amount is 10 J / g or more. More preferably, it is 20 J / g or more, and particularly preferably 30 J / g or more. When smaller than this, the heat conductivity improvement effect as an epoxy resin molding is small. Also, higher crystallinity is preferable from the viewpoint of low thermal expansion and improved heat resistance.
  • the endothermic amount here refers to the endothermic amount obtained by measuring with a differential thermal analyzer under the condition of a heating rate of 10 ° C./min under a nitrogen stream using a sample that is precisely weighed about 10 mg.
  • the molded product of the present invention can be obtained by heat molding using the above molding method.
  • the molding temperature is 80 ° C. to 250 ° C.
  • molding is performed. It is desirable to mold at a temperature lower than the melting point of the product.
  • a preferred molding temperature is in the range of 100 ° C to 220 ° C, more preferably 150 ° C to 200 ° C.
  • the preferable molding time is 30 seconds to 1 hour, more preferably 1 minute to 30 minutes.
  • the crystallinity can be further increased by post-cure.
  • the post-cure temperature is 130 ° C.
  • the time is in the range of 1 hour to 20 hours, but preferably 1 hour at a temperature 5 ° C. to 40 ° C. lower than the endothermic peak temperature in differential thermal analysis. It is desirable to perform post-cure over 24 hours from the beginning.
  • the preferable heat conductivity of a molded object is 4 W / m * K or more, Most preferably, it is 6 W / m * K or more.
  • Reference example 1 1070 g of 4,4′-dihydroxydibenzophenone was dissolved in 6500 g of epichlorohydrin, and 808 g of 48% sodium hydroxide aqueous solution was added dropwise over 4 hours at 60 ° C. under reduced pressure (about 130 Torr). During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropwise addition, the reaction was continued for another hour, followed by dehydration. Then, epichlorohydrin was distilled off, 3500 g of methyl isobutyl ketone was added, and then washed with water to remove the salt.
  • hydrolyzable chlorine is obtained by dissolving 0.5 g of a sample in 30 ml of dioxane, adding 1N-KOH, 10 ml, boiling and refluxing for 30 minutes, cooling to room temperature, and further adding 100 ml of 80% acetone water.
  • the melting point is a value obtained by a capillary method at a heating rate of 2 ° C./min.
  • Viscosity was measured with CAP2000H manufactured by BROOKFIELD, and softening point was measured by ring and ball method according to JIS K-6911.
  • GPC measurement was performed by using an apparatus: Nippon Waters Co., Ltd.
  • Model 515A column: TSK-GEL2000 ⁇ 3 and TSK-GEL4000 ⁇ 1 (both manufactured by Tosoh Corporation), solvent: tetrahydrofuran, flow rate: 1 ml / min, temperature; 38 ° C., detector; RI conditions were followed.
  • Examples 1-6, Comparative Examples 1-5 As an epoxy resin component, the epoxy resin (epoxy resin A) of Reference Example 1, an epoxidized product of 4,4′-dihydroxydiphenyl ether (epoxy resin B: manufactured by Tohto Kasei Co., Ltd., YSLV-80DE, epoxy equivalent 174) or biphenyl epoxy resin ( Epoxy resin C: YE-4000H manufactured by Japan Epoxy Resin, epoxy equivalent 195), 4,4′-dihydroxydibenzophenone (curing agent A), 4,4′-dihydroxydiphenyl ether (curing agent B) as a curing agent 4,4′-dihydroxydiphenylmethane (curing agent C), 4,4′-dihydroxydibenzophenone (curing agent D) or phenol novolak (curing agent E: manufactured by Gunei Chemical Co., Ltd., PSM-4261; OH equivalent 103, softening point 82 ° C.) was used.
  • triphenylphosphine was used as a curing accelerator, and spherical alumina (average particle size 12.2 ⁇ m) was used as an inorganic filler.
  • the ingredients shown in Table 1 were blended, mixed thoroughly with a mixer, then kneaded for about 5 minutes with a heating roll, cooled and ground to obtain the epoxy resin compositions of Examples 1 to 6 and Comparative Examples 1 to 5, respectively. Obtained. Using this epoxy resin composition, molding and post-curing were performed under the conditions shown in Table 1, and the physical properties of the molded product were evaluated.
  • Thermal conductivity Measured by the unsteady hot wire method using an LFA447 type thermal conductivity meter manufactured by NETZSCH.
  • Linear expansion coefficient, glass transition temperature Measured at a heating rate of 10 ° C./min using a TMA120C type thermomechanical measuring device manufactured by Seiko Instruments Inc.
  • Water absorption A disk having a diameter of 50 mm and a thickness of 3 mm was formed, and after post-curing, the weight change rate was obtained after moisture absorption at 85 ° C. and a relative humidity of 85% for 100 hours.
  • the epoxy resin composition of the present invention provides a cured molded product that is excellent in moldability and reliability, and has high thermal conductivity, low water absorption, low thermal expansion, and high heat resistance. It is suitably applied as an insulating material for electric and electronic parts such as substrates, and exhibits excellent high heat dissipation and dimensional stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

An epoxy resin composition having excellent moldability is provided. When combined with an inorganic filler, the epoxy resin composition gives a cured object which has a high thermal conductivity and low thermal expansion and is excellent in heat resistance and moisture resistance. The epoxy resin composition comprises an epoxy resin (A) and a hardener (B), wherein at least 50 wt.% of the epoxy resin is accounted for by a 4,4'-benzophenone epoxy resin and at least 50 wt.% of the hardener is accounted for by a 4,4'-benzophenone phenolic resin. In the composition, the ratio of the epoxy groups of the epoxy resin to the functional groups of the hardener is in the range of 0.8-1.5 by equivalent. This epoxy resin composition can contain 50-95 wt.% inorganic filler and is suitable for use in semiconductor encapsulation.

