[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2009019153A2 - Turbolader mit einer kühlungseinrichtung und einer ölzuführung - Google Patents

Turbolader mit einer kühlungseinrichtung und einer ölzuführung Download PDF

Info

Publication number
WO2009019153A2
WO2009019153A2 PCT/EP2008/059814 EP2008059814W WO2009019153A2 WO 2009019153 A2 WO2009019153 A2 WO 2009019153A2 EP 2008059814 W EP2008059814 W EP 2008059814W WO 2009019153 A2 WO2009019153 A2 WO 2009019153A2
Authority
WO
WIPO (PCT)
Prior art keywords
housing
turbocharger
exhaust manifold
turbine housing
bearing housing
Prior art date
Application number
PCT/EP2008/059814
Other languages
English (en)
French (fr)
Other versions
WO2009019153A3 (de
Inventor
Achim Koch
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to US12/671,413 priority Critical patent/US8459024B2/en
Priority to EP08786471.6A priority patent/EP2173975B1/de
Publication of WO2009019153A2 publication Critical patent/WO2009019153A2/de
Publication of WO2009019153A3 publication Critical patent/WO2009019153A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/243Cylinder heads and inlet or exhaust manifolds integrally cast together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/105Other arrangements or adaptations of exhaust conduits of exhaust manifolds having the form of a chamber directly connected to the cylinder head, e.g. without having tubes connected between cylinder head and chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/005Cooling of pump drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/40Application in turbochargers

