[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009140769A1 - 3, 4 - substituted piperidine derivatives as renin inhibitors - Google Patents

3, 4 - substituted piperidine derivatives as renin inhibitors Download PDF

Info

Publication number
WO2009140769A1
WO2009140769A1 PCT/CA2009/000704 CA2009000704W WO2009140769A1 WO 2009140769 A1 WO2009140769 A1 WO 2009140769A1 CA 2009000704 W CA2009000704 W CA 2009000704W WO 2009140769 A1 WO2009140769 A1 WO 2009140769A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkylene
halogens
optionally substituted
alkyl
amine
Prior art date
Application number
PCT/CA2009/000704
Other languages
French (fr)
Inventor
Austin Chih-Yu Chen
Daniel DUBÉ
Pierre-André FOURNIER
Erich L. Grimm
Patrick Lacombe
Sébastien LALIBERTÉ
Dwight Macdonald
D. Bruce Mackay
Daniel James Mckay
Tom Yao-Hsiang Wu
Original Assignee
Merck Frosst Canada Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Frosst Canada Ltd. filed Critical Merck Frosst Canada Ltd.
Priority to US12/993,127 priority Critical patent/US20110152316A1/en
Priority to AU2009250299A priority patent/AU2009250299A1/en
Priority to CA2724756A priority patent/CA2724756A1/en
Priority to EP09749373A priority patent/EP2300453A4/en
Priority to JP2011509831A priority patent/JP2011520924A/en
Publication of WO2009140769A1 publication Critical patent/WO2009140769A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings

Definitions

  • the present invention is directed to certain compounds and their use in the inhibition of the renin enzyme, including treatment of conditions known to be associated with the renin system. 5
  • the invention in particular is directed to compounds of Formula I:
  • administration and variants thereof (e.g., “administering” a compound) in reference to a compound of Formula I mean providing the compound or a prodrug of the compound to the individual in need of treatment or prophylaxis.
  • a compound of the invention or a prodrug5 thereof is provided in combination with one or more other active agents (e.g., an agent such as anangiotensin II receptor antagonist, ACE inhibitor, or other active agent which is known to MCC-ACV-00001
  • active agents e.g., an agent such as anangiotensin II receptor antagonist, ACE inhibitor, or other active agent which is known to MCC-ACV-00001
  • the term "subject” as used herein refers to an animal, preferably a mammal, most preferably a human, who has been the object of treatment, observation or experiment.
  • the term "effective amount” as used herein means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue, system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician.
  • the effective amount is a "therapeutically effective amount” for the alleviation of the symptoms of the disease or condition being treated.
  • the effective amount is a "prophylactically effective amount” for prophylaxis of the symptoms of the disease or condition being prevented.
  • Amine 9 was prepared according to the procedure described in Amine 5 but using instead 2,3-difluorobenzaldehyde as starting material.
  • Step 1 1,1-Dimethylethyl cyclopropyl ⁇ [2,3-dichloro-5-(2-oxoethyl)phenyl]methyl ⁇ carbarnate
  • Step 1 6-( ⁇ [(l, l-Dimethylethyl)(dimethyl)silyl]oxy ⁇ methyl)-8-quinolinecarbaldehyde
  • Step 4 1,1 -Dimethylethyl cyclopropyl ⁇ [6-(hydroxymethyl)-8-quinolinyl]methyl ⁇ carbamate
  • Amine 41 5 yV-(3- ⁇ 3-[(CyclopropyIamtno)methyl]-lH-indol-l-yl ⁇ propyl)propanamide
  • Amine 41 was prepared according to the procedure described in Amine 40 but using instead propionyl chloride as the alkylation reagent in step 2.
  • Amine 53 was prepared according to the procedure described in Amine 44 but using instead 1 -(bromomethyl)-3-cyanobenzene (1.5 eq.) as the alkylation reagent in step 1. 25
  • Amine 62 was prepared according to the procedure described in Amine 56 but using instead 4-fluoro- lH-indole (1 eq.) as the starting indole in step 1. Furthermore, l-bromo-3- methoxypropane (2 eq.) and tetrabutylammonium iodide (1 eq.) were used as the alkylation mixture in 30 step 2.
  • Amine 65 was prepared according to the procedure described in Amine 56 but using instead 4-bromo-lH-indole (1 eq.) as the starting indole in step 1 and benzyl bromide (1.5 eq.) as the alkylation reagent in step 2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Diabetes (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Endocrinology (AREA)
  • Hospice & Palliative Care (AREA)
  • Emergency Medicine (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Obesity (AREA)
  • Psychiatry (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Dermatology (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The present invention relates to 3,4-substituted piperidinyl - based renin inhibitor compounds bearing at 4-position lsoqumolone and having the Formula (I) : The invention further relates to pharmaceutical compositions containing said compounds, as well as their use in treating cardiovascular events and renal insufficiency.