Description

エポキシ樹脂組成物および成形物Epoxy resin composition and molded article
 本発明は、信頼性に優れた半導体封止、積層板、放熱基板等の電気・電子部品用絶縁材料に有用なエポキシ樹脂組成物及びそれを用いた成形物に関する。 The present invention relates to an epoxy resin composition useful for insulating materials for electrical and electronic parts such as semiconductor sealing, laminates, and heat dissipation boards having excellent reliability, and a molded article using the same.
 従来、ダイオード、トランジスタ、集積回路等の電気、電子部品や、半導体装置等の封止方法として、例えばエポキシ樹脂やシリコン樹脂等による封止方法やガラス、金属、セラミック等を用いたハーメチックシール法が採用されていたが、近年では信頼性の向上と共に大量生産が可能で、コストメリットのあるトランスファー成形による樹脂封止が主流を占めている。 Conventionally, as a sealing method for electrical and electronic parts such as diodes, transistors, and integrated circuits, and semiconductor devices, for example, a sealing method using an epoxy resin or a silicon resin, or a hermetic sealing method using glass, metal, ceramic, or the like has been used. In recent years, resin sealing by transfer molding, which can be mass-produced with improved reliability and cost-effective, has been the mainstream in recent years.
 上記トランスファー成形による樹脂封止方法に用いられる樹脂組成物においては、エポキシ樹脂と、硬化剤としてフェノール樹脂を樹脂成分の主成分とする樹脂組成物からなる封止材料が一般的に使用されている。 In the resin composition used for the resin sealing method by transfer molding, a sealing material composed of an epoxy resin and a resin composition containing a phenol resin as a main component of a resin component as a curing agent is generally used. .
 現在、パワーデバイスなどの素子を保護する目的で使用されるエポキシ樹脂組成物は、素子が放出する多量の熱に対応するため、結晶シリカなどの無機充填材を高密度に充填している。 Currently, an epoxy resin composition used for the purpose of protecting elements such as power devices is filled with an inorganic filler such as crystalline silica at a high density in order to cope with a large amount of heat released from the elements.
 さらには、近年、パワーデバイスは、ICの技術を組み込んだワンチップで構成されるものやモジュール化されたものなどがあり、封止材料に対する熱放散性、熱膨張性の更なる向上が望まれている。 Furthermore, in recent years, power devices include one-chip devices incorporating IC technology and those made modular, and further improvements in heat dissipation and thermal expansion properties for sealing materials are desired. ing.
 これらの要求に対応するべく、熱伝導率を向上するために結晶シリカ、窒化珪素、窒化アルミニウム、球状アルミナ粉末を使用するといった試みがなされているが(特許文献1、2)、無機充填材の含有率を上げていくと成形時の粘度上昇とともに流動性が低下し、成形性が損なわれるといった問題が生じる。従って、単に無機充填材の含有率を高める方法には限界があった。 In order to meet these requirements, attempts have been made to use crystalline silica, silicon nitride, aluminum nitride, and spherical alumina powder to improve thermal conductivity (Patent Documents 1 and 2). Increasing the content causes a problem that the fluidity decreases as the viscosity increases during molding, and the moldability is impaired. Therefore, there is a limit to the method of simply increasing the content of the inorganic filler.
 上記背景から、マトリックス樹脂自体の高熱伝導率化による方法も検討されており、例えば、特許文献3および特許文献4には、剛直なメソゲン基を有する液晶性の樹脂を用いた樹脂組成物が提案されている。しかし、これらメソゲン基を有するエポキシ樹脂は、ビフェニル構造、アゾメチン構造等の剛直な構造を有する高結晶性で高融点のエポキシ化合物であるため、エポキシ樹脂組成物とする際の取扱い性に劣る欠点があった。さらには、硬化状態において分子を効率よく配向させるためには強力な磁場をかけて硬化させる等の特別な操作が必要であり、工業的に広く利用するためには設備上の大きな制約があった。また、無機充填剤との配合系では、マトリックス樹脂の熱伝導率に比べて無機充填材の熱伝導率が圧倒的に大きく、マトリックス樹脂自体の熱伝導率を高くしても、複合材料としての熱伝導率向上には大きく寄与しないという現実があり、十分な熱伝導率向上効果は得られていなかった。 From the above background, a method of increasing the thermal conductivity of the matrix resin itself has also been studied. For example, Patent Document 3 and Patent Document 4 propose a resin composition using a liquid crystalline resin having a rigid mesogenic group. Has been. However, since these epoxy resins having a mesogenic group are highly crystalline and high melting point epoxy compounds having rigid structures such as a biphenyl structure and an azomethine structure, they have a disadvantage that they are inferior in handleability when making an epoxy resin composition. there were. Furthermore, in order to efficiently orient the molecules in the cured state, special operations such as curing by applying a strong magnetic field are necessary, and there are significant equipment restrictions for wide industrial use. . In addition, in the compounding system with the inorganic filler, the thermal conductivity of the inorganic filler is overwhelmingly larger than the thermal conductivity of the matrix resin, and even if the thermal conductivity of the matrix resin itself is increased, There is a reality that it does not greatly contribute to the improvement of thermal conductivity, and a sufficient effect of improving thermal conductivity has not been obtained.
 特許文献5には、4,4’-ベンゾフェノン型のエポキシ樹脂が示されているが、酸無水物を硬化剤として得られる硬化物が実施例として開示されるのみであり、高熱伝導性を発現する高次構造の制御された硬化物を与えるものではない。 Patent Document 5 discloses a 4,4′-benzophenone type epoxy resin, but only a cured product obtained using an acid anhydride as a curing agent is disclosed as an example, and exhibits high thermal conductivity. It does not give a controlled cured product of higher order structure.
特開平11-147936号公報Japanese Patent Laid-Open No. 11-147936 特開2002-309067号公報JP 2002-309067 A 特開平11-323162号公報JP-A-11-323162 特開2004-331811号公報JP 2004-331811 A 特開平2-202512号公報JP-A-2-202512
 従って、本発明の目的は、上記問題点を解消し、成形性に優れ、無機充填材と複合化させた場合の熱伝導率が高く、かつ低熱膨張性で耐熱性および耐湿性に優れた硬化物を与えるエポキシ樹脂組成物を提供し、更にそれを用いた成形物を提供することである。 Therefore, the object of the present invention is to cure the above-mentioned problems, excellent moldability, high thermal conductivity when combined with an inorganic filler, low thermal expansion, excellent heat resistance and moisture resistance. It is to provide an epoxy resin composition that gives a product, and further to provide a molded product using the same.
 本発明者らは、特定のエポキシ樹脂と特定の硬化剤を組み合わせた場合において、硬化後、高次構造の制御された成形物が得られ、高熱伝導性、低熱膨張性、高耐熱性および高耐湿性が特異的に向上することを見出し、本発明に到達したものである。 In the case of combining a specific epoxy resin and a specific curing agent, the present inventors can obtain a molded product having a higher order structure after curing, and have high thermal conductivity, low thermal expansion, high heat resistance and high resistance. The inventors have found that the moisture resistance is specifically improved and have reached the present invention.
 すなわち、本発明は、(A)エポキシ樹脂及び(B)硬化剤を含むエポキシ樹脂組成物において、エポキシ樹脂の50wt%以上を下記一般式(1)で表される4,4’-ベンゾフェノン系エポキシ樹脂とし、硬化剤の50wt%以上を下記一般式(2)で表される4,4’-ベンゾフェノン系フェノール性樹脂とし、エポキシ樹脂中のエポキシ基と硬化剤中の官能基の当量比を0.8~1.5の範囲としたことを特徴とするエポキシ樹脂組成物に関する。
Figure JPOXMLDOC01-appb-I000003
(但し、nは0~15の数を示す。)
Figure JPOXMLDOC01-appb-I000004
(但し、mは0~15の数を示す。)
That is, the present invention relates to a 4,4′-benzophenone-based epoxy represented by the following general formula (1) in an epoxy resin composition containing (A) an epoxy resin and (B) a curing agent. As a resin, 50 wt% or more of the curing agent is a 4,4′-benzophenone phenolic resin represented by the following general formula (2), and the equivalent ratio of the epoxy group in the epoxy resin to the functional group in the curing agent is 0. The present invention relates to an epoxy resin composition characterized by having a range of 8 to 1.5.
Figure JPOXMLDOC01-appb-I000003
(However, n represents a number from 0 to 15.)
Figure JPOXMLDOC01-appb-I000004
(However, m represents a number from 0 to 15.)
 本発明のエポキシ樹脂組成物は無機充填材を含むことができ、この場合の無機充填材の含有量は50~95wt%であることが好ましい。そして、本発明のエポキシ樹脂組成物は、半導体封止用のエポキシ樹脂組成物として好適である。 The epoxy resin composition of the present invention can contain an inorganic filler. In this case, the content of the inorganic filler is preferably 50 to 95 wt%. And the epoxy resin composition of this invention is suitable as an epoxy resin composition for semiconductor sealing.
 また、本発明は、上記エポキシ樹脂組成物をシート状の繊維基材に含浸し半硬化状態としてなることを特徴とするプリプレグに関する。 The present invention also relates to a prepreg characterized in that a sheet-like fiber base material is impregnated with the epoxy resin composition to be in a semi-cured state.
 更に、本発明は上記のエポキシ樹脂組成物を硬化、成形して得られることを特徴とする成形物に関する。この硬化成形物は、次のいずれか1以上を満足することが好ましい。1)熱伝導率が4W/m・K以上であること、2)走査示差熱分析における融点のピークが150℃から300℃の範囲にあること、及び3)走査示差熱分析における樹脂成分換算の吸熱量が5J/g以上であること。 Furthermore, the present invention relates to a molded product obtained by curing and molding the above epoxy resin composition. This cured molded article preferably satisfies any one or more of the following. 1) The thermal conductivity is 4 W / m · K or higher, 2) The melting point peak in the scanning differential thermal analysis is in the range of 150 ° C to 300 ° C, and 3) The resin component conversion in the scanning differential thermal analysis Endotherm must be 5 J / g or more.
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 上記一般式(1)で表される4,4’-ベンゾフェノン系エポキシ樹脂(ベンゾフェノン系エポキシ樹脂ともいう)エポキシ樹脂は、4,4’-ジヒドロキシベンゾフェノンとエピクロルヒドリンを反応させることにより製造することができる。この反応は、通常のエポキシ化反応と同様に行うことができる。例えば、4,4’-ジヒドロキシベンゾフェノンを過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に、50~150℃、好ましくは、60~100℃の範囲で1~10時間反応させる方法が挙げられる。この際の、アルカリ金属水酸化物の使用量は、4,4’-ジヒドロキシベンゾフェノン中の水酸基1モルに対して、0.8~1.2モル、好ましくは、0.9~1.0モルの範囲である。エピクロルヒドリンは、4,4’-ジヒドロキシベンゾフェノン中の水酸基に対して過剰量が用いられ、通常は、4,4’-ジヒドロキシベンゾフェノン中の水酸基1モルに対して、1.5から15モルである。反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより目的のベンゾフェノン系エポキシ樹脂を得ることができる。 The 4,4′-benzophenone-based epoxy resin (also referred to as a benzophenone-based epoxy resin) represented by the general formula (1) can be produced by reacting 4,4′-dihydroxybenzophenone and epichlorohydrin. . This reaction can be performed in the same manner as a normal epoxidation reaction. For example, after 4,4′-dihydroxybenzophenone is dissolved in an excess of epichlorohydrin, in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, 50 to 150 ° C., preferably 60 to 100 ° C. A method of reacting in the range of 1 to 10 hours can be mentioned. In this case, the amount of the alkali metal hydroxide used is 0.8 to 1.2 mol, preferably 0.9 to 1.0 mol, relative to 1 mol of the hydroxyl group in 4,4′-dihydroxybenzophenone. Range. Epichlorohydrin is used in an excess amount relative to the hydroxyl groups in 4,4'-dihydroxybenzophenone, and is usually 1.5 to 15 moles per mole of hydroxyl groups in 4,4'-dihydroxybenzophenone. After completion of the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene, methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the target benzophenone is distilled off. -Based epoxy resin can be obtained.
 上記一般式(1)において、nは0~15の数であるが、nの値はエポキシ樹脂の合成反応時に用いるエピクロルヒドリンの4,4’-ジヒドロキシベンゾフェノンに対するモル比を変えることにより、容易に調整することができる。nの値は、適用する用途に応じて、適宜、選択することができる。例えば、フィラーの高充填率化を求められる半導体封止の用途では、低粘度で結晶性を有するものが好ましく、nの平均値として、0.01~1.0の範囲にあるものが好適に選択される。これより大きいと粘度が高くなり取り扱い性が低下する。 In the above general formula (1), n is a number from 0 to 15, but the value of n can be easily adjusted by changing the molar ratio of epichlorohydrin to 4,4′-dihydroxybenzophenone used in the epoxy resin synthesis reaction. can do. The value of n can be appropriately selected according to the application to be applied. For example, in semiconductor sealing applications where a high filler filling rate is required, those having low viscosity and crystallinity are preferred, and those having an average value of n in the range of 0.01 to 1.0 are preferred. Selected. When larger than this, a viscosity will become high and a handleability will fall.