Definitions

  • the invention relates to a turbocharger, in particular for a motor vehicle, which is provided with a cooling device for cooling the turbocharger housing and further comprises an oil supply for providing lubricating oil.
  • turbochargers have an exhaust gas turbine, which is arranged in an exhaust gas flow and is connected via a turbo shaft to a compressor in the intake tract.
  • a turbine wheel and a compressor wheel are rotatably mounted on the turbo shaft, wherein the turbine wheel is arranged in a turbine housing and the compressor wheel in a compressor housing.
  • a bearing housing is arranged, in which the turbo shaft is rotatably mounted.
  • Turbine housing is passed to the turbine wheel.
  • the turbine wheel in turn drives the compressor wheel, causing the compressor to increase the pressure in the intake tract of the engine, so that a larger amount of air enters the cylinder during the intake stroke. This means that more oxygen is available and a correspondingly larger amount of fuel can be burned. As a result, the power output of the engine can be increased.
  • the materials for the housing parts of the turbine and manifold have been designed from a strength point of view at high temperatures.
  • this requires a high nickel content in the material, because only then can cast materials withstand the high temperatures.
  • Nickel is a comparatively expensive commodity, which is also subject to strong world market fluctuations. Also for this reason it is desirable to be able to do without nickel.
  • the exhaust gas temperature of the engine is to be limited by a targeted fuel enrichment at full load. However, this has the disadvantage that the fuel consumption of the engine increases.
  • the component temperature can only be limited by limiting the engine output. Of course this is not wanted.
  • Motors for use in marine applications, such as outboard motors have legal requirements for the maximum surface temperature. So exhaust-carrying surfaces may be up to 80 0 C warm. For this reason, water-cooled turbine housings are already available in series for such applications today.
  • an exhaust gas turbocharger which is intended for marine use. This has a turbine housing, which is traversed by seawater as the cooling medium.
  • turbocharger for marine use known.
  • the turbocharger has a turbine housing, which is double-walled and is cooled by seawater.
  • the bearing housing of the turbocharger has an additional cooling device. In this case, instead of using seawater, the bearing housing is cooled by means of coolant from a coolant circuit of a connected motor. Accordingly, it is the object of the present invention to provide an improved turbocharger, in particular for a motor vehicle, with a cooling device.
  • the invention provides a turbocharger, in particular for a motor vehicle, comprising: a turbine housing and a bearing housing, wherein the turbine housing and the bearing housing are provided with a common cooling device.
  • both housings can be cooled by means of a common cooling device, for example by means of cooling water from a cooling water circuit of an engine connected to the turbocharger.
  • a common cooling device is less expensive to manufacture compared to separate cooling devices, such as those used in the aforementioned marine application.
  • the turbine housing and the bearing housing each have a separate cooling device, wherein the turbine housing is cooled with seawater and the bearing housing with cooling water.
  • a turbocharger in particular for a motor vehicle, is provided with: a turbine housing and a bearing housing, the turbine housing and / or the bearing housing having a cooling device and additionally having at least one oil supply line in an exhaust manifold, the turbine housing and / or the bearing gergephaseuse is integrated.
  • the turbocharger has the advantage that the turbine housing and / or the bearing housing is provided with a cooling, so that the respective housing better withstand high temperatures, for example, in full load operation.
  • the training or the integration of the oil supply in an exhaust manifold, the turbine housing and / or the bearing housing has the advantage that no separate line must be provided for this purpose. Furthermore, there are fewer vibrations in the integrated oil supply.
  • the lubricating oil is heated faster in the oil supply, for example by the exhaust gas in the exhaust manifold or the turbine housing, so that the bearings can be better lubricated in the start-up phase.
  • the cooling device is integrated in an exhaust manifold, the turbine housing and / or the bearing housing.
  • the integrated cooling device has the advantage that no separate lines are necessary and therefore the production and assembly is less expensive. Furthermore, less vibration occurs on the integrated cooling device than on lines routed separately from the turbocharger housing.
  • the cooling device consists of at least one or more coolant supply lines and / or at least one or more coolant discharge lines. This has the advantage that both the coolant supply and exhaust can be integrated into the turbocharger housing or its exhaust manifold and thereby can be dispensed with the laying of separate lines.
  • At least one additional oil supply line is optionally provided, which is integrated, for example, in the exhaust manifold, the turbine housing and / or the bearing housing.
  • the oil supply line is arranged for example in the vicinity or adjacent to the coolant supply and / or discharge line. This has the advantage that overheating of the lubricating oil, for example in full-load operation, can be prevented by at least partially cooling the lubricating oil through the cooling lines.
  • the turbine housing, the exhaust manifold and / or the bearing housing materials such as aluminum, gray cast iron, low alloyed steels, etc. on.
  • the cooling device also makes it possible to use those less heat-resistant materials.
  • the exhaust manifold is formed integrally with at least one or more cylinder heads. This has the advantage that manufacturing costs can be reduced.
  • the exhaust manifold can also be designed as a separate part.
  • the exhaust manifold, the turbine housing and / or the bearing housing are integrally formed.
  • This has the advantage that, for example, no sealing is necessary, as with separately interconnected parts.
  • the parts may also be designed accordingly as separate parts.
  • Fig. 1 is a front view of a flange of an exhaust manifold of a turbocharger according to the invention.
  • Fig. 2 is a perspective view of an engine block, wherein cylinder heads of the engine block are provided with an integrated exhaust manifold.
  • Fig. 1 is a front view of a flange 10 of an exhaust manifold of a turbocharger according to the invention (not shown) is shown.
  • the exhaust manifold is fastened with its flange 10 to a turbine housing of the turbocharger.
  • a coolant inlet 14 is provided around the exhaust manifold or its exhaust-carrying channel 12 for cooling a turbine housing (not shown) and a bearing housing (not shown) of the turbocharger.
  • a corresponding coolant outlet 16 is provided on the exhaust manifold for returning the coolant after cooling the turbine housing and the bearing housing.
  • an oil supply 18 is additionally provided with the lubricating oil for lubricating, for example, the bearing is supplied in the bearing housing.
  • the coolant such as cooling water
  • the cooling circuit (not shown) is formed for example of an engine block, a thermostat, a radiator and a coolant pump. After cooling of the turbine housing and the bearing housing, the coolant can be supplied to the cooling circuit again.
  • the invention is not limited to this embodiment of a refrigeration cycle.
  • the aforesaid refrigeration cycle is merely exemplary in order to explain the principle of the invention.
  • a coolant supply and discharge 20, 22, as well as an oil supply 18 to the exhaust manifold has the Advantage that not separate lines must be provided or performed as in the prior art, but instead the exhaust manifold is simply formed with appropriate lines or they are integrated therein.
  • the turbine housing and the bearing housing in this case have at least one portion, which is designed, for example, double-walled to pass the coolant and at least a portion to return the coolant then in the cooling circuit.
  • the respective section is provided such that it is sufficiently large to surround a corresponding region of the turbine housing or bearing housing, which is to be cooled. In principle, however, several sections may be provided for supplying and / or discharging the coolant.
  • the exhaust manifold is formed with its cooling lines and the oil supply accordingly, so that the exhaust manifold can be connected to the turbine housing accordingly.
  • the cooling of the turbine housing and the bearing housing has the advantage that both housing, and the exhaust manifold, can also be made of less heat-resistant materials.
  • the respective housing materials such as aluminum, low-alloyed steels, cast iron, etc. have. Therefore, for example, can be dispensed with the use of nickel or its share is at least reduced. This further has the advantage that manufacturing costs can be reduced.
  • the cooling of the turbine housing and the exhaust manifold connected to the turbine housing ensures that the exhaust gas-carrying components are not heated too much, especially in full load or full load close operation. Furthermore, the turbocharger can also be charged more, as it better withstands the resulting considerable temperature loads. Another advantage is that the bearings in the bearing housing can not easily overheat due to the additional cooling of the bearing housing.
  • the arrangement of the oil supply 18 on the exhaust manifold for supplying lubricant to the bearings of the bearing housing in turn has the advantage that the lubricating oil in the exhaust manifold is heated faster by the hot exhaust, for example, in the starting phase of the vehicle and thereby improved lubrication of the bearings in this phase ,
  • the turbo shaft can be provided.
  • the oil supply 18 may be positioned in the vicinity of or adjacent to the coolant supply 20 and / or the coolant discharge 22 on the exhaust manifold, so that the lubricating oil is not overheated, for example in full load or full load operation.
  • turbocharger for the coolant lines 20, 22 and the oil supply 18.
  • the flange 10 directly to the turbine housing, for example screwed.
  • the exhaust manifold for example, integrally connected to associated cylinder heads of an engine, as will be explained in more detail in Fig. 2.
  • the exhaust manifold can also be designed as a separate part that is connected to the cylinder heads.
  • the exhaust manifold may be connected to the coolant circuit and the oil supply of the engine.
  • This has the advantage that no separate cooling circuit must be set up, but an existing cooling circuit can be used. In principle, however, an extra cooling circuit for cooling the exhaust manifold and turbocharger housing can be provided.
  • the oil drain itself remains here, for example, preserved in the bearing housing. Furthermore, as mentioned above, not only provided the turbine housing with a cooling or cooling jacket but also the bearing housing.
  • the bearing housing can be formed integrated in the turbine housing.
  • the turbine housing and the bearing housing can for this purpose be formed substantially in one piece. This has the advantage that no sealing between the cooling lines and the oil supply is necessary, as is the case with separate housings.
  • the bearing housing likewise has a corresponding coolant supply and a coolant discharge, with the coolant lines of the bearing housing connecting to the corresponding coolant lines of the turbine housing.
  • the transition between the turbine housing and the bearing housing is preferably provided with a corresponding seal, so that no coolant can escape unintentionally.
  • the oil supply line 18 formed on the exhaust manifold is connected to a corresponding continuation of the oil supply line in the turbine housing or the bearing housing, wherein a suitable sealing device between the turbine housing and the bearing housing and the exhaust manifold and the turbine housing is provided when the housing or the manifold are formed as separate parts.
  • the lubricating oil for lubricating bearings of the bearing housing is (not shown) via the existing oil in the bearing housing, for example, in the oil pan of the engine, derived.
  • the invention relates to the combination of an internal combustion engine with an integrated into the cylinder head exhaust manifold and a water-cooled turbine housing with integrated bearing housing, for example made of aluminum. Particular attention is paid to a corresponding interface for the water supply and the oil pressure supply of the exhaust gas turbocharger.
  • the sectional place between the engine (exhaust outlet channel) and exhaust gas turbocharger (input turbine housing) designed such that both the cooling medium, here water, back and flow back and the pressure oil can flow to the oil pressure supply in the exhaust gas turbocharger.
  • the return of the pressure oil takes place via a line from the bearing housing of the turbocharger directly into the oil sump.
  • the inventive step lies on the one hand in the combination of turbine housing and bearing housing, for example made of aluminum, with an integrated guide of coolant and pressure oil.
  • the interface between the engine and exhaust gas turbocharger where not only the coolant for the exhaust gas turbocharger and back, but also the pressure oil is guided for the pressure oil supply of bearings of the turbocharger.
  • FIG. 2 a perspective view of an engine block 23 is shown.
  • the cylinder heads 24 of the engine block 23 are designed, for example, with an integrated exhaust manifold 26.
  • the arrangement of the cooling lines and the oil supply to the exhaust manifold 26 is not shown here for reasons of clarity.
  • the exhaust manifold 26 may be connected according to a turbine housing and a bearing housing or formed integrally with this.
  • the turbine housing and the bearing housing can be attached via a corresponding flange connection to the exhaust manifold, as shown in Fig. 1, or be formed integrally therewith.
  • only the turbine housing and the exhaust manifold may be formed in one piece.
  • the turbine housing and the bearing housing may be formed, for example, in one piece or as two separate parts.
  • the integrated embodiments as described above have the Advantage that they are easier to manufacture and also eliminates seals that are otherwise necessary for connecting the individual housing.
  • the provision of the oil feed can optionally be provided in addition to or as an alternative to the cooling device on the exhaust manifold, the turbocharger housing or the bearing housing.
  • a separate oil supply can be provided.
  • This can in principle also be provided as a separate line, which is not integrated in the exhaust manifold or the turbine housing and the bearing housing, in contrast to the coolant supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

Die Erfindung betrifft einen Turbolader, insbesondere für ein Kraftfahrzeug, mit einem Turbinengehäuse und einem Lagergehäuse, wobei das Turbinengehäuse und das Lagergehäuse mit einer gemeinsamen Kühlungseinrichtung versehen sind.