Description

MOC-ACV-00001
TITLE OF THE INVENTION
3, 4 - SUBSTITUTED PIPERIDINE DERIVATIVES AS RENIN INHIBITORS
JOINT RESEARCH AGREEMENT
5 The claimed invention was made as a result of activities undertaken within the scope of a joint research agreement between Merck & Co., Inc. and Actelion Pharmaceuticals Ltd. The agreement was executed on December 4, 2003. The field of the invention is described below.
0 CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application Nos, 61/128,520, filed May 22, 2008.
FIELD OF THE INVENTION 5 The invention relates to novel renin inhibitors of the general formula (I). The invention also concerns related aspects including processes for the preparation of the compounds, pharmaceutical compositions containing one or more compounds of formula (I) and especially their use as renin inhibitors in cardiovascular events and renal insufficiency. 0 BACKGROUND OF THE INVENTION
In the renin-angiotensin system (RAS) the biologically active angiotensin II (Ang II) is generated by a two-step mechanism. The highly specific enzyme renin cleaves angiotensinogen to angiotensin I (Ang I), which is then further processed to Ang II by the less specific angiotensin-converting enzyme (ACE). Ang II is known to work on at least two receptor5 subtypes called ATi a^d AT2. Whereas AT] seems to transmit most of the known functions of Ang II, the role of AT2 is still unknown.
Modulation of the RAS represents a major advance in the treatment of cardiovascular diseases. ACE inhibitors and ATj blockers have been accepted to treat hypertension (Waeber B. et al, "The renin-angiotensin system: role in experimental and human0 hypertension", in Birkenhager W. H., Reid J. L. (eds): Hypertension, Amsterdam, Elsevier Science Publishing Co, 1986, 489-519; Weber M. A., Am. J. Hypertens., 1992, 5, 247S). In addition, ACE inhibitors are used for renal protection (Rosenberg M. E. el al. , Kidney International, 1994, 45, 403 ; Breyer I A. et al , Kidney International, 1994, 45, S 156), in the prevention of congestive heart failure (Vaughan D. E. et al, Cardiovasc. Res,, 1994, 28, 159;5 Fouad-Tarazi F. et al. , Am. J. Med. , 1988, 84 (Suppl. 3A), 83) and myocardial infarction (Pfeffer M. A. et al, N. Engl J. Med., 1992, 327, 669). MCC-ACV-00001
The rationale to develop renin inhibitors is the specificity of renin (Kleinert H. D., Cardiovasc. Drugs, 1995, 9, 645). The only substrate known for renin is angiotensinogen, which can only be processed (under physiological conditions) by renin. In contrast, ACE can also cleave bradykinin besides Ang I and can be by-passed by chymase, a serine protease (Husain A., J. 5 Hypertens., 1993, 11, 1155). In patients, inhibition of ACE thus leads to bradykinin accumulation causing cough (5-20%) and potentially life-threatening angioneurotic edema (0.1- 0.2%) (Israili Z. H. et al. , Annals of Internal Medicine, 1992, 117, 234). Chymase is not inhibited by ACE inhibitors. Therefore, the formation of Ang II is still possible in patients treated with ACE inhibitors. Blockade of the ATi receptor (e.g. by losartan) on the other hand overexposes0 other AT-receptor subtypes (e.g. AT2) to Ang II, whose concentration is significantly increased by the blockade of ATi receptors. In summary, renin inhibitors are expected to demonstrate a different pharmaceutical profile than ACE inhibitors and ATi blockers with regard to efficacy in blocking the RAS and in safety aspects.
The present invention relates to the identification of renin inhibitors of a non- 5 peptidic nature and of low molecular weight. Described are orally active renin inhibitors of long duration of action which are active in indications beyond blood pressure regulation where the tissular renin-chymase system may be activated leading to pathophysiological^ altered local functions such as renal, cardiac and vascular remodeling, atherosclerosis, and possibly restenosis. The compounds described in this invention represent a novel structural class of renin inhibitors.0
SUMMARY OF THE INVENTION
The present invention is directed to certain compounds and their use in the inhibition of the renin enzyme, including treatment of conditions known to be associated with the renin system. 5 The invention in particular is directed to compounds of Formula I:
I
Y
Figure imgf000004_0001
0 MCC-ACV-00001
and optically pure enantiomers, mixtures of enantiomers such as racemates, diastereomers, mixtures of diastereomers, diastereomeric racemates, mixtures of diastereomeric racemates, meso-forms, salts, solvates, and morphological forms thereof, wherein constituent members are provided herein.
MCC-ACV-00001
DETAILED DESCRIPTION OF THE DISCLOSURE
The present invention provides compounds having Formula I:
Y
Figure imgf000006_0001
or a pharmaceutically acceptable salt thereof, or an optical isomer thereof, wherein:
Rl is selected from the group consisting of: Ci-C6-alkyl, C3-C6 cycloalkyl, C2-C6 alkenyl, C3-C6 cycloalkenyl and C2-C6 alkynyl, wherein each of the foregoing is optionally0 substituted with 1-3 halogens and/or C1-C5 alkoxy;
V is selected from the group consisting of: hydrogen, halogen, Q-C6 alkyl, C3-C6 cycloalkyl, C2-C6 alkenyl, C3-C6 cycloalkenyl, C2-C6 alkynyl, cyano and C1-C5 alkoxy, wherein said alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl and alkoxy are optionally substituted with 1-3 substituents, each of which is independently selected from the5 group consisting of: halogen, C1-C5 alkyl, C2-C5 alkenyl, cyano and C1-C5 alkoxy, wherein each of the foregoing alkyl, alkenyl and alkoxy substituents is optionally substituted with 1-3 halogens;
W is cyclopropyl, unsubstituted or mono-, di-, tri-, tetra- or penta-substituted with fluorine; 0 X is selected from the group consisting of: OR2, R2, -(Cl -C 5 alkylene)-(O)0-l-aryl and
-(C l -C 5 alkylene)-(O)0- 1 -heteroaryl, wherein R2 is selected from the group consisting of: hydrogen, C1 -C5 alkyl, C3-
Cg cycloalkyl, C2-C5 alkenyl, C3-C8 cycloalkenyl, C2-C5 alkynyl, Cl-C5-cyano, -(C1 -C5 alkylene)-O-R3, -(C1-C5 alkylene)-N(-R3)-C(=O)-(C] -C5 alkyl), -(C1 -C5 alkylene)-C(=O)-N(-5 R3)-(Ci-C5 alkyl), -(C1-C5 alkylene)-N(-R3)-C(=O)-O-(Ci-C5 alkyl), -(C1-C5 alkylene)-O-
Figure imgf000006_0002
-C5 alkyl);-(Ci-C5 alkylene)-N(-R3)-(Ci-C5 alkyl), -(Ci -C5 alkylene)-S-
(C1 -C5 alkyl), -(C1-C5 alkylene)-S(=O)-(C]-C5 alkyl) and -(C1-C5 alkylene)-S(=O)2-(Ci -C5 alkyl), wherein R2, except hydrogen, is optionally substituted with 1 -3 substituents,0 independently selected from the group consisting of: halogen, C(=O)OH, C1-C5 alkyl, C2-C5 MCC-ACV-00001
alkenyl, and C1-C5 alkoxy, wherein each of the alkyl, alkenyl, and alkoxy substituents is optionally substituted with 1-3 halogens, wherein the heteroaryl of the -(C1-C5 alkylene)-(0)θ-l-heteroaryl contains 1-3 heteroatoms, independently selected from the group consisting of: N, O and S, wherein each N is 5 optionally in the form of an oxide and each S is optionally in the form of an oxide selected from the group consisting of: S(=O) and S(=O)2, wherein the aryl and heteroaryl of -(C1-C5 alkylene)-(0)θ-l-aryl and -(C1-C5 alkylene)-(O)0- 1 -heteroaryl, respectively, are optionally substituted with 1-4 halogens, and wherein R.3 is selected from the group consisting of: hydrogen, Ci-Cβ alkyl, C3- 10 C6 cycloalkyl, C2-C6 alkenyl, C3-C6 cycloalkenyl, and C2-C6 alkynyl, wherein each of the foregoing alkyl, cycloalkyl, alkenyl, cycloalkenyl and alkynyl substituents is optionally substituted with 1-3 halogens;
Z is C1-C2 alkyl ene optionally substituted with 1-2 substituents, independently selected from the group consisting of: halogen, C1-C3 alkyl and C3 cycloalkyl, wherein the foregoing 5 alkyl and cycloalkyl substituents are optionally substituted with 1-3 halogens; nl is 0 or 1 ;
Y is (i) a five- or six-membered saturated or unsaturated heterocyclic or carbocyclic monocyclic ring ("monocyclic ring") or (ii) a fused ring system which is a five- or six-membered saturated or unsaturated heterocyclic or carbocyclic ring which is fused to a five- or six- 0 membered saturated or unsaturated heterocyclic or carbocyclic ring ("fused ring"), wherein the heterocyclic ring(s) of (i) or (ii) contain from 1-3 heteroatoms, independently selected from N, O and S, wherein each N is optionally in the form of an oxide and each S is optionally in the form of an oxide selected from the group consisting of: S(=O) and 5 wherein the heterocyclic or carbocyclic ring(s) of (i) or (ii) is optionally mono-, di-, tri-. tetra-, penta- or hexa-substituted, each substituent of which is independently selected from the group consisting of:
(1) halogen,
(2) -OH, 0 (3) -NH(R4),
(4) oxo,
(5) -C(=O)-R4,
(6) -O-C(=O)-R4»
(7) Cl -C 5 alkyl optionally substituted with 1-3 halogens, 5 (8) C3-C8 cycloalkyl optionally substituted with 1-3 halogens,
(9) C2-C5 alkenyl optionally substituted with 1-3 halogens,
(10) C3-C8 cycloalkenyl optionally substituted with 1-3 halogens, MCC-ACV-00001
(11) C2-C5 alkynyl optionally substituted with 1-3 halogens,
(12) C1-C5 alkoxy optionally substituted with 1-3 halogens,
(13) cyano,
(14) Ci-C5-cyano optionally substituted with 1-3 halogens, 5 (15) -OCF3,
Figure imgf000008_0001
(17) -(C1-C5 alkylene)-OR6 optionally substituted with 1-3 halogens,
(18) -N(R4)-(CI-C5 alkylene)-OR6 optionally substituted with 1-3 halogens,
(19) -O-(Ci-C5 alkylene)-OR6 optionally substituted with 1-3 halogens,0 (20) -S-(C 1-C5 alkylene)-OR6 optionally substituted with 1-3 halogens,
(21) -S(O)-(C 1-C5 alkylene)-OR6 optionally substituted with 1-3 halogens,
(22) -S(O)2-(Ci-C5 alkylene)-OR6 optionally substituted with 1-3 halogens,
(23) -(C1-C5 alkylene)-N(R4)-C(O)-(Ci-C5 alkylene)-R6 optionally substituted with 1-3 halogens, 5 (24) -(C 1 -C5 alkylene)-N(R4)-C(O)-0R6 optionally substituted with 1 -3 halogens,
(25) -(C1-C5 alkylene)-N(R4)(R6) optionally substituted with 1-3 halogens,
(26) -CKC1-C5 alkylene)-C(R4)2-C(O)0R6 optionally substituted with 1-3 halogens, 0 (27) -(C1-C5
Figure imgf000008_0002
optionally substituted with 1-3 halogens,
(28) -CHC1-C5 alkylene)-moφholine optionally substituted with 1-3 halogens,
(29) -OC(0)-morpholine,
(30) -SR6, 5 (31) -S(O)-R6,
(32) -S(O)2-R6
(33) -N(R4)(R6),
(34) -(C1-C5 alkylene)-C(R4)2-(R6) optionally substituted with 1-3 halogens,
(35) -(R7)O_IR8, 0 (36) C2-C5 alkenyl-OR6 optionally substituted with 1-3 halogens,
(37) C2-C5 alkynyl-OR6 optionally substituted with 1-3 halogens,
(38) -(C1-C5 alkylene)-C(O)-(Ci-C5 alkylene)-R6 optionally substituted with
1-3 halogens,
(39) -(C1-C5 alkylene)-0-C(O)-(Ci-C5 alkylene)-R6 optionally substituted5 with 1-3 halogens,
(40) -(C1-C5 alkylene)-C(O)-N(R4)(R6) optionally substituted with 1-3 halogens, MCC-ACV-00001
(41) -(C1-C5 alkylene)-O-C(=O)-N(R4)(R6) optionally substituted with 1-3 halogens,
(42) -(C1-C5 alkylene)-SR6 optionally substituted with 1-3 halogens,
(43) -(C1-C5 alkylene)-S(=O)-R6 optionally substituted with 1-3 halogens, and 5 (44) -(C1-C5 alkylene)-S(=O)2-R6 optionally substituted with 1-3 halogens, wherein R4 is selected from the group consisting of: hydrogen, C1-C6 alkyl, C3- Cδ cycloalkyl, C2-C6 alkenyl, C3-C8 cycloakenyl and C2-C6 alkynyl, wherein each of the foregoing alkyl, cycloalkyl, alkenyl, cycloalkenyl and alkynyl substituents is optionally substituted with 1-3 halogens, 0 wherein R5 is halogen, wherein R6 is selected from the group consisting of: hydrogen, C] -Cβ alkyl, C3- C8 cycloalkyl, C2-C6 alkenyl, C3-C8 cycloalkenyl and C2-C6 alkynyl, wherein each of the foregoing alkyl, cycloalkyl, alkenyl, cycloalkenyl and alkynl substituents is optionally substituted with 1-3 halogens, 5 wherein R7 is selected from the group consisting of: -C(H)(OH)-, -C(=O)-,
-OC(=O)-, -C(O)O-, -0-, -OC(O)O-, C1-C5 alkylene, C2-C5 alkenylene, -N(R4)-, -S-, -S(O)-, -S(O)2-, -N(R4)-C(=0)-, -C(=O)-N(R4)-5 -OC(0)-N(R4)-, -N(R4)-C(0)0-,
Figure imgf000009_0001
and -S(O)2-N(R4)-S wherein each of the foregoing alkylene and alkenylene substituents is optionally substituted with 1-3 halogens, and wherein R4 is defined above, and0 wherein R^ is a five- or six-membered saturated or unsaturated heterocyclic or carbocyclic ring which is optionally mono-, di-, tri-, tetra- or penta-substituted, wherein each substituent is independently selected from the group consisting of: halogen, -OH, -SR4, -N(R4)(R6), C1-C5 alkyl, C3-C8 cycloalkyl, C2-C5 alkenyl, C3-C6 cycloalkenyl, C2-C5 alkynyl, C1-C5 alkoxy, cyano and Ci-C5-cyano, wherein said heterocyclic ring contains from 15 to 3 heteroatoms, independently selected from N, O and S, wherein each N is optionally in the form of an oxide and each S is optionally is in the form of an oxide selected from the group consisting of: S(=O)and S(=0)2, and wherein R4 and R6 are defined above.
In another embodiment, the invention provides compounds of Formula I, or a pharmaceutically acceptable salt thereof, or an optical isomer thereof, wherein Rl is -CH3 or -0 CH2CH3.
In particular embodiments, the invention provides compounds of Formular I, or a pharmaceutically acceptable salt thereof, wherein Rl is -CH3.
In another embodiment, the invention provides compounds of Formula I, or a pharmaceutically acceptable salt thereof, or an optical isomer thereof, wherein V is hydrogen or5 halogen.
In another embodiment, the invention provides compounds of Formula I, or a pharmaceutically acceptable salt thereof, or an optical isomer thereof, wherein V is H or Cl. MCC-ACV-00001
In another embodiment, the invention provides compounds of Formula I, or a pharmaceutically acceptable salt thereof, or an optical isomer thereof, wherein W is cyclopropyl.
In another embodiment, the invention provides compounds of Formula I, or a pharmaceutically acceptable salt thereof, or an optical isomer thereof, wherein X is H.
In another embodiment, the invention provides compounds of Formula I, or a pharmaceutically acceptable salt thereof, or an optical isomer thereof, wherein (Z)nI is -CH2- or a bond.
In another embodiment, the invention provides compounds of Formula I, or a pharmaceutically acceptable salt thereof, or an optical isomer thereof, wherein:
10 Rl is C1-C2 alkyl optionally substituted with 1-3 halogens,
V is hydrogen or halogen, W is cyclopropyl, X is hydrogen, and Z is -CH2-. 5 In another embodiment, the invention provides compounds of Formula I, or a pharmaceutically acceptable salt thereof, or an optical isomer thereof, wherein Y is
Figure imgf000010_0001
optionally mono-, di-, tri-, tetra- or penta-substituted as described in Formula I.
In another embodiment, the invention provides compounds of Formula II, or a 0 pharmaceutically acceptable salt thereof, or an optical isomer thereof,
II
Figure imgf000010_0002
5 wherein:
A is selected from the group consisting of:
(1) hydrogen,
(2) halogen, MCC-ACV-00001
(3) Ci-Cs alkyl,
(4) C1-C5 alkoxy, and
(5) -S-(CH2)0-3-CH3, wherein (3) and (4) are optionally substituted with 1-3 halogens, 5 B is selected from the group consisting of:
(1) hydrogen,
(2) halogen,
(3) Ci-C5 alkyl,
(4) C1-C5 alkoxy, 0 (5) -OH,
(6) -CF3,
(7) -CC=O)-CH3,
(8) -0-(Cl-Cs alkylene)-O-cyclopropyl,
(9) -0-(Ci-Cs alkylene)-O-(CH2)0-2-CH3, 5 (10) -(Ci-C5 alkylene)-O-(CH2)0-2-CH3,
(11) -OC(0)-morpholine,
(12) -O-(Ci-C5 alkylene)-morpholine,
(13) -O-(Ci-C5 alkylene)-C(CH3)2-C(=O)OH,
(14) -CKC1-C5 alkylene)-C(CH3)2-C(=O)OCH3, 0
and
Figure imgf000011_0001
wherein (3), (4), (8), (9), (10), (12), (13), (14), (15) and (16) are optionally5 substituted with 1-3 halogens,
C is selected from the group consisting of:
(1) hydrogen,
(2) C1-C5 alkyl optionally substituted with 1-3 halogens, and
(3) C1-C5 alkoxy optionally substituted with 1-3 halogens, and 0 D is selected from the group consisting of:
(1) hydrogen,
(2) halogen,
(3) Ci-C5 alkyl,
(4) C1-C5 alkoxy, MCC-ACV-00001
(5) Ci-C5-cyano,
(6) C2-C5 alkenylene-O-(CH2)0-2-CH3,
(7) -(Cl-C5 alkylene)-N(H)-C(=O)-O-(CH2)0-2-CH3,
(8) -(Ci -C5 alkylene)-N(H)-C(=O)-(CH2)0-2-CH3, 5 (9) -(C1-C5 alkylene)-O-CHF2,
(10) -(C1-C5 alkylene)-O-(CH2)0-2-CH3,
(1 1) -O-(Ci-C5 alkylene)-O-(CH2)0-2-CH3,
(12) -(C1-C5 alkylene)-OH,
(13) -S-(Ci-C5 alkylene)-OH, 0 (14) -SCF3
(15) -N(H)-(C 1-C5 alkylene)-O-(CH2)0-2-CH3, and
Figure imgf000012_0001
wherein F, G and H are independently selected from the group consisting of:5 hydrogen, halogen and C1-C3 alkyl optionally substituted with 1-3 halogens, and wherein R9 is selected from the group consisting of: -CH2-, -C(H)(OH)- and
_C(=O)-, wherein (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13) and (15) are optionally substituted with 1-3 halogens, and 0 wherein Rl , V, X and (Z)nI are as described in Formula I.
The compounds of Formula I above, and pharmaceutically acceptable salts thereof, are renin inhibitors. The compounds are useful for inhibiting renin and treating conditions such as hypertension.
Any reference to a compound of formula (I) is to be understood as referring also to optically pure5 enantiomers, mixtures of enantiomers such as racemates, diastereomers, mixtures of diastereomers, diastereomeric racemates, mixtures of diastereomeric racemates, meso-forms, as well as salts (especially pharmaceutically acceptable salts) and solvates (including hydrates) of such compounds, and morphological forms, as appropriate and expedient. The present invention encompasses all these forms. Mixtures are separated in a manner known per se, e.g. by column0 chromatography, thin layer chromatography (TLC), high performance liquid chromatography
(HPLC), or crystallization. The compounds of the present invention may have chiral centers, e.g. one chiral center (providing for two stereoisomers, (R) and (S)), or two chiral centers (providing for up to four stereoisomers, (R5R), (S, S), (R5S)5 and (S1R)), This invention includes all of these optical isomers and mixtures thereof. Unless specifically mentioned otherwise, reference to one5 isomer applies to any of the possible isomers. Whenever the isomeric composition is Mrr-Arv-nnnm
unspecified, e.g., when bonds to a chiral carbon are depicted as straight lines, it is understood that both (R) and (S) configurations of that chiral carbon and, hence, both enantiomers and mixtures thereof are represented.
In addition, compounds with carbon-carbon double bonds may occur in Z- and E- forms with all 5 isomeric forms of the compounds being included in the present invention.
Compounds of the invention also include nitrosated compounds of formula (I) that have been nitrosated through one or more sites such as oxygen (hydroxyl condensation), sulfur (sulfydryl condensation) and/or nitrogen. The nitrosated compounds of the present invention can be prepared using conventional methods known to one skilled in the art. For example, known 10 methods for nitrosating compounds are described in U.S. Pat. Nos. 5,380,758, 5,703,073,
5,994,294, 6,242,432 and 6,218,417; WO 98/19672; and Oae et al., Org. Prep. Proc. Int., 15(3):
165-198 (1983).
Salts are preferably the pharmaceutically acceptable salts of the compounds of Formula (I). The expression "pharmaceutically acceptable salts" encompasses either salts with inorganic acids or 5 organic acids like hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, sulfamic acid, phosphoric acid, nitric acid, phosphorous acid, nitrous acid, citric acid, formic acid, acetic acid, oxalic acid, maleic acid, lactic acid, tartaric acid, fumaric acid, benzoic acid, mandelic acid, cinnamic acid, palmoic acid, stearic acid, glutamic acid, aspartic acid, methanesulfonic acid, ethanesulfonic acid, ethanedisulfonic acid, p-toluenesulfonic acid, salicylic acid, succinic acid, 0 trifluoroacetic acid, and the like that are non toxic to living organisms or, in case the compound of formula (I) is acidic in nature, with an inorganic base like an alkali or earth alkali base, e.g. sodium hydroxide, potassium hydroxide, calcium hydroxide and the like. For other examples of pharmaceutically acceptable salts, reference can be made notably to "Salt selection for basic drugs", Int. J. Pharm. (1986), 33, 201-217. 5 The invention also includes derivatives of the compound of Formula I, acting as prodrugs. These prodrugs, following administration to the patient, are converted in the body by normal metabolic processes to the compound of Formula 1. Such prodrugs include those that demonstrate enhanced bioavailability (see Table 4 below), tissue specificity, and/or cellular delivery, to improve drug absorption of the compound of Formula I. The effect of such prodrugs0 may result from modification of physicochemical properties such as lipophilicity, molecular weight, charge, and other physicochemical properties that determine the permeation properties of the drug.
The general terms used hereinbefore in Formula I and hereinafter preferably have, within this disclosure, the following meanings, unless otherwise indicated. Where the plural form is used5 for compounds, salts, pharmaceutical compositions, diseases and the like, this is intended to mean also a single compound, salt, or the like. MCC-ACV-COOO 1
The term "alkyl", alone or in combination with other groups, unless indicated otherwise, means saturated, straight and branched chain groups with one to six carbon atoms (which may be represented by "C \.β alkyl" or "C1-C6 alkyl"). When the intended meaning is other than this, for example, when the number of carbon atoms is in the range of one to four carbon atoms, this 5 meaning is represented in like fashion as "C 1.4 alkyl" or "C1-C4 alkyl". Examples of alkyl groups are methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, pentyl, hexyl and heptyl. The methyl, ethyl and isopropyl groups are preferred.
Structural depictions of compounds may show a terminal methyl group as "-CH3", "CH3", "-Me", "Me"or "^- " (i.e., these have equivalent meanings). A terminal ethyl
10 group may be depicted as "-CH2CH3", "CH2CH3", "-Et", " Et "or "^ " (i.e., these have equivalent meanings).
The term "alkylene" refers to any divalent linear or branched chain aliphatic hydrocarbon radical having a number of carbon atoms in the specified range. Thus, for example, "-Cl -Cft alkylene-" refers to any of the Cl to Cβ linear or branched alkylenes, and "-C1-C4 alkylene-" refers to any 5 of the Ci to C4 linear or branched alkylenes. A class of alkylenes of particular interest with respect to the invention is -(CH2)l-6-, and sub-classes of particular interest include -(CH2)l-4-, -(CH2)l-3-, -(CH2)l-2-> and -CH2-. Another sub-class of interest is an alkylene selected from the group consisting of -CH2-, -CH(CH3)-, and -C(CH3)2-. Expressions such as "C1-C4 alkyl ene-phenyl" and "C1-C4 alkyl substitued with phenyl" have the same meaning and are used 0 interchangeably.
The term "alkenyl", alone or in combination with other groups, unless indicated otherwise, means unsaturated (i.e., having at least one double bond) straight and branched chain groups with two to six carbon atoms (which may be represented by "C2-6 alkenyl" or "C2-C6 alkenyl").
When the intended meaning is other than this, for example, when the number of carbon atoms is 5 in the range of two to four carbon atoms, this meaning is represented in like fashion as "C2-4 alkenyl" or "C2-C4 alkenyl".
The term "alkenylene" refers to any divalent linear or branched chain aliphatic mono-unsaturated hydrocarbon radical having a number of carbon atoms in the specified range.
The term "alkynyl", alone or in combination with other groups, unless indicated otherwise,0 means unsaturated (i.e., having at least one triple bond) straight and branched chain groups with two to six carbon atoms (which may be represented by "C2-6 alkynyl" or "C2-C6 alkynyl").
When the intended meaning is other than this, for example, when the number of carbon atoms is in the range of two to four carbon atoms, this meaning is represented in like fashion as "C2-4 alkynyl" or "C2-C4 alkynyl". 5 The term "alkoxy", alone or in combination with other groups, refers to an R-O- group, wherein R is an alkyl group. Examples of alkoxy groups are methoxy, ethoxy, propoxy, iso-propoxy, iso- butoxy, sec-butoxy and tert-butoxy. MCC-ACV-00001
The term "hydroxy-alkyl", alone or in combination with other groups, refers to an HO-R- group, wherein R is an alkyl group. Examples of hydroxy-alkyl groups are HO-CH2-, HO-CH2CH2-, HO-CH2CH2CH2- and CH3CH(OH)-.
The term "halogen" means fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or 5 bromine, especially fluorine or chlorine.
The term "cycloalkyl", alone or in combination with other groups, unless indicated otherwise, means a saturated cyclic hydrocarbon ring system with 3 to 8 carbon atoms, e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl. This may be represented by "C3-8 cycloalkyl" or "C3-C8 cycloalkyl"). When the intended meaning is other than this, for
10 example, when the number of carbon atoms is in the range of three to six carbon atoms, this meaning is represented in like fashion as "C3-6 cycloalkyl" or "C3-C6 cycloalkyl".
The term "carbocycle" (and variations thereof such as "carbocyclic" or "carbocyclyl") as used herein, unless otherwise indicated, refers to a C3 to Cs monocyclic saturated or unsaturated ring.
The carbocycle may be attached to the rest of the molecule at any carbon atom which results in a 5 stable compound. Saturated carbocyclic rings are also referred to as cycloalkyl rings, e.g., cyclopropyl, cyclobutyl, etc.
The term "heterocycle" (and variations thereof such as "heterocyclic" or "heterocyclyl") broadly refers to a stable 4- to 8-membered, saturated or unsaturated monocyclic ring which contains one or more heteroatoms (e.g., from 1 to 6 heteroatoms, or from 1 to 4 0 heteroatoms) selected from N, O and S and a balance of carbon atoms (typically at least one carbon atom); wherein any one or more of the nitrogen and sulfur heteroatoms is optionally oxidized, and any one or more of the nitrogen heteroatoms is optionally quaternized. Unless otherwise specified, the heterocyclic ring may be attached at any heteroatom or carbon atom, provided that attachment results in the creation of a stable structure. Unless otherwise specified, 5 when the heterocyclic ring has substituents, it is understood that the substituents may be attached to any atom in the ring, whether a heteroatom or a carbon atom, provided that a stable chemical structure results.
The term "aryl", alone or in combination, relates to a phenyl, naphthyl or indanyl group, preferably a phenyl group. The abbreviation "Ph" represents phenyl. 0 The term "heteroaryl", alone or in combination, means six-membered aromatic rings containing one to four nitrogen atoms; benzofused six-membered aromatic rings containing one to three nitrogen atoms; five-membered aromatic rings containing one oxygen, one nitrogen or one sulfur atom; benzofused five-membered aromatic rings containing one oxygen, one nitrogen or one sulfur atom; five-membered aromatic rings containing two heteroatoms independently selected5 from oxygen, nitrogen and sulfur and benzofused derivatives of such rings; five-membered aromatic rings containing three nitrogen atoms and benzofused derivatives thereof; a tetrazolyl ring; a thiazinyl ring; or coumarinyl. Examples of such ring systems are furanyl, thienyl, MCC-ACV-00001
pyrrolyl, pyridinyl, pyrimidinyl, indolyl, quinolinyl, isoquinolinyl, imidazolyl, triazinyl, thiazolyl, isothiazolyl, pyridazinyl, pyrazolyl, oxazolyl, isoxazolyl, benzothienyl, quinazolinyl and quinoxalinyl.
Specific examples of compounds of formula I, and pharmaceutically acceptable salts thereof, 5 include those listed below:
fr<my-N-Cyclopropyl-4-(l -methyl-2-oxo- 1 ,2-dihydro-4-quinolinyl)-N-({3- { [2- (methyloxy)ethyl] oxy } - 5- [3 -(methyloxy)propyljphenyl } methyI)-3 -piperidinecarboxamide (Ex . 1 ) 0 fr<ms-4-(7-Chloro-l -methyl-2-oxo- l ,2-dihydro-4-quinolinyl)-iV-cyclopropyl-N-( {3- {[2- (methyloxy)ethyl]oxy}-5-[3-(methyloxy)propyl]phenyl}methyl)-3-piperidinecarboxamide (Ex. 2)
The present invention also encompasses a pharmaceutical formulation comprising a pharmaceutically acceptable carrier and the compound of Formula I or a pharmaceutically 5 acceptable crystal form or hydrate thereof. A preferred embodiment is a pharmaceutical composition of the compound of Formula I, comprising, in addition, a second agent.
List of abbreviations:
BIΝAP 2,2'-bis(diphenylphosphino)- 1 , 1 '-binaphthyl 0 BOC r-butyloxycarbonyl
BSA bovine serum albumin
COD 1,5-cyclooctadiene
DBU 1 ,8-diazabicyclo[5.4.0]undec-7-ene
DCM dichloromethane 5 DIBAl-H diisobutylaluminum hydride
DMAP 4-dimethyIamino pyridine
DME 1 ,2-dimethoxyethane
DMF N,N-dimethylformamide
DMP Dess-Martin periodinane 0 DMSO dimethylsulfoxide
DPPB 1 ,4-bis(diphenylphosphino)butane
DPPF 1 , 1 '-bis(diphenylphosphino)ferrocene
EDTA ethylenediaminetetraacetic acid
EIA enzyme immunoassay 5 Et2O diethylether
EtOAc ethyl acetate
HATU O-(7-azabenzotriazol- 1 -yl)-N, N, N ',N '-tetramethyluronium hexafluorophosphate MCC-ACV-00001
Hex hexanes
KHMDS potassium hexamethyldisilazide wCPBA metø-chloroperbenzoic acid
MeOH methanol
5 NBS N-bromo succinimide
NMO N-methylmorpholine-N-oxide
«-PrOH rø-propanol
PBS phosphate-buffered saline
PG protecting group
10 PPh3 triphenylphosphine
RT room temperature
TBAF tetrabutylammonium fluoride
TFA trifluoroacetic acid
THF tetrahydrofuran 5 TMEDA N,N,N',N'-tetramethylethylenediamine
ToI toluene
Unless expressly stated to the contrary, all ranges cited herein are inclusive. For example, an alkyl group described as Cl - Ce alkyl means the alkyl group can contain 1, 2, 3, 4, 5 or 6 carbon 0 atoms.
When a given range includes 0 (e.g., (CH2)θ-3)> 0 implies a direct covalent bond.
When any variable occurs more than one time in any constituent or in any formula depicting and describing compounds of the invention, its definition on each occurrence is independent of its definition at every other occurrence. 5 Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
The term "substituted" (e.g., as in "aryl which is optionally substituted with one or more substituents ...") includes mono- and poly-substitution by a named substituent to the extent such single and multiple substitution (including multiple substitution at the same site) is chemically0 allowed and results in a stable compound.
A "stable" compound is a compound which can be prepared and isolated and whose structure and properties remain or can be caused to remain essentially unchanged for a period of time sufficient to allow use of the compound for the purposes described herein (e.g., therapeutic or prophylactic administration to a subject). 5 In compounds of the invention having pyridyl Ν-oxide moieties, the pyridyl-Ν-oxide portion is structurally depicted using conventional representations such as MCC-ACV-OOOOI
V J/ N-O
<\ .N- O"
which have equivalent meanings.
The invention relates to a method for the treatment and/or prophylaxis of diseases 5 which are related to hypertension, congestive heart failure, pulmonary hypertension, systolic hypertension, renal insufficiency, renal ischemia, renal failure, renal fibrosis, cardiac insufficiency, cardiac hypertrophy, cardiac fibrosis, myocardial ischemia, cardiomyopathy, glomerulonephritis, renal colic, complications resulting from diabetes such as nephropathy, vasculopathy and neuropathy, glaucoma, elevated intra-ocular pressure, atherosclerosis,0 restenosis post angioplasty, complications following vascular or cardiac surgery, erectile dysfunction, hyperaldosteronism, lung fibrosis, scleroderma, anxiety, cognitive disorders, complications of treatments with immunosuppressive agents, and other diseases known to be related to the renin-angiotensin system, which method comprises administrating a compound as defined above to a human being or animal. 5 In another embodiment, the invention relates to a method for the treatment and/or prophylaxis of diseases which are related to hypertension, congestive heart failure, pulmonary hypertension, renal insufficiency, renal ischemia, renal failure, renal fibrosis, cardiac insufficiency, cardiac hypertrophy, cardiac fibrosis, myocardial ischemia, cardiomyopathy, complications resulting from diabetes such as nephropathy, vasculopathy and neuropathy. 0 In another embodiment, the invention relates to a method for the treatment and/or prophylaxis of diseases, which are associated with a dysregulation of the renin-angiotensin system as well as for the treatment of the above-mentioned diseases.
The invention also relates to the use of compounds of formula (I) for the preparation of a medicament for the treatment and/or prophylaxis of the above-mentioned5 diseases.
Compounds of formula (I) or the above-mentioned pharmaceutical compositions are also of use in combination with other pharmacologically active compounds comprising ACE- inhibitors, neutral endopeptidase inhibitors, angiotensin II receptor antagonists, endothelin receptors antagonists, vasodilators, calcium antagonists, potassium activators, diuretics,0 sympatholitics, beta-adrenergic antagonists, alpha-adrenergic antagonists or with other drugs beneficial for the prevention or the treatment of the above-mentioned diseases. The term "administration" and variants thereof (e.g., "administering" a compound) in reference to a compound of Formula I mean providing the compound or a prodrug of the compound to the individual in need of treatment or prophylaxis. When a compound of the invention or a prodrug5 thereof is provided in combination with one or more other active agents (e.g., an agent such as anangiotensin II receptor antagonist, ACE inhibitor, or other active agent which is known to MCC-ACV-00001
reduce blood pressure), "administration" and its variants are each understood to include provision of the compound or prodrug and other agents at the same time or at different times. When the agents of a combination are administered at the same time, they can be administered together in a single composition or they can be administered separately.
5 As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combining the specified ingredients in the specified amounts. By "pharmaceutically acceptable" is meant that the ingredients of the pharmaceutical composition must be compatible with each other and not deleterious to the recipient thereof.