 本発明に用いるベンゾフェノン系エポキシ樹脂は、原料として4,4’-ジヒドロキシベンゾフェノンと別種のフェノール性化合物と混合させたものを用いて合成することができる。この場合の4,4’-ジヒドロキシベンゾフェノンの混合比率は50wt%以上である。フェノール性化合物に特に制約はないが、一分子中に水酸基を2個有する二官能性のものが好ましい。 The benzophenone-based epoxy resin used in the present invention can be synthesized using a mixture of 4,4'-dihydroxybenzophenone and another phenolic compound as a raw material. In this case, the mixing ratio of 4,4′-dihydroxybenzophenone is 50 wt% or more. Although there is no restriction | limiting in particular in a phenolic compound, The bifunctional thing which has two hydroxyl groups in 1 molecule is preferable.
 本発明に用いるエポキシ樹脂は、一般式(1)で表されるベンゾフェノン系エポキシ樹脂をエポキシ樹脂成分中50wt%以上、好ましくは80wt%以上、さらに好ましくは90wt%以上含む。このベンゾフェノン系エポキシ樹脂のエポキシ当量は、通常160から20,000の範囲であるが、好適なエポキシ当量は用途に応じて、適宜、選択される。例えば、半導体封止の用途では、無機フィラーの高充填率化および流動性向上の観点からは低粘度性のものが良く、上記一般式(1)においてn=0体を主成分とするエポキシ当量が160から250の範囲のものが好ましい。また、積層板等の用途においては、フィルム性、可撓性付与の観点から、好ましくは400~20,000の範囲である。 The epoxy resin used in the present invention contains 50 wt% or more, preferably 80 wt% or more, more preferably 90 wt% or more of the benzophenone-based epoxy resin represented by the general formula (1) in the epoxy resin component. The epoxy equivalent of this benzophenone-based epoxy resin is usually in the range of 160 to 20,000, but a suitable epoxy equivalent is appropriately selected according to the application. For example, in semiconductor sealing applications, low viscosity is preferable from the viewpoint of increasing the filling rate of inorganic filler and improving fluidity, and the epoxy equivalent mainly composed of n = 0 isomer in the above general formula (1) Is preferably in the range of 160 to 250. In applications such as laminates, it is preferably in the range of 400 to 20,000 from the viewpoint of imparting film properties and flexibility.
 一般式(1)で表されるベンゾフェノン系エポキシ樹脂の形態も用途に応じて、適宜、選択される。例えば、半導体封止の用途では、粉体で取り扱われる場合が多いため、常温で固形の結晶性のものが好ましく、望ましい融点は80℃以上であり、好ましい150℃での溶融粘度は0.005から0.2Pa・sである。また、積層板等の用途においては、溶剤に溶解させて使用される場合が多いため、エポキシ樹脂の形態に特段の制約はない。 The form of the benzophenone-based epoxy resin represented by the general formula (1) is also appropriately selected according to the application. For example, in semiconductor sealing applications, since it is often handled as powder, a crystalline material that is solid at room temperature is preferable, a desirable melting point is 80 ° C. or higher, and a preferred melt viscosity at 150 ° C. is 0.005. To 0.2 Pa · s. Further, in applications such as laminates, there are many cases where they are used after being dissolved in a solvent, so that there are no particular restrictions on the form of the epoxy resin.
 本発明に用いるエポキシ樹脂の純度、特に加水分解性塩素量は、適用する電子部品の信頼性向上の観点より少ない方がよい。特に限定するものではないが、好ましくは1000ppm以下、さらに好ましくは500ppm以下である。なお、本発明でいう加水分解性塩素とは、以下の方法により測定された値をいう。すなわち、試料0.5gをジオキサン30mlに溶解後、1N-KOH、10mlを加え30分間煮沸還流した後、室温まで冷却し、さらに80%アセトン水100mlを加え、0.002N-AgNO3水溶液で電位差滴定を行い得られる値である。 The purity of the epoxy resin used in the present invention, in particular the amount of hydrolyzable chlorine, is better from the viewpoint of improving the reliability of the applied electronic component. Although it does not specifically limit, Preferably it is 1000 ppm or less, More preferably, it is 500 ppm or less. In addition, the hydrolyzable chlorine as used in the field of this invention means the value measured by the following method. That is, the potential difference the sample 0.5g were dissolved in dioxane 30 ml, 1N-KOH, after the added boiled under reflux for 30 minutes 10 ml, cooled to room temperature, 80% aqueous acetone 100ml was added, with 0.002 N-AgNO 3 aqueous solution This is a value obtained by titration.
 本発明のエポキシ樹脂組成物には、本発明の必須成分として使用される一般式(1)で表されるベンゾフェノン系エポキシ樹脂以外に、分子中にエポキシ基を2個以上有する他のエポキシ樹脂を併用してもよい。例を挙げれば、ビスフェノールA、4,4’-ジヒドロキシジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルフィド、フルオレンビスフェノール、4,4’-ビフェノール、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェニル、2,2’-ビフェノール、レゾルシン、カテコール、t-ブチルカテコール、t-ブチルハイドロキノン、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,4-ジヒドロキシナフタレン、2,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,8-ジヒドロキシナフタレン、上記ジヒドロキシナフタレンのアリル化物又はポリアリル化物、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック等の2価のフェノール類、あるいは、フェノールノボラック、ビスフェノールAノボラック、o-クレゾールノボラック、m-クレゾールノボラック、p-クレゾールノボラック、キシレノールノボラック、ポリ-p-ヒドロキシスチレン、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フルオログリシノール、ピロガロール、t-ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4-ベンゼントリオール、2,3,4-トリヒドロキシベンゾフェノン、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエン系樹脂等の3価以上のフェノール類、または、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類から誘導されるグリシジルエーテル化物等がある。これら他のエポキシ樹脂は、1種または2種以上を混合して用いることができる。 In addition to the benzophenone-based epoxy resin represented by the general formula (1) used as an essential component of the present invention, the epoxy resin composition of the present invention includes other epoxy resins having two or more epoxy groups in the molecule. You may use together. Examples include bisphenol A, 4,4′-dihydroxydiphenylmethane, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenylsulfone, 4,4 ′. -Dihydroxydiphenyl sulfide, fluorene bisphenol, 4,4'-biphenol, 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxybiphenyl, 2,2'-biphenol, resorcin, catechol, t-butyl Catechol, t-butylhydroquinone, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1 , 8-Dihydroxynaphthalene, 2 , 3-dihydroxynaphthalene, 2,4-dihydroxynaphthalene, 2,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,8-dihydroxynaphthalene, allylated product or polyallylated product of the above-mentioned dihydroxynaphthalene Divalent phenols such as allylated bisphenol A, allylated bisphenol F, allylated phenol novolak, or the like, or phenol novolak, bisphenol A novolak, o-cresol novolak, m-cresol novolak, p-cresol novolak, xylenol novolak, Poly-p-hydroxystyrene, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, fluoroglycinol 3 such as pyrogallol, t-butyl pyrogallol, allylated pyrogallol, polyallylated pyrogallol, 1,2,4-benzenetriol, 2,3,4-trihydroxybenzophenone, phenol aralkyl resin, naphthol aralkyl resin, dicyclopentadiene resin, etc. There are glycidyl etherified compounds derived from halogenated bisphenols such as tetrabromobisphenol A or higher phenols. These other epoxy resins can be used alone or in combination of two or more.
 本発明のエポキシ樹脂組成物は、一般式(1)で表されるベンゾフェノン系エポキシ樹脂のエポキシ樹脂組成物中の配合割合をエポキシ樹脂成分中50wt%以上であれば、別種のエポキシ樹脂を含んでいても良いが、硬化物とした際の熱伝導率の向上の観点から、二官能性のエポキシ樹脂の合計量が好ましくは80wt%以上、より好ましくは90wt%以上とすることが良い。 The epoxy resin composition of the present invention contains another type of epoxy resin as long as the blending ratio in the epoxy resin composition of the benzophenone-based epoxy resin represented by the general formula (1) is 50 wt% or more in the epoxy resin component. However, the total amount of the bifunctional epoxy resin is preferably 80 wt% or more, more preferably 90 wt% or more, from the viewpoint of improving the thermal conductivity when a cured product is obtained.
 ベンゾフェノン系エポキシ樹脂以外の他のエポキシ樹脂として、特に好ましいエポキシ樹脂は、下記一般式(3)で表されるビスフェノール系エポキシ樹脂である。 As the epoxy resin other than the benzophenone-based epoxy resin, a particularly preferable epoxy resin is a bisphenol-based epoxy resin represented by the following general formula (3).
Figure JPOXMLDOC01-appb-I000005
(但し、R~Rは、ハロゲン原子、炭素数1~8の炭化水素基、または炭素数1~8のアルコキシ基を示し、mは0~5の数、Xは単結合、メチレン基、酸素原子、スルホン基、または硫黄原子を示す。)
Figure JPOXMLDOC01-appb-I000005
(Wherein R 1 to R 3 represent a halogen atom, a hydrocarbon group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, m is a number from 0 to 5, X is a single bond, methylene group Represents an oxygen atom, a sulfone group, or a sulfur atom.)
 上記ビスフェノール系エポキシ樹脂は、4,4’-ジヒドロキシビフェニル、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィドを原料として、通常のエポキシ化反応を行うことで合成することができる。これらのエポキシ樹脂は、原料段階で4,4’-ジヒドロキシベンゾフェノンと混合させたものを用いて合成することができる。これらのなかで特に好ましいものは、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテルから合成されるエポキシ樹脂であり、取扱性に優れた結晶性のエポキシ樹脂を与えるとともに、熱伝導性にも優れた成形物を与えることができる。 The above bisphenol-based epoxy resins are 4,4′-dihydroxybiphenyl, 3,3 ′, 5,5′-tetramethyl-4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenylmethane, 3,3 ′, 5 , 5′-tetramethyl-4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl ether, and 4,4′-dihydroxydiphenyl sulfide can be synthesized by carrying out a normal epoxidation reaction. These epoxy resins can be synthesized using those mixed with 4,4'-dihydroxybenzophenone at the raw material stage. Particularly preferred among these are epoxy resins synthesized from 4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenylmethane, and 4,4′-dihydroxydiphenyl ether, which are crystalline epoxy resins having excellent handling properties. While giving resin, the molding excellent also in heat conductivity can be given.
 本発明のエポキシ樹脂組成物は、必須成分として、上記一般式(2)で表わされるベンゾフェノン系フェノール性樹脂を硬化剤として使用する。ここで、上記ベンゾフェノン系フェノール性樹脂としては、好ましくはmが0の4,4’-ジヒドロキシベンゾフェノンである。 The epoxy resin composition of the present invention uses, as an essential component, a benzophenone-based phenolic resin represented by the above general formula (2) as a curing agent. Here, the benzophenone-based phenolic resin is preferably 4,4'-dihydroxybenzophenone with m = 0.
 また、本発明のエポキシ樹脂組成物を積層材料用のプリプレグとして応用する場合は、上記一般式(2)において、平均値としてmが0より大きい数のベンゾフェノン系フェノール性樹脂が好適に使用される。この場合の好ましいmの値は平均値として1~15であり、より好ましくは、2~15である。なお、m数が増えたベンゾフェノン系フェノール性樹脂の製法は、限定されるものではないが、例えば、上記一般式(1)のベンゾフェノン系エポキシ樹脂に対して、過剰量の4,4’-ジヒドロキシベンゾフェノンを反応させる手法を挙げることができる。あるいは、4,4’-ジヒドロキシベンゾフェノンと4,4’-ジヒドロキシベンゾフェノン中の水酸基1モルに対して、1モル以下のエピクロロヒドリンを反応させることにより合成することもできる。 In addition, when the epoxy resin composition of the present invention is applied as a prepreg for a laminated material, in the general formula (2), a benzophenone-based phenolic resin having an average value greater than 0 is preferably used. . In this case, a preferable value of m is 1 to 15 as an average value, and more preferably 2 to 15. The production method of the benzophenone-based phenolic resin having an increased m number is not limited. For example, an excessive amount of 4,4′-dihydroxy with respect to the benzophenone-based epoxy resin of the general formula (1) is used. A method of reacting benzophenone can be mentioned. Alternatively, it can be synthesized by reacting 1 mol or less of epichlorohydrin with 1 mol of hydroxyl group in 4,4'-dihydroxybenzophenone and 4,4'-dihydroxybenzophenone.