Description

Beschreibung
Turbolader mit einer Kühlungseinrichtung und einer Ölzufüh- rung
Die Erfindung betrifft einen Turbolader, insbesondere für ein Kraftfahrzeug, welcher mit einer Kühlungseinrichtung zum Kühlen des Turboladergehäuses versehen ist und des Weiteren eine Ölzuführung zum Bereitstellen von Schmieröl aufweist.
Im Allgemeinen weisen Turbolader eine Abgasturbine auf, die in einem Abgasstrom angeordnet ist und über eine Turbowelle mit einem Verdichter im Ansaugtrakt verbunden ist. Hierbei ist beispielsweise ein Turbinenrad und ein Verdichterrad auf der Turbowelle drehbar gelagert, wobei das Turbinenrad in einem Turbinengehäuse und das Verdichterrad in einem Verdichtergehäuse angeordnet ist. Zwischen dem Turbinengehäuse und dem Verdichtergehäuse ist ein Lagergehäuse angeordnet, in welchem die Turbowelle drehbar gelagert ist. Im Betrieb treibt der Abgasstrom, der durch einen Abgaskrümmer in das
Turbinengehäuse geleitet wird, das Turbinenrad an. Das Turbinenrad treibt wiederum das Verdichterrad an, wodurch der Verdichter den Druck im Ansaugtrakt des Motors erhöht, so dass während des Ansaugtaktes eine größere Menge Luft in den Zy- linder gelangt. Dies bewirkt, dass mehr Sauerstoff zur Verfügung steht und eine entsprechend größere Kraftstoffmenge verbrannt werden kann. Dadurch kann die Leistungsabgabe des Motors erhöht werden.
Aus dem Stand der Technik ist die Kühlung von heißen Abgasturboladerteilen bei Verbrennungsmotoren von Straßenfahrzeugen bekannt. Aufgrund der hohen Abgastemperaturen von z.B. PKW Ottomotoren, die bis zu 11000C betragen können, kommt es zu einer erheblichen Temperaturbelastung von Abgasturbolader- bauteilen im Vollast- bzw. vollastnahen Betrieb. Insbesondere die Gehäusebauteile sind aufgrund der mangelhaften Kühlung durch Konvektion sehr hohen Temperaturen ausgesetzt. Tendenziell steigen die Temperaturen der abgasführenden Bauteile auch in Zukunft weiter an, da die Motoren immer höher aufgeladen werden und somit spezifisch höher belastet werden.
Gemäß dem Stand der Technik wurden die Materialien für die Gehäuseteile der Turbine und Krümmer unter Festigkeitsgesichtspunkten bei hohen Temperaturen ausgelegt. Das erfordert heute einen hohen Nickelanteil im Werkstoff, denn nur so können Gusswerkstoffe den hohen Temperaturen standhalten. Nickel ist ein vergleichsweise teurer Rohstoff, der außerdem starken Weltmarktschwankungen unterworfen ist. Auch aus diesem Grund ist es wünschenswert auf Nickel verzichten zu können. Ferner ist die Abgastemperatur des Motors durch eine gezielte Kraftstoffanreicherung an der Volllast zu begrenzen. Das hat allerdings den Nachteil, dass der Kraftstoffverbrauch des Mo- tors ansteigt. Letztendlich lässt sich die Bauteiltemperatur nur durch eine Limitierung der Motorleistung begrenzen. Das wird natürlich nicht gewünscht. Bei Motoren für den Einsatz in marinen Applikationen, wie z.B. Außenbordmotoren, existieren gesetzliche Anforderungen an die maximale Oberflächentem- peratur. So dürfen abgasführende Oberflächen maximal 800C warm werden. Aus diesem Grund gibt es für solche Applikationen heute bereits wassergekühlte Turbinengehäuse in Serie.
Aus der DE 103 44 868 ist beispielsweise ein Abgasturbolader bekannt, der für den Marineeinsatz bestimmt ist. Dieser weist ein Turbinengehäuse auf, das von Seewasser als Kühlmedium durchströmt wird.
Des Weiteren ist aus der DE 203 11 703 ebenfalls ein Turbola- der für den Marineeinsatz bekannt. Der Turbolader weist dabei ein Turbinengehäuse auf, welches doppelwandig ausgebildet ist und mittels Seewassers gekühlt wird. Des Weiteren weist das Lagergehäuse des Turboladers eine zusätzliche Kühlungseinrichtung auf. Hierbei wird das Lagergehäuse statt mit Seewas- ser mittels Kühlmittel aus einem Kühlmittelkreislauf eines angeschlossenen Motors gekühlt. Demnach ist es die Aufgabe der vorliegenden Erfindung einen verbesserten Turbolader, insbesondere für ein Kraftfahrzeug, mit einer Kühlungseinrichtung bereitzustellen.
Diese Aufgabe wird durch einen Turbolader mit den Merkmalen des Patentanspruchs 1 und des Patentanspruchs 2 gelöst.
Demgemäß wird erfindungsgemäß ein Turbolader, insbesondere für ein Kraftfahrzeug, bereitgestellt mit: - einem Turbinengehäuse und einem Lagergehäuse, wobei das Turbinengehäuse und das Lagergehäuse mit einer gemeinsamen Kühlungseinrichtung versehen sind.
Dies hat den Vorteil, dass beide Gehäuse über eine gemeinsame Kühlungseinrichtung gekühlt werden können, beispielsweise mittels Kühlwasser aus einem Kühlwasserkreislauf eines mit dem Turbolader verbundenen Motors. Dadurch kann der Turbolader beispielsweise höher aufgeladen werden, ohne dass das Turboladergehäuse zu stark erhitzt wird. Des Weiteren ist ei- ne gemeinsame Kühlungseinrichtung kostengünstiger in der Herstellung im Gegensatz zu getrennten Kühlungseinrichtungen, wie sie bei der zuvor genannten marinen Applikation eingesetzt werden. Dort weisen das Turbinengehäuse und das Lagergehäuse jeweils eine getrennte Kühlungseinrichtung auf, wobei das Turbinengehäuse mit Seewasser und das Lagergehäuse mit Kühlwasser gekühlt wird.
Weiter wird erfindungsgemäß ein Turbolader, insbesondere für ein Kraftfahrzeug, bereitgestellt mit: - einem Turbinengehäuse und einem Lagergehäuse, wobei das Turbinengehäuse und/oder das Lagergehäuse eine Kühlungseinrichtung aufweisen und wobei zusätzlich wenigstens eine Ölzuführungsleitung in einen Abgaskrümmer, das Turbinengehäuse und/oder das La- gergehäuse integriert ist.
Der Turbolader hat dabei den Vorteil, dass das Turbinengehäuse und/oder das Lagergehäuse mit einer Kühlung versehen ist, so dass das jeweilige Gehäuse besser hohen Temperaturen, beispielsweise im Volllastbetrieb, standhält. Die Ausbildung bzw. das Integrieren der Ölzuführung in einen Abgaskrümmer, das Turbinengehäuse und/oder das Lagergehäuse hat den Vor- teil, dass hierfür keine separate Leitung vorgesehen werden muss. Des Weiteren treten bei der integrierten Ölzuführung weniger Vibrationen auf. Außerdem wird das Schmieröl in der Ölzuführung schneller erwärmt, beispielsweise durch das Abgas im Abgaskrümmer bzw. dem Turbinengehäuse, so dass die Lager in der Anfahrphase besser geschmiert werden können.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen sowie der Beschreibung unter Bezugnahme auf die Zeichnungen.
Gemäß einer Ausgestaltung der Erfindung ist die Kühlungseinrichtung in einen Abgaskrümmer, das Turbinengehäuse und/oder das Lagergehäuse integriert. Die integrierte Kühlungseinrichtung hat dabei den Vorteil, dass keine separaten Leitungen notwendig sind und daher die Herstellung und Montage kostengünstiger ist. Des Weiteren treten weniger Vibrationen an der integrierten Kühlungseinrichtung auf als wie an getrennt von dem Turboladergehäuse geführten Leitungen.