10 The term "subject" as used herein refers to an animal, preferably a mammal, most preferably a human, who has been the object of treatment, observation or experiment. The term "effective amount" as used herein means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue, system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician. In 5 one embodiment, the effective amount is a "therapeutically effective amount" for the alleviation of the symptoms of the disease or condition being treated. In another embodiment, the effective amount is a "prophylactically effective amount" for prophylaxis of the symptoms of the disease or condition being prevented. The term also includes herein the amount of active compound sufficient to inhibit renin and thereby elicit the response being sought (i.e., an "inhibition 0 effective amount"). When the active compound (i.e., active ingredient) is administered as the salt, references to the amount of active ingredient are to the free form (i.e., the non-salt form) of the compound.
In a preferred embodiment, this amount is comprised between 1 mg and 1000 mg per day. In a particularly preferred embodiment, this amount is comprised between 1 mg and 500 5 mg per day. In a more particularly preferred embodiment, this amount is comprised between 1 mg and 200 mg per day.
In the method of the present invention (i.e., inhibiting renin), the compounds of Formula I, optionally in the form of a salt, can be administered by any means that produces contact of the active agent with the agent's site of action. They can be administered by any conventional means0 available for use in conjunction with pharmaceuticals, either as individual therapeutic agents or in a combination of therapeutic agents. They can be administered alone, but typically are administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice. The compounds of the invention can, for example, be administered orally, parenterally (including subcutaneous injections, intravenous,5 intramuscular, intrasternal injection or infusion techniques), by inhalation spray, or rectally, in the form of a unit dosage of a pharmaceutical composition containing an effective amount of the compound and conventional non-toxic pharmaceutically-acceptable carriers, adjuvants and MCC-ACV-00001
vehicles. Liquid preparations suitable for oral administration (e.g., suspensions, syrups, elixirs and the like) can be prepared according to techniques known in the art and can employ any of the usual media such as water, glycols, oils, alcohols and the like. Solid preparations suitable for oral administration (e.g., powders, pills, capsules and tablets) can be prepared according to 5 techniques known in the art and can employ such solid excipients as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like. Parenteral compositions can be prepared according to techniques known in the art and typically employ sterile water as a carrier and optionally other ingredients, such as a solubility aid. Injectable solutions can be prepared according to methods known in the art wherein the carrier comprises a saline solution, a glucose 0 solution or a solution containing a mixture of saline and glucose. Further description of methods suitable for use in preparing pharmaceutical compositions for use in the present invention and of ingredients suitable for use in said compositions is provided in Remington's Pharmaceutical Sciences, 18th edition, edited by A. R. Gennaro, Mack Publishing Co., 1990.
Methods of Synthesis 5 Compounds of the present invention can be made by a variety of methods depicted in the illustrative synthetic reaction schemes shown and described below. The starting materials and reagents used in preparing these compounds generally are either available from commercial suppliers, such as Aldrich Chemical Co., or are prepared by methods known to those skilled in the art following procedures set forth in references such as Fieser and Fieser's Reagents for Organic Synthesis; Wiley & Sons: New0 York, Volumes 1-21; R. C. LaRock, Comprehensive Organic Transformations, 2.sup.nd edition Wiley- VCH, New York 1999; Comprehensive Organic Synthesis, B. Trost and I. Fleming (Eds.) vol. 1-9 Pergamon, Oxford, 1991 ; Comprehensive Heterocyclic Chemistry, A. R. Katritzky and C. W. Rees (Eds) Pergamon, Oxford 1984, vol. 1-9; Comprehensive Heterocyclic Chemistry II, A. R. Katritzky and C. W. Rees (Eds) Pergamon, Oxford 1996, vol. 1-11; and Organic Reactions, Wiley & Sons: New York, 1991,5 Volumes 1-40. The following synthetic reaction schemes and examples are merely illustrative of some methods by which the compounds of the present invention can be synthesized, and various modifications to these synthetic reaction schemes can be made and will be suggested to one skilled in the art having referred to the disclosure contained in this application.
The starting materials and the intermediates of the synthetic reaction schemes can be0 isolated and purified if desired using conventional techniques, including but not limited to, filtration, distillation, crystallization, chromatography, and the like. Such materials can be characterized using conventional means, including physical constants and spectral data.
Unless specifically stated otherwise, the experimental procedures were performed under the following conditions. Evaporation of solvent was carried out using a rotary evaporator under reduced5 pressure (600-4000 pascals: 4.5-30 mm Hg) with a bath temperature of up to 60 0C. Reactions are typically run under nitrogen atmosphere at ambient temperature if not otherwise mentioned. Anhydrous solvent such as THF, DMF, Et2O, DME and Toluene are commercial grade. Reagents are commercial MCC-ACV-00001
grade and were used without further purification. Flash chromatography is run on silica gel (230-400 mesh).The course of the reaction was followed by either thin layer chromatography (TLC) or nuclear magnetic resonance (NMR) spectrometry and reaction times given are for illustration only. The structure and purity of all final products were ascertained by TLC, mass spectrometry, 1H NMR and high-pressure 5 liquid chromatography (HPLC). Chemical symbols have their usual meanings. The following abbreviations have also been used: v (volume), w (weight), b.p. (boiling point), m.p. (melting point), L (Hter(s)), mL (milliliter(s)), g (gram(s)), mg (milligram(s)), mol (mole(s)), mmol (millimole(s)), eq. (equivalent(s)). Unless otherwise specified, all variables mentioned below have the meanings as provided above.
10 Generally, compounds of the present invention can be prepared via the coupling of an appropriately substituted isoquinolone I with an appropriately functionalized amine II, followed by the removal of the BOC-protecting group from amide III (Scheme 1).
MCC-ACV-00001
Scheme 1
Figure imgf000022_0001
i III
Figure imgf000022_0002
IV
Synthesis of the requisite isoquinolone I can, for example, be performed as exemplified in Scheme 2. Typically, metal-catalyzed Suzuki coupling of boronate VI, prepared from known triflate V (see Ujjarnwalla, Feroze et at., Bioorg. Med. Chem. Lett.; 15 (18), 2005, p. 4023-4028), with iodide VII, can provide α,β-unsaturated ester VIII. Reduction of the double bond; most conveniently accomplished using either magnesium or samarium iodide, and subsequent base-mediated equilibration, would then afford saturated ester IX as a single diastereomer. Its conversion to the corresponding isoquinolone X can be realized in two steps via the initial treatment of ester IX with wCPBA; or an0 equivalent oxidant, followed by the reaction of the resulting quinoline N-oxide with TFAA in triethylamine; or an equivalent rearrangement promoter. Isoquinolone XI can be readily accessed via N- alkylation of isoquinolone X with an appropriate reagent and for cases where V is a halogen such as chlorine or bromine, it can be further modified via, for example, typical metal-mediated couplings such as the Suzuki or Buchwald-Hartwig variants. Finally, saponification of isoquinolone XI would furnish5 isoquinolone I.
MCC-ACV-00001
Scheme 2
Figure imgf000023_0001
Vl VIII
Xl X IX
In most cases, approaches to the preparation of amine II used in Scheme 1 have already been disclosed in a published patent application WO 2007/009250 A 1. Those not already known can be synthesized according to, for example, methods exemplified in Scheme 3. Where appropriate, aldehyde XII is first regioselectively brominated. The resulting bromide XIII is then subjected to the usual reductive amination conditions to afford amine XIV. If necessary, amine XV could subsequently be protected as its corresponding JV-BOC derivative XVI. Using typical metal-mediated couplings such as the Suzuki or0 Buchwald-Hartwig variants, the R chain in amine II can be appended onto either amine XIV or amine XV. Simple chemical modifications such as hydrogenation, Wittig olefination, reduction, acylation, ozonolysis, oxidation and others, where necessary, may be carried out to arrive at the desired R group in amine II. Finally, for amine XVI, a simple deprotection step is required.
MCC-ACV-00001
Figure imgf000024_0001
Figure imgf000024_0002
Indole is another common scaffold seen in amine II. These amines can be prepared, for example, from alkylation of indole XVIII under typical reaction conditions. Again, simple chemical modifications such as hydrogenation, Wittig olefination, reduction, acylation, ozonolysis, oxidation and others, where necessary, may be carried out to arrive at the desired R group in amine II. Finally, reductive amination of XIX would furnish the desired amine II. Should indole XVIII not be commericially available, it can be accessed via, for example, a simple formylation of indole XVII, which is most conveniently accomplished with POCI3 in DMF. 0 Scheme 4
Figure imgf000024_0003
XVII XVIII XIX
For compounds of the present invention bearing an alkoxy group at position 4 of the piperidine ring, they are most conveniently accessed via an initial amide formation between amine II and5 β-ketoester XX, followed by the addition of Gignard reagent synthesized from quinoline VII and an appropriate source of magnesium. Functionalization of the resulting alcohol XXII via, for example, alkylation with a suitable electrophile, if necessary, would precede the conversion of quinoline XXIII into the desired isoquinolone XXV using chemistries already described in Scheme II. Finally, BOC removal can be accomplished under typical conditions (Scheme 5). MCC-ACV-00001
Scheme 5
Figure imgf000025_0001
XX XXI
Mg or /PrMgCI
Figure imgf000025_0002
Figure imgf000025_0003
XXIII XXII
Figure imgf000025_0004
Figure imgf000025_0005
XXIV XXV XXVI
Representative cyclopropylamine building blocks are shown in Table 1.
Figure imgf000025_0006
Figure imgf000025_0007
MCC-ACV-00001
Figure imgf000026_0001
MCC-ACV-00001
Figure imgf000027_0001
MCC-ACV-00001
Figure imgf000028_0001
Figure imgf000028_0002
MCC-ACV-00001
Figure imgf000029_0001
Figure imgf000029_0002
MCC-ACV-00001
Figure imgf000030_0001
MCC-ACV-OOOOl
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0003
Amine 1
N-(2,3-Dichlorobenzy])cyclopropanamine
5 Amine 1 was prepared according to the procedure described in WO 2007/009250 Al patent.
Amine 2
N-{[5-Chloro-2-(3-methoxypropyl)-4-pyridinyl]methyl}cyclopropanamine 0 Amine 2 was prepared according to the procedure described in WO 2007/009250 Al patent.
Amine 3
N-({2-Chloro-5-[3-(methyloxy)propyI]phenyl}methyl)cyclopropanamine 5 Amine 3 was prepared according to the procedure described in WO 2007/009250 Al patent.
Amine 4
N-({2-Chloro-5-[2-(methyloxy)ethyl]phenyl}methyl)cyclopropanamine 0 Amine 4 was prepared according to the procedure described in WO 2007/009250 Al patent.
Amine 5
N-({2,3-Dichloro-5-[3-(methoxypropyl)propyl]phenyl}methyl)cyclopropanamine 5 Step 1: 5-Bromo-2,3-dichlorobenzaldehyde
To a TFA solution (0.38 M) of 2,3-dichlorobenzaldehyde (1 eq.) was added sulfuric acid (5 eq.). Over a period of 3 h, ZV-bromosuccinimide (1.5 eq.) was added portionwise at RT to afford, in the end, a yellow-orange solution. After 72 h, the crude reaction mixture was diluted with 9:1 (v/v) MCC-ACV-00001
hexanes: ether and then washed sequentially with water, 1 N aq. NaOH, water and brine. The organic extract was dried over Na2 SO4, filtered and the filtrate concentrated in vacuo to afford the title compound as a white solid.
Step 2: N-[(5-Bromo-2,3-dichlorophenyl)methyl]cyclopropanamine
5 5-Bromo-2,3-dichlorobenzaldehyde (1 eq.) from the previous step and cyclopropylamine
(2 eq.) were combined in CH2Cl2 (0.1 M). To this was then added MgSO4 (1 eq.) and the resulting suspension was stirred at RT for 18 h. The insolubles were then removed via filtration through a pad of celite and the filtrate was concentrated in vacuo. The crude imine thus obtained was then re-taken up in a 2: 1 (v/v) mixture of THF: MeOH (0.17 M). To this solution was added sodium borohydride (10 eq.)0 portionwise and the resulting mixture was stirred at RT for 48 h. The reaction was quenched with 1 Ν aq. HCl, neutralized with 1 Ν aq. NaOH and extracted with ether. The combined organic extracts were then washed with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, Hex -^ 1 : 1 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. 5 Step 3: Λf-({2,3-Dichloro-5-[(l£')-3-(methyloxy)-l-propen-l-yl]phenyl}methyl)cyclopropanamine
N-[(5-Bromo-2,3-dichlorophenyl)methyl]cyclopropanamine (1 eq.) from the previous step and 4,4,5,5-tetramethyl-2-[(ljET)-3-(methyIoxy)-l-propen-l-yl]-l,3,2-dioxaborolane (1 ,5 eq.) were combined in a 5: 1 (v/v) mixture of DMF: «-PrOH (0.17 M). To this solution was then added trans- bis(triphenylphosphine) palladium(II) bromide (0.05 eq.) and the vessel was repeatedly evacuated and0 back-filled with nitrogen. Finally, 2 Ν aq. Na2CO3 (2 eq.) was added and the resulting biphasic suspension was heated at 900C for 8 h. The now black suspension was cooled to RT, diluted with water and extracted with ether. The combined organic extracts were then washed further with 1 N aq. NaOH, water and brine. This was then dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford a viscous red oil. Purification of the crude product thus obtained by way of flash chromatography5 (SiO2, Hex -> 3:7 (v/v) Hex : EtOAc) afforded the title compound as a yellow oil. Step 4: Amine 5
N-({2,3-Dichloro-5-[(l£')-3-(methyloxy)-l-propen-l-yl]phenyl}methyl)cyclopro- panamine (1 eq.) from the previous step and 10% w/w palladium over charcoal (0.1 eq.) were suspended in EtOAc (0.03 M). The vessel was then evacuated and purged with H2. Under a balloon-filled H20 atmosphere, the reaction suspension was stirred at RT for 2 h. The reaction was then quenched with CH2Cl2, filtered through a bed of celite and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, Hex -> 1 : 1 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. MCC-ACV-00001
Amine 6
N-({2,3-Dichloro-5-[2-(methyIoxy)ethyl]phenyl}methyl)cyclopropanarnine
Step 1 : l,l-Dimethylethyl[(5-bromo-2,3-dichlorophenyl)methyl]cyclopropylcarbamate
N-KS-Bromo^^-dichlorophenyOmethylJcyclopropanamine (1 eq.) from Step 2, Amine 5 5 and d\-tert-buty\ dicarbonate (1.1 eq.) were combined in CH2Cl2 (0.17 M). To this solution was then added Hunig's base (1.2 eq.) and the resulting yellow solution was stirred at RT for 3 h. The reaction mixture was then diluted with ether and washed sequentially with water and brine. The organic layer was then dried over Νa2SC>4, filtered and the filtrate concentrated in vacuo to afford a yellow oil. Purification of the crude product thus obtained by way of flash chromatography (SiO2, Hex -ϊ 3:7 (v/v)0 Hex : EtOAc) afforded the title compound as a colorless oil.
Step 2: 1,1-Dimethylethyl cyclopropyl[(2,3-dichloro-5-ethenylphenyl)methyl]carbamate l,l-Dimethylethyl[(5-bromo-2,3-dichlorophenyl)methyl]cyclopropylcarbamate (l eq.) from the previous step and 2-ethenyl-4,4,5,5-tetramethyl-l ,3,2-dioxaborolane (1 eq.) were combined in a 2: 1 (v/v) mixture of DMF: n-PrOH (0.1 M). To this solution was then added palladium(II) acetate (0.05 5 eq.) and triphenylphosphine (0.15 eq.) before the vessel was repeatedly evacuated and back-filled with nitrogen. Finally, 2 N aq. Na23 (2 eq.) was added and the resulting biphasic suspension was heated at 9O0C for 18 h. The now black suspension was cooled to RT, diluted with water and extracted with 1 : 1 (v/v) hexanes: ether. The combined organic extracts were then washed further with 1 N aq. NaOH, water and brine. This was then dried over Na2SO^ filtered and the filtrate concentrated in vacuo to afford a pale yellow oil. Purification of the crude product thus obtained by way of flash chromatography (SiO2, Hex -^ 9: 1 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. Step 3: 1 ,1-Dimethylethyl cyclopropyl{[2,3-dichloro-5-(2-hydroxyethyl)phenyl]methyl}carbamate
1 ,1 -Dimethylethyl cyclopropyl[(2,3-dichloro-5-ethenylphenyl)methyl]carbamate (1 eq.) from the previous step, [Ir(COD)Cl]2 (0.025 eq.) and DPPB (0.05 eq.) were combined in THF (0, 1 1 M). To this solution was then added 4,4,5, 5-tetramethyl-l,3,2-dioxaborolane (1.3 eq.) and the resulting red solution was stirred at RT for 12 h. Finally, sodium perborate (0.1 M aqueous solution, 1 eq.) was added and the now black biphasic solution was vigorously stirred at RT for another 12 h. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were then washed further with 1 N aq. NaOH, water and brine. This was then dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford a pale yellow oil. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc ^ 3:7 (v/v) EtOAc : Hex) afforded the title compound as a colorless oil. Step 4: 1 ,1 -Dimethylethyl cyclopropyl({2,3-dichloro-5-[2-(methyloxy)ethyl]phenyl}methyl)carbamate
1 , 1 -Dimethylethyl cyclopropyl { [2,3 -dichloro-5-(2- hydroxyethyl)phenyl]methyl}carbamate (1 eq.) was taken up in THF (0.3 M). To this solution was then added sodium hydride (60% w/w dispersion in oil, 1 eq.) and the resulting suspension was stirred at RT for 5 min. Finally, iodomethane (10 eq.) was added and the now pale yellow solution was stirred in MCC-ACV-00001
darkness at RT for another 10 h. The volatiles were then removed in vacuo and the resulting residue partitioned between ether and 1 N aq. HCl. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were then washed further with 1 N aq. NaOH, water and brine. This was then dried over Na2SO4, filtered and the filtrate concentrated in vacuo to give the title 5 compound (contaminated with oil) as a pale yellow oil. Step 5: Amine 6 l,l-Dimethylethyl cyclopropyl({2,3-dichloro-5-[2-
(methyloxy)ethyl]phenyl}methyl)carbamate (1 eq.) from the previous step was taken up in CH2Cl2 (0.1 M), To this solution was then added HCl (4.0 M in dioxane, 30 eq.) and the resulting solution was 10 stirred at RT for 2 h. The reaction was then quenched with 1 N aq. NaOH and extracted with ether. The combined organic extracts were then washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc -^ EtOAc) afforded the title compound as a colorless oil.
15 Amine 7 iV-(2-Methyl-5-[3-(methyloxy)propyl]phenyl}methyl)cyclopropanamine
Step 1 : 5-Chloro-N-cyclopropyl-2-methylbenzamide
To a toluene solution (1 M) of 5-chloro-2-methylbenzoic acid (I eq.) and DMF (1.2 eq.) was added at 0 0C oxalyl chloride (1.2 eq.) dropwise over 1 h. The resulting solution was stirred at 0 0C 20 for 2 h before the volatiles were removed in vacuo, The resulting residue was taken up in dichloromethane (1 M), cooled to 0 0C and added sequentially cyclopropylamine (1.5 eq.) and Hunig's base (2 eq.) dropwise. The resulting suspension was stirred at RT for 18 h. The reaction was quenched with 1 N aq. HCl and extracted with dichloromethane. The combined organic extracts were dried over
MgSO4, filtered and the filtrate concentrated in vacuo to ~ 1/3 in volume. The resulting white 25 suspension was added an equivalent volume of hexanes and the title compound was isolated via vacuum filtration.
Step 2: N-[(5-Chloro-2-methylphenyl)methyl]cyclopropanamine
At 0 0C, a suspension of 5-chloro-./V-cyclopropyl~2-rnethylbenzarnide (1 eq.) from the previous step in THF (0.4 M) was added borane (1.0 M in THF, 3 eq.). The resulting suspension was 30 warmed to RT over 1 h and then heated at reflux for 1 h. The now pale yellow solution was re-cooled to
0 0C and carefully quenched with 1 Ν aq. HCl. The resulting mixture was heated at reflux for 1 h to ensure complete breakdown of the amine-borane complex. Following careful neutralization with 1 Ν aq.
NaOH, the aqueous layer was separated and back extracted with EtOAc. The combined organic extracts were washed with brine, dried over MgSO4 and filtered. The filtrate was concentrated in vacuo and the 35 crude product thus obtained was purified further by way of flash chromatography (SiO2, Hex -^ 4: 1 (v/v)
Hex : Et2O) to reveal the title compound as a colorless oil.
Step 3 : 1,1 -Dimethylethyl [(5-chloro-2-methylphenyl)methyl]cyclopropylcarbamate MCC-ACV-00001
A THF solution (0.3 M) of 7V-[(5-chloro-2-methylphenyl)methyl]cyclopropanamine from the previous step (1 eq.) was added at -78 0C potassium hexamethyldisilazide (0.5 M in toluene, 1.2 eq.). After 1 h of stirring at -78 0C, di-fert-butyl dicarbonate (1.1 eq.) was added and the resulting mixture was slowly warmed to RT over 2 h. The reaction was quenched with sat. aq. NH4Cl and then extracted with 5 ether. The combined organic extracts were washed with brine, dried over MgSO4, filtered and the filtrate concentrated in vacuo. Further purification by way of flash chromatography (Siθ2, Hex -^ 4: 1 (v/v) Hex : Et2O) afforded the title compound as a pale yellow oil.
Step 4: 1,1-Dimethylethyl cyclopropyl({2-methyl-5-[(l£)-3-(methyloxy)-l-propen-l- y rjphenyl } methyl)carbamate 0 1,1-Dimethylethyl [(5-chloro-2-methylphenyl)methyl]cyclopropylcarbamate (1 eq.) from the previous step and 4,4,5, 5-tetramethyl-2-[(l£)-3-(methyloxy)-l-propen-l-yl]-l,3,2-dioxaborolane (1 eq.) were combined in rc-BuOH (0.48 M). To this solution was then added tris(dibenzylideneacetone)dipalladium(0) chloroform adduct (0.02 eq.), [2',6'-bis(methyloxy)-2- biphenylyl](dicyclohexyl)phosphane (0.08 eq.) and powdered potassium phosphate (2 eq.). The vessel 5 was repeatedly evacuated and back-filled with nitrogen before the resulting suspension was heated at 1000C for 16 h. The now black suspension was cooled to RT, diluted with EtOAc and filtered through a pad of SiO?. The filtrate was then concentrated in vacuo and the crude product thus obtained was directly subjected to purification by way of flash chromatography (Siθ2, Hex -^ 3:7 (v/v) Hex : EtOAc). The title compound was isolated as a pale yellow oil. 0 Step 5: 1,1-Dimethylethyl cyclopropyl({2-methyl-5-[3-(methyloxy)propyl]phenyl}methyl)carbamate
1 , 1 -Dimethylethyl cyclopropy 1( {2-methy l-5-[( 1 £)-3 -(methyloxy)- 1 -propen- 1 - yl]phenyl}methyl)carbamate (1 eq.) from the previous step and 10% w/w palladium over charcoal (0.1 eq.) were suspended in EtOAc (0.08 M). The vessel was then evacuated and purged with H2. Under a balloon-filled H2 atmosphere, the reaction suspension was stirred at RT for 2 h. The reaction was then5 quenched with CH2Cl2, filtered through a bed of celite and the filtrate concentrated in vacuo.
Purification of the crude product thus obtained by way of flash chromatography (SiO2, Hex -^ 1 : 1 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. Step 6: Amine 7
1, 1-Dimethylethyl cyclopropyl({2-methyl-5-[3-(methyloxy)propyl]phenyl}methyl)-0 carbamate (1 eq.) from the previous step was taken up in CH2Cl2 (0.1 M). To this solution was then added HCl (4.0 M in dioxane, 30 eq.) and the resulting solution was stirred at RT for 2 h. The reaction was then quenched with 1 N aq. NaOH and extracted with ether. The combined organic extracts were then washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9: 1 (v/v)5 Hex : EtOAc -^ EtOAc) afforded the title compound as a colorless oil. MCC-ACV-OOOOl
Amine 8
Λf-({2-Methyl-5-[2-(methyloxy)ethyl]phenyl}methyl)cyclopropanamine
Amine 8 was prepared according to the procedure described in Amine 6 but using instead 1,1-dimethylethyl [(5-chloro-2-methylphenyl)methyl]cycIopropylcarbamate from Step 3, Amine 5 7 as the substrate, «-BuOH as the solvent, tris(dibenzylideneacetone)dipalladium(0) chloroform adduct as the palladium source, [2',6'-bis(methyloxy)-2-biphenylyl](dicyclohexyl)phosphane as the ligand and powdered potassium phosphate as the base for the Suzuki coupling (step 2).
Amine 9 0 N-({2,3-Difluoro-5-[3-(methyloxy)propyl]phenyl}methyl)cyclopropanamine
Amine 9 was prepared according to the procedure described in Amine 5 but using instead 2,3-difluorobenzaldehyde as starting material.
Amine 10 5 N-({3-(Methyloxy)-5-[3-(methyloxy)propyl]phenyl}methyl)cyclopropanamine Step 1 : 3-Bomo-5-hydroxybenzaldehyde
To a toluene solution (1.6 M) of n-butyl lithium (2.5 M in hexane, 2.1 eq.) was added at - 100C n-butyl magnesium chloride (2.0 M in THF, 0.6 eq.). The reaction mixture was stirred at -100C for 30 min before a toluene solution (0.7 M) of 3,5-dibromophenol (1 eq.) was added dropwise at -100C over0 a period of 35 min. After stirring at -100C for a further 30 min, the reaction mixture was cooled to -400C before DMF (20 eq.) was added dropwise over 20 min. The reaction mixture was then slowly warmed to RT and allowed to stir at RT for 1 h. The reaction was carefully quenched at O0C with 1 N aq. HCl and extracted with ether. The combined organic extracts were washed with water and brine, dried over MgSO4 and filtered. Concentration of the filtrate in vacuo afforded a yellow solid. Recy stall ization of5 the crude product thus obtained from ether - hexane afforded the title compound as a beige powder. Step 2 : 3 -Hydroxy-5 - [( 1 £)-3 -(methy loxy)- 1 -propen- 1 -yl]benzaldehyde .
3-Bomo-5-hydroxybenzaldehyde (1 eq.) from the previous step and 2-[(l£)-3- methoxyprop-l-en-l-yl]-4,4,5,5-tetramethyl-l,3,2-dioxaborolane (1 eq.) were combined in DMF (0.05 M). To this solution was then added palladium acetate (0.1 eq.), triphenylphosphine (0.2 eq.) and 2 M0 aq. sodium carbonate (4 eq.). The resulting suspension was heated at 80 0C for 16 h. The reaction mixture was quenched with 1 N aq. HCl and extracted with ether. The combined organic extracts were washed with water, sat. aq. NaHCC>3 and brine. Drying over MgSC^, filtration and concentration of the filtrate in vacuo afforded the crude product as a brown tar. Further purification by way of flash chromatography (SiO2, 4:1 (v/v) Hex : EtOAc -^ 2:1 (v/v) Hex : EtOAc) afforded the title compound as a5 yellow oil. MCC-ACV-00001
Step 3: 3-(Methyloxy)-5-[(l£)-3-(methyloxy)-l-prop-l-en-l-yl]benzaldehyde
3-Hydroxy-5-[(l£)-3-(methyloxy)-l-propen-l-yl]benzaldehyde (1 eq.) from the previous step and iodomethaπe (2.2 eq.) were combined in acetone (0.07 M). To this solution was then added potassium carbonate (2 eq.) and the reaction suspension was heated at reflux for 16 h. The resulting 5 reaction mixture was concentrated in vacuo and the residue partitioned between water and ether. The aqueous wash was separated and back-extracted with ether. The combined organic extracts were washed further with brine, dried over MgSC>4, filtered and the filtrate concentrated in vacuo. Further purification of the crude product thus obtained by way of flash chromatography (SiO2, 19:1 (v/v) Hex : EtOAc -> 1 : 1 (v/v) Hex : EtOAc) afforded the title compound as a yellow oil. 0 Step 4: N-({3-(Methyloxy)-5-[(l£)-3-(methyloxy)-l-propen-l-yl]phenyl}methyl)cyclopropanamine
To a solution of 3-(methyloxy)-5-[(l£)-3-(methyloxy)-l-prop-l-en-l-yl]benzaldehyde (1 eq.) from the previous step (1 eq.) in dichloromethane (0.5 M) was added cyclopropylamine (2 eq.) and magnesium sulfate (1.5 eq.). The resulting suspension was stirred at RT for 12 h. The insolubles were removed via filtration. Concentration of the filtrate in vacuo afforded the crude imine as a yellow oil.5 This was then taken up in methanol (0.3 M) and then added at 0 0C sodium borohydride (1.5 eq.) portionwise over 5 min. The reaction mixture was slowly warmed to RT over 1 h and then stirred at RT for 2 h. After carefully quenching with sat. aq. NaHCO3, the resulting mixture was extracted with ether. The combined organic extracts were washed with water and brine, dried over MgSO4 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a golden, yellow oil. 0 Step 5: Amine 10
To a solution of N-({3-(methyloxy)-5-[(l£)-3-(methyloxy)-l-propen-l- yl]phenyl}methyl)cyclopropanamine (1 eq.) from the previous step in EtOAc (0.04 M) was added palladium (10% w/w over activated carbon, 0.1 eq). The vessel was evacuated and back filled with hydrogen. The reaction suspension was then stirred under a balloon atmosphere of hydrogen for 1.5 h.5 The reaction was quenched with dichloromethane and filtered through a bed of celite. The insolubles were washed further with EtOAc and methanol. Concentration of the filtrate in vacuo afforded the title compound as a colorless oil.
Amine 11 0 N-({3-{[2-(Methyloxy)ethyl]oxy}-5-[3-(methyloxy)propyl]phenyl}methyl)cyclopropanamine
Amine 11 was prepared according to the procedure described in Amine 10 but using instead 2-bromoethyl methyl ether as the alkylating reagent, cesium carbonate as the base and DMF as the solvent in step 3. MCC-ACV-OOOOJ
Amine 12
4-{3,4-Dichloro-5-[(cyclopropylamino)methyl]phenyl}butanenitrile
Step 1: 1,1-Dimethylethyl cyclopropyl{[2,3-dichloro-5-(2-oxoethyl)phenyl]methyl}carbarnate
1 , 1 -Dimethylethyl cyclopropyl { [2,3-dichIoro-5-(2-
5 hydroxyethyl)phenyl]methyl} carbamate (1 eq.) from Step 3, Amine 6 and sodium bicarbonate (1 eq.) were suspended in CH2Cl2 (0.1 M). At O0C, DMP (1 eq.) was added and the resulting mixture was stirred at O0C for 15 min and then at RT for 45 min. The reaction was quenched with 1 N aq. NaOH and extracted with ether. The combined organic extracts were then washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford the title compound as an0 unstable, colorless oil.
Step 2: 1 , 1 -Dimethylethyl cycloproρyl({2,3-dichloro-5-[(2£)-3-cyano-2-propen-l-yl]phenyl}- methyl)carbamate
To a THF (0.1 M) suspension of anhydrous lithium chloride (1.2 eq.) was added sequentially diethyl (cyanomethyl)phosphonate (1.2 eq.) and DBU (1 eq.). The resulting suspension was5 stirred at RT for 15 min before 1,1 -dimethylethyl cyclopropyl { [2,3-dichloro-5-(2- oxoethyl)phenyl]methyl} carbamate (1 eq.) from the previous step was added dropwise as a THF (0.1 M) solution. The resulting pink suspension was allowed to stir at RT for 12 h before it was carefully quenched with 1 N aq. HCl and then extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SC>4, filtered and the filtrate concentrated in vacuo. 0 Purification of the crude product thus obtained by way of flash chromatography (SiO2, Hex -^ 3:7 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. Step 3: 1,1-Dimethylethyl cyclopropyl{[2,3-dichloro-5-(3-cyanopropyl)phenyl]methyl}carbamate
To a solution of 1,1-dimethylethyl cycIopropyl({2,3-dichloro-5-[(2u)-3-cyano-2~propen- l-yl]phenyl}methyl)carbamate (1 eq.) from the previous step in EtOAc (0.04 M) was added palladium5 (10% w/w over activated carbon, 0.1 eq). The vessel was evacuated and back filled with hydrogen. The reaction suspension was then stirred under a balloon atmosphere of hydrogen for 1.5 h. The reaction was quenched with dichloromethane and filtered through a bed of celite. The insolubles were washed further with EtOAc. Concentration of the filtrate In vacuo afforded the title compound as a colorless oil. Step 4: Amine 12 0 To a solution of 1, 1 -dimethylethyl cyclopropyl{[2,3-dichloro-5-(3- cyanopropyl)phenyl]methyl} carbamate (1 eq.) from the previous step in CH2Cl2 (0.06 M) was added zinc(II) bromide (10 eq.). The resulting suspension was sonicated for 15 min and then allowed to stir at RT for 18 h. The reaction was quenched with 1 N aq. NaOH and then extracted with EtOAc. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the5 filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9:1 (v/v) Hex : EtOAc -^ 3:7 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. MCC-ACV-00001
Amine 13
4-{3-[(Cyclopropylamino)methyl]-4,5-difluorophenyl}butanenitrile
Amine 13 was synthesized according to the procedure described in Amine 12 but using 5 instead 1,1-dimethylethyl cyclopropyl{[2,3-difluoro-5-(2-hydroxyethyl)phenyl]methyl}carbamate prepared analogously from 2,3-difluorobenzaldehyde.
Amine 14
Methyl 4-{3,4-dichloro-5-[(cyclopropylamino)methyl]phenyl}butanoate 0 Amine 14 was prepared according to the procedure described in Amine 12 but replacing anhydrous lithium chloride, diethyl (cyanomethyl)phosphonate and DBU with methyl (triphenyl-λ5- phosphanylidene)acetate in the Wittig-olefination step (step 2).
Amine 15 5 N-({3-[3-(Methyloxy)ρropyl]-l-naphthalenyl}methyl)cyclopropanamine
Step 1 : Methyl 3 -[( 1 £)-3 -(methyloxy)- 1 -propen- 1 -y I]- 1 -naphthalenecarboxy late
Methyl 3 -bromo-1 -naphthalenecarboxy late (1 eq.) and 4,4,5, 5-tetramethyl-2-[(l£>3- (methyloxy)-l-propen-l-yl]-l ,3,2-dioxaborolane (1.5 eq.) were combined in a 5: 1 (v/v) mixture of DMF: H-PrOH (0.2 M). To this solution was then added tf-α«s-bis(triphenylphosphine) palladium(II) bromide0 (0.05 eq.) and the vessel was repeatedly evacuated and back-filled with nitrogen. Finally, 2 Ν aq.
Νa2CC>3 (2 eq.) was added and the resulting biphasic suspension was heated at 9O0C for 8 h. The now black suspension was cooled to RT, diluted with water and extracted with 1 : 1 (v/v) hexanes: ether. The combined organic extracts were then washed further with 1 N aq. NaOH, 1 N aq. HCl, water and brine. This was then dried over Na2SO^ filtered and the filtrate concentrated in vacuo to afford the title5 compound as a red oil.
Step 2: Methyl 3-[3-(methyloxy)propyl]-l-naphthalenecarboxylate