 一般式(2)で表されるベンゾフェノン系フェノール性樹脂の水酸基当量は、通常100から20,000の範囲であるが、エポキシ樹脂と同様に、好適な水酸基当量は用途に応じて、適宜、選択される。例えば、半導体封止の用途では、無機フィラーの高充填率化および流動性向上の観点からは低粘度性のものが良く、上記一般式(2)においてm=0体を主成分とする水酸基当量が100から200の範囲のものが好ましい。また、積層板等の用途においては、フィルム性、可撓性付与の観点から、好ましくは200~20,000の範囲である。この水酸基当量は、2種類以上のエポキシ樹脂を使用する場合においてもこれを満足することが好ましく、この場合、水酸基当量は、全重量(g)/水酸基(モル)で計算される。 The hydroxyl group equivalent of the benzophenone-based phenolic resin represented by the general formula (2) is usually in the range of 100 to 20,000, but as with the epoxy resin, a suitable hydroxyl group equivalent is appropriately selected depending on the application. Is done. For example, in semiconductor sealing applications, low viscosity is preferable from the viewpoint of increasing the filling rate of inorganic filler and improving fluidity. In the above general formula (2), the hydroxyl equivalent equivalent having m = 0 as the main component Is preferably in the range of 100 to 200. In applications such as laminates, it is preferably in the range of 200 to 20,000 from the viewpoint of imparting film properties and flexibility. This hydroxyl equivalent is preferably satisfied even when two or more types of epoxy resins are used. In this case, the hydroxyl equivalent is calculated by the total weight (g) / hydroxyl group (mol).
 本発明のエポキシ樹脂組成物に用いる硬化剤としては、本発明の必須成分である一般式(2)で表されるベンゾフェノン系フェノール性樹脂以外に、一般的にエポキシ樹脂硬化剤として知られているものを必要に応じて組み合わせることができるが、好ましくはフェノール性水酸基を有する他のフェノール系硬化剤が選択される。他のフェノール系硬化剤の具体例として、ビスフェノールA、ビスフェノールF、4,4’-ジヒドロキシジフェニルエーテル、1,4-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、フェノールノボラック、ビスフェノールAノボラック、o-クレゾールノボラック、m-クレゾールノボラック、p-クレゾールノボラック、キシレノールノボラック、ポリ-p-ヒドロキシスチレン、ハイドロキノン、レゾルシン、カテコール、t-ブチルカテコール、t-ブチルハイドロキノン、フルオログリシノール、ピロガロール、t-ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4-ベンゼントリオール、2,3,4-トリヒドロキシベンゾフェノン、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,4-ジヒドロキシナフタレン、2,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,8-ジヒドロキシナフタレン、上記ジヒドロキシナフタレンのアリル化物又はポリアリル化物、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック、アリル化ピロガロール等を挙げることができる。 The curing agent used in the epoxy resin composition of the present invention is generally known as an epoxy resin curing agent in addition to the benzophenone-based phenolic resin represented by the general formula (2) which is an essential component of the present invention. Although what can be combined as needed, Preferably the other phenol type hardening | curing agent which has a phenolic hydroxyl group is selected. Specific examples of other phenolic curing agents include bisphenol A, bisphenol F, 4,4′-dihydroxydiphenyl ether, 1,4-bis (4-hydroxyphenoxy) benzene, 1,3-bis (4-hydroxyphenoxy) benzene 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenyl ketone, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 10- (2,5 -Dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide, phenol novolak, bisphenol A novolak, o-cresol novolak, m-cresol novolak, p-cresol novolak, xylenol novolak , Poly-p-hydroxystyrene, hydroquinone, resorcin, catechol, t-butylcatechol, t-butylhydroquinone, fluoroglycinol, pyrogallol, t-butyl pyrogallol, allylated pyrogallol, polyallylated pyrogallol, 1,2,4-benzene Triol, 2,3,4-trihydroxybenzophenone, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7 -Dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,4-dihydroxynaphthalene, 2,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydride Examples thereof include roxynaphthalene, 2,8-dihydroxynaphthalene, allylated or polyallylated products of the above-mentioned dihydroxynaphthalene, allylated bisphenol A, allylated bisphenol F, allylated phenol novolak, allylated pyrogallol and the like.
 本発明のエポキシ樹脂組成物は、一般式(2)で表されるベンゾフェノン系フェノール性樹脂の配合割合が硬化剤成分中50wt%以上であれば、別種のフェノール性化合物(樹脂)を含んでいても良いが、硬化物とした際の熱伝導率の向上の観点から、二官能性のフェノール性化合物(樹脂)の合計量が好ましくは80wt%以上、より好ましくは90wt%以上とすることが良い。 The epoxy resin composition of the present invention contains another type of phenolic compound (resin) if the blending ratio of the benzophenone-based phenolic resin represented by the general formula (2) is 50 wt% or more in the curing agent component. However, the total amount of the bifunctional phenolic compound (resin) is preferably 80 wt% or more, more preferably 90 wt% or more, from the viewpoint of improving the thermal conductivity when the cured product is obtained. .
 ベンゾフェノン系フェノール性樹脂以外の他のフェノール性化合物(樹脂)として特に好ましいものは、具体的にはヒドロキノン、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテル、1,4-ビス(4-ヒドロキシフェノキシ)ベンゼン、4,4’-ジヒドロキシジフェニルスルフィド、1,5-ナフタレンジオール、2,7-ナフタレンジオール、2,6-ナフタレンジオールを例示することができる。これら二官能性フェノール化合物あるいはフェノール性樹脂の使用量は、硬化剤成分中50wt%以下であるが、好ましくは20wt%以下である。 Particularly preferred as other phenolic compounds (resins) other than benzophenone-based phenolic resins are specifically hydroquinone, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenylmethane, and 4,4′-dihydroxydiphenyl ether. 1,4-bis (4-hydroxyphenoxy) benzene, 4,4′-dihydroxydiphenyl sulfide, 1,5-naphthalenediol, 2,7-naphthalenediol, and 2,6-naphthalenediol. The amount of these bifunctional phenolic compounds or phenolic resins used is 50 wt% or less in the curing agent component, but preferably 20 wt% or less.
 本発明のエポキシ樹脂組成物に用いる硬化剤としては、上記のフェノール系硬化剤以外に、硬化剤として一般的に知られている他の硬化剤を併用して用いることができる。例を挙げれば、アミン系硬化剤、酸無水物系硬化剤、フェノール系硬化剤、ポリメルカプタン系硬化剤、ポリアミノアミド系硬化剤、イソシアネート系硬化剤、ブロックイソシアネート系硬化剤等が挙げられる。これらの硬化剤の配合量は、配合する硬化剤の種類や得られる熱伝導性エポキシ樹脂成形体の物性を考慮して適宜設定すればよい。 As the curing agent used in the epoxy resin composition of the present invention, in addition to the above-mentioned phenolic curing agent, other curing agents generally known as curing agents can be used in combination. Examples include amine curing agents, acid anhydride curing agents, phenolic curing agents, polymercaptan curing agents, polyaminoamide curing agents, isocyanate curing agents, block isocyanate curing agents, and the like. What is necessary is just to set the compounding quantity of these hardening | curing agents suitably considering the kind of hardening | curing agent to mix | blend, and the physical property of the heat conductive epoxy resin molded object obtained.
 アミン系硬化剤の具体例としては、脂肪族アミン類、ポリエーテルポリアミン類、脂環式アミン類、芳香族アミン類等が挙げられる。脂肪族アミン類としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノプロパン、ヘキサメチレンジアミン、2,5-ジメチルヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、N-ヒドロキシエチルエチレンジアミン、テトラ(ヒドロキシエチル)エチレンジアミン等が挙げられる。ポリエーテルポリアミン類としては、トリエチレングリコールジアミン、テトラエチレングリコールジアミン、ジエチレングリコールビス(プロピルアミン)、ポリオキシプロピレンジアミン、ポリオキシプロピレントリアミン類等が挙げられる。脂環式アミン類としては、イソホロンジアミン、メタセンジアミン、N-アミノエチルピペラジン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ビス(アミノメチル)シクロヘキサン、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、ノルボルネンジアミン等が挙げられる。芳香族アミン類としては、テトラクロロ-p-キシレンジアミン、m-キシレンジアミン、p-キシレンジアミン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノアニゾール、2,4-トルエンジアミン、2,4-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-1,2-ジフェニルエタン、2,4-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、m-アミノフェノール、m-アミノベンジルアミン、ベンジルジメチルアミン、2-ジメチルアミノメチル)フェノール、トリエタノールアミン、メチルベンジルアミン、α-(m-アミノフェニル)エチルアミン、α-(p-アミノフェニル)エチルアミン、ジアミノジエチルジメチルジフェニルメタン、α,α’-ビス(4-アミノフェニル)-p-ジイソプロピルベンゼン等が挙げられる。 Specific examples of the amine curing agent include aliphatic amines, polyether polyamines, alicyclic amines, aromatic amines and the like. Aliphatic amines include ethylenediamine, 1,3-diaminopropane, 1,4-diaminopropane, hexamethylenediamine, 2,5-dimethylhexamethylenediamine, trimethylhexamethylenediamine, diethylenetriamine, iminobispropylamine, bis ( Hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, N-hydroxyethylethylenediamine, tetra (hydroxyethyl) ethylenediamine and the like. Examples of polyether polyamines include triethylene glycol diamine, tetraethylene glycol diamine, diethylene glycol bis (propylamine), polyoxypropylene diamine, and polyoxypropylene triamines. Cycloaliphatic amines include isophorone diamine, metacene diamine, N-aminoethylpiperazine, bis (4-amino-3-methyldicyclohexyl) methane, bis (aminomethyl) cyclohexane, 3,9-bis (3-amino). Propyl) 2,4,8,10-tetraoxaspiro (5,5) undecane, norbornenediamine and the like. Aromatic amines include tetrachloro-p-xylenediamine, m-xylenediamine, p-xylenediamine, m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, 2,4-diaminoanisole, 2, 4-toluenediamine, 2,4-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diamino-1,2-diphenylethane, 2,4-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone , M-aminophenol, m-aminobenzylamine, benzyldimethylamine, 2-dimethylaminomethyl) phenol, triethanolamine, methylbenzylamine, α- (m-aminophenyl) ethylamine, α- (p-aminophenyl) Ethylamine, diaminodiethyldi Chill diphenylmethane, alpha,. Alpha .'- bis (4-aminophenyl)-p-diisopropylbenzene and the like.
 酸無水物系硬化剤の具体例としては、ドデセニル無水コハク酸、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、ポリ(エチルオクタデカン二酸)無水物、ポリ(フェニルヘキサデカン二酸)無水物、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水メチルハイミック酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、メチルシクロヘキセンテトラカルボン酸無水物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビストリメリテート、無水ヘット酸、無水ナジック酸、無水メチルナジック酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキサン-1,2-ジカルボン酸無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1-メチル-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物等が挙げられる。 Specific examples of acid anhydride curing agents include dodecenyl succinic anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysebacic acid anhydride, poly (ethyloctadecanedioic acid) anhydride, poly (phenylhexadecanedioic acid) Anhydride, Methyltetrahydrophthalic anhydride, Methylhexahydrophthalic anhydride, Hexahydrophthalic anhydride, Methylhymic anhydride, Tetrahydrophthalic anhydride, Trialkyltetrahydrophthalic anhydride, Methylcyclohexene dicarboxylic anhydride, Methylcyclohexene tetracarboxylic Acid anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bistrimellitate, het acid anhydride, nadic anhydride, methyl nadic anhydride, 5- (2,5 -The Xotetrahydro-3-furanyl) -3-methyl-3-cyclohexane-1,2-dicarboxylic anhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride 1-methyl-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride and the like.
 本発明のエポキシ樹脂組成物では、エポキシ樹脂と硬化剤の配合比率は、エポキシ基と硬化剤中の官能基が当量比で0.8~1.5の範囲である。この範囲外では硬化後も未反応のエポキシ基、又は硬化剤中の官能基が残留し、電気絶縁材料としての信頼性が低下するため好ましくない。 In the epoxy resin composition of the present invention, the blending ratio of the epoxy resin and the curing agent is in the range of 0.8 to 1.5 in terms of an equivalent ratio of the epoxy group and the functional group in the curing agent. Outside this range, an unreacted epoxy group or a functional group in the curing agent remains even after curing, which is not preferable because reliability as an electrical insulating material is lowered.