In einer weiteren erfindungsgemäßen Ausführungsform besteht die Kühlungseinrichtung aus wenigstens einer oder mehreren Kühlmittelzuführungsleitungen und/oder wenigstens einer oder mehreren Kühlmittelabführungsleitungen. Dies hat den Vorteil, dass sowohl die Kühlmittelzuführung- wie abführung in das Turboladergehäuse bzw. dessen Abgaskrümmer integriert werden kann und dadurch auf das Verlegen von separaten Leitungen verzichtet werden kann.
In einer anderen erfindungsgemäßen Ausführungsform ist wahl- weise zusätzlich wenigstens eine Ölzuführungsleitung vorgesehen, die beispielsweise in den Abgaskrümmer, das Turbinengehäuse und/oder das Lagergehäuse integriert ist. Dies hat den Vorteil, dass die Ölzuführung durch die abgasführenden Bauteile zusätzlich erwärmt werden kann und daher insbesondere in der Anfahrphase eine verbesserte Schmierung der Lager der
Turbowelle ermöglicht wird.
Gemäß einer weiteren erfindungsgemäßen Ausführungsform ist die Ölzuführungsleitung beispielsweise in der Nähe bzw. benachbart zu der Kühlmittelzuführungs und/oder abführungsleitung angeordnet. Dies hat den Vorteil, dass ein zu starkes Erhitzen des Schmieröls, beispielsweise im Volllastbetrieb, verhindert werden kann, indem das Schmieröl durch die Kühlleitungen zumindest teilweise mitgekühlt wird.
Gemäß einer weiteren erfindungsgemäßen Ausführungsform weist das Turbinengehäuse, der Abgaskrümmer und/oder das Lagergehäuse Werkstoffe wie beispielsweise Aluminium, Grauguss, niedrig legierte Stähle usw. auf. Durch die Kühleinrichtung können auch solche weniger wärmebeständigen Werkstoffe verwendet werden.
In einer weiteren erfindungsgemäßen Ausführungsform ist der Abgaskrümmer mit wenigstens einem oder mehreren Zylinderköpfen einteilig ausgebildet. Dies hat den Vorteil, dass Herstellungskosten gesenkt werden können. Alternativ kann der Abgaskrümmer auch als separates Teil ausgeführt werden.
Gemäß einer anderen erfindungsgemäßen Ausführungsform sind der Abgaskrümmer, das Turbinengehäuse und/oder das Lagergehäuse einteilig ausgebildet. Dies hat den Vorteil, dass bei- spielsweise keine Abdichtung notwendig ist, wie bei getrennt miteinander verbundenen Teilen. Alternativ können die Teile aber auch entsprechend als separate Teile ausgebildet sein.
Die Erfindung wird nachfolgend anhand der in den schemati- sehen Figuren der Zeichnungen angegebenen Ausführungsbeispiele näher erläutert. Es zeigen: Fig. 1 eine Vorderansicht eines Flansches eines Abgaskrümmers eines Turboladers gemäß der Erfindung; und
Fig. 2 eine perspektivische Ansicht eines Motorblocks, wobei Zylinderköpfe des Motorblocks mit einem integrierten Abgaskrümmer versehen sind.
In Fig. 1 ist eine Vorderansicht eines Flansches 10 eines Abgaskrümmers eines erfindungsgemäßen Turboladers (nicht dargestellt) gezeigt. Der Abgaskrümmer wird mit seinem Flansch 10 an einem Turbinengehäuse des Turboladers befestigt. Um den Abgaskrümmer bzw. dessen das Abgas führenden Kanal 12 ist da- bei ein Kühlmitteleinlass 14 vorgesehen zum Kühlen eines Turbinengehäuses (nicht dargestellt) und eines Lagergehäuses (nicht dargestellt) des Turboladers. Des Weiteren ist ein entsprechender Kühlmittelauslass 16 an dem Abgaskrümmer vorgesehen, um das Kühlmittel nach dem Kühlen des Turbinengehäu- ses und des Lagergehäuses zurückzuführen. Des Weiteren ist zusätzlich eine Ölzuführung 18 vorgesehen mit der Schmieröl zum Schmieren beispielsweise der Lager im Lagergehäuse zugeführt wird.
Das Kühlmittel, wie beispielsweise Kühlwasser, zum Kühlen des Turboladergehäuses wird dabei aus einem Kühlkreislauf eines mit dem Turbolader verbundenen Motors entnommen. Der Kühlkreislauf (nicht dargestellt) wird dabei beispielsweise aus einem Motorblock, einem Thermostat, einem Kühler und einer Kühlmittelpumpe gebildet. Nach der Kühlung des Turbinengehäuses und des Lagergehäuses kann das Kühlmittel dem Kühlkreislauf wieder zugeführt werden. Die Erfindung ist jedoch nicht auf diese Ausführungsform eines Kühlkreislaufs beschränkt. Der vorgenannte Kühlkreislauf ist lediglich beispielhaft, um das Prinzip der Erfindung zu erläutern.
Das Ausbilden einer Kühlmittelzuführung - und abführung 20, 22, sowie einer Ölzuführung 18 an dem Abgaskrümmer hat den Vorteil, dass nicht wie im Stand der Technik hierfür getrennte Leitungen vorgesehen bzw. geführt werden müssen, sondern stattdessen der Abgaskrümmer mit entsprechenden Leitungen einfach ausgeformt wird bzw. diese darin integriert werden. Das Turbinengehäuse und das Lagergehäuse weisen hierbei wenigstens einen Abschnitt auf, der beispielsweise doppelwandig ausgeführt ist, um das Kühlmittel hindurchzuleiten und wenigstens einen Abschnitt, um das Kühlmittel anschließend in den Kühlkreislauf zurückzuführen. Der jeweilige Abschnitt ist dabei derart vorgesehen, dass er ausreichend groß ist, um einen entsprechenden Bereich des Turbinengehäuses bzw. Lagergehäuses zu umgeben, der gekühlt werden soll. Grundsätzlich können aber auch mehrere Abschnitte vorgesehen werden zum Zuführen und/oder Abführen des Kühlmittels. Hierbei wird der Abgaskrümmer mit seinen Kühlleitungen und der Ölzuführung entsprechend ausgebildet, so dass der Abgaskrümmer mit dem Turbinengehäuse entsprechend verbunden werden kann.
Die Kühlung des Turbinengehäuses und des Lagergehäuses hat den Vorteil, dass beide Gehäuse, sowie der Abgaskrümmer, auch aus weniger wärmebeständigen Werkstoffen hergestellt werden können. Beispielsweise kann das jeweilige Gehäuse Werkstoffe wie Aluminium, niedrig legierte Stähle, Grauguss usw. aufweisen. Daher kann beispielsweise auf den Einsatz von Nickel verzichtet werden oder dessen Anteil zumindest reduziert werden. Dies hat weiter den Vorteil, dass Herstellungskosten gesenkt werden können.
Des Weiteren sorgt die Kühlung des Turbinengehäuses und des mit dem Turbinengehäuse verbundenen Abgaskrümmers dafür, dass die abgasführenden Bauteile nicht zu stark erhitzt werden, insbesondere im Volllast- bzw. volllastnahen Betrieb. Des Weiteren kann der Turbolader hierdurch auch stärker aufgeladen werden, da er den entstehenden erheblichen Temperaturbe- lastungen besser standhält. Ein weiterer Vorteil ist, dass die Lager in dem Lagergehäuse, durch die zusätzliche Kühlung des Lagergehäuses, nicht so einfach überhitzen können. Die Anordnung der Ölzuführung 18 an dem Abgaskrümmer zum Zuführen von Schmiermittel zu den Lagern des Lagergehäuses hat wiederum den Vorteil, dass das Schmieröl im Abgaskrümmer durch das heiße Abgas beispielsweise in der Startphase des Fahrzeugs schneller erwärmt wird und dadurch in dieser Phase eine verbesserte Schmierung der Lager, beispielsweise der Turbowelle, bereitgestellt werden kann. Des Weiteren kann die Ölzuführung 18 in der Nähe oder benachbart zu der Kühlmittelzuführung 20 und/oder der Kühlmittelabführung 22 an dem Ab- gaskrümmer positioniert sein, so dass das Schmieröl beispielsweise im Volllast- bzw. volllastnahen Betrieb nicht zu stark erhitzt wird.