Methyl 3-[(l£)-3-(methyloxy)- l-propen- l-yl]- l-naphthalenecarboxylate (1 eq.) from the previous step and 10% w/w palladium over charcoal (0.1 eq.) were suspended in MeOH (0.08 M). The vessel was then evacuated and purged with H2. Under a balloon-filled H2 atmosphere, the reaction0 suspension was stirred at RT for 2 h. The reaction was then quenched with CH2Cl2, filtered through a bed of celite and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, Hex -^ 1 : 1 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. Step 3: 3-[3-(Methyloxy)propyl]-l-naphthalenecarboxylic acid 5 Methyl 3-[3-(methyloxy)propyl]-l-naphthalenecarboxylate (1 eq.) from the previous step was taken up in a 2: 1 (v/v) mixture of MeOH: THF (0.08 M). To this solution was then added LiOH (2.0 M aq. solution, 3 eq.) and the resulting cloudy solution was vigorously stirred at RT for 24 h. The MCC-ACV-00001
volatiles were then removed in vacuo and the pH of the residue was carefully adjusted to ~2 with 1 N aq. HCl before it was extracted with EtOAc. The combined organic extracts were washed further with water and brine, dried over Na2SO4 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a white solid. 5 Step 4: N-Cyclopropyl-3-[3-(methyloxy)propyl]-l-naphthalenecarboxamide
To a CH2Cl2 solution (0.1 M) of 3-[3-(methyloxy)propyl]-l-naphthalenecarboxylic acid (1 eq.) from the previous step was added at 0 0C oxalyl chloride (1.2 eq.) followed by a few drops of DMF. The resulting solution was stirred at RT for 2 h before the volatiles were removed in vacuo. The resulting residue was taken up in dichloromethane (0.1 M), cooled to 0 0C and added sequentially
10 Hunig's base (1 ,2 eq.) an cyclopropylamine (1.1 eq.) dropwise. The resulting suspension was stirred at RT for 18 h. The reaction was quenched with 1 Ν aq. HCl and extracted with ether. The combined organic extracts were washed further with 1 Ν aq. NaOH, water and brine, dried over Na2SO4 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a white solid. Step 5: Amine 15
15 To a THF solution (0.1 M) of N-cyclopropyl-3-[3-(methyloxy)propyl]-l- naphthalenecarboxamide (1 eq.) from the previous step was added, at reflux, borane-methyl sulfide complex (6.6 eq.). To the reaction vessel was the attached a short path distillation apparatus and most of the volatiles were slowly distilled off over a period of 1.5 h. The now yellow solution was re-cooled to 0 0C and carefully quenched with 1 N aq. HCl. The resulting mixture was heated at reflux for 1 h to ensure
20 complete breakdown of the amine-borane complex. Following careful neutralization with 1 N aq. NaOH, the aqueous layer was separated and back extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo and the crude product thus obtained was purified further by way of flash chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc -> 3:7 (v/v) Hex : EtOAc) to reveal the title compound as a colorless oil.
25
Amine 16
Methyl (2-{3,4-Dichloro-5-[(cyclopropylamino)methyl]phenyl}ethyl)carbamate
Step 1 : 1 , 1 -Dimethylethyl cyclopropyl[(2,3-dichloro-5-formylphenyl)methyl]carbamate
To a dichloromethane (0.03 M) solution of 1 , 1 -dimethylethyl cyclopropyl[(2,3-dichloro-
30 5-ethenylphenyl)methyl]carbamate (1 eq.) from Step 2, Amine 6 was bubbled at -780C freshly generated ozone until a persistent blue color was obtained. To this was then added triphenylphosphine (1.2 eq.) in one rapid portion and the resulting mixture was slowly warmed to RT over 3 h. The volatiles were removed in vacuo and the remaining residue was triturated with 2: 1 (v/v) Hex : Et2O. The insolubles were removed via filtration and the filtrate was concentrated in vacuo. Purification of the crude product
35 thus obtained by way of flash chromatography (SiO2, Hex -> 1 ; 1 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. MCC-ACV-00001
Step 2: 1,1-Dimethylethyl cyclopropyl{[2,3-dichloro-5-(hydroxymethyl)phenyl]methyl}carbamate To a methanol (0.16 M) solution of 1 , 1 -dimethylethyl cyclopropyl[(2,3-dichloro-5- formylphenyl)methyl]carbamate from the previous step was added at O 0C sodium borohydride (1.3 eq.). The resulting solution was stirred at 00C for 2 h before the volatiles were removed in vacuo. The 5 resulting residue was then partitioned between ether and 1 N aq. HCl. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, Hex $ 3:7 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil.
10 Step 3: {3,4-Dichloro-5-[(cyclopropyl{[(l,l-dimethylethyl)oxy]carbonyl}amino)methyl]phenyl}methyl methanesulfonate
To a solution of 1 , 1 -dimethylethyl cyclopropyl{[2,3-dichloro-5-
(hydroxymethyl)phenyl]methyl} carbamate (1 eq.) from the previous step in dichloromethane (0.1 M) was added sequentially at O 0C Hunig's base (3 eq.) and methanesulfonyl chloride (1.1 eq.). The resulting
15 solution was stirred at 00C for 30 min and then at RT for 15 min. The reaction mixture was then diluted with ether and carefully quenched with 1 N aq. HCl. The aqueous layer was separated and back- extracted with ether. The combined organic extracts were washed further with water and brine, dried over NaSSO4, filtered and the filtrate concentrated in vacuo to afford the crude title compound as a colorless oil.
20 Step 4: 1 ,1-Dimethylethyl cyclopropyl{[2,3-dichloro-5-(cyanomethyl)phenyl]methyI}carbamate
To a solution of {3,4-dichloro-5-[(cyclopropyl{[(l,l- dimethylethyl)oxy]carbonyl}amino)methyl]phenyl} methyl methanesulfonate (1 eq.) from the previous step in DMSO (0.48 M) was added potassium cyanide (1.3 eq.) and sodium iodide (0.1 eq.). The resulting solution was stirred at RT for 3 h before it was diluted with ether and quenched with 1 N aq.
25 NaOH. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 19: 1 (v/v) Hex : EtOAc -^ 3:7 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. Step 5: 1,1-Dimethylethyl {[5-(2-aminoethyl)-2,3-dichlorophenyl]methyl}cyclopropylcarbamate
30 To a solution of 1 , 1 -dimethylethyl cyclopropyl{[2,3-dichloro-5-
(cyanornethyl)ρhenyl]rnethyl}carbamate (1 eq.) from the previous step and cobalt(II) chloride hexahydrate (2 eq.) in methanol (0.07 M) was added sodium borohydride (10 eq.) portionwise at O 0C. The resulting mixture was stirred at 00C for 10 min and then at RT for 2 h. The now brown suspension was quenched with 1 N aq. NaOH and then extracted with EtOAc. The combined organic extracts were 35 washed further with water and brine, dried over Na2SO4 and filtered through a bed of celite.
Concentration of the filtrate in vacuo afforded the crude title compound as a pale brown, amorphous solid. MCCACv ,
Step 6: 1 , 1 -Diraethylethyl cyclopropyl{[2,3-dichloro-5-(2-{[(methyloxy)carbonyI]amino}ethyl)phenyl] methyl } carbamate
To a solution of 1,1-dimethylethyl {[5-(2-aminoethyl)-2,3- dichlorophenyl]methyl}cyclopropylcarbamate (1 eq.) from the previous step in dichloromethane (0.07 5 M) was added sequentially at 00C Hunig's base (1.2 eq.) and methyl chloroformate. The resulting solution was then allowed to warm slowly to RT over 3 h. The crude reaction mixture was subsequently diluted with ether and washed sequentially with 1 N aq. NaOH, 1 N aq. HCl, water and brine. The ether extract was then dried over Na2SO4, filtered and the filtrate concentrated in vacuo, Purification of the crude product thus obtained by way of flash chromatography (SiO2, 19:1 (v/v) Hex : EtOAc -> EtOAc) 10 afforded the title compound as a pale yellow oil.
Step 7: Amine 16
To a solution of 1,1-dimethylethyl cyclopropyl{[2,3-dichloro-5-(2-{[(methyloxy)- carbonyl]amino}ethyl)phenyl] methyl} carbamate (1 eq.) from the previous step in CH2Cl2 (0.06 M) was added HCl (4.0 M in dioxane, 30 eq.). The resulting solution was stirred at RT for 3 h. The reaction was 15 then quenched with 1 N aq. NaOH and extracted with ether. The combined organic extracts were then washed further with water and brine, dried over Na2SO^ filtered and the filtrate concentrated in vacuo.
Purification of the crude product thus obtained by way of flash chromatography (SiO2, 24:1 (v/v) CH2Cl2
: MeOH) afforded the title compound as a colorless oil.
20 Amine 17
JV-(8-Quinolinyrrnethyl)cyclopropanamine
To a dichloromethane (0.13 M) solution of 8-quinolinecarbaldehyde (1 eq.) was added magnesium sulphate (1 eq.) and cyclopropyl amine (2 eq.). The resulting suspension was stirred at RT for 16 h. The insolubles were removed via filtration and rinsed with dichloromethane before the
25 combined filtrate was concentrated in vacuo. The crude imine thus obtained was taken up in methanol (0.13 M) and then added sodium borohydride (1.5 eq.) portionwise. The reaction mixture was stirred at RT for 2 h before it was quenched with 1 N aq. HCl. The pH of the solution was then adjusted to ~ 10 with 1 N aq. NaOH before it was extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na24, filtered and the filtrate concentrated in vacuo to afford
30 the crude title compound as a yellow oil.
Amine 18
JV-(8-Isoquinolinylmethyl)cyclopropan amine
Amine 18 was prepared according to the procedure described in Amine 17 but using 35 instead 8-isoquinolinecarbaldehyde as starting material. MCC-ACV-00001
Amine 19
N-(5-Isoquino]inylmethyl)cyclopropanamine
Amine 19 was prepared according to the procedure described in Amine 17 but using instead 5-isoquinolinecarbaldehyde as starting material. 5
Amine 20 N-(5-Quinolmylmethyl)cyclopropanamine
Amine 20 was prepared according to the procedure described in Amine 17 but using instead 5-quinolinecarbaldehyde as starting material. 10
Amine 21
N-( 1 -IsoquinolinylmethyOcyclopropanamine
Amine 21 was prepared according to the procedure described in Amine 17 but using instead 1-isoquinolinecarbaldehyde as starting material. 15
Amine 22 N-({2-[3-(Methyloxy)propyl]-4-quinolinyl}methyl)cyclopropanamine
Amine 22 was prepared according to the procedure described in WO 2007/009250 Al patent. 20
Amine 23
N-({6-[3-(Methyloxy)propyI]-8-quinolinyl}methyl)cyclopropanamine
Step 1 : 6-({[(l, l-Dimethylethyl)(dimethyl)silyl]oxy}methyl)-8-quinolinecarbaldehyde
To a THF (0.06 M) solution of 8-bromo-6-({[(l,l-dimethylethyl)(dimethyl)silyl]oxy}- 25 methyOquinoIine (1 eq.) was added at -780C «-butyl lithium (2.5 M in hexane, 2.1 eq.) dropwise over a period of 10 min. The resulting yellow solution was stirred at -780C for 15 min before DMF (2 eq.) was added dropwise over a period of 10 min. The now red solution was stirred at -780C for another 2 h before the reaction mixture was quenched with the addition of sat. aq. ΝH4CJ. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were then washed with brine, 30 dried over NazSCv, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, Hex -> 3:7 (v/v) Hex : EtOAc) afforded the title compound as a yellow oil that solidified upon standing.
Step 2: N-{[6-({[(l,l-Dimethylethyl)(dimethyl)silyl]oxy}methyl)-8-quinolinyl]methyI}cyclo- propanamine
35 To a dichloromethane (0.12 M) solution of 6-({[(l ,l-dimethylethyl)(dimethyl)silyl]oxy}- methyl)-8-quinolinecarbaldehyde (1 eq.) from the previous step was added magnesium sulphate (1 eq.) and cyclopropyl amine (2 eq.). The resulting suspension was stirred at RT for 16 h. The insolubles were MCC-Aαv
removed via filtration and rinsed with dichloromethane before the combined filtrate was concentrated in vacuo. The crude imine thus obtained was taken up in methanol (0.12 M) and then added sodium borohydride (1.5 eq.) portionwise. The reaction mixture was stirred at RT for 2 h. The volatiles were then removed in vacuo and the resulting residue was partitioned between ether and 1 N aq. NaOH. The 5 aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford the crude title compound as a yellow oil.
Step 3 : 1,1 -Dimethylethyl cyclopropyl { [6-({ [( 1 , 1 -dimethylethyl)(dimethyl)silyl]oxy} methyl)-8- quinolinyl]methyl}carbamate
10 To a solution of N-{[6-({[(l3l-dimethylethyl)(dimethyl)silyl]oxy}methyl)-8- quinolinyl]methyl}cyclopropanamine (1 eq.) from the previous step in dichloromethane (0.12 M) was added sequentially Hunig's base (1.2 eq.) and bis(l,l-dimethylethyl)dicarbonate (1.1 eq.). The resulting solution was stirred at RT for 8 h. The volatiles were then removed in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, Hex -> 3:7 (v/v) Hex : EtOAc) afforded
15 the title compound as a colorless oil.
Step 4: 1,1 -Dimethylethyl cyclopropyl{[6-(hydroxymethyl)-8-quinolinyl]methyl}carbamate
To a solution of 1 , 1 -dimethylethyl cyclopropyl{[6-({[(l,l-dimethylethyl)(dimethyl)- silyl]oxy}methyl)-8-quinolinyl]methyl}carbamate (1 eq.) from the previous step in THF (0.12 M) was added TBAF (1.0 M in hexane, 1.6 eq.). The resulting solution was stirred at RT for 2 h before the
20 volatiles were removed in vacuo. The resulting residue was partitioned between ether and water. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9:1 (v/v) Hex : EtOAc -^ 3:7 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil.
25 Step 5: 1,1 -Dimethylethyl cyclopropyI[(6-forrnyl-8-quinolinyl)methyl]carbamate
To a suspension of 1 , 1 -dimethylethyl cyclopropyl { [6-(hydroxymethyl)-8- quinolinyl]methyl}carbamate (1 eq.) from the previous step and sodium bicarbonate (1.1 eq.) in dichloromethane (0.1 M) was added DMP (1.1 eq.) at 00C. The resulting mixture was stirred at RT for 2 h before it was quenched with sat. aq. NaHSO3 and then extracted with Et2O. The combined organic
30 extracts were washed further with 1 N aq. NaOH, water and brine, dried over Na2SO4, and filtered. Concentration of the filtrate in vacuo afforded the crude title compound as a white solid. Step 6: Methyl 3-{ 8-[(cyclopropyl {[(1,1 -dimethylethyl)oxy]carbonyl} amino)methyl]-6-quinolinyl } -2- propenoate
To a solution of 1,1 -dimethylethyl cyclopropylKό-formyl-δ-quinoliny^methy^carbamate
35 (1 eq.) from the previous step in dichloromethane (0.06 M) was added methyl (triphenylphosphor- anylidene)acetate (1.1 eq.) at O 0C. The resulting solution was then allowed to warm slowly to RT over 4 h. The volatiles were then removed in vacuo. Purification of the crude product thus obtained by way of M C-ACV-00001
flash chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc -> 3:7 (v/v) Hex : EtOAc) afforded the title compound as a white solid.
Step 7: Methyl 3-{8-[(cyclopropyl{[(l , l-dimethylethyl)oxy]carbonyl}amino)methyl]-6-quinolinyl}- propanoate 5 To a solution of methyl 3-{8-[(cyclopropyl{[(l, l-dimethylethyl)oxy]carbonyl}- amino)methyl]-6-quinolinyl}-2-propenoate (1 eq.) from the previous step in EtOAc (0.1 M) was added palladium (10% (w/w) over carbon, 0.1 eq.). The resulting suspension was evacuated and back-filled repeatedly with hydrogen. Finally, the reaction suspension was allowed to stir under a hydrogen-filled balloon atmosphere for 3 h. The reaction was quenched with the addition of dichloromethane and
10 filtered through a bed of celite. The filtrate was then concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc -> EtOAc) afforded the title compound as a yellow oil.
Step 8: 1,1-Dimethylethyl cyclopropyl {[6-(3-hydroxypropyl)-8-quinolinyl]methyl} carbamate To a solution of methyl S-fδ-Kcyclopropy^Kl j l-dimethyJethyl^xyJcarbonyl}-
15 amino)methyl]-6-quinolinyl}propanoate (1 eq.) from the previous step in THF (0.08 M) was added lithium borohydride (5 eq.). The resulting mixture was stirred at RT for 14 h before it was diluted with ether and quenched with 1 N aq. NaOH. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, and filtered. Concentration of the filtrate in vacuo afforded the crude title compound as a colorless oil.
20 Step 9: 1,1 -Dimethylethyl cyclopropyl({6-[3-(methyloxy)propyl]-8-quinolinyl}methyl}carbamate
To a solution of 1,1-dimethylethyl cyclopropyl{[6-(3-hydroxypropyl)-8- quinolinyl]methyl}carbamate (1 eq.) from the previous step in THF (0.3 M) was added sodium hydride (60% (w/w) dispersion in paraffin oil, 1.2 eq.). The resulting suspension was stirred at RT for 15 min before iodomethane (1 ,4 eq.) was added. The now yellow solution was stirred at RT for 12 h before the
25 reaction was quenched with the addition of 1 N aq. NaOH. The aqueous layer was separated and back- extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc -> EtOAc) afforded the title compound as a colorless oil.
30 Step 10: Amine 23
To a solution of 1 , 1 -dimethylethyl cyclopropyl({6-[3-(methyloxy)propyl]-8- quinolinyl}methyl}carbamate (1 eq.) from the previous step in CH2Cl2 (0.06 M) was added HCI (4.0 M in dioxane, 30 eq.). The resulting solution was stirred at RT for 6 h. The reaction was then quenched with 1 N aq. NaOH and extracted with EtOAc. The combined organic extracts were then washed further
35 with water and brine, dried over Na2SO4 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a yellow oil. -A V-00001
Amine 24
N-({3-Chloro-5-[3-(methyloxy)propyl]phenyl}methyl)cyclopropanamine Step 1 : N-[(3-Bromo-5-chlorophenyl)methyl]cyclopropanamine
To a 4: 1 (v/v) MeOH : THF solution (0.06 M) of 3-bromo-5-chlorobenzaldehyde (1 eq.) and cyclopropylamine (1.1 eq.) was added sodium cyanoborohydride (1.5 eq.) portionwise followed by neat acetic acid (3 eq.). The resulting mixture was stirred at RT for 20 h. The volatiles were then removed in vacuo. The resulting residue was taken up in ether and sat. aq. NH4Cl. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were then washed with brine, dried over MgSO4 and filtered. Concentration of the filtrate in vacuo afforded the crude title compound as a yellow oil.
Step 2: N-{ {3-Chloro-5-[( l^)-3-(methyloxy)- 1 -propen- 1 -yl]phenyl}methyl)cyclopropanamine
To a 4:1 (v/v) DMF : rc-propanol solution (0.15 M) of N-[(3-bromo-5- chlorophenyl)methyl]cyclopropanamine (1 eq.) from the previous step and 4,4,5, 5-tetramethyl-2-[(l£)-3- (methyloxy)-l -propen- l-yl]-l , 3, 2-dioxaborolane (2 eq.) was added fr<my-dibrornobis(triphenylphosphine) palladium(II) (0.05 eq.) followed by sodium carbonate (2 M aqueous solution, 3 eq.). The reaction vessel was evacuated and purged with nitrogen five times and then heated at 1000C for 2 h. The cooled reaction mixture was poured into aq. sat. NH4Cl and then extracted with EtOAc. The combined organic extracts were washed further with water and brine, dried over MgSO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 3:7 (v/v) Hex : EtOAc -> EtOAc) afforded the title compound as an oil. Step 3: Amine 24
To a solution of N-({3-chloro-5-[(l£)-3-(methyloxy)-l-propen-l-yl]phenyl}- methyl)cyclopropanamine (1 eq.) from the previous step in EtOAc (0.2 M) was added palladium (10% (w/w) on carbon, 0.4 eq.). The reaction vessel was evacuated and purged with hydrogen two times and then stirred at RT for 14 h. The reaction suspension was then filtered through a pad of silica gel and the insolubles rinsed with EtOAc. Concentration of the filtrate in vacuo afforded the title compound as a pale green oil.
Amine 25 ^-{[l-^-MethoxypropyO-lH-indol-S-ylJmethyllcyclopropanarnine
Step 1 : l-(3-Methoxypropyl)-li/-indole-3-carbaldehyde
To a DMF (0.1 M) solution of indole-3-carbaldehyde (1 eq) was added sodium hydride
(60% (w/w) dispersion in oil, 1.1 eq.) at 00C followed by l-bromo-3-methoxypropane (1.5 eq.). The reaction mixture was stirred at 5O0C for 4 h. The mixture was then diluted with ether, washed with water and brine, dried over MgSO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 1 : 1 (v/v) Hex : EtOAc -> EtOAc) afforded the title compound as a colorless oil. MCC-ACV-00001
Step 2: Amine 25
To a 3: 1 (v/v) CH2Cl2 : MeOH solution (0.1 M) of l-(3-methoxypropyl)-l#-indole-3- carbaldehyde (1 eq) was added cyclopropyl amine (2 eq), acetic acid (2.5 eq) and then sodium triacetoxyborohydride (1.5 eq) at 00C. The reaction was slowly warmed to RT and stirred at RT for 3h. 5 The reaction was then quenched with saturated aq. NaHCO3, extracted with dichloromethane, dried over MgSO^ filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 96:4 (v/v) CH2Cl2 : 2.0 M NH3 in MeOH) afforded the title compound as a colorless oil.
0 Amine 26
3-{3,4-Dichloro-5-[(cyclopropylamino)methyl]phenyl}propanenitrile Step 1 : (5-Bromo-2,3-dichlorophenyl)methanol
To a 5: 1 (v/v) MeOH : THF solution (0.38 M) of 5-bromo-2,3-dichlorobenzaldehyde (1 eq.) from Step 1, Amine 5 was added at O 0C sodium borohydride (1.1 eq.) portionwise over 45 min. The 5 reaction solution was stirred at 00C for 2 h before the volatiles were removed in vacuo. The resulting residue was then partitioned between ether and 10% aq. HCl. The aqueous layer was separated and back- extracted with ether. The combined organic extracts were washed further with 1 N aq. NaOH, water and brine, dried Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc -^ 3:7 (v/v) Hex : EtOAc)0 afforded the title compound as a white solid.
Step 2: {[(5-Bromo-2,3-dichlorophenyl)methyl]oxy}(l , l-dimethylethyl)dimethylsilane
To a DMF (0.34 M) solution of (5-bromo-2,3-dichlorophenyl)methanol (1 eq.) from the previous step was added chloro(l ,l-dimethylethyl)dimethylsilane (1.1 eq.) and imidazole (1.5 eq.). The resulting yellow solution was stirred at RT for 16 h. The reaction mixture was then diluted with ether5 and washed sequentially with 10% aq. HCl, water and brine. The ether extract was dried Na2SO4, filtered and the filtrate concentrated in vacuo to afford the crude title compound as a colorless oil. Step 3: {[(2,3-Dichloro-5-ethenylphenyl)methyl]oxy}(l, l-dimethylethyl)dimethylsilane
{[(5-Bromo-2,3-dichlorophenyl)methyl]oxy}(l,l-dimethylethyl)dimethylsilane (l eq.) from the previous step and 2-ethenyl-4,4,5,5-tetramethyl-l ,3,2-dioxaborolane (1 eq.) were combined in a0 2: 1 (v/v) mixture of DMF: «-PrOH (0.1 1 M). To this solution was then added palladium(II) acetate (0.05 eq.) and triphenylphosphine (0.15 eq.) before the vessel was repeatedly evacuated and back-filled with nitrogen. Finally, 2 N aq. Na2CO3 (2 eq.) was added and the resulting biphasic suspension was heated at 9O0C for 8 h. The now black suspension was cooled to RT, diluted with water and extracted with 1 : 1 (v/v) hexanes: ether. The combined organic extracts were then washed further with 1 N aq. NaOH, water5 and brine. This was then dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford the crude title compound as a black oil. MCC-ACV-00001
Step 4: 2-[3,4-Dichloro-5-({[(l, l -dimethylethyl)(dimethyl)silyl]oxy}methyl)pheπyl]ethanol
{[(2,3-Dichloro-5-ethenylphenyl)methyl]oxy}(l,l-dimethylethyl)dimethylsilane (l eq.) from the previous step, [Ir(COD)Cl]2 (0.025 eq.) and DPPB (0.05 eq.) were combined in THF (0.1 1 M). To this solution was then added 4,4,5, 5-tetramethyl-l,3,2-dioxaborolane (1.3 eq.) and the resulting red 5 solution was stirred at RT for 16 h. Finally, sodium perborate (0.1 M aqueous solution, 1 eq.) was added and the now black biphasic solution was vigorously stirred at RT for another 8 h. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were then washed further with 1 N aq. NaOH, water and brine. This was then dried over Na2SO^ filtered and the filtrate concentrated in vacuo to afford a black oil. Purification of the crude product thus obtained by way of flash
10 chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc -^ 1 : 1 (v/v) EtOAc : Hex) afforded the title compound as a pale yellow oil.
Step 5: 2-[3,4-Dichloro-5-({[(l, l-dimethylethyl)(dimethyl)silyl]oxy}methyl)phenyl]ethyl methanesulfonate
To a dichloromethane (0.11 M) solution of 2-[3,4-dichIoro-5-({[(l, l-
15 dimethylethyl)(dimethyl)silyl]oxy}methyl)phenyl]ethanol (1 eq.) from the previous step was added at O0C Hunig's base ( 1.5 eq.) and methanesulfonyl chloride (1.1 eq.). The resulting suspension was stirred at O0C for 30 min and at RT for 15 min. The reaction was then diluted with ether and quenched with IN aq. HCl. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with 1 N aq. NaOH, water and brine, dried over Na2SO^ filtered and the filtrate
20 concentrated in vacuo to give the title compound as a brown oil.
Step 6: 3-[3,4-Dichloro-5-({[(l,l-dimethylethyl)(dimethyl)silyl]oxy}methyl)phenyl]propanenitrile
To a DMSO (0.4 M) solution of 2-[3,4-dichloro-5-({[(l,l- dimethylethyl)(dimethyl)silyl]oxy}methyl)phenyl]ethyl methanesulfonate (1 eq.) from the previous step was added potassium cyanide (1.3 eq.). The resulting solution was stirred at 8O0C for 4 h. The reaction
25 was then diluted with ether and quenched with water. The aqueous layer was separated and back- extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO^ filtered and the filtrate concentrated in vacuo to give the title compound as a pink oil. Step 7: 3-[3,4-Dichloro-5-(hydroxymethyl)phenyl]propanenitrile
To a THF (0.1 M) solution of 3-[3,4-dichloro-5-({[(l,l-
30 dimethylethyl)(dimethyl)silyl]oxy}methyl)phenyl]propanenitrile (1 eq.) from the previous step was added TBAF (1.0 M THF solution, 1.2 eq.). The resulting solution was stirred at RT for 3 h. The reaction was then diluted with ether and quenched with water. The aqueous layer was separated and back-extracted- with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO^ filtered and the filtrate concentrated in vacuo. Purification of the crude product thus
35 obtained by way of flash chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc -> 3 :7 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. -A - 00
Step 8: 3-(3,4-Dich]oro-5-formylphenyl)propaπenitrile
To a suspension of 3-[3,4-dichloro-5-(hydroxymethyl)phenyl]propanenitrile (1 eq.) from the previous step and sodium bicarbonate (1.1 eq.) in dichloromethane (0.1 M) was added DMP (1.1 eq.) at 00C. The resulting mixture was stirred at RT for 2 h before it was quenched with sat. aq. NaHSO3 and then extracted with Et2O. The combined organic extracts were washed further with 1 N aq. NaOH, water and brine, dried over Na2SO4, and filtered. Concentration of the filtrate in vacuo afforded the crude title compound as a white solid. Step 9: Amine 26
To a dichloromethane (0.11 M) solution of 3-(3,4-dichloro-5-formylphenyl) propanenitrile (1 eq.) from the previous step was added magnesium sulphate (1 eq.) and cyclopropyl amine (1.2 eq.). The resulting suspension was stirred at RT for 16 h. The insolubles were removed via filtration and rinsed with dichloromethane before the combined filtrate was concentrated in vacuo. The crude imine thus obtained was taken up in methanol (0.1 1 M) and then added sodium borohydride (3 eq.) portionwise. The reaction mixture was stirred at RT for 16 h. The volatiles were then removed in vacuo and the resulting residue was partitioned between ether and 1 N aq. NaOH. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc -> EtOAc) afforded the title compound as a colorless oil.
Amine 27
N-(2-{3,4-Dichloro-5-[(cyclopropylamino)methyl]phenyl}ethyl)propanamide
Step 1 : ({[5-(2-Azidoethyl)-2,3-dichlorophenyl]methyl}oxy)(l,l-dimethylethyl)dimethylsilane
To a DMF (0.4 M) solution of 2-[3,4-dichloro-5-({[(l, l-dimethylethyl)(dimethyl)- silyl]oxy}methyl)phenyl]ethyl methanesulfonate (1 eq.) from Step 5, Amine 26 was added at RT sodium azide (5 eq.). The resulting solution was stirred at RT for 12 h and then at 8O0C for 3 h. The reaction mixture was then diluted with ether and washed with water. The aqueous layer was separated and back- extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford the crude title compound as a pink oil.
Step 2: 2-[3,4-Dichloro-5-({[(l, l-dimethylethyiχdimethyl)silyl]oxy}methyl)ρhenyl]ethanamine
To a THF (0.1 M) solution of ({[5-(2-azidoethyl)-2,3-dichlorophenyl]methyl}oxy)(l,l - dimethylethyl)dimethylsilane (1 eq.) from the previous step and triphenylphosphine (1.2 eq.) was added water (3 eq.). The resulting solution was stirred at 5O 0C for 18 h. The volatiles were then removed in vacuo and purification of the crude product thus obtained by way of flash chromatography (SiO2, 96:4 (v/v) CH2Cl2 : 2.0 M NH3 in MeOH) afforded the title compound as a colorless oil. MCC-ACV-00001
Step 3: N-{2-[3,4-Dichloro-5-({[(l ,l- dimethylethyl)(dimethyl)silyl]oxy}methyl)phenyl]ethyl}propanamide
To a DMF (0.2 M) solution of 2-[3,4-dichloro-5-({[(l,l- dimethylethyl)(dimethyl)silyl]oxy}methyl)phenyl]ethanamine (1 eq.) from the previous step, Hunig's 5 base (3 eq.) and propionic acid (1.1 eq.) was added portionwise 0-(7-azabenzotriazol-l-yl)-N,iV,N',Λr'- tetramethyluronium hexafluorophosphate (1.2 eq.). The resulting reaction solution was stirred at RT for 48 h, The now reddish solution was diluted with ether and washed sequentially with 1 Ν aq. NaOH, water and brine. The organic extract was then dried over Νa2SO4, filtered and the filtrate concentrated in vacuo to afford a brown oil. Purification of the crude product thus obtained by way of flash
10 chromatography (SiO2, 7:3 (v/v) Hex : EtOAc -^ EtOAc) afforded the title compound as a colorless oil. Step 4: N-{2-[3,4-Dichloro-5-(hydroxymethyl)phenyl]ethyl}propanamide
To a THF (0.12 M) solution of N-{2-[3,4-dichloro-5-({[(l,l- dimethylethyl)(dimethyl)silyl]oxy}methyl)phenyl]ethyl}propanamide (1 eq.) from the previous step was added TBAF (1.0 M THF solution, 1.1 eq.). The resulting solution was stirred at RT for 2 h. The now 5 orange solution was diluted with ether and quenched with 1 Ν aq. NaOH. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4 and filtered. Concentration of the filtrate in vacuo afforded the crude title compound as a pale yellow oil. Step 5: iV-[2-(3,4-Dichloro-5-formylphenyl)ethyl]propanamide 0 To a suspension of N-{2-[3,4-dichloπ>5-
(hydroxymethyl)phenyl]ethyl}propanamide (1 eq.) from the previous step and sodium bicarbonate (1.1 eq.) in dichloromethane (0.1 M) was added DMP (1.1 eq.) at O 0C. The resulting mixture was stirred at RT for 2 h before it was quenched with sat aq. NaHSθ3 and then extracted with Et2θ. The combined organic extracts were washed further with 1 N aq. NaOH, water and brine, dried over Na2SO4, filtered 5 and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 19: 1 (v/v) Hex : EtOAc -> 3:7 (v/v) Hex : EtOAc) afforded the title compound as a white solid. Step 6: Amine 27
To a dichloromethane (0.11 M) solution ofN-[2-(3,4-dichloro-5-formylphenyl)-0 ethyl]propanamide (1 eq.) from the previous step was added magnesium sulphate (1 eq.) and cyclopropyl amine (1.2 eq.). The resulting suspension was stirred at RT for 16 h. The insolubles were removed via filtration and rinsed with dichloromethane before the combined filtrate was concentrated in vacuo. The crude imine thus obtained was taken up in methanol (0.1 1 M) and then added sodium borohydride ( 1.5 eq.) portionwise. The reaction mixture was stirred at RT for 8 h. The volatiles were then removed in5 vacuo and the resulting residue was partitioned between EtOAc and 1 Ν aq. NaOH. The aqueous layer was separated and back-extracted with EtOAc. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the MCC-ACV-00001
crude product thus obtained by way of flash chromatography (SiO2, 95:5 CH2Cl2 : 2.0 M NH3 in MeOH) afforded the title compound as a colorless oil.
Amine 28
5 N- [3 -Bromo-5 -(3 -methoxypropy l)benzy 1] cyclopropanamine
Step 1 : 3-Bromo-5-(3-methoxypropyl)benzaldehyde
To a THF solution (0.3 M) of allyl methyl ether (3.1 eq.) at RT was added borane-methyl sulfide complex (1.0 eq.). The solution was stirred at RT for 30 min. To this solution was then added sequentially 3,5-dibromobenzaldehyde (1.0 eq.), Pd(dppf)Cl2 (0.025 eq.) and solid sodium methoxide
10 (1.5 eq.). The resulting mixture was heated to reflux for 15 h. The cooled reaction mixture was diluted with water and extracted with ether. The combined organic extracts were dried over MgSθ4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 5:95 (v/v) EtOAc : Hex -^ 7:3 (v/v) EtOAc : Hex) afforded the title compound as a colorless oil.
15 Step 2: Amine 28
3-Bromo-5-(3-methoxypropyl)benzaldehyde (1 eq.) from the previous step and cyclopropylamine (2 eq.) were combined in CH2Cl2 (0.19 M). To this was then added MgSO4 (1 eq.) and the resulting suspension was stirred at RT for 23 h. The insolubles were then removed via filtration through a pad of celite and the filtrate was concentrated in vacuo. The crude imine thus obtained was
20 then re-taken up in MeOH (0.19 M). To this solution was added sodium borohydride (1.5 eq.) portionwise and the resulting mixture was stirred at 0 0C for 30 min, then at RT for 16 h. The reaction was quenched by stirring with 2 Ν aq. HCl for 30 min. The resulting mixture was subsequently basified with 1 Ν aq. NaOH and the volatiles were removed in vacuo. The residue was extracted with Et2O from water, dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford the title compound as a
25 colorless oil.
Amine 29
4-[(Cyclopropylamino)methyl]-N-[2-(methyloxy)ethyl]-2-naphthalenamine Step 1 : Methyl 3-{[2-(methyloxy)ethyl]amino}-l-naphthalenecarboxylate
30 Freshly purified cesium carbonate (1.4 eq.), palladium(II) acetate (0.02 eq.) and rac-
BlNAP (0.03 eq.) were combined in anhydrous toluene (0.25 M). The vessel was repeatedly evacuated and back-filled with nitrogen. Finally, methyl 3-bromo-l-naphthalenecarboxyIate (1 eq.) and 2- methoxyethylamine (1.2 eq.) were added and the resulting mixture was heated at 1000C for 20 h. The now black suspension was cooled to RT, diluted with ether and filtered through a pad of celite.
35 Concentration of the filtrate in vacuo afforded a brown oil that can be purified further by way of column chromatography (SiO2, 19: 1 (v/v) Hex : EtOAc -> 1 : 1 (v/v) Hex : EtOAc) to afford the title compound as a yellow oil. MCC-ACV-00001
Step 2: 3-{[2-(Methyloxy)ethyl]amino}-l-naphthalenecarboxylic acid
Methyl 3-{[2-(methyloxy)ethyl]amino}-l-naphthalenecarboxylate (1 eq.) from the previous step was taken up in a 2: 1 (v/v) mixture of MeOH: THF (0.08 M). To this solution was then added LiOH (1.0 M aq. solution, 3.4 eq.) and the resulting cloudy solution was vigorously stirred at RT 5 for 16 h. The volatiles were then removed in vacuo and the pH of the residue was carefully adjusted to ~2 with 1 N aq. HCl before it was extracted with EtOAc. The combined organic extracts were washed further with water and brine, dried over Na2SO4 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a yellow solid. Step 3 : N-Cyclopropyl-3- { [2-(methyloxy)ethyl]amino} -1 -naphthalenecarboxamide
10 To a DMF (0.1 M) solution of 3-{[2-(methyloxy)ethyl]amino}-l-naphthalenecarboxylic acid (1 eq.) from the previous step, Hunig's base (3 eq.) and cyclopropylamine (1.5 eq.) was added portionwise 0-(7-azabenzotriazol-l-yl)-N,N,N',N'4etramethyluronium hexafluorophosphate (1.2 eq.). The resulting reaction solution was stirred at RT for 48 h. The now reddish solution was diluted with EtOAc and washed sequentially with 1 N aq. NaOH, water and brine. The organic extract was then dried