 本発明のエポキシ樹脂組成物には、無機充填材を添加してもよい。無機充填材の添加量は、エポキシ樹脂組成物に対して50~95wt%であるが、好ましくは80~95wt%である。これより少ないと高熱伝導性、低熱膨張性、高耐熱性等の効果が十分に発揮されない。これらの効果は、無機充填材の添加量が多いほどよいが、その体積分率に応じて向上するものではなく、特定の添加量から飛躍的に向上する。これらの物性は、高分子状態での高次構造が制御された効果によるものであり、この高次構造が主に無機充填材表面で達成されることから、特定量の無機充填材を必要とするものであると考えられる。一方、無機充填材の添加量がこれより多いと粘度が高くなり、成形性が悪化するため好ましくない。 An inorganic filler may be added to the epoxy resin composition of the present invention. The addition amount of the inorganic filler is 50 to 95 wt% with respect to the epoxy resin composition, preferably 80 to 95 wt%. If it is less than this, effects such as high thermal conductivity, low thermal expansion, and high heat resistance will not be sufficiently exhibited. These effects are better as the added amount of the inorganic filler is larger. However, the effect is not improved according to the volume fraction, but dramatically improved from a specific added amount. These physical properties are due to the effect of controlling the higher order structure in the polymer state, and since this higher order structure is achieved mainly on the surface of the inorganic filler, a specific amount of inorganic filler is required. It is thought to be. On the other hand, when the added amount of the inorganic filler is larger than this, the viscosity becomes high and the moldability deteriorates, which is not preferable.
 無機充填材は球状のものが好ましく、断面が楕円上であるものも含めて球状であれば特に限定されるものではないが、流動性改善の観点からは、極力真球状に近いものであることが特に好ましい。これにより、面心立方構造や六方稠密構造等の最密充填構造をとり易く、充分な充填量を得ることができる。球形でない場合、充填量が増えると充填材同士の摩擦が増え、上記の上限に達する前に流動性が極端に低下して粘度が高くなり、成形性が悪化するため好ましくない。 The inorganic filler is preferably spherical and is not particularly limited as long as it has a spherical shape including those having a cross section on an ellipse, but from the viewpoint of improving fluidity, it should be as close to a true sphere as possible. Is particularly preferred. Thereby, it is easy to take a close-packed structure such as a face-centered cubic structure or a hexagonal close-packed structure, and a sufficient filling amount can be obtained. In the case of a non-spherical shape, when the filling amount is increased, friction between the fillers is increased, and before reaching the above upper limit, the fluidity is extremely lowered to increase the viscosity and the moldability is deteriorated.
 熱伝導率向上の観点からは、無機充填材のうち、熱伝導率が5W/m・K以上である無機充填材を50wt%以上使用することが好ましく、アルミナ、窒化アルミニウム、結晶シリカ等が好適に使用される。これらの中で特に好ましいものは、球状アルミナである。その他、必要に応じて形状に関係なく無定形無機充填材、例えば溶融シリカ、結晶シリカなどを併用しても良い。 From the viewpoint of improving the thermal conductivity, it is preferable to use 50 wt% or more of an inorganic filler having a thermal conductivity of 5 W / m · K or more among inorganic fillers, and alumina, aluminum nitride, crystalline silica, etc. are preferable. Used for. Of these, spherical alumina is particularly preferable. In addition, an amorphous inorganic filler such as fused silica or crystalline silica may be used in combination, if necessary, regardless of the shape.
 無機充填材の平均粒径は30μm以下であることが好ましい。平均粒径がこれより大きいとエポキシ樹脂組成物の流動性が損なわれ、また強度も低下するため好ましくない。 The average particle diameter of the inorganic filler is preferably 30 μm or less. If the average particle size is larger than this, the fluidity of the epoxy resin composition is impaired, and the strength is also lowered, which is not preferable.
 また、無機充填材は、ガラス繊維等の繊維状基材、あるいは繊維状基材と粒子状無機充填材を併用したものであっても良い。繊維状基材と複合化させる場合には、溶剤を使用しワニスとして、シート状とした繊維状基材に含浸し乾燥して本発明のプリプレグとすることができる。このようにして作成したプリプレグは、銅箔、アルミニウム箔、ステンレス箔等の金属基材、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、液晶ポリマー、ポリアミド、ポリイミド、テフロン(登録商標)等の高分子基材と積層し、加熱成形させることにより、プリント配線板、放熱基板等として応用することができる。 The inorganic filler may be a fibrous base material such as glass fiber, or a combination of a fibrous base material and a particulate inorganic filler. In the case of compounding with a fibrous base material, it is possible to obtain a prepreg of the present invention by using a solvent as a varnish and impregnating the sheet-like fibrous base material and drying it. The prepreg thus prepared is made of a metal substrate such as copper foil, aluminum foil or stainless steel foil, or a polymer such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, liquid crystal polymer, polyamide, polyimide, or Teflon (registered trademark). It can be applied as a printed wiring board, a heat radiating substrate, etc. by laminating with a base material and thermoforming.
 本発明のエポキシ樹脂組成物には、従来より公知の硬化促進剤を用いることができる。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等があり、具体的には、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-へプタデシルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルポレート、N-メチルモルホリン・テトラフェニルポレートなどのテトラフェニルボロン塩などがある。添加量としては、通常、エポキシ樹脂100重量部に対して、0.2~10重量部の範囲である。これらは単独で用いても良く、併用しても良い。 A conventionally well-known hardening accelerator can be used for the epoxy resin composition of this invention. Examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, Tertiary amines such as ethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, Organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / ethyltriphenyl Rate, tetra-substituted phosphonium tetra-substituted borate such as tetrabutylphosphonium-tetrabutyl borate, 2-ethyl-4-methylimidazole · tetraphenyl port rate, and the like tetraphenyl boron salts such as N- methylmorpholine-tetraphenyl port rate. The addition amount is usually in the range of 0.2 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin. These may be used alone or in combination.
 上記硬化触媒の添加量は、エポキシ樹脂(難燃剤としての含ハロゲンエポキシ樹脂を含む)と硬化剤の合計に対して、0.1~10.0質量%が好ましい。0.1質量%未満では成形時間が長くなって成形時の剛性低下による作業性の低下をもたらし、逆に10.0質量%を超えると成形途中で硬化が進んでしまい、未充填が発生し易くなる。 The addition amount of the curing catalyst is preferably 0.1 to 10.0% by mass with respect to the total of the epoxy resin (including the halogen-containing epoxy resin as a flame retardant) and the curing agent. If it is less than 0.1% by mass, the molding time becomes long, resulting in a decrease in workability due to a reduction in rigidity at the time of molding. Conversely, if it exceeds 10.0% by mass, curing proceeds during molding and unfilling occurs. It becomes easy.
 本発明のエポキシ樹脂組成物においては、エポキシ樹脂組成物に一般的に用いられる離型剤としてワックスが使用できる。ワックスとしては、例えばステアリン酸、モンタン酸、モンタン酸エステル、リン酸エステル等が使用可能である。 In the epoxy resin composition of the present invention, a wax can be used as a release agent generally used for epoxy resin compositions. As the wax, for example, stearic acid, montanic acid, montanic acid ester, phosphoric acid ester and the like can be used.
 本発明のエポキシ樹脂組成物においては、無機充填材と樹脂成分の接着力を向上させるため、エポキシ樹脂組成物に一般的に用いられるカップリング剤を用いることができる。カップリング剤としては、例えばエポキシシランが使用可能である。カップリング剤の添加量は、エポキシ樹脂組成物に対して、0.1~2.0質量%が好ましい。0.1質量%未満では樹脂と基材のなじみが悪く成形性が悪くなり、逆に2.0質量%を超えると連続成形性での成形品汚れが生じる。 In the epoxy resin composition of the present invention, a coupling agent generally used for an epoxy resin composition can be used in order to improve the adhesion between the inorganic filler and the resin component. As the coupling agent, for example, epoxy silane can be used. The addition amount of the coupling agent is preferably 0.1 to 2.0% by mass with respect to the epoxy resin composition. If it is less than 0.1% by mass, the compatibility between the resin and the base material is poor, and the moldability becomes poor.
 また本発明のエポキシ樹脂組成物には、成形時の流動性改良およびリードフレーム等の基材との密着性向上の観点より、熱可塑性のオリゴマー類を添加することができる。熱可塑性のオリゴマー類としては、C5系およびC9系の石油樹脂、スチレン樹脂、インデン樹脂、インデン・スチレン共重合樹脂、インデン・スチレン・フェノール共重合樹脂、インデン・クマロン共重合樹脂、インデン・ベンゾチオフェン共重合樹脂等が例示さえる。添加量としては、通常、エポキシ樹脂100重量部に対して、2~30重量部の範囲である。 In addition, thermoplastic oligomers can be added to the epoxy resin composition of the present invention from the viewpoint of improving fluidity during molding and improving adhesion to a substrate such as a lead frame. Thermoplastic oligomers include C5 and C9 petroleum resins, styrene resins, indene resins, indene / styrene copolymer resins, indene / styrene / phenol copolymer resins, indene / coumarone copolymer resins, indene / benzothiophenes. Examples thereof include copolymer resins. The addition amount is usually in the range of 2 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin.
 さらに本発明のエポキシ樹脂組成物には、一般的にエポキシ樹脂組成物に使用可能なものを適宜配合して用いることができる。例えば、リン系難燃剤、ブロム化合物や三酸化アンチモン等の難燃剤、及びカーボンブラックや有機染料等の着色剤等を使用することができる。 Further, the epoxy resin composition of the present invention can be used by appropriately blending those generally usable for epoxy resin compositions. For example, phosphorus-based flame retardants, flame retardants such as bromine compounds and antimony trioxide, and colorants such as carbon black and organic dyes can be used.
 本発明のエポキシ樹脂組成物は、エポキシ樹脂、硬化剤、無機充填材と、カップリング剤以外のその他の成分をミキサー等によって均一に混合した後、カップリング剤を添加し、加熱ロール、ニーダー等によって混練して製造する。これらの成分の配合順序には特に制限はない。更に、混練後に溶融混練物の粉砕を行い、パウダー化することやタブレット化することも可能である。本発明のエポキシ樹脂組成物は、エポキシ樹脂と硬化剤を樹脂成分の主成分とする。好ましくは60wt%以上、より好ましくは80wt%以上がエポキシ樹脂と硬化剤である。 The epoxy resin composition of the present invention is prepared by uniformly mixing an epoxy resin, a curing agent, an inorganic filler, and other components other than the coupling agent with a mixer, and then adding a coupling agent, a heating roll, a kneader, etc. Kneaded and manufactured. There is no restriction | limiting in particular in the mixing | blending order of these components. Further, after kneading, the melt-kneaded material can be pulverized to be powdered or tableted. The epoxy resin composition of this invention has an epoxy resin and a hardening | curing agent as a main component of a resin component. Preferably 60 wt% or more, more preferably 80 wt% or more is the epoxy resin and the curing agent.
 本発明のエポキシ樹脂組成物は、電気絶縁材料として有用であり、特に半導体装置に封止用として好適に用いられる。 The epoxy resin composition of the present invention is useful as an electrical insulating material, and is particularly suitably used for sealing in semiconductor devices.
 本発明のエポキシ樹脂組成物を用いて成形物を得るためには、例えば、トランスファー成形、プレス成形、注型成形、射出成形、押出成形等の方法が適用されるが、量産性の観点からは、トランスファー成形が好ましい。この成形の際、加熱が行われ、硬化(重合)が生じる。したがって、得られる成形物は重合した樹脂(熱可塑性又は熱硬化性樹脂)の成形物であるので、硬化成形物ともいう。そして、本明細書でいう硬化は、重合を含む意味で使用され、硬化樹脂は熱可塑性樹脂を含む意味で使用される。 In order to obtain a molded product using the epoxy resin composition of the present invention, for example, methods such as transfer molding, press molding, cast molding, injection molding, and extrusion molding are applied, but from the viewpoint of mass productivity. Transfer molding is preferred. During this molding, heating is performed and curing (polymerization) occurs. Therefore, since the obtained molded product is a molded product of polymerized resin (thermoplastic or thermosetting resin), it is also called a cured molded product. The term “curing” used in the present specification is used in the sense of including polymerization, and the cured resin is used in the sense of including a thermoplastic resin.