Des Weiteren wird durch den erfindungsgemäßen Turbolader eine definierte Schnittstelle bereitgestellt, für die Kühlmittelleitungen 20, 22 und die Ölzuführung 18. Wie aus Fig. 1 entnommen werden kann, wird der Abgaskrümmer mit dem Kühlmittelein- und auslass 14, 16, sowie der Ölzuführung 18 in Form beispielsweise des Flansches 10 direkt an dem Turbinengehäuse befestigt, beispielsweise angeschraubt. Hierzu weist der
Flansch 10 entsprechende Öffnungen 28 zum Hindurchführen von Schrauben auf. Auf der anderen Seite ist der Abgaskrümmer beispielsweise einteilig mit zugeordneten Zylinderköpfen eines Motors verbunden, wie noch in Fig. 2 näher erläutert wird. Der Abgaskrümmer kann aber auch als separates Teil ausgeführt werden, dass mit den Zylinderköpfen verbunden wird.
Der Abgaskrümmer kann beispielsweise mit dem Kühlmittelkreislauf und der Ölzuführung des Motors verbunden werden. Dies hat den Vorteil, dass kein separater Kühlkreislauf eingerichtet werden muss, sondern ein bestehender Kühlkreislauf genutzt werden kann. Grundsätzlich kann aber auch ein extra Kühlkreislauf zur Kühlung von Abgaskrümmer und Turboladergehäuse vorgesehen werden.
Der Ölabfluss selbst bleibt hierbei beispielsweise in dem Lagergehäuse erhalten. Des Weiteren ist, wie zuvor genannt, nicht nur das Turbinengehäuse mit einer Kühlung bzw. einem Kühlmantel versehen sondern auch das Lagergehäuse.
Das Lagergehäuse kann dabei in dem Turbinengehäuse integriert ausgebildet werden. Das Turbinengehäuse und das Lagergehäuse können hierzu im Wesentlichen einteilig ausgebildet sein. Dies hat den Vorteil, dass keine Abdichtung zwischen den Kühlleitungen und der Ölzuführung notwendig ist, wie dies bei getrennten Gehäusen der Fall ist.
Bei zwei getrennten Gehäusen weist das Lagergehäuse beispielsweise ebenfalls eine entsprechenden Kühlmittelzuführung und eine Kühlmittelabführung auf, wobei die Kühlmittelleitungen des Lagergehäuses an die entsprechenden Kühlmittelleitun- gen des Turbinengehäuses anschließen. Der Übergang zwischen dem Turbinengehäuse und dem Lagergehäuse ist hierbei vorzugsweise mit einer entsprechenden Abdichtung versehen, so dass kein Kühlmittel ungewollt austreten kann.
Entsprechendes gilt auch für die Ölzuführleitung 18. Die an dem Abgaskrümmer ausgebildete Ölzuführleitung 18 ist mit einer entsprechenden Fortsetzung der Ölzuführleitung in dem Turbinengehäuse bzw. dem Lagergehäuse verbunden, wobei eine geeignete Dichtungseinrichtung zwischen dem Turbinengehäuse und dem Lagergehäuse und dem Abgaskrümmer und dem Turbinengehäuse vorgesehen ist, wenn die Gehäuse bzw. der Krümmer als getrennte Teile ausgebildet sind. Das Schmieröl zum Schmieren von Lagern des Lagergehäuses wird über die im Lagergehäuse vorhandene Ölabfuhr (nicht dargestellt) , beispielsweise in die Ölwanne des Motors, abgeleitet.
Die Erfindung betrifft die Kombination eines Verbrennungsmotors mit einem in den Zylinderkopf beispielsweise integriertem Abgaskrümmer und ein wassergekühltes Turbinengehäuse mit integriertem Lagergehäuse beispielsweise aus Aluminium. Dabei ist ein besonderes Augenmerk auf eine entsprechende Schnittstelle für die Wasserversorgung und die Öldruckversorgung des Abgasturboladers gelegt. So ist erfindungsgemäß die Schnitt- stelle zwischen Motor (Ausgangskanal Abgas) und Abgasturbolader (Eingang Turbinengehäuse) derart ausgebildet, dass sowohl das Kühlmedium, hier Wasser, hin- und zurückfließen als auch das Drucköl zur Öldruckversorgung in den Abgasturbolader fließen kann. Die Rückführung des Drucköls erfolgt über eine Leitung vom Lagergehäuse des Abgasturboladers direkt in die Ölwanne zurück.
Der erfinderische Schritt liegt einerseits in der Kombination von Turbinengehäuse und Lagergehäuse, beispielsweise aus Aluminium, mit einer integrierten Führung von Kühlmittel und Drucköl. Zum anderen in der Schnittstelle zwischen Motor und Abgasturbolader, an der nicht nur das Kühlmittel für den Abgasturbolader hin- und zurückgeführt wird, sondern auch das Drucköl hingeführt wird für die Druckölversorgung von Lagern des Turboladers.
In Fig. 2 ist eine perspektivische Ansicht eines Motorblocks 23 gezeigt. Die Zylinderköpfe 24 des Motorblocks 23 sind da- bei beispielsweise mit einem integrierten Abgaskrümmer 26 ausgebildet. Die Anordnung der Kühlleitungen und der Ölzufuhr an dem Abgaskrümmer 26 ist hierbei aus Gründen der Übersichtlichkeit nicht dargestellt.
An dem Abgaskrümmer 26 können entsprechend ein Turbinengehäuse und ein Lagergehäuse angeschlossen werden oder mit diesem integriert ausgebildet sein. Dabei kann beispielsweise das Turbinengehäuse und das Lagergehäuse über eine entsprechende Flanschanbindung an dem Abgaskrümmer befestigt werden, wie in Fig. 1 gezeigt ist, oder mit diesem einteilig ausgebildet sein. Grundsätzlich können beispielsweise aber auch nur das Turbinengehäuse und der Abgaskrümmer einteilig ausgebildet sein .
Des Weiteren können, wie zuvor beschrieben wurde, das Turbinengehäuse und das Lagergehäuse beispielsweise einteilig oder als zwei separate Teile ausgebildet sein. Die integrierten Ausführungen, wie sie zuvor beschrieben wurden, haben den Vorteil, dass sie einfacher in der Herstellung sind und außerdem Abdichtungen entfallen, die sonst zum Verbinden der einzelnen Gehäuse notwendig sind.
Obwohl die vorliegende Erfindung anhand bevorzugter Ausführungsbeispiele beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Weise modifizierbar. Die vorgenannten Ausführungsformen sind miteinander kombinierbar, insbesondere einzelne Merkmal davon.
Grundsätzlich ist es bei den vorgenannten Ausführungsformen möglich, dass beispielsweise nur das Turbinengehäuse oder das Lagergehäuse gekühlt wird. Des Weiteren kann das Vorsehen der Ölzuführung wahlweise zusätzlich oder alternativ zu der Küh- lungseinrichtung an dem Abgaskrümmer, dem Turboladergehäuse bzw. dem Lagergehäuse vorgesehen werden. In den Ausführungsformen kann beispielsweise auch eine separate Ölzuführung vorgesehen werden. Entsprechendes gilt auch für die Kühlmittelabführung. Diese kann grundsätzlich ebenfalls als separate Leitung vorgesehen werden, die nicht in den Abgaskrümmer bzw. das Turbinengehäuse und das Lagergehäuse integriert ist im Gegensatz zu der Kühlmittelzuführung.