15 over Na2SO1J, filtered and the filtrate concentrated in vacuo to afford a brown oil. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 4: 1 (v/v) Hex : EtOAc $ EtOAc) afforded the title compound as a white solid. Step 4: Amine 29
To a THF solution (0.09 M) of iV-cyclopropyl-3-{[2-(methyloxy)ethyl]amino}-l-
20 naphthalenecarboxamide (1 eq.) from the previous step was added, at reflux, borane-methyl sulfide complex (6.2 eq.). To the reaction vessel was then attached a short path distillation apparatus and most of the volatiles were slowly distilled off over a period of 1 h. The now brown solution was re-cooled to 0 0C and carefully quenched with 1 N aq. HCl. The resulting mixture was heated at reflux for 1 h to ensure complete breakdown of the amine-borane complex. Following careful neutralization with 1 N aq. NaOH,
25 the aqueous layer was separated and back extracted with EtOAc. The combined organic extracts were washed with brine, dried over Na2SO4 and filtered. The filtrate was concentrated in vacuo and the crude product thus obtained was purified further by way of flash chromatography (Siθ2, 3:2 (v/v) Hex : EtOAc -> EtOAc) to reveal the title compound as a yellow oil that rapidly darkened upon standing.
30 Amine 30
3-{8-[(Cyclopropylamino)methyl]-6-quinolinyl}propanenitrile
Step 1 : 1 , 1-Dimethylethyl {[6-(2-cyanoethenyl)-8-quinolinyl]methyl}cyclopropylcarbamate To a THF (0.13 M) suspension of freshly dried lithium chloride (1.2 eq.) and diethyl(cyanomethyl)phosphonate (1,2 eq.) was added DBU (1.2 eq.). The reaction suspension was 35 stirred at RT for 30 min before 1 , 1 -dimethylethyl cyclopropyl[(6-formyl-8-quinolinyl)methyl]carbamate (1 eq., Amine 23, Step 5) was finally added. The resulting solution was then allowed to stir at RT for 16 h. The crude reaction mixture thus obtained was quenched with 10% aq. HCl and extracted with ether. MCC-ACV-00001
The combined organic extracts were washed further with 1 N aq. NaOH, water and brine, dried over Na2SO,), filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9; 1 (v/v) Hex : EtOAc -> 3:7 (v/v) Hex : EtOAc) afforded the title compound as a white solid. 5 Step 2: 1,1-Dimethylethyl {[6-(2-cyanoethyl)-δ-quinolinyl]methyl}cyclopropylcarbamate
To a solution of 1,1-dimethylethyl {[6-(2-cyanoethenyl)-8-quinolinyl]methyl}- cyclopropylcarbamate (1 eq.) from the previous step in EtOAc (0.1 M) was added palladium (10% (w/w) over carbon, 0.2 eq.). The resulting suspension was evacuated and back-filled repeatedly with hydrogen. Finally, the reaction suspension was allowed to stir under a hydrogen-filled balloon atmosphere for 4 h.
10 The reaction was quenched with the addition of dichloromethane and filtered through a bed of celite. The filtrate was then concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc -> 3 :7 (v/v) Hex : EtOAc) afforded the title compound as a yellow oil. Step 3: Amine 30
15 To a CH2Cl2 solution (0.05 M) of 1 , 1 -dimethylethyl {[6-(2-cyanoethyl)-8- quinolinyl]methyl}cyclopropylcarbamate (1 eq.) from the previous step was added zinc(II) bromide (10 eq.). The resulting suspension was sonicated for 15 min and stirred at RT for 13 h. The reaction was quenched with the addition of EtOAc and 1 N aq. NaOH, and then sonicated for 15 min. The aqueous phase was separated and back-extracted with EtOAc. The combined organic extracts were washed
20 further with water and brine, dried over Na24 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a yellow oil.
Amine 31
N-({3-[2-(Methyloxy)ethyl]-l-naphthalenyl}methyl)cyclopropanamine
25 Step 1: Methyl 3 -etheny 1-1 -naphthalenecarboxy late
Methyl 3-bromo-l-naphthalenecarboxylate (1 eq.) and 2-ethenyl-4,4,5,5-tetramethyl- 1,3,2-dioxaborolane (1 eq.) were combined in a 2:1 (v/v) mixture of DMF: rc-PrOH (0.1 M). To this solution was first added Pd(PPh3)2Br2 (0.05 eq.) followed by 2 Ν aq. Na2CO3 (2 eq.). The biphasic suspension was evacuated and back-filled three times with nitrogen before it was heated at 9O0C for 8 h.
30 The now black suspension was cooledto RT, diluted with water and extracted with 1 : 1 (v/v) hexanes: ether. The combined organic extracts were then washed further with 1 N aq. NaOH, 10% aq. HCl, water and brine. This was then dried over Na2SO4 and filtered through a pad of silica gel. Concentration of the filtrate in vacuo afforded the crude title compound as a golden yellow oil. Step 2: Methyl 3 -(2-hydroxyethyl)-l -naphthalenecarboxy late
35 Methyl 3-ethenyl-l-naphthalenecarboxylate (1 eq.) from the previous step, [Ir(COD)Cl]2
(0.025 eq.) and DPPB (0.05 eq.) were combined in THF (0,12 M). To this solution was then added 4,4,5, 5-tetramethyl-l,3,2-dioxaborolane (1.2 eq.) and the resulting red solution was stirred at RT for 16 MCC-ACv l
h. Finally, sodium perborate (0.1 M aqueous solution, 2 eq.) was added and the now black biphasic solution was vigorously stirred at RT for another 12 h. The aqueous layer was separated and back- extracted with ether. The combined organic extracts were then washed further with 1 N aq. NaOH, water and brine. This was then dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford a 5 pale yellow oil. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9:1 (v/v) Hex : EtOAc -^ 1 : 1 (v/v) EtOAc : Hex) afforded the title compound as a pale yellow oil. Step 3: Methyl 3-[2-(methyloxy)ethyl]-l-naphthalenecarboxylate
Methyl 3-(2-hydroxyethyl)-l-naphthalenecarboxylate (1 eq.) from the previous step and iodomethane (19 eq.) were taken up in THF (0.3 M). To this solution was then added sodium hydride 10 (60% w/w dispersion in oil, 1 eq.) and the resulting suspension was stirred at RT in darkness for 18 h. The volatiles were then removed in vacuo and the resulting residue partitioned between ether and 1 N aq. HCl. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were then washed further with 1 N aq. NaOH, water and brine. This was then dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford a yellow oil. Purification of the crude product thus
15 obtained by way of flash chromatography (SiO2, 19: 1 (v/v) Hex : EtOAc -^ 1 :1 (v/v) EtOAc : Hex) afforded the title compound as a pale yellow oil. Step 4: {3-[2-(Methyloxy)ethyl]-l-naphthalenyl}methanol
Methyl 3-[2-(methyloxy)ethyl]-l-naphthalenecarboxylate (1 eq.) from the previous step was taken up in toluene (0.1 M). To this solution was then added DIBAl-H (1.5 M toluene solution, 2.4
20 eq.) and the resulting solution was vigorously stirred at RT for 4 h. The reaction mixture thus obtained was quenched with 1 N aq. HCl and extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a colorless oil. Step 5: 3-[2-(Methyloxy)ethyl]-l-naphthalenecarbaldehyde
25 To a suspension of {3-[2-(methyloxy)ethyl]-l-naphthalenyl}methanol (1 eq.) from the previous step and sodium bicarbonate (1.1 eq.) in dichloromethane (0.1 M) was added DMP (1.1 eq.) at 0 0C. The resulting mixture was stirred at RT for 2 h before it was quenched with sat. aq. NaHSθ3 and then extracted with Et2O. The combined organic extracts were washed further with 1 N aq. NaOH, water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude
30 product thus obtained by way of flash chromatography (SiO2, 19: 1 (v/v) Hex : EtOAc -> 1 : 1 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. Step 6: Amine 31
To a dichloromethane (0.15 M) solution of 3-[2-(methyloxy)ethyl]-l-naphthalene- carbaldehyde (I eq.) from the previous step was added magnesium sulphate (1 eq.) and cyclopropyl
35 amine (1.2 eq.). The resulting suspension was stirred at RT for 20 h. The insolubles were removed via filtration and rinsed with dichloromethane before the combined filtrate was concentrated in vacuo. The crude imine thus obtained was taken up in methanol (0.15 M) and then added sodium borohydride (1.5 C-A V- 001
eq.) portionwise. The reaction mixture was stirred at RT for 8 h. The volatiles were then removed in vacuo and the resulting residue was partitioned between EtOAc and 1 N aq. NaOH. The aqueous layer was separated and back-extracted with EtOAc. The combined organic extracts were washed further with water and brine, dried over Na2SO4 and filtered. Concentration of the filtrate in vacuo afforded the title 5 compound as a colorless oil.
Amine 32
N-(2-{4-[(Cyclopropylamino)methyl]-2-naphthalenyl}ethyl)acetamide Step 1 : Methyl 3-{2-[(methylsulfonyl)oxy]ethyl}-l-naphthalenecarboxylate 0 To a dichloromethane (0.03 M) solution of methyl 3-(2-hydroxyethyI)-l- naphthalenecarboxylate (1 eq.) from Step 2, Amine 31 and Hunig's base (1.5 eq.) was added at O 0C methanesulfonyl chloride (1.3 eq.). The resulting solution was stirred at 00C for 30 min and then at RT for 15 min. The reaction mixture was subsequently quenched with 10% aq. HCl. The aqueous wash was separated and back-extracted with ether. The combined organic extracts were washed further with water . 5 and brine, dried over Na2SO4, and filtered. Concentration of the filtrate in vacuo afforded the crude title compound as a colorless oil. Step 2: 3-(2-Azidoethyl)-l-naphthalenecarboxylate
To a DMF (0.25 M) solution of methyl 3-{2-[(methyIsulfonyl)oxy]ethyl}-l- naphthalenecarboxylate (1 eq.) from the previous step was added sodium azide (5 eq.). The resulting0 solution was stirred at 550C for 12 h and then at 800C another 3 h. The reaction mixture was then diluted with ether and washed with water. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford the crude title compound as a pink oil. Step 3: Methyl 3-(2-aminoethyl)-l-naphthalenecarboxylate 5 To a THF (0.1 M) solution of 3-(2-azidoethyl)-l-naphthalenecarboxylate (1 eq.) from the previous step and triphenylphosphine (1.2 eq.) was added water (3 eq.). The resulting solution was stirred at 500C for 5 h. The volatiles were then removed in vacuo and purification of the crude product thus obtained by way of flash chromatography (SiO2, 96:4 (v/v) CH2Cl2 : 2.0 M NH3 in MeOH) afforded the title compound as a colorless oil. Step 4: Methyl 3-[2-(acetylamino)ethyl]-naphthalenecarboxylate
To a DMF (0.2 M) solution of methyl 3-(2-aminoethyl)-l-naphthalenecarboxylate (1 eq.) from the previous step, Hunig's base (3 eq.) and acetic acid (1.1 eq.) was added portionwise O-{1- azabenzotriazol-l-yI)-N,N,N',N'-tetramethyluronium hexafiuorophosphate (1.1 eq.). The resulting reaction solution was stirred at RT for 48 h. The now reddish solution was diluted with ether and washed sequentially with 1 Ν aq, NaOH, water and brine. The organic extract was then dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford a pale yellow oil. Purification of the crude MCC-ACV-0000]
product thus obtained by way of flash chromatography (SiO2, 7:3 (v/v) Hex : EtOAc -> EtOAc -^ 95:5 (v/v) CH2Cl2 : 2.0 M NH3 in MeOH) afforded the title compound as a colorless oil. Step 5: N-{2-[4-(HydroxymethyI)-2-naphthalenyl]ethyl}acetamide
Methyl 3-[2-(acetylamino)ethyl]-naphthalenecarboxylate (1 eq.) from the previous step 5 was taken up in THF (0.18 M). To this solution was then added lithium borohydride (12 eq.) and the resulting solution was vigorously stirred at 500C for 5 h. The reaction mixture thus obtained was diluted further with ether and carefully quenched with 1 Ν aq. HCl. The aqueous layer was separated and back- extracted with EtOAc. The combined organic extracts were washed further with 1 Ν aq. NaOH, water and brine, dried over Νa24 and filtered. Concentration of the filtrate in vacuo afforded the title 0 compound as a white solid.
Step 6: N-[2-(4-Formyl-2-naphthalenyl)ethyl]acetamide
To a suspension of N-{2-[4-(hydroxymethyl)-2-naphthalenyl]ethyl}acetamide (1 eq.) from the previous step and sodium bicarbonate (1.2 eq.) in dichloromethane (0.09 M) was added DMP (1.1 eq.) at 00C, The resulting mixture was stirred at RT for 18 h before it was quenched with sat. aq. 5 NaHSO3 and then extracted with Et2O. The combined organic extracts were washed further with 10% aq. HCl, water and brine, dried over Na2SO4, Filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 19: 1 (v/v) Hex : EtOAc -> 1 : 1 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. Step 6: Amine 32 0 To a dichloromethane (0.12 M) solution of N-[2-(4-formyl-2- naphthalenyl)ethyl]acetamide (1 eq.) from the previous step was added magnesium sulphate (1 eq.) and cyclopropyl amine (2 eq.). The resulting suspension was stirred at RT for 48 h. The insolubles were removed via filtration and rinsed with dichloromethane before the combined filtrate was concentrated in vacuo. The crude imine thus obtained was taken up in methanol (0.12 M) and then added sodium5 borohydride (1.5 eq.) portionwise. The reaction mixture was stirred at RT for 3 h. The volatiles were then removed in vacuo and the resulting residue was partitioned between EtOAc and 1 N aq. NaOH. The aqueous layer was separated and back-extracted with EtOAc. The combined organic extracts were washed further with water and brine, dried over Na24 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a colorless oil. 0
Amine 33 Λ/-[(2-Bromophenyl)methyl]cyclopropanamine
To a THF solution (0.15 M) of 2-bromobenzyl alcohol (1 eq.) was added triethylamine (1.6 eq.). The reaction mixture was cooled to 00C before methanesulfonyl chloride (1.35 eq.) was added dropwise. The resulting solution was then allowed to warm slowly to RT. After 1 ,5 h, cyclopropylamine (5 eq.) was added to the now cloudy suspension. After another 18 h, the reaction mixture was diluted with ether and quenched with 1 N aq. NaOH. The organic extract was separated, MCC-ACV-00001
washed with brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 4:1 (v/v) Hex : EtOAc -^ 1 :4 (v/v) Hex : EtOAc) afforded the title compound as a light yellow oil.
5 Amine 34
N- { [ 1 -(2-Methoxyethyl)- 1 H-indol-3-yl]methyl } cyclopropanamine Step 1 : l-(2-Methoxyethyl)-lH-indole-3-carbaldehyde
Indole-3-carbaldehyde (1 eq.) was dissolved in DMF (0.46 M). Sodium hydride was added (1.3 eq.) and the resulting solution was stirred at RT for 20 min. Potassium iodide (1 eq.) and 1-
10 bromo-2-methoxyethane (2 eq.) were then added and the reaction solution was allowed to stir at RT for 48 h. The reaction mixture was subsequently quenched with brine and extracted with EtOAc. The combined organic extracts were dried over MgSO4. Filtration and concentration of the filtrate in vacuo afforded a yellow oil. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc -^ EtOAc) afforded the title compound as an orange oil.
15 Step 2: Amine 34 l-(2-Methoxyethyl)-lH-indole-3-carbaldehyde (1 eq.) from the previous step and cyclopropylamine (2 eq.) were dissolved in CH2Cl2 (0.15 M). Magnesium sulfate (1 eq.) and formic acid (0.1 eq.) were then added and the resulting suspension was stirred at RT for 8 h. The insolubles were removed via filtration and the filtrate was concentrated in vacuo. The residue was then taken up in
20 MeOH (0.15 M) and sodium borohydride (1.5 eq) was added portionwise. The resulting suspension was stirred at RT for 16 h. The volatiles were removed in vacuo. The resulting residue was then taken up in ether, quenched carefully with 1 Ν aq. HCl. and then neutralized with 1 Ν aq. NaOH. The aqueous wash was separated and back-extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the
25 crude product thus obtained by way of flash chromatography (SiO2, EtOAc -> 7:3 (v/v) EtOAc : MeOH) afforded the title compound as an orange oil.
Amine 35
N-{[l-(2J2,2-Trifluoroethyl)-l//-indol-3-yl]methyl}cyclopropanamine
30 Amine 35 was prepared according to the procedure described in Amine 34 but using instead 1 -iodo-2,2,2-trifiuoroethane as the alkylation reagent in step 1.
Amine 36
N-{[l-(4,4,4-Trifluorobutyl)-lH-indol-3-yl]methyl}cycIopropanamine
35 Amine 36 was prepared according to the procedure described in Amine 34 but using instead l-iodo-4,4,4-trifluorobutane as the alkylation reagent in step 1. MCC-ACV-00001
Amine 37
N-[( 1 -Butyl- 1 /f-indol-3-yl)methyl]cyclopropanamine
Amine 37 was prepared according to the procedure described in Amine 34 but using instead 1-iodobutane as the alkylation reagent in step 1. 5
Amine 38 N-({ l-[3-(Ethyloxy)propyl]-lH-indol-3-yl}methyl)cyclopropanamine
Amine 38 was prepared according to the procedure described in Amine 34 but using instead l-bromo-3-ethoxypropane as the alkylation reagent in step 1. 10
Amine 39 N-CI l-fS^.S-Trifluoro-Z-CtrifluoromethyOpropylJ-lH-indol-S-ylJmethyOcyclopropanamine
Amine 39 was prepared according to the procedure described in Amine 34 but using instead l,l,l,3,3,3-hexafluoro-2-(iodomethyl)propane as the alkylation reagent in step 1. 15
Amine 40
N-(3-{3-[(Cyclopropylamino)methyl]- lH-indol- 1 -yl}propyl)acetamide
Step 1 : tert-B\ιty\ [3-(3-formyl-lH-indol-l-yl)propyl]carbamate
Indole-3-carbaldehyde (1 eq.) was dissolved in DMF (0.15 M). Sodium hydride was 20 added (1.3 eq.) and the resulting solution was stirred at RT for 20 min. Tetrabutylammonium iodide (1 eq.) and tert-buty\ 3-bromopropylcarbamate (2 eq.) were then added and the reaction solution was allowed to stir at RT for 18 h. The reaction mixture was subsequently quenched with sat. aq. NH4Cl and extracted with EtOAc. The combined organic extracts were dried over MgSO4. Filtration and concentration of the filtrate in vacuo afforded a yellow oil. Purification of the crude product thus 25 obtained by way of flash chromatography (SiO2, 7:3 (v/v) Hex : EtOAc -> EtOAc) afforded the title compound as a light pink solid. Step 2: N-[3-(3-Formyl-l//-indol-l-yl)propyl]acetamide
To a stirred dichloromethane (0.09 M) solution of ter/-butyl [3-(3-formyl-l/7-indol-l - yl)propyl]carbamate from the previous step was added HCl (4 N solution in dioxane, 45 eq.). The 30 resulting solution was stirred at RT for 1 h before the volatiles were removed in vacuo. Dichloromethane was then added to the red residue and the volatiles were again removed in vacuo to afford a red gum. To the crude amine thus obtained was then added dichloromethane (0.09 M) and triethylamine (2.2 eq.). When the reaction solution became homogeneous, acetyl chloride (1.05 eq.) was added and the resulting mixture was allowed to stir at RT for another 2 h. The reaction was finally quenched with 1 N aq. NaOH 35 and extracted with dichloromethane. The combined organic extracts were dried over MgSO4, filtered and concentration of the filtrate in vacuo afforded the crude title compound as a yellow solid. MCC-ACV-00001
Step 3 : Amine 40
//-[3-(3-Formyl-lH-indol-l-yl)propyl]acetamide (1 eq.) from the previous step and cyclopropylamine (2 eq.) were dissolved in CH2CI2 (0.1 M). Magnesium sulfate (2 eq.) and formic acid (0.2 eq.) were then added and the resulting suspension was stirred at RT for 20 h, The insolubles were 5 removed via filtration and the filtrate was concentrated in vacuo. The residue was then taken up in MeOH (0.1 M) and sodium borohydride (1 eq) was added portionwise. The resulting suspension was stirred at RT for 16 h. The volatiles were removed in vacuo. The resulting residue was then taken up in ether, quenched carefully with 1 N aq. HCl. and then neutralized with 1 N aq. NaOH. The aqueous wash was separated and back-extracted with ether. The combined organic extracts were washed further with0 water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 1:9 (v/v) MeOH : EtOAc -> 1 : 1 (v/v) EtOAc : MeOH) afforded the title compound as a white solid.
Amine 41 5 yV-(3-{3-[(CyclopropyIamtno)methyl]-lH-indol-l-yl}propyl)propanamide
Amine 41 was prepared according to the procedure described in Amine 40 but using instead propionyl chloride as the alkylation reagent in step 2.
Amine 42 0 N^-fS-KCyclopropylamino^ethyO-lH-indol-l-yljethyOacetamide
Amine 42 was prepared according to the procedure described in Amine 40 but using instead tert-bntyl 2-bromoethyIcarbamate as the alkylation reagent in step 1.
Amine 43 5 Λr-(2-{3-[(Cyclopropylamino)methyl]-l//-indoI-l-yl}ethyl)propanamide
Amine 42 was prepared according to the procedure described in Amine 40 but using instead 2-bromoethylcarbamate as the alkylation reagent in step 1 and propionyl chloride as the alkylation reagent in step 2 0 Amine 44
Λf-{[l-(2-Propen-l-yl)-lH-indol-3-yl]methyl}cyclopropanamine Step 1 : l-Allyl-l/f-indole-3-carbaldehyde
Indole-3-carbaldehyde (1 eq.) was dissolved in DMF (0.46 M). Sodium hydride was added (2.5 eq.) and the resulting solution was stirred at RT for 20 min. AUyI bromide (1 eq.) was then5 added and the reaction solution was allowed to stir at RT for 20 h. The reaction mixture was subsequently quenched with brine and extracted with EtOAc. The combined organic extracts were dried over MgSO4. Filtration and concentration of the filtrate in vacuo afforded a yellow oil. Purification of MCC-ACV-00001
the crude product thus obtained by way of flash chromatography (SiO2, 4:1 (v/v) Hex : EtOAc -> 3:7 (v/v) Hex : EtOAc) afforded the title compound as a light yellow oil. Step 2: Amine 44 l-Allyl-lH-indole-3-carbaldehyde (1 eq.) from the previous step and cyclopropylamine 5 (2 eq.) were dissolved in MeOH (0.05 M). Sodium cyanoborohydride (2 eq.) and acetic acid (4 eq.) were then added and the resulting suspension was stirred at RT for 18 h. The volatiles were subsequently removed in vacuo. The resulting residue was then taken up in ether, quenched carefully with 1 N aq. NaOH. The aqueous wash was separated and back-extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in 10 vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, EtOAc -> 4:1 (v/v) EtOAc : MeOH) afforded the title compound as a yellow oil.
Amine 45
N- { [ 1 -(Phenylmethyl)- 1 H-indol-3 -yl]methyl} cyclopropanamine
15 Amine 45 was prepared according to the procedure described in Amine 44 but using instead benzyl bromide as the alkylation reagent in step 1.
Amine 46
N- { [ 1 -(2-Pyridinylmethyl)- 1 H-indo 1-3 -y l]methy 1 } eye lopropanam ine
20 Amine 46 was prepared according to the procedure described in Amine 44 but using instead tetrabutylammonium iodide (1 eq.) and 2-picolyl chloride hydrochloride (1.5 eq.) as the alkylation mixture in step 1.
Amine 47 25 N- { [ 1 -(3-Pyridinylmethyl)- lH-indol-3-yl]methyl} cyclopropanamine
Amine 47 was prepared according to the procedure described in Amine 44 but using instead tetrabutylammonium iodide (1 eq.) and 3-picolyI chloride hydrochloride (1.5 eq.) as the alkylation mixture in step 1.
30 Amine 48
N-{[l-(4-Pyridinylmethyl)-l//-indol-3-yl]methyl}cycIopropanamine
Amine 48 was prepared according to the procedure described in Amine 44 but using instead 4-picolyl bromide hydrobromide (1 eq.) as the alkylation reagent in step 1. MCC-ACV-00001
Amine 49
N-( { 1 -[(4-Fluorophenyl)methyl]- li/-indol-3-yl } methyl)cyclopropanamine
Amine 49 was prepared according to the procedure described in Amine 44 but using instead 1 -(bromomethyl)-4-fluorobenzene (1.5 eq.) as the alkylation reagent in step 1. 5
Amine 50 N-({ l-[(4-Chlorophenyl)methyl]-lH-indol-3-yl}methy])cyclopropanamine
Amine 50 was prepared according to the procedure described in Amine 44 but using instead l-(bromomethyl)-4-chlorobenzene (1.5 eq.) as the alkylation reagent in step 1. 10
Amine 51 N-({l-[(3-Fluorophenyl)methyl]-lH-indol-3-yl}methyl)cyclopropanamine
Amine 51 was prepared according to the procedure described in Amine 44 but using instead l-(bromomethyl)-3-fluorobenzene (1.5 eq.) as the alkylation reagent in step 1. 15
Amine 52 N-({ l-[(3-Chlorophenyl)methyl]-lH-indol-3-yl}methyl)cyclopropanamine
Amine 52 was prepared according to the procedure described in Amine 44 but using instead l-(bromomethyl)-3-chlorobenzene (1.5 eq.) as the alkylation reagent in step 1. 20
Amine 53 3-({3-[(Cyclopropylamino)methyl]-lH-indol-l-yl}methyI)benzonitrile
Amine 53 was prepared according to the procedure described in Amine 44 but using instead 1 -(bromomethyl)-3-cyanobenzene (1.5 eq.) as the alkylation reagent in step 1. 25
Amine 54 N-({l-[(3-Methylphenyl)methyl]-lH-indol-3-yl}methyl)cyclopropanamine
Amine 54 was prepared according to the procedure described in Amine 44 but using instead l-(bromomethy])-3-methylbenzene (1.5 eq.) as the alkylation reagent in step 1. 30
Amine 55 yV-({5-Fluoro-l-[3-(methyloxy)propyl]-lH-indol-3-yl}methyl)cyclopropanamine
Amine 55 was prepared according to the procedure described in Amine 44 but using instead tetrabutylammonium iodide (1 eq.) and l-bromo-3-methoxypropane (2.1 eq.) as the alkylation 35 mixture and 5-fluoro-l/f-indole-3-carbaldehyde (1 eq.) as the starting indole in step 1. MCC-ACV-00001
Amine 56
N-{[6-Bromo-l-(phenylmethyl)-l//-indol-3-yl]methyl}cyclopropanamine Step 1 : ό-Bromo-lH-indole-S-carbaldehyde
To a DMF (0.47 M) solution of 6-bromo-lH-indole (1 eq.) was added at O0C phosphorus 5 oxychloride (1.2 eq.). The resulting solution was warmed to RT and stirred at RT for 16 h. The resulting solution was re-cooled to O0C and then carefully added ΝaOΗ (2 M aq. solution, 2.8 eq.). After stirring at RT for another 2 h, the crude reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over MgSCV Filtration and concentration of the filtrate in vacuo afforded a yellow oil, Purification of the crude product thus obtained by way of flash chromatography
10 (SiO2, Hex -¥ EtOAc) afforded the title compound as a brown solid. Step 2: l-Benzyl-6-bromo-l//-indole-3-carbaldehyde
6-Bromo- l/f-indole-3-carbaldehyde (1 eq.) from the previous step was dissolved in DMF (0.19 M). Sodium hydride was added (1.5 eq.) and the resulting solution was stirred at RT for 20 min. Benzyl bromide (1 eq.) was then added and the reaction solution was allowed to stir at RT for 24 h. The
15 reaction mixture was subsequently quenched with water and extracted with EtOAc. The combined organic extracts were dried over MgSO,}. Filtration and concentration of the filtrate in vacuo afforded a yellow oil. Purification of the crude product thus obtained by way of flash chromatography (Siθ2, 4: 1 (v/v) Hex : EtOAc -> 3:7 (v/v) Hex : EtOAc) afforded the title compound as a yellow solid. Step 3 : Amine 56
20 l-Benzyl-ό-bromo-lH-indole-S-carbaldehyde (1 eq.) from the previous step and cyclopropylamine (2 eq.) were dissolved in MeOH (0.05 M). Sodium cyanoborohydride (2 eq.) and acetic acid (4 eq.) were then added and the resulting suspension was stirred at RT for 16 h. The volatiles were subsequently removed in vacuo. The resulting residue was then taken up in ether, quenched carefully with 1 Ν aq. NaOH. The aqueous wash was separated and back-extracted with ether. The
25 combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, EtOAc -> 2:3 (v/v) EtOAc : MeOH) afforded the title compound as a yellow oil.
Amine 57
30 N- { [ 1 -[(3-Fluorophenyl)methyl]-6-(methyloxy)- 1 H-indol-3 -yljmethyl } cyclopropanamine
Amine 57 was prepared according to the procedure described in Amine 44 but using instead l-(bromomethyl)-3-fluorobenzene (1.5 eq.) as the alkylation reagent in step 2 and 6-methoxy-li/- indole-3-carbaldehyde (1 eq.) as the starting indole in step 1. MCC-ACV-0000!
Amine 58
N-{[4-Methyl-l-(phenylmethyl)-li/-indol-3-yl]raethyl}cyclopropanamine
Amine 58 was prepared according to the procedure described in Amine 56 but using instead 4-methyl-lH-indole (1 eq.) as the starting indole in step 1 and benzyl bromide (1 eq.) as the 5 alkylation reagent in step 2.
Amine 59
3-[(Cyclopropylamino)methyl]-l-(phenylmethyl)-lH-indole-4-carbonitrile
Amine 59 was prepared according to the procedure described in Amine 56 but using
10 instead lH-indole-4-carbonitrile (1 eq.) as the starting indole in step 1 and benzyl bromide (1 eq.) as the alkylation reagent in step 2.
Amine 60
N-{[4-Fluoro-l-(phenylmethyl)-lH-indol-3-yl]methyl}cyclopropanamine
15 Amine 60 was prepared according to the procedure described in Amine 56 but using instead 4-fluoro- IH- indole (1 eq.) as the starting indole in step 1 and benzyl bromide (1.5 eq.) as the alkylation reagent in step 2.
Amine 61
20 N-({4-Fluoro-l-[(3-fluorophenyl)methyl]-lH-indol-3-yl}methyl)cyclopropanamine
Amine 61 was prepared according to the procedure described in Amine 56 but using instead 4-fluoro-lH-indole (1 eq.) as the starting indole in step 1 and l-(bromomethyl)-3-fluorobenzene (1.5 eq.) as the alkylation reagent in step 2.
25 Amine 62
N-({4-Fluoro-l-[3-(methyloxy)propyl]-lH-indol-3-yl}methyl)cyclopropanamine
Amine 62 was prepared according to the procedure described in Amine 56 but using instead 4-fluoro- lH-indole (1 eq.) as the starting indole in step 1. Furthermore, l-bromo-3- methoxypropane (2 eq.) and tetrabutylammonium iodide (1 eq.) were used as the alkylation mixture in 30 step 2.
Amine 63
N-({4-Chloro-l-[3-(methyloxy)propyl]-lH-indol-3-yl}methyl)cyclopropanamine
Amine 63 was prepared according to the procedure described in Amine 56 but using 35 instead 4-chloro-lH-indole (1 eq.) as the starting indole in step 1. Furthermore, l-bromo-3- methoxypropane (2 eq.) and tetrabutylammonium iodide ( 1 eq.) were used as the alkylation mixture in step 2. MCC-ACV-00001
Amine 64
^-{[^Chloro-l^phenylmethyO-lH-indol-S-yllmethyllcyclopropanamine
Amine 64 was prepared according to the procedure described in Amine 56 but using 5 instead 4-chloro-lH-indole (1 eq.) as the starting indole in step 1 and benzyl bromide (1.5 eq.) as the alkylation reagent in step 2.
Amine 65
N-{[4-Bromo- 1 -(phenylrnethyl)- lH-indol-3-yl]methyI } cyclopropanamine
10 Amine 65 was prepared according to the procedure described in Amine 56 but using instead 4-bromo-lH-indole (1 eq.) as the starting indole in step 1 and benzyl bromide (1.5 eq.) as the alkylation reagent in step 2.
Amine 66
15 Λr-[{4-Bromo-l-[(3-fluorophenyl)methyl]-lH-indol-3-yl}methyl]cyclopropanamine
Amine 66 was prepared according to the procedure described in Amine 56 but using instead 4-bromo-lH-indole (1 eq.) as the starting indole in step I and l-(bromomethyl)-3-fluorobenzene (1.5 eq.) as the alkylation reagent in step 2.
20 Amine 67
Λ/-({4-Bromo-l-[3-(methyloxy)propyl]-]H-indol-3-yl}methyl)cyclopropanamine
Amine 67 was prepared according to the procedure described in Amine 56 but using instead 4-bromo-lH-indole (1 eq.) as the starting indole in step 1. Furthermore, l-bromo-3- methoxypropane (2 eq.) and tetrabutylammonium iodide (1 eq.) were used as the alkylation mixture in 25 step 2.
Amine 68
N-[(4-Fluoro-lH-indol-3-yl)methyl)cyclopropanamine
Amine 68 was prepared according to the procedure described in Amine 56 but using 30 instead 4-fluoro- \H- indole (1 eq.) as the starting indole in step 1. Furthermore, step 2 was not necessary.
Amine 69 l-{3-[(Cyclopropylamino)methyl]-5-[3-(methyloxy)propyl]phenyl}ethanone
35 Amine 69 was prepared according to the procedure described in WO 2007/009250 Al patent. MCC-ACV-00001
Amine 70
5-[(Cyclopropylamino)methyl]-l,3-bis[3-(methyIoxy)propyl]-2,4(lH,3H)-pyπmidinedione Step 1 : l,3-Bis(3-methoxypropyl)-2,4-dioxo-l,2,3,4-tetrahydropyrimidine-5-carbaldehyde
To a DMF (0.35 M) solution of 5-formyluracil (1 eq.) was added sequentially at O0C 1 - 5 bromo-3-methoxypropane (2.2 eq.) and DBU (2.2 eq.). The resulting solution was stirred at RT for 72 h. The volatiles were then removed in vacuo. The crude product mixture thus obtained was directly subjected to purification by way of column chromatography (SiCb, EtOAc) to afford the title compound as a yellow oil. Step 2: Amine 70
10 To a dichloromethane (0.1 M) solution of l,3-bis(3-methoxypropyl)-2,4-dioxo-l,2,3,4- tetrahydropyrimidine-5-carbaldehyde (1 eq.) from the previous step was added magnesium sulphate (1 eq.) and cyclopropyl amine (2 eq.). The resulting suspension was stirred at RT for 16 h. The insolubles were removed via filtration and rinsed with dichloromethane before the combined filtrate was concentrated in vacuo. The crude imine thus obtained was taken up in methanol (0.1 M) and then added
15 sodium borohydride (1.5 eq.) portionwise. The reaction mixture was stirred at RT for 16 h before it was quenched with sat. aq. NaHCO3 and then extracted with EtOAc. The combined organic extracts were washed further with water and brine, dried over Na2SO^ filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of column chromatography (SiO2, CH2Cl2 -> 85: 15 (v/v) CH2Cl2 : 2 M NH3 in MeOH) afforded the title compound as a white solid.
20
Amine 71
N-[5-(3-Methoxypropyl)-2,3-dimethylbenzyl]cyclopropanamine Step 1 : 5-Bromo-2,3-dimethylbenzoic acid
To a stirred acetic acid solution (0.2 M) of 2,3-dimethylbenzoic acid (1 eq.) was added
25 sequentially nitric acid (12 eq.), water (25 eq.) and bromine (1.1 eq.). Finally, silver nitrate (1 M aqueous solution, 1.3 eq.) was added dropwise over a period of 30 min. After another hour of stirring at RT, the crude reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were then washed with brine, dried over Νa24, filtered and the filtrate concentrated in vacuo. Trituration of the crude product thus obtained in hexanes afforded the title compound as a yellow solid.
30 Step 2: 5-Bromo-iV-cycIopropyl-2,3-dimethylbenzamide
To a stirred DMF (0.2 M) solution of 5-bromo-2,3-dimethylbenzoic acid (1 eq.) from the previous step was added HATU (1.3 eq.), cyclopropylamine (1.2 eq.) and Hunig's base (3 eq.). The resulting reaction mixture was stirred at RT for 18 h. The reaction was then quenched with saturated aqueous ammonium chloride and extracted with EtOAc. The combined organic extracts were washed
35 further with water and brine, dried over Na2SO^ filtered and the filtrate concentrated in vacuo.
Purification of the crude product thus obtained by way of flash chromatography (SiO2, 7:3 (v/v) Hex : EtOAc -^ EtOAc) afforded the title compound as a white solid. MCC-ACV-00001
Step 3 : N-Cyclopropyl-S-Klj^-methoxy-l-propen-l-yl^^-dimethylbenzamide
5-Bromo-N-cyclopropyl-2,3-dimethylbenzamide (1 eq.) from the previous step and 4,4,5,5-tetramethyl-2-[(l£)-3-(methyloxy)-l-propen-l-yl]-l ,3,2-dioxaborolane (1.5 eq.) were combined in a 5: 1 (v/v) mixture of DMF: «-PrOH (0.1 M). To this solution was then added trctns- 5 bis(triphenylphosphine) palladium(II) bromide (0.05 eq.) and the vessel was repeatedly evacuated and back-filled with nitrogen. Finally, 2 M aq. Na2CO3 (3 eq.) was added and the resulting biphasic suspension was heated at 1000C for 18 h. The now black suspension was cooled to RT, diluted with water and extracted with ether. The combined organic extracts were then washed with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by