 本発明の成形物は、三次元架橋をしたものであることが一般的であるが、必ずしも三次元架橋体である必要はなく、熱可塑性の二次元高分子よりなる成形物であっても良い。特に、二官能性エポキシ樹脂を二官能性硬化剤と反応させた場合、通常は、エポキシ基の開環反応で生成する二級水酸基がさらにエポキシ基と反応することにより三次元架橋体となるが、硬化条件を選択することで熱可塑性の二次元高分子成形体とすることができる。高熱伝導性の観点から結晶性の成形物とすることが望ましいが、三次元架橋点は、一般的に結晶性を阻害するため、架橋を少なくして二次元高分子が主体の成形体とすることが良い。成形物の結晶性の発現は、走査示差熱分析で結晶の融解に伴う吸熱ピークを融点として観測により確認することができる。通常、融点範囲は120℃から320℃であり、好ましくは150℃から300℃、より好ましくは200℃から280℃の範囲である。 The molded product of the present invention is generally one that is three-dimensionally cross-linked, but is not necessarily a three-dimensional cross-linked product, and may be a molded product made of a thermoplastic two-dimensional polymer. . In particular, when a bifunctional epoxy resin is reacted with a bifunctional curing agent, a secondary hydroxyl group formed by a ring-opening reaction of an epoxy group usually reacts with the epoxy group to form a three-dimensional crosslinked product. By selecting curing conditions, a thermoplastic two-dimensional polymer molded body can be obtained. From the viewpoint of high thermal conductivity, it is desirable to form a crystalline molded product. However, since the three-dimensional crosslinking point generally inhibits the crystallinity, the number of crosslinking is reduced and a molded product mainly composed of a two-dimensional polymer is used. That is good. The expression of the crystallinity of the molded product can be confirmed by observing the endothermic peak accompanying melting of the crystal as a melting point by scanning differential thermal analysis. Usually, the melting point range is 120 ° C to 320 ° C, preferably 150 ° C to 300 ° C, more preferably 200 ° C to 280 ° C.
 本発明の成形物の結晶化度は高いものほどよく、結晶化の程度は走査示差熱分析での結晶の融解に伴う吸熱量から評価することができる。通常、吸熱量は充填材を除いた樹脂成分の単位重量あたり5J/g以上、好ましい吸熱量は、10J/g以上である。より好ましくは20J/g以上であり、特に好ましくは30J/g以上である。これより小さいとエポキシ樹脂成形物としての熱伝導率向上効果が小さい。また、低熱膨張性および耐熱性向上の観点からも結晶性が高いほど好ましい。なお、ここでいう吸熱量は、示差熱分析計により、約10mgを精秤した試料を用いて、窒素気流下、昇温速度10℃/分の条件で測定して得られる吸熱量を指す。 The higher the degree of crystallinity of the molded product of the present invention, the better, and the degree of crystallization can be evaluated from the endothermic amount accompanying the melting of the crystal in the scanning differential thermal analysis. Usually, the endothermic amount is 5 J / g or more per unit weight of the resin component excluding the filler, and the preferred endothermic amount is 10 J / g or more. More preferably, it is 20 J / g or more, and particularly preferably 30 J / g or more. When smaller than this, the heat conductivity improvement effect as an epoxy resin molding is small. Also, higher crystallinity is preferable from the viewpoint of low thermal expansion and improved heat resistance. In addition, the endothermic amount here refers to the endothermic amount obtained by measuring with a differential thermal analyzer under the condition of a heating rate of 10 ° C./min under a nitrogen stream using a sample that is precisely weighed about 10 mg.
 本発明の成形物は、上記成形方法により加熱成形させることにより得ることができるが、通常、成形温度としては80℃から250℃であるが、成形物の結晶化度を上げるためには、成形物の融点よりも低い温度で成形することが望ましい。好ましい成形温度は100℃から220℃の範囲であり、より好ましくは150℃から200℃である。また、好ましい成形時間は30秒から1時間であり、より好ましくは1分から30分である。さらに成形後、ポストキュアにより、さらに結晶化度を上げることができる。通常、ポストキュア温度は130℃から250℃であり、時間は1時間から20時間の範囲であるが、好ましくは、示差熱分析における吸熱ピーク温度よりも5℃から40℃低い温度で、1時間から24時間かけてポストキュアを行うことが望ましい。また、成形物の好ましい熱伝導率は4W/m・K以上であり、特に好ましくは6W/m・K以上である。 The molded product of the present invention can be obtained by heat molding using the above molding method. Usually, the molding temperature is 80 ° C. to 250 ° C. However, in order to increase the crystallinity of the molded product, molding is performed. It is desirable to mold at a temperature lower than the melting point of the product. A preferred molding temperature is in the range of 100 ° C to 220 ° C, more preferably 150 ° C to 200 ° C. The preferable molding time is 30 seconds to 1 hour, more preferably 1 minute to 30 minutes. Further, after molding, the crystallinity can be further increased by post-cure. Usually, the post-cure temperature is 130 ° C. to 250 ° C., and the time is in the range of 1 hour to 20 hours, but preferably 1 hour at a temperature 5 ° C. to 40 ° C. lower than the endothermic peak temperature in differential thermal analysis. It is desirable to perform post-cure over 24 hours from the beginning. Moreover, the preferable heat conductivity of a molded object is 4 W / m * K or more, Most preferably, it is 6 W / m * K or more.
 以下、実施例により本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
参考例1
 4,4’-ジヒドロキシジベンゾフェノン1070gをエピクロルヒドリン6500gに溶解し、60℃にて減圧下(約130Torr)、48%水酸化ナトリウム水溶液808gを4時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続して脱水後、エピクロルヒドリンを留去し、メチルイソブチルケトン3500gを加えた後、水洗を行い塩を除いた。その後、80℃にて20%水酸化ナトリウムを100g添加して2時間攪拌し、温水1000mLで水洗した。その後、分液により水を除去後、メチルイソブチルケトンを減圧留去し、淡黄色結晶状のエポキシ樹脂1460gを得た(エポキシ樹脂A)。
Reference example 1
1070 g of 4,4′-dihydroxydibenzophenone was dissolved in 6500 g of epichlorohydrin, and 808 g of 48% sodium hydroxide aqueous solution was added dropwise over 4 hours at 60 ° C. under reduced pressure (about 130 Torr). During this time, the generated water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After completion of the dropwise addition, the reaction was continued for another hour, followed by dehydration. Then, epichlorohydrin was distilled off, 3500 g of methyl isobutyl ketone was added, and then washed with water to remove the salt. Thereafter, 100 g of 20% sodium hydroxide was added at 80 ° C., stirred for 2 hours, and washed with 1000 mL of warm water. Thereafter, water was removed by liquid separation, and methyl isobutyl ketone was distilled off under reduced pressure to obtain 1460 g of a light yellow crystalline epoxy resin (epoxy resin A).
 エポキシ樹脂Aのキャピラリー法による融点は128℃から131℃であり、150℃での粘度は11.6mPa・sであった。エポキシ当量は179であり、加水分解性塩素は270ppm、得られた樹脂のGPC測定より求められた一般式(1)における各成分比は、n=0が91.0%、n=1が8.2%であった。ここで、加水分解性塩素とは、試料0.5gをジオキサン30mlに溶解後、1N-KOH、10mlを加え30分間煮沸還流した後、室温まで冷却し、さらに80%アセトン水100mlを加えたものを、0.002N-AgNO3水溶液で電位差滴定を行うことにより測定された値である。また融点とは、キャピラリー法により昇温速度2℃/分で得られる値である。粘度はBROOKFIELD製、CAP2000Hで測定し、軟化点はJIS K-6911に従い環球法で測定した。また、GPC測定は、装置;日本ウォーターズ(株)製、515A型、カラム;TSK-GEL2000×3本およびTSK-GEL4000×1本(いずれも東ソー(株)製)、溶媒;テトラヒドロフラン、流量;1 ml/min、温度;38℃、検出器;RIの条件に従った。 Epoxy resin A had a melting point of 128 ° C. to 131 ° C. according to the capillary method, and a viscosity at 150 ° C. of 11.6 mPa · s. Epoxy equivalent is 179, hydrolyzable chlorine is 270 ppm, and each component ratio in the general formula (1) obtained by GPC measurement of the obtained resin is 91.0% for n = 0 and 8 for n = 1. .2%. Here, hydrolyzable chlorine is obtained by dissolving 0.5 g of a sample in 30 ml of dioxane, adding 1N-KOH, 10 ml, boiling and refluxing for 30 minutes, cooling to room temperature, and further adding 100 ml of 80% acetone water. Is a value measured by conducting potentiometric titration with 0.002N-AgNO 3 aqueous solution. The melting point is a value obtained by a capillary method at a heating rate of 2 ° C./min. Viscosity was measured with CAP2000H manufactured by BROOKFIELD, and softening point was measured by ring and ball method according to JIS K-6911. In addition, GPC measurement was performed by using an apparatus: Nippon Waters Co., Ltd. Model 515A, column: TSK-GEL2000 × 3 and TSK-GEL4000 × 1 (both manufactured by Tosoh Corporation), solvent: tetrahydrofuran, flow rate: 1 ml / min, temperature; 38 ° C., detector; RI conditions were followed.
実施例1~6、比較例1~5
 エポキシ樹脂成分として、参考例1のエポキシ樹脂(エポキシ樹脂A)、4,4’-ジヒドロキシジフェニルエーテルのエポキシ化物(エポキシ樹脂B:東都化成製、YSLV-80DE、エポキシ当量174)又はビフェニル系エポキシ樹脂(エポキシ樹脂C:ジャパンエポキシレジン製、YX-4000H、エポキシ当量195)を使用し、硬化剤として4,4’-ジヒドロキシジベンゾフェノン(硬化剤A)、4,4’-ジヒドロキシジフェニルエーテル(硬化剤B)、4,4’-ジヒドロキシジフェニルメタン(硬化剤C)、4,4’-ジヒドロキシジベンゾフェノン(硬化剤D)又はフェノールノボラック(硬化剤E:群栄化学製、PSM-4261;OH当量103、軟化点 82℃)を使用した。また、硬化促進剤としてトリフェニルホスフィン、無機充填材として、球状アルミナ(平均粒径12.2μm)を使用した。表1に示す成分を配合し、ミキサーで十分混合した後、加熱ロールで約5分間混練したものを冷却し、粉砕してそれぞれ実施例1~6、比較例1~5のエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を用いて表1に示す条件で成形およびポストキュアを行い、成形物の物性を評価した。
Examples 1-6, Comparative Examples 1-5
As an epoxy resin component, the epoxy resin (epoxy resin A) of Reference Example 1, an epoxidized product of 4,4′-dihydroxydiphenyl ether (epoxy resin B: manufactured by Tohto Kasei Co., Ltd., YSLV-80DE, epoxy equivalent 174) or biphenyl epoxy resin ( Epoxy resin C: YE-4000H manufactured by Japan Epoxy Resin, epoxy equivalent 195), 4,4′-dihydroxydibenzophenone (curing agent A), 4,4′-dihydroxydiphenyl ether (curing agent B) as a curing agent 4,4′-dihydroxydiphenylmethane (curing agent C), 4,4′-dihydroxydibenzophenone (curing agent D) or phenol novolak (curing agent E: manufactured by Gunei Chemical Co., Ltd., PSM-4261; OH equivalent 103, softening point 82 ° C.) was used. Further, triphenylphosphine was used as a curing accelerator, and spherical alumina (average particle size 12.2 μm) was used as an inorganic filler. The ingredients shown in Table 1 were blended, mixed thoroughly with a mixer, then kneaded for about 5 minutes with a heating roll, cooled and ground to obtain the epoxy resin compositions of Examples 1 to 6 and Comparative Examples 1 to 5, respectively. Obtained. Using this epoxy resin composition, molding and post-curing were performed under the conditions shown in Table 1, and the physical properties of the molded product were evaluated.
 結果をまとめて表1及び表2に示す。なお、表中の各配合物の数字は重量部を表す。また、評価は次により行った。 The results are summarized in Tables 1 and 2. In addition, the number of each compound in a table | surface represents a weight part. The evaluation was performed as follows.
(1)熱伝導率:NETZSCH製LFA447型熱伝導率計を用いて非定常熱線法により測定した。
(2)融点、融解熱の測定(DSC法):示差走査熱量分析装置(セイコーインスツル製DSC6200型)を用い、昇温速度10℃/分で測定した。
(3)線膨張係数、ガラス転移温度:セイコーインスツル(株)製TMA120C型熱機械測定装置を用いて、昇温速度10℃/分にて測定した。
(4)吸水率:直径50mm、厚さ3mmの円盤を成形し、ポストキュア後、85℃、相対湿度85%の条件で100時間吸湿させた後の重量変化率とした。
(1) Thermal conductivity: Measured by the unsteady hot wire method using an LFA447 type thermal conductivity meter manufactured by NETZSCH.
(2) Measurement of melting point and heat of fusion (DSC method): Using a differential scanning calorimeter (DSC6200, manufactured by Seiko Instruments Inc.), the temperature was increased at a rate of 10 ° C./min.
(3) Linear expansion coefficient, glass transition temperature: Measured at a heating rate of 10 ° C./min using a TMA120C type thermomechanical measuring device manufactured by Seiko Instruments Inc.
(4) Water absorption: A disk having a diameter of 50 mm and a thickness of 3 mm was formed, and after post-curing, the weight change rate was obtained after moisture absorption at 85 ° C. and a relative humidity of 85% for 100 hours.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
産業上の利用の可能性Industrial applicability
 本発明のエポキシ樹脂組成物は、成形性、信頼性に優れ、かつ高熱伝導性、低吸水性、低熱膨張性、高耐熱性に優れた硬化成形物を与え、半導体封止、積層板、放熱基板等の電気・電子部品用絶縁材料として好適に応用され、優れた高放熱性および寸法安定性が発揮される。 The epoxy resin composition of the present invention provides a cured molded product that is excellent in moldability and reliability, and has high thermal conductivity, low water absorption, low thermal expansion, and high heat resistance. It is suitably applied as an insulating material for electric and electronic parts such as substrates, and exhibits excellent high heat dissipation and dimensional stability.