Claims

Patentansprüche
1. Turbolader, insbesondere für ein Kraftfahrzeug, mit: - einem Turbinengehäuse und einem Lagergehäuse, wobei das Turbinengehäuse und das Lagergehäuse mit einer gemeinsamen Kühlungseinrichtung (14, 16, 20, 22) versehen sind.
2. Turbolader, insbesondere für ein Kraftfahrzeug, mit: - einem Turbinengehäuse und einem Lagergehäuse, wobei das Turbinengehäuse und/oder das Lagergehäuse eine Kühlungseinrichtung (14, 16, 20, 22) aufweisen und wobei zusätzlich wenigstens eine Ölzuführungsleitung (18) in einen Abgaskrümmer (26), das Turbinengehäuse und/oder das Lagergehäuse integriert ist.
3. Turbolader nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass die Kühlungseinrichtung (14, 16, 20, 22) in einen Abgas- krümmer (26), das Turbinengehäuse und/oder das Lagergehäuse integriert ist.
4. Turbolader nach wenigstens einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , dass die Kühlungseinrichtung (14, 16, 20, 22) wenigstens eine
Kühlmittelzuführungsleitung (20) und/oder wenigstens eine Kühlmittelabführungsleitung (22) aufweist.
5. Turbolader nach wenigstens einem der Ansprüche 1, 3 oder 4, d a d u r c h g e k e n n z e i c h n e t , dass wahlweise zusätzlich wenigstens eine Ölzuführungsleitung
(18) vorgesehen ist, die beispielsweise in den Abgaskrümmer (26), das Turbinengehäuse und/oder das Lagergehäuse integ- riert ist.
6. Turbolader nach wenigstens einem der Ansprüche 2, 4 oder 5, d a d u r c h g e k e n n z e i c h n e t , dass die Ölzuführungsleitung (18) beispielsweise in der Nähe bzw. benachbart zu der Kühlmittelzuführungs- und/oder abfüh- rungsleitung (20, 22) angeordnet ist.
7. Turbolader nach wenigstens einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass das Turbinengehäuse, der Abgaskrümmer (26) und/oder das
Lagergehäuse Werkstoffe wie Aluminium, Grauguss und/oder niedrig legierten Stahl aufweisen.
8. Turbolader nach wenigstens einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , dass der Abgaskrümmer (26) und wenigstens ein oder mehrere Zylinderköpfe (24) einteilig oder als separate Teile ausgebildet sind.
9. Turbolader nach wenigstens einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , dass der Abgaskrümmer (26), das Turbinengehäuse und/oder das Lagergehäuse als separate Teile oder im Wesentlichen einteilig ausgebildet sind.
10. Turbolader nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , dass der Abgaskrümmer (26) über einen Flansch (10) an dem Turbinengehäuse befestigbar ist.
11. Kraftfahrzeug mit einem Turbolader nach einem der Ansprüche 1 bis 10.
PCT/EP2008/059814 2007-08-06 2008-07-25 Turbolader mit einer kühlungseinrichtung und einer ölzuführung WO2009019153A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/671,413 US8459024B2 (en) 2007-08-06 2008-07-25 Turbocharger comprising a cooling device and an oil supply pipe
EP08786471.6A EP2173975B1 (de) 2007-08-06 2008-07-25 Turbolader mit einer kühlungseinrichtung und einer ölzuführung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007036995A DE102007036995A1 (de) 2007-08-06 2007-08-06 Ausführung und Schnittstellen eines wassergekühlten Turbinengehäuse für einen Abgasturbolader
DE102007036995.8 2007-08-06

Publications (2)

Publication Number Publication Date
WO2009019153A2 true WO2009019153A2 (de) 2009-02-12
WO2009019153A3 WO2009019153A3 (de) 2009-04-09

Family

ID=39884642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/059814 WO2009019153A2 (de) 2007-08-06 2008-07-25 Turbolader mit einer kühlungseinrichtung und einer ölzuführung

Country Status (4)