10 way of flash chromatography (SiOj, 9: 1 (v/v) Hex: EtOAc -^ EtOAc) afforded the title compound as a white solid. Step 4: N-Cyclopropyl-5-(3-methoxypropyl)-2,3-dimethylbenzarnide
N-Cyclopropyl-5-[(l-δ)-3-methoxy-l -propen-l-yl]-2,3-dimethylbenzamide (1 eq.) from the previous step and 10% w/w palladium over charcoal (0.05 eq.) were suspended in EtOAc (0.2 M).
15 The vessel was then evacuated and purged with H2. Under a balloon-filled H2 atmosphere, the reaction suspension was stirred at RT for 6 h. The reaction suspension was then filtered through a bed of celite and the filtrate concentrated in vacuo to afford the title compound as a white solid. Step 5: Amine 71
To a refluxing solution of N-cyclopropyl-5-(3-methoxypropyl)-2,3-dimethylbenzamide (1
20 eq.) from the previous step in THF (0.1 M) equipped with a short-path distillation apparatus was added dropwise borane-dimethyl sulfide complex (6 eq.). The solution was concentrated to 0.3 M over 30 min and HCl (2 Ν aq. solution, 6.5 eq.) was added. The mixture was stirred at 8O0C for 1 h, cooled to RT, rendered basic with 2 Ν aq. NaOH and extracted with EtOAc. The combined organic extracts were then washed with brine, dried over Νa2SO4, filtered and the filtrate concentrated in vacuo. Purification of the
25 crude product by way of flash chromatography (SiO2, 9: 1 (v/v) Hex: EtOAc -> EtOAc) afforded the title compound as a pale yellow oil.
Amine 72 iV-[2-Chloro-5-(2-methoxyethoxy)benzyl]cyclopropanamine
30 Step l : l-Chloro-4-(2-methoxyethoxy)-2-methylbenzene
To a stirred solution of 4-chloro-3-methylphenol (1 eq.) in DMF (0.7 M) was added K2CO3 (1.2 eq.). The mixture was stirred at 5O0C for 5 min before 1 -bromo-2-methoxyethane (1.5 eq.) was added. After 2 h at 7O0C, the reaction mixture was cooled down to RT and then diluted with water and ether. The organic phase was separated and washed sequentially with 2 N aq. NaOH, water and
35 brine. The organic extract was dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford the title compound as a yellowish oil. MCC-ACV-00001
Step 2 : 2-(Bromomethyl)- 1 -chloro4-(2-methoxyethoxy)benzene
A mixture of l-chloro-4-(2-methoxyethoxy)-2-methylbenzene (1 eq.) from the previous step, NBS (1.1 eq.) and benzoyl peroxide (0.05 eq.) in CCl4 (0.2 M) was refluxed for 2 h. The volatiles were then removed in vacuo and the resulting residue was suspended in hexanes. The insolubles were 5 removed via filtration and washed further with hexanes. The filtrate was concentrated in vacuo to afford the title compound as a colorless oil.
Step 3: 2-Chloro-5-(2-methoxyethoxy)benzaldehyde
2-(Bromomethyl)-l-chloro-4-(2-methoxyethoxy)benzene (1 eq.) from the previous step and NMO (3 eq.) were stirred in dioxane (0.3 M) at 9O0C for 6 h. The reaction mixture was then 10 quenched with saturated aqueous sodium bicarbonate and extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography
(SiO2, 9:1 (v/v) Hex : EtOAc -> EtOAc) afforded the title compound.
Step 4: Amine 72 15 2-ChIoro-5-(2-methoxyethoxy)benzaidehyde (1 eq.) from the previous step and cyclopropylamine (2 eq.) were combined in CH2Cl2 (0.2 M). To this was then added MgSθ4 (1 -5 eq.) and the resulting suspension was stirred at RT for 18 h. The insolubles were then removed via filtration through a pad of celite and the filtrate was concentrated in vacuo. The crude imine thus obtained was then re-taken up in a 2: 1 (v/v) mixture of THF: MeOH (0.2 M). To this solution was added sodium 20 borohydride (5 eq.) portionwise and the resulting mixture was stirred at RT for 18 h. The reaction was quenched with saturated aqueous sodium bicarbonate and extracted with ethyl acetate. The combined organic extracts were then washed with brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, 9: 1 (v/v) Hex: EtOAc ->
EtOAc) afforded the title compound as a yellowish oil. 25
Amine 73
N-(2-Naphthylmethyl)cyclopropanamine
Amine 73 was prepared according to the procedure described in Amine 17 but using instead 2-naphthaIdehyde as the starting material. 30
Amine 74 iV-({3-[(Trifluoromethyl)thio]phenyl}methyl)cyclopropanamine
Amine 74 was prepared according to the procedure described in Amine 17 but using instead 3-[(trifluoromethyl)thio]benzaldehyde as the starting material. 35 MCC-ACV-00001
Amine 75 iV-{[5-[3-(Methyloxy)proρyl]-2-(methylthio)phenyl]methyl}cyclopropan amine Step 1 : Methyl 5-bromo-2-(methylthio)benzoate
To a DMF (0.2 M) suspension of cesium carbonate (3 eq.) and 5-bromo-2-
5 mercaptobenzoic acid (1 eq.) was added iodomethane (5 eq.). The resulting suspension was then stirred at RT for 1 h. The volatiles were removed before EtOAc and sat. aq. NH4Cl were added. The organic phase was separated, dried over Na2SO4, filtered and the filtrate concentrated in vacuo to a pale yellow oil. This was taken up again in DMF (0.2 M) and added sequentially sodium hydride (3 eq.) and iodomethane (5 eq.). The reaction vessel was then sealed and heated to 7O0C for 16 h. After cooling to
10 RT, EtOAc and sat. aq. NH4Cl were added to the crude reaction mixture. The organic phase was separated, dried over MgSO4, filtered and the filtrate concentrated in vacuo to a brown oil. Purification of the crude product thus obtained by way of flash chromatography (Siθ2, Hex, -> 3:2 (v/v) Hex : EtOAc) afforded the title compound as a light yellow solid. Step 2: Methyl 5-[3-(methyloxy)propyl]-2-(methylthio)benzoate
15 To a THF (0.29 M) solution of 9-BBN (2 eq.) was added allyl methyl ether (2.1 eq.) dropwise and the resulting solution was stirred at RT until no more gaseous evolution was observed. The reaction mixture was then heated to 5O0C for 1 h. To this solution was subsequently added a DMF (0.34 M) solution of methyl 5-bromo-2-(methylthio)benzoate (1 eq.) from the previous step, potassium phosphate (2.5 eq.) and [l,r-bis(diphenylphosphino)ferrocene]dipalladium(II) dichloromethane complex
20 (0.1 eq.). The resulting red suspension was heated at 8O0C for 16 h. After cooling to RT, the reaction was diluted with ether and water. The organic layer was separated and washed further with water and brine, dried over MgSO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc -> 7:3 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil.
25 Step 3: 5-[3-(Methyloxy)propyl]-2-(methylthio)benzyl alcohol
Methyl 5-[3-(methyloxy)propyl]-2-(methylthio)benzoate (1 eq.) from the previous step was taken up in THF (0.1 M) and then added lithium aluminum hydride (1 eq.). The reaction mixture thus obtained was stirred at RT for 16 h. The reaction was then quenched with 1 N aq. HCl and extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4
30 and filtered. Concentration of the filtrate in vacuo afforded the crude title compound as a white solid. Step 4: 5-[3-(Methyloxy)propyl]-2-(methylthio)benzaldehyde
To a dichloromethane solution of 5-[3-(methyloxy)propyl]-2-(methylthio)benzyl alcohol (1 eq.) from the previous step was added sodium bicarbonate (5 eq.) and DMP (1.1 eq.). The resulting reaction suspension was stirred for 1.5 h at RT. The reaction was quenched with sat. aq. NaHSO3 and
35 then extracted with dichloromethane. The combined organic extracts were washed further with 1 N aq. NaOH, water and brine, dried over MgSO4 and filtered. Concentration of the filtrate in vacuo afforded the crude title compound as a colorless oil. MCC-ACV-00001
Step 5: Amine 75
5-[3-(Methyloxy)propyl]-2-(methylthio)benzaldehyde (1 eq.) from the previous step and cyclopropylamine (2 eq.) were combined in CH2Cl2 (0.1 M). To this was then added MgSO4 (2 eq.) and formic acid (0.1 eq.) before the resulting suspension was allowed to stir at RT for 20 h. The insolubles 5 were then removed via filtration through a pad of celite and the filtrate was concentrated in vacuo. The crude imine thus obtained was then re-taken up in MeOH (0.1 M). To this solution was added sodium borohydride (5 eq.) portionwise and the resulting mixture was stirred at RT for 16 h. The reaction was quenched with 1 N aq. HCl, neutralized with 1 N aq. NaOH and extracted with ether. The combined organic extracts were then washed further with water and brine, dried over MgSO4, filtered and the 10 filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, 3:2 (v/v) Hex: EtOAc -> 1 :4 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil.
Amine 76 yV-[3-Bromo-5-(3-methoxypropyl)-4-methylbenzyl]cyclopropanamine
15 Step 1 : 3,5-Dibromo-N-cyclopropyl-4-methylbenzamide
To a stirred solution of 3,5-dibromo-4-methylbenzoic acid (1 eq.) in DMF (0.4 M) was added HATU (1.3 eq.), cyclopropylamine (1.1 eq.) and Hunig's base (3 eq.). The resulting yellow mixture was stirred at RT for 18 h. The reaction was then quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate. The combined organic extracts were washed further with water
20 and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Trituration of the crude product thus obtained in a mixture of ether and hexanes afforded the title compound as an off-white solid. Step 2: 3-Bromo-N-cyclopropyl-5-[(l£)-3-methoxyprop-l-en-l-yl]-4-methylbenzamide
To a solution of 3,5-dibromo-N-cyclopropyl-4-methylbenzamide (1 eq.) from the
25 previous step and 4,4,5, 5-tetramethyl-2-[(l£)-3-(methyloxy)-l-propen-l-yl]-l,3,2-dioxaborolane (1.1 eq.) in DMF (0.1 M) was added frγ)rø-bis(triphenylphosphine) palladium(II) bromide (0.05 eq.). The vessel was repeatedly evacuated and back-filled with nitrogen. Finally, 2 M aq. Na2CO3 (3 eq.) was added and the resulting mixture was heated at 1000C for 1 h. The now black suspension was cooled to RT, diluted with water and extracted with ethyl acetate. The combined organic extracts were washed further with
30 water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, 9:1 (v/v) Hex: EtOAc -^ EtOAc) afforded the title compound as a yellow-orange oil. Step 3 : 3-Bromo-N-cyclopropyl-5-(3-methoxypropyl)-4-methylbenzamide
To a solution of 3-bromo-Ν-cyclopropyl-5-[(lis)-3-rnethoxyprop-l-en-l-yl]-4-
35 methylbenzamide (1 eq.) from the previous step in refluxing toluene (0.1 M) was added portionwise benzenesulfonyl hydrazide (6 eq.) over 2 h. After heating at reflux for another hour, the now black reaction suspension was cooled to RT, quenched with saturated aqueous sodium bicarbonate and MCC-ACV-00001
extracted with ethyl acetate. The combined organic extracts were then washed with brine, dried over Na2SC>4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiOj, 9:1 (v/v) Hex : EtOAc -> EtOAc) afforded the title compound as a yellow oil. Step 4: Amine 76 5 To a stirred solution of 3-bromo-N-cyclopropyl-5-(3-methoxypropyI)-4- methylbenzamide (1 eq.) from the previous step in THF (0.2 M) was added sequentially sodium borohydride (4 eq.) and BF3-THF complex (4.5 eq.). The reaction solution thus obtained was heated at 4O0C for 5 h, cooled to O0C and then poured slowly into 6 N aq. HCl (4.5 eq.). The resulting mixture was re-heated at 5O0C for 1 h, cooled to RT, basified with 10 N aq. NaOH and finally extracted with ether. 10 The combined organic extracts were then washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo to give the title compound as a colorless oil.
Amine 77 N-({3,5-Bis[3-(methyloxy)propyl]phenyl}methyl)cyclopropanamine 5 Step 1: N-[(3,5-Dibromophenyl)methyl]cyclopropanarnine
3,5-Dibromobenzaldehyde (1 eq.), cyclopropylamine (2 eq.) and magnesium sulfate (1 eq.) were stirred in dichloromethane (0.1 M) for 20 h. The insolubles were then removed via filtration through a pad of celite and washed further with dichloromethane. The filtrate was concentrated in vacuo to afford the crude imine which was then immediately re-taken up in MeOH (0.1 M). To this solution 0 was added sodium borohydride (5 eq.) portionwise and the resulting mixture was stirred at RT for 4 h. The reaction was quenched with 1 Ν aq. HCl, neutralized with 1 Ν aq. NaOH and extracted with ether. The combined organic extracts were then washed further with water and brine, dried over MgSO4, and filtered. Concentration of the filtrate in vacuo afforded the title compound as a pale yellow oil. Step 2: terf-Butyl cyclopropyl(3,4-dibromobenzyl)carbamate 5 N-[(3,5-Dibromophenyl)rnethyl]cyclopropanamine (1 eq.) from the previous step and di-
?err-butyl dicarbonate (1 eq.) were taken up in dichloromethane (0.12 M). To this was then added Hunig's base ( 1.3 eq.) and the resulting mixture was stirred at RT for 16 h. The volatiles were removed in vacuo and the resulting residue was taken up in a 1:1 (v/v) mixture of hexanes and ether. This suspension was subsequently washed with 10% aq. HCl, water and brine, dried over Νa24, filtered and0 the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of column chromatography (SiO2, Hex -> 1 : 1 (v/v) Hex : EtOAc) afforded the title compound as a pale yellow oil. Step 3: tert-Buty\ ^S-bisKlZ^-S-methoxy-l-propen-l-y^benzylJcyclopropylcarbamate
To a solution of tert-bvityl cyclopropyl(3,4-dibromobenzyl)carbamate (1 eq.) from the previous step and 4,4,5, 5-tetramethyl-2-[(l£)-3-(methyloxy)-l-propen-l-yl]-l,3,2-dioxaborolane (2.2 eq.)5 in DMF (0.14 M) was added fr"<ms-bis(triphenylphosphine) palladium(II) bromide (0.1 eq.). The vessel was repeatedly evacuated and back-filled with nitrogen. Finally, 2 M aq. Na2CO3 (6 eq.) was added and the resulting mixture was heated at 9O0C for 6 h. The now black suspension was cooled to RT, diluted MCC-ACV-00001
with water and extracted with ether. The combined organic extracts were washed further with 10% aq.
HCl, 1 N aq. NaOH, water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo.
Purification of the crude product by way of flash chromatography (SiO2, Hex -^ 1 : 1 (v/v) Hex: EtOAc) afforded the title compound as a pale yellow oil. 5 Step 4: ?er/-Butyl [3,5-bis(3-methoxypropyl)benzyl]cyclopropylcarbamate ter?-Butyl {3,5-bis[(l£)-3-methoxy-l-propen-l-yl]benzyl}cyclopropylcarbamate (1 eq.) from the previous step and 10% w/w palladium over charcoal (0.1 eq.) were suspended in EtOAc (0.05
M). The vessel was then evacuated and purged with H2. Under a balloon-filled H2 atmosphere, the reaction suspension was stirred at RT for 3 h. The reaction suspension was then quenched with 10 dichloromethane and filtered through a bed of celite. Concentration of the filtrate in vacuo to afford the title compound as a yellow oil.
Step 5: Amine 77
To a solution of ter?-butyl [3,5-bis(3-methoxypropyl)benzyl]cyclopropylcarbamate (1 eq.) from the previous step in CH2Cl2 (0.1 M) was added HCl (4.0 M in dioxane, 30 eq.). The resulting 15 solution was stirred at RT for 2 h. The reaction was then quenched with 1 N aq. NaOH and extracted with ether. The combined organic extracts were then washed further with water and brine, dried over
Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, 4: 1 (v/v) Hex: EtOAc -> EtOAc) afforded the title compound as a colorless oil.
20 Amine 78
N-[3-(3-Methoxypropyl)-5-methylbenzyl]cyclopropanamine
Step 1 : te^Butyl ^-bromo-S-formylbenzytycyclopropylcarbamate
To a toluene (0.1 M) solution of n-butyl lithium (2.5 M in hexanes, 1.2 eq.) was added at -1O0C w-butyl magnesium bromide (2.0 M in THF, 0.4 eq.). The resulting suspension was stirred at
25 -1O0C for 20 min before ter/-butyl cyclopropyl(3,4-dibromobenzyl)carbamate (1 eq., Amine 77, Step 2) was added. The now yellow-red suspension was stirred at O0C for 30 min before DMF (30 eq.) was added dropwise neat at -780C. The reaction mixture was allowed to warm slowly to RT over 3 h. The now black suspension was quenched with 10% aq. HCl and then extracted with ether, The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate
30 concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, Hex -> 1 : 1 (v/v) Hex: EtOAc) afforded the title compound as a golden yellow oil. Step 2: ter/-Butyl cyclopropyl{3-formyl-5-[(l£)-3-methoxy-l-propen-l-yl]benzyl}carbamate
To a solution of tert-huty\ (S-bromo-S-formylbenzyOcyclopropylcarbamate (1 eq.) from the previous step and 4,4,5, 5-tetramethyl-2-[(l£)-3-(methyloxy)-l-propen-l-yl]-l,3,2-dioxaborolane (1
35 eq.) in DMF (0.2 M) was added frαrø-bis(triphenylphosphine) palladium(II) bromide (0.05 eq.). The vessel was repeatedly evacuated and back-filled with nitrogen. Finally, 2 M aq. Na23 (3 eq.) was added and the resulting mixture was heated at 9O0C for 6 h. The now black suspension was cooled to MCC-ACV-00001
RT, diluted with water and extracted with ether. The combined organic extracts were washed further with 10% aq. HCl3 1 N aq. NaOH, water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, Hex -> 3:7 (v/v) Hex: EtOAc) afforded the title compound as a pale yellow oil. 5 Step 3: tert-Butyl cyclopropyl[3-(3-methoxypropyl)-5-methylbenzyl]carbamate tert-Butyl cyclopropyl{3-formyl-5-[(l£)-3-methoxy-l-propen-l-yl]benzyl}carbamate (l eq.) from the previous step and 10% w/w palladium over charcoal (0.1 eq.) were suspended in EtOAc (0.1 M). The vessel was then evacuated and purged with H2. Under a balloon-filled H2 atmosphere, the reaction suspension was stirred at RT for 3 h. The reaction suspension was then quenched with
10 dichloromethane and filtered through a bed of celite. Concentration of the filtrate in vacuo to afford the title compound as a yellow oil. Step 5: Amine 78
/erf-Butyl cyclopropyl[3-(3-methoxypropyl)-5-methylbenzyl]carbamate (1 eq.) from the previous step in CH2Cl2 (0.1 M) was added HCl (4.0 M in dioxane, 30 eq.). The resulting solution was
15 stirred at RT for 2 h. The reaction was then quenched with 1 N aq. NaOH and extracted with ether. The combined organic extracts were then washed further with water and brine, dried over Na24 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a colorless oil.
Amine 79
20 N-[2-Bromo-3 ,5-bis(3-methoxypropyl)benzyl]cyclopropanamine Step 1: 3,5-Dibromo-N-cyclopropylbenzamide
To a stirred solution of 3,5-dibromobenzoic acid (1 eq.) in DMF (0.15 M) was added HATU (1.3 eq.), cyclopropylamine (1.1 eq.) and Hunig's base (3 eq.). The resulting yellow mixture was stirred at RT for 18 h. The reaction was then quenched with saturated aqueous ammonium chloride and
25 extracted with ethyl acetate. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Trituration of the crude product thus obtained in a mixture of ether and hexanes afforded the title compound as a white solid. Step 2: N-Cyclopropyl-3,5-bis[(l£)-3-methoxyprop-l-en-l-yl]benzamide
To a solution of 3,5-dibromo-iV-cyclopropylbenzamide (1 eq.) from the previous step
30 and 4,4,5, 5-tetramethyl-2-[(l£)-3-(methyloxy)-l-propen-l-yl]-l,3,2-dioxaborolane (2.3 eq.) in DMF (0.13 M) was added /rørø-bis(triphenylphosphine) palladium(Ii) bromide (0.1 eq.). The vessel was repeatedly evacuated and back-filled with nitrogen. Finally, 2 M aq. Na2CO3 (6 eq.) was added and the resulting mixture was heated at 9O0C for 16 h. The now black suspension was cooled to RT, diluted with water and extracted with ethyl acetate. The combined organic extracts were washed further with 1 N aq.
35 NaOH, 10% aq. HCl, water and brine, dried over Na2SO4 and filtered. Concentration of the filtrate in vacuo afforded the crude title compound as a black oil. MCC-ACV-00001
Step 3: N-Cyclopropyl-3,5-bis(3-methoxypropyl)benzamide
An EtOAc (0.15 M) solution of JV-cyclopropyl-3,5-bis[(l£)-3-methoxyprop-l-en-l- yl]benzamide (1 eq.) from the previous step was eluted through an H-Cube hydrogenation apparatus equipped with a 10% palladium over carbon cartridge at a rate of 1 mL/min with EtOAc as the eluent. 5 The hydrogenation was carried out using full hydrogen setting at RT. Purification of the crude product thus obtained by way of flash chromatography (Siθ2, 9:1 (v/v) Hex : EtOAc -> EtOAc) afforded the title compound as a colorless oil. Step 4: 2-Bromo-N-cyclopropyl-3,5-bis(3-methoxypropyl)benzamide
To a THF (0.1 M) solution of N-cyclopropyl-3,5-bis(3-methoxypropyl)benzamide (1 eq.)
10 from the previous step and freshly distilled TMEDA (1 eq.) was added at -780C /-butyl lithium (1.7 M in pentanes, 1 eq.) dropwise over 10 min. The resulting reaction mixture was then slowly warmed to O0C over 1 h and stirred at O0C for 1 h. With the now orange reaction solution re-cooled to -780C, 1,2- dibromotetrafluoroethane was added neat, dropwise over 10 min. The cooling bath was removed and the reaction mixture was stirred at RT for 18 h. The reaction was then quenched with 1 Ν aq. NaOH and
15 extracted with EtOAc. The combined organic extracts were washed further with 10% aq. HCl, water and brine, dried over Na2SO^ filtered, and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 9: 1 (v/v) Hex : EtOAc -> EtOAc) afforded the title compound as a pale yellow oil. Step 5: Amine 79
20 To a stirred solution of 2-bromo-N-cyclopropyl-3,5-bis(3-methoxypropyl)benzamide (1 eq.) from the previous step in THF (0.16 M) was added sequentially sodium borohydride (4 eq.) and BF3- THF complex (4.5 eq.), The reaction solution thus obtained was heated at 4O0C for 5 h, cooled to O0C and then poured slowly into 6 N aq. HCl (4.5 eq.). The resulting mixture was re-heated at 500C for 1 h, cooled to RT, basified with 10 N aq. NaOH and finally extracted with ether. The combined organic
25 extracts were then washed further with water and brine, dried over Na2SO^ filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (SiO2, 4: 1 (v/v) Hex : EtOAc -^ EtOAc) afforded the title compound as a colorless oil.
Amine 80
30 N-[2-Chloro-3,5-bis(3-methoxypropyl)benzyl]cyclopropanamine
Step 1 : 2-Chloro-iV-cyclopropyl-3,5-bis(3-rnethoxypropyI)benzamide
To a DMF (0.13 M) solution of 2-bromo-N-cycIopropyl-3,5-bis(3- methoxypropyl)benzamide (1 eq., Amine 79, Step 4) was added copper(I) chloride (2 eq.). The suspension was sealed and heated in a microwave at 15O0C for 10 min. The reaction was then quenched 35 with 10% aq. HCl and extracted with EtOAc. The combined organic extracts were washed further with 1
Ν aq. NaOH, water and brine, dried over Νa24, filtered, and the filtrate concentrated in vacuo. MCC-ACV-00001
Purification of the crude product thus obtained by way of flash chromatography (SiO2, 4: 1 (v/v) Hex : EtOAc > EtOAc) afforded the title compound as a pale yellow oil. Step 2: Amine 80
To a stirred solution of 2-chloro-N-cyclopropyl-3,5-bis(3-methoxypropyl)benzamide (1 5 eq.) from the previous step in THF (0.06 M) was added sequentially sodium borohydride (4.2 eq.) and BF3-THF complex (4.5 eq.). The reaction solution thus obtained was heated at 40cC for 5 h, cooled to O0C and then poured slowly into 6 N aq. HCl (4.5 eq.). The resulting mixture was re-heated at 5O0C for 1 h, cooled to RT, basified with 10 N aq. NaOH and finally extracted with ether. The combined organic extracts were then washed further with water and brine, dried over Na2SO4, filtered and the filtrate 10 concentrated in vacuo. Purification of the crude product thus obtained by way of flash chromatography (Siθ2, 4: 1 (v/v) Hex : EtOAc -> EtOAc) afforded the title compound as a colorless oil.
Amine 81 iV-[2-Methoxy-3,5-bis(3-methoxypropyl)benzyI]cycIopropanamine
15 Step 1 : 2-Methoxy-3,5-bis[(l£)-3-methoxyprop-l-en-l-yl]benzaldehyde
To a solution of 3,5-dibromo-2-methoxybenzaldehyde (1 eq.) and 4,4,5, 5-tetramethy!-2- [(l£)-3-(methyloxy)- l-propen-l-yl]- l ,3,2-dioxaborolane (2.2 eq.) in DMF (0.1 M) was added trans- bis(triphenylphosphine) palladium(II) bromide (0.1 eq.). The vessel was repeatedly evacuated and backfilled with nitrogen. Finally, 2 M aq. Na2CO3 (6.5 eq.) was added and the resulting mixture was heated at
20 9O0C for 16 h. The now black suspension was cooled to RT, diluted with water and extracted with ether. The combined organic extracts were washed further with 1 N aq. NaOH, 10% aq. HCl, water and brine, dried over Na2SO4 and filtered. Concentration of the filtrate in vacuo afforded the crude title compound as a brown oil. Step 2: 2-Methoxy-3,5-bis(3-methoxypropyl)benzaldehyde
25 2-Methoxy-3,5-bis[(l£)-3-methoxyprop-l-en-l-yl]benzaldehyde (1 eq.) from the previous step and 10% w/w palladium over charcoal (0.1 eq.) were suspended in EtOAc (0.1 M). The vessel was then evacuated and purged with H2. Under a balloon-filled H2 atmosphere, the reaction suspension was stirred at RT for 4 h. The reaction suspension was then quenched with dichloromethane and filtered through a bed of celite. Concentration of the filtrate in vacuo to afford the crude product as a
30 yellow oil. Further purification by way of flash chromatography (SiO2, Hex -> EtOAc) afforded the title compound as a colorless oil. Step 3: Amine 81
2-Methoxy-3,5-bis(3-methoxypropyI)benzaldehyde (1 eq.) from the previous step and cyclopropylamine (2 eq.) were combined in CH2Cl2 (0.1 M). To this was then added MgSO4 (1.2 eq.)
35 and the resulting suspension was allowed to stir at RT for 20 h. The insolubles were then removed via filtration through a pad of celite and the filtrate was concentrated in vacuo. The crude imine thus obtained was then re-taken up in MeOH (0.1 M). To this solution was added sodium borohydride (2 eq.) MCC-ACV-00001
portionwise and the resulting mixture was stirred at RT for 2.5 h. The reaction was quenched with 1 N aq. HCl, neutralized with 1 N aq. NaOH and extracted with ether. The combined organic extracts were then washed further with water and brine, dried over MgSθ4 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a pale yellow oil. 5
Amine 82
N-P-^-MethoxypropyO-S^trifluoromethyObenzyljcyclopropanamine Step 1 : 3-Bromo-5-(trifluoromethyl)benzaldehyde
To a stirred solution of «-butyl lithium (2.5 M in hexanes, 0.8 eq.) in toluene (0.2 M) at - 10 150C was added dropwise «-butyl magnesium chloride (2.0 M in THF, 0.4 eq.). After 20 min, a solution of l,3-dibromo-5-(trifluoromethyl)benzene (1 eq.) in toluene was added over 10 min. The reaction mixture thus obtained was stirred at -150C for 2 h before DMF (3 eq.) was added. The reaction was allowed to warm to O0C. After 45 min, saturated aqueous ammonium chloride was added. The reaction mixture was extracted with ethyl acetate. The combined organic extracts were then washed with brine, 15 dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, Hex -^ 1 : 1 (v/v) Hex: EtOAc) afforded the title compound. Step 2: 3-[(l£)-3-Methoxyprop-l-en-l-yl]-5-(trifluoromethyl)benzaldehyde
To a solution of 3-bromo-5-(trifluoromethyl)benzaldehyde (1 eq.) from the previous step and 4,4,5,5-tetramethyl-2-[(l£)-3-(methyloxy)-l-propen-l-yl]-l,3,2-dioxaborolane (1.5 eq.) in DMF (0.2 20 M) was added frα«5-bis(triphenylphosphine) palladium(II) bromide (0.05 eq.). The vessel was repeatedly evacuated and back-filled with nitrogen. Finally, 2 M aq. Na2CO3 (3 eq.) was added and the resulting mixture was stirred at 1000C for 2 h. The now black suspension was cooled to RT, diluted with water and extracted with ethyl acetate. The combined organic extracts were washed with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude 25 product by way of flash chromatography (SiO2, 9:1 (v/v) Hex: EtOAc -> EtOAc) afforded the title compound as a yellow oil. Step 3: N-P-KlZ^-S-Methoxyprop-l-en-l-y^-S-^rifluoromethyObenzyljcyclopropanamine
3-[(l£)-3-Methoxyprop-l-en-l-yl]-5-(trifluoromethyl)benzaIdehyde (1 eq.) from the previous step and cyclopropylamine (2 eq.) were combined in CH2Cl2 (0.2 M). To this was then added 30 MgSO4 (1.5 eq.) and the resulting suspension was stirred at RT for 18 h. The insolubles were then removed via filtration through a pad of celite and the filtrate was concentrated in vacuo. The crude imine thus obtained was then re-taken up in a 2: 1 (v/v) mixture of THF: MeOH (0.2 M). To this solution was added sodium borohydride (5 eq.) portionwise and the resulting mixture was stirred at RT for 18 h. The reaction was quenched with saturated aqueous sodium bicarbonate and extracted with ethyl acetate. The 35 combined organic extracts were then washed with brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, 9:1 (v/v) Hex: EtOAc -> EtOAc) afforded the title compound. MCC-ACV-00001
Step 5: Amine 82
N-fS-fCliTl-B-Methoxyprop-l -en-l-yll-S-OπfluoromethyObenzyllcyclopropanamine (1 eq.) from the previous step and 10% w/w palladium over charcoal (0.1 eq.) were suspended in EtOAc (0.03 M). The vessel was then evacuated and purged with H2. Under a balloon-filled H2 atmosphere, the 5 reaction suspension was stirred at RT overnight. The reaction was then filtered through a bed of celite and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, Hex -> 1 :9 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil.
Amine 83
10 3-[(CyclopropyIamino)methyl]-5-(3-methoxypropyl)phenol
Amine 83 was prepared according to the procedure described in WO 2007/009250 AI patent.
Amine 84
15 N-(3-Bromo-5-iodobenzyl)cyclopropanamine Step 1 : (3-Bromo-5-iodophenyl)methanol
To a solution of 3-bromo-5-iodobenzoic acid (1.0 eq.) in THF (0.2 M) at RT was added borane-methyl sulfide complex (1.5 eq). After 3 days of stirring at RT, the reaction mixture was quenched cautiously with 2 N aq. HCl and extracted with ether. The combined organic extracts were
20 washed with 1 N aq. NaOH, water and brine, dried over MgSO4 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a colorless oil. Step 2: 3-Bromo-5-iodobenzaldehyde
A mixture of (3-bromo-5-iodophenyl)methanol from the previous step (1.0 eq.) and Dess-Martin periodinane ( 1.18 eq.) was stirred at RT in dichloromethane (0.1 M) for 45 min. The
25 reaction mixture was diluted with ether, filtered through a plug Of SiO2, and the silica washed with a 3: 1 (v/v) mixture of hexanes : EtOAc. The Filtrate was concentrated in vacuo and passed again through a plug Of SiO2, eluting with a 3: 1 (v/v) mixture of hexanes : EtOAc to afford the title compound as a light yellow solid. Step 3: Amine 84
30 3-Bromo-5-iodobenzaldehyde (1 eq.) from the previous step and cyclopropylamine (2 eq.) were combined in CH2Cl2 (0.1 M). To this was then added MgSO4 (1 eq.) and the resulting suspension was stirred at RT for 20 h. The insolubles were then removed via filtration through a pad of celite and the filtrate was concentrated in vacuo. The crude imine thus obtained was then re-taken up in MeOH (0.5 M). To this solution was added sodium borohydride (1.5 eq.) portionwise and the resulting
35 mixture was stirred at O0C for 30 min, then at RT for 2 h. The reaction was quenched by stirring with with 2 N aq. HCl for 25 min, basified with 1 N aq. NaOH and concentrated in vacuo. The residue was MCC-ACV-00001
extracted with ether from water, dried over Na2SO,*, filtered and the filtrate concentrated in vacuo to afford the title compound as a light yellow oil.
Amine 85
5 N-Cyc!opropyl-6-(3-methoxypropyl)indan- 1 -amine Step 1 : 6-[(l£)-3-Methoxyprop-l-en-l-yl]indan-l-one
To a solution of 6-bromoindan-l-one (1 eq.) and 4,4,5,5-tetramethyl-2-[(l£>3- (methyloxy)-l-propen-l-yl]-l,3,2-dioxaborolane (1.3 eq.) in DMF (0.1 M) was added trans- bis(triphenylphosphine) palladium(II) bromide (0.05 eq.). The vessel was repeatedly evacuated and
10 back-filled with nitrogen. Finally, 2 M aq. Na2CO3 (3 eq.) was added and the resulting mixture was stirred at 1000C for 1 h. The now black suspension was cooled to RT, diluted with water and extracted with ethyl acetate. The combined organic extracts were washed with water and brine, dried over Na2SO^ filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, Hex -> 1 : 1 (v/v) Hex: EtOAc) afforded the title compound as a beige solid.
15 Step 2: N-cyclopropyl-6-[(l£)-3-methoxyprop-l -en- l-yl]indan-l -amine
To a solution of 6-[(l£)-3-methoxyprop-l-en-l-yl]indan-l-one (1 eq.) from the previous step in MeOH (2 M) was added cyclopropylamine (2 eq.) and titanium(rV) isopropoxide (1.3 eq.). The solution was stirred at RT for 1 h before sodium borohydride (1 eq.) was added at O0C. After 30 min, water was added and the mixture was extracted with ethyl acetate. The combined organic extracts were
20 then washed with water and brine, dried over Na24, filtered and the filtrate concentrated in vacuo.
Purification of the crude product by way of flash chromatography (SiO2, Hex -> 1 :9 (v/v) Hex : EtOAc) afforded the title compound. Step 3: Amine 85
N-Cyclopropyl-6-[( l£)-3 -methoxyprop- 1 -en- 1 -y l]indan- 1 -amine
25 (1 eq.) from the previous step and 10% w/w palladium over charcoal (0.1 eq.) were suspended in EtOAc (0.2 M). The vessel was then evacuated and purged with H2. Under a balloon-filled H2 atmosphere, the reaction suspension was stirred at RT for 3 h. The reaction was then filtered through a bed of celite and the filtrate concentrated in vacuo to afford the title compound.
30 Amine 86 jV-Cyclopropyl-7-(3-methoxypropyl)-l,2,3,4-tetrahydronaphthalen-l-amine
Amine 86 was prepared according to the procedure described in Amine 85 but using instead 7-bromo-3,4-dihydronaphthalen-l(2H)-one as the starting material. MCCACv oo,
Amine 87
3-{3-Bromo-5-[(cyc]opropylamino)methyl]-2-methylphenyl}-l-propanol
To a chloroform (0.1 M) solution of Amine 76 (1 eq.) was added iodotrimethylsilane (6 eq.). The resulting red solution was stirred at RT in darkness for 18 h. The reaction was quenched with 5 methanol before the volatiles were removed in vacuo. The resulting residue was then partitioned between ether and 10% aq. HCI. The aqueous layer was separated, carefully brought to a pH of ~8 with 1 N aq. NaOH and extracted with EtOAc. The combined EtOAc extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, 97:3 (v/v) CH2Cl2 : 2.0 M NH3 in MeOH-> 94:6 10 (v/v) CH2Cl2 : 2.0 M NH3 in MeOH) afforded the title compound as a colorless oil.
Amine 88
N-[3-Bromo-5-(3-ethoxypropyl)-4-methylbenzyl]cyclopropanamine
Step 1: Methyl 3-bromo-5-[(l£)-3-methoxy-l-propen-l-yl]-4-methylbenzoate
15 To a solution of methyl 3,5-dibromo-4-methylbenzoate (1 eq.) and 4,4,5, 5-tetramethyl-2-