Claims (8)

  1.  (A)エポキシ樹脂及び(B)硬化剤を含むエポキシ樹脂組成物において、エポキシ樹脂の50wt%以上を下記一般式(1)、
    Figure JPOXMLDOC01-appb-I000001
    (但し、nは0~15の数を示す。)
    で表される4,4’-ベンゾフェノン系エポキシ樹脂とし、硬化剤の50wt%以上を下記一般式(2)、
    Figure JPOXMLDOC01-appb-I000002
    (但し、mは0~15の数を示す。)
    で表される4,4’-ベンゾフェノン系フェノール性樹脂とし、エポキシ樹脂中のエポキシ基と硬化剤中の官能基の当量比を0.8~1.5の範囲としたことを特徴とするエポキシ樹脂組成物。
    In the epoxy resin composition containing (A) an epoxy resin and (B) a curing agent, 50 wt% or more of the epoxy resin is represented by the following general formula (1),
    Figure JPOXMLDOC01-appb-I000001
    (However, n represents a number from 0 to 15.)
    And 4 wt ′ or more of the curing agent represented by the following general formula (2):
    Figure JPOXMLDOC01-appb-I000002
    (However, m represents a number from 0 to 15.)
    An epoxy resin characterized in that the equivalent ratio of the epoxy group in the epoxy resin and the functional group in the curing agent is in the range of 0.8 to 1.5. Resin composition.
  2.  無機充填材が50~95wt%含有されてなる請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, comprising 50 to 95 wt% of an inorganic filler.
  3.  半導体封止用のエポキシ樹脂組成物である請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, which is an epoxy resin composition for semiconductor encapsulation.
  4.  請求項1又は2に記載のエポキシ樹脂組成物をシート状の繊維基材に含浸し半硬化状態としてなることを特徴とするプリプレグ。 A prepreg comprising a sheet-like fiber base material impregnated with the epoxy resin composition according to claim 1 or 2 into a semi-cured state.
  5.  請求項1~3のいずれかにのエポキシ樹脂組成物を加熱成形して得られることを特徴とする成形物。 A molded product obtained by heat-molding the epoxy resin composition according to any one of claims 1 to 3.
  6.  熱伝導率が4W/m・K以上である請求項5に記載の成形物。 The molded article according to claim 5, wherein the thermal conductivity is 4 W / m · K or more.
  7.  走査示差熱分析における融点のピークが150℃から300℃の範囲にある請求項5に記載の成形物。 The molded product according to claim 5, wherein the peak of the melting point in the scanning differential thermal analysis is in the range of 150 ° C to 300 ° C.
  8.  走査示差熱分析における樹脂成分換算の吸熱量が5J/g以上である請求項5に記載の成形物。 The molded article according to claim 5, wherein the endothermic amount in terms of resin component in the scanning differential thermal analysis is 5 J / g or more.
PCT/JP2009/056310 2008-03-31 2009-03-27 Epoxy resin composition and molded object WO2009123058A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980108795.5A CN101970526B (en) 2008-03-31 2009-03-27 Epoxy resin composition and molded object
KR1020107023424A KR101507933B1 (en) 2008-03-31 2009-03-27 Epoxy resin composition and molded object
JP2010505845A JP5312447B2 (en) 2008-03-31 2009-03-27 Epoxy resin composition and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008092281 2008-03-31
JP2008-092281 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123058A1 true WO2009123058A1 (en) 2009-10-08