Country Link
US (1) US8459024B2 (de)
EP (1) EP2173975B1 (de)
DE (1) DE102007036995A1 (de)
WO (1) WO2009019153A2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950933A1 (fr) * 2009-10-07 2011-04-08 Peugeot Citroen Automobiles Sa Turbocompresseur muni d'une bride refroidie
DE102010062749A1 (de) * 2010-12-09 2012-06-14 Continental Automotive Gmbh Turbolader, der in den Zylinderkopf eines Motors integriert ist.
WO2012107479A1 (de) 2011-02-10 2012-08-16 Continental Automotive Gmbh Abgasturbolader mit gekühltem turbinengehäuse
WO2012107483A1 (de) * 2011-02-10 2012-08-16 Continental Automotive Gmbh Abgasturbolader mit gekühltem turbinengehäuse und gekühltem lagergehäuse und gemeinsamer kühlmittelzufuhr
WO2012107481A1 (de) 2011-02-10 2012-08-16 Continental Automotive Gmbh Abgasturbolader mit gekühltem turbinengehäuse und gekühltem lagergehäuse und gemeinsamer kühlmittelzufuhr
US20130195620A1 (en) * 2010-10-11 2013-08-01 Borgwarner Inc. Exhaust turbocharger
DE102015104591A1 (de) 2015-03-26 2016-09-29 Volkswagen Aktiengesellschaft Abgaskanal einer Brennkraftmaschine, insbesondere mit Abgasturbolader, sowie Brennkraftmaschine mit einem solchen Abgaskanal

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010037378A1 (de) * 2010-09-07 2012-03-08 Ford Global Technologies, Llc Zylinderkopf mit Turbine
DE102010038909A1 (de) * 2010-08-04 2012-02-09 Bayerische Motoren Werke Aktiengesellschaft Turbinengehäuse für einen Abgasturbolader
DE102010038055A1 (de) 2010-10-08 2012-04-12 Ford Global Technologies, Llc Brennkraftmaschine mit Flüssigkeitskühlung
DE102011002554A1 (de) * 2011-01-12 2012-07-12 Ford Global Technologies, Llc Brennkraftmaschine mit Zylinderkopf und Turbine
US9518479B2 (en) 2011-03-14 2016-12-13 Borgwarner Inc. Turbine housing of an exhaust turbocharger
GB2494144A (en) * 2011-08-30 2013-03-06 Gm Global Tech Operations Inc Turbocharger to exhaust manifold connection
KR20140065084A (ko) * 2012-11-21 2014-05-29 현대자동차주식회사 배기매니폴드 및 디퓨져 일체형 실린더헤드
US9518505B2 (en) * 2012-12-11 2016-12-13 Ford Global Technologies, Llc Coolant jacket for a turbocharger oil drain
JP6225505B2 (ja) * 2013-06-24 2017-11-08 トヨタ自動車株式会社 シリンダヘッド
US9587588B2 (en) 2013-07-03 2017-03-07 Ford Global Technologies, Llc Direct inlet axial automotive turbine
WO2015138182A1 (en) * 2014-03-11 2015-09-17 Borgwarner Inc. Connection for media lines on an exhaust-gas turbocharger
US12078078B2 (en) 2015-11-09 2024-09-03 Fca Us Llc Cylinder head with integrated turbocharger
EP3963189A1 (de) 2019-05-02 2022-03-09 Fca Us Llc Zylinderkopf mit integriertem turbolader