[(l£)-3-(methyloxy)-l-propen-l-yl]-l,3,2-dioxaborolane (1.1 eq.) in DMF (0.1 M) was added trans- bis(triphenylphosphine) palladium(II) bromide (0.02 eq.). The vessel was repeatedly evacuated and back-filled with nitrogen. Finally, 2 M aq. Na2CO3 (3 eq.) was added and the resulting mixture was heated at 1000C for 2 h. The now black suspension was cooled to RT, diluted with water and extracted
20 with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, 9:1 (v/v) Hex: EtOAc -> 1 : 1 (v/v) Hex: EtOAc) afforded the title compound as a colorless oil. Step 2: Methyl 3-bromo-5-(3-methoxypropyl)-4-methylbenzoate
25 To a dichloromethane (0.2 M) solution of methyl 3-bromo-5-[(l£)-3-methoxy-l-propen- l-yl]-4-methylbenzoate (1 eq.) from the previous step was added Crabtree's catalyst (0.01 eq.). The resulting orange red solution was bubbled with hydrogen for 10 min to activate the catalyst and then stirred at RT under a static balloon atmosphere of hydrogen for 3 h. Finally, removal of the volatiles in vacuo afforded the crude title compound as a yellow oil.
30 Step 3: Methyl 3-bromo-5-(3-iodopropyl)-4-methylbenzoate
To a chloroform (0.1 M) solution of methyl 3-bromo-5-(3-methoxypropyl)-4- methylbenzoate (1 eq.) from the previous step was added iodotrimethylsilane (10 eq.). The resulting red solution was stirred at RT in darkness for 18 h. The reaction was quenched with methanol before the volatiles were removed in vacuo. The resulting residue was then taken up in ether, washed sequentially
35 with 10% aq. HCl, 1 N aq. NaOH, water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, Hex -^ 3:7 (v/v) Hex: EtOAc) afforded the title compound as an orange oil. MCC-ACV-00001
Step 4: Ethyl 3-bromo-5-(3-ethoxypropyl)-4-methylbenzoate
To an ethanol (0.1 M) solution of methyl 3-bromo-5-(3-iodopropyl)-4-methylbenzoate (1 eq.) from the previous step was added freshly prepared sodium ethoxide (3 eq.). The resulting solution was heated at reflux for 18 h. After cooling to RT, the volatiles were removed in vacuo. The resulting 5 residue was then taken up in ether and washed further with 10% aq. HCl, 1 N aq. NaOH, water and brine, dried over Na2SO4, filtered and the filtrate concentrated in -vacuo. Purification of the crude product by way of flash chromatography (SiO2, Hex -> 1 : 1 (v/v) Hex: EtOAc) afforded the title compound as a yellow oil. Step 5: 3-Bromo-5-(3-ethoxypropyl)-4-methylbenzaldehyde
10 To a dichloromethane (0.07 M) solution of ethyl 3-bromo-5-(3-ethoxypropyl)-4- methylbenzoate (1 eq.) from the previous step was added DIBAL-H (1.5 M solution in toluene, 2.2 eq.). The resulting solution was stirred at RT for 1.5 h and then carefully quenched with 10% aq. HCl. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. The crude alcohol
15 thus obtained was taken up again in dichloromethane (0.07 M) and then added Dess-Martin periodinane (1.0 eq.) and sodium bicarbonate (1.2 eq.). After stirring at RT for 40 min, the reaction mixture was diluted with ether and washed sequentially with sat. aq. NaHSO3, 1 N aq. NaOH, water and brine. The organic extract was dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, Hex -> 1 : 1 (v/v) Hex: EtOAc) afforded the title
20 compound as a colorless oil. Step 6: Amine 88
3-Bromo-5-(3-ethoxypropyl)-4-methylbenzaldehyde (1 eq.) from the previous step and cyclopropylamine (2 eq.) were combined in CH2Cl2 (0.1 M). To this was then added MgSO4 (1 eq.) and the resulting suspension was stirred at RT for 20 h. The insolubles were then removed via filtration
25 through a pad of celite and the filtrate was concentrated in vacuo. The crude imine thus obtained was then re-taken up in MeOH (0.5 M). To this solution was added sodium borohydride (1.5 eq.) portionwise and the resulting mixture was stirred at O0C for 30 min, then at RT for 2 h. The reaction was quenched by stirring with with 2 N aq. HCl for 25 min, basified with 1 N aq. NaOH and concentrated in vacuo. The residue was extracted with ether from water, dried over Na2SO4, filtered and the filtrate concentrated
30 in vacuo to afford the title compound as a colorless oil.
Amine 89
N-{3-Bromo-5-[3-(difluoromethoxy)propyl]-4-methyIbenzyl}cyclopropanamine Step 1 : Methyl 3-bromo-5-(3-hydroxypropyl)-4-methylbenzoate 35 To a chloroform (0.1 M) solution of methyl 3-bromo-5-(3-methoxypropyl)-4~ methylbenzoate (1 eq., Amine 88, Step 2) was added iodotrimethylsilane (3 eq.). The resulting red solution was stirred at RT in darkness for 18 h. The reaction was quenched with methanol before the MCC-ACV-00001
volatiles were removed in vacuo. The resulting residue was then taken up in ether, washed sequentially with 10% aq. HCl, 1 N aq. NaOH, water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (Siθ2, Hex -^ 3:7 (v/v) Hex: EtOAc) afforded the title compound as a pale yellow oil. 5 Step 2: Methyl 3-bromo-5-[3-(difluoromethoxy)propyl]-4-methylbenzoate
To an acetonitrile (0.6 M) suspension of methyl 3-bromo-5-(3-hydroxypropyl)-4- methylbenzoate (1 eq.) from the previous step and sodium sulfate (0.2 eq.) was added dropwise at 5O0C difluoro(fluorosulfonyl)acetic acid (1 eq.) over a period of 10 min. After the completion of addition, the reaction suspension was heated at 5O0C for another 16 h. The reaction mixture was then cooled to RT,
10 poured into water and extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (Siθ2, Hex -^ 1 : 1 (v/v) Hex: EtOAc) afforded the title compound as a colorless oil. Step 3 : 3-Bromo-5-[3-(difluoromethoxy)propyl]-4-methylbenzaldehyde
15 To a dichloromethane (0.07 M) solution of methyl 3-bromo-5-[3-
(difluoromethoxy)propyl]-4-methylbenzoate (1 eq.) from the previous step was added DIBAL-H (1.5 M solution in toluene, 2.2 eq.). The resulting solution was stirred at RT for 1.5 h and then carefully quenched with 10% aq. HCl. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with brine, dried OVCr Na2SO4, filtered and the filtrate
20 concentrated in vacuo. The crude alcohol thus obtained was taken up again in dichloromethane (0.07 M) and then added Dess-Martin periodinane (1.0 eq.) and sodium bicarbonate (1.2 eq.). After stirring at RT for 40 min, the reaction mixture was diluted with ether and washed sequentially with sat. aq. NaHSO3, 1 N aq. NaOH, water and brine. The organic extract was dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, Hex -^
25 1 : 1 (v/v) Hex: EtOAc) afforded the title compound as a colorless oil. Step 6: Amine 89
3-Bromo-5-[3-(difluoromethoxy)ρropyl]-4-methylbenzaldehyde (1 eq.) from the previous step and cyclopropylamine (2 eq.) were combined in CH2Cl2 (0.1 M). To this was then added MgSO4 (1 eq.) and the resulting suspension was stirred at RT for 20 h. The insolubles were then removed via
30 filtration through a pad of celite and the filtrate was concentrated in vacuo. The crude imine thus obtained was then re-taken up in MeOH (0.5 M). To this solution was added sodium borohydride (1.5 eq.) portionwise and the resulting mixture was stirred at O0C for 30 min, then at RT for 2 h. The reaction was quenched by stirring with with 2 N aq. HCI for 25 min, basified with 1 N aq. NaOH and concentrated in vacuo. The residue was extracted with ether from water, dried over Na2SO4, filtered and
35 the filtrate concentrated in vacuo to afford the title compound as a colorless oil. MCC-ACV-00001
Amine 90
Λ?-(3-Benzyl-5-methylben:^l)cyclopropanamine Step 1 : 3-Benzyl-5-methylbenzaldehyde
To a DME solution (0.1 M) of (3-formyl-5-methylphenyl)boronic acid (1 eq.) was added 5 cesium fluoride (3 eq.), tetrakis(triphenylphosphine)palladium (0.1 eq.) and benzyl bromide (1.2 eq.). The mixture was refluxed for 3 h, cooled down to RT and quenched with saturated aqueous sodium bicarbonate, The mixture was extracted with ethyl acetate. The combined organic extracts were then washed with brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (Siθ2, Hex -^ 7:3 (v/v) Hex: EtOAc) afforded the title 0 compound.
Step 2: Amine 90
3-Benzyl-5-methylbenzaldehyde (1 eq.) from the previous step and cyclopropylamine (2 eq.) were combined in CH2Cl2 (0.2 M). To this was then added MgSO4 (1.5 eq.) and the resulting suspension was stirred at RT for 18 h. The insolubles were then removed via filtration through a pad of 5 celite and the filtrate was concentrated in vacuo. The crude imine thus obtained was then re-taken up in a 2: 1 (v/v) mixture of THF: MeOH (0.2 M). To this solution was added sodium borohydride (10 eq.) portionwise and the resulting mixture was stirred at RT for 18 h. The reaction was quenched with saturated aqueous sodium bicarbonate and extracted with ethyl acetate. The combined organic extracts were then washed with brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. 0 Purification of the crude product by way of flash chromatography (SiO2, CH2Cl2 -> 9: 1 (v/v) CH2CI2: EtOH) afforded the title compound.
Amine 91
N-[3-Bromo-5-(3-fluorobenzyl)-4-methylbenzyl]cyclopropanamine 5 Step 1: Methyl 3-bromo-5-formyl-4-methylbenzoate
To a dichloromethane (0.16 M) solution of methyl 3-bromo-5-[(l£)-3-methoxy-l- propen-l-yl]-4-methylbenzoate (1 eq., Amine 88, Step 1) was bubbled at -780C with freshly generated ozone until a persistent blue color was observed. The reaction vessel was then thoroughly purged with nitrogen before triphenylphosphine (1.1 eq.) was added. The resulting mixture was slowly warmed to0 RT over 6 h. The volatiles were then removed in vacuo and the resulting residue was suspended in a 1:1 (v/v) mixture of hexanes and ether. The insolubles were removed via filtration through a pad of silica gel. Concentration of the filtrate thus obtained in vacuo afforded a white solid. Further purification of the crude product by way of flash chromatography (SiO2, Hex -^ 1 : 1 (v/v) Hex : EtOAc) afforded the title compound as a white solid. 5 Step 2: Methyl 3-bromo-5-(hydroxymethyl)-4-methylbenzoate
To a methanol (0.1 M) solution of methyl 3-bromo-5-formy]-4-methylbenzoate (1 eq.) from the previous step was added sodium borohydride (4 eq.) portionwise. The resulting mixture was MCC-ACV-00001
stirred at RT for 3 h. The reaction was subsequently quenched with cold 10% aq. HCl and extracted with ether. The combined organic extracts were then washed with water and brine, dried over Na2SO4 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a white solid. Step 3: Methyl 3-bromo-5-(iodomethyl)-4-methylbenzoate
5 To a dichloromethane (0.05 M) solution of triphenylphosphine (1.1 eq) was added iodine
(1.1 eq.). The resulting orange-yellow suspension was stirred at RT for 30 min before imidazole (1.2 eq.) and finally methyl 3-bromo-5-(hydroxymethyl)-4-methylbenzoate (1 eq.) from the previous step were added. The now pale yellow solution was stirred at RT for another 30 min. The volatiles were removed in vacuo and the residue was triturated with a 1 : 1 (v/v) mixture of hexanes and ether. The insolubles
10 were then removed via filtration through a pad of silica gel. Concentration of the filtrate in vacuo afforded the title compound as a white solid. Step 4: Methyl 3-bromo-5-(3-fluorobenzyI)-4-methylbenzoate
To a THF (0.1 M) suspension of CuCN (2 eq.) was added at -780C 3-fluorophenyl magnesium bromide (0.5 M solution in THF, 4 eq.) over a period of 5 min. The resulting mixture was
15 stirred at -780C for 20 min and then at O0C for another 20 min. The now yellow suspension was re- cooled to -780C before methyl 3-bromo-5-(iodomethyl)-4-methylbenzoate (1 eq.) from the previous step was added. The resulting mixture was stirred at -780C for 20 min, O0C for another 20 min and finally at RT for 16 h. The crude reaction mixture was quenched with a 3: 1 (v/v) mixture of sat. aq. NH4Cl: cone. NH4OH and then extracted with ether. The combined organic extracts were washed further with water
20 and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Further purification of the crude product by way of flash chromatography (Siθ2, Hex -> 1 : 1 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. Step 5: 3-Bromo-5-(3-fluorobenzyl)-4-methylbenzaldehyde
To a dichloromethane (0.1 M) solution of methyl 3-bromo-5-(3-fluorobenzyl)-4-
25 methylbenzoate (1 eq.) from the previous step was added DlBAL-H (1.5 M solution in toluene, 2.2 eq.). The resulting solution was stirred at RT for 1.5 h and then carefully quenched with 10% aq. HCl. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. The crude alcohol thus obtained was taken up again in dichloromethane (0.1 M) and then added Dess-Martin periodinane
30 (1.0 eq.) and sodium bicarbonate (1.2 eq.). After stirring at RT for 40 min, the reaction mixture was diluted with ether and washed sequentially with sat. aq. NaHSO3, 1 N aq. NaOH, water and brine. The organic extract was dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, Hex -^ 1 : 1 (v/v) Hex: EtOAc) afforded the title compound as a colorless oil. MCC-ACV-00001
Step 6: Amine 91
3-Bromo-5-(3-fluorobenzyl)-4-methyIbenzaldehyde (1 eq.) from the previous step and cyclopropylamine (2 eq.) were combined in CH2Cl2 (0.1 M). To this was then added MgSO4 (1 eq.) and the resulting suspension was stirred at RT for 20 h. The insolubles were then removed via filtration 5 through a pad of celite and the filtrate was concentrated in vacuo. The crude imine thus obtained was then re-taken up in MeOH (0.1 M). To this solution was added sodium borohydride (1.5 eq.) portionwise and the resulting mixture was stirred at O0C for 30 min, then at RT for 2 h. The reaction was quenched by stirring with with 2 N aq. HCl for 25 min, basifϊed with 1 N aq. NaOH and concentrated in vacuo. The residue was extracted with ether from water, dried over Na2SO4, filtered and the filtrate concentrated0 in vacuo to afford the title compound as a colorless oil.
Amine 92
{3-Bromo-5-[(cyclopropylamino)methyl]-2-methylphenyl}(3-fluorobenzyl)methanone Step 1 : 3-Bromo-5-[(l£)-3-methoxy-l-propen-l-yl]-4-methylbenzaIdehyde 5 To a dichloromethane (0.1 M) solution of methyl 3-bromo-5-[(l-£)-3-methoxy-l-propen- l-yl]-4-methylbenzoate (1 eq., Amine 88, Step 1) was added DIBAL-H (1.5 M solution in toluene, 2.2 eq.). The resulting solution was stirred at RT for 1.5 h and then carefully quenched with 10% aq. HCl. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. The crude0 alcohol thus obtained was taken up again in dichloromethane (0.1M) and then added Dess-Martin periodinane (1.0 eq.) and sodium bicarbonate (1.2 eq.). After stirring at RT for 40 min, the reaction mixture was diluted with ether and washed sequentially with sat. aq. NaHSOj, 1 N aq. NaOH, water and brine. The organic extract was dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product by way of flash chromatography (SiO2, Hex -M : 1 (v/v) Hex: EtOAc)5 afforded the title compound as a colorless oil that solidified upon standing.
Step 2 : N- { 3 -Bromo-5-[( 1 E)-3 -methoxy- 1 -propen- 1 -yl]-4-methylbenzy 1 } cyclopropanamine
3-Bromo-5-[(l£)-3-methoxy-l-propen-l-yl]-4-methylbenzaldehyde (1 eq.) from the previous step and cyclopropylamine (2 eq.) were combined in CH2Cl2 (0.1 M). To this was then added MgSO4 (1 eq.) and the resulting suspension was stirred at RT for 20 h. The insolubles were then removed via filtration through a pad of celite and the filtrate was concentrated in vacuo. The crude imine thus obtained was then re-taken up in MeOH (0.1 M). To this solution was added sodium borohydride (1.5 eq.) portionwise and the resulting mixture was stirred at O0C for 30 min, then at RT for 2 h. The reaction was quenched by stirring with with 2 Ν aq. HCl for 25 min, basified with 1 Ν aq. NaOH and concentrated in vacuo. The residue was extracted with ether from water, dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford the title compound as a colorless oil. MCC-ACV-00001
Step 3: tert-Butyl {S-bromo-S-Kli^-S-methoxy-l-propen-l-ylJ^-methylbenzy^cyclopropylcarbamate N-{3-Bromo-5-[(l£)-3-methoxy-l -propen-l-yl]-4-methylbenzyl}cyclopropanamine (l eq.) from the previous step and
Figure imgf000084_0001
dicarbonate (1.1 eq.) were taken up in dichloromethane (0.1 1 M). To this was then added Hunig's base (1.2 eq.) and the resulting mixture was stirred at RT for 3 h. 5 The volatiles were removed in vacuo and the resulting residue was taken up in a 1: 1 (v/v) mixture of hexanes and ether. This suspension was subsequently washed with 10% aq. HCl, water and brine, dried over Na2SO^ filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of column chromatography (SiO2, Hex -> 1 : 1 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil.
10 Step 4: tert-Buty\ (3-broino-5-formyl-4-methylbenzyl)cyclopropylcarbamate
To a dichloromethane (0.08 M) solution of
Figure imgf000084_0002
{3-bromo-5-[(l£)-3-methoxy-l- propen-l-y]]-4-methylbenzyl}cyclopropylcarbamate (1 eq.) from the previous step was bubbled at -780C with freshly generated ozone until a persistent blue color was observed. The reaction vessel was then thoroughly purged with nitrogen before triphenylphosphine (1 eq.) was added. The resulting mixture
15 was slowly warmed to RT over 16 h. The volatiles were then removed in vacuo and the resulting residue was suspended in a 1 : 1 (v/v) mixture of hexanes and ether. The insolubles were removed via filtration through a pad of silica gel. Concentration of the filtrate thus obtained in vacuo afforded a colorless oil. Further purification of the crude product by way of flash chromatography (SiO2, Hex -^ 1 : 1 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. 0 Step 5: tert-Buty] {3-bromo-5-[(3-fluorophenyl)(hydroxyl)methyl]-4-methylbenzyl}cyclopropyl- carbamate
To a THF (0.13 M) solution of tert-butγl (3-bromo-5-formyl-4-methylbenzyl)- cyclopropy I carbamate (1 eq.) from the previous step was added at O0C 3-fluorophenyl magnesium bromide (0.5 M in THF, 1.1 eq.). The resulting solution was warmed slowly to RT over 2 h before it was 5 quenched with sat. aq. NH4Cl. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Further purification of the crude product by way of flash chromatography (SiO2, Hex -> 1 : 1 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil. Step 6: Λ?r/-Butyl P-bromo-S-^-fluorobenzoyO^-methylbenzylJcyclopropylcarbamate 0 To a dichloromethane (0.1 M) solution of tert-buty\ {3-bromo-5-[(3- fluorophenyl)(hydroxyl)methyl]-4-methylbenzyl}cyclopropylcarbamate (1 eq.) from the previous step was added Dess-Martin periodinane (1.0 eq.) and sodium bicarbonate (1.2 eq.). After stirring at RT for 1 h, the reaction mixture was diluted with ether and washed sequentially with sat. aq. NaHSOs, 1 N aq. NaOH, water and brine. The organic extract was dried over Na2SO4, filtered and the filtrate concentrated5 in vacuo to afford the title compound as a colorless oil. MCC-ACV-00001
Step 7: Amine 92 tert-Butyϊ P-bromo-S-^-fluorobenzoyl^-methylbenzy^cyclopropylcarbamate (1 eq.) from the previous step in CH2Cl2 (0.1 M) was added HCl (4.0 M in dioxane, 20 eq.). The resulting solution was stirred at RT for 2 h. The reaction was then quenched with 1 N aq. NaOH and extracted 5 with ether. The combined organic extracts were then washed further with water and brine, dried over Na2SO4 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a colorless oil.
Example 1 fra«5-N-Cyclopropyl-4-(l-methyl-2-oxo-l,2-dihydro-4-quinolinyl)-N-({3-{[2-(methyloxy)ethyl]oxy}-5- 10 [3 -(methy loxy)propyl] phenyl } methy l)-3 -piperidinecarboxam ide
Figure imgf000085_0001
Step 1 : l-(U-Dimethylethyl) 3-ethyl 4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2-yl)-5,6-dihydro- l,3(2//)-pyridinedicarboxylate
To a dioxane solution (0.17 M) of l-(U-dimethylethyl) 3-ethyl 4- 5 {[(trifluoromethyl)sulfonyl]oxy}-5,6-dihydro-l,3(2H)-pyridinedicarboxylate (1 eq.) and 4,4,4',4',5,5,5',5'- octamethyl-2,2'-bi-l,3,2-dioxaborolane (1.1 eq.) was added potassium acetate (3 eq.). The suspension was evacuated and back-filled with N2. Finally, [l, r-bis(diphenylphosphino)ferrocene]dichloro- palladium(II) (0.03 eq.) was added in one rapid portion and the reaction suspension was heated at 80 0C for 14 h. The reaction was then quenched with the addition of diethyl ether and sat. aq. NΗ4CI. The 0 aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of column chromatography (SiO2, 95:5 -> 80:20 (v/v) toluene : EtOAc) afforded the title compound as a golden yellow oil. Step 2: 1-(1,1-Dimethylethyl) 3-ethyl 4-(7-chloro-4-qumolinyl)-5,6-dihydro-l,3(2#> 5 pyridinedicarboxylate
To a 3: 1 (v/v) toluene : ethanol solution (0.072 M) of l-(l ;l -dimethylethyl) 3-ethyl 4- (4,4,5, 5-tetramethyl-l,3,2-dioxaborolan-2-yl)-5:6-dihydro-l,3(2//)-pyridinedicarboxylate (1 eq.) from the previous step and 7-chloro-4-iodoquinoline (1 eq.) was added sodium carbonate (2 M aq. solution, 3 eq.). The suspension was evacuated and back-filled with N2. Finally, [l , l'-bis(diphenylphosphino)ferrocene]-0 dichloropalladium(II) (0.06 eq.) was added in one rapid portion and the reaction suspension was heated at 80 0C for 20 h. The reaction was then quenched with the addition of EtOAc and water. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with 1 N aq. NaOH, water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. MCC-ACV-00001
Purification of the crude product thus obtained by way of column chromatography (SiO2, 90: 10 (v/v) Hex
: EtOAc -^ EtOAc) afforded the title compound as a pale, yellow oil.
Step 3: m-l-(l,l-Dimethylethyl) 3-ethyl 4-(7-chloro-4-quinolinyl)-l ,3-piperidinedicarboxylate
To a deoxygenated 1 : 1 (v/v) MeOH : THF solution (0.1 M) of l-(l,l-dimethylethyl) 3- 5 ethyl 4-(7-chloro-4-quinolinyl)-5,6-dihydro-l,3(2H)-pyridinedicarboxylate (1 eq.) from the previous step was added, at -78 0C, samarium iodide (0,5 M THF solution, 10 eq.). The resulting purple solution was stirred at -78 0C for 1.5 h. The reaction was then quenched with the addition of glacial acetic acid before sat. aq. NaHCθ3 was added. The aqueous layer was separated and back-extracted with ether. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the
10 filtrate concentrated in vacuo. Purification of the crude product thus obtained by way of column chromatography (SiO2, 95:5 (v/v) Hex : EtOAc -» 3:7 (v/v) Hex : EtOAc) afforded the title compound as a colorless oil.
Step 4: frø7«-l-(l,l-Dimethylethyl) 3-ethyl 4-(7-chloro-4-quinolinyl)-l ,3-piperidinedicarboxylate To an ethanol solution (0, 12 M) of cώ-l-(U-dimethylethyl) 3-ethyl 4-(7-chloro-4- 5 quinolinyl)-l,3-piperidinedicarboxylate (1 eq.) from the previous step was added freshly prepared sodium ethoxide (1.2 eq.). The resulting yellow-orange solution was heated at 55 0C for 12 h. The volatiles were then removed in vacuo and the residue was partitioned between EtOAc and sat. aq. NH4Cl. The aqueous layer was separated and back-extracted with EtOAc. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo. 0 Purification of the crude product thus obtained by way of column chromatography (SiO2, 90: 10 (v/v) Hex : EtOAc -^ EtOAc) afforded the title compound as a colorless oil. Step 5: frαrø-l-(l,l-Dimethylethyl) 3-ethyl 4-(4-quinolinyl)-l,3-piperidinedicarboxylate
To a DMF solution (0.1 M) of ft-αrø-l-(l,l-dimethylethyl) 3-ethyl 4-(7-chloro-4- quinolinyl)-l,3-piperidinedicarboxylate (1 eq.) from the previous step and ammonium formate (7 eq.) 5 was added [1 ,1 p-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (0.1 eq.). The resulting suspension heated at 80 0C for 12 h. The now black suspension was cooled to RT, diluted with ether and washed sequentially with water, 1 N aq. NaOH, water and brine. The organic extract was dried over Na2SO4, treated with charcoal and filtered through a bed of celite. Concentration of the filtrate in vacuo afforded the title compound as a colorless oil. 0 Step 6: trans- 1-(1,1-Dimethylethyl) 3-ethyl 4-(l-oxido-4-quinolinyl)-l,3-piperidinedicarboxylate
To a dichloromethane solution (0.06 M) of ?rø«tf-l-(l ,l -dimethylethyl) 3-ethyl 4-(4- quinolinyl)-l,3-piperidinedicarboxylate (1 eq.) from the previous step was added 3-chloroperoxybenzoic acid (1 eq.). The resulting colorless solution was stirred at RT for 12 h. The reaction was then quenched with sat. aq. NaHSθ3 and 1 N aq. NaOH. The aqueous layer was separated and back-extracted with5 EtOAc. The combined organic extracts were washed further with water and brine, dried over Na2SO4 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a pale yellow oil. MCC-ACV-00001
Step 7: /nms-l-(l ,l-Dimethylethyl) 3-ethyl 4-(l-methyl-2-oxo-l,2-dihydro-4-quinolinyl)-l ,3- piperidinedicarboxylate
To a toluene solution (0.06 M) of /rα«s-l -(l,l-dimethylethyl) 3-ethyl 4-(l-oxido-4- quinolinyl)-l,3-piperidinedicarboxylate (1 eq.) from the previous step was added triethylamine (3 eq.). 5 With the reaction vessel immersed in an ice-water bath, trifluoroacetic anhydride (3 eq.) was added dropwise neat over a period of 2 min. The resulting yellow solution was warmed slowly to RT and then allowed to stir at RT for 18 h. The reaction was quenched with the addition of EtOAc and sat. aq. NH4Cl. The aqueous layer was separated and back-extracted with EtOAc. The combined organic extracts were washed further with water and brine, dried over Na2SO4, filtered and the filtrate
10 concentrated in vacuo. The gummy, yellow oil thus obtained was immediately taken up in methanol
(0.06 M). To this was then added sodium hydroxide (2 M aq. solution, 3 eq.) and dimethyl sulfate (4 eq.) at 0 0C. The resulting yellow solution was warmed slowly to RT and then allowed to stir at RT for 12 h. The volatiles were removed in vacuo and the residue was partitioned between EtOAc and sat. aq. NH4Cl. The aqueous layer was separated and back-extracted with EtOAc. The combined organic extracts were
15 washed further with water and brine, dried over Na2SO4, filtered and the filtrate concentrated in vacuo, Purification of the crude product thus obtained by way of column chromatography (SiO2, 95:5 (v/v) CH2CI2 : 2.0 M NH3 in MeOH) afforded the title compound as a white solid.
Step 8: rrαra-l-{[(l ,l-Dimethylethyl)oxy]carbonyl}-4-(l-methyl-2-oxo-l ,2-dihydro-4-quinolinyl)-3- piperidinecarboxylic acid
20 To a 2: 1 (v/v) THF : MeOH solution (0.04 M) of frαns-l -(U-dimethylethyl) 3-ethyl 4-
(l-methyl-2-oxo-l,2-dihydro-4-quinolinyl)-l,3-piperidinedicarboxylate (1 eq.) from the previous step was added lithium hydroxide (1 M aq. solution, 3.1 eq.). The resulting cloudy solution was stirred vigorously at RT for 18 h. The volatiles were then removed in vacuo and the residue was partitioned between EtOAc and 10% aq. HCl. The aqueous layer was separated and back-extracted with EtOAc.
25 The combined organic extracts were washed further with water and brine, dried over Na2SO4 and filtered. Concentration of the filtrate in vacuo afforded the title compound as a white solid. Step 9: fr-<ms-l,l-Dimethylethyl 3-{[cyclopropyl({3-{[2-(methyloxy)ethyl]oxy}-5-[3- (methyloxy)propyl]phenyl}methyl)amino]carbonyl}-4-(l-methyl-2-oxo-l,2-dihydro-4-quinolinyl)-l- piperidinecarboxylate
30 To a DMF (0.1 M) solution of rrαw-l-{[(l, l-dimethylethyl)oxy]carbonyl}-4-(l-methyl-
2-oxo- l ,2-dihydro-4-quinolinyl)-3-piperidinecarboxylic acid (1 eq.) from the previous step, Hunig's base (3 eq.) and Amine 11 (1 eq.) was added portionwise <9-(7-azabenzotriazol-l-yI)-iV,./V,N',./V'- tetramethyluronium hexafluorophosphate (1.2 eq.). The resulting reaction solution was stirred at RT for 48 h. The now yellow solution was diluted with Et2O and washed sequentially with 10% aq. HCl, 1 N 35 aq. NaOH and brine. The organic extract was then dried over Na2SO4, filtered and the filtrate concentrated in vacuo to afford a colorless oil. Purification of the crude product thus obtained by way of MCC-ACV-00001
flash chromatography (SiO2, 7:3 (v/v) Hex : EtOAc -> EtOAc) afforded the title compound as a colorless oil.
Step 10: trans- N-Cyclopropyl-4-(l-methyl-2-oxo-l ,2-dihydro-4-quinolinyl)-N-({3-{[2- (methyloxy)ethyl]oxy}-5-[3-(methyloxy)propyl]phenyl}methyl)-3-piperidinecarboxamide 5 To a CH2Cl2 solution (0.05 M) of fr<ms-l ,l-dimethylethyl 3-{[cyclopropyl({3-{[2-
(methyloxy)ethyl]oxy}-5-[3-(methyloxy)propyl]phenyl}methyl)amino]carbonyl}-4-(l-methyl-2-oxo-l ,2- dihydro-4-quinolinyl)-l-piperidinecarboxylate (1 eq.) from the previous step was added HCl (4.0 M dioxane solution, 30 eq.). The resulting solution was stirred at RT for 4 h. Following the removal of the volatiles in vacuo, the resulting residue was directly loaded onto a SiO2 column packed with 94:6 (v/v) 0 CH2Cl2: 2.0 M NH3 in MeOH. Elution with the same solvent system furnished the title compound as a white froth. MS (ESI+, M+H): 562. 1H NMR (CDCl3): δ (ppm) 0.85 (br s, 2H), 0.93-1.03 (br m, 2H), 1.55-1.63 (m, IH), 1.79 (br s, IH)5 1.72-1.81 (m, 2H), 1.96-2.00 (br m, IH), 2.42-2.52 (m, 2H), 2.65-2.73 (br m, IH), 2.90-2.99 (m, 2H), 3.23-3.40 (m, 7H), 3.43 (s, 3H), 3.63-3.78 (m, 7H), 3.84-3.91 (m, IH), 3.93-3.98 (m, IH), 4.18 (d, J= 14 Hz, IH), 4.48 (d, J = 14 Hz, IH), 6.37 (s, IH), 6.42 (s, IH), 6.56 (s,5 IH), 6.61 (s, IH), 7.28 (d, J= 7 Hz, IH), 7.37 (d, J = 7 Hz, IH), 7.59 (t, J = 7 Hz, IH), 8.08 (d, J= 7 Hz, IH). Human Renin IC50 (buffer): 13 nM. Human Renin IC50 (plasma): 39 nM.
Example 2 frαns-4-(7-Chloro-l-methyl-2-oxo-l ,2-dihydro-4-quinolinyl)-iV-cyclopropyl-iV"-({3-{[2-0 (methyloxy)ethyl]oxy}-5-[3-(methyloxy)propyl]phenyl}methyl)-3-piperidinecarboxamide
Figure imgf000088_0001
Prepared according to the procedure described in Example 2 except the hydrogenation step (step 5) is omitted. The title compound was obtained as a white froth. MS (ESI+, M+H): 596. 1H NMR (CDCl3): δ (ppm) 0.82-0.89 (δr OT, 2H), 0.93-1.0 (br m, 2H), 1.55-1.63 (ΛW, IH), l.79 (br s, IH),5 1.72-1.80 (m, 2H), 1.90-1.94 (br m, IH), 2.42-2.52 (m, 2H), 2.62-2.68 (br m, IH), 2.86-2.95 (m, 2H), 3.23-3.25 (m, IH), 3.32-3.38 (m, 6H), 3.42 (s, 3H), 3.62-3.78 (m, 7H), 3.82-3.86 (m, IH), 3.92-3.96 (m, IH), 4.23 (d, J= 14 Hz, I H), 4.38 (d, J= 14 Hz, IH), 6.33 (s, IH), 6.41 (s, I H), 6.58 (s, I H), 6.59 (s, IH), 7,21 (d, J= 7 Hz, IH), 7.36 (s, IH), 8.01 (d, J= 1 Viz, IH). Human Renin IC50 (buffer): 2.2 nM. Human Renin IC50 (plasma): 7.6 nM 0 MCC-ACV-OQOO 1
Assays Demonstrating Biological Activity
Inhibition of human recombinant renin
Human recombinant renin (Proteos) in 50 mM MOPS pH 7.4, 100 mM NaCl , 5 0.002% Tween 20 at a final concentration of 100 pM is incubated with inhibitors from a 50 fold concentrated DMSO solution and 6 μM of an internally-quench fluorescent peptide: DNP -Lys- His-Pro-Phe-His-Leu-Val-Ile-His-D,L-Amp (SEQ ID NO: 1); Paschalidou K. et al, Biochem J., 2004, 382, 1031). The reactions take place in a Costar 384 well black plate (#3573) at 370C for 3 hours. Fluorescence is measured at times 0 and 3 hours with a SpectraMax Gemini EM reader 10 set at an excitation wavelength of 328 nm and at an emission wavelength of 388 nm.
Background fluorescence at t=0 is subtracted from the measurement at t=3 hours. Inhibitory activity of the compounds is expressed as IC 50-
Inhibition of renin in human plasma
15 Human EDTA-collected plasma is rapidly thawed in warm water and centrifuged at 2900 g for 15 minutes at 40C. The supernatant is collected and recombinant renin (Proteos) is added at a final concentration of 1 nM. The plasma is transferred to a Costar black 384 well plate (#3573). Renin inhibitors are added from a 17.5 fold concentrated DMSO solution and pre- incubated at 370C for 10 minutes. The internally-quench fluorescent peptide QXL520™-Lys- 0 His-Pro-Phe-His-Leu-Val-Ile-His-Lys (5-FAM) (Anaspec), SEQ ID NO: 2, is diluted in 3M Tris pH 7.2, 200 mM EDTA and added to the plasma. The final concentrations are: 6 μM substrate, 342 mM Tris, 23 mM EDTA. The plate is incubated at 370C for 1 hour. The plate is read in a SpectraMax Gemini EM reader set at an excitation wavelength of 490 nm and an emission wavelength of 520 nM at times 0 and 1 hour. Background fluorescence at t=0 is subtracted from 5 the measurement at t=l hour. Inhibitory activity of the compounds is expressed as IC50-
In vivo animal model
Female double transgenic rats were purchased from RCC Ltd, Fϋllingsdorf, Switzerland. All animals were maintained under identical conditions and had free access to normal pelleted rat 0 chow and water. Rats were initially treated with enalapril (1 mg/kg/day) during 2 months. After approximately two weeks following cessation of enalapril treatment the double transgenic rats become hypertensive and reach mean arterial blood pressures in the range of 160-170 mmHg. Transmitter implantation - The rats were anaesthetised with a mixture of 90 mg/kg Ketamin-HCl (Ketavet, Parke-Davis, Berlin FRG) and 10 mg/kg xylazin (Rompun, Bayer, 5 Leverkusen, FRG) i.p. The pressure transmitter was implanted under aseptic conditions into the peritoneal cavity with the sensing catheter placed in the descending aorta below the renal arteries MCC-ACV-00001
pointing upstream. The transmitter was sutured to the abdominal musculature and the skin closed.
Telemetry-System - Telemetry units were obtained from Data Sciences (St. Paul, MN). The implanted sensor consisted of a fluid-filled catheter (0.7 mm diameter, 8 cm long; 5 model TAl 1PA-C40) connected to a highly stable low-conductance strain-gauge pressure transducer, which measured the absolute arterial pressure relative to a vacuum, and a radio- frequency transmitter. The tip of the catheter was filled with a viscous gel that prevents blood reflux and was coated with an antithrombogenic film to inhibit thrombus formation. The implants (length = 2.5 cm, diameter = 1.2 cm) weighted 9 g and have a typical battery life of 6
10 months. A receiver platform (RPC-I, Data Sciences) connected the radio signal to digitized input that was sent to a dedicated personal computer (Compaq, deskpro). Arterial pressures were calibrated by using an input from an ambient-pressure reference (APR-I, Data Sciences). Systolic, mean and diastolic blood pressure was expressed in millimeter of mercury (mmHg). Hemodynamic measurements - Double transgenic rats with implanted pressure 5 transmitters were dosed by oral gavage with vehicle or 10 mg/kg of the test substance (n=6 per group) and the mean arterial blood pressure was continuously monitored. The effect of the test substance is expressed as maximal decrease of mean arterial pressure (MAP) in the treated group versus the control group. 0 Results
Compounds in accordance herewith were active, exhibiting an IC50 <1 μM in both renin buffer and plasma assays.

Claims

MCC-ACV-00001WHAT IS CLAIMED IS:
1. A compound of formula I, or a pharmaceutically acceptable salt thereof having formula (I)
I
Figure imgf000091_0001
wherein:
Rl is selected from the group consisting of: C]-C6-alkyl, C3-C6 cycloalkyl, C2-C6 10 alkenyl, C3-C6 cycloalkenyl and C2-C6 alkynyl, wherein each of the foregoing is optionally substituted with 1-3 halogens and/or C1-C5 alkoxy;
V is selected from the group consisting of: hydrogen, halogen, C]-C6 alkyl, C3-C6 cycloalkyl, C2-C6 alkenyl, C3-C6 cycloalkenyl, C2-C6 alkynyl, cyano and C1-C5 alkoxy, wherein said alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl and alkoxy are 15 optionally substituted with 1-3 substituents, each of which is independently selected from the group consisting of: halogen, C1-C5 alkyl, C2-C5 alkenyl, cyano and C1-C5 alkoxy, wherein each of the foregoing alkyl, alkenyl and alkoxy substituents is optionally substituted with 1-3 halogens;
W is cyclopropyl, unsubstituted or mono-, di-, tri-, tetra- or penta-substituted with 0 fluorine;
X is selected from the group consisting of: OR.2, R.2, -(C1-C5 alkylene)-(O)0-l-aryl and -(C 1 -C5 alkylene)-(O)0- 1 -heteroaryl, wherein R.2 is selected from the group consisting of: hydrogen, C1-C5 alkyl, C3- C8 cycloalkyl, C2-C5 alkenyl, C3-C8 cycloalkenyl, C2-C5 alkynyl, Ci-C5-cyano, -(C1-C5 5 alkylene)-O-R3, -(Ci -C5 alkylene)-N(-R3)-C(=O)-(Ci-C5 alkyl), -(C1-C5 alkylene)-C(=O)-N(- R3)-(Ci-C5 alkyl), -(C1-C5 alkylene)-N(-R3)-C(=O)-O-(Ci-C5 alkyl), -(C1-C5 alkylene)-O- C(=O)-N(-R3)-(Ci-C5 alkyl);-(Ci-C5 alkylene)-N(-R3)-(Ci-C5 alkyl), -(C1-C5 alkylene)-S- (C1-C5 alkyl), -(C1-C5 alkylene)-S(=O)-(Ci-C5 alkyl) and -(C1-C5 alkylene)-S(=O)2-(Cl-C5 alkyl), MCC-ACV-00001
wherein R2, except hydrogen, is optionally substituted with 1-3 substituents, independently selected from the group consisting of: halogen, C(=O)OH, C1-C5 alkyl, C2-C5 alkenyl, and C1-C5 alkoxy, wherein each of the alkyl, alkenyl, and alkoxy substituents is optionally substituted with 1-3 halogens, 5 wherein the heteroaryl of the -(C 1 -C5 alkyl ene)-(0)θ- 1 -heteroaryl contains 1 -3 heteroatoms, independently selected from the group consisting of: N, O and S, wherein each N is optionally in the form of an oxide and each S is optionally in the form of an oxide selected from the group consisting of: S(=O) and S(=O)2, wherein the aryl and heteroaryl of -(C1-C5 alkylene)-(O)0-l-aryl and -(C1-C5 10 alkylene)-(O)0-l -heteroaryl, respectively, are optionally substituted with 1-4 halogens, and wherein R.3 is selected from the group consisting of: hydrogen, C1-C6 alkyl, C3- Cβ cycloalkyl, C2-C6 alkenyl, C3-C6 cycloalkenyl, and C2-Cg alkynyl, wherein each of the foregoing alkyl, cycloalkyl, alkenyl, cycloalkenyl and alkynyl substituents is optionally substituted with 1-3 halogens; 5 Z is C1-C2 alkylene optionally substituted with 1-2 substituents, independently selected from the group consisting of: halogen, C1-C3 alkyl and C3 cycloalkyl, wherein the foregoing alkyl and cycloalkyl substituents are optionally substituted with 1-3 halogens; nl is 0 or 1 ;
Y is (i) a five- or six-membered saturated or unsaturated heterocyclic or carbocyclic 0 monocyclic ring ("monocyclic ring") or (ii) a five- or six-membered saturated or unsaturated heterocyclic or carbocyclic ring which is fused to a five- or six-membered saturated or unsaturated heterocyclic or carbocyclic ring ("fused ring"), wherein the heterocyclic ring(s) of (i) or (ii) contain from 1-3 heteroatoms, independently selected from N, O and S, wherein each N is optionally in the form of an oxide 5 and each S is optionally in the form of an oxide selected from the group consisting of: S(=O) and S(=O)2, wherein the heterocyclic or carbocyclic ring(s) of (i) or (ii) is optionally mono-, di-, tri-, tetra-, penta- or hexa-substituted, each substituent of which is independently selected from the group consisting of: 0 (1) halogen,
(2) -OH,
(3) -NH(R4),
(4) 0x0,
(5) -C(=O)-R4, 5 (6) -O-C(=O)-R4,
(7) C1-C5 alkyl optionally substituted with 1-3 halogens,
(8) C3-C8 cycloalkyl optionally substituted with 1-3 halogens, MCC-ACV-00001
(9) C2-C5 alkenyl optionally substituted with 1-3 halogens,
(10) C3-C8 cycloalkenyl optionally substituted with 1-3 halogens,
(11) C2-C5 alkynyl optionally substituted with 1-3 halogens,
(12) C1-C5 alkoxy optionally substituted with 1-3 halogens,
5 (13) cyano,
(14) Ci-C5-cyano optionally substituted with 1-3 halogens,
(15) -OCF3,
(16) -C(R5)3,
(17) -(C1-C5 alkylene)-OR6 optionally substituted with 1-3 halogens,
10 (18) -N(R4)-(C 1 -C5 alkylene)-OR6 optionally substituted with 1 -3 halogens,
(19) -Q-(C 1-C5 alkylene)-OR6 optionally substituted with 1-3 halogens,
(20) -S-(C 1-C5 alkylene)-OR6 optionally substituted with 1-3 halogens,
(21) -S(=O)-(Ci-Cs alkylene)-OR6 optionally substituted with 1-3 halogens,
(22) -S(=O)2-(Ci-C5 alkylene)-OR6 optionally substituted with 1-3 halogens,
15 (23) -(C1-C5 alkylene)-N(R4)-C(=O)-(Ci-C5 alkylene)-R6 optionally substituted with 1-3 halogens,
(24) -(C1-C5 alkylene)-N(R4)-C(=O)-OR6 optionally substituted with 1-3 halogens,
(25) -(C1-C5 alkylene)-N(R4)(R6) optionally substituted with 1-3 halogens, 0 (26) -O-(Ci-C5 alkylene)-C(R4)2-C(=O)OR6 optionally substituted with 1-3 halogens,
(27) -(C1-C5 alkylene)-C(R4)2-C(=O)-OR6 optionally substituted with 1-3 halogens,
(28) -O-(Ci-C5 alkylene)-morpholine optionally substituted with 1-3 halogens, 5 (29) -OC(=O)-morpholine,
(30) -SR6,
(31) -S(=O)-R6,
(32) -S(=O)2-R6
(33) -N(R4)(R6), 0 (34) -(C1-C5 alkylene)-C(R4)2-(R6) optionally substituted with 1-3 halogens,
Figure imgf000093_0001
(36) C2-C5 alkenyl-OR6 optionally substituted with 1-3 halogens,
(37) C2-C5 alkynyl-OR6 optionally substituted with 1-3 halogens,
(38) -(Ci -Cs alkylene)-C(=O)-(Ci-C5 alkylene)-R6 optionally substituted with5 1-3 halogens,
(39) -(C1-C5 alkylene)-O-C(=O)-(Ci-C5 alkylene)-R6 optionally substituted with 1-3 halogens, MCC-ACV-00001
(40) -(C1-C5 alkylene)-C(=O)-N(R4)(R6) optionally substituted with 1-3 halogens,
(41) -(C1-C5 aIkylene)-O-C(=O)-N(R4)(R6) optionally substituted with 1-3 halogens, 5 (42) -(C1-C5 alkylene)-SR6 optionally substituted with 1-3 halogens,
(43) -(C1-C5 alkylene)-S(=O)-R6 optionally substituted with 1-3 halogens, and
(44) -(C1-C5 alkylene)-S(=O)2-R6 optionally substituted with 1-3 halogens, wherein R4 is selected from the group consisting of: hydrogen, Ci-Cβ alkyl, C3-
Cg cycloalkyl, C2-C6 alkenyl, C3-C8 cycloakenyl and C2-C6 alkynyl, wherein each of the0 foregoing alkyl, cycloalkyl, alkenyl, cycloalkenyl and alkynyl substituents is optionally substituted with 1-3 halogens, wherein R5 is halogen, wherein R6 is selected from the group consisting of: hydrogen, C1-C6 alkyl, C3- C$ cycloalkyl, C2-C6 alkenyl, C3-C8 cycloalkenyl and C2-C6 alkynyl, wherein each of the 5 foregoing alkyl, cycloalkyl, alkenyl, cycloalkenyl and alkynl substituents is optionally substituted with 1-3 halogens, wherein R? is selected from the group consisting of: -C(H)(OH)-, -CC=O)-, -OC(=O)-, -C(=O)O-, -O-, -OC(=O)O-, C1-C5 alkylene, C2-C5 alkenylene, -N(R4)-, -S-, -S(=O)-, -S(=O)2-, -N(R4)-C(=O)-, -C(=O)-N(R4)-, -OC(=O)-N(R4)-, -N(R4)-C(=0)0-,0 -N(R4)-S(=O)2- and -S(=O)2-N(R4)-( wherein each of the foregoing alkylene and alkenylene substituents is optionally substituted with 1-3 halogens, and wherein R4 is defined above, and wherein R8 is a five- or six-membered saturated or unsaturated heterocyclic or carbocyclic ring which is optionally mono-, di-, tri-, tetra- or penta-substituted, wherein each substituent is independently selected from the group consisting of: halogen, -OH, -SR4,5 -N(R4)(R6), C1-C5 alkyl, C3-C8 cycloalkyl, C2-C5 alkenyl, C3-C6 cycloalkenyl, C2-C5 alkynyl, C1-C5 alkoxy, cyano and Cl-C5-cyano, wherein said heterocyclic ring contains from 1 to 3 heteroatoms, independently selected from N, O and S, wherein each N is optionally in the form of an oxide and each S is optionally is in the form of an oxide selected from the group consisting of: S(=O) and S(=O)2, and wherein R4 and R6 are defined above. 0
2. The compound of Claim 1 wherein Rl is -CH3.
3. The compound of Claim 1 wherein V is hydrogen or halogen. 5
4. The compound of Claim 1 wherein V is hydrogen or chlorine.
5. The compound of Claim 1 wherein W is cyclopropyl. MCC-ACV-00001
6. The compound of Claim 1 wherein X is H.
7. The compound of Claim 1 wherein (Z)nI is -CH2- or a bond.
8. The compound of Claim 1 wherein (Z)nl is -CH2-.
9. The compound of Claim 1 wherein: Rl is C1-C2 alkyl optionally substituted with 1-3 halogens, 0 V is hydrogen or chlorine, W is cyclopropyl, X is hydrogen, and Z is -CH2-. 5
10. The compound of Claim 1 wherein Y is
Figure imgf000095_0001
optionally mono-, di-, tri-, tetra- or penta-substituted as described in Claim I .
11. The compound of Claim 10 having formula (II) 0
II
Figure imgf000095_0002
wherein: 5 A is selected from the group consisting of:
(1) hydrogen,
(2) halogen,
(3) C1-C5 alkyl,
(4) C1-C5 alkoxy, and 0 (5) -S-(CH2)0-3-CH3, wherein (3) and (4) are optionally substituted with 1-3 halogens, MCC-ACV-00001
B is selected from the group consisting of:
(1) hydrogen,
(2) halogen, (3) Ci-C5 alkyl,
5 (4) C1-C5 alkoxy,
(5) -OH,
(6) -CF3,
(7) -C(=O)-CH3;
(8) -O-(Ci-C5 alkylene)-O-cyclopropyl,
10 (9) -CKC1-C5 alkylene)-O-(CH2)0-2-CH3,
(10) -(C1-C5 alkylene)-O-(CH2)0-2-CH3,
(11) -OC(=O)-morpholine5
(12) -CKC1-C5 alkylene)-moφholine,
(13) -O-(Ci-C5 alkylene)-C(CH3)2-C(=O)OH, 5 (14) -O-(Ci-C5 alkylene)-C(CH3)2-C(=O)OCH3,
Figure imgf000096_0001
0 wherein (3), (4), (8), (9), (10), (12), (13), (14), (15) and (16) are optionally substituted with 1 -3 halogens,
C is selected from the group consisting of:
(1) hydrogen,
(2) C1-C5 alkyl optionally substituted with 1-3 halogens, and 5 (3) C1-C5 alkoxy optionally substituted with 1-3 halogens, and
D is selected from the group consisting of:
(1) hydrogen,
(2) halogen, (3) Ci-C5 alkyl, 0 (4) C1-C5 alkoxy,
(5) Ci-C5-cyano,
(6) C2-C5 alkenylene-O-(CH2)0-2-CH3,
(7) -(C1-C5 alkylene)-N(H)-C(=O)-O-(CH2)0-2-CH3,
(8) -(C1-C5 alkylene)-N(H)-C(=O)-(CH2)0-2-CH3, MCC-ACV-00001
(9) -(Ci-C5 alkylene)-O-CHF2,
(10) -(C1-C5 alkylene)-O-(CH2)0-2-CH3,
(11) -0-(C 1 -C5 alkylene)-O-(CH2)0-2-CH3 ,
(12) -(C1-C5 alkylene)-OH,
(13) -S-(C 1-C5 alkylene)-OH,
(14) -SCF3
(15) -N(H)-(C 1-C5 alkylene)-O-(CH2)0-2-CH3, and
Figure imgf000097_0001
0 wherein F, G and H are independently selected from the group consisting of: hydrogen, halogen and C1-C3 alkyl optionally substituted with 1-3 halogens, and wherein R.9 is selected from the group consisting of: -CH2-, -C(H)(OH)- and -C(=O)-, wherein (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13) and (15) are optionally5 substituted with 1-3 halogens.
12. The compound of Claim 1 which is:
Ex. 2
Figure imgf000097_0002
0 or a stereoisomer thereof, or a pharmaceutically acceptable salt thereof; or a pharmaceutically acceptable salt of the stereoisomer thereof.
13. The compound of Claim 1 which is:
Ex. 3
Figure imgf000097_0003
MCC-ACV-00001
or a stereoisomer thereof, or a pharmaceutically acceptable salt thereof; or a pharmaceutically acceptable salt of the stereoisomer thereof.
14. The following compound:
Ex. 2
Figure imgf000098_0001
or a pharmaceutically acceptable salt thereof.
15. The following compound: 0 Ex. 3
Figure imgf000098_0002
or a pharmaceutically acceptable salt thereof.
16. A pharmaceutical composition comprising an effective amount of a 5 compound according to Claim 1 , or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
17. Use of a compound according to Claim 1 for the manufacture of a medicament for the treatment or prophylaxis of diseases which are related to hypertension,0 congestive heart failure, pulmonary hypertension, renal insufficiency, renal ischemia, renal failure, renal fibrosis, cardiac insufficiency, cardiac hypertrophy, cardiac fibrosis, myocardial ischemia, cardiomyopathy, glomerulonephritis, renal colic, complications resulting from diabetes such as nephropathy, vasculopathy and neuropathy, glaucoma, elevated intra-ocular pressure, atherosclerosis, restenosis post angioplasty, complications following vascular or cardiac surgery,5 erectile dysfunction, hyperaldosteronism, lung fibrosis, scleroderma, anxiety, cognitive disorders, complications of treatments with immunosuppressive agents, and other diseases known to be related to the renin-angiotensin system. MCC-ACV-00001
18. A method for the treatment or prophylaxis of diseases which are related to hypertension, congestive heart failure, pulmonary hypertension, renal insufficiency, renal ischemia, renal failure, renal fibrosis, cardiac insufficiency, cardiac hypertrophy, cardiac fibrosis, myocardial ischemia, cardiomyopathy, glomerulonephritis, renal colic, complications resulting 5 from diabetes such as nephropathy, vasculopathy and neuropathy, glaucoma, elevated intraocular pressure, atherosclerosis, restenosis post angioplasty, complications following vascular or cardiac surgery, erectile dysfunction, hyperaldosteronism, lung fibrosis, scleroderma, anxiety, cognitive disorders, complications of treatments with immunosuppressive agents, and other diseases known to be related to the renin-angiotensin system, comprising the administration to a 10 patient of a pharmaceutically active amount of a compound according to Claim 1.
PCT/CA2009/000704 2008-05-22 2009-05-21 3, 4 - substituted piperidine derivatives as renin inhibitors WO2009140769A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/993,127 US20110152316A1 (en) 2008-05-22 2009-05-21 3,4-substituted piperidine derivatives as renin inhibitors
AU2009250299A AU2009250299A1 (en) 2008-05-22 2009-05-21 3, 4 - substituted piperidine derivatives as renin inhibitors
CA2724756A CA2724756A1 (en) 2008-05-22 2009-05-21 3, 4 - substituted piperidine derivatives as renin inhibitors
EP09749373A EP2300453A4 (en) 2008-05-22 2009-05-21 3, 4 - substituted piperidine derivatives as renin inhibitors
JP2011509831A JP2011520924A (en) 2008-05-22 2009-05-21 3,4-Substituted piperidine derivatives as renin inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12852008P 2008-05-22 2008-05-22
US61/128,520 2008-05-22

Publications (1)

Publication Number Publication Date
WO2009140769A1 true WO2009140769A1 (en) 2009-11-26

Family

ID=41339703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2009/000704 WO2009140769A1 (en) 2008-05-22 2009-05-21 3, 4 - substituted piperidine derivatives as renin inhibitors

Country Status (6)

Country Link
US (1) US20110152316A1 (en)
EP (1) EP2300453A4 (en)
JP (1) JP2011520924A (en)
AU (1) AU2009250299A1 (en)
CA (1) CA2724756A1 (en)
WO (1) WO2009140769A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060520A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives
WO2014060521A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives and a biological control agent
WO2014060502A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
WO2014060519A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives
WO2014060518A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
US8889714B2 (en) 2008-05-05 2014-11-18 Actelion Pharmaceuticals Ltd. 3,4-substituted piperidine derivatives as renin inhibitors
WO2016184879A1 (en) 2015-05-19 2016-11-24 Bayer Cropscience Aktiengesellschaft Method for treating coffee rust, citrus black spot, citrus scab and banana black sigatoka diseases
WO2017072166A1 (en) 2015-10-27 2017-05-04 Bayer Cropscience Aktiengesellschaft Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound
WO2018109062A1 (en) 2016-12-16 2018-06-21 Bayer Cropscience Aktiengesellschaft Method for the control of plant bacterial diseases using carboxamide derivatives
US10987349B2 (en) 2016-12-27 2021-04-27 Fujifilm Corporation Antitumor agent and bromodomain inhibitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2608685A1 (en) * 2005-05-26 2006-11-30 Novartis Ag Substituted piperidines as renin inhibitors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816122A3 (en) * 2006-01-19 2007-09-19 Speedel Experimenta AG 3,4,5-substituted piperidines as therapeutic compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2608685A1 (en) * 2005-05-26 2006-11-30 Novartis Ag Substituted piperidines as renin inhibitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2300453A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8889714B2 (en) 2008-05-05 2014-11-18 Actelion Pharmaceuticals Ltd. 3,4-substituted piperidine derivatives as renin inhibitors
WO2014060520A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for treating plants against fungi resistant to fungicides using carboxamide or thiocarboxamide derivatives
WO2014060521A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives and a biological control agent
WO2014060502A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Active compound combinations comprising carboxamide derivatives
WO2014060519A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives
WO2014060518A1 (en) 2012-10-19 2014-04-24 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
WO2016184879A1 (en) 2015-05-19 2016-11-24 Bayer Cropscience Aktiengesellschaft Method for treating coffee rust, citrus black spot, citrus scab and banana black sigatoka diseases
WO2017072166A1 (en) 2015-10-27 2017-05-04 Bayer Cropscience Aktiengesellschaft Active compound combinations comprising a (thio)carboxamide derivative and a fungicidal compound
WO2018109062A1 (en) 2016-12-16 2018-06-21 Bayer Cropscience Aktiengesellschaft Method for the control of plant bacterial diseases using carboxamide derivatives
US10987349B2 (en) 2016-12-27 2021-04-27 Fujifilm Corporation Antitumor agent and bromodomain inhibitor
RU2752163C2 (en) * 2016-12-27 2021-07-23 Фуджифилм Корпорэйшн Antitumor agent and bromodomain inhibitor

Also Published As

Publication number Publication date
CA2724756A1 (en) 2009-11-26
EP2300453A4 (en) 2012-03-21
US20110152316A1 (en) 2011-06-23
EP2300453A1 (en) 2011-03-30
AU2009250299A1 (en) 2009-11-26
JP2011520924A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
WO2009140769A1 (en) 3, 4 - substituted piperidine derivatives as renin inhibitors
JP5587246B2 (en) 3,4-Substituted piperidine derivatives as renin inhibitors
CA2729581A1 (en) Fluorinated heteroaryls
KR20070052693A (en) Polyheterocyclic compounds and their use as metabotropic glutamate receptor antagonists
EP2229363A1 (en) Renin inhibitors
CA2756780A1 (en) Renin inhibitors
AU2009326797B2 (en) 3,4 - substituted piperidine derivatives as renin inhibitors
JP2019511466A (en) Halo substituted piperidines as orexin receptor modulators
JP5149794B2 (en) Heteroaryl-substituted amides containing saturated linker groups and their use as pharmaceuticals
CN1323297A (en) Pyridazinone derivatives
EP2188256A1 (en) Renin inhibitors
TWI472524B (en) Renin inhibitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09749373

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009250299

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12993127

Country of ref document: US

Ref document number: 2724756

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011509831

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009250299

Country of ref document: AU

Date of ref document: 20090521

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009749373

Country of ref document: EP