Family

ID=41135436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056310 WO2009123058A1 (en) 2008-03-31 2009-03-27 Epoxy resin composition and molded object

Country Status (5)

Country Link
JP (1) JP5312447B2 (en)
KR (1) KR101507933B1 (en)
CN (1) CN101970526B (en)
TW (1) TWI494341B (en)
WO (1) WO2009123058A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046616A (en) * 2010-08-26 2012-03-08 Nippon Steel Chem Co Ltd Phenolic resin, epoxy resin, production method of the same, epoxy resin composition and cured product
JP2013155234A (en) * 2012-01-27 2013-08-15 Dic Corp Epoxy resin, curable resin composition, cured material thereof, semiconductor sealing material, and semiconductor apparatus
CN110506066A (en) * 2017-04-10 2019-11-26 三菱瓦斯化学株式会社 Resin combination, prepreg, clad with metal foil plywood, resin sheet and printed circuit board
EP3647346A4 (en) * 2017-06-30 2021-03-10 Toray Industries, Inc. Preform for fiber-reinforced composite material, thermosetting resin composition, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JP2021155484A (en) * 2020-03-25 2021-10-07 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition and cured material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6688065B2 (en) * 2015-12-18 2020-04-28 ナミックス株式会社 Epoxy resin composition
CN114989757B (en) * 2022-06-29 2023-04-25 东莞市德聚胶接技术有限公司 Low-temperature rapid-curing moisture-heat-resistant epoxy adhesive and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02202512A (en) * 1989-01-31 1990-08-10 Dainippon Ink & Chem Inc Epoxy resin composition and molded article produced by curing the same
JPH08269169A (en) * 1995-03-30 1996-10-15 Sumitomo Chem Co Ltd Epoxy resin composition and resin-sealed semiconductor device
WO2006120993A1 (en) * 2005-05-10 2006-11-16 Nippon Steel Chemical Co., Ltd. Epoxy resin composition and curing product thereof
WO2008018364A1 (en) * 2006-08-07 2008-02-14 Nippon Steel Chemical Co., Ltd. Prepreg, laminate and printed wiring board
WO2008059755A1 (en) * 2006-11-13 2008-05-22 Nippon Steel Chemical Co., Ltd. Crystalline resin cured product, crystalline resin composite body and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029212A (en) * 2007-04-28 2007-09-05 北京市航天焊接材料厂 Epoxy-resin anisotropic conductive glue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02202512A (en) * 1989-01-31 1990-08-10 Dainippon Ink & Chem Inc Epoxy resin composition and molded article produced by curing the same
JPH08269169A (en) * 1995-03-30 1996-10-15 Sumitomo Chem Co Ltd Epoxy resin composition and resin-sealed semiconductor device
WO2006120993A1 (en) * 2005-05-10 2006-11-16 Nippon Steel Chemical Co., Ltd. Epoxy resin composition and curing product thereof
WO2008018364A1 (en) * 2006-08-07 2008-02-14 Nippon Steel Chemical Co., Ltd. Prepreg, laminate and printed wiring board
WO2008059755A1 (en) * 2006-11-13 2008-05-22 Nippon Steel Chemical Co., Ltd. Crystalline resin cured product, crystalline resin composite body and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046616A (en) * 2010-08-26 2012-03-08 Nippon Steel Chem Co Ltd Phenolic resin, epoxy resin, production method of the same, epoxy resin composition and cured product
JP2013155234A (en) * 2012-01-27 2013-08-15 Dic Corp Epoxy resin, curable resin composition, cured material thereof, semiconductor sealing material, and semiconductor apparatus
CN110506066A (en) * 2017-04-10 2019-11-26 三菱瓦斯化学株式会社 Resin combination, prepreg, clad with metal foil plywood, resin sheet and printed circuit board
EP3611208A4 (en) * 2017-04-10 2020-04-15 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
CN110506066B (en) * 2017-04-10 2021-11-19 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
EP3647346A4 (en) * 2017-06-30 2021-03-10 Toray Industries, Inc. Preform for fiber-reinforced composite material, thermosetting resin composition, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
JP2021155484A (en) * 2020-03-25 2021-10-07 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition and cured material
JP7444667B2 (en) 2020-03-25 2024-03-06 日鉄ケミカル&マテリアル株式会社 Epoxy resin composition and cured product

Also Published As

Publication number Publication date
JP5312447B2 (en) 2013-10-09
CN101970526A (en) 2011-02-09
KR20110008048A (en) 2011-01-25
JPWO2009123058A1 (en) 2011-07-28
TWI494341B (en) 2015-08-01
KR101507933B1 (en) 2015-04-06
CN101970526B (en) 2012-05-30
TW201002752A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
JP5320384B2 (en) Modified epoxy resin, epoxy resin composition and cured product
JP5314911B2 (en) Epoxy resin composition and molded article
JP5324094B2 (en) Epoxy resin composition and cured product
JP5265461B2 (en) Crystalline modified epoxy resin, epoxy resin composition and crystalline cured product
JP5199804B2 (en) Epoxy resin composition and molded article
JP5584538B2 (en) Epoxy resin composition, molded product, varnish, film adhesive and copper foil with film adhesive
JP5234962B2 (en) Prepreg, laminated board and printed wiring board
JP5312447B2 (en) Epoxy resin composition and molded article
JP5079721B2 (en) Epoxy resin composition and molded article
JP2010229260A (en) Epoxy resin composition and molded product
JP5037370B2 (en) Epoxy resin composition and cured product
JP5314912B2 (en) Epoxy resin composition and molded article
JP5091052B2 (en) Epoxy resin composition and molded article
JP2009073862A (en) Epoxy resin composition for sealing and semiconductor device using the same
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP5681151B2 (en) Epoxy resin composition and molded article
JP7502916B2 (en) Epoxy resin, epoxy resin composition and cured product
JP5681152B2 (en) Epoxy resin composition and molded article
JP5199847B2 (en) Epoxy resin composition and molded article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108795.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505845

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107023424

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09726767

Country of ref document: EP

Kind code of ref document: A1