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1217138B (de) * 1961-04-04 1966-05-18 Prvni Brnenska Strojirna Einrichtung zur Abfuhr der Kuehlluft bei Turboladern
US3948052A (en) * 1972-10-27 1976-04-06 Daimler-Benz Aktiengesellschaft Installation of an exhaust gas turbo-charger at an internal combustion engine
US4147467A (en) * 1976-09-04 1979-04-03 Motoren- Und Turbinen-Union Friedrichshafen Gmbh Exhaust gas turbocharger
US4364717A (en) * 1978-07-03 1982-12-21 Barmag Barmer Maschinenfabrik Ag Exhaust gas turbocharger
GB2126663A (en) * 1982-08-27 1984-03-28 Nissan Motor Turbocharger casing arrangement
EP0781908A2 (de) * 1995-12-26 1997-07-02 Ishikawajima-Harima Heavy Industries Co., Ltd. Turboladerausbau
DE10025500A1 (de) * 2000-05-23 2001-11-29 Bosch Gmbh Robert Brennkraftmaschine mit Kühlkreislauf und einem an diesen angeschlossenen Heizungswärmetauscher
US20030017765A1 (en) * 2001-07-19 2003-01-23 Yoshitsugu Gokan Personal watercraft having engine with supercharger incorporated therein
US20040083730A1 (en) * 2002-07-26 2004-05-06 Eberhard Wizgall Cooling system for turbocharged internal combustion engine
EP1577520A2 (de) * 2004-03-17 2005-09-21 Wärtsilä Finland Oy Turbokompressoreinrichtung für Kolbenbrennkraftmaschine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3341119C1 (de) * 1983-11-12 1985-06-20 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Tragarm fuer eine Brennkraftmaschine
DE3532695C1 (de) * 1985-09-13 1986-11-27 Audi AG, 8070 Ingolstadt Abgasturbolader fuer eine Fahrzeug-Brennkraftmaschine
FI94894C (fi) * 1993-01-27 1995-11-10 Waertsilae Diesel Int Tuenta- ja jäähdytysjärjestely turboahdinlaitteistoa varten
JP3966558B2 (ja) * 1995-07-21 2007-08-29 ヴェルトシレ・フィンランド・オサケユキテュア 内燃機関
JP2003027952A (ja) * 2001-07-17 2003-01-29 Honda Motor Co Ltd 過給機付きエンジンを搭載した小型滑走艇
DE10235189A1 (de) 2002-07-26 2004-02-12 Weber Motor Ag Turbinengehäuse für einen Turbolader-Verbrennungsmotor, Turbolader-Verbrennungsmotor und Verfahren zum Kühlen eines Turbolader-Verbrennungsmotors
EP1428999A1 (de) * 2002-12-12 2004-06-16 Renault s.a.s. Aufladegebläse Anordnung für Brennkraftmaschine
DE10344868A1 (de) 2003-09-26 2005-04-21 Volkswagen Ag Abgasturbolader
DE102009000214A1 (de) * 2009-01-14 2010-09-02 Ford Global Technologies, LLC, Dearborn Brennkraftmaschine mit Abgasturboaufladung
US8621865B2 (en) * 2010-05-04 2014-01-07 Ford Global Technologies, Llc Internal combustion engine with liquid-cooled turbine
EP2640945B1 (de) * 2010-11-19 2020-06-03 Gregg Jones Verbrennungsmotor mit einem turbolader-system und verfahren zum betreiben einem turbolader
GB2487747B (en) * 2011-02-02 2016-05-18 Ford Global Tech Llc An engine system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1217138B (de) * 1961-04-04 1966-05-18 Prvni Brnenska Strojirna Einrichtung zur Abfuhr der Kuehlluft bei Turboladern
US3948052A (en) * 1972-10-27 1976-04-06 Daimler-Benz Aktiengesellschaft Installation of an exhaust gas turbo-charger at an internal combustion engine
US4147467A (en) * 1976-09-04 1979-04-03 Motoren- Und Turbinen-Union Friedrichshafen Gmbh Exhaust gas turbocharger
US4364717A (en) * 1978-07-03 1982-12-21 Barmag Barmer Maschinenfabrik Ag Exhaust gas turbocharger
GB2126663A (en) * 1982-08-27 1984-03-28 Nissan Motor Turbocharger casing arrangement
EP0781908A2 (de) * 1995-12-26 1997-07-02 Ishikawajima-Harima Heavy Industries Co., Ltd. Turboladerausbau
DE10025500A1 (de) * 2000-05-23 2001-11-29 Bosch Gmbh Robert Brennkraftmaschine mit Kühlkreislauf und einem an diesen angeschlossenen Heizungswärmetauscher
US20030017765A1 (en) * 2001-07-19 2003-01-23 Yoshitsugu Gokan Personal watercraft having engine with supercharger incorporated therein
US20040083730A1 (en) * 2002-07-26 2004-05-06 Eberhard Wizgall Cooling system for turbocharged internal combustion engine
EP1577520A2 (de) * 2004-03-17 2005-09-21 Wärtsilä Finland Oy Turbokompressoreinrichtung für Kolbenbrennkraftmaschine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950933A1 (fr) * 2009-10-07 2011-04-08 Peugeot Citroen Automobiles Sa Turbocompresseur muni d'une bride refroidie
US20130195620A1 (en) * 2010-10-11 2013-08-01 Borgwarner Inc. Exhaust turbocharger
US9133730B2 (en) * 2010-10-11 2015-09-15 Borgwarner Inc. Exhaust turbocharger
DE102010062749A1 (de) * 2010-12-09 2012-06-14 Continental Automotive Gmbh Turbolader, der in den Zylinderkopf eines Motors integriert ist.
US9683482B2 (en) 2010-12-09 2017-06-20 Continental Automotive Gmbh Turbocharger which is integrated into the cylinder head of an engine
WO2012107483A1 (de) * 2011-02-10 2012-08-16 Continental Automotive Gmbh Abgasturbolader mit gekühltem turbinengehäuse und gekühltem lagergehäuse und gemeinsamer kühlmittelzufuhr
WO2012107481A1 (de) 2011-02-10 2012-08-16 Continental Automotive Gmbh Abgasturbolader mit gekühltem turbinengehäuse und gekühltem lagergehäuse und gemeinsamer kühlmittelzufuhr
US9512739B2 (en) 2011-02-10 2016-12-06 Continental Automotive Gmbh Turbocharger with cooled turbine housing
US9546569B2 (en) 2011-02-10 2017-01-17 Continental Automotive Gmbh Turbocharger with cooled turbine housing, cooled bearing housing, and a common coolant supply
US9567870B2 (en) 2011-02-10 2017-02-14 Continental Automotive Gmbh Turbocharger with cooled turbine housing, cooled bearing housing, and a common coolant supply
WO2012107479A1 (de) 2011-02-10 2012-08-16 Continental Automotive Gmbh Abgasturbolader mit gekühltem turbinengehäuse
DE102015104591A1 (de) 2015-03-26 2016-09-29 Volkswagen Aktiengesellschaft Abgaskanal einer Brennkraftmaschine, insbesondere mit Abgasturbolader, sowie Brennkraftmaschine mit einem solchen Abgaskanal
DE102015104591B4 (de) * 2015-03-26 2019-11-14 Volkswagen Aktiengesellschaft Abgaskanal einer Brennkraftmaschine, insbesondere mit Abgasturbolader, sowie Brennkraftmaschine mit einem solchen Abgaskanal

Also Published As

Publication number Publication date
EP2173975A2 (de) 2010-04-14
US8459024B2 (en) 2013-06-11
EP2173975B1 (de) 2016-09-07
US20100296920A1 (en) 2010-11-25
WO2009019153A3 (de) 2009-04-09
DE102007036995A1 (de) 2009-02-19

Similar Documents

Publication Publication Date Title
EP2173975B1 (de) Turbolader mit einer kühlungseinrichtung und einer ölzuführung
DE102009053237B4 (de) Turbolader mit einer Lagerbockeinrichtung für ein in Längsrichtung geteiltes Turboladergehäuse
DE102008011258A1 (de) Gekühltes Gehäuse bestehend aus einem Turbinengehäuse und einem Lagergehäuse eines Turboladers
DE102012200562A1 (de) Motorsystem
EP2143922A1 (de) Zylinderkopf mit Abgaskrümmer und Turbolader
WO2010009945A2 (de) Gekühltes turboladergehäuse mit einer oder mehreren elektronikeinrichtungen
DE102008011257A1 (de) Gekühltes Turbinengehäuse
EP2305975A2 (de) Brennkraftmaschine mit Pumpe zur Förderung von Motoröl und Verfahren zur Erwärmung des Motoröls einer derartigen Brennkraftmaschine
DE112010002757T5 (de) Mehrstufige Turboladeranordnung
DE102007050259A1 (de) Aufgeladene Brennkraftmaschine mit integriertem Abgaskrümmer und Flüssigkeitskühlung
DE102011002562B4 (de) Aufgeladene flüssigkeitsgekühlte Brennkraftmaschine
DE102014118810A1 (de) Ein Turboladerschmiermittelkühler
DE102016207745A1 (de) Turbinengehäuse für einen Turbolader einer Brennkraftmaschine sowie Turbolader
DE102008022627A1 (de) Abgasturbolader für eine Brennkraftmaschine und Verfahren zum Betreiben eines Abgasturboladers einer Brennkraftmaschine
EP2333277B1 (de) Abgaskrümmer für eine Brennkraftmaschine
EP2245305B1 (de) Nutzfahrzeug mit einem gekühlten kompressor und verfahren zum kühlen eines kompressors
EP1998023B1 (de) Ladeeinrichtung
EP2262984B1 (de) Abgas führendes bauteil
DE102019202928A1 (de) Abgaswärmerückgewinnungssystem und Verfahren zur Abgaswärmerück-gewinnung
DE20009004U1 (de) Turbolader
DE202013100884U1 (de) Flüssigkeitsgekühlte Turbine mit Lagergehäuse
DE102010037969B4 (de) Brennkraftmaschine mit flüssigkeitsgekühlter Turbine und Verfahren zum Kühlen der Turbine
DE102020007406A1 (de) Abgasturbolader für eine Verbrennungskraftmaschine, insbesondere eines Kraftfahrzeugs
DE102017201104B4 (de) Kraftfahrzeug mit einer Turboladeranordnung
DE102014009501A1 (de) Verfahren und Brennkraftmaschine zur Optimierung eines Kühlkreislaufs für Marine- Anwendungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08786471

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2008786471

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008786471

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12671413

